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INTRODUCTION 
A vast majority of the available biomechanical models 
of the human shoulder has been developed based on 
inverse dynamics, e.g. [1,2]. This imposes a number of 
limitations on their application. For instance, the 
glenohumeral joint is approximated as an ideal joint in 
an inverse-dynamics simulation. Therefore, the models 
fall short to predict the joint translations [3]. 
The different approaches developed to overcome the 
recurrent limitations of the models can be broadly 
divided in two categories. The first category tries to 
tailor an available inverse-dynamics model to a specific 
application, e.g. [3,4]. The second category aims to 
develop a framework allowing forward-dynamics 
simulation, e.g. [5,6]. Indeed, few studies have 
developed forward-dynamics simulations of the human 
body. In [5], dynamic optimization was used to develop 
a forward-dynamics model of the lower extremity. 
Dynamic optimization typically demands many times 
integration of the equations of motion. Given the 
computational expense incurred by the integrations, the 
method is impractical for common applications. 
In this study, a framework for forward-dynamics 
simulation of the human shoulder is developed. In 
contrast with the dynamic optimization, the developed 
framework requires a single integration of the system 
equations. It is based on a joint application of a 
biomechanical model of the shoulder and a controller. 
The controller defines the muscle forces allowing the 
model to be simulated in forward dynamics. Different 
control scenarios are considered to investigate the model 
convergence in terms of accuracy and computational 
effort. 
METHODS 
Based on a given desired trajectory 𝒒!, the controllers 
generate the associated muscle forces (𝑭 + 𝑭) to steer the 
biomechanical model, as illustrated in Fig.1. Each of the 
blocks shown in Fig.1 will be now elaborated. 

 

Figure 1: block diagram of the forward-dynamics framework. 
Biomechanical shoulder model 
A model of the glenohumeral joint with three rotational 
degrees of freedom is derived. The scapula motion is 
considered by the scapulohumeral rhythm. All the 11 
major muscles spanning the joint are included in the 
model as massless taut ropes. The paths taken by the 
muscles during the joint motion are defined using the 
geometrical wrapping algorithm presented in [2]. Using 

Lagrange’s equations, the equations of motion are 
derived: 

(𝑯! −𝑴!
!") 𝒆! = 𝐹! 𝝆!×𝒏!

!!

!!!
𝒆!  Eq.(1) 

where, 𝑯! and 𝑴!
!" are the angular momentum and the 

moment of the gravity force around the humeral head 
center, respectively. 𝒆!  is the partial velocity matrix. 𝐹!, 
𝝆!, and 𝒏! are the magnitude, the lever arm vector, and 
the direction vector associated with the 𝑗th muscle force. 
Feedforward controller 
The inverse system (if it exists) is always a candidate for 
the feedforward controller design [7]. Eq.(1), in compact 
form, can be written as 

𝑫 = 𝒆! 𝑊 𝑭 Eq.(2) 
where 𝑫!×! is the left-hand side of Eq.(1). 𝑊 !×!! and 
𝑭!!×! are the moment arm matrix and the vector of 
muscle force magnitudes, respectively. By denoting 
𝒆! 𝑊  with the quasi moment arm matrix 𝐵 , Eq.(2) 

appears to be a linear algebraic equation. Therefore, if 
the matrix 𝐵  has full row rank, one can define 𝑭 
associated with any given 𝒒! by solving Eq.(2). 
However, given the indeterminacy of Eq.(2), in order to 
arrive at a nontrivial solution for 𝑭, a static optimization 
routine is defined: 

min.                               𝑭! 𝐸 𝑭    
s. t.                                𝑫 = 𝐵 𝑭

                                              𝑭!"# ≤ 𝑭 ≤ 𝑭!"#
 Eq.(3) 

where 𝐸 !!×!! is a weight matrix and 𝑭!"# and 𝑭!"# are 
respectively the upper and lower bounds on the muscle 
force magnitudes. The cost function is the sum of 
squares of the muscle stresses [1,6]. The optimization 
routine defines 𝑭 such that it minimizes the cost, while 
satisfying the system dynamics (Eq.(2)) and the muscle-
bound constraints. 
Feedback controller 
Having defined the muscle forces 𝑭 by the feedforward 
controller (Eq.(3)), the biomechanical shoulder model, 
given by Eq.(1), can be solved numerically for 𝒒. Ideally 
the resulted 𝒒 has to follow the predefined 𝒒!. However, 
in practice the resulted 𝒒 starts off following 𝒒! 
reasonably well, but gradually loses accuracy as the time 
passes. More precisely, unless choosing a small enough 
stepsize for the simulation, accumulation of the 
successive errors due to the numerical integration causes 
the model response to drift away. However, the smaller 
the stepsize, the more computational effort is required. 
In order to ensure the model convergence for any 
reasonably large stepsize, a feedback controller is 
designed. 
For the closed-loop system shown in Fig.1, the general 
form of Eq.(1) can be written as:  
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𝑀(𝒒) 𝒒 + 𝑪 𝒒,𝒒 + 𝑮 𝒒 + 𝐵 (𝑭 + 𝑭) = 𝟎 Eq.(4) 
where 𝑀  is the inertia matrix, 𝑪 is the vector of 
centrifugal force, 𝑮 is the vector of gravity generalized 
force, and 𝑭 is the control input from the feedback 
controller. Given the simple nonlinear structure of 
Eq.(4), a feedback linearizing transformation is 
straightforward to derive [7]. Eq.(4) can be solved for 𝒒  
𝒒 = − 𝑀(𝒒) !𝟏 𝑪 𝒒,𝒒 + 𝑮 𝒒 + 𝐵 (𝑭 + 𝑭)  Eq.(5) 
where the right hand side of Eq.(5) can be considered as 
𝑽, the new control input. This results in an equivalent 
linear system: 

𝒒 = 𝑽 Eq.(6) 
We define the tracking error as 𝒒 = 𝒒 − 𝒒!. Letting 

𝑽 = 𝒒! − 2𝜆𝒒 − 𝜆!𝒒                , 𝜆 > 0  Eq.(7) 
results in an exponentially stable closed-loop dynamics. 
Having defined 𝑽, the control input 𝑭 can be achieved by 
substituting 𝒒 from Eq.(6) in Eq.(4). Given the 
indeterminacy of Eq.(4), the same optimization routine 
as of Eq.(3) is performed to define 𝑭. 
RESULTS 
A smooth motion consists of 150° abduction combined 
with 70° flexion and 35° external rotation is simulated. 
The motion is performed in  7.2  [s]. The Runge-Kutta-
Fehlberg method, which combines a fourth and a fifth 
order Runge-Kutta scheme for error control is used to 
solve the differential equations [8].  
The model response with the feedforward-only 
controller is shown in Fig.2 for three different stepsizes 
(0.00001, 0.0001, and  0.01). The response starts off 
following the given motion but it becomes far apart, 
except for 𝑇! = 0.00001. At this resolution the model 
response is almost indistinguishable from the given 
motion. This simulation took 6.5  [hrs] of CPU time on a 
3.4  GHz processor with four cores. 

 

 

 
Figure 2: system response with feedforward-only controller, 

desired trajectory: solid line, system response: dash line.  
The model response with the feedback+feedforward 
controller is shown in Fig.3 for two stepsizes (0.01 
and  0.1). Comparing to 𝑇! = 0.01 with the feedforward-

only controller, the tracking accuracy is phenomenally 
good while it takes roughly the same computational 
effort (135  [s]). The model response for 𝑇! = 0.1 
provides an acceptable tracking performance. However 
in comparison with 𝑇! = 0.0001 of the feedforward-only 
controller, it requires 393 times less computational 
effort. 

 

 
Figure 3: system response with feedforward+feedback 

controller, desired trajectory: solid line, system response: dash 
line. 

DISCUSSION AND CONCLUSIONS 
A framework for forward-dynamics simulation of the 
human shoulder was presented. It consisted of a 
biomechanical model of the shoulder that was simulated 
in forward dynamics based on the muscle forces defined 
by a controller. Two different control scenarios were 
considered. The joint application of the feedforward and 
feedback controller showed excellent tracking 
performance even for a reasonably large simulation 
stepsize (𝑇! = 0.1). However, the feedforward-only 
controller could not exhibit the same order of accuracy 
even with 393 times more computational effort. 
The developed forward-dynamics simulation provided a 
straightforward solution to the recurrent limitations of 
the available inverse-dynamics models. We will further 
develop the study by incorporating a more sophisticated 
shoulder model and accounting for the glenohumeral 
joint translations. 
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