Fully printed 3 microns thick dielectric elastomer actuator

In this work we present a new fabrication technique to print thin dielectric elastomer actuators (DEAs), reducing the driving voltage below 300 V while keeping good actuation performance. With operation voltages in the kV-range, standard DEAs are limited in terms of potential applications. Using thinner membranes is one of the few existing methods to achieve lower operation voltages. Typical DEAs have membranes in the 20-100 um range, values below which membrane fabrication becomes challenging and the membrane quality and uniformity degrade. Using pad printing we produced thin silicone elastomer membranes, on which we pad-printed compliant electrodes. We then fabricated DEAs by assembling two membranes back to back. We obtain an actuation strain of 7.5% at only 245 V on a 3 um thick DEA. In order to investigate the stiffening impact of the electrodes we developed a simple DEA model that includes their mechanical properties. We also developed a strain-mapping algorithm based on optical correlation. The simulation results and the strain-mapping measurements confirm that the stiffening impact of the electrodes increases for thinner membranes. Electrodes are an important element that cannot be neglected in the design and optimization of ultra-thin DEAs.

Published in:
Proceedings of SPIE - The International Society for Optical Engineering, 9798, 97980L
Presented at:
Electroactive Polymer Actuators and Devices, Las Vegas, Nevada, USA, March 21-24, 2016
Bellingham, Spie-Int Soc Optical Engineering

 Record created 2016-04-22, last modified 2018-03-17

Publisher's version:
Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)