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Abstract
The need for automation of the identity recognition process for a vast number of applications

resulted in great advancement of biometric systems in the recent years. Yet, many studies

indicate that these systems suffer from vulnerabilities to spoofing (presentation) attacks: a

weakness that may compromise their usage in many cases. Face verification systems account

for one of the most attractive spoofing targets, due to the easy access to face images of users,

as well as the simplicity of the spoofing attack manufacturing process.

Many counter-measures to spoofing have been proposed in the literature. They are based on

different cues that are used to distinguish between real accesses and spoofing attacks. The

task of detecting spoofing attacks is most often considered as a binary classification problem,

with real accesses being the positive class and spoofing attacks being the negative class.

The main objective of this thesis is to put the problem of anti-spoofing in a wider context,

with an accent on its cooperation with a biometric verification system. In such a context, it

is important to adopt an integrated perspective on biometric verification and anti-spoofing.

In this thesis we identify and address three points where integration of the two systems is of

interest.

The first integration point is situated at input-level. At this point, we are concerned with

providing a unified information that both verification and anti-spoofing systems use. The

unified information includes the samples used to enroll clients in the system, as well as the

identity claims of the client at query time. We design two anti-spoofing schemes, one with

a generative and one with a discriminative approach, which we refer to as client-specific, as

opposed to the traditional client-independent ones.

At the second integration point, situated at output-level, we address the issue of combining

the output of biometric verification and anti-spoofing systems in order to achieve an optimal

combined decision about an input sample. We adopt a multiple expert fusion approach and we

investigate several fusion methods, comparing the verification performance and robustness

to spoofing of the fused systems.

The third integration point is associated with the evaluation process. The integrated perspec-

tive implies three types of inputs for the biometric system: real accesses, zero-effort impostors

and spoofing attacks. We propose an evaluation methodology for biometric verification sys-

tems under spoofing attacks, called Expected Performance and Spoofability (EPS) framework,

which accounts for all the three types of input and the error rates associated with them. Within

this framework, we propose the EPS Curve (EPSC), which enables unbiased comparison of

systems.
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Abstract

The proposed methods are applied on several case studies for the face mode. Overall, the

experimental results prove the integration to be beneficial for creating trustworthy face verifi-

cation systems. At input-level, the results show the advantage of the client-specific approaches

over the client-independent ones. At output-level, they present a comparison of the fusion

methods. The case studies are furthermore used to demonstrate the EPS framework and its

potential in evaluation of biometric verification systems under spoofing attacks.

The source code for the full set of methods is available as free software, as a satellite package to

the free signal processing and machine learning toolbox Bob. It can be used to reproduce the

results of the face mode case studies presented in this thesis, as well as to perform additional

analysis and improve the proposed methods. Furthermore, it can be used to design case

studies applying the proposed methods to other biometric modes.

Key words: Spoofing attacks, Counter-measures, Anti-spoofing, Liveness Detection, Pre-

sentation Attacks, Presentation Attack Detection, Biometric Verification, Face Verification,

Biometric Evaluation
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Résumé
Au cours des dernières années, le besoin d’automatisation du processus de reconnaissance

d’identité pour un large nombre d’applications a engendré de grands progrès des systèmes

biométriques. Cependant, plusieurs études ont montré une vulnérabilité de ces systèmes

aux attaques d’usurpation (aussi appelées attaques de présentation ou “spoofing”) qui peut

compromettre leur utilisation dans de nombreux cas. Les systèmes de vérification du visage

sont les plus susceptibles d’être exposés à ces attaques en raison d’un accès aisé aux images

des visages des utilisateurs, ainsi qu’à la simplicité de mise en oeuvre du procédé d’usurpation

d’identité.

De nombreuses contre-mesures aux attaques de présentation ont été proposées dans la

littérature. Elles sont basées sur différents signaux utilisés pour distinguer les vrais accès des

attaques spoofées. La tâche de détection des attaques est le plus souvent considérée comme

un problème de classification binaire dans lequel les vrais accès constituent les exemples

positifs, et les attaques les exemples négatifs.

L’objectif principal de cette thèse est de placer le problème de détection des attaques de

présentation au coeur d’un contexte élargi en accentuant sa coopération avec un système de

vérification biométrique. Dans un tel contexte, il est important d’adopter une perspective

intégrée de la vérification biométrique et de l’détection des attaques de présentation. Dans

cette thèse, nous identifions et traitons trois éléments pour lesquels l’intégration des deux

systèmes est importante.

Le premier élément d’intégration se situe au niveau des signaux d’entrée. A ce stade, l’objectif

est de fournir une information unifiée à la fois aux systèmes de vérification et à la détection

des attaques de présentation. L’information unifiée comprend les échantillons utilisés pour

enregistrer les clients dans le système, ainsi que l’identité proclamée. Nous concevons deux

procédés de détection des attaques de présentation, l’un basé sur une approche générative,

l’autre sur une approche discriminante, mais également spécifique au client, contrairement

aux procédés traditionnels.

Au deuxième niveau d’intégration, situé en sortie, nous traitons le problème de combinaison

entre les sorties des systèmes de vérification biométrique et de détection des attaques de

présentation pour réaliser une décision combinée optimale. Nous adoptons une approche

de fusion entre plusieurs experts et nous examinons plusieurs méthodes pour celle-ci en

comparant la performance de la vérification et la robustesse des systèmes fusionnés aux

attaques de présentation.

Le dernier élément d’intégration concerne l’évaluation. La perspective intégrée implique
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Résumé

trois types d’entrée pour le système biométrique: les accès réels, les imposteurs sans ef-

fort, et les attaques de présentation. Nous proposons une méthodologie d’évaluation des

systèmes de vérification biométrique soumis à des attaques, que nous appelons ’Expected

Performance and Spoofability’ (EPS), et qui prend en compte les trois types d’entrée et leurs

taux d’erreurs associés. Dans ce cadre, nous proposons la courbe ’EPS Curve’ (EPSC) qui

permet une comparaison non biaisée des systèmes.

Les méthodes proposées sont appliquées dans plusieurs cas d’étude concernant le reconnais-

sance de visage. Au niveau de l’entrée, les résultats expérimentaux montrent le bénéfice de

l’intégration et l’avantage des approches spécifiques aux clients par rapport à celles qui leur

sont indépendantes. Au niveau de la sortie, nous présentons une comparaison des méthodes

de fusion. Les cas d’études sont par ailleurs utilisés pour démontrer l’usage de la méthode EPS

et son potentiel pour évaluer les systèmes de vérification biométrique soumis à des attaques

de présentation.

Le code source pour la totalité des méthodes est disponible en tant que logiciel libre comme

satellite de la boîte à outils gratuite Bob pour le traitement du signal et l’apprentissage automa-

tique. Il peut être utilisé pour reproduire les résultats des cas d’étude sur le visage présentés

dans cette thèse, ainsi que pour procéder à des analyses complémentaires et améliorer les

méthodes proposées. De plus, il peut être utilisé pour concevoir des cas d’étude en appliquant

les méthodes proposées à d’autres modalités biométriques.

Mots-clés: Attaques de présentation, Contre-mesures, Détection d’attaques de présentation,

Spoofing, Anti-spoofing, Détection du caractère vivant, Attaques de présentation, Détec-

tion d’attaques de présentation, Vérification biométrique, Vérification du visage, Evaluation

biométrique
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1 Introduction

We live in a digital world: an ever increasing amount of things that we possess or that represent

us are stored as sequences of zeros and ones. Our finances, our personal and professional

data, the services that we use are all partially or fully in an electronic format. As a result, it

has been a long time now since passwords replaced traditional keys to authenticate users and

ensure them a secure access not only to the electronic content that belongs to them, but also

to physical objects they possess and places they are admitted to.

Passwords rely on a "what I know" paradigm, and are thus a knowledge-based authentication

method [O’Gorman, 2003]. They consist of a sequence of characters that a user needs to

remember. While widely used and usually considered secure, passwords are infamous for the

lack of user convenience [Adams and Sasse, 1999]. This is especially the case when users need

to remember multiple passwords, each for a different purpose. Studies like Adams and Sasse

[1999]; Armstrong [2003]; Florencio and Herley [2007] show that users are prone to choose

easily memorable, crackable passwords, and intentionally or unintentionally disclose them.

Advising or forcing the users to use more difficult passwords may increase insecure work

practices, like writing them down. Furthermore, passwords may be stolen via phishing or

logging with a malicious spyware [Coskun and Herley, 2008].

Another form of authentication, relying on a "what I have" paradigm, are tokens in the form of

portable storage devices, like smartcards. As an object-based authentication method, tokens

are prone to theft. Thus, it is advised that they are used as a complementary authentication to

passwords, rather than as a stand-alone security method [O’Gorman, 2003].

An alternative, ID-based form of authentication, is biometrics and it relies on a "what I am"

paradigm. A biometric recognition system establishes the identity of a user by capturing some

of his measurable physical and behavioral traits [Jain et al., 2006]. The biometric traits are

selected so that they reliably distinguish one person from the other [Matyas Jr. and Stapleton,

2000] and are stable throughout the lifespan of an individual [O’Gorman, 2003]. This puts

fingerprint, face, iris and voice among the most popular biometric modes used nowadays.

Inconsistent or irreproducible presentation, imperfect signal acquisition and acquisition
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condition variabilities [Jain et al., 2006] are biometric challenges which have been steadily

addressed in the recent years.

To make a systematic comparison of the above-listed authentication methods, one needs to

evaluate them by different criteria. Bonneau et al. [2012] defines simplicity of use and cost

of deployment as some of these criteria. In this sense, biometrics has many advantages with

respect to passwords and tokens, because it is memory-effortless, scalable for users, and can

not be forgotten or lost. Yet, considering the value of the resources guarded by the system, the

most important criteria are probably its security assets. Unfortunately, biometrics may be a

subject of different security offenses, like targeted impersonation, theft, leaks and phishing.

This thesis is concerned with a particular security risk of biometric systems, spoofing at-

tacks. Also referred to as presentation attacks [ISO-30107-1, 2014], they are performed when

a malicious user claims another user’s identity by forging a copy of their biometric trait and

presenting it in front of the biometric system [Erdogmus and Marcel, 2014b]. Being recog-

nized and acknowledged in many biometric modes, the risk is, to some extent, inhibiting a

large-scale adoption of biometric systems, particularly in cases where human supervision of

the authentication process is not possible.

Aiming at making a step forward towards more secure biometric authentication, in this thesis

we address several issues regarding the integration of counter-measures to spoofing attacks

into biometric systems. Before going into details, we give arguments stating the importance

of developing spoofing counter-measures and the integration process. Subsequently, we

formalize the objectives of this thesis and summarize its main contributions.

1.1 Background and Motivation

A generic biometric recognition system runs through several stages, like signal acquisition,

feature extraction, template creation and matching. According to Ratha et al. [2001] and as

illustrated at Fig. 1.1, the security of such a system can be compromised at several attack

points. Galbally et al. [2007] group the attacks into two broad categories: indirect and direct.

Indirect attacks are performed at a system level and require hacking skills to intrude into

the system. They may manipulate, for example, the communication channel, the feature

extraction or matching procedure, or tamper the stored templates, as represented by the

vulnerability points 2, 3, 4, 5 and 6 on Fig. 1.1. On the other hand, direct attacks are performed

before the signal is received by the system. Hence, direct attacks happen at vulnerability point

1 on Fig. 1.1 and they target the sensor itself.

The basic type of sensor-level attack is zero-effort impostor, and may arise as a result of

a certain degree of similarity between biometric samples from two individuals [Jain et al.,

2006]. The danger of such attacks is related to the level of individuality of the biometric trait.

Robustness to zero-effort impostors is a fundamental property of a biometric recognition

system. Indeed, the biometric community puts fundamental efforts to reduce the successful
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Figure 1.1: Points of vulnerability of generic biometric recognition system [Ratha et al., 2001]

zero-effort impostors by optimizing the recognition algorithms to minimize the similarities

between the representations of different clients.

Unlike zero-effort impostors, spoofing attacks are adversary attacks at a sensor level. They

involve presenting a copy of the biometric sample of another user in front of the system.

Spoofing attacks are conceivable because biometrics, unlike passwords, does not provide

security by secrecy, but by uniqueness [O’Gorman, 2003]. Not being a secret is an inherent

property of biometrics [Jain et al., 2006], and thus acquiring a copy of a biometric trait of an

individual is an attainable task. Unfortunately, information globalization acts in favor for

adversary users, making access to biometric data as easy as never before. For example, photos

and possibly videos featuring the face of users are available on various Internet websites.

Users’ voice can be easily recorded and examined at distance. Fingerprint molds can be easily

manufactured from latent marks left on cups and door knobs.

Once it is obtained, a copied biometric trait not only allows an attacker to access a biometric

system, but may avert the legitimate user to use the compromised biometric trait in the future

due to security reasons. This is a consequence of what O’Gorman [2003] calls "the paradox of

biometrics": the stability of the biometric trait, which is otherwise a desirable property, leaves

no option for compromise recovery, since biometric traits can not be changed or replaced.

Biometric experts agree that it is impractical to prevent collection of biometric data from

an individual [Matyas Jr. and Stapleton, 2000]. The ANSI standard committee formulated

what is called a security axiom for biometrics: “The security of a biometric system cannot

rely on keeping biometric data secret” [ANSI-X9.84-2010, 2010]. Rather, they recommend

building preventive measurements to defend against fabricated replicas of biometric samples.

O’Gorman [2003] rightfully declares that it is not the secrecy what makes a good authenticator,

but the difficulty to counterfeit the original. He argues that copy-resistance goes along with

uniqueness as a fundamental principle a good biometrics should stand upon. This gives the

essence of the motivation to develop counter-measures to spoofing attacks in order to foster
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even wider adoption of biometrics as an authentication method.

It is important to note that the spoofing attacks arise as an issue from the practical usage of

biometrics, rather than as a problem inspired by a scientific curiosity. Ever since Matsumoto

et al. [2002] demonstrated the vulnerability of several commercial fingerprint recognition

devices to spoofing attacks with gummy fingers, every new commercial biometric authen-

tication system is being put to similar tests by security enthusiasts. For example, D. and M.

[2009] successfully deceived the face authentication systems of several laptops with fake facial

images at the Black Hat Security conference. The first commercial fingerprint authentication

on smartphones has been spoofed with artificial fingers too [ChaosComputerClub, 2013;

Swanner, 2014]. While the goal of the above-mentioned examples is to draw attention to the

vulnerability of biometric recognition systems, criminal acts involving spoofing attacks on

deployed biometric systems have been recorded as well. The case of an illegal immigrant

trying to deceive the airport fingerprint scanner in Japan with a tape with someone else’s

fingerprint is one of the examples [Flink, 2009]. Another one concerns a doctor who falsely

registers her colleagues as present at work by spoofing the fingerprint scanner tracking the

employee attendance [Matyszczyk, 2013].

Spoofing attacks are less likely to happen in a scenario where the biometric system is attended

by a human supervisor. Yet, this depends on the biometric mode: as shown in an example

above, it is possible to deceive the human control with a fingerprint spoofing attack. Further-

more, the rise of the use of biometric systems as an integral part of portable personal devices

or for other unsupervised applications poses an urgent necessity to address the problem.

1.2 Scope of the Thesis and Terminology

Biometric recognition is used to refer to two different tasks: verification and identifica-

tion [Mansfield et al., 2002]. In biometric verification, as a synonym to biometric authentica-

tion, a user claims a particular identity and the system needs to verify whether this claim is

true based on the biometric trait. In biometric identification, the system needs to identify a

biometric sample to belong to one out of many identities.

In biometric verification the user makes a positive claim of an identity and the system makes

a one-to-one comparison of the input sample with the stored model of the claimed identity.

In biometric identification the user usually makes no claim and the system needs to make a

one-to-many comparison of the input sample with the stored models. Identification as a mode

of operation of a biometric system is often used in applications where duplicate enrollment

needs to be avoided, as well as in negative recognition, where an individual needs to be

identified to belong in a certain group (watch list) of identities [Mansfield et al., 2002]. Because

of the different purposes of verification and identification systems, adversary attacks at sensor

level usually differ too. In biometric verification, the goal of an attack is presenting oneself

as some other person. In biometric identification used for one of the purposes stated above,

attack means disguising in order to hide one’s true identity. In such a case, masquerading
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as a particular person is not necessary, because disguise can be achieved by using generic

face mask or other artificial materials, wearing glasses or make-up, occluding the face with

a scarf, performing extreme facial expressions etc. For the iris mode, it can be achieved

simply by using fashion colored contact lenses. For fingerprint mode, users that want to

disguise themselves may intentionally make cuts or burns on their fingertips. Typically, the

counter-measures to disguise and spoofing attacks as a special form of disguise are different.

Furthermore, the different means of operation of verification and identification systems may

require different approaches for integration of the counter-measures. The scope of this thesis

is thus limited exclusively to spoofing attacks to biometric verification systems, and excludes

attacks to biometric identification systems.

It is interesting to note that among the biometric modes, the face mode is presumably one of

the most attractive to spoof. The reasons are two-fold. Firstly, face images of users are widely

available on the Internet and obtaining them can be a matter of just a few clicks [Li et al.,

2014]. Secondly, producing spoofing attacks for the face mode can be as easy as printing a

photograph on a paper, or displaying a photograph on an electronic device. Unlike spoofing

attacks for fingerprint or iris mode, no special skills or expensive materials are required to

produce simple face spoofing attacks. This thesis is focused on the face mode and the value of

the proposed solutions is demonstrated on case studies with face data. However, the aspects

of spoofing detection treated in this thesis are generally valid for other biometric modes and

the proposed solutions can be readily applied to other spoofing attacks.

The terms spoofing detection, counter-measure and anti-spoofing method are interchange-

ably used in this thesis to refer to systems or techniques for detecting spoofing attacks. The

term liveness detection is often used in the literature, denoting that spoofing attacks do not

demonstrate signs of liveness on the scene, while the other samples do. Indeed, many counter-

measures explicitly measure the amount of liveness of the presented sample, like the per-

spiration of the skin [Schuckers, 2002] for the fingerprint mode, or eye blinking for the face

mode [Pan et al., 2007]. However, not all spoofing attacks exhibit absence of liveness, esspe-

cially for the face mode. For example, in an attack where a video of the user’s face is played on

the screen of a device, the liveness signs can be identical as in a real access. Furthermore, many

face spoofing counter-measures operate using cues other than liveness. For these reasons, we

avoid the use of the term liveness detection in this thesis.

Finally, in this thesis we will interchangeably use the terms user and client to refer to any

person that is enrolled or uses the verification system. We will also interchangeably use real

access and genuine access to denote samples coming from a valid user who is claiming the

correct identity in front of the verification system.

1.3 Objectives and Contributions

Thanks to the growing interest of the biometric community towards the problem of spoofing,

the number of published works in the domain notes a significant growth in the recent years.
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The majority of articles focuses on developing spoofing detection methods and relevant

features that can discriminate between real accesses and spoofing attacks. Thus, regardless of

the biometric mode, most of the anti-spoofing systems are designed as binary classification

systems with real accesses as the positive and spoofing attacks as the negative class.

There are several aspects of biometric spoofing which have received notably less attention.

Among these, an essential issue arises due to the fact that anti-spoofing systems are not

designated to work in isolation, but in cooperation with a biometric verification system that

needs to be protected. This observation indicates the need to put anti-spoofing in a wider

context encompassing a verification system. This includes the framework and circumstances

within which the anti-spoofing system needs to be situated.

The main objective of this thesis is to highlight the need for an integrated perspective on

biometric verification and anti-spoofing. To this end, we identify three points in the biometric

verification and anti-spoofing pipeline where integration may play an important role. They

are illustrated in Fig. 1.2. The first integration point is at input-level and is concerned with

the information that both biometric verification and anti-spoofing systems use or may have

access to. The second integration point is at output-level and focuses on how to take a unified

decision about an input sample, based on the output of both biometric verification and anti-

spoofing systems. The third point addresses evaluation of biometric verification systems when

a threat of spoofing attacks is anticipated.

Figure 1.2: Important points of integration for biometric verification and anti-spoofing systems

With respect to the identified integration points, we argue that overlooking the cooperation of

biometric verification and anti-spoofing systems has three major consequences:

1. The anti-spoofing system is deprived of particular information that biometric verifica-

tion system uses imperatively, and which may be useful for spoofing detection;

2. The optimization of the fusion of the two systems towards a unified decision is neglected

or completely prevented;
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3. Correct evaluation and unbiased comparison of the performance and spoofing vulnera-

bility of biometric verification systems is unattainable.

An integrated perspective at each of the three points stands behind a strong motivation

which is thoroughly described throughout this thesis. Integration is, nevertheless, inspired by

observations of the operation of biometric verification and anti-spoofing systems in practical

applications.

At input-level, we start from the observation that a typical biometric verification system needs

two inputs: a biometric sample and a claim about the identity of the client. Based on this

claim, the system compares the input sample with the stored models for the client. The

system also needs enrollment samples to create these models. On the other hand, a typical

anti-spoofing system makes use of neither the client identity, nor the enrollment samples

to take its decision. We argue that by integrating and unifying the information that both

verification and anti-spoofing systems have access to, we can give an additional advantage to

the anti-spoofing system.

At output-level, the issue of integration emerges once we want to practically deploy an anti-

spoofing system to protect a biometric verification system. At this point, the decision whether

a biometric sample is accepted or rejected depends on both of them. The way to fuse their

outputs has a direct impact on both the verification performance of the system and its ro-

bustness to spoofing. If we consider that biometric verification and anti-spoofing systems are

expert systems, we could optimize the performance of the fused system by exploring different

multiple expert fusion approaches [Kittler et al., 1998].

At evaluation level, we first acknowledge that, in addition to genuine samples and zero-effort

impostors, we have spoofing attacks as an input to the system. This implies a separate mea-

surement of the errors associated with incorrectly accepted spoofing attacks, in addition to

False Acceptance Rate (FAR) and False Rejection Rate (FRR) as error rates associated with

incorrectly accepted zero-effort impostors and incorrectly rejected genuine users, respec-

tively [Jain et al., 2008]. Considering that error rates in biometric classification systems are

computed with respect to a decision threshold [Mansfield et al., 2002], we need to define an

effective way to compute it. In this process, it is important to account on the three types of

errors, as well as the three types of inputs. Based on these considerations, we also need to

define performance curves that will enable unbiased comparison of biometric verification

systems.

In this thesis we propose and compare practical methods to address the integration at all three

levels. With respect to this, the major contributions of this thesis are the following:

1. Input-level integration: design of client-specific anti-spoofing methods. We examine

the option to unify the information that anti-spoofing and verification systems have

access to and whether anti-spoofing systems can benefit from it. This information
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includes enrollment data which is used to enroll clients in the verification system, as well

as information about the claimed client identity which is available at verification time.

Abandoning the classical treatment of anti-spoofing systems as binary classification

systems with models for real accesses as the positive and spoofing attacks as the negative

class, we exploit this information to build separate spoofing models for each client. We

refer to this approach as client-specific, as opposed to the traditional client-independent

anti-spoofing approaches which disregard the client identity. We develop two client-

specific methods: one based on a generative and one on a discriminative approach.

Publication related to this contribution: [Chingovska and Anjos, 2015].

2. Output-level integration: comparison of multiple experts fusion methods for bio-

metric verification and anti-spoofing systems. We emphasize the need to explore

several ways to fuse the output of biometric verification and anti-spoofing systems, in

order to optimize the systems in terms of verification performance and robustness to

spoofing attacks. We analyze several fusion schemes operating at decision-level and

score-level.

Publication related to this contribution: [Chingovska et al., 2013a].

3. Integrated evaluation: design of evaluation methodology for biometric verification

systems under spoofing attacks. We present the drawbacks of existing methodologies

for evaluation of verification systems under spoofing attacks and we demonstrate the

need for improvement. We propose a new evaluation methodology, called Expected Per-

formance and Spoofability (EPS) framework, which accounts for a variable weight of the

systems error rates and varying expected probability of the inputs. The accompanying

EPS Curve (EPSC) enables unbiased comparison between verification systems.

Publication related to this contribution: [Chingovska et al., 2014a].

4. Case studies on the face mode. The integration concepts and methods elaborated

in this thesis are illustrated by case studies on several different state-of-the-art face

verification and anti-spoofing methods. The case studies are performed using face

spoofing data and include an extensive empirical analysis which serves to compare the

proposed methods.

The results concerned with the input-level integration show that client-specific methods

have a significant advantage over their client-independent counter-parts. The advan-

tage is present both when tested with the same or different type of attacks than the

ones used for training. With respect to the output-level integration, the results show

the benefit of the fusion and a trade-off between systems’ verification performance and

robustness to spoofing. A large part of the analysis is performed using the EPS frame-

work, demonstrating the usage of EPSC and the value of the methodology in evaluating

biometric verification systems under spoofing attacks.

5. Provision of fully reproducible experiments and reusable code. The source code of all

the methods described in this thesis is available as free software in the software package
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bob.thesis.ichingo20151, which is a satellite package to the free signal processing

and machine learning toolbox Bob2 [Anjos et al., 2012]. The experiments for the case

studies can be fully reproduced. Furthermore, the code can be used to create additional

case studies based on other verification and anti-spoofing systems or different biometric

modes.

Other publications related to this thesis: [Chingovska et al., 2012], [Chingovska et al., 2013b],

[Chingovska et al., 2014c], [Chingovska et al., 2014b], [Anjos et al., 2014].

1.4 Thesis Outline

The thesis is composed of seven chapters. A brief summary of each of them is given below.

In Chapter 2 we cover the existing literature in biometric spoofing and anti-spoofing, particu-

larly focusing on the face mode. First, we give examples of face spoofing attacks and we cover

the existing face spoofing databases. Then, we give an overview of the research efforts for

face anti-spoofing, systematically categorizing them into several categories based on the cues

they use to distinguish between real accesses and spoofing attacks. The overview is primarily

focused on features for automatic anti-spoofing methods.

In Chapter 3 we address input-level integration. We propose client-specific face anti-spoofing

methods as a way to unify the information that both verification and anti-spoofing systems use.

First, we empirically demonstrate the motivation for client-specific methods. Subsequently,

we present the theoretical background of the proposed generative and discriminative client-

specific methods.

In Chapter 4 we focus on output-level integration. We state the need of taking a multiple

expert approach and we study several fusion strategies at decision-level and score-level.

In Chapter 5 we focus on integrated evaluation. We point out the weaknesses of the current

evaluation methodologies for biometric verification systems under spoofing attacks and their

inability to perform unbiased comparison between systems. Then, we present the Expected

Performance and Spoofability (EPS) framework and the corresponding EPS Curve (EPSC)

for an unbiased evaluation, which takes into account the three types of inputs and errors of

biometric verification systems.

In Chapter 6 we illustrate the methods proposed in the previous chapters on case studies in

the face mode. The case studies are based on several state-of-the-art face verification and

anti-spoofing systems and include extensive experiments to assess their performance. In

the first part, we show the value of the client-specific approaches proposed for input-level

integration in Chapter 3. In the second part, we make comparative analysis of the fusion

1 https://pypi.python.org/pypi/bob.thesis.ichingo2015
2 https://www.idiap.ch/software/bob
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methods described in Chapter 4. Throughout the analysis we demonstrate the use of the EPS

framework presented in Chapter 5 to evaluate biometric verification systems under spoofing

attacks.

In Chapter 7 we conclude the thesis with a summary of its contributions and achievements

and we give an outline of possible directions for future work.
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2 Literature Review

To understand biometric spoofing and come with practically viable anti-spoofing systems,

one needs to go through several stages. Defining spoofing attacks and studying how they are

created and performed is the first stage. Based on this knowledge, one can proceed with the

second stage, which is developing suitable counter-measures. If then there is a need to set the

problem into a context that considers the cooperation with biometric verification system, one

needs to create integration mechanisms.

The majority of the work in anti-spoofing is focused on the first two stages. Topics of integra-

tion of verification and anti-spoofing systems, as well as of evaluation of biometric verification

systems under spoofing attacks are relatively sparsely covered in the literature. Therefore,

they are omitted in this literature review and will be covered in the corresponding chapters

dedicated to these topics. Instead, we review spoofing and anti-spoofing for the face mode

as isolated problems. This is important, as the case studies used to illustrate the integration

concepts in this thesis are extensively making use of different face anti-spoofing methods and

features. Understanding the advantages of the proposed methods as demonstrated in the

experimental evaluation of the case studies, requires a comprehension of the anti-spoofing

methods they are based on.

We commence this chapter by covering practical aspects related to fabrication of spoofing

attacks for the face mode in Section 2.1. Then, in Section 2.2, we describe the efforts for

organized collection of face spoofing data, which resulted in face spoofing databases used

to evaluate anti-spoofing systems. We proceed with a systematic overview of face spoofing

counter-measures in Section 2.3.

2.1 Face Spoofing Attacks

The quality of the spoofing attacks for the face mode is influenced by several factors. Firstly,

there is the quality of the original sample used to produce the attack. For example, the original

sample can be a mugshot image taken with user’s cooperation, or an image in adversary
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conditions taken from distance or downloaded from the Internet. The quality of the recorded

input may also vary and may depend on the circumstances under which the spoofing attack is

performed, like the illumination conditions or the presence of supervision at the biometric

system capturing device. Other factors, categorized by Common Criteria as important for

attacks to any kind of information systems are technical expertise, knowledge about the

capturing device, window of opportunity etc. [ISO/IEC 15408].

The attacker usually has direct influence neither on the quality of the original sample, which

may likely be obtained in an opportunistic manner, nor on the conditions at the side of

the biometric system. However, he is fully responsible for the process of fabricating the

attack, which includes the choice of the spoofing media, material, devices and tools needed

to perform the attacks. These choices determine the type of the spoofing attack, as a broad

description of its properties. The type of the attack is the basic source of differences between

the spoofing attacks, which often serve as cues to detect them.

One of the properties of the spoofing attacks that is conditioned on their type is their dynamics.

Based on this, they can be categorized as static or dynamic. The static spoofing attacks retain

the face appearance, but present only a face with no signs of vitality. The dynamic spoofing

attacks retain both the face appearance and vitality by exhibiting certain movements which are

typical for a human face. Another property is their dimensionality: the face spoofing attacks

can be in 2D or 3D.

Up to date, several prominent types of face spoofing attacks have been mentioned in the

literature. They have appeared as part of a face spoofing database, or have been demonstrated

to successfully spoof an existing face verification system. They are given in Table 2.1. Examples

of several different types of attacks are given in Fig. 2.1.

The basic types of attacks can further differ in a number of other aspects, which may or may

not depend on the attacker’s will. An example is the environment where the original sample

is recorded, and it can be controlled or adversary. A fixed support or a hand support can be

used for holding the spoofing medium [Anjos and Marcel, 2011]. For the attacks performed

with a hand support, the involuntary movements of the attacker’s hands may give a level of

liveness to the static attacks. Komulainen et al. [2013b] defines the term scenic spoofing attack

referring to attacks where the background content of the original sample used for the spoofing

attack is present alongside the face. On the contrary, on a close-up attacks the borders of the

spoofing medium are integrally visible. This aspect is primarily influenced by the size of the

original sample or the spoofing media used to display the attacks.

The complexity, cost and level of expertise to produce different types of spoofing attacks varies

significantly. While producing a digital photo attack may require only an access to Internet

and a consumer’s mobile device, producing 3D masks may require expensive equipment, like

a camera or 3D scanner and a 3D printer [Erdogmus and Marcel, 2013a].

As will be discussed in Section 2.3, the type of the attack, as well as the properties related to its
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Attack dynamics Dimensionality Type Description

Static
2D

print face image printed on a paper

digitalphoto
digital face image displayed on a
screen of a device

sketch face sketched on a paper

3D warped print
print attack, warped to a 3D
head shape

Dynamic
2D

perforated print
print attack with perforated eye
regions

moving print
print attack being moved to
mimic face movements

video
video recording of a face dis-
played on a screen of a device

3D
mask

3D mask of a face with perfo-
rated eye regions

make-up
make-up mask to resemble an-
other user

Table 2.1: Types of face spoofing attacks

dynamics, dimensionality or other factors, have an important impact on the choice of features

used by the spoofing counter-measures.

2.2 Face Spoofing Databases

Depending on the attack types, the process of producing spoofing attacks may be time-

consuming, sometimes requiring a lot of resources and certain manufacturing skills. Therefore,

it is not difficult to imagine that collecting attack data for many clients may be very demanding,

and, for certain type of attacks, too expensive [Erdogmus and Marcel, 2013b]. Perhaps this

is one of the main reasons why the number of publicly available face spoofing databases is

limited.

To the best of our knowledge, there are 5 publicly available face spoofing databases, differing

in the data format, number of clients and samples, protocol, types of attacks, as well as the

quality of the recording devices. In the following, we give a brief description of all of these

databases.

2.2.1 NUAA Photo Impostor Database

The work of Tan et al. [2010] was the first one to present a face spoofing counter-measure

evaluated on a publicly available database, called NUAA Photo Impostor Database. It provides

12,614 samples (5,105 real accesses and 7,509 attacks) to 15 clients, in a still image format

with resolution of 640x480, recorded in 3 sessions and different illumination conditions. The
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(a) Print attack (b) Warped print (c) Perforated print (d) Video attack

(e) Adverse conditions (f) Controlled conditions (g) 3D mask

Figure 2.1: Different types of face spoofing attacks. Fig. (a), (b), (c) and (d) show close-up
attacks with visible spoofing media border. Fig. (e) and (f) show scenic attacks. Attacks
examples taken from different face spoofing databases [Tan et al., 2010; Zhiwei et al., 2012;
Chingovska et al., 2012; Erdogmus and Marcel, 2013b].

database contains only one print and warped print attacks, with face images printed on a

normal paper, as well as a photographic paper with two different sizes. There are several

attack samples per client, on which the printed paper is presented with different distance

and position with respect to the recording device. The database is collected in an adverse

environment, with visible borders of the spoofing medium. The protocol of this database

divides the samples into train and test sets with no overlapping clients between the two sets.

This database has several constraints, like the limited number of clients and the lack of diversity

between the attacks. As will be shown in Section 2.3, the provision of still images instead of

videos prevents certain anti-spoofing methods to be evaluated on this database.

Examples of samples from this database are shown in Fig. 2.2.

Figure 2.2: Real access (first column) and spoofing attack samples from NUAA
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2.2.2 CASIA Face Anti-spoofing Database

CASIA Face Anti-spoofing Database (CASIA-FASD) [Zhiwei et al., 2012] overcomes some of the

main disadvantages of NUAA database. For example, the number of clients is as many as 50,

and the samples are in a video format. Furthermore, it provides a larger diversity of spoofing

attacks, of which there are as many as 3 types: warped print, perforated print and video attacks.

The warped and perforated print attacks are printed on a copper paper, while the video attacks

are played on a tablet. The overall diversity of the database is augmented by using 3 different

recording devices for the samples: an old web-camera recording low-quality samples with

resolution 640x480, a new web-camera recording normal-quality samples with resolution

of 640x680 and a high-resolution camera recording high-quality samples with resolution of

1280x720. The database is recorded in adverse conditions, and the majority of attacks are

close-up. The total number of samples in the database is 600 (150 real accesses and 450

attacks).

Similarly to NUAA database, the protocol of CASIA-FASD divides the samples into train and

test sets with no overlapping clients between the two sets. Depending on the type of attacks

and the sample quality, candidate anti-spoofing methods can be evaluated on different sub-

protocols.

Fig. 2.3 shows example samples from CASIA-FASD database.

Figure 2.3: Real access (first column) and spoofing attack (warped print, perforated print and
video in the last three columns, respectively) samples from CASIA-FASD.

2.2.3 Print-Attack, Photo-Attack and Replay-Attack Databases

Print-Attack [Anjos and Marcel, 2011], Photo-Attack [Anjos et al., 2013] and Replay-Attack [Chin-

govska et al., 2012] are a family of databases recorded for the same set of 50 clients, but with

different types of spoofing attacks. While Print-Attack contains only print attacks, Photo-Attack

contains both print and digital photo attacks and Replay-Attack is a super-set of the two of

them, and provides additional video attacks. All samples are in a video format, recorded with
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a built-in laptop camera and with a resolution of 320x240. An additional level of diversity of

the attacks is provided by using two kinds of support for the attacks: hand and fixed. Diversity

on a database-level is ensured by recording in two conditions: controlled and adverse. During

the recording, special care has been taken that all attacks are scenic and no spoofing media

borders are visible. The total number of samples in the database is 1200 (200 real accesses and

1000 attacks).

Besides train and test data, the protocol of Replay-Attack family of databases provides a

development set for fine tuning of model parameters. These sets do not have overlapping

clients. An exclusive property of Replay-Attack is the provision of 100 additional real access

samples recorded in a separate session, which are designated for enrollment purposes. Using

this data, one can train a biometric verification system using Replay-Attack and evaluate

the effectiveness of its spoofing attacks to deceive such a system. Such an evaluation is not

possible for the spoofing attacks in NUAA and CASIA-FASD databases. As will be seen in

Chapters 3, 4 and 5, many aspects of anti-spoofing can not be addressed without such data.

Fig. 2.4 shows real and spoofing attack samples from Replay-Attack database.

Figure 2.4: Real access (first column) and spoofing attack (print, digital photo, video in the
last three columns, respectively) samples from Replay-Attack. Top row: controlled conditions.
Bottom row: adverse conditions.

2.2.4 MSU Mobile Face Spoofing Database

The MSU Mobile Face Spoofing Database (MSU-MFSD) appeared recently to provide spoofing

attacks targeting exclusively mobile devices [Wen et al., 2015]. It contains 35 clients and

280 video samples (70 real accesses and 210 attacks). The videos are recorded in adverse

conditions using two types of cameras: a built-in laptop camera with resolution of 640x480

and a smartphone with resolution of 640x720. There are 3 types of attacks: print attack and

video attacks with two different qualities, one replayed on a tablet screen, and one on a

smartphone screen. They are all scenic attacks.
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MSU-MFSD provides a protocol which contains train and test set only with non-overlapping

identities and does not provide separate enrollment data.

2.2.5 3D Mask Attack Database

3D Mask Attack Database (3DMAD) [Erdogmus and Marcel, 2013b] is the first face spoofing

database with 3D mask spoofing attacks. The 3D masks for a total of 17 clients are manufac-

tured by a commercial service, using a frontal and a profile image of the face as a source. The

database contains samples in two types of data formats: sequences of color data recorded us-

ing a camera and depth data recorded using a depth sensor, both with a resolution of 640x480.

Using the depth data, unique spoofing counter-measures can be evaluated using this database.

The total number of samples is 255 recorded in 3 sessions in a controlled environment.

3DMAD provides a protocol with a train, development and test set, but due to the small

number of samples, the authors recommend using cross-validation for the evaluation of

anti-spoofing methods. To train a biometric verification system, the database provides an

alternative, modified protocol, where the samples from the first session are used for enrollment

purposes.

Fig. 2.5 shows cropped and preprocessed faces from both color and depth samples from

3DMAD database.

Figure 2.5: Real access (columns 1 and 2) and mask spoofing attack (columns 3 and 4) samples
from 3DMAD. Samples in column 1 and 3 are captured using a camera, samples in columns 2
and 4 are captured using depth sensor.

2.3 Face Anti-Spoofing Methods

Face anti-spoofing methods typically conform to a common flow of operation which is simpli-

fied in Fig. 2.6. The process goes through three main stages. The first stage is preprocessing and,

if present, may consist of grey-scale conversion, face detection, face bounding box extraction

and size normalization. The preprocessed sample is then a subject to feature extraction, which

means mapping the input signal into a suitable feature space. The goal of this step is to isolate

the information which is relevant to the task, which in this case is discriminating between real

access and spoofing attack samples. In an ideal case, the feature vectors extracted from real
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accesses and spoofing attacks will lie in different positions in the feature space. At the final,

classification stage, the extracted feature vectors are sent to a classifier, which is trained to

make the distinction between real accesses and spoofing attacks in the feature space.

Figure 2.6: Typical flow of operation of a face anti-spoofing method

Different anti-spoofing methods rely on different feature extraction and classification proce-

dures. In the following, we will cover the most prominent techniques in feature extraction and

classification for face anti-spoofing.

2.3.1 Face Anti-Spoofing Features

The selection of feature extraction method often depends on the type of attacks that the

anti-spoofing method targets. As different types of attacks have different properties, they

relevant information that differentiates them from real accesses may be different and may

need to be extracted in a different way.

A coarse categorization of anti-spoofing feature extraction methods is proposed by Erdogmus

and Marcel [2014b], using the type of the input as a criteria. Three categories are listed as:

employing additional hardware, capturing additional data or using the biometric data.

The first category consists of methods that employ additional hardware to capture data dif-

ferent than the one which is used by the biometric verification system. This data, and not

the one used for verification, is then used to detect spoofing attacks. Usually, specialized

sensors capture cues about the liveness of the subject in front of the system. Examples of

additional hardware can be thermal sensors [Prokoski, 1983], near-infrared sensors [Pavlidis

and Symosek, 2000; Kim et al., 2009; Zhang et al., 2011], multi-spectral filter [Wang et al.,

2013b], spectrograph [Angelopoulou, 2001], or, more recently, light-field camera [Raghavendra

et al., 2015]. Methods based on depth information, like the ones presented in [Kose and Duge-

lay, 2013; Erdogmus and Marcel, 2013b] also fall in this category. 3DMAD database provides

samples suitable for developing such methods. This category of methods are often considered

inconvenient because of the cost associated with the additional hardware. Furthermore, they

may be less convenient from a deployment perspective, because it may be difficult to provide

an additional hardware for certain applications, like, for example, mobile devices.

The second category involves methods which capture additional data using the same capturing

device used for verification. An example is the method by Wang et al. [2013a], where several

additional face images are taken from different viewing angles. The method proposed by Kim
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et al. [2013] requires two face images taken with different focus. De Marsico et al. [2012]

propose a method that requires images of the user performing various head movements.

These methods may be less convenient from users’ perspective, as an additional level of

cooperation is required from their side in order to capture the additional information.

In the following sections we will focus exclusively on methods from the third category, which

encompasses methods that automatically extract anti-spoofing features directly from the

biometric data used for verification. Depending on the cues that are used to infer the presence

of a live subject in front of the system, these methods can be categorized as based on:

• liveness detection;

• motion analysis;

• visual appearance;

• contextual information;

• feature learning.

Usually, the features extracted for anti-spoofing are hand-crafted based on prior knowledge

about the task. The sole exception are the feature learning methods, which extract relevant

features in a completely data-driven fashion. In this section we will cover the most notable

methods from all these categories. In addition, we will report on methods which fuse several

approaches together.

Before proceeding, it is important to notice that several researchers have made attempts to

increase the robustness of biometric recognition systems to spoofing attacks by using multiple

biometric modes [Ross et al., 2008]. The intuition behind these solutions is that an attacker

may need more effort to spoof the system, because there are more modes to spoof. Within

such multimodal framework, face has been combined with fingerprint and iris [Johnson et al.,

2010; Akhtar et al., 2012; Rodrigues et al., 2009, 2010], or with voice [Chetty and Wagner, 2006b].

However, Johnson et al. [2010]; Akhtar et al. [2012]; Rodrigues et al. [2009, 2010] have proven

that one needs to be careful with the choice of combination rules, which may not be helpful

if poorly designed. Combination rules designed specifically for the purpose of increased

robustness have been proposed in [Rodrigues et al., 2009, 2010].

Liveness Detection

Liveness detection anti-spoofing methods base their decision on the evidence of liveness

present on the scene. Usually, eye-blinking, mouth movements and involuntary subtle head

movements are considered as evidence of liveness. One of the first attempts to employ eye-

blinking for anti-spoofing is performed by Pan et al. [2007] and uses Conditional Random

Fields (CRF) to model the state of the eye as open or closed and the correlation between its
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state and the observation. With a similar purpose, Wang et al. [2009] use active shape models to

detect the eye contours and difference of images to detect the blinking activity. In [Kollreider

et al., 2008], eye-blinking detection is combined with analysis of the 3D properties of the

subject.

A key, but limiting assumption of the liveness detection methods is that the user will experience

the actions that suggest liveness within a given short time frame. For example, Pan et al.

[2007] assume that eye blinks happen every 2-4 seconds, which may not be true always and

for all the subjects. An attempt to overcome this limitation is done by methods which rely

on more frequent, subtle changes in the face region, including color changes due to blood

flow. To be able to detect these changes, Bharadwaj et al. [2013] perform Eulerian motion

magnification [Wu et al., 2012] as a pre-processing before applying a technique for analyzing

the texture or the motion patterns.

The majority of liveness detection methods rely on the involuntary movements of the user.

They are mainly targeting static spoofing attacks, while may be easily deceived by spoofing

attacks where liveness evidence is present. An alternative for these cases may be the special

sub-category of challenge-response methods explicitly asking the user to perform certain

action to verify his liveness. Representatives of this type have been already mentioned as

methods which require cooperation from the user to capture additional data [Wang et al.,

2013a; Kim et al., 2013; De Marsico et al., 2012]. There are various types of challenges that a

user can perform: taking a particular head pose [Frischholz and Werner, 2003] or following a

moving point with a gaze [Ali et al., 2013] are some of them. Finding the static and dynamic

relationship between face and voice information from a speaking face or modeling a speaker

in 3D shape is an option for anti-spoofing in a multimodal audio-visual system [Chetty and

Wagner, 2006a]. It is important to note that the last approach can successfully detect not only

visual, but even audio-visual spoofing attacks, like video playbacks with recorded utterance or

3D synthetic talking heads.

Some of the liveness detection methods, and especially the challenge-response methods

are considered to be intrusive, non-friendly and uncomfortable from the aspect of a user

experience. In addition, they usually require that the authentication is performed during a

prolonged time span. Finally, they are not transparent for the user. In this way, it is possible

for a malicious user to guess the liveness cue and try to bypass it.

Motion Analysis

The methods based on motion analysis try to find properties of the motion patterns of a person

in front of the system, in order to distinguish them from motion patterns in presence of a

spoofing attack. A few of these methods base their approach on the assumption that a person’s

head, being a 3D object, moves differently than a 2D spoofing attack displayed on a planar

media. For example, Kollreider et al. [2009] use optical flow method to track movements on

different face parts. The authors assume that, in contrast to a face displayed on a 2D surface,
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a 3D face will generate higher amount of motion in central face parts closer to the camera

(like the nose) then in the face parts which are further away from the camera (like the ears).

Furthermore, a 3D face exhibits motion flows which are in opposite directions for central and

peripheral face parts. On the other hand, Bao et al. [2009b] derive a heuristics for the optical

flow field for four basic 2D surface motion types: translation, in-plane rotation, panning and

swing. On the contrary, a 3D face and facial expressions generate irregular optical flow field.

Making no assumptions about the properties of the motion in the case of real accesses and

spoofing attacks, Tirunagari et al. [2015] derive features capturing the visual dynamics of

the samples using a technique emerging from fluid dynamics field, called Dynamic Mode

Decomposition (DMD) [SCHMID, 2010].

Another set of motion-based methods assumes a high correlation between the movements

in the face region and the background in the case of a spoofing attack. Such a correlation

is unlikely in the case of a real access. Anjos and Marcel [2011] base the computation of the

correlation on 10 quantities extracted from the face region and the background. For the same

purpose, Anjos et al. [2013] rely on quantization of optical flow motion vectors, while Yan et al.

[2012] perform foreground-background consistency analysis.

Similarly to the liveness detection methods, the motion analysis approaches depend on the

subtle involuntary movements of the user. In addition, sometimes they capture the motion

introduced by an attacker who holds the attack media with his hands. If the presumed motion

patterns are absent during the short acquisition process (for example, a very still person who

does not blink), the methods may fail. These methods are effective against static spoofing

attacks, but may miss dynamic ones. Furthermore, the methods based on motion correlation

are particularly targeting scenic spoofing attack.

Visual Appearance

Anti-spoofing methods analyzing the visual appearance stand behind a strong argumentation

about the differences in the visual properties of real accesses and spoofing attacks, explained

in a number of publications. Firstly, a real face and the human skin have their own optical

qualities (absorption, reflection, scattering, refraction), which other materials that can be used

as spoofing media (paper, photographic paper or electronic display) do not possess [Parziale

et al., 2005]. Similar differences can appear as a result of the diffuse reflection due to a non-

natural shape of the spoofing attacks [Yang et al., 2013]. Limited resolution of the device

used for spoofing or the involuntary shaking of the spoofing media may cause a blurring in

the case of spoofing attacks [Li et al., 2004; Määttä et al., 2012; Yang et al., 2013]. Artifacts

appearing in the spoofing production process, like jitter and banding in the case of print

attacks [Määttä et al., 2012; Yan et al., 2012] or flickering and Moiré effect in the case of video

attacks [da Silva Pinto et al., 2012] are yet another sources of differences between the real

accesses and spoofing attacks. Many of these visual properties are indistinguishable for the

human eye, but often can be easily extracted using different image processing and computer

vision algorithms.
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The first approach leveraging on the argument that spoofing attacks are usually of lower

resolution and thus contain less high-frequency components is proposed by Li et al. [2004].

The proposed feature vector is based on analysis of the 2D Fourier spectrum of the input image

and its energy change over time. Instead of comparing the high-frequency content of the

input, Tan et al. [2010] and Zhiwei et al. [2012] base their discrimination on the high-middle

band of the Fourier spectrum, which is extracted using Difference of Gaussians (DoG) method.

Some publications assume that the differences between real accesses and attacks are most

prominent within the reflectance component of the input image and estimate it in different

ways: Tan et al. [2010] use the Lambertian reflectance model [Oren and Nayar, 1995] and

Variational Retinex-based method, while Bai et al. [2010] use dichromatic reflection model.

Then, Tan et al. [2010] classify the obtained features using Sparse Low-rank bilinear discrim-

inative model, while Bai et al. [2010] compare the gradient histograms of the reflectance

images.

A feature set inspired by a physics-based model for recaptured images, which reveals differ-

ences in the background contextual information, reflection, surface gradient, color, contrast,

chromaticity and blurriness, is created by Gao et al. [2010]. Different sets of visual features

related to texture, color, edges and/or gradient are used by Tronci et al. [2011]; Schwartz et al.

[2011]. Galbally et al. [2014] generalize the appearance differences into quality differences and

uses a feature vector composed of 25 different image quality measures.

Several publications make use of specific computer vision descriptors for texture analysis.

Local Binary Pattern (LBP) [Ojala et al., 2002] appears to be the most significantly exploited

for the purpose of anti-spoofing, both in its single resolution [Chingovska et al., 2012] and

multiresolution variants [Määttä et al., 2011, 2012; Yang et al., 2013]. Histogram of Oriented

Gradients (HOG) [Dalal and Triggs, 2005; Schwartz et al., 2011; Määttä et al., 2012; Yang et al.,

2013], Grey-level Co-ocurrence Matrix (GLCM) [Schwartz et al., 2011], Haar wavelets [Yan et al.,

2012] and Gabor wavelets [Määttä et al., 2012] are some of the other alternatives.

More recently, the analysis of the visual appearance has been enhanced into a temporal

domain. In [da Silva Pinto et al., 2012], the authors firstly extract the noise from each video

frame, and then summarize the relevant components of its 2D Fourier analysis into so-called

Visual Rhythm image. The properties of this image are then captured using GLCM. The method

proposed in [Pereira et al., 2014] utilizes LBP-TOP [Zhao and Pietikäinen, 2007], where instead

of LBP analysis on a single frame, dynamical LBP analysis on a frame and its neighboring

frames is performed.

The methods described before present different rates of success, which can not be easily com-

pared because they are obtained on different types of attacks and usually on databases which

are not released publicly. An interesting property of the majority of the visual appearance

methods is that they can work even if only a single image is available at input. They are usually

applied either on the face bounding box, face parts, or on the full input image. As one of their

advantages, they are user-friendly and non-intrusive and do not depend on the behavior of
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the user (unlike the liveness detection and motion analysis methods). Furthermore, an attack

which can deceive them a priori has not been presented up to this moment. They may be

expected to successfully detect any of the static or dynamic attacks. Yet, their success may be

put into question if the spoofing attacks are printed or displayed on high-resolution media,

thus lacking some of the artifacts that these methods rely on. Their generalization properties

when applied to different acquisition conditions or types of attacks they are not trained for

are also uncertain, since the visual appearance of the samples often depends on the lighting

condition, acquisition devices or display media.

Contextual Information

The context of the scene present as a background information in front of the recognition

system is used as a cue to detect spoofing attacks. In [Pan et al., 2011], the authors notice that

in the case of a spoofing attack, there will be a change in the contextual information of the

background when the face appears, which is especially true for scenic attacks. To detect such

changes, the authors compare the regions around reference fiducial key points in the region

around the face.

The approach presented in [Komulainen et al., 2013a] is targeting close-up attacks and the

analyzed contextual information consists of the border of the spoofing medium. The method

relies on HOG features to detect upper body and spoofing medium borders.

A drawback of these methods is that they depend on special assumptions about the back-

ground of the spoofing attacks and usually target attacks in a concrete context. As different

spoofing attacks can present different context, these methods can not be expected to general-

ize well on spoofing attacks not considered during training.

Feature Learning

Following a recent trend in computer vision, the anti-spoofing community started experiment-

ing with approaches where via deep learning, the anti-spoofing features are automatically

learned directly from data. This is in contrast to the previously discussed approaches, where

the features are inspired by some particular characteristics that can be observed as common

either for real accesses or for some or all types of spoofing attacks. It is argued, however,

that the features engineered in this way are suitable only for the type of spoofing attacks

they are designed for Yang et al. [2014]; Menotti et al. [2015]. Therefore, Yang et al. [2014]

and Menotti et al. [2015] propose to train a Convolutional Neural Network (CNN) [Krizhevsky

et al., 2012] to automatically learn features discriminative for anti-spoofing. Experiments

with face images in 5 different resolutions are given in [Yang et al., 2014]. On the other hand,

Menotti et al. [2015] combine two approaches. With the first, the architecture of the network

is optimized by selecting the best one for the problem at hand, out of a family of CNNs with

different hyper-parameters. With the second one, the weights of the network are learned via
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back-propagation.

2.3.2 Classification Methods

With regards to the classification step which, as shown in Fig. 2.6, follows the feature extraction,

the systems usually comply to the binary classification definition. In a binary classification

problem, there are two classes: a positive and a negative one. In the case of spoofing detection,

real accesses play the role of the positive, while spoofing attacks play the role of the negative

class. Let’s denote the feature vector of a sample with x. Given x as an input, the binary system

needs to determine the value of its class c = C where C ∈ {R,A} and R stands for the class of real

accesses, while A stands for the class of spoofing attacks.

Bishop [2006] gives three approaches to solve classification problems, including binary classi-

fication problems:

• Using a discriminant function. A discriminant function f (x) performs a direct map of

the feature vector points x from the input space to a score determining the class label.

• Using a discriminative model. In a discriminative model, the posterior probability

p(c = C|x) is directly estimated.

• Using a generative model. In a generative model, first the class-conditional probability

densities p(x|c = C), as well as the prior probabilities p(c = C) for each class C are

estimated. Then, the posterior probability p(c = C|x) is determined using the Bayes

theorem.

The parameters of the discriminant function, as well as of the discriminative and generative

models are determined in the training process using the training data. To obtain the final

decision for binary classification problems, a decision threshold needs to be set. All the

samples with scores on one side of the threshold are assigned to the same class. The threshold

is applied on the score obtained by the discriminant function for the first approach, or the

ratio of the log-likelihoods of the data given the two classes for the second and third approach.

The majority of anti-spoofing systems use methods based either on discriminant functions or

discriminative models, usually ones which have a well established reputation in the machine

learning community. The most popular classifier used for face anti-spoofing is Support Vector

Machines (SVM) [Bai et al., 2010; Määttä et al., 2011; Tronci et al., 2011; da Silva Pinto et al.,

2012; Chingovska et al., 2012; Komulainen et al., 2013a; Yang et al., 2013; Kose and Dugelay,

2013; Pereira et al., 2014], both with linear or Radial Basis Function (RBF) kernel. For features

in the form of histograms, like LBP, homogeneous kernels mapping approximating a χ2 kernel

can be used as well [Määttä et al., 2012]. Other methods use Linear Discriminant Analysis

(LDA) [Chingovska et al., 2012; Galbally et al., 2014], Sparse Logistic Regression [Tan et al.,

2010], boosting [Pan et al., 2007], random forests [Wang et al., 2009], Partial Least Squares
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Regression (PLS) [Schwartz et al., 2011; da Silva Pinto et al., 2012] and Multi-Layer Perceptron

(MLP) [Anjos and Marcel, 2011]. Some systems produce scores on which a threshold can be

directly applied [Li et al., 2004; Kollreider et al., 2008, 2009; Bao et al., 2009a; Anjos et al., 2013].

During training of any of the systems mentioned above, the full set of real access and spoofing

attack samples available in the training set are taken to form the positive and the negative

class, respectively. These systems can be considered as client-independent, as the information

about the clients that the samples belong to is disregarded.

2.3.3 Fusion of Face Anti-spoofing Methods

As discussed in Section 2.3.1, usually face anti-spoofing features are inspired from some

particular properties of either real accesses or one or more types of spoofing attacks. Therefore,

they are customized to particular attack type and are often not effective if the attack property

assumptions do not hold. Pereira et al. [2013] has made a proof of concept that the anti-

spoofing systems may not be able to generalize well on unseen spoofing attacks. A way

to mitigate this problem is proposed by the trend of fusing several different anti-spoofing

methods to obtain a more general counter-measure effective against a multitude of attack

types. Fusion of anti-spoofing method has been done at several levels: feature, score, decision,

frame and video level.

The first attempt of fusing has been performed by Kollreider et al. [2008], who detect spoofing

attacks based on the decision of two independent methods: one analyzing 3D properties of

the head and one the eye-blinking of the user. In [Tronci et al., 2011], the authors develop

a fusion scheme at a frame and video-level and apply it to a set of visual appearance cues.

In [Schwartz et al., 2011], the fusion of visual appearance cues is done at feature level. Yan

et al. [2012] for the first time bring the intuition that the fusion can have a bigger impact if

done with complementary counter-measures, i.e. those that address different spoofing attack

cues. In the particular case, although subject to some prerequisites of the videos, a method

based on motion analysis is fused with a method based on visual appearance.

To measure the level of independence of two anti-spoofing systems, and thus to get an estima-

tion of their complementarity and effectiveness of their fusion, Pereira et al. [2013] propose

employing a statistical analysis based on [Kuncheva and Whitaker, 2003]. For the same pur-

pose, Komulainen et al. [2013b] propose to count the common errors. They further show that

score-level fusion of several simple anti-spoofing methods which do not involve complex

inefficient classifiers may be favorable with respect to a single one which is memory and time

requiring.

The trend of fusing multiple complementary anti-spoofing methods continued in the 2nd

competition on counter-measures to 2D face spoofing attacks [Chingovska et al., 2013b]. While

fusion at score level is the most dominant approach, future efforts should analyze what is the

most effective fusion strategy, both in terms of error rates, as well as flexibility of incorporating
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a newly developed counter-measure into the fused system.

2.4 Discussion

The increased interest for the problem of anti-spoofing has resulted in a large set of counter-

measures, most of which follow a typical flow of operation, as depicted in Fig. 2.6. The major

diversity among the counter-measures is provided by the types of features they use, which,

on the other hand, are chosen based on some cues differentiating between real accesses and

one or more types of spoofing attacks. The counter-measures further differ in other important

properties, like their intrusiveness for the user and the type of input they require.

Unfortunately, it is not easy to compare the performance of the proposed spoofing attacks,

mostly because they not always target the same types of attacks. Therefore, they are usually

tested on different databases, some of which are private. In our opinion, summarizing their

properties and grouping them by category is a task more important than performance com-

parison. Having such a summary, a user can decide which method to use for an application of

interest based on the expected type of spoofing attacks, input type that the system provides,

as well as ease of implementation and convenience of use.

However, experiments on different databases have shown that face anti-spoofing methods

can quite effectively detect spoofing attacks. Best results on Replay-Attack database are as

high as 0% HTER when a multitude of different features are fused together [Chingovska et al.,

2013b]. Spoofing attacks in 3DMAD database reach nearly perfect accuracy even with simple

features based on LBP [Erdogmus and Marcel, 2014a]. The HTER on CASIA-FASD has been

reported to be 6.25% using CNN [Yang et al., 2014].

Some of the good results can be attributed to the insufficient complexity and diversity of the

publicly available face spoofing databases. The community has recognized the limitations

of the currently existing databases, ranging from small number of identities, to small set of

spoofing attacks types, to various types of biases. More challenging databases need to be

created in future. Considering different materials to produce the spoofing attacks, using better

quality equipment, creating more diverse illumination conditions or recording more clients

are some of the ways to add to the adversity of the spoofing databases.

While the methods covered in this chapter address the problem of anti-spoofing respecting

its binary classification nature, there is very little attention given to the integration of anti-

spoofing systems in a framework cooperating with biometric verification systems. In this

thesis we will focus on three aspects of this cooperation, as stated in Chapter 1.3. A short

summary of the treatment of these aspects in the literature will be given in the corresponding

chapters.
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As binary classification systems, anti-spoofing systems rely on a model trained using samples

from two classes: a positive class consisting of real access samples and a negative class

consisting of spoofing attacks. At training time, a typical anti-spoofing systems uses solely the

class label and does not have access to any other information about the samples, including

the identity of the client.

At query time, the anti-spoofing system receives a single input, a biometric sample, which

needs to be processed and ultimately assigned a label as being accepted (real access) or

rejected (spoofing attack). The decision is based upon the feature vectors extracted from the

sample. Again, no other information about the sample is used, including the information

about the identity of the client the sample comes from. Disregarding this information, anti-

spoofing systems of this kind could be referred to as client-independent.

Biometric verification systems often operate in another way. Typically, they use one or more

enrollment samples for each client to build client models. These samples need to be labeled

with the identity of the client. At verification time, the system receives two inputs: the first one

is the biometric sample, and the second one is a claim about the client’s identity. Based on the

claim, the system matches the biometric sample with the client’s model and assigns a label as

being accepted (genuine user) or rejected (zero-effort impostor).

In the described setting, the biometric verification and anti-spoofing systems rely on different

data to build their models. The anti-spoofing system does not use the enrollment samples for

the clients. This is despite the fact that it could access them in the same way the verification

system does. Similarly, and as shown in Fig. 3.1, the biometric verification and anti-spoofing

systems have partially different input at query time. Although the two systems work in parallel

and need to take a collaborative decision about whether a sample is accepted or rejected, they

do not make use of the same information. The anti-spoofing system neglects the information

about the client identity, although it could have an access to it in the same way the verification

system does.
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Figure 3.1: Flow diagram of the operation of biometric verification and anti-spoofing systems:
no input integration

In this chapter, we focus on the integration of biometric verification and anti-spoofing systems

at input-level. The integration refers to unification of the information that the two systems use.

We argue that the additional information that the anti-spoofing system can use in the same

way biometric verification system does already, may bring an improvement of the spoofing

detection. At training time, this information refers to the enrollment samples of the clients. At

query time, it refers to the identity information that the client claims to the system. In this

context, the input-level integration of the two systems sums up to adding the green dashed

line in Fig. 3.2, illustrating the client identity as an input to the anti-spoofing system.

Figure 3.2: Flow diagram of the operation of biometric verification and anti-spoofing systems:
input-level integration

Having enrollment client samples at disposal, the anti-spoofing system could build client-

specific models for each client enrolled in the verification system. At query time, the anti-

spoofing system will use the claim about the client identity in order to compare the input

sample with the model of the corresponding client.

In the following, we first give a motivation and an empirical justification for using client-

specific approaches for anti-spoofing in Section 3.1. Then, we propose two client-specific

approaches: one based on a generative paradigm in Section 3.2, and one on a discriminative

paradigm in Section 3.3. Throughout this chapter, we will use the following notation:

• c = C where C ∈ {R,A} is a variable referring to the sample class. R stands for the class of

real accesses, while A stands for the class of spoofing attacks.

• i = I where I ∈Y and Y is a set of client identities, is a variable referring to the identity
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of the client the sample belongs to.

• X = {xk |k ∈ 1..K } is a variable referring to a single sample and consists of K different

feature vectors extracted from that sample. The feature vectors can be derived from dif-

ferent cues. xk ∈Rdk |k ∈ 1..K are dk -dimensional and we assume that they are mutually

independent.

• χ= {(xk , yk )|k = 1..S} is a set of S samples given with their feature vectors xk ∈ Rd and

class labels yk ∈ {−1,1}. All the feature vectors are derived from a single cue.

3.1 Motivation

The client-independent anti-spoofing approaches are based on the assumption that there

is no critical difference between the real access or spoofing attack samples from different

clients. This is a reasonable hypothesis as the anti-spoofing features, including the face anti-

spoofing features described in Section 2.3.1, are specifically designed to distinguish between

real accesses and spoofing attacks, regardless of the client identities. Yet, we argue that many

of the anti-spoofing features, even inadvertently, retain information specific for the clients that

the samples belong to. These information may be related to the intrinsic personal properties

of the clients, like their appearance or behavior. For example, the involuntary movements or

eye-blinking patterns, which are an intrinsic client trait, may be manifested into the features

extracted by analysis of motion or visual appearance in the temporal domain. The physical

properties of the face or the skin tone and surface are likely to have an impact on the features

based on visual appearance, like LBP or Gabor wavelets. This may come at no surprise, if

we consider that LBP and Gabor wavelets, in more complex variants, are common in face

verification [Marcel et al., 2007], where they are used to capture client-specific properties and

differentiate between different clients.

Certainly, the anti-spoofing features are not likely to be helpful in face verification. However,

the above observations give rise to the following questions: 1. do the anti-spoofing features

carry information about the client; and 2. is this information relevant to make a better

discrimination between real access and spoofing samples belonging to that client. A positive

answer to these questions would justify client-specific anti-spoofing systems. Development of

these is possible only if information like enrollment samples for the clients and the client’s

identity claim is available to the anti-spoofing system. This information can be provided by

input-level integration of the biometric verification and anti-spoofing systems.

If there is a meaningful correlation between the anti-spoofing features and the client identity,

it may be reflected in the scores of the anti-spoofing system. This, on the other hand, may have

a direct impact on the error rates of the anti-spoofing system. This intuition is inspired by an

acclaimed study in speaker verification on the dependence of verification scores on the identity

of the clients [Doddington et al., 1998]. The study confirms different levels of recognizability

for different speakers, leading to inhomogeneities of the performance of the verification
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system across the client population. The result of this study is the popular Doddington’s zoo,

where the clients are categorized in four categories based on their predisposition to influence

the error rates of the verification system, like False Acceptance Rate (FAR), False Rejection Rate

(FRR) and others. In the Doddington’s zoo, typical clients which are verified with an average

score are referred to as sheep. The clients which are difficult to recognize and tend to increase

the FRR are referred to as goats, while the clients which are easy to be imitated by others and

tend to increase the FAR are referred to as lambs. Finally, wolves are clients which can easily

imitate other clients and also increase the FAR of the system. The study uses statistical tests to

examine whether the verification scores across the clients come from the same distribution.

In its original form, the Doddington’s zoo assumes just two types of inputs to the verification

system: genuine users and zero-effort impostors. Recently, Rattani et al. [2012] performed a

similar study on a fingerprint verification system, demonstrating the existence of the Dod-

dington’s zoo menagerie when a verification system is confronted with spoofing attacks. In

particular, the study shows that the system’s vulnerability to spoofing among a population is

client-specific as well.

We perform a similar empirical analysis, evaluating the scores of client-independent anti-

spoofing systems. The goal is to observe whether the distribution of the scores obtained

by anti-spoofing methods is client-specific. For the empirical results, we choose four of the

state-of-the-art anti-spoofing features described in Section 2.3.1 and detailed in Section 6.1.1:

LBP [Chingovska et al., 2012], LBP-TOP [Pereira et al., 2014], MOTION [Anjos and Marcel, 2011]

and HOG [Yang et al., 2013]. They belong to the categories of anti-spoofing features based on

analysis of visual appearance, visual appearance in the temporal domain and motion. Using

these features, we train a Support Vector Machine (SVM) classifier in a client-independent way,

as will be explained in Section 3.3.2. We perform the analysis using Replay-Attack database.

Similarly to [Rattani et al., 2012], we use box plots to show the variation of the scores for

the real access and spoofing attack samples of each client in the test set of the database.

Note that, unlike [Rattani et al., 2012], which evaluates the verification scores, we analyze the

anti-spoofing scores per client. For the four studied anti-spoofing features, the box-plots are

shown in Fig. 3.3, with the upper and lower plots representing real access and spoofing scores,

respectively. The central bar of each box is the median of the client scores, its upper edge

denotes the 75th percentile of the scores, the lower one the 25th percentile, while the whiskers

extend to the most extreme non-outlier score values. The decision threshold determined in

a client-independent way using Equal Error Rate (EER) on the development set is plotted as

well with a green horizontal line.

The high variability of the scores of different clients in Fig. 3.3 demonstrates the existence

of client-specific score variations for the client-independent baseline, especially in the case

of real access samples. To statistically support this conclusion, we perform Kruskal-Wallis

non-parametric statistical test [Kruskal and Wallis, 1952], designated to test whether samples

originate from the same distribution. The null-hypothesis of the test states that there is no
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(d) HOG features

Figure 3.3: Box plots of the scores obtained with a client-independent approach (SVM) for
different clients in the test set of Replay-Attack database. Upper plots: scores of real access
samples; lower plots: scores of spoofing attacks. The horizontal green line depicts the decision
threshold obtained using the development set.

variation in the scores of the samples of the client population. In our analysis, this hypothesis

was rejected at a 0.01 significance level for all four types of features and both for the scores of

the real access and attack samples.

One of the problems that arise when the scores of a system are client-specific, is that the stan-

dard tuning and evaluation of the system is usually sub-optimal. In particular, a single decision

threshold of the system will not work equally well for all the clients [Poh and Kittler, 2007],

because high client-specific score variations mean that different clients contribute differently

to the system’s error rates. Client-specific thresholding, where a different decision threshold is

used for each client [Jonsson et al., 1999] or client-specific score normalization [Auckenthaler

et al., 2000] are some of the ways to alleviate the issue.
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The score variations across the client population may mirror the overlap of real access and

spoofing attack samples of different clients in the feature space. In such a case, the decision

boundary obtained by the client-independent SVM is not equally suitable for all the clients,

leading to low performance for certain clients and overall sub-optimal performance of the

system. This indicates the presence of client-specific information in the feature space and

suggests that a client-independent approach may not be enough to model the features.

We explore two different directions for creating client-specific models. The first one, details

of which are given in Section 3.2, is based on a generative paradigm, where we model the

real access samples of each client separately and we normalize the scores using generative

models for the attacks. The second one, described in Section 3.3, is a discriminative approach,

with separate SVM classifier trained for each client. We emphasize once again that input-level

integration between biometric verification and anti-spoofing systems is required to create

client-specific models and classify input samples.

3.2 Generative Client-Specific Anti-Spoofing

In this section, we present Probabilistic Graphical Models (PGM) for development of genera-

tive classifiers for anti-spoofing and the Bayesian inference theory adapted for the task. We

describe Gaussian Mixture Model (GMM) as a tool to model the likelihoods of the hypothe-

ses of the generative classifiers, both in a client-independent and client-specific scenario.

Then, we explain the use of cohort set for the client-specific case. Finally, we discuss several

implementation issues regarding generative client-specific anti-spoofing systems.

3.2.1 Probabilistic Graphical Models for Anti-Spoofing

We introduce the generative client-specific anti-spoofing approach through Probabilistic

Graphical Models (PGM) [Bishop, 2006], which enable visualization of the dependency rela-

tionships between variables, and thus facilitate the mathematical derivations of generative

classification models. For a client-independent model, the feature vectors xk representing a

sample depend only on the sample class c. For a client-specific model, the feature vectors xk

depend both on the sample class c , as well as the identity i of the client the sample belongs to.

PGM dependency schemes representing these two models are given in Fig. 3.4.

In a generative model for binary classification systems, a decision for the sample X is taken

by comparing the likelihoods of two hypotheses: H0 and H1. Each of these hypotheses

is associated with one of the two classes. Then, a score is generated as a ratio between the

likelihoods of the two hypotheses. For computational reasons, usually the log of the likelihoods
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(a) Client-independent model (b) Client-specific model

Figure 3.4: PGM illustrating the conditional dependence of variables

is computed, as in Eq. 3.1.

cLLR = log
p(X|H0)

p(X|H1)
(3.1)

The decision about which of the two hypotheses is valid depends on both the log-likelihood

ratio score and a threshold τ, as shown in Eq. 3.2. The sample is assigned to the class which is

associated with the valid hypothesis.

valid hypothesis =
⎧⎨
⎩H0, if cLLR > τ

H1, otherwise
(3.2)

The difference between the client-independent and the client-specific approach is in the

definition of the hypotheses. In a client-independent scenario, H0 states that X is generated

from a real access sample (H0 : c = R), while H1 states that X is generated from an attack

(H1 : c = A). Having K feature vectors extracted for the sample X = {xk |k ∈ 1..K } and assuming

they are mutually independent, the likelihoods of the two hypotheses are given in Eq. 3.3 and

Eq. 3.4.

p(X|H0) =
K∏

k=1
p(xk |H0) =

K∏
k=1

p(xk |c = R) (3.3)

p(X|H1) =
K∏

k=1
p(xk |H1) =

K∏
k=1

p(xk |c = A) (3.4)
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Estimating the likelihood functions in Eq. 3.3 and 3.4 can be done by building generative

models for each of the hypotheses. For this, it is required that we have a training data consisting

of real access and spoofing attacks samples. It is not necessary that this data is labeled with

client identity.

In a client-specific scenario, H0 states that X is generated from a real access sample from a

particular client I (H0 : c = R, i = I). Hence, its likelihood is computed as in Eq. 3.5.

p(X|H0) =
K∏

k=1
p(xk |H0) =

K∏
k=1

p(xk |c = R, i = I) (3.5)

Estimating the likelihood function in Eq. 3.5 can be done by building models representing the

real access samples for each of the clients separately. This process in turn requires real access

samples labeled with client identity. To avoid biased models, it is necessary that this data is

separate from the data which is used to evaluate the system. A source for such data could be

the enrollment samples which is used to enroll clients into the biometric verification system.

This is the point where input-level integration of biometric verification and anti-spoofing

system becomes of vital importance.

The alternative hypothesis H1 states that X is generated from a spoofing attack sample from

a particular client I. Estimating the likelihood function of this hypothesis can be done by

building models representing the spoofing attack samples for each of the clients separately.

Similarly as for H0, this step requires spoofing attack samples from each client I ∈Y . Unfor-

tunately, input-level integration with biometric verification system is of no use in this case, as

the enrollment data for biometric verification system usually do not contain spoofing attacks.

An option could be collecting spoofing attacks for each client in addition to his enrollment

samples. However, the process of producing spoofing attacks may be expensive and time

consuming, often requiring a lot of resources and certain manufacturing skills. Therefore,

it is not difficult to imagine that collecting attack data for all the clients in a system may be

very demanding and complex task. Baseline costs would quickly multiply if the system targets

protection against a large number of diverse spoofing attacks.

To overcome this difficulty, we propose to model the alternative hypothesis H1 as a function

of the likelihoods of spoofing attack models for a finite set of cohort clients C . Mathematically,

this way of modeling for the cohort clients J ∈C is shown in Eq. 3.6, and the function of cohorts

F (· ) could be a maximum or an average [Reynolds et al., 2000].

p(X|H1) =F
(
p(X|c = A, i = J) | J ∈C

)
(3.6)

The idea is inspired by the extensive use of cohorts in biometric verification in different setups.
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They are used to model the alternative hypothesis H1, which in biometric verification states

that the sample does not come from the client with the claimed identity. In [Reynolds, 1995]

the cohorts are sorted by similarity with the particular client’s model, and only the first N are

taken to represent H1. In [Auckenthaler et al., 2000] they are used to perform Z-normalization

and T-normalization of the scores. In [Simon-Zorita et al., 2003] H1 is modeled with the model

of the cohort client with the highest likelihood. Similarly, Aggarwal et al. [2006] consider only

the cohort client with the highest likelihood among the cohorts selected after sorting them by

similarity to the particular client’s model.

3.2.2 Likelihood Based on Gaussian Mixture Model (GMM)

When it comes to selecting the probability density function to model the likelihoods of the hy-

potheses, Gaussian Mixture Model (GMM) is the dominant approach in biometric verification,

especially in speaker [Reynolds and Rose, 1995; Reynolds et al., 2000] and face [Sanderson and

Paliwal, 2003; Lucey and Chen, 2004; Cardinaux et al., 2006; Marcel et al., 2007] verification. By

using a weighted linear combination of several Gaussian distributions, GMM have proven to

be able to model any complex arbitrary continuous density distribution [Bishop, 2006]. At the

same time, it offers a good trade-off between computational requirements, robustness and

discrimination capabilities [Reynolds et al., 2000].

A GMM is a weighted sum of M multivariate Gaussian distributions, called components,

each parameterized with their means μm , variances Σm and weights πm . Given a set χ

of data samples xk ∈ Rd , training of GMM model corresponds to finding the parameters

Θ= {πm ,μm ,Σm},m = 1..M which maximize the likelihood for the observed data. This Max-

imum Likelihood (ML) problem can be solved using Expectation-Maximization (EM) algo-

rithm [Dempster et al., 1977]. Mathematical formulation of GMM and its training procedure is

given in Appendix A.

In biometric verification, GMM is used to model client distributions for each of the enrolled

clients which correspond to the hypothesis H0 that a sample comes from the claimed iden-

tity [Reynolds and Rose, 1995]. It is also used to create Universal Background Model (UBM),

which corresponds to the alternative hypothesis H1 that the sample comes from another

identity. The greatest challenge in this approach lies in how to reliably estimate the parameters

of the GMM model for a client using a sparse set of enrollment samples of that client. The issue

is usually overcome by using the enrollment samples only to adapt the client models starting

from an UBM model as a prior. This can be done using Maximum A-Posteriori adaptation

(MAP) [Gauvain and Lee, 1994], the details of which can be found in Appendix A.2.

In this thesis, we use GMM to model the likelihoods of the hypotheses for the generative

anti-spoofing approaches. In the case of the client-independent models, GMM can be used to

model the likelihoods p(xk |c = R) and p(xk |c = A). In the case of the client-specific models, we

base the creation of client-specific anti-spoofing models on the idea coming from biometric

verification [Reynolds and Rose, 1995]. We use GMM to p(xk |c = R, i = I) and p(xk |c = A, i = J)
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for each client I and each cohort J ∈C . We obtain the client-specific models by first training a

UBM for real accesses and spoofing attacks and then adapting them with MAP adaptation to

the client I or the cohort client J, respectively. Several researchers note that MAP where only

the means of the UBM are adapted, and not the variances, is effective enough for biometric

verification [Reynolds et al., 2000; Lucey and Chen, 2004]. We adopt the same approach of

mean-only MAP adaptation for client-specific anti-spoofing models as well. Details about

which data was used for each step of the procedure can be found in Sec. 3.2.4.

3.2.3 Cohort Selection

The selection and size of the cohort set C has been thoroughly studied in biometric verifica-

tion [Rosenberg and Parthasarathy, 1996; Auckenthaler et al., 2000; Tulyakov et al., 2008]. In

some applications, the full set of clients that can be used as cohorts is used [Reynolds, 1995].

However, Reynolds et al. [2000] suggests that client-specific cohort sets usually perform better

and have the advantage of lowering the computational costs.

For modeling H1 in the anti-spoofing scenario, we explored the following alternatives for the

cohort selection:

1. Full cohort set. The cohort set C consists of all the clients in the training set of the

database.

2. Static client-specific cohort set. For each enrolled client I, the cohort models are sorted

prior to query time based on a similarity criteria between the cohorts and the client

model. Then, a client-specific cohort set CI is created consisting of the first N clients in

the sorted cohort list.

3. Dynamic client-specific cohort set. For each data sample X of client I, the cohort

models are sorted at query time based on a likelihood criteria of the sample given the

cohort model. Then, a client-specific cohort set CI is created consisting of the first N

clients in the sorted cohort list.

When building a static client-specific cohort set, we sort the cohorts prior to query time

and based on the similarity of the cohort’s attack model and the client’s real access model.

Following the proposition of Reynolds [1995], the distance dI,J between the real access model

of client I and the attack model of the cohort J is computed as in Eq. 3.7, where XI is a set of

real access observations for the client I, while XJ is a set of attack observations for the cohort J.

dI,J = log
p(XI|c = R, i = I)

p(XI|c = A, i = J)
+ log

p(XJ|c = A, i = J)

p(XJ|c = R, i = I)
(3.7)

The first ratio in Eq. 3.7 measures how well a sample matches with the model of its own client
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relative to the model of the cohort. Similar models will result in smaller ratio. Equivalent

interpretation can be given for the second ratio in Eq. 3.7. The final distance is a symmetric

combination of ratios comparing the two models.

The sorting of the cohorts for a dynamic client-specific cohort set is done at query time,

by computing the likelihood of the cohorts’ models for the observed data. The higher the

likelihood, the higher the rank of the particular cohort model. Such an approach is inspired by

the work of Simon-Zorita et al. [2003] and Aggarwal et al. [2006].

Once the cohort set is selected, the likelihood of H1 is a function of the likelihoods of the

cohorts. In particular, we chose an average function, as in Eq. 3.8. To adapt Eq. 3.8 for static or

dynamic client-specific cohort set, we need to substitute C =CI.

p(X|H1) =F
(
p(X|c = A, i = J) | J ∈C

)
=F

(
K∏

k=1
p(xk |c = A, i = J) | J ∈C

)

= 1

|C |
∑
J∈C

K∏
k=1

p(xk |c = A, i = J)

(3.8)

Having the likelihoods p(X|H0) and p(X|H1) computed as in Eq. 3.5 and 3.8 respectively,

Eq. 3.1 can be used to compute the log-likelihood ratio score to compare the two hypotheses

for a data sample X.

3.2.4 Implementation Details

For the client-specific anti-spoofing approach, we first create a UBM based on the real accesses

of background clients taken from the training set. Using the enrollment samples of each client,

we adapt the UBM to client-specific anti-spoofing models. These models are used to compute

the likelihood p(X|H0) in Eq. 3.5.

Similarly, we create a UBM based on the attacks of all the clients from the training set. Using

the attack samples of each of the cohort clients, we adapt this UBM to client-specific models

for the cohort clients. These models are used to compute the likelihood p(X|H1) in Eq. 3.6.

3.3 Discriminative Client-Specific Anti-Spoofing

In this section, we first give a brief overview of Support Vector Machine (SVM) as a popular

binary classifier. Then we examine its use for anti-spoofing and we explain how it can be

used in a client-specific setting. Although formally, SVM belongs to the category of classifi-

cation methods that rely on discriminant function, we conform to its more widely accepted
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nomenclature and refer to it as a discriminative approach.

3.3.1 Support Vector Machine (SVM)

As described in Section 2.3.2, discriminative models and models based on discriminant func-

tion have already a well established reputation in face anti-spoofing. One of the most popular

among them is Support Vector Machine (SVM) [Vapnik, 1998; Boser et al., 1992; Cristianini

and Shawe-Taylor, 2000]. SVM is a classifier able to discriminatively learn a hyperplane that

separates the set χ= {(xk , yk )|k = 1..S} of training samples in Rd×{−1,1}, while minimizing its

generalization error on unseen samples. The minimization of the generalization error is

performed via the maximization of a quantity called margin which is related to the minimal

distance of the samples to the hyperplane and which needs to be maximized [Fornoni, 2014].

In this context, SVM is also referred to as maximal margin classifier, while the samples from

the two classes which lie on the margin are called support vectors.

The training of a SVM is realized by estimating the parameters of a real valued linear function

f : Rd →R. At test time, for each input sample xk a score is computed as f (xk ). This function

can be also represented in a dual form, where it is parameterized by the support vectors and

a set of Lagrangian multipliers associated with them. In the dual form, the score of an input

sample xk is computed via its inner products with the support vectors. The mathematical

details of these concepts are covered in Appendix B.

To achieve a high separability of the two classes, sometimes the samples need to be projected

into a space with higher dimensionality, which can be a computationally expensive operation.

The dual form of SVM allows to bypass this complexity through the use of kernel functions.

Kernel functions enable a direct computation of the inner product between samples in a

high-dimensional feature space without explicitly performing the projection. Different kernel

functions exist. Among them, the most notable ones are linear, Radial Basis Function (RBF),

Polynomial, Histogram Intersection and χ2 and they define the shape of the boundary between

the two classes in the original feature space. Details about the kernels and their parameters

can be found in Appendix B.4.

3.3.2 SVM for anti-spoofing

When using SVM for the problem of anti-spoofing, the sample labels are defined as yk ∈ {R,A}.

SVM has been extensively used for anti-spoofing in a client-independent context, as described

in Section 2.3.2. In this case, a single function f (x) is estimated using all training samples

{(xk , yk )|yk = R} as the positive class and {(xk , yk )|yk = A} as the negative class. The SVM

training is performed regardless of the client identity.

A SVM in a client-specific context first appeared in speaker verification [McLaren, 2009].

Several SVM classifiers are trained, one for each of the enrolled clients. A single SVM classifier

in this setup discriminates between samples coming from a claimed identity and samples
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coming from a zero-effort impostor. When a new query arrives, it is classified by the SVM of

the client it is claimed to belong to. Client-specific SVMs in speaker verification are trained

using samples for the particular client as a positive class, and samples from a set of other

clients as a negative class.

Inspired by this design, we build client-specific SVM for the anti-spoofing task in a similar

manner. For each enrolled client I ∈Y , we train a separate SVM classifier defined by fI : Rd →R,

whose role is to discriminate between real accesses and spoofing attacks for that client.

Ideally, each SVM should be trained using samples of the corresponding client: (xI ,k ,R) ∈χ as

the positive and (xI ,k ,A) ∈χ as the negative class. As in the case of the generative client-specific

approaches, we can use the enrollment samples of each client as the positive class. However,

as explained in Section 3.2.1, obtaining spoofing attacks for each client may be a costly task.

As for the generative approach, we select a set of cohort clients C to approximate the spoofing

attacks to represent the negative class for the client-specific SVMs. Therefore, each client-

specific SVM is trained using (xJ,k ,A)|J ∈C . Since the samples from the cohort usually outnum-

ber the client samples, the selection of the clients in C is of great importance and different

heuristics to fulfill this task exist in the literature. One possibility is to consider several different

cohort sets and to choose the one which gives the best performance on the development

set [Kajarekar and Stolcke, 2007]. Instead of cohort clients, McLaren et al. [2010] selects co-

hort samples out of the samples which are most frequently used as support vectors for the

client-specific SVMs on the development set. Using a large cohorts set may be restricted by

computation limitations, but may provide better discriminative information [McLaren, 2009].

Therefore, we select all clients in the training set as cohort clients and all their spoofing attacks

as negative samples to train the client-specific SVMs.

3.4 Discussion

The observation that biometric verification and anti-spoofing systems need to work in co-

operation inspires the idea for their integration at input-level. It refers to unification of the

data that is available to any of the two systems. As a result of the input-level integration, the

anti-spoofing system can make use of the samples that the biometric verification system uses

to enroll clients in order to create client-specific anti-spoofing models. Similarly, it can use

the client identity claim to compare a query sample with the corresponding client-specific

anti-spoofing model.

We looked at two approaches to build client-specific anti-spoofing models. The first one relies

on a generative paradigm and compares GMM-based models of the real access samples of a

client and attack models of a set of cohort clients. The second one is built upon a discriminative

paradigm and consists of building separate client-specific SVM models.

Client-specific methods can not be used to protect the biometric verification system from
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spoofing attacks at enrollment time, when the models are not yet created. If a protection is

needed at this point, a client-independent anti-spoofing system should be used at the cost

of a lower performance. However, when the verification system is in operation mode, the

client-specific anti-spoofing systems can be used as soon as the client claims his identity.

The performance of the client-specific anti-spoofing systems in particular case studies for the

face mode is analyzed in Section 6.2 with respect to different parameters and compared to

their client-independent counterparts.
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4 Output-level Integration: Fusion of
Experts

In practice, biometric verification and anti-spoofing systems have a common purpose: to

prevent illegitimate access to a certain resource. When considering security aspects of a

resource protected using biometrics, an anti-spoofing system provides an additional level of

security by being able to cope with attacks of a kind a biometric verification system can not

detect. Therefore, the decision whether a sample is accepted or rejected depends on both

biometric verification and anti-spoofing systems.

An integration of biometric verification and anti-spoofing systems at output-level is required

to obtain a single, unified, decision about a sample. The resulting system can be consid-

ered as a biometric verification system with increased robustness to spoofing. However, the

verification performance of the integrated system, as well as its robustness to spoofing, are

highly dependent on the way the two composing systems are combined. To optimize the

performance, it is of great importance to explore different strategies to fuse them.

To tackle the output-level integration of biometric verification and anti-spoofing systems, we

take a fusion of multiple experts approach. In biometrics, such approaches have been thor-

oughly investigated and widely deployed to create multibiometric systems, where combining

multiple modes leads to less noise-sensitive and more accurate biometric recognition [Ross

et al., 2008]. Yet, fusion of a biometric verification system with an anti-spoofing one is a

problem which is addressed much less frequently.

The fusion of biometric systems can happen at several points of the verification pipeline.

With respect to this, the fusion techniques can be categorized as: sensor-level, feature-level,

score-level, rank-level and decision-level [Ross et al., 2008]. Without intervening in the internal

logic of biometric verification and anti-spoofing systems, their fusion can be realized only at

score-level and decision-level. At decision-level, the biometric verification and anti-spoofing

systems output decisions dv and ds , respectively, based on their own decision threshold, while

the fusion module needs to unify the two decisions into one. At score level, the fusion module

takes raw scores sv and ss produced by the verification and anti-spoofing systems, respectively,

combines them into a single score s f and computes a single decision threshold. The workflow
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of the fusion is illustrated in Fig. 4.1.

Figure 4.1: Flow diagram of the output-level integration of biometric verification and anti-
spoofing systems

An overview of the existing literature on fusion of multiple experts, with an emphasis on the

fusion of biometric verification and anti-spoofing systems, is given in Section 4.1. The fusion

strategies explored in this work are detailed in Section 4.2.

4.1 Summary of Fusion Methods in Biometrics

We commence this section with an overview of the fusion techniques used for the outputs of

biometric verification systems, regardless of the source of the input and the purpose of the

fusion. Then, we cover several works where the fusion is targeting biometric verification and

anti-spoofing systems.

When performing the output-level integration of biometric verification and anti-spoofing

systems, we assume that they provide an output in the form of a decision or a score. Therefore,

in this section, we cover decision-level and score-level fusion strategies.

4.1.1 Biometric Verification Systems

Decision-level fusion methods operate on the decisions of the different systems. The simplest

strategies are logical AND and OR rules. Logical AND fusion rule results in a positive decision

only if all the systems agree on a positive decision. To obtain a positive decision using logical

OR fusion rule, it is enough that just one of the systems responds positively. Majority voting

and weighted majority voting take the decision based on a linear combination of the decisions

of the separate systems. More complex schemes rely on transforming the discrete decisions

into continuous probability values or degrees of belief [Ross et al., 2008].

The score-level fusion methods operate on the scores of the separate systems, producing a

single score as output of the integrated system. They can be categorized as fixed, density-

based and learning-based rules [Roli et al., 2002]. The fixed fusion rules perform a simple

mathematical operations on the scores of the separate systems, like sum, product, median,
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minimum, maximum etc. These rules require that the scores of the multiple experts are

brought into a common domain by performing normalization. The density-based fusion rules

use Bayesian theory and compute the likelihood of the set of scores from the separate systems

under the hypothesis of the different classes. The class is then determined using likelihood

ratio. A theoretical foundation of the density-based rules is given by Kittler et al. [1998] and

is used as a framework to derive fixed rules. Finally, the learning-based fusion rules use the

scores as an input to a classifier who takes the final decision. Examples include Support Vector

Machines (SVM) [Ben-Yacoub et al., 1999; Fierrez-Aguilar et al., 2003], Linear Discriminant

Analysis (LDA) [Ben-Yacoub et al., 1999; Ross and Jain, 2003; Wang et al., 2003], decision

trees [Ben-Yacoub et al., 1999; Ross and Jain, 2003], multi-layer perceptron [Ben-Yacoub et al.,

1999; Wang et al., 2003], Behavior Knowledge Space [Roli et al., 2002; Vatsa et al., 2010] and

many more.

As the biometric systems involved in fusion may be of different quality and may give responses

with different levels of confidence, their scores are sometimes combined in a weighted man-

ner [Jain and Ross, 2002]. Each of the systems participates in the fusion with a certain weight

which is trained or obtained heuristically.

Jain and Ross [2002] were the first to explore fusion tailored to each client. They concluded

that the performance of multimodal systems can be improved if client-specific thresholds are

employed, or client-specific weights for each of the fused modes are estimated. The trend was

followed by Fierrez-Aguilar et al. [2003] who shifted the approach towards the training step by

creating client-specific learning-based fusion schemes with SVM. Client-specific training is

used also by Kumar and Zhang [2009] who, together with the scores to be fused, supply the

client identity to a Feed Forward Neural Network. Toh et al. [2004] introduce the combination

of local learning and local decision, both of which refer to incorporating the client identity

in the process. Finally, Fierrez-Aguilar et al. [2005] propose adapted score fusion, which

combines the scores obtained by separately trained client-independent and client-specific

fusion rules.

The aforementioned fusion techniques have been extensively used for fusion of systems based

on multiple biometric modes. According to Ross et al. [2008], one of the benefits that such

a fusion brings is increased robustness to spoofing attacks of the multimodal system. The

intuition behind this reasoning is that in a multimodal system, an attacker faces the difficult

task of having to spoof more than one mode. However, in many cases spoofing only one of the

modes can be enough, as discussed by Rodrigues et al. [2009]; Johnson et al. [2010]; Akhtar

et al. [2012]. This is highly dependent on the used fusion algorithm, which has inspired fusion

schemes specifically designed to increase the robustness to spoofing. Most notable are the

ones presented in [Rodrigues et al., 2009] which explores fuzzy logic, and [Rodrigues et al.,

2010] which extends the likelihood ratio fusion rule by introducing hidden variables denoting

the probability of a spoofing attack.
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4.1.2 Biometric Verification and Anti-spoofing Systems

Prior work on integration of biometric recognition and anti-spoofing systems has not been

as extensive. The first publication treating this topic is by Marasco et al. [2011], who employ

anti-spoofing mechanism before the verification stage on a multibiometric system composed

of three fingerprint and one face modality. If a spoofing attack is detected for one modality,

the corresponding unimodal system does not contribute to the final fusion of the multimodal

system, which is performed at score-level.

The first attempt to fuse biometric verification and anti-spoofing systems on a single mode is

done by Marasco et al. [2012]. It is important to note that the proposed methods are targeting

systems where spoofing is possible both in enrollment and verification stage. Therefore, the

anti-spoofing scores of both the input sample, as well as an enrollment sample that is used for

comparison, are taken into consideration. The authors analyze four different fusion methods

and evaluate them on the fingerprint mode. The first two methods operate at decision-level by

sequentially employing a fingerprint verification and anti-spoofing system, or the other way

around, which is equivalent to the logical AND fusion rule. The third method targets score-

level fusion and is a learning-based method, performing classification on the verification and

anti-spoofing scores using several different classifiers. Finally, the fourth one belongs to the

density-based fusion rules and models the likelihood of the verification and anti-spoofing

scores under certain hypotheses. Interestingly, the developed Bayesian model assumes a

dependence of the verification scores on the anti-spoofing scores.

Using a density-based score fusion and under certain hypotheses, Rattani and Poh [2013]

model the likelihood of three types of scores: verification, anti-spoofing and image quality

score. All of them are considered in the Bayesian model, which additionally assumes that

anti-spoofing and image quality scores influence the verification score as well. The densities in

the Bayesian model are estimated using GMM, Gaussian Copula and Quadratic Discriminant

Analysis (QDA). In an extended version of the approach, the Bayesian model also considers

sensor characteristic, which is assumed to influence the verification, anti-spoofing and quality

scores [Rattani et al., 2013].

The assumption that spoofing attacks can exist among the enrollment samples, present in the

works of Marasco et al. [2012] Rattani and Poh [2013] and Rattani et al. [2013], is reasonable

in some cases, but is unsuitable for systems where the verification matching is done with

respect to a model instead of a single sample. Furthermore, it poses certain limitations, like

the necessity of spoofing samples at enrollment time.

4.2 Fusion Strategies for Biometric Verification and Anti-Spoofing

Systems

When fusing biometric verification systems, they share a common reasoning about which

samples need to be rejected and which accepted. All of them are trained to reject zero-
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effort impostors, and accept genuine accesses. However, to address the fusion of biometric

verification and anti-spoofing systems, we have to keep in mind that they are of different

nature and are discordant with respect to the scores they assign to samples and what they

consider as a positive or negative class. As verification systems are trained to take their decision

based on the identity present in the sample, they will give low scores to zero-effort impostors

(and hence classify them as negative), but high scores to both genuine accesses and spoofing

attacks (and hence classify them as positive). On the other hand, anti-spoofing systems are

trained to take their decision based on whether the sample looks genuine or not. Therefore,

they will assign low scores to spoofing attacks (and hence classify them as negative), but

high scores to both genuine accesses and zero-effort impostors (and hence classify them as

positive).

The antagonistic nature of the systems to be fused is illustrated in Table 4.1. The final, fused

system, needs to join their decision in a way that will consider only genuine users as positive

and both zero-effort impostors and spoofing attacks as a negative class. Based on this ob-

servation, we can safely consider both zero-effort impostors and spoofing attacks as a single,

enhanced, negative class and use fusion rules that will transform the scores of the two systems

accordingly.

Additionally, weighted fusion schemes, where different weights are given to different systems,

are not suitable for fusion of biometric verification and anti-spoofing systems. When fusing

biometric verification systems, the individual systems operate in a competitive manner, giving

responses to a verification problem. In this context, weighting is justified by weaknesses

of some of the systems and the different quality of their responses. On the other hand,

biometric verification and anti-spoofing systems operate in a collaborative manner where

each of them is an expert in a particular domain of the problem and their individual responses

are equally important. Certainly, an exception can be made when one can predefine the

relative importance of the two systems, depending on the application.

4.2.1 Decision-Level Fusion

Table 4.1 may give hints about the fusion schemes that can be used. In the case of the decision-

level fusion approach, the positive class needs to be accepted by both the verification and

anti-spoofing system, while for the negative class a rejection from one of the systems is enough.

Thus, logical AND fusion rule should be an appropriate choice for decision-level fusion of the

two systems.

4.2.2 Score-Level Fusion

Keeping in mind that the biometric verification and anti-spoofing systems give high scores to

different classes of samples, then many score-level fusion schemes typically used in biometrics

should be applied with care. An example are the density-based score fusion methods [Ross
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Table 4.1: Criteria for positive and negative class of a typical verification, anti-spoofing and
fused system

Genuine users Impostors Spoofing attacks
Verification system + - +

Anti-spoofing system + + -
Fused system + - -

et al., 2008]. There, the class is determined by computing its a posteriori probability given

the set of scores from multiple classifiers. If independence is assumed for the scores of the

biometric verification and anti-spoofing systems, than the a posteriori probability of the

class is proportional to the product of the likelihoods of the separate scores. The a posteriori

probability that a spoofing attack is a positive sample may be high for the verification classifier,

but very low for the anti-spoofing system. On the contrary, the a posteriori probability that a

zero-effort impostor is a positive class may be low for the verification classifier, but high for

the anti-spoofing system. As a result, even applying fixed fusion rules as derived by Kittler

et al. [1998] may produce fused scores which are not discriminative enough for correct final

decisions. In this work, we consider fusion using SUM rule, where the fused score is obtained

by summing the scores of the individual systems.

Using one of the anti-spoofing and verification systems for the face mode that will be described

in Section 6.1 and applied on Replay-Attack database, a scatter plot of the scores of the two

systems is given in Fig. 4.2. The clear clusters of the samples coming from genuine users,

zero-effort impostors and spoofing attacks in the 2D space defined by their verification and

anti-spoofing scores sv and ss respectively, suggests using a learning-based fusion rule. Hence,

the score pair is considered as a feature vector x =
(
sv ss

)�
, which is fed to an appropriate

classifier.

We select Logistic Regression (LR) [David and Stanley, 2000] as the first learning-based fusion

rule, which fits a logistic hypothesis function given in Eq. 4.1 by estimating its parameters Θ.

The parameters Θ are in a linear relation with the input variables x.

hΘ(x) = 1

1+e−Θ�x
(4.1)

Considering the non-linear separation between the clusters in Fig. 4.2, we perform experi-

ments with Polynomial Logistic Regression (PLR) as well. In this case, the parameters Θ are in

a polynomial relation with the input variables, i.e. x =
(
sv ss sv ss s2

v s2
s

)�
in Eq. 4.1.

Finally, it is possible to use a density-based score fusion method over the score pair x. In this

approach, class-conditional densities are estimated for the positive and the negative class

and the final decision is taken using log-likelihood ratio. The class-conditional densities are
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Figure 4.2: Example scatter plot of biometric verification and anti-spoofing system scores on
Replay-Attack

modeled using GMM. This approach is similar to [Rattani and Poh, 2013], with the exception

that the quality score of the sample is not taken into account.

Some of the presented score-level fusion techniques require that the scores from the systems

to be fused are on comparable scales [Ross et al., 2008]. Score normalization techniques are

helpful to bring the scores in a common domain. We apply z-normalization to the systems’

scores, as in Eq. 4.2, where μ refers to the mean of a set of training scores, while σ refers to

their standard deviation.

snor m = s −μ

σ
(4.2)

4.2.3 Implementation Details

A significant implementation difference emerges when fusing biometric verification system

with a client-independent and client-specific anti-spoofing system, both of which are de-

scribed in Chapter 3. In the case of a client-independent anti-spoofing system, the claim of

the client identity is irrelevant for the anti-spoofing score. However, this claim plays an essen-

tial role in the case of client-specific anti-spoofing systems. This observation is particularly
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important when fusing the scores for the zero-effort impostors. In that case, the input sample

needs to be scored against an anti-spoofing model of another client, in the same way it is

matched with the model of another client by the verification system.

4.3 Discussion

In a biometric verification scenario where spoofing attacks can be expected, the decision

to accept or reject an input sample is a task that has to be done jointly by the biometric

verification and anti-spoofing systems. The unification of the individual outputs of the two

systems is referred to as output-level integration and can involve fusion of the decisions or the

scores of the separate systems.

Very few attempts for output-level integration of biometric verification and anti-spoofing

systems have been done in the past. On the contrary, there are numerous methods for fusion

of biometric verification systems with a theoretically and empirically grounded reputation.

Keeping in mind the particularities of the fusion of biometric verification and anti-spoofing

systems, we select and adapt a subset of them.

The impact of the fusion, as well as the importance of selection of an optimal fusion method

for a particular combination of biometric verification and anti-spoofing systems will be

experimentally demonstrated in case studies for the face mode in Section 6.3.
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5 Integrated Evaluation of Biometric
Verification Systems Under Spoofing
Attacks
Similarly to other stages of the operation of biometric verification and anti-spoofing systems,

their evaluation is usually performed independently. Typically, the evaluation conventions for

binary classification systems are followed for both of them.

An isolated evaluation of anti-spoofing systems gives an important insight about the dis-

criminative abilities of certain anti-spoofing features and classification methods. An isolated

evaluation of biometric verification system gives its verification performance. However, each

of these assessments gives just a partial understanding of the strength of a system, especially

if high security standards are required. The evaluation of such a system needs to report, in a

unified way, both the verification performance, as well as its spoof-ability, which is equivalent

to its vulnerability to spoofing attacks. The existence of three classes instead of two at the

input of the biometric verification system, requires a redefinition of the evaluation task.

When devising an evaluation methodology for trustworthy biometric verification system, there

are several system design considerations that need to be taken into account. One of them is the

fact that the probability of attacks, or the cost of incorrectly accepted spoofing attacks and zero-

effort impostors, as well as incorrectly rejected genuine users, depend on the environment

where the system will be deployed. For example, spoofing attacks targeting a portable device

may be more frequent than attacks at border control systems which are supervised by a human.

A suitable evaluation metric needs to provide a mechanism to parameterize with respect to this

variable. As an additional requirement, such a metric needs to provide an a priori evaluation,

where no information from the test set is used during the system design.

In this chapter, we propose a novel evaluation framework for biometric verification systems

under spoofing attacks, called Expected Performance and Spoofability (EPS) framework and

considering all the criteria imposed by the problem. To do this, we first review the standards

for evaluation of biometric systems in their common setup as binary classifiers. Then, we

inspect previous efforts to adapt them to the redefined evaluation task, reporting on their

drawbacks for deployment in real world conditions. Finally, we describe the EPS Curve (EPSC)

and demonstrate its suitability for evaluation of biometric verification systems under spoofing
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attacks. The evaluation methods covered in this chapter, including the newly proposed

evaluation framework, are illustrated on a hypothetical verification system whose scores are

generated artificially.

In Section 5.1, we start by surveying the standard evaluation metric for binary classification

problems, as a basis for the widely accepted methodology for evaluation of biometric veri-

fication and anti-spoofing systems. A definition of the problem of evaluation of biometric

verification systems under spoofing attacks, together with the commonly used evaluation

methodologies, is given in Section 5.2. Section 5.3 describes the EPS evaluation framework

and illustrates its usage and interpretation on a hypothetical biometric verification system.

Further examples of its usage in some special cases are given in Section 5.4.

5.1 Summary of Evaluation Metrics and Methodologies in Biomet-

rics

As both biometric verification and anti-spoofing systems by themselves are of binary nature,

the overview of the evaluation metrics in biometrics will firstly cover the standard metrics for

evaluation of binary classification systems. Then, the adaptations of the general metrics to the

specific tasks of biometric verification and anti-spoofing will be given.

5.1.1 Evaluation of Binary Classification Systems

Binary classification systems receive two types of input belonging to two classes, usually

referred to as positive and negative class. They are trained to assign scores to the input

samples. Then, a decision threshold is calculated to separate the scores of the positive and

the negative class and the samples with scores above the threshold are classified as positives,

while the ones with scores below the threshold as negatives. Fig. 5.1a shows a plot of the score

distributions for the two classes, including the decision threshold.
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Figure 5.1: Evaluation plots for a hypothetical binary verification system

Metrics for evaluation of binary classification systems are associated to the types of errors
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they commit and how to measure them, as well as to the threshold calculation and evaluation

criterion [Poh and Bengio, 2006]. Binary classification systems are subject to two types of

errors: False Positive (FP) and False Negative (FN). Typically, the error rates that are reported

are False Positive Rate (FPR), which corresponds to the ratio between FP and the total number

of negative samples and False Negative Rate (FNR), which corresponds to the ratio between

FN and the total number of positive samples.

An objective and unbiased performance evaluation of the binary classification systems re-

quires a database with a specific design and strictly defined protocols. It is recommended

that the samples in the database are divided into three subsets: training Dtr ai n , development

(validation) Ddev and test (evaluation) set Dtest [Hastie et al., 2001]. Even greater objectivity

will be achieved if the identities in separate subsets do not overlap [Lui et al., 2012]. The

training set serves to train the system, while its fine tuning is done using the development

set. Since in a real world scenario the final system will be used for data which have not been

seen before, the performance measure is normally reported on the test set [Hastie et al., 2001;

Bailly-Baillire et al., 2003]. An exception from this recommended design may happen if the

number of samples in the database is not big enough. In such a case, the samples can be di-

vided only in training and test set, and tuning of the parameters is done with a cross-validation

procedure [Hastie et al., 2001].

The decision threshold τ is computed to serve as a boundary between the output scores of the

positive and the negative class. By changing this threshold one can balance between FPR and

FNR: increasing FPR reduces FNR and vice-versa. However, it is often desired that an optimal

threshold τ∗ is chosen according to some criterion. One well established criterion is Equal

Error Rate (EER) [Poh and Bengio, 2006], which selects the threshold τ∗EER to ensure that the

difference between FPR and FNR is as small as possible (Eq. 5.1). The optimal threshold, also

referred to as operating point, is a tuning parameter, and it is usually determined using the

development set [Hastie et al., 2001; Bailly-Baillire et al., 2003].

τ∗EER = arg min
τ

|FPR(τ,Ddev )−FNR(τ,Ddev )| (5.1)

Once the threshold τ∗ is determined, the accuracy of the system can be summarized reporting

different metrics. For example, the Detection Cost Function (DCF), given in Eq. 5.2, has been

proposed by Martin and Przybocki [2000] and is used in the NIST evaluations [Przybocki et al.,

2006]. The DCF accounts for the cost of the error rates (cFPR and cFNR), as well as for the

probability of occurrence of positive and negative samples (ppos and pneg).

DCF(τ∗,Dtest ) = cFPR ·pneg ·FPR(τ∗,Dtest )+cFNR ·ppos ·FNR(τ∗,Dtest ) (5.2)
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By giving equal priors to the occurrence of positive and negative samples and normalizing

the cost values, Weighted Error Rate (WER) is proposed by Bailly-Baillire et al. [2003]. In its

computation (Eq.5.3), β ∈ [0,1] is the parameter balancing between the cost of FPR and FNR.

For the special case of β= 0.5, the Half Total Error Rate (HTER) is reached.

WERβ(τ∗,Dtest ) =β ·FPR(τ∗,Dtest )+ (1−β) ·FNR(τ∗,Dtest ) (5.3)

Important tools in evaluation of classification systems are the different graphical represen-

tations of the classification results. For example, to present the trade-off between FPR and

FNR depending on the threshold, the performance of the binary classification systems is often

visualized using Receiver Operating Characteristic (ROC) curve. Parameterizing over different

values for the decision threshold, the ROC curve usually plots FPR versus 1-FNR. Sometimes,

when one number is needed to represent the performance of the system in comparison with

other systems, the Area Under ROC curve (AUC) may be reported. The higher the AUC the

better the system.

A normal deviate transformation of the ROC curve yields the Detection-Error Trade-off (DET)

curve [Martin et al., 1997]. Its usage is convenient for comparing systems whose scores follow

a Gaussian distribution, since such a transformation guarantees that the curve will become

a line. It plots FPR versus FNR. Fig. 5.1b illustrates the DET curve for a hypothetical binary

classification system.

Although ROC and DET curves may give an idea about the expected performance of a single

system under different thresholds, using them to compare two or more systems can lead to

biased conclusions [Bengio et al., 2005]. Usually, when comparing two systems using ROC or

DET curves, we select a certain value on the abscissa (most often FPR) as a first step, and then

we read the values on the ordinate for the two systems (for example FNR) as a second step. In

this way, during the first step, we implicitly choose a threshold a posteriori, i.e. on the same

data used to read and compare the error rates in the second step. This threshold may not be

the optimal one for any of the two systems. However, for an objective comparison, the error

rates for the two systems have to be reported at their optimal thresholds, which have to be

chosen a priori, on a separate data. Unfortunately, by plotting only the error rates on a test set

at thresholds not related to the development set, the ROC and DET curves do not give any hint

about the optimal thresholds of the two systems. Hence, the conclusions about which one out

of two systems is better may be misleading if drawn solely from the ROC or DET curves.

To solve this issue, the so-called Expected Performance Curve (EPC) is proposed by Bengio

et al. [2005]. It fills in for two main disadvantages of the ROC and DET curves: firstly, it plots the

error rate on the test set depending on a threshold selected a priori on the development set;

and secondly, it accounts for varying relative cost β ∈ [0;1] of FPR and FNR when calculating

the threshold. In the EPC framework, an optimal threshold τ∗
β

depending on β is computed
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based on a certain criteria on the development set. For example, the threshold can be chosen

to minimize WERβ for different values of β, which is the variable parameter plotted on the

abscissa. The performance for the calculated values of τ∗
β

is then computed on the test set.

WERβ or any other measure of importance can be plotted on the ordinate axis. The parameter

β can be interpreted as the cost of the error rates, but also as the prior of having a positive or

a negative sample as an input. One may observe the error rates and compare systems only

in the range of values of β which are of interest for a particular application. The EPC curve is

illustrated in Fig. 5.1c for a hypothetical binary classification system.

The performance of a binary system can be summarized in one value by computing the area

under the EPC, defined as the expected average of two antagonistic error rates that are being

plotted [Bengio et al., 2005].

5.1.2 Evaluation of biometric verification systems

In the domain of biometric verification, the positive and the negative class refer to genuine

users and zero-effort impostors, respectively. Accordingly, the number of errors known as FP

and FN refer to the number of zero-effort impostors incorrectly classified as genuine users and

the number of genuine users incorrectly classified as zero-effort impostors, respectively. Since

the positives and the negatives are associated with the action of acceptance and rejection by the

verification system, a common practice is to replace FPR and FNR with False Acceptance Rate

(FAR) and False Rejection Rate (FRR), respectively [Jain and Ross, 2008]. Furthermore, due to

the process of matching between the samples and the models, FPR and FNR are often reported

as False Match Rate (FMR) and False Non-Match Rate (FNMR) [Mansfield et al., 2002]. It is

important to note that, in general, the error rates FMR and FNMR are not exactly synonymous

with FAR and FRR. However, they can be considered as equivalent in a technology evaluation,

which is performed on a pre-collected database [Mansfield et al., 2002; Jain et al., 2008].

5.1.3 Evaluation of anti-spoofing systems

The role of a positive and a negative class in the domain of anti-spoofing is taken by real

accesses and spoofing attacks, respectively. The anti-spoofing systems work on the principle

of acceptance and rejection as well. Hence, in this scope, FAR and FRR are the most commonly

used terms for FPR and FNR too. FAR stands for the ratio of incorrectly accepted spoofing

attacks and FRR for the ratio of incorrectly rejected real accesses. These error rates are often

substituted with different synonyms by different authors. The most common of them are

listed in Table 5.1.
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Table 5.1: Typically used error rates for anti-spoofing systems and their synonyms.

Error rate Acronym Synonyms

False Positive Rate FPR False Acceptance Rate (FAR), False Spoof Acceptance
Rate [Marasco et al., 2012], False Living Rate (FLR) [Gal-
bally et al., 2012]

False Negative Rate FNR False Rejection Rate (FRR), False Alarm Rate [Pan et al.,
2007], False Live Rejection Rate [Marasco et al., 2012],
False Fake Rate (FFR) [Galbally et al., 2012]

True Positive Rate TPR True Acceptance Rate
True Negative Rate TNR True Rejection Rate, detection rate [Pan et al., 2007], [Bao

et al., 2009a], Wang et al. [2009], detection accu-
racy [Zhang et al., 2011]

Half Total Error
Rate

HTER Average Classification Error (ACE) [Galbally et al., 2012]

Figure 5.2: Biometric verification system under spoofing attack

5.2 Evaluation of Biometric Verification Systems Under Spoofing At-

tacks

When treating biometric verification as a binary classification system, the designers are in-

terested in determining the capacity of a given system to discriminate between different

identities. Depending on the internal algorithm, these systems may or may not have the

competence to discover if the input sample comes from a live person present in front of the

system, or a spoofing attack. Nevertheless, the evaluation of biometric verification systems

needs to account for the existence of an additional input type, spoofing attacks.

An accurate representation of the operation of a verification system acknowledging the spoof-

ing attack samples as a possible input type, is given in Fig. 5.2. It needs to accept only the

samples from the class of genuine users, while both zero-effort impostors and spoofing attacks

need to be rejected. Consequently, the system is not necessarily required to be able to discrim-
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inate between three classes and the problem does not need to be treated as ternary. Despite

the comfort of keeping the binary nature of the verification system, it is still of importance

to evaluate how vulnerable the system is to spoofing attacks. In the following, we describe

the requirements of a database that can be used for evaluation of biometric verification sys-

tems under spoofing attacks, followed by an overview of the commonly used metrics and

methodologies.

5.2.1 Database considerations

The evaluation the performance of a biometric verification system under spoofing attacks

includes training and spoofability assessment of the system. Therefore, it entails a database

which satisfies certain criteria. To enable training of a biometric verification system, the

database needs to provide enrollment samples to enroll clients in the system. To enable

spoofability assessment, it needs to provide spoofing attack samples as well.

To formalize the process of training and evaluating a verification system using a spoofing

database, let’s represent the identity i ∈Y in the database with the tuple (Xr
i ,Xs

i ,Xe
i ), containing

real access Xr
i , spoofing attack Xs

i and enrollment Xe
i samples. Then, the spoofing database,

providing data for the identities in Y , can be denoted as D = {(Xr
i ,Xs

i ,Xe
i ) : i ∈Y }. The process

of training a verification system using the spoofing database means creating a set of models

M = {Mi : i ∈ Y }, where Mi = f (Xe
i ) and f (·) is a function that maps samples to a model.

Then, the verification system computes the scores for the classes of real accesses, zero-effort

impostors and spoofing attacks. The set of scores for the genuine users may be created

by comparing the real access samples of one identity to the model of the same identity:

Sg enui ne = {g (Xr
i ,Mi ) : i ∈Y }, where g (·, ·) is a matching function. A logical way to assemble

the set of zero-effort impostor scores is by comparing the real access samples of one identity to

the models of the other identities in an exhaustive manner (full cross-comparison [Mansfield

et al., 2002]), which results in Si mpostor = {g (Xr
i ,M j ) : i , j ∈Y , i �= j }. Finally, to assemble the

set of spoofing attack scores for the verification system, one needs to compare the spoofing

attack samples from one identity to the model of the same identity, which yields Sspoo f =
{g (Xs

i ,Mi ) : i ∈Y }.

5.2.2 Summary of Evaluation Metrics and Methodologies for Biometric Verifica-
tion Systems Under Spoofing Attacks

The evaluation methodologies for biometric verification systems under spoofing attacks need

to address two challenges. The first one, observed in Fig. 5.3a, is related to the existence

of three score distribution plots corresponding to the three input classes. The challenging

question is how to determine the decision threshold to discriminate between the samples

to accept and reject. The second challenge refers to the error rates and evaluation metrics

for verification systems under spoofing attacks. It emerges because the evaluation metrics

presented in Section 5.1.2 are sufficient to describe only the verification performance of a
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system. However, the presence of spoofing attacks entails a suitable metric to accompany FAR

and FRR and report on the system spoofability.
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Figure 5.3: Evaluation plots for a hypothetical biometric verification system under spoofing
attacks

A widely accepted strategy to address these challenge is to simplify the problem and decom-

pose it into two sub-problems which resemble the original binary classification problem in

biometric verification. The sub-problems correspond to two scenarios the system can operate

in:

• Licit scenario (also called normal operation mode Galbally et al. [2006]): considers

genuine users as positive and only zero-effort impostors as negative class,

• Spoof scenario: considers genuine users as positive and only spoofing attacks as nega-

tive class.

Then, the decision threshold can be determined and evaluation can be performed under the

two scenarios in different ways. Unfortunately, while performance metrics for verification

systems are well established and widely used, the metrics for verification systems under

spoofing attacks are not unified and is ambiguous in different publications. A detailed overview

of all the error rates utilized by various authors is given in Table 5.2.

The adopted terminology that we will adhere to is as follows:

• FRR - ratio of incorrectly rejected genuine users,

• FAR - ratio of incorrectly accepted zero-effort impostors,

• SFAR - ratio of incorrectly accepted spoofing attacks [Johnson et al., 2010].

56



5.2. Evaluation of Biometric Verification Systems Under Spoofing Attacks

Table 5.2: Typically used error rates for biometric verification systems under spoofing attacks
and their synonyms.

Error rate Acronym Scenario Synonyms

False Negative Rate FNR
Both False Rejection Rate (FRR), False Non-Match

Rate [Galbally et al., 2010], [Marasco et al., 2012],
Pmiss [Villalba and Lleida, 2011])

Both Global False Rejection Rate (GFRR) [Marasco
et al., 2012]

True Positive Rate TPR Both True Acceptance Rate, Genuine Acceptance
Rate [Johnson et al., 2012], [Rodrigues et al.,
2010]

False Positive Rate FPR
Licit False Acceptance Rate (FAR), False Match

Rate [Galbally et al., 2010], [Marasco et al., 2012],
Pfa [Villalba and Lleida, 2011]

Spoof False Acceptance Rate (FAR) [Galbally et al.,
2006], Spoof False Acceptance Rate [John-
son et al., 2010], Liveness False Acceptance
Rate [Adler and Schuckers, 2009], Success
Rate [Ruiz-Albacete et al., 2008], Attack Success
Rate [Galbally et al., 2010]

Both System False Acceptance Rate (SFAR) [Adler and
Schuckers, 2009], Global False Acceptance Rate
(GFAR) [Marasco et al., 2012]

With respect to the decision threshold, researchers generally follow two main evaluation

methodologies to compute it and to report the error rates it produces, and they are discussed

below.

Evaluation Methodology 1. In the first evaluation methodology, two decision threshold

calculations are performed separately for the two scenarios [Matsumoto et al., 2002], [Galbally

et al., 2006], [Johnson et al., 2010], [Alegre et al., 2012]. Analysis of the system in the licit

scenario gives values for FRR and FAR, while analysis in the spoof scenario gives values for

FRR and SFAR. Since the analysis produces different threshold in the two scenarios, the two

values of FRR are not the same. A major weak point of this type of evaluation is that it outputs

two decision thresholds for a single verification system, while naturally a single system can

have only one operating point corresponding to one decision threshold. Furthermore, the

spoof scenario assumes that all the possible misuses of the system come from spoofing attacks,

which in general is not realistic. The threshold calculated in this scenario is not a good

discriminating point for a verification system, but rather for an anti-spoofing system and the

error rates reported on this way are not a reliable estimate of the system performance under

spoofing attacks. The decision threshold and the reported error rates in the spoof scenario
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are irrelevant in a real-world scenario. Therefore, this type of evaluation is not compliant to a

real-world requirements for operation of a verification system.

Evaluation Methodology 2. The second evaluation methodology is adapted for more realis-

tic performance evaluation. The threshold is calculated using various criteria, for example

EER, but almost always using the licit scenario, as it is regarded as a normal operation mode for

a verification system. Taking advantage of the fact that the licit and spoof scenario share the

same positive class, many publications choose a threshold to achieve a particular desired value

of FRR [Galbally et al., 2010; Villalba and Lleida, 2011; Ruiz-Albacete et al., 2008; Rodrigues

et al., 2009; Akhtar et al., 2011; Marasco et al., 2011]. Then, using the obtained threshold, FAR

for the licit and SFAR in the spoof scenario are reported and compared.

On the hypothetical verification system whose score distribution is plotted in Fig. 5.3a, the

threshold is chosen using the EER criteria for the licit scenario. The plotted threshold gives

an intuition about how well the system discriminates between genuine users and zero-effort

impostors, but also between genuine users and spoofing attacks. Fig. 5.3b draws two DET

curves corresponding to the two scenarios. The horizontal line shows the FRR for the chosen

threshold. The points where it cuts the DET curves for the two scenarios are the reported error

rates.

As an alternative figure delivering similar information as DET for the second evaluation

methodology, Rodrigues et al. [2009] suggests to plot FAR vs. SFAR. Thresholds are fixed in

order to obtain all the possible values of FAR for the licit scenario and SFAR is computed in the

spoof scenario and plotted on the ordinate axis. By plotting the curves for different verification

systems, the plot enables to compare which one of them is less prone to spoofing given a

particular verification performance.

The issue that the second methodology overlooks is that a system whose decision threshold is

optimized for one negative class (usually, the zero-effort impostors), can not be evaluated in a

fair manner for another negative class (spoofing attacks). Expectedly, such a threshold will be

biased towards the single negative class used for its determination, causing unnecessary larger

error rates for the other negative class. If the system is expected to be exposed to two classes

of negatives in the test or deployment stage, it would be fair that both of them play a role in

the decision of the threshold in the development stage. A novel evaluation methodology to

tackle this issue is the subject of Section 5.3.

5.3 Expected Performance and Spoofability (EPS) Framework

Determining the decision threshold for biometric verification systems under spoofing attacks

seems to be one of the major issues in the evaluation process. Neither the first, nor the second

of the evaluation methodologies explained in Section 5.2.2 offer a method that determines

an unbiased threshold applicable in a realistic verification scenario. A fair evaluation of a
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system which needs to reject samples of two different classes is possible only if both of them

are considered in the development stage. By neglecting the class of spoofing attacks when

deciding on the threshold of the verification system, one deliberately exhibits blindness to the

danger of spoofing attacks, thus potentially creating a system more vulnerable to spoofing.

Moreover, in some cases a necessity may arise to add a cost to the error rates associated

with the positive and the negative class, and this cost has to be considered in the process of

computing a decision threshold as well.

The most straight-forward way to involve both negative classes (zero-effort impostors and

spoofing attacks) in the threshold decision process, is simply to merge them together into

a single negative super-class. However, the number of zero-effort impostors and spoofing

attacks is highly dependent on the database and follows the database protocol. Hence, the

ratio of the two classes into the super-class is different for different databases and can not

be controlled. Furthermore, the super-class tends to be biased towards the component with

more samples. For example, in a typical biometric verification database with N identities and

M samples per identity, the number of zero-effort impostors will be N × (N −1)×M . On the

other hand, if there is a single spoofing attack for any genuine sample in the database, the

number of spoofing attacks will be N ×M . The above observations lead to the question of

what the correct ratio of zero-effort impostors and spoofing attacks into the super-class of

negatives is.

As a matter of fact, there may not be a single answer to that. Any ratio of the two negative classes

may be valid depending on the deployment conditions. For example, in highly supervised

conditions, like airport control gates, spoofing attacks are more difficult to perform, and hence

unlikely. On the other hand, unsupervised verification systems of portable devices are much

more exposed to spoofing attacks. Thus, tuning the operating point of any system depends on

its expected usage scenario.

The message that the metrics DCF, WERβ and EPC convey sounds with the above reasoning

for a biometric verification system. EPC obtains a decision threshold based on a parameter

β which balances between FAR and FRR and reports the expected performance for a wide

range of values for that parameter. The parameter β can be interpreted as the relative cost or

importance of FAR and FRR, or the prior of the negative or the positive class. Using EPC, it is

possible to compare algorithms depending on the importance of FAR and FRR in a certain

usage scenario.

For evaluating biometric verification systems under spoofing attacks, we develop a method

inspired by EPC. Being aware that the prior of zero-effort impostors and spoofing attacks can

not be known in advance while developing an algorithm, we design an evaluation framework

which measures the expected performance of the system for a range of values of a parameter

which balances between FAR and SFAR. Moreover, analogously to EPC, we introduce another

parameter which considers the cost of the error rates associated with the positive and the

negative classes. As it measures both the verification performance and the vulnerability to
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spoofing of a system and unifies them into a single value, the adapted evaluation scheme is

called Expected Performance and Spoofability (EPS) framework.

The goal of the EPS framework is to analyze and plot error rates regarding the performance

and spoofability of a verification system on a test set, with respect to a decision threshold

taken on a separate development set. We define two parameters: ω ∈ [0,1], which denotes the

relative cost of spoofing attacks with respect to zero-effort impostors; and β ∈ [0,1], which

denotes the relative cost of the negative classes (zero-effort impostors and spoofing attacks)

with respect to the positive class. Using these, we introduce a measurement called FARω,

which is a weighted error rate for the two negative classes (zero-effort impostors and spoofing

attacks). It is calculated as in Eq. 5.4.

FARω =ω ·SFAR+ (1−ω) ·FAR (5.4)

The optimal classification threshold τ∗
ω,β depends on both parameters. It is chosen to minimize

the weighted difference between FARω and FRR on the development set, as in Eq. 5.5.

τ∗ω,β = arg min
τ

|β ·FARω(τ,Ddev )− (1−β) ·FRR(τ,Ddev )| (5.5)

Once an optimal threshold τ∗
ω,β is calculated for certain values of ω and β, different error

rates can be computed on the test set. Probably the most important is WERω,β, which can

be accounted as a measurement summarizing both the verification performance and the

spoofability of the system and which is calculated as in Eq. 5.6.

WERω,β(τ∗ω,β,Dtest ) =β ·FARω(τ∗ω,β,Dtest )+ (1−β) ·FRR(τ∗ω,β,Dtest ) (5.6)

A special case of WERω,β, obtained by assigning equal cost β= 0.5 to FARw and FRR can be

defined as HTERω and computed as in Eq. 5.7. In such a case, the criteria for optimal decision

threshold is analogous to the EER criteria given in Section 5.1.1.

HTERω(τ∗ω,Dtest ) = FARω(τ∗ω,Dtest )+FRR(τ∗ω,Dtest )

2
(5.7)

The parameter ω could be interpreted as relative cost of the error rate related to spoofing

attacks. Alternatively, it could be connected to the expected relative number of spoofing

attacks among all the negative samples presented to the system. In other words, it could be
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Figure 5.4: 3D plot of WERω,β and SFAR of a hypothetical biometric verification system
computed using EPS framework

understood as the prior probability of the system being under a spoofing attack when it is

misused. If it is expected that there is no danger of spoofing attacks for some particular setup,

it can be set to 0. In this case, WERω,β corresponds to WERβ in the traditional evaluation

scheme for biometric verification systems. When it is expected that some portion of the

illegitimate accesses to the system will be spoofing attacks, ω will reflect their prior and ensure

they are not neglected in the process of determining the decision threshold.

As in the computation of WERβ in Section 5.1.1, the parameter β could be interpreted as

the relative cost of the error rate related to the negative class consisting of both zero-effort

impostors and spoofing attacks. This parameter can be controlled according to the needs

or to the deployment scenario of the system. For example, if we want to reduce the wrong

acceptance of samples to the minimum, while allowing increased number of rejected genuine

users, we need to penalize FARω by setting β as close as possible to 1.

The EPS framework computes error rates for a range of decision thresholds obtained by

varying the parameters ω and β. The visualization of the error rates parameterized over two

parameters will result in a 3D surface, which, for a hypothetical system is given in Fig. 5.4.

Using this plot, we can clearly infer on the expected error rates depending on the parameters’

values or range of values which are of interest.

However, a 3D plot may not be convenient for evaluation and analysis when one needs to

compare two or more systems. Instead, we suggest plotting the Expected Performance and

Spoofability Curve (EPSC), showing WERω,β with respect to one of the parameters, while the

other parameter is fixed to a predefined value. For example, we can fix the parameter β=β0

and draw a 2D curve which plots WERω,β on the ordinate with respect to the varying parameter

ω on the abscissa. Having in mind that the relative cost given to FARω and FRR depends mostly
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for β ∈ [0,1] do
for ω ∈ [0,1] do

define FARω =ω ·SFAR+ (1−ω) ·FAR
τ∗ω,β = arg min

τ
|β ·FARω(τ,Ddev )− (1−β) ·FRR(τ,Ddev )|

compute WERω,β(τ∗
ω,β,Dtest );

plot WERω,β(τ∗
ω,β,Dtest ) w.r.t. ω,β

end for
end for

Figure 5.5: Pseudo code for computing WERω,β

on the security preferences for the system, it is not difficult to imagine that particular values

for β can be selected by an expert. Similarly, if the cost of SFAR and FAR or the prior of spoofing

attacks with regards to the zero-effort impostors can be precisely estimated for a particular

application, one can set ω=ω0 and draw a 2D curve plotting WERω,β on the ordinate, with

respect to the varying parameter β on the abscissa.

The algorithm on Fig. 5.5 gives the step-by-step procedure to compute and plot WERω,β with

regards to ω and β for a given verification system. By fixing one of the parameters ω or β, one

can plot EPSC for WERω,β with regards to the other parameter.

Besides WERω,β, EPSC can present other error rates which are of interest. For example,

plotting SFAR can show how the system’s robustness to spoofing changes with regards to ω or

β. Alternatively, to report on all the incorrectly accepted samples, FARω can be plotted using

EPSC.

Fig. 5.6 and Fig. 5.7 give an illustration of the EPSC plotting the error rates WERω,β and SFAR as

function of the parameters ω and β, respectively. The plots are generated for the hypothetical

verification system whose score distribution is given in Fig. 5.3a.

Fig. 5.6a and Fig. 5.6b show WERω,β and SFAR with respect to ω for three predefined values

of β. The blue curve on Fig. 5.6a, corresponding to β = 0.5, is equivalent to HTERω. The

left-most points of the curves correspond to ω = 0, meaning that the decision threshold is

obtained disregarding the spoofing attacks as possible input. Hence, the threshold at this point

corresponds to the threshold plotted in Fig. 5.3a, calculated for the system when operating in

the licit scenario. For the particular hypothetical system and all the three considered values

of β, this point corresponds to low WERω,β, which indicates a system with good verification

capabilities, but very high SFAR due to the high overlap of the scores of spoofing attacks and

genuine users.

As we increase ω, we give weight to the spoofing attacks so that they have a role in the threshold

decision process. In the particular example, this results in a shift of the decision threshold

to the right of the score distribution plot in Fig. 5.3a. This decreases the number of spoofing

attacks that pass the system, which explains why SFAR decreases with increasing ω. However,

the additional caution for the danger of spoofing attacks unavoidably comes with the price
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Figure 5.6: EPSC of a hypothetical biometric verification system under spoofing attacks,
parameterized over ω
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Figure 5.7: EPSC of a hypothetical biometric verification system under spoofing attacks,
parameterized over ω
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of more rejected genuine users and thus higher WERω,β. A system with high robustness to

spoofing attacks will show as mild increase of WERω,β as possible, with as steep decrease of

SFAR as possible.

Fig. 5.7a and Fig. 5.7b show EPSC parameterized over the varying parameter β, for three

predefined values of ω. For the extreme cases where β= 0 and β= 1, WERω,β is 0 because the

threshold is determined to minimize the error rate solely associated with the positive or the

negative class, respectively. In the case of β= 0, this results in a successful passing through of

all the spoofing attacks.

Considering the spoofing attacks when calculating the decision threshold means taking ad-

ditional precautions against them. As a result of this, the threshold obtained using EPS

framework is better adapted to the input that is expected, contributing to systems with better

performance and lower spoofing vulnerability, than systems whose decision threshold has

been determined in different way.

The EPSC inherits the advantage of unbiased system comparison from the EPC, because it

reports the error rates a priori. Since the threshold is always determined using the develop-

ment set, and the error rates are reported using the test set, one can estimate the expected

error rates and spoofability of the system in an unbiased way, on data which has not been seen

before. The expected error rates can be reported for a particular value or range of values of the

parameters ω and β which are of interest in a particular application. Moreover, EPSC allows

for easy and unbiased comparison of verification systems with regards to their performance

and robustness to spoofing, simply by comparing the EPSC for the two systems on the same

plot. Even more, one can compare verification systems range-wise: which one performs better

for a range of values of ω or β.

EPS requires an access to a single score output of the system to be evaluated. Therefore, it is

suitable for systems where the verification and anti-spoofing outputs are fused at score level.

Systems where the verification and anti-spoofing outputs are fused in a different way can not

benefit from EPSC, which displays its greatest limitation.

Finally, if a single number is needed to describe the performance of a system, we define

the Area Under EPSC (AUE) metric, which can be computed for a fixed β or ω, as in Eq. 5.8.

For example, for a fixed β, it represents the average expected WERω,β for all values of ω and

is computed using Eq. 5.8. The formula to compute AUE for fixed ω and varying β follows

accordingly. Between two systems, better is the one which achieves smaller AUE.

AUE =
∫

ω∈[0,1]

WERω,β(τ∗ω,β,Dtest )dω (5.8)

The AUE can be computed in between certain bounds a,b ∈ [0,1]; a < b, enabling to compare
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two systems depending on the required range of the varying parameter.

5.4 EPSC Showcase

In this section, we illustrate the usage, appearance and interpretation of EPSC for several

typical cases of biometric verification systems which behave differently with respect to the

spoofing attacks. For this purpose, we categorize the biometric verification systems into

four categories, which can be best described by their score distribution plots. As the goal is

to illustrate EPSC when the system is under spoofing attacks, for this showcase we assume

biometric verification system with good separability between real access and zero-effort

impostors, which means good verification performance. The categories, for which score

distributions for hypothetical data are given in Fig. 5.8, are as follows:

• Robust (Fig. 5.8a). The score distribution of the spoofing attacks is to the left and not

overlapping with the score distribution of the real accesses.

• Susceptible (Fig. 5.8b). The score distribution of the spoofing attacks is to the left and

somewhat overlapping with the score distribution of the real accesses.

• Vulnerable (Fig. 5.8c). The score distribution of the spoofing attacks is overlapping with

the score distribution of the real accesses.

• Super-vulnerable (Fig. 5.8d). The score distribution of the spoofing attacks is to the right

and somewhat overlapping and not overlapping with the score distribution of the real

accesses.

The system shown in Fig. 5.8a shows nearly ideal situation, with a great separability between

the samples that need to be accepted (real accesses) and the samples that need to be rejected

(zero-effort impostors and spoofing attacks). Such systems rarely exist in practice. The system

shown in Fig. 5.8b corresponds to a more realistic situation and may be achieved by fusing

biometric verification and anti-spoofing system. The system shown in Fig. 5.8c can represent

a typical biometric verification system with no explicit anti-spoofing mechanism. Finally,

a super-vulnerable system as in Fig. 5.8d is less realistic, as it requires producing spoofing

attacks with inconceivable quality.

Fig. 5.9 illustrates the appearance of EPSC for the four categories of biometric verification

systems with hypothetical data. The parameter β= 0.5 is fixed, while the parameter ω varies.

It is important to note that for ω= 0, the points on the curves represent the error rates that will

be obtained using Evaluation Methodology 2 described in Section 5.2.2.

The general trend for the cases of susceptible, vulnerable and super vulnerable systems is

increasing HTERω and decreasing SFAR as ω increases. This demonstrates the presence of a

trade-off between the robustness to spoofing and overall performance. Exception are highly
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Figure 5.8: Score distribution plots for different categories of biometric verification systems
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Figure 5.9: EPSC for different categories of hypothetical biometric verification systems

robust systems where using EPSC to determine the decision threshold does not make a big

difference with respect to their already very good performance.

In the case of susceptible, vulnerable and super-vulnerable systems, EPSC plays an important

role when the probability of spoofing attack, reflected in the parameter ω, is high. If Evaluation

Methodology 2 is used as described in Section 5.2.2, then these systems are completely inoper-

ative in cases where spoofing attacks can be expected. However, if EPSC is used, the decision

threshold for each ω is optimized for the corresponding probability of spoofing attacks. In

this way, the SFAR can be significantly reduced. This comes at the cost of decreased overall

performance, in this case represented by HTERω. However, this cost depends on the system.

For a susceptible system like in Fig. 5.8b, the cost is irrelevant, as the increase of HTERω is

mild, while the decrease of SFAR is sharp. For the vulnerable and super-vulnerable systems,

the cost is very high, as SFAR is reduced at a slower rate, while HTERω notes a significant

increase. This observation reminds that EPSC does not aim at replacing protection with

spoofing counter-measures that can bring vulnerable or super-vulnerable systems to the level

of susceptible or robust ones. Yet, for any system, it can optimize the decision threshold for

the present circumstances.

5.5 Discussion

In the traditional setup, verification and anti-spoofing systems are evaluated independently,

using the well-established metrics for binary classification systems. The observation that they

need to work in cooperation resulting in a system with a single decision, inevitably brings the

necessity for an adjusted evaluation methodology.
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We discussed several ways to evaluate verification systems under spoofing attacks. Two of the

methodologies that are widely used possess disadvantages that make them either impractical

or sub-optimal for deployment.

We proposed a novel evaluation methodology, EPS, which objectively assumes that all the

three system inputs, real accesses, zero-effort impostors and spoofing attacks, need to be

considered in the threshold decision process. They are taken into account with respect to their

prior probability, or the application-dependent cost of the error rates associated with them.

In this way, EPS allows for a selection of a decision threshold which is optimal for a given

application. Furthermore, EPS is designed to enable unbiased comparison of systems, by

setting the decision threshold a priori, with no knowledge on the test set in the development

phase.

A prerequisite for using EPS framework to optimize the operation of a system is that the system

acknowledges three types of inputs: genuine accesses, zero-effort impostors and spoofing

attacks. If no such notion is present, the system can still be evaluated using EPS framework, but

it can not benefit from it in terms of optimization of the threshold relative to the importance of

the different types of inputs. An example of such system is a client-independent anti-spoofing

system, which has no notion of zero-effort impostors. Subsequently, decision-level fusion of

biometric verification and client-independent anti-spoofing system results in a system with

similar problem: the decision of the anti-spoofing system is fixed and can not be optimized

using EPS framework, and so is the decision of the fused system. This problem does not exist

when fusing biometric verification and client-specific anti-spoofing system at decision-level:

the decision threshold of each of the two systems can be optimized separately using EPS

framework before the fusion takes place.

The usage of EPS and EPSC was briefly illustrated on hypothetical verification systems. In

Chapter 6, it will be used to evaluate and compare realistic verification systems in case studies

on the face mode.

It is important to note that a complete API for using EPS framework for evaluation of bio-

metric verification systems under spoofing attacks is available in the open source package

antispoofing.evaluation1. The code assumes no prior information of the biometric mode,

internal operation of the system or evaluation database.

1 https://pypi.python.org/pypi/antispoofing.evaluation
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Biometric verification systems for the face mode appear to be one of the most attractive targets

of spoofing attacks. There are two main factors that contribute to this. The first one has its

roots in the wide adoption of online social networks by ever increasing number of users. In

recent times, the social networks serve as a main platform where users disclose their personal

images, many of which are face images, in large scale. An analysis conducted by Li et al. [2014]

shows that the majority of face images shared on the social networks can be readily used to

spoof a face verification system simply by displaying them on the screen of a device. This leads

us to the second factor which makes spoofing the face mode attractive: the convenience of

producing spoofing attacks cheaply and without any expert skills.

In this chapter, we develop several case studies to employ the concepts introduced through-

out this thesis on the face biometrics. The case studies are based on several prominent

face verification systems and state-of-the-art face anti-spoofing features. The objective is to

demonstrate the benefits of the integration of the verification and anti-spoofing systems in

creating more trustworthy face biometrics.

With respect to input-level integration, we perform experiments to show the advantages

of client-specific over client-independent approaches. For this purpose, we create four

case studies based on a subset of the state-of-the-art anti-spoofing features presented in

Section 2.3.1. Then, we apply the proposed client-specific modeling approaches and their

client-independent counterparts, comparing the results using the evaluation methodology for

anti-spoofing systems presented in Section 5.1.

To examine output-level integration, we create case studies where we combine different face

verification systems with different anti-spoofing methods. We explore anti-spoofing systems

based upon both client-independent and client-specific paradigm. The resulting systems

are face verification systems with increased robustness to spoofing attacks. To compare their

performance before and after integration, as well as to compare the impact of the different

fusion strategies presented in Chapter 4, we use the EPS framework proposed in Section 5.3.

Simultaneously, we demonstrate the usage of the EPS framework in practice, indicating its
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values for evaluation of biometric verification systems under spoofing attacks.

We emphasize that the code for the methods presented in this thesis is developed and released

as free software. The results of the case studies shown in this chapter are fully reproducible

using the free software package bob.thesis.ichingo20151 which accompanies this thesis

and which is based on the free signal processing and machine learning toolbox Bob2 [Anjos

et al., 2012].

Detailed description of the anti-spoofing and face verification features and systems, as well

as the database used in the case studies is given in Section 6.1. The results regarding the

input-level integration are given in Section 6.2, while the results regarding the output-level

integration are given in Section 6.3.

6.1 Systems and Database Description

The case studies examined in this chapter are built upon several state-of-the-art face anti-

spoofing features and face verification systems. In this section we give a description and

justification for their usage. Furthermore, we discuss the choice of a database suitable to apply

the case studies on.

6.1.1 Face Anti-spoofing Features

In Section 2.3.1 we gave a review of state-of-the-art features that have been designed to

discriminate between real accesses and spoofing attacks. To build the case studies and perform

our experiments, we limit ourselves to a subset consisting of four different anti-spoofing

features, that we will refer to as LBP, LBP-TOP, MOTION and HOG. The selection of features

takes into account several factors, like their discrimination capabilities, implementation

details and availability of source code to reproduce their results. Furthermore, the selected

features are representatives of different categories, as described in Section 2.3.1.

While the selected face anti-spoofing features have a well-acknowledged value in face anti-

spoofing, we are aware that there are methods which achieve better face spoofing detection.

Primarily, these methods owe their success to the fusion of several different anti-spoofing

methods [Chingovska et al., 2013b] or augmentation of the input [Bharadwaj et al., 2013]. How-

ever, the objective of the case studies presented in this chapter is not to outperform superior

face anti-spoofing detectors. Instead, they aim at demonstrating the benefits of the concepts

proposed in this thesis. In particular, the empirical results show that the advantages of the

proposed methods can be achieved using simple features with their basic parameterization.

An extensive evaluation of the applicability of other anti-spoofing features in the context of the

proposed methods is possible using the free software package bob.thesis.ichingo2015.

1 https://pypi.python.org/pypi/bob.thesis.ichingo2015
2 http://www.idiap.ch/software/bob
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LBP LBP anti-spoofing features belong to the category of features that use visual appearance

cues. They are based on the acclaimed Local Binary Pattern (LBP) descriptor, originally

proposed for texture classification by Ojala et al. [2002]. It consists of computing a binary

pattern over each pixel by comparing its value to the values of pixels in a rectangular or

circular neighborhood region with a predefined radius. The obtained binary patterns are

then summarized into a histogram over the full image. LBPt y pe
x,y is the usual notation for these

features, where x stands for the number of neighboring pixels that are considered, while y is

the radius of the circular neighborhood. Depending on the grouping of the binary patterns

when creating the histogram, type can be regular (r ), rotation-invariant (r i ) and uniform (u2).

As face anti-spoofing feature, LBP was first proposed by Määttä et al. [2011] in a multi-scale

version, where several neighborhood regions with different radii are considered. In this work,

we use a feature vector created as a histogram of simple LBPu2
8,1[Chingovska et al., 2012]. The

features are extracted only from the face region of the input sample, geometrically normalized

to 64x64 pixels. The dimension of the final feature vector obtained in this way is 59.

LBP-TOP LBP from Three Orthogonal Planes (LBP-TOP) is a dynamic texture descriptor

which extends the computation of LBP features in a temporal dimension [Zhao and Pietikäi-

nen, 2007]. Having video inputs, the binary patterns of a pixel are computed not only in

its neighborhoods within its frame, but also within its circular or elliptical neighborhood

spanning the preceding and following frames.

LBP-TOP has been used for face spoofing detection by Pereira et al. [2014] and has shown

better discrimination capabilities than LBP. In this work, we use LBP-TOPu2
8,8,8,1,1,1, which

is extracted over three-dimensional circular neighborhoods with radii 1 and considering 8

neighboring pixels. Similarly to the LBP features, LBP-TOP features are extracted from the

face region of the input sample, after a geometric normalization to 64x64 pixels. The obtained

feature vector has a dimension of 177.

MOTION The MOTION face anti-spoofing features used in this work are proposed by Anjos

and Marcel [2011]. They detect spoofing attacks by estimating the correlation of the move-

ments of the face with regards to the background and rely on the assumption that spoofing

attacks may have higher correlation. The algorithm computes a motion coefficient capturing

the motion difference between two consecutive frames in a video. The motion coefficient is

computed both for the face region, as well as the background. Then, a total of 5 statistical

and other measures of the motion coefficient over a window of several consecutive frames

are computed: minimum, maximum, mean, standard deviation and the ratio between high

and low frequency components. For each frame, the computed measures for the face and

background regions are concatenated to create the feature vector, which has a dimension of

10. In this work, we use MOTION features with window size of 20 frames.
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HOG Histogram of Oriented Gradients (HOG) has been originally proposed by Dalal and

Triggs [2005] as a descriptor for human detection. It requires a computation of the gradient

of the pixels in an image. The orientations of the gradients are binned into histograms over

overlapping or non-overlapping cells that the image is divided into. Optionally, the cells are

grouped into blocks and the cell histograms are normalized withing each block.

HOG has been used for anti-spoofing by Määttä et al. [2012] and Yang et al. [2013]. The

HOG features used in this thesis are computed on the face region of the image, geometrically

normalized to 64x64. A total of 8 gradient orientations are considered between 0 and 180

degrees. The size of the cells is set to 16 pixels with an overlap of 8 pixels and no block

normalization is used. The final feature vector is obtained by concatenating the histograms

from the cells and has a dimension of 392.

6.1.2 Face Verification Systems

We base the case studies on four baseline face verification systems which have proven to

be state-of-the-art on several face verification databases. To generate the face verification

scores, we used their implementation in the free open-source face recognition library Facere-

clib3 [Günther et al., 2012].

UBMGMM The first face verification system uses Discrete Cosine Transform (DCT) features

extracted from the geometrically normalized faces. The features are extracted over overlapping

blocks of 12x12 pixels and after a preprocessing procedure to reduce the impact of illumination

variations [Tan and Triggs, 2010]. Face models for the enrolled clients [Cardinaux et al.,

2003] are created over the features using a Gaussian Mixture Model (GMM). First, Universal

Background Model (UBM) based on a GMM with 512 components is created for a set of

background clients. Then, this model is adapted to the face samples of all the enrolled clients

using Maximum A Posteriori (MAP) adaptation, creating models for a particular identity. At

verification time, an input sample is compared with the model of the identity claimed by the

client, as well as the UBM. The final verification score is the log-likelihood ratio between the

scores obtained during the two comparisons.

LGBPHS The second face verification system, called Local Gabor Binary Pattern Histogram

Sequences (LGBPHS) [Zhang et al., 2005], calculates LBPu2
8,2 histograms over input image blocks

of size 8x8 and convoluted with 40 Gabor wavelets with 8 orientation and 5 scales [Wiskott

et al., 1997]. The concatenated LBP histograms of an input image are compared with the

histogram model of the client with the claimed identity using χ2 measure.

3 https://pypi.python.org/pypi/facereclib
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GJet The third face verification system, referred to as GJet is based on [Wiskott et al., 1997]

and extracts Gabor jets from different positions of the image. The Gabor jets are then assem-

bled into a single rectangular grid graph [Günther et al., 2012]. In total, 40 Gabor wavelets

with 8 orientation and 5 scales are used. The verification score is generated by comparing the

Gabor graphs using the average similarity of the corresponding Gabor jets.

ISV DCT features are used once again in the fourth face verification system, which is based

on an Inter-Session Variability Modeling [Wallace et al., 2011]. Similarly to the GMM face

verification system, ISV is based on a UBM with 512 components. ISV additionally estimates a

160-dimensional linear subspace of within-class variability. Enrollment of clients is performed

by adaptation of the UBM to a specific identity and depending on the within-class variability

subspace. The verification scores are obtained as log-likelihood ratio between the scores

obtained using the client identity model and the UBM.

6.1.3 Database

The majority of face-spoofing databases provide only real access and spoofing attack samples

for the clients and usually lack enrollment data. However, as repeatedly stated in Chapters 3,

Chapter 4 and Chapter 5, this is of vital importance at all levels of integration of verification and

anti-spoofing systems. To the best of our knowledge, Replay-Attack, together with its subsets

Print-Attack and Photo-Attack, is the only face spoofing database that provides enrollment

samples. Therefore, all of the case studies were evaluated using Replay-Attack database. The

majority of the experiments are performed considering the Grandtest protocol of Replay-

Attack, which includes all the types of spoofing attacks. However, certain experiments are

performed using subprotocols of Replay-Attack, like Print, Digital-Photo and Video, which

include only the corresponding types of attacks.

Although the other databases, like NUAA, CASIA-FASD and MSU-MFSD do not provide sep-

arate enrollment samples, one can change their protocol and dedicate certain samples for

enrollment. However, such a protocol violation will make comparison with previous ap-

proaches using the original protocol biased. Furthermore, even if we allow such a violation,

for many of the clients it is not possible to select enrollment samples out of the real access

data. For NUAA, the samples for the majority of clients come from a single session. Hence,

any selection of real access data for enrollment will make the samples for enrollment and

evaluation highly correlated. For CASIA-FASD, there are only 3 real access videos per client.

Due to their different qualities, selection of any of them for enrollment will bias any method

towards a single quality. On the other hand, selecting a part of a video for enrollment will lead

to a similar correlation problem as for NUAA database. Containing only 2 real access videos

per client with different qualities, MSU-MFSD exhibits similar problems as CASIA-FASD.

73



Chapter 6. Application to Face Verification

6.2 Input-level Integration

In this section, we state our findings with respect to the input-level integration of face verifica-

tion and anti-spoofing systems. We look at three different case studies, each of which covers

one of the face anti-spoofing features described in Section 6.1.1: LBP, LBP-TOP, MOTION and

HOG. For each case study, we observe and report the performance of a face anti-spoofing

system built with the following approaches: generative client-independent, generative client-

specific, discriminative client-independent and discriminative client-specific. The evaluation

is done using the evaluation methodologies for anti-spoofing systems, described in Section 5.1.

We would like to emphasize that the evaluation of the input-level integration is to compare

client-specific with respect to client-independent approaches only. The comparison has a

meaning only if the methods are applied on the same kind of features. Comparison between

different features has been done in the studies of Pereira et al. [2014]; Anjos and Marcel [2011];

Yang et al. [2013] and is out of the scope of this work.

The experiments are performed on Replay-Attack database, using its Grandtest, Print, Digital-

Photo and Video protocols. For certain experiments, we define two modes of evaluation with

respect to the used protocols:

• Intra-protocol evaluation. In this evaluation mode, the system is trained and evaluated

using the same protocol (or set of protocols).

• Cross-protocol evaluation. In this evaluation mode, the system is trained using one pro-

tocol (or set of protocols) and is evaluated using another protocol (or set of protocols).

We use intra-protocol evaluation to evaluate the system performance on Grandtest, Print,

Digital-Photo and Video protocols, as well as on sets created by pairing the three latter proto-

cols.

Cross-protocol evaluation is important in assessing the capability of an anti-spoofing system

to generalize in detecting spoofing attacks which have not been considered during training.

As noted by Pereira et al. [2013] and having in mind that the possibilities for inventing novel

spoofing attacks are unlimited, robustness to unseen spoofing attacks is a major security asset

of anti-spoofing systems. We investigate three cross-protocol evaluation scenarios. In each

one of them, the systems are trained using two out of the three considered subprotocols of

Replay-Attack, while the third one serves for testing. The scenarios’ descriptions are as follows:

• Scenario 1: train with Digital-Photo and Video, test on Print;

• Scenario 2: train with Print and Video, test on Digital-Photo;

• Scenario 3: train with Print and Digital-Photo, test on Video.
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According to this, the three scenarios reveal the generalization capabilities of the algorithms

when tested on printed photographs, digital photographs and videos, respectively.

We analyze the generative client-specific approach in Section 6.2.1 and the discriminative

one in Section 6.2.2. The analysis is performed with respect to different parameters and

in comparison with the client-independent approaches, both in intra-protocol and cross-

protocol evaluations. Details about the exact parameterization for each of the methods and

protocols in our evaluation are given together with the freely available source code in the

software package bob.thesis.ichingo2015, making the reported results fully reproducible.

6.2.1 Generative Client-Specific Approach

We start the analysis of the generative client-specific approaches by describing the parameter

selection. We furthermore examine the effect of the cohort set on the results. Finally, we

compare the best setup of client-specific and client-independent approaches on different

protocols in intra-protocol and cross-protocol evaluations.

Parameter selection. The described generative client-specific approaches depend on few

hyper-parameters, like the number of Gaussian components that comprise the GMM, both

for the real access and the spoofing attack model. Another hyper-parameter is the relevance

factor which plays a key role in MAP adaptation. All of these parameters have been optimized

by a grid parameter search on the development set.

To select the best values for the number of Gaussian components as well as the relevance factor

for each of the features, the HTER on the development set was used. The value of HTER for

different number of components for the real and attack models is shown in Fig. 6.1a, Fig. 6.2a,

Fig. 6.3a and Fig. 6.4a for LBP, LBP-TOP, MOTION and HOG features, respectively. The figures

refer to the grandtest protocol only. The dark blue values on the plots correspond to number

of components for which grid search results are not available.

We found that LBP, LBP-TOP and HOG features require relatively high number of components

for the real access GMMs, ranging between 240 - 290 depending on the protocol. In particular,

for the grandtest protocol, the optimal number of Gaussian components for the LBP, LBP-TOP

and HOG features is 275, 295 and 295, respectively. The MOTION features, on the other hand,

can successfully model the client-specific real accesses with only 10-50 components. For

the grandtest protocol, the number of components is 10. The spoofing attack GMMs consist

of smaller number of components: below 100 for the majority of protocols for each of the

features. For the grandtest protocol, the optimal number of components is 25, 100, 45 and 55

for LBP, LBP-TOP, MOTION and HOG features, respectively.

Fig. 6.1b, Fig. 6.2b, Fig. 6.3b and Fig. 6.4b show the optimal value of the relevance factor for

each combinantion of number of components of the real and the attack model. The figures

exemplify the grandtest protocol only. For most of the protocols and features best results
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are achieved with low values of the relevance factor (1 < r < 5), which means that the MAP

adaptation of the GMMs gives more importance to the client-specific data than to the prior.

Among those, values close to 1 are more suitable for LBP-TOP features, as well asfor LBP and

HOG features when the number of components of the attack model is in the middle of the

high range. For the MOTION features, values close to 5 are more suitable. This is an indicator

that the LBP-TOP, LBP and HOG features contain higher amount of client-specific information,

compared to the MOTION features.
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Figure 6.1: LBP features: Values of HTER (%) and relevance factor depending on the number
of components for the real and attack GMM models
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Figure 6.2: LBP-TOP features: Values of HTER (%) and relevance factor depending on the
number of components for the real and attack GMM models
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Figure 6.3: MOTION features: Values of HTER (%) and relevance factor depending on the
number of components for the real and attack GMM models
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Figure 6.4: HOG features: Values of HTER (%) and relevance factor depending on the number
of components for the real and attack GMM models

Effect of the cohort set. The analysis of the cohort set selection is performed on the Grandtest

protocol of Replay-Attack. A full cohort set to model the hypothesis H1 as explained in Sec-

tion 3.2.3, consists of 15 cohorts, which is the maximum number of clients in the training set

of Replay-Attack.

Fig. 6.5 presents the dependence on the performance on the number of cohort models that

are considered in the static or dynamic client-specific cohort set. The performance is given in

terms of HTER as a mean between the error rates related to misclassified real accesses and

spoofing attacks. For the static client-specific cohort set, the general trend suggests that, larger
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number of cohorts yields better performance for the majority of the considered features. For

example, considering only the closest cohort in the cohort set gives a relativly high HTER for

LBP, LBP-TOP and MOTION features. As the number of cohorts increases, HTER decreases.

In particular cases, HTER for large enough cohort set (9-13 cohorts) is smaller then HTER

considering the full cohort set.
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Figure 6.5: Dependence on the selection of the cohort models. �: full cohort set,•: static
client-specific cohort set,•: dynamic client-specific cohort set

On the other hand, the number of cohorts in the dynamic client-specific cohort set appears to

make very little difference, as HTER stays relatively stable for all considered features. Further-

more, the dynamic client-specific cohort set yields better performance than the static one for

LBP, LBP-TOP and MOTION features and with small number of cohorts . This suggest that the

dynamic selection of the cohort sets achieves better sorting of the cohort models in terms of

relevance for the client-specific models. HOG features are an exception to this rule, and static

client-specific cohort set performs better even than a full cohort set and for smaller number of

cohorts.
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It is important to note that although HTER varies depending on the cohort set, in absolute

terms the variations are minor and within a range of 2%. For example, for LBP features, the

minimum HTER is 9.94%, while the maximum is 11%. The HTER when using full cohort set is

10.01%. Therefore, in the subsequent experiments, we will adhere to using the full cohort set.

Intra-protocol evaluation. Using intra-protocol evaluation, we compare generative client-

independent and client-specific anti-spoofing methods. Similarly to the client-specific ap-

proach, the parameters for the client-independent one have been optimized using grid pa-

rameter search.

The results for the Grandtest protocol are given in Table 6.1. The generative client-specific

approach consistently outperforms the the client-independent one for all the types of features,

both on the development and test set. The advantage of the client-specific features is signifi-

cant in almost all the cases: the relative improvement of HTER is above 50% for all features,

except MOTION.

Table 6.1: Performance of generative client-independent and client-specific approaches on
Grandtest protocol (error rates in %)

Client-independent Client-specific
dev test dev test

Features EER FAR FRR HTER EER FAR FRR HTER
LBP 21.33 17.93 25.45 21.69 9.97 8.6 11.42 10.01
LBP-TOP 9.32 8.38 16.92 12.65 5.08 5.07 7.51 6.29
MOTION 12.49 13.91 11.14 12.52 10.25 10.81 9.51 10.16
HOG 16.22 17.79 17.10 17.44 6.59 7.04 10.20 8.62

To understand the improvement of anti-spoofing performance when client-specific approach

is used, we compare the box plots of the client scores for the client-specific and client-

independent approaches. For different features, they are given in Fig. 6.6, Fig. 6.7, Fig. 6.8

and Fig. 6.9, where real access scores are shown in the upper plots and spoofing attacks in the

lower ones. As explained in Section 3.1, the central bar of each box is the median of the client

scores. Its upper and lower edges represent the 75th and the 25th percentile of the scores,

respectively, while the whiskers extend to the most extreme non-outlier score values. The

plots also include the decision threshold determined using EER criteria on the development

set. On each of the figures, the upper plots show the scores of real access samples while the

lower plots show the scores of spoofing attacks.

The box plots for the client-independent approaches demonstrate a high variability of the

scores of different clients, as already shown in Section 3.1 and Fig. 3.3. Certain clients exhibit a

score distribution which are significantly misaligned compared to the score distributions of

the majority of clients, especially for the real access scores for the LBP and HOG features. This

suggests the existence of client-specific score variations for the client-independent baseline,

which makes a single decision threshold for all clients and samples a suboptimal choice. While
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Figure 6.6: Box plots of the scores obtained with generative anti-spoofing methods: LBP
features. Upper plots: scores of real access samples; lower plots: scores of spoofing attacks.
The horizontal green line depicts the decision threshold on the development set.
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Figure 6.7: Box plots of the scores obtained with generative anti-spoofing methods: LBP-TOP
features. Upper plots: scores of real access samples; lower plots: scores of spoofing attacks.
The horizontal green line depicts the decision threshold on the development set.

the misalignment of the score distributions are not that prominent for the LBP-TOP features,

the separability between the real access and spoofing attack scores is poor.

On the contrary, the client-specific anti-spoofing methods show a much better alignment of

the score distributions both for the real access and spoofing attack samples. Besides having

similar values across all the clients, the medians of box plots are often further away from the

decision threshold, like for example, for the LBP-TOP features. This justifies the employment

of a single decision threshold for all clients in client-specific anti-spoofing methods.
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Figure 6.8: Box plots of the scores obtained with generative anti-spoofing methods: MOTION
features. Upper plots: scores of real access samples; lower plots: scores of spoofing attacks.
The horizontal green line depicts the decision threshold on the development set.
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Figure 6.9: Box plots of the scores obtained with generative anti-spoofing methods: HOG
features. Upper plots: scores of real access samples; lower plots: scores of spoofing attacks.
The horizontal green line depicts the decision threshold on the development set.

We extend the intra-protocol evaluation by performing experiments using Print, Digital-Photo

and Video protocols, as well as pairwise combinations of these protocols. The results of the

comparison of the client-independent and client-specific approaches under these protocols

are given in terms of HTER on the test set on Fig. 6.10. For all the types of features, they are

in favor of the client-specific approach in all the protocols. Furthermore, the client-specific

approach achieves a relative advantage of over 50% on several protocols with LBP, LBP-TOP

and HOG features.
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Figure 6.10: Intra-protocol evaluation of generative anti-spoofing systems. �: client-
independent approach, �: client-specific approach.

Cross-protocol evaluation. The results of the cross-protocol evaluation of the generative

client-independent and client-specific systems are given in Fig. 6.11. They are given in terms

of HTER on the test set on the protocol which has not been used during training. The bin labels

correspond to the protocol used for evaluation. For example, the first two bins on each plot

present the results of a system trained with Digital-Photo and Video protocol and evaluated

on the Print protocol.

Similarly to the results of the intra-protocol evaluation, the client-specific approach outper-

form the client-independent one by a large margin. A relative advantage of ∼50% is common

for LBP, LBP-TOP and HOG features. However, the MOTION features behave differently and

the client-specific approach performs only moderately better than the client-independent

one. This may suggest that MOTION features capture less client-specific information than the

other features.
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Figure 6.11: Cross-protocol evaluation of generative anti-spoofing systems. �: client-
independent approach, �: client-specific approach.

6.2.2 Discriminative Client-Specific Approach

For the analysis of the discriminative client-specific approaches, we first discuss the parameter

selection, as well as the choice of the SVM kernel. Then, we perform a comparison of client-

specific and client-independent approaches in their best setup, on different protocols in intra-

and cross-protocol evaluations.

Parameter and SVM kernel selection. The key hyper-parameter for any SVM is the constant

C regularizing the boundary between the two classes. The results of the performed grid

parameter search show that for the client-specific anti-spoofing systems, this parameter

does not play a significant role and the results change only marginally with the change of

C . Therefore, in all of the experiments, C = 1. An exception are the HOG features, where for

certain protocols, best results are achieved with larger values of C (C = 100).
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We examined SVM with different kernels: RBF, polynomial, χ2 and histogram intersection

kernel. For the RBF kernel, the parameter γ has the biggest impact and values which are the

inverse of the number of samples give the best results. Yet, other values of γ give similar results.

For the polynomial kernel, the most important parameter is the degree d . Best results are

achieved with d = 3 for LBP, d = 5 for LBP-TOP and d = 4 for MOTION and HOG. Table 6.2

gives the results of the discriminative client-specific approach using different types of kernels

and their optimal parameters.

Table 6.2: Comparison of different SVM kernels for discriminative client-specific approach on
Grandtest protocol (HTER in %)

RBF Polynomial Chi-2 Intersection
Features dev test dev test dev test dev test
LBP 10.02 9.87 14.22 13.79 16.75 14.96 12.39 11.44
LBP-TOP 3.71 3.95 4.88 5.05 3.61 3.60 2.83 2.85
MOTION 10.18 11.27 9.29 9.27 9.16 9.99 10.24 10.35
HOG 5.99 6.83 14.83 23.19 25.93 30.03 11.4 10.6

Several of the existing implementation of SVM process χ2 and histogram intersection kernels

by prior computing of the full kernel matrix K 4. Depending on the number of training samples,

this operation can require an extensive amount of memory. This limitation can be overcome

using kernel approximations, like the Nyström method [Williams and Seeger, 2001]. Instead

of computing inner products in high-dimensional space, the kernel approximations learn

an explicit feature map to project the features in that space. The projected features can

then be trained using linear SVM. The Nyström method enables to compute the feature map

using just a random subset of the available training samples. It is important to note that the

results in Table 6.2 are obtained using a subset of 1000 training samples for χ2 and histogram

intersection kernel. Better results may be expected if more samples are used.

According to Table 6.2, the best results for LBP and HOG features are obtained using RBF kernel.

Although both of these features have a histogram form, the kernels designated for histogram

feature spaces, like χ2 and histogram intersection kernel, exhibit inferior performance. We

emphasize once again that this might be due to the random sub-sampling of the training set.

On the other hand, the approximated χ2 and histogram intersection kernels perform better

for LBP-TOP features, despite the reduced training set. Among them, histogram intersection

kernel performs better. Finally, for MOTION features, polynomial kernel performs the best on

the test set, but if we consider the development set to select the best performing method, we

should choose χ2 kernel.

Intra-protocol evaluation. A comparison between discriminative client-independent and

client-specific methods is first done in an intra-protocol evaluation. The given results are

4In particular, the software package scikit-learn (https://scikit-learn.org) was used for this purpose [Pe-
dregosa et al., 2011]
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obtained using RBF kernel for LBP and HOG features, histogram intersection kernel for LBP-

TOP features and χ2 kernel for MOTION features. The optimal parameters for each of the

kernels are found with grid parameter search.

Table 6.3 shows the results for the Grandtest protocol. The results confirm that, in the dis-

criminative case, the client-specific method significantly outperforms the client-independent

one, both on the development and test set. For LBP, LBP-TOP and HOG features, the relative

improvement is particularly high: 36%, 49% and 29%, respectively. Although to a lesser extent,

the client-specific method performs better also for MOTION features.

Table 6.3: Performance of discriminative client-independent and client-specific approaches
on Grandtest protocol (error rates in %)

Client-independent Client-specific
dev test dev test

Features EER FAR FRR HTER EER FAR FRR HTER
LBP 14.56 9.56 21.29 15.42 10.02 8.18 11.53 9.86
LBP-TOP 5.55 4.01 7.28 5.64 2.83 1.76 3.94 2.85
MOTION 9.8 12.08 8.67 10.38 9.16 10.11 9.87 9.99
HOG 7.69 8.11 11.29 9.7 5.99 5.52 8.14 6.83
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Figure 6.12: Box plots of the scores obtained with discriminative anti-spoofing methods: LBP
features. The horizontal green line depicts the decision threshold on the development set.

The box plots comparing the client scores of the discriminative approaches are given in

Fig. 6.12, Fig. 6.13, Fig. 6.14 and Fig. 6.15. Similar values of the medians and uniform box sizes

for all clients on Fig. 6.12b, Fig. 6.13b and Fig. 6.15b justify the advantage of the client-specific

approach for LBP, LBP-TOP and HOG features. This is especially true for the real access scores.

Greater separability of the two classes and less extended whiskers can be observed as well.

Fig. 6.14 reveals no significant improvement of the box plot layout for the client-specific

approaches for the MOTION features.
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Figure 6.13: Box plots of the scores obtained with discriminative anti-spoofing methods: LBP-
TOP features. The horizontal green line depicts the decision threshold on the development
set.
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Figure 6.14: Box plots of the scores obtained with discriminative anti-spoofing methods: MO-
TION features. The horizontal green line depicts the decision threshold on the development
set.

The advantage of the client-specific discriminative approach is further indicated on Fig. 6.16,

illustrating the results of the intra-protocol experiments on the Print, Digital-Photo and Video

protocols, as well as on their pairwise combinations. It is notably significant for LBP, LBP-

TOP and HOG features, where the relative improvement is ∼ 50% for many of the protocols,

and reaches up to 83% and 88% for the Print protocol for LBP and LBP-TOP, respectively.

Interestingly, the MOTION features present the only case where the client-independent and

client-specific approaches perform on similar scale on few of the protocols, with the client-
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Figure 6.15: Box plots of the scores obtained with discriminative anti-spoofing methods: HOG
features. The horizontal green line depicts the decision threshold on the development set.

independent one being better for the Video protocol. It is important to emphasize that

MOTION features behave similarly in the case of the generative approaches as well, indicating

less client-specific information retained in these features.

Cross-protocol evaluation. The results of the cross-protocol evaluation of the discrimina-

tive anti-spoofing systems is given in Fig. 6.17. Similarly as for the intra-protocol evaluation,

RBF kernel is used for LBP and HOG features, while histogram intersection and χ2 kernels is

used for the LBP-TOP and MOTION features, respectively.

Consistently to what is shown by Pereira et al. [2013], for most of the protocols the discrimi-

native client-independent approach exhibits unacceptable spoofing vulnerability when con-

fronted with spoofing attacks that has not been seen during training. For example, when the

system is trained with Digital-Photo and Video protocol, it misses the detection of over 35%

of the spoofing attacks of the Print protocol for all the features. Although slightly better, the

performance is still unsatisfactory for other cross-protocol evaluation scenarios.

The client-specific discriminative anti-spoofing method overcomes these problems. HTER

of the attacks that have not been used during training is reduced to 5-10% on LBP, ∼ 5% on

LBP-TOP features and 5-17% on HOG features. Significant improvement is noted for the

MOTION protocol as well, except for the scenario where the system is trained using Print and

Digital-Photo protocols and tested using Video protocol. This might be due to the fact that

from the point of view of the MOTION features, there is practically no difference between the

motion patterns of a live client and a re-captured video of the same client.
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Figure 6.16: Intra-protocol evaluation of discriminative anti-spoofing systems. �: client-
independent approach, �: client-specific approach.

6.2.3 Summary

The experimental evaluation shows that the client-specific approaches greatly improve the

performance of their client-independent counterparts, both for the generative and discrimina-

tive approaches. Depending on the features and the protocol, the relative improvement goes

to more than 50%. More importantly, the client-specific approaches significantly outperform

the client-independent ones in cross-protocol evaluation too. A explanation may be the fact

that, as the box plots show, the client-specific approaches generate real access scores per client

which are more aligned and better separated from the spoofing attacks.

The client-specific approaches bring bigger improvement for features which are based on

visual appearance, like LBP, LBP-TOP and HOG. The MOTION features appear to be more

client-independent.

88



6.2. Input-level Integration

Print Digital-Photo Video
0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

H
TE

R
(%

)

(a) LBP features

Print Digital-Photo Video
0.0

10.0

20.0

30.0

40.0

50.0

H
TE

R
(%

)

(b) LBP-TOP features

Print Digital-Photo Video
0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

H
TE

R
(%

)

(c) MOTION features

Print Digital-Photo Video
0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0
H

TE
R

(%
)

(d) HOG features

Figure 6.17: Cross-protocol evaluation of discriminative anti-spoofing systems. �: client-
independent approach, �: client-specific approach.

To observe whether generative or discriminative client-specific approach performs better, we

compare their HTER on the test set of the Grandtest protocol in Table 6.4. For all the studied

features, the discriminative approach appears to be more powerful. The advantage is more

prominent for LBP-TOP and HOG features.

Table 6.4: Comparison of client-specific generative and discriminative approaches (HTER in
%)

Features Generative Discriminative
LBP 10.01 9.86

LGB-TOP 6.29 2.85
MOTION 10.16 9.99

HOG 8.62 6.83
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6.3 Output-level Integration

In this section, we present the results of the output-level integration of face verification and

anti-spoofing systems, using the decision-level and score-level fusion methods described

in Section 4.2. The case studies used to evaluate the output-level integration include com-

binations of four face verification systems (UBMGMM, LGBPHS, GJet and ISV) described

in Section 6.1.2 and four face anti-spoofing features (LBP, LBP-TOP, MOTION and HOG) de-

scribed in Section 6.1.1. The case studies are applied on Replay-Attack database, using its

Grandtest protocol.

The presented evaluation has two major objectives. The first one is to show how output-level

integration with an anti-spoofing system affects the performance of a biometric verification

system. The second one is to compare different strategies for fusion of biometric verification

and anti-spoofing systems, both in terms of verification performance and vulnerability to

spoofing of the final fused system. In addition, the experiments include comparison of fused

systems with respect to whether the anti-spoofing system is client-independent or client-

specific.

The evaluation is performed using evaluation methodologies described in Section 5.2 and

Section 5.3, in particular Evaluation Methodology 2 and EPS framework. Using the two evalua-

tion methodologies side by side, we aim to demonstrate the advantage of EPS and emphasize

its fitness for evaluation of biometric verification systems under spoofing attacks. Therefore,

throughout some of the experiments, the comparison of the two evaluation methodologies

will be stated and intermixed with the evaluation results.

We commence the analysis by stating the performance of the baseline face verification systems

in Section 6.3.1 prior to fusion with an anti-spoofing system. Fused systems are compared

in 6.3.2. We would like to emphasize that, due to the large number of case studies that are

possible to create by combining four face verification systems, four anti-spoofing systems

and five fusion methods, only partial analysis covering a subset of the case studies is given.

However, by using the freely available software package bob.thesis.ichingo2015, one can

reproduce all the results given in this section and extend the analysis to other case studies.

6.3.1 Performance of Baseline Face Verification Systems

Before analyzing the effect of fusion of face verification and anti-spoofing, we give the per-

formance of four baseline face verification systems, using both Evaluation Methodology 2

described in Section 5.2 and EPS framework proposed in Section 5.3. As part of the analysis,

we compare the conclusions delivered by the two evaluation methodologies.

The score distributions of the four systems are given in Fig. 6.18. The plots given in Fig. 6.19

represent the DET curves for the licit and the spoof scenario for each of the systems. When

using the licit scenario, we obtain a DET curve showing the trade-off between FAR and FRR
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when no spoofing attacks are present. On the other hand, when using the spoof scenario, we

can plot an additional DET curve showing the trade-off between SFAR and FRR and ignoring

the existence of zero-effort impostors.
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Figure 6.18: Score distribution plots for baseline face verification systems using Evaluation
Methodology 2.

To assess the verification performance of a system using Evaluation Methodology 2, we de-

termine a decision threshold using the EER criteria and considering only the licit scenario.

The vertical lines in Fig. 6.18 correspond to the thresholds for the various systems. Using this

decision threshold, we can compute and report FRR, FAR and SFAR. These values for the four

baseline systems are given in Table 6.5.

The results show that all the four systems perform well in the verification task. Fig. 6.18 justifies

the results: the score distributions for the genuine users and impostors are almost perfectly

separated. However, if we keep the decision threshold selected at EER on the development
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Figure 6.19: Performance of baseline face verification systems using DET curves and Evaluation
Methodology 2

Table 6.5: Performance of baseline face verification systems using Evaluation Methodology 2
(in %)

system FAR FRR HTER SFAR
UBMGMM 0.05 0.24 0.14 91.54

LGBPHS 1.47 2.13 1.8 88.52
GJet 0.28 0.24 0.26 94.98
ISV 0.00 0.17 0.08 92.58

set for the licit protocol, the systems exhibit a great vulnerability to spoofing of around 90%.

The results come with no surprise: as suggested by Fig. 6.18, the baseline face verification

systems appear to belong to the categories susceptible or vulnerable to spoofing attacks.

Using Evaluation Methodology 2, ISV, with 0.08% of HTER seems to perform the best in

the verification task. At the same time, GJet, with 94.98% of SFAR, appears to be the most
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vulnerable to spoofing among all the systems. These values are obtained only for a threshold

which does not assume any spoofing attacks to be possible.
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Figure 6.20: EPSC to compare baseline face verification systems

We now proceed with EPS evaluation of the systems. The EPSC given in Fig. 6.20, report

HTERω and SFAR for a threshold which considers the relative probability of spoofing attacks,

encoded in the parameter ω. Analyzing the EPSC for the four baseline systems, we come to

different conclusions. Comparing the HTERω values in Fig. 6.20a, we observe that ISV is best

performing only as long as the spoofing attacks appear with a very small probability. After a

certain value of ω, GJet shows the best performance. The same applies to the vulnerability to

spoofing (Fig. 6.20b): while being the most vulnerable when ω≈ 0, GJet displays the smallest

values of SFAR for larger values of ω.

Keeping in mind the conclusions from above, we can discuss two advantages of EPSC over

Evaluation Methodology 2. Firstly, it overcomes the exclusiveness in analyzing only zero-effort

impostors or spoofing attacks at a time, which is a feature of Evaluation Methodology 2. The

HTERω summarizes all the three error rates (FRR, FAR and SFAR) into a single value, combining

them based on their cost or the prior of the input classes. Secondly, it rectifies the bias that

Evaluation Methodology 2 demonstrates by neglecting the spoofing attacks that may appear.

Although this may increase the value of HTERω (EPSC is usually ascending for HTERω), it is

going to greatly improve the systems vulnerability to spoofing (EPSC is descending for SFAR),

especially in conditions where spoofing attacks are highly probable. Finally, by selecting an a

priori threshold, EPSC allows to objectively compare several systems on the same figure.

The superiority of GJet system which can be visually observed on Fig. 6.20a, can be further

confirmed by the value AUE = 0.117. In comparison, AUE = 0.1581 for ISV, which appears to be

the second best system.
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6.3.2 Performance of Fused Systems

We continue the analysis by comparing the performance of fused face verification and anti-

spoofing systems. The comparison is done with respect to the fusion method and whether

client-independent or client-specific anti-spoofing system was used. Due to space constraints,

for many of the experiments we give the figures only for specific case studies involving a

preselected face verification algorithm, which is GJet, as the best performing system from the

experiment in Section 6.3.1. From this point onward, all the results will be evaluated using

only EPS framework.

Comparison of Fusion Methods

To compare the fusion methods, we rely on case studies with the following specifications:

• GJet for face verification;

• client-specific discriminative system for anti-spoofing;

• LBP, LBP-TOP, MOTION and HOG anti-spoofing features.

Table 6.6 gives the AUE values for the fusion methods. Comparing these values with AUE

value of the baseline GJet system, which is 0.117, we can notice that all the score-level fusion

methods yield a significant improvement. For example, the AUE value dropped to 0.0191 for

the system fused with LBP-TOP counter-measure and GMM fusion rule. The decision-level

fusion method, with AUE value similar to the one of the baseline, is a notable exception,

Therefore, we will treat the case of decision-level fusion method separately.

The improvement of the performance after score-level fusion is further reflected on the EPSC

for the fused systems, shown in Fig. 6.21, Fig. 6.22, Fig. 6.23 and Fig. 6.24 for different features. It

is important to note the considerable drop of HTERω and SFAR with respect to the baseline. As

ω increases, meaning that spoofing attacks are given greater role in determining the decision

threshold, HTERω increases, but not as steep as in the case of the baseline system.

To compare systems using their vulnerability to spoofing as a criteria, we look at the SFAR plots

shown in Fig. 6.21b, Fig. 6.22b, Fig. 6.23b, and Fig. 6.24b. We notice that, with respect to this

criteria, ω has a big impact on the score-level fusion strategies. The vulnerability to spoofing

for all systems fused at score-level is very high when ω ≈ 0, as the spoofing attacks have a

very small contribution in determining the decision threshold. As ω increases, mirroring

the consideration of SFAR in the computation of the decision threshold, the vulnerability to

spoofing of the systems decreases very quickly. For large values of ω, the score-level fusion

methods have very low vulnerability to spoofing. In fact, when comparing SFAR using EPSC,

and considering that ω may be associated with the probability of spoofing attacks, is important

that SFAR is small for large values of ω. Due to the same reason, large vulnerability to spoofing

attacks for small values of ω can be considered as less harmful.
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Table 6.6: AUE values for fused systems: GJet face verification and discriminative client-
specific anti-spoofing method (in %). AUE = 0.117 for the baseline GJet system

SUM LR PLR GMM AND
LBP 0.0531 0.0526 0.0542 0.0513 0.1024
LBP-TOP 0.0215 0.0223 0.022 0.0191 0.1143
MOTION 0.0569 0.0511 0.0498 0.0411 0.1786
HOG 0.0564 0.0518 0.1259 0.0501 0.0957
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Figure 6.21: Comparison of score-level fusion methods using EPSC: LBP features

In general, the GMM fusion rule yields the smallest AUE value for any of the anti-spoofing

features. This can be also observed in Fig. 6.21a, Fig. 6.22a, Fig. 6.23a and Fig. 6.24a, comparing

the EPSC for HTERω. GMM fusion rule yields superior results over the full range of ω. However,

EPSC for SFAR shows that in particular cases other fusion methods may yield fused systems

with better robustness to spoofing attacks. This is the case, for example, for LBP-TOP features,

where better robustness to spoofing can be achieved by using SUM and LR fusion methods

for small values of ω. Similar is the case of MOTION features, where SUM fusion method

performs the best in terms of SFAR when ω< 0.4.

The presented analysis reveals that the conclusions emerging from EPSC depend on different

factors. First, they depend on the the selected criteria to be analyzed, like HTERω or SFAR.

Furthermore, the error rates vary over the range of ω, and different methods may prevail for

different values of ω. Thanks to this property, EPSC enables one to select the method which

performs the best for the preferred value of ω.

We continue the analysis by comparing the best performing score-level fusion method in

terms of AUE, GMM, with the decision-level fusion method based on logical AND. Due to
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Figure 6.22: Comparison of score-level fusion methods using EPSC: LBP-TOP features
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Figure 6.23: Comparison of score-level fusion methods using EPSC: MOTION features

space constraints, we adhere just to LBP-TOP anti-spoofing features. The EPSC comparing the

fused systems is shown in Fig. 6.25.

Fig. 6.25a showing the EPSC for HTERω confirms the conclusion derived from the comparison

of AUE values in Table 6.6: AND fusion rule performs on similar scale as the baseline system.

However, Fig. 6.25b reveals that the system fused with AND fusion rule exhibits impressively

low vulnerability to spoofing, compared to both the baseline system, as well as the system fused
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Figure 6.24: Comparison of score-level fusion methods using EPSC: HOG features
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Figure 6.25: Comparison of score-level and decision-level fusion methods using EPSC: LBP-
TOP features

with GMM fusion method. The reason becomes evident if we analyze the score distribution

plots of the face verification and anti-spoofing systems, given in Fig. 6.26a and Fig. 6.26b,

respectively. The figures show what was clarified in Section 4.2 and Table 4.1: the verification

system is trained to reject zero-effort impostors, while the anti-spoofing system is trained to

reject spoofing attacks. Hence the large overlap of genuine users and spoofing attacks for the

verification system in Fig. 6.26a, and of the zero-effort impostors and spoofing attacks for the
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anti-spoofing system in Fig. 6.26b. As ω increases, the increased importance of the spoofing

attacks for the face verification system causes a threshold that results in increased FRR. At

the same time, the increase of ω does not affect the FRR for the anti-spoofing system, but

contributes to low SFAR. In total, after fusion with logical AND, the FRR, and hence HTERω

remains similar to the one for the baseline face verification system, while SFAR becomes low.
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Figure 6.26: Score distributions of face verification and anti-spoofing systems

Fusion with Client-Independent and Client-Specific Anti-spoofing Systems

In Section 6.2, we showed that the client-specific anti-spoofing methods undoubtedly out-

perform the client-independent ones in most of the cases. In the following experiment, we

compare client-independent and client-specific systems in a context of a face verification

system they are fused with. The comparison is done on case studies with the following

specifications:

• GJet for face verification;

• LBP, LBP-TOP, MOTION and HOG anti-spoofing features;

• discriminative anti-spoofing systems;

• best performing fusion method in terms of AUE (LR for client-independent systems

based on HOG, GMM for all the rest).

The best performing fusion methods for the systems based on client-independent counter-

measure were found in a separate experiment, the detailed results of which are not reported.
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Figure 6.27: Comparison of systems fused with client-independent and client-specific methods
using EPSC: LBP features
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Figure 6.28: Comparison of systems fused with client-independent and client-specific methods
using EPSC: LBP-TOP features

Fig. 6.27, Fig. 6.28, Fig. 6.29 and Fig. 6.30 show the EPSC plots for the four anti-spoofing

features. The EPSC for HTERω shown in Fig. 6.27a, Fig. 6.28a, Fig. 6.29a and Fig. 6.30a support

the superiority of the client-specific anti-spoofing methods. This time, it is confirmed for a

wide range of decision thresholds which depend on the parameter ω.
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Figure 6.29: Comparison of systems fused with client-independent and client-specific methods
using EPSC: MOTION features
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Figure 6.30: Comparison of systems fused with client-independent and client-specific methods
using EPSC: HOG features

The advantage of the systems fused with client-specific counter-measure can be explained

by the scatter plots of the face verification and anti-spoofing scores, shown in Fig. 6.31. The

figure compares the scatter plots when using client-independent and client-specific counter-

measure based on LBP-TOP.
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(a) client-independent anti-spoofing system (b) client-specific anti-spoofing system

Figure 6.31: Scatter plots of face verification and anti-spoofing system scores

We draw the attention to zero-effort impostor scores on Fig. 6.31b, which visually appear to

be displaced lower with respect to the zero-effort impostor scores on Fig. 6.31a. Although

particularly trained to assign low scores to spoofing attacks, the client-specific anti-spoofing

system assigns low scores also to the zero-effort impostors. Having a wrong identity claim

at input, the client-specific system compares the zero-effort impostor samples to the anti-

spoofing model of another client, which results in a low anti-spoofing score. In this sense, the

anti-spoofing system partially performs a verification task as well, which appears to be highly

beneficial to the overall performance of the fused system.

With respect to the vulnerability to spoofing shown in Fig. 6.27b, Fig. 6.28b, Fig. 6.29b and

Fig. 6.30b the systems fused with client-independent counter-measure perform better than

the client-specific ones for LBP and HOG features. This applies also to LBP-TOP and MOTION

features, but only for ω < 0.1. The client-specific approaches regain their advantage when

more importance is given to SFAR. We emphasize that better robustness to spoofing is more

important for large values of ω.

Comparison of Fused and Baseline Systems

We finalize the experiments by comparing the performance of the baseline face verification

systems before and after they are fused with a spoofing counter-measure. We consider case

studies with the following configuration:

• UBMGMM, LGBPHS, GJet and ISV for face verification;

• LBP-TOP anti-spoofing features;
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• client-specific discriminative system for anti-spoofing;

• GMM for fusion.

According to the experiments previously presented in this section, GMM performs the best

as a fusion strategy for GJet face verification and LBP-TOP client-specific discriminative anti-

spoofing system. In a similar analysis, the results of which are omitted, we found GMM to

be the best performing fusion strategy also for UBMGMM, LGBPHS and ISV face verification

systems. This is the reason why it is the fusion strategy of choice for this experiment. The AUE

values of the baseline and fused methods are given in Table 6.7.

Table 6.7: AUE values for face verification systems before and after fusion with anti-spoofing
system

system AUE of baseline AUE of GMM fused system
UBMGMM 0.1615 0.0196

LGBPHS 0.1622 0.0328
GJet 0.117 0.0191
ISV 0.1581 0.0183
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Figure 6.32: Comparison of baseline (dashed line) and fused (full line) systems

Fig. 6.32 presents the EPSC plots comparing the fused and the baseline systems. The plots

convey a similar message as the AUE values: fusion brings a considerable improvement over

the baseline systems. As shown in Fig. 6.32a, the baseline and the fused systems behave

similarly for small values of ω. It appears that, in some cases, the baseline system even

performs better in terms of HTERω when ω≈ 0. As the prior of spoofing attacks is small at this

point, fusion with spoofing counter-measure only undesirably increases HTERω. However,

with the increase of ω, the baseline systems note a drastic rise of HTERω. Contrary to the
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expectations and as can be concluded from the descending curves in Fig. 6.32b, this is not due

to increased vulnerability to spoofing. Rather, it is a result of FRR which increases with ω due

to the highly overlapping score distributions for genuine users and spoofing attacks for the

baselines, as shown in Fig. 6.18.

Being secured with anti-spoofing methods, the rise of HTERω for the fused systems is mild

across the full range of ω. This can be explained by their score distribution plots shown in

Fig. 6.33. Compared to the plots for the baseline systems given in Fig. 6.18, the fused systems

have a spoofing attack score distribution which is shifted towards the zero-effort impostor

score distribution, which is a desirable property of trustworthy verification system. Fusion

is thus bringing systems which are otherwise categorized as vulnerable or susceptible to

spoofing attacks, towards the category of systems robust to spoofing attacks.
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Figure 6.33: Score distribution plots for fused systems

As shown in Fig. 6.32b, the vulnerability to spoofing goes up to unacceptable levels of ≈ 90%

for baseline systems. In comparison, the vulnerability to spoofing is up to 10 times lower, even
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when ω is small and there is little impact of the spoofing attacks on the decision threshold.

More importantly, with the increase of ω, the vulnerability to spoofing attacks drops even

further to below 5% for all the systems. As was emphasized several times throughout this

thesis, lower SFAR is particularly important for high values of ω.

Finally, Fig. 6.34 gives a closer look at the fused systems only. According to the AUE values given

in Table 6.7, the system based on ISV performs the best. However, Fig. 6.34a shows that the

systems based on ISV and GJet face verification are interchangeably better for different values

of ω. Similarly to other example before, this example illustrates how EPSC enables to select

the best system based on the expected prior or cost of spoofing attacks for a given application.

In this case, the system based on ISV will be the recommended choice for applications where

ω< 0.8, and GJet otherwise. As shown in Fig. 6.34b, the system based on GJet also exhibits

higher robustness to spoofing than ISV for ω> 0.1
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Figure 6.34: Comparison of fused systems

6.3.3 Summary

The presented evaluations show the vulnerability of several state-of-the-art face verification

systems to spoofing attacks. More importantly, they demonstrate how these vulnerabilities

can be diminished by fusing face verification and anti-spoofing system at output-level. The

performance of the fused systems depends on several factors, like the face verification and

anti-spoofing systems which are tested, as well as the fusion mechanism.

Integral and fair comparison of biometric verification systems under spoofing attacks can be

achieved using EPS framework. Using this framework, we show the benefits of considering

different levels of relative importance of the spoofing attacks, coded into the parameter ω.

Two systems may be interchangeably better in terms of performance for two different ranges
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of the values of ω. This is the case, for example, for the fused systems based on ISV and GJet.

The EPS framework enables comparison of systems based on different criteria, like HTERω or

SFAR.

Using EPSC, we can verify that the increased robustness to spoofing attacks obtained by fusion

does not compromise the system’s verification performance. Indeed, for the majority of fused

systems, the overall performance of the system represented by HTERω is significantly better

than that of the baselines. For some systems, exceptions happen for very small values of ω,

signifying very low importance of spoofing attacks. In such cases, anti-spoofing systems are

not necessary and unprotected baseline verification systems should be used instead.

6.4 Discussion

The integration concepts for biometric verification and anti-spoofing systems at input and

output-level were illustrated using case studies for the face mode. They involve state-of-the-

art face verification systems and anti-spoofing features. To perform the evaluation, we used

widely accepted evaluation methodologies, as well as the novel EPS framework developed

specifically for integrated evaluation of verification systems under spoofing attacks.

We would like to emphasize that performing experiments for all the possible case studies

that could be built upon the considered face verification, anti-spoofing and fusion methods

is not an easily feasible task. Therefore, in this chapter we presented the results only of a

subset of the case studies. The presented case studies were selected so that they effectively

demonstrate the advantages of input-level integration and the importance of output-level

integration. Furthermore, they are designed to appropriately illustrate the convenience of

use of EPS framework for evaluation of biometric verification systems under spoofing attacks.

More extensive analysis covering a broader set of case studies can be done using the freely

available software package bob.thesis.ichingo2015.

One of the objectives of the experiments presented in this chapter is to demonstrate the

necessity for integrated evaluation of biometric verification and anti-spoofing systems. The

results point out that the performance of the fused system depends on all the three involved

methods: the biometric verification, anti-spoofing and fusion. It is difficult to anticipate the

performance of an integrated system by evaluating them independently. For example, while

one face-verification system may perform better than the other when operating independently,

the situation might change once they are fused with an anti-spoofing system.

Some of the experiments presented in this chapter are focused on comparing the EPS frame-

work with other evaluation methodologies. They reveal that using other evaluation method-

ologies may lead to suboptimal decision thresholds and biased conclusions. Evaluation per-

formed with the EPS framework enables to consider different aspects related to the integrated

operation of biometric verification and anti-spoofing systems, like its overall performance or

vulnerability to spoofing attacks. More importantly, by accounting for the probability or the
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cost of different inputs, it enables putting the system into the context where it is going to be

deployed and take versatile decisions about the best method to use.
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7 Conclusions

At the present degree of maturity, many verification systems are highly vulnerable to spoofing

attacks. Effective counter-measures are thus of essential importance for the development of

trustworthy biometric verification systems. The topic has been gaining increasing popularity,

resulting in a plethora of anti-spoofing methods appointed for different biometric modes and

targeting different types of spoofing attacks.

The objective of this thesis is to address the integration of biometric verification and anti-

spoofing systems. The first step in the process is to recognize and highlight the necessity

of cooperation between the two types of systems as a fundamental issue to the process of

deploying them in realistic conditions. We identify three points of integration situated along

the biometric verification pipeline. With respect to these points, the integration can be

performed at input-level, output-level and at evaluation.

At input-level, the integration is concerned with sharing the information that the biometric

verification and anti-spoofing systems use. In particular, we refer to the enrollment samples

which biometric verification systems use to create client models, as well as the identity claim

which they use at query time. We investigate how making this information accessible by the

anti-spoofing system affects its performance.

Output-level integration is important for consolidating the results of the biometric verification

and anti-spoofing systems into a single decision. Analyzing several multiple expert fusion

approaches, we study what is the impact of the fusion methods on the performance of the

final system.

At evaluation level, we investigate whether independent evaluation of biometric verification

and anti-spoofing systems is sufficient and we argue that integrated evaluation is of major

importance for selecting the most adequate system for certain application. Highlighting the

limitations of current evaluation methodologies, we propose a novel framework for evaluating

biometric verification systems under spoofing attacks, referred to as EPS.

The achievements of this thesis and the conclusions drawn from the experimental results are
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summarized in Section 7.1. The limitations of the proposed methods and the prospects for

future work are discussed in Section 7.3.

7.1 Experimental Findings and Achievements

Experimental evaluation of the integration concepts covered in this thesis was performed at

input-level and output-level, using the newly proposed framework for integrated evaluation.

All the experiments were performed on case studies involving verification and anti-spoofing

methods for the face mode, as one of the most vulnerable biometric modes. In this setup, the

experimental results and the accompanying analysis confirm that integration of biometric

verification and anti-spoofing systems is beneficial at all three levels and is of great importance

for creating trustworthy biometric systems.

Input-level integration. By unifying the information that biometric verification and anti-

spoofing systems use at input, we are able to create client-specific anti-spoofing systems

which take the decision based not only on the input sample, but also on the client identity. We

built two types of client-specific systems. The first one is based on a generative paradigm and

uses GMM to model real accesses for each client and spoofing attacks for a set of cohort clients.

The second one follows a discriminative principle and uses SVM to draw decision boundaries

between real accesses of each client and spoofing attacks from a set of cohort clients.

The evaluation of client-specific systems was performed with the objective to assess whether

input-level integration can bring improved performance on particular anti-spoofing features.

Comparison of anti-spoofing features, as well as attempts to outperform state-of-the-art

results which are obtained by combining different anti-spoofing features, is out of the scope

of this thesis.

The experimental results on Replay-Attack database lead to the following conclusions:

(a) Client-specific variations in the scores of client-independent anti-spoofing systems exist

for all tested anti-spoofing features. Client-specific anti-spoofing systems exhibit less

score variations between different clients.

(b) The performance of the client-specific anti-spoofing systems depend on several factors.

For the generative systems, most important factors are the number of Gaussian compo-

nents, as well as the selection of the cohort set. For the discriminative ones based on SVM,

the most important factor is the choice of kernel.

(c) Depending on the features and the database protocol, client-specific anti-spoofing sys-

tems can relatively improve the performance by more than 50%. In general, features based

on visual appearance seem to be better suited for client-specific systems than the ones

based on motion.
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(d) Client-specific systems exhibit significantly better generalization in detecting types of

attacks which have not been seen during training time. Even in this case, the relative

improvement can be more than 50% for the visual appearance features. While client-

independent systems have unsatisfactory results on unseen types of attacks, the client-

specific ones can bring the HTER to less than 10% in some cases.

These conclusions are taken based on the four state-of-the-art features considered in this

thesis. More features need to be analyzed to be able to generalize the claims to whole categories

of anti-spoofing features.

Output-level integration. Biometric verification and anti-spoofing systems can be consid-

ered as experts in different domains: the former for recognizing identities, and the latter for

detecting counterfeit input samples. A verification system robust to spoofing attacks can be

realized by output-level integration of the two systems and taking a multiple expert fusion

approach.

We performed experiments considering several fusion methods working on score-level and

decision-level. They lead to the following conclusions:

(a) Fusion generally helps to accomplish systems with greater robustness to spoofing without

compromising the verification performance, regardless of the fusion strategy. However,

in our experiments, fusion based on GMM appears to be superior over the other fusion

strategies.

(b) The systems fused with client-specific counter-measure perform significantly better than

the ones fused with client-independent one. Certainly, the most important reason is better

spoofing detection capabilities for the client-specific counter-measures. Another reason

is the fact that a client-specific counter-measure partially behaves as a verification system,

giving low scores not only to spoofing attacks, but to zero-effort impostors as well.

(c) While unsatisfactory for baseline face verification systems, the vulnerability to spoofing

attacks drops to below 5% after fusion with a spoofing counter-measure. At the same time,

the overall performance of the system, which is reported by accounting all the three types

of error rates, is significantly improved as well. The improved results are likely to be a

consequence of the distribution of spoofing attack scores, which after fusion is shifted

towards the distribution of zero-effort impostors.

Once again, these conclusions emerge from the experiments conducted on the case studies

considered in this thesis. Fusion strategies other than GMM may perform better on case

studies with different verification and anti-spoofing features.
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Integrated evaluation. Independent evaluation of anti-spoofing systems is important to

realize their power to discriminate between genuine accesses and spoofing attacks. However,

it gives no insight on the reliability of a joint decision with a verification systems in the general

goal to accept genuine users and reject both zero-effort impostors and spoofing attacks.

The objective of integrated evaluation is not only to assess the performance of systems under

spoofing attacks, but also to account for all the possible inputs to the system: genuine users,

zero-effort impostors and spoofing attacks. In the evaluation framework proposed in this

thesis, EPS, this is taken in consideration by parameters which can be interpreted as the prior

probabilities of the different inputs or the relative costs of the error rates associated with them.

The EPS framework is extensively used to evaluate the results of the experiments in this thesis.

Based on the experience of their usage in these practical examples, we came to the following

conclusions:

(a) The most important advantage of EPS framework over other evaluation methodologies is

that it computes a decision threshold which is optimized given all the three types of inputs.

In this way, SFAR of the system is not unnecessarily augmented just because spoofing

attacks are not considered.

(b) Using the EPSC, one can report unbiased comparison of systems, as the decision threshold

is computed a priori on a separate data.

(c) The EPS framework allows for comparison of systems based on different criteria and

for different values of the cost parameters. In this way, it enables selection of the best

performing method for a given application.

Reproducible results. The code for the experiments performed in this thesis is available as

free software in the package bob.thesis.ichingo20151 and can be used to reproduce all the

presented results. Furthermore, it can be used to extend the analysis to additional case studies

for the face mode that can be created by combining other verification and anti-spoofing

systems. In addition, a complete API for using the EPS framework is provided in the package

antispoofing.evaluation2. It can be used for evaluation of biometric verification systems

under spoofing attacks regardless of the biometric mode, internal operation of the system and

evaluation database.

7.2 Related Publications

During the course of the work on the individual methods proposed in this thesis, we have

published the following publications:

1 https://pypi.python.org/pypi/bob.thesis.ichingo2015
2 https://pypi.python.org/pypi/antispoofing.evaluation
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7.2. Related Publications

Journals

• I. Chingovska, A. Anjos; On the use of client-specific information for face anti-spoofing;

IEEE Transactions on Information Forensics and Security; Special Issue on Biometric

Anti-spoofing; 10(4):787-796, 2015

• I. Chingovska, A. Anjos, S. Marcel; Biometric evaluation under spoofing attacks; IEEE

Transactions on Information Forensics and Security, 9(12):2264-2276, 2014

Conference proceedings

• I. Chingovska, A. Anjos, S. Marcel; Anti-spoofing in action: joint operation with ver-

ification system; Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, Workshop on Biometrics; Portland, Oregon, 2013

• I. Chingovska, et al.; The 2nd competition on counter measures to 2D facial spoofing

attacks; Proceedings of International Conference on Biometrics (ICB); Madrid, Spain,

2013

• I. Chingovska, A. Anjos, S. Marcel; On the Effectiveness of Local Binary Patterns in

Face Anti-spoofing; Proceedings of the 11th International Conference of the Biometrics

Special Interes Group; Darmstadt, Germany 2012

Book chapters

• I. Chingovska, N. Erdogmus, A, Anjos, S. Marcel. Face Recognition Systems Under

Spoofing Attacks, Face Recognition Across the Electromagnetic Spectrum (to appear)

• I. Chingovska, A. Anjos, S. Marcel; Evaluation Methodologies; Handbook of Biometric

Anti-spoofing; Springer London, pp.185-2014, 2014

• I. Chingovska, A. Anjos, S. Marcel; Anti-spoofing: Evaluation Methodologies; Encyclope-

dia of Biometrics; Springer US, 2014

• I. Chingovska, A. Anjos, S. Marcel; Anti-spoofing: Face Databases; Encyclopedia of

Biometrics; Springer US, 2014

During the course of the work on the individual methods proposed in this thesis, we have

developed the following free software packages:

• antispoofing.lbp3

3 https://pypi.python.org/pypi/antispoofing.lbp
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• antispoofing.utils4

• antispoofing.fusion_faceverif5

• antispoofing.clientspec6

• antispoofing.evaluation7

• antispoofing.competition_icb20138

7.3 Perspectives for Future Work

The integration of biometric verification and anti-spoofing systems is a subject which has

received little attention from the community. The work presented in this thesis is a step

forward towards filling the gap in this field. However, there are several possibilities of how this

work can be extended and a numerous directions that can be explored in the future.

Overcoming the limitations of the integration concepts presented in this thesis is one of these

directions. One limitation is the fact that client-specific anti-spoofing methods resulting

from input-level integration can be applied only at query time, but not at enrollment time. A

limitation of the output-level integration methods is that they are classical multiple expert

fusion methods and are not optimized for the task of fusion of two systems with discordant

criteria about the positive and the negative class. Furthermore, they assume no mutual

dependence of the verification and anti-spoofing scores, or dependence of the scores on the

identity of the client. If such a dependence is found, it may be helpful to better model the

score input space and produce better fused scores. The work on output-level integration can

also be extended to include client-specific fusion strategies.

The methods proposed in this thesis assume that the biometric verification and anti-spoofing

systems have been developed independently, and their integration is performed at a later

stage. Digressing from this approach, the two systems could be developed in a joint manner,

either at the feature extraction or the modeling step. These are concepts for integration at the

intermediate-level, which is a challenging, but important direction for future work.

An issue that needs to be urgently addressed is the insufficient number of spoofing databases

that provide separate samples for enrollment of clients. The lack of such databases not

only hinders the development of methods for integration of biometric verification and anti-

spoofing systems, but also prevents training a biometric verification system and assessing its

vulnerability to spoofing. Unfortunately, Replay-Attack is the sole example of a database with

these properties for the face mode. It is essential that databases developed in the future provide

4 https://pypi.python.org/pypi/antispoofing.utils
5 https://pypi.python.org/pypi/antispoofing.fusion_faceverif
6 https://pypi.python.org/pypi/antispoofing.clientspec
7 https://pypi.python.org/pypi/antispoofing.evaluation
8 https://pypi.python.org/pypi/antispoofing.competition_icb2013
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as many clients and as many types of spoofing attacks as possible. Having such databases will

enable, for example, to more reliably measure the impact of the cohort set selection for the

client-specific anti-spoofing methods, as well as their generalization capabilities on spoofing

attacks not seen during training.

The proposed integration concepts were applied and evaluated only on a subset of case studies

for the face mode, which involve a limited set of verification systems and anti-spoofing features.

While the presented analysis serves well as a proof of concept, it is important to extend it to

other systems and assess the applicability of the methods in a wider context. Such a study,

for example, can reveal to what extent we can generalize the assumption of client-specific

information within different categories of anti-spoofing features. As part of the future work,

such analysis should include case studies in other biometric modes.
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A Gaussian Mixture Model (GMM)

Let N (x|μ,Σ) be a multivariate Gaussian distribution over the data with mean μ and covari-

ance matrix Σ. If x is d-dimensional variable, then Σ has a dimensionality of dxd and the

Gaussian distribution has the form as in Eq. A.1.

N (x|μ,Σ) = 1

(2π)n/2

1

|Σ|1/2
exp

{
−1

2
(x−μ)TΣ−1(x−μ)

}
(A.1)

A GMM is a weighted sum of M multivariate Gaussian distributions, called components, each

parameterized with Θ = {πm ,μm ,Σm},m = 1..M , where πm is its weight. The weights of the

components are parameters of a discrete distribution p(π1, ...,πm) and thus must comply to

the constraints: 0 ≤ πm ≤ 1 and
∑M

m=1πm = 1. Mathematically, a GMM is formalized as in

Eq. A.2.

p(x) =
M∑

m=1
πmN (x|μm ,Σm) (A.2)

GMM models a generative process in which samples can be generated using ancestral sam-

pling [Bishop, 2006]. In this process, first a single component from the GMM is randomly

selected from the distribution p(π1, ...,πm). Then, the sample is generated from the Gaussian

distribution associated with that component. From a probabilistic perspective, the choice

of the component is represented by an M-dimensional random variable z which satisfies

∀m = 1..M , zm ∈ {0,1} and
∑M

m=1 zm = 1. In other words, z is a vector populated with zeros,

with a single element with a value 1 at the index representing the chosen component. The

value of z is never explicitly known. Therefore, it is an unobserved, latent variable, as opposed

to the sample, which is an observed variable. The distribution over z is interpreted through

the component weight parameters, so that ∀m = 1..M , p(zm = 1) =πm [Bishop, 2006].
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An important issue for GMM is the choice of the covariance matrix Σ. Most often, a separate

covariance matrix is trained for each GMM component [Reynolds and Rose, 1995]. With re-

gards to the properties of the covariance matrix, the most general case supports full covariance

matrices. However, this option is computationally expensive, as the GMM training requires

repeated inversions of the matrix. An alternative is to use GMM with diagonal covariance

matrices, which, subject to the number of components M [Reynolds et al., 2000], can model

the distribution equally well as a GMM with full covariance matrices.

A.1 GMM Training

The training of a GMM model is a Maximum Likelihood (ML) problem and consists of find-

ing the parameters Θ = {πm ,μm ,Σm},m = 1..M that maximize the likelihood of all the data

X = {xi |i = 1..N }, where N is the number of samples. Due to the presence of latent variables,

the ML problem is typically solved using the Expectation-Maximization (EM) algorithm [Demp-

ster et al., 1977]. EM is an iterative algorithm which, starting from an initial choice for the

parameters Θ, alternates between two steps, expectation (E) and maximization (M). During

the process, it adapts Θ to monotonically increase the likelihood of the given data. Therefore,

for each iteration t of the algorithm, it is valid that p(x|Θt ) < p(x|Θt+1).

At initialization of Θ, the means of the GMM μm ,m = 1..M are usually learned in an unsuper-

vised manner, for example using k-means algorithm [Macqueen, 1967; Lloyd, 1982]. Given the

current value of Θ, at each iteration t the two steps proceed as follows:

1. E step: The posterior probability distribution p(z|X,Θ) of latent variables is estimated

using Bayes theorem, given the data X and the current value of Θ.

2. M step: Θ is updated in order to maximize the expectation of the data log-likelihood

computed under the posterior probability distribution found in the E step, as in Eq. A.3.

Θupdated ← arg max
Θ

∑
z

p(z|X ,Θ) log p(X ,z|Θ) (A.3)

The process continues to iterate over E and M steps until convergence criteria is met. N.

and Hinton [1993] give a proof that EM algorithm indeed converges to Θ that maximizes the

likelihood of the data.

A.2 Maximum A-Posteriori Adaptation (MAP)

A significant amount of data is required to correctly estimate GMM parameters using ML

parameter estimators. Unfortunately, the enrollment data which is available for creating

client-specific anti-spoofing models is rarely more than a few samples and is not enough to

train a GMM model for each client separately.
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A similar problem in biometric verification is solved by using a form of Bayesian adaptation,

called Maximum A-Posteriori (MAP) [Gauvain and Lee, 1994]. In MAP, first a prior distribution

over the parameters that need to be estimated is set. Then, the parameters are updated so that

their posterior given their prior and the data is maximized.

First, for each client-specific GMM, a prior distribution g (Θ) over its parameters is set. A Uni-

versal Background Model (UBM), which is a GMM trained via ML on a large set of background

identities, is created as well. The parameters of this GMM are denoted as ΘUBM. For each

client I with data XI, the likelihood p(XI|ΘUBM) is computed. Then, the parameters for each

client-specific GMM are updated as given in Eq. A.4.

ΘMAP ← arg max
Θ

p(Xi |ΘUBM)g (Θ) (A.4)

Depending on the choice of the prior distribution, MAP adaptation for GMM can have a

closed form solution and includes a fixed parameter r called a relevance factor. The value

of the relevance factor is important because it controls the impact of the client data in the

adaptation of the UBM parameters to the client-specific GMM parameters. During MAP, the

GMM components which are close to the client-specific data are adapted more then the

components which lie further in the feature space.
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B Support Vector Machines (SVM)

A Support Vector Machine (SVM) [Vapnik, 1998; Boser et al., 1992; Cristianini and Shawe-

Taylor, 2000; Fornoni, 2014] is a classifier which discriminatively learns a hyperplane that

separates the set X = {(xi , yi )|i = 1..S} of training samples in Rd×{−1,1}, while minimizing its

generalization error on unseen samples. In its most simple form, it relies on a real valued

linear function f : Rd →R. The function f (xi ) is parameterized by a vector w ∈Rd and a scalar

b ∈R, called a bias.

f (xi ) = w ·xi +b (B.1)

The class label yi can have two values: {−1,1}, corresponding to the positive and the negative

class. Geometrically, w ·xi +b = 0 is the hyperplane which separates the two classes, where w

is its normal and b its distance from the origin. All the points whose projection on w is greater

or equal to −b will be classified positively, while those whose projection on w is smaller than

−b will be classified negatively. In this sense, the value −b can be interpreted as the threshold

of the classifier. This decision rule is formalized as in Eq. B.2.

ŷi =
⎧⎨
⎩1, if w ·xi ≥−b

−1, otherwise
(B.2)

B.1 Maximal Margin Classifier

The geometric margin of a sample x is defined as the Eucledian distance between the sample

and the hyperplane [Cristianini and Shawe-Taylor, 2000]. Assuming that X is linearly separable,

the minimal geometric margin given in Eq. B.3 refers to the shortest among the Eucledian
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distances between all the samples in one class and the hyperplane.

g ( f )) = min
xi∈X

1

‖w‖ yi (w ·xi +b) (B.3)

The goal of a SVM is to maximize the minimal geometric margin by finding optimal values of w

and b. This objective function is defined in Eq. B.4 and it aims at maximizing the generalization

capabilities of the classifier. It will ensure positioning of the hyperplane so that it optimally

separates the two classes.

w,b ← arg max
w,b

min
xi∈X

1

‖w‖ yi (w ·xi +b) (B.4)

The objective function in Eq. B.4, is non-linear and non-convex, and thus difficult to optimize.

It is therefore solved by transforming it to an equivalent formulation, where ‖w‖2 is minimized

subject to a constraint, as shown in Eq. B.5. The classifier obtained in this way is called hard-

margin classifier, as it requires linear separability of the training data and imposes them to

have a margin of 1.

w,b ← arg min
w,b

‖w‖2

subject to yi (w ·xi +b) ≥ 1
(B.5)

The objective function given above is usually optimized using convex optimization theory

and Lagrangian multipliers [Cristianini and Shawe-Taylor, 2000]. In this context, a Lagrangian

L(α) of the SVM objective function is derived subject to Karush-Kuhn-Tucker (KKT) optimality

conditions, where α is the vector of Lagrangian multipliers. The training of the SVM then

sums up to minimizing L(α) which can be proved to have the form of Eq. B.6. The relationship

between α and w is given in Eq. B.7.

L(α) =∑
u
αu − 1

2

∑
u,v

αuαv yu yv xu ·xv

subject to
∑
u
αu yu = 0

αu ≥ 0,∀u

(B.6)
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w =∑
u
αu yuxu (B.7)

The representation of the optimization problem via L(α) is called dual form and depends only

on the Lagrangian multipliers which act as weight coefficients for the training samples. An

additional useful property of the dual form, as will be seen later, is that the training samples

never appear isolated, but always within an inner product with other training samples.

B.2 Support Vectors and Classification

After the optimization procedure, only a small subset of αu will be non-zero. In particular,

only the samples for which yu(w ·xu +b) = 1 will have αu �= 0. These are the samples which

lie exactly on the margin of the classifier and are called support vectors. An SVM classifier

is completely defined by its support vectors and their Lagrangian coefficients. If Eq. B.7 is

substituted in Eq. B.1, a test sample xi can be classified using the score obtained as in Eq. B.8.

f (x) =∑
u
αu yux ·xu +b (B.8)

B.3 Linearly Non-separable Data

When the data from the two classes is not linearly separable, a feasible solution to the opti-

mization problem in Eq. B.6 can not be found. Therefore, a slack variable ξu is incorporated

into the optimization problem. The slack variable allows for a violation of the constraint

yu(w ·xu +b) ≥ 1 by a little amount and permits that some training samples are on the wrong

side of the hyperplane. The constraint in Eq. B.5 is then reformulated to yu(w ·xu +b) ≥ 1−ξu .

At the same time, the objective function incorporates a cost parameter C to regularize the

values of ξu . Large C increases the penalty on the misclassified samples, forcing a hyperplane

with as few misclassifications as possible. Small C restrains the impact of the misclassified

samples on the hyperplane. The classifier obtained in this way is called soft-margin classifier.

The training of the soft-margin classifier sums up to optimizing L(α) as in Eq. B.6 with the

additional constrain αu ≤C .

B.4 Kernel Functions

Often, a linear boundary may not be enough to separate the two classes in the original feature

space X . A solution is to project the data into a high-dimensional feature space Φ where
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they may be linearly separable and then train a SVM. Considering the dual form of L(α), this

process is made easy by kernel functions which have the form given in Eq. B.9 and where

φ : X →Φ.

K (xi ,x j ) =φ(xi ) ·φ(x j ) (B.9)

Kernel functions define an inner product of the samples in the high-dimensional feature space

Φ. By using kernel functions, the SVM can be trained in the high-dimensional feature space

without explicitly projecting the samples. This offers several advantages, like no impact of the

dimensionality of Φ on the SVM training complexity and avoidance of the computational costs

associated with projecting the features [Cristianini and Shawe-Taylor, 2000]. The processes

of projection and SVM training can be merged together by substituting the inner product in

Eq. B.6 by the kernel function. The inner product in the classification step can be substituted by

a kernel function as well, as in Eq. B.10. It is important to note that in many implementations,

a prerequisite for training a SVM using kernels is the computation of the kernel (Gram) matrix

Ku,v ≡ K (xu ,xv ).

f (x) =∑
u
αu yuK (xi ,xu)+b (B.10)

Back in the original feature space and depending on the kernel, the boundary between the

two classes may be non-linear. In these cases, the parameter C is a trade-off between mis-

classification of the training samples and smoothness of the boundary. Small values of C will

contribute to a smooth boundary.

The most common types of kernels include:

• Linear: K (xu ,xv ) = xu ·xv

• Radial Basis Function (RBF): K (xu ,xv ) = exp(−γ‖xu −xv‖2)

• Polynomial: K (xu ,xv ) = (γxu ·xv + r )d

• Histogram Intersection: K (xu ,xv ) =∑
i min{xu,i , xv,i }

• χ2: K (xu ,xv ) = exp
(
−γ∑

i
(xu,i−xv,i )2

xu,i+xv,i

)

The parameter γ in the RBF, polynomial and χ2 kernel can be interpreted as the inverse of the

radius of influence of the support vectors. Small values of γ mean large radius of influence,

which leads to smoother boundaries. On the other hand, large values of γ may mean a

boundary which is tightly adapted to the training samples.
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B.4. Kernel Functions

The most important parameter for the polynomial kernel is its degree d . The larger the degree,

the more flexible the decision boundary. The parameter r can be understood as a trade-off

between the influence of higher-order versus lower-order terms in the polynomial.

Histogram Intersection kernel [Barla et al., 2003] and χ2 kernel [Puzicha et al., 1997] have been

specifically designed for classification when the feature vectors represent histograms. They are

called additive kernels and are based on the corresponding metrics for similarities between

histograms [Vedaldi and Zisserman, 2012]. As they assume that the features are histograms,

they require that all the feature elements are non-negative and l1-normalized.
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