Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Supported TiO2 films deposited at different energies: Implications of the surface compactness on the catalytic kinetics
 
research article

Supported TiO2 films deposited at different energies: Implications of the surface compactness on the catalytic kinetics

Rtimi, Sami  
•
Giannakis, Stefanos  
•
Bensimon, Michaël  
Show more
2016
Applied Catalysis B

Insight is provided in this study for the effect of the TiO2film densification/compactness on polyethy-lene (PE-TiO2) by sputtering TiO2at two very different energy levels. Uniform, adhesive low energy filmswere prepared by direct current magnetron sputtering (DCMS) and compared with films sputtered athigh energy levels by high power impulse magnetron sputtering (HIPIMS). Nano-particulate TiO2filmssputtered by HPIMS presented sizes of ∼10.2 nm compared to films sputtered by DCMS with TiO2sizesof ∼16.5 nm as determined by X-ray diffraction (XRD). The E. coli inactivation kinetics was three timesfaster for the samples sputtered by HIPIMS compared to their DCMS counterparts. This is an unexpectedfinding since the DCMS presenting larger TiO2sized nanoparticles released a higher amount of Ti-ionscompared to the HIPIMS samples as monitored by inductively coupled plasma mass-spectrometry (ICP-MS). The Ti-ions released do not seem to react through an oligodynamic effect but diffuse through theless compact TiO2sputtered by DCMS. The faster bacterial inactivation kinetics observed by the HIPIMSsputtered samples can be understood in terms of the complete of Ti4+/Ti3+redox conversion during bacte-rial inactivation detected by X-ray photo-electron spectroscopy (XPS) compared to the smaller Ti4+/Ti3+effect observed in the DCMS-samples. A higher optical density was detected for the HIPIMS sputteredsamples by diffuse reflectance spectroscopy (DRS). Evidence is presented for the shift in surface potentialand local pH during bacterial inactivation under aerobic and anaerobic conditions. A reaction mechanismis suggested based on the findings described in this study. The sputtered films present the potential tohinder biofilm formation on flexible thin polymers/textiles widely used in hospitals and health facilities.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Supported TiO2 films deposited at different energies- Implications.pdf

Access type

openaccess

Size

2.76 MB

Format

Adobe PDF

Checksum (MD5)

8e53a4e8a72b082e5c69069ac355073e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés