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Abstract

Atmospheric boundary-layer (ABL) flows over complex terrain have been the focus of active

research, given their impact on weather and climate variability. Surface complexity is un-

derstood in a broad sense and includes variation in roughness properties, inclination of the

underlying surface, presence of heterogeneous forcing mechanisms (e.g., buoyancy, humidity),

to name but a few. Most assumptions of classical boundary-layer similarity theory do not

hold under such conditions, complicating matters from both a measurement and model-

ing perspective. Despite the increasing body of literature on the subject, the dynamics and

thermodynamics of most problems remain poorly understood, making them a challenging

research area. Here, a combination of analytical and numerical approaches are used to address

two relevant problems where the applicability of Monin-Obukhov similarity theory (MOST)

is questionable: the problem of turbulent slope flows, and ABL flows over multi-scale rough

surfaces.

The first part of the thesis focuses on slope flows: the building blocks of local weather in moun-

tainous regions, and key players in the surface-atmosphere exchange of mass, momentum

and energy. To understand the system conceptually, a closed-form analytic solution to the

Prandtl slope flow model is first derived, prescribing transfer coefficients in accordance to

the O’Brien K-theory model. Profiles are characterized by stark variations in both phase and

amplitude of extrema compared to the classic constant-K and a more recent solution which is

valid within the Wentzel-Kramers-Brillouin (WKB) theory, shedding new light on this long-

standing geophysical problem. In addition, direct numerical simulation (DNS) is used to study

the turbulent structure of anabatic and katabatic flows, and to describe the sensitivity of the

solution to variations in the parameter space, within the conceptual framework of the Prandtl

model. Variations in the sloping angle from the vertical wall (α = 90◦) setup are shown to

induce a progressive departure of averaged profiles between the two flow regimes, ultimately

resulting in stark differences at gentle sloping angles. The thermodynamical mechanisms

responsible for sustaining mean and turbulent kinetic energy are used to further distinguish

between flow regimes, and to propose a qualitative partition of the boundary layer in slope

flows. The DNS setup is additionally adopted to identify coherent structures in katabatic flows

over steep slopes. Coherent motions are responsible for the maintenance of turbulence in the

ABL, hence their characterization is of fundamental importance toward a better understand-

ing of boundary-layer dynamics. Packets of hairpins are found to connect in the streamwise

direction to form large-scale motions (LSMs). In the katabatic flow, hairpins are characterized
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by a head located upstream in the return flow region and by tails protruding downstream into

the inner regions of the flow. For the lower sloping angles that are considered, it is shown

how LSMs align to form very-large-scale motions (VLSMs). LSMs and VLSMs are found to be

the dominant contributors to streamwise momentum variance and turbulent momentum

transfer in the above-jet regions of katabatic flows.

Next, drag properties of realistic fractal-like sea ice surface morphologies are examined within

the large-eddy simulation (LES) framework, considering fully-developed, pressure-driven

turbulent boundary-layer flows. The effects of large-scale surface features on wind flow are

accounted for by an immersed boundary method (IBM). Conversely, the drag forces caused

by subgrid-scale features are modeled through a novel dynamic roughness approach, in

which the hydrodynamic roughness length parameter is determined using the first-principles

based constraint that the total momentum flux (drag) must be independent of the grid-filter

scale. This approach leads to accurate flow predictions (resolution invariant) and provides an

estimate of the otherwise unknown roughness parameter for sea ice surfaces, of use in climate,

weather prediction and scalar transport models to evaluate the hydrodynamic roughness

length.

Keywords: anabatic flow, direct numerical simulation, dynamic surface roughness model,

energy budget, immersed boundary method, katabatic flow, large-eddy simulation, Prandtl

model, rough surfaces, turbulence.
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Sommario
Lo studio dello strato limite atmosferico su terreni complessi è stato oggetto di attiva ricerca,

data la sua importanza a livello meteorologico e climatologico. Il concetto di complessità è in-

teso in senso lato ed include ad esempio variazioni spaziali della scabrezza, variazioni spaziali

delle forzanti del sistema (e.g., temperatura, umidità), o un’inclinazione media della superficie.

Le principali ipotesi delle classiche formulazioni basate sul metodo della somiglianza non

sono rispettate in tali condizioni, complicando la situazione sia da un punto di vista modellis-

tico che di misurazione. Nonostante i numerosi studi, tale problema rimane poco compreso, e

rappresenta quindi un terreno fertile di ricerca. Questa tesi si concentra su due tra i principali

sistemi in cui la teoria di Monin ed Obukhov (MOST) non è applicabile: il problema dei flussi

termici su superfici inclinate, ed il problema dei flussi atmosferici su superfici caratterizzate

da un ampio spettro di scale di scabrezza.

La prima parte della tesi si concentra sul problema dei venti generati da flussi termici su

superfici inclinate: questi sistemi sono alla base della meteorologia in regioni montane, e

giocano un ruolo fondamentale nello scambio di massa, di quantità di moto ed di energia tra la

superficie e l’atmosfera. Una soluzione analitica del modello di Prandtl è dapprima proposta

per inquadrare il problema da un punto di vista concettuale. Effetti dovuti alla turbolenza

sono parametrizzati attraverso la teoria K, assumendo coefficienti di trasferimento secondo il

modello di O’Brien. I profili di velocità e di galleggiamento sono caratterizzati da variazioni

significative rispetto la soluzione di Prandtl (K costante) e rispetto una più recente soluzione

approssimata, basata sulla teoria WKB (da Wentzel-Kramers-Brillouin), dando nuova luce

al problema. In seguito, venti catabatici ed anabatici sono studiati attraverso il metodo di

simulazione numerica diretta, per caratterizzarne la struttura turbolenta e per definire la

dipendenza della soluzione dai parametri del sistema. Variazioni nell’angolo di inclinazione

della superficie rispetto la verticale (α = 90◦) risultano in una progressiva differenziazione

dei due regimi (anabatico e catabatico), i quali sono significativamente diversi per modesti

angoli di inclinazione. I meccanismi termodinamici alla base del sostentamento dell’energia

del flusso medio e dell’energia delle fluttuazioni turbolente sono successivamente analizzati

per i due regimi di vento, e utilizzati per proporre una partizione dello strato limite in venti

anabatici e catabatici.

Lo stesso setup è in seguito utilizzato per identificare strutture coerenti in flussi catabatici su

superfici quasi verticali (angolo di inclinazione α≥ 60◦). Le strutture coerenti all’interno dello

strato limite atmosferico sono responsabili per il sostentamento della turbolenza, e una loro

caratterizzazione è quindi di grande importanza al fine di meglio comprendere le dinamiche
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di questi sistemi. Lo studio evidenzia come pacchetti di vortici “hairpin", caratterizzati da una

testa localizzata a monte e da code che protrudono a valle, si allineano nella direzione della

corrente per formare le cosiddette “large-scale-motions" (LSM). Per angoli di inclinazione α<
70◦ le LSM si allineano a loro volta tra di loro a formare le “very-large-scale motions" (VLSM).

LSM e VLSM contribuiscono in maniera significativa all’energia cinetica e al trasferimento

(turbolento) di quantità di moto in direzione verticale nelle regioni esterne dello strato limite

catabatico.

Infine, questa tesi esamina le proprietà di drag di superfici composte da ghiaccio marino

dell’Antartide, attraverso il metodo di simulazione ai grandi vortici (LES). Nello specifico, si

considera uno strato limite totalmente sviluppato su di una superficie ottenuta attraverso

misurazioni laser della banchisa in Antartide. Gli effetti dovuti alle grandi scale di scabrezza

(quelle scale risolvibili attraverso la discretizzazione LES) sono risolti attraverso un “immersed

boundary method" (IBM), mentre gli effetti dovuti alla scabrezza di sottogriglia sono inclusi

attraverso un modello dinamico di scabrezza (DSR) recentemente proposto. Il modello DSR

permette di calcolare la scala idrodinamica della scabrezza assumendo che il trasferimento

totale di quantità di moto in direzione verticale sia lo stesso alla scala di griglia e ad una

scala test. Questo approccio permette di ottenere un’accurata ricostruzione del profilo di

velocità, indipendentemente dalla risoluzione numerica utilizzata, ed il valore del parametro

di scabrezza per la data superficie. Da quest’ultimo, è possibile derivare la scala idrodinamica

di scabrezza per l’uso in modelli climatici, in modelli per le previsioni meteorologiche e per lo

studio di trasporto su strati limite.

Parole chiave: budget di energia, flussi anabatici, flussi catabatici, immersed boundary

method, modello di Prandtl, modello dinamico di scabrezza, simulazione ai grandi vortici,

simulazione numerica diretta, superficie scabra, turbolenza.
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2.2 Specification of K̂ (ẑ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The Analytic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 On the computation of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Direct numerical simulation of slope flows: characterization of mean flow and tur-

bulence 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Normalisation of the equations and governing parameters . . . . . . . . 31

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Time evolution and structure of the flow . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Mean flow and turbulence characteristics . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Mean flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.2 TKE and buoyancy variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.3 Momentum and buoyancy fluxes . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Budgets of mean and turbulent kinetic energy . . . . . . . . . . . . . . . . . . . . 45

3.6.1 The mean kinetic energy budget . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6.2 The turbulent kinetic energy budget . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



Contents

4 Large and very-large-scale motions in katabatic flows over steep slopes 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Governing equations and simulation details . . . . . . . . . . . . . . . . . . . . . 63

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Mean flow and velocity fluctuations . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Pre-multiplied power spectra, co-spectra and quadrant analysis . . . . . 66

4.3.3 Two point correlation coefficients . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.4 Characterization of LSMs and VLSMs . . . . . . . . . . . . . . . . . . . . . 74

4.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Large-eddy simulation of atmospheric boundary-layer flow over Antarctic sea-ice

formations using a dynamic roughness model 83

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Sea ice surface models and their processing for use in LES . . . . . . . . . . . . . 87

5.4 Numerical algorithm and the Dynamic Roughness Model . . . . . . . . . . . . . 89

5.4.1 The LES algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2 The Immersed Boundary Method . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.3 The dynamic surface roughness model . . . . . . . . . . . . . . . . . . . . 92

5.5 Setup of simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6.1 The DSR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6.2 Velocity profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusions and Perspectives 109

viii



List of Figures

2.1 Slope-aligned coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Comparison of the proposed analytic solution (A1) against the constant-K (A2)

and the WKB solution (A3). u is positive in the down-slope direction. The

constant-K value is fixed to KA2 = max(KA1)/3. Velocity profiles (u) are denoted

with solid lines whereas buoyancy profiles (b) are denoted by dashed lines.

Here z0 = 0.001, Pr = 1 and H = 12. Assuming N̂ = 10−2 (Hz), α̂ = 5◦ and b̂s =
−0.1 (ms−2), the corresponding dimensional system, based on u∗ ≡ û∗U−1 from
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1 Introduction

Turbulence – the main agent governing exchange processes in the land-atmosphere system –

remains one of the greatest unsolved problems of physics (Stull, 1988; Carlson et al., 2006). A

correct modeling of turbulence in the atmospheric boundary layer (ABL), the atmospheric

layer in direct contact with Earth’s surface, is of fundamental importance in order to accurately

quantify exchange of energy and mass between the Earth and the atmosphere. Exchange pro-

cesses between the atmosphere and the underlying surface have a direct impact on weather

and climate variability, thus affecting humans health, water resource management, and eco-

logical and hydrological processes. It is therefore no surprise that land-atmosphere interaction

has been the focus of active, multi-disciplinary research in the past decades, as reflected by the

significant number of works published on the subject. Unfortunately, the multi-scale nature

of the ABL, coupled with the inherent complexity of the Earth’s surface, results in an extremely

challenging problem to address, and current knowledge lags behind actual needs (Stensrud,

2007; Fernando, 2010; Katul et al., 2012).

Given the difficulties of solving ABL problems from first principles, the method of similarity

theory has represented a valuable analysis tool. A cornerstone in the understanding of the

ABL is represented by the Monin-Obukhov similarity theory (MOST) (Monin and Obukhov,

1954), a generalization of Prandtl mixing length model (Prandtl, 1925; Tietjens and Prandtl,

1957), to account for effects induced by stratification. MOST expresses scaled variables as

universal functions (to be inferred from experiments) of the dimensionless stability parameter

z L−1, where z is the height above the ground and L is the Obukhov length (see Monin and

Obukhov (1954); Brutsaert (1982)). In theory, the applicability of MOST is restricted to the

inertial sublayer (i.e. the overlap region) of ABL flows over flat and homogeneous terrain,

under statistically steady atmospheric conditions, and where Coriolis effects are negligible.

In practice, MOST is known to perform relatively well even over complex terrain (Parlange

et al., 1995; Andreas et al., 1998; de Franceschi et al., 2009). Such robustness makes it the

reference surface closure in numerical weather prediction and climate models (Stensrud,

2007). Nevertheless, alternative models perform better in some settings, and MOST breaks

down in others. In strongly unstable regimes, for instance, free convective scaling is prefer-
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able (Albertson et al., 1995; Stull, 1988), whereas MOST becomes unreliable for the poorly

understood, stably stratified ABL (Mahrt, 2013), for which no similarity theory is yet avail-

able. In addition, MOST requires the underlying flat surface to be homogeneous, whereas the

Earth’s surface is inherently complex. Surface complexity is commonly understood in a broad

sense, and accounts for topographic variations, sloping terrain, and for heterogeneous forcing

mechanisms (such as soil moisture or temperature), to name but a few. Over heterogeneous

surfaces, for instance, the presence of internal boundary layers and of local advection leads

to non-negligible flux-divergence, in which case MOST is not necessarily expected to apply

(Higgins et al., 2013). Moreover, under stable stratification, the relative importance of surface

heterogeneity and of local slopes is increased (Mahrt, 2013). Such complications have moti-

vated a divide-and-conquer strategy, resulting in a host of idealized systems, each focusing

on a specific type of land-atmosphere interaction process, based on the idea that one should

first understand a problem in its simplest settings before introducing additional complexities

and coupling. Furthermore, the land-atmosphere system is such that local features of the

exchange processes can have a deep impact on weather and climate at larger scales (Lorenz,

1963). Accordingly, only a better understanding of the individual aspects of the problem

will allow an accurate description of energy and mass balance at the Earth surface, which

is fundamental to improve the predictive skills of numerical weather and climate models

(Stensrud, 2007).

The thesis addresses two specific problems where MOST applicability is problematic: that of

thermally-driven stratified flows, commonly arising over sloping surfaces (Chapters 2, 3 and

4), and that of ABL flow over multi-scale rough topographies, such as fluvial landscapes, ocean

waves, snow and sea ice surfaces (Chapters 5). Given the ubiquity of such flows in nature, a

better understanding of their dynamics will allow significant advances in ABL knowledge at

larger scales and in coupled problems.

Slope flows arise under clear sky conditions and weak synoptic forcing. Daytime solar heating

of the underlying sloping surfaces (e.g. mountain sides or valleys) causes positively buoyant

air to rise upslope, triggering anabatic flows. At night, radiative cooling of the same surfaces

results in negatively buoyant air close to the ground descending downslope, generating kata-

batic flows. Under weak synoptic forcing, anabatic and katabatic winds regulate the transport

of scalars such as heat, humidity and pollutants in mountainous regions (Rotach and Zardi,

2007; Fernando, 2010). Katabatic winds are persistent over the ice sheets of Greenland and

Antarctica (Egger, 1985; Parish, 1992; Parish and Bromwich, 1998; Renfrew, 2004; Renfrew,

I. and Anderson, P., 2006) – affecting local weather and climate – and over melting glaciers

(Greuell et al., 1994; Oerlemans, 1998) – whose constant retreat is a matter of public concern,

given its impact on both the sea level rise and on water availability. Early studies of slope

flows date back to Wagner (1938); Prandtl (1942) and Defant (1949), but current knowledge

is still limited, reflecting the fundamental complexity of the phenomena. The geometrical

setup of the problem complicates matters from a measurement perspective (Oldroyd et al.,

2015), as exemplified by the scarcity of experimental data (Horst and Doran, 1986; Nadeau

et al., 2013; Grachev et al., 2015). On the other hand, simulations are challenging due to the
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stable stratification and lack of a near-surface closure, also resulting in few available numerical

studies (Schumann, 1990; Skyllingstad, 2003; Axelsen and Dop, 2009b; Fedorovich and Shapiro,

2009a,b; Shapiro and Fedorovich, 2014). Analytical solutions, numerical studies, and obser-

vations have shown that the structure of slope winds is further complicated, as compared to

classical boundary layer profiles, by the formation of a so-called low-level jet in the near wall

regions and by the presence of several zero-gradient layers in the state variables, manifestation

of additional dynamics induced by the interplay of stable stratification, turbulence, and the

underlying sloping surface (Prandtl, 1942; Fedorovich and Shapiro, 2009b; Grachev et al.,

2015). Hence MOST is likely to fail, if used to approximate the entire boundary layer in slope

flows, and a near-surface closure theory most likely needs to be developed from the equations

of motion, since there is little hope of finding these solutions by the method of similarity

hypothesis.

In Chapters 2,3 and 4, a combination of analytical and numerical approaches are adopted

to address these problems. An analytical solution of the one-dimensional Prandtl model

equations is derived in Chapter 2, where turbulence effects are modeled within the framework

of the K-theory. Analytical solutions of linearized versions of the problem are of great interest,

given their potential to be integrated in large-scale models as surface closure, or for the

extrapolation of surface fluxes in applications with sensor networks. In Chapter 3, direct

numerical simulation (DNS) is used to unravel the turbulent structure of slope flows. The aim

of the study is to clarify the dependence of anabatic and katabatic solutions on the model

parameters and to examine the budget terms of mean and turbulent kinetic energy balances,

which are of great interest from a parameterization perspective. Chapter 4 bridges the gap

between the relatively broad knowledge on coherent structures populating canonical wall-

bounded flows, and the lack of information on the structure of energy-containing turbulent

motions in slope flows. Coherent motions are responsible for maintaining (production and

dissipation) turbulence, hence their study is essential for the understanding of boundary-layer

dynamics.

The last chapter of the thesis addresses the problem of ABL flows over multi-scale rough

topographies, where the applicability of MOST is also known to be problematic. Typical

examples of multi-scale surfaces include fluvial landscapes (Rinaldo et al., 1993; Rodriguez-

Iturbe et al., 1994), ocean waves (Yang et al., 2013), plant canopies (Finnigan, 2000; Yue et al.,

2007; Böhm et al., 2013) and sea ice surfaces (Trujillo et al., 2016). Such topographies display

scale-invariance over a broad range of wavelengths, that is, the spectrum of surface heights

is characterized by a power-law behavior. In Chapter 5, the specific focus is on Antarctic sea

ice surfaces, whose contribution in terms of energy, momentum and mass exchange is key

to the understanding of the climate system as a whole (e.g. Papritz et al. (2015)). Roughness

properties of snow surfaces are subjected to rapid changes over the ice field, thus a correct

representation of momentum transfer is required not only to estimate large-scale ice drift and

total ice mass balance (Zhang, 2014), but also to correctly represent erosion and deposition

of snow in these heavily wind-blown environments (Groot Zwaaftink et al., 2014). Accurate

prediction of mass and momentum exchange on ABL flows over rough surfaces is possible only
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if the flow in the interfacial layer – the layer bounded by the height of the roughness elements

– is correctly represented, hence surface features need to be adequately resolved. Despite the

significant advances in computational performance in recent years, the tremendous range of

length scales present in sea ice landscapes and the high Reynolds number of the flow prevent

DNS from being used for the problem at hand. This has motivated the adoption of closure

models designed to reduce resolution requirements in the dissipative range, especially where

energy-containing scales are of primary interest (Pope, 2000). Large-eddy simulation (LES)

represents a valid alternative to DNS, but the filtering operation (which is implicitly understood

in LES) also applies to the underlying surface, thus introducing an additional subgrid-scale

(SGS) roughness modeling requirement. This is no trivial task, given the lack of knowledge

on turbulent flows in the interfacial layer, and considering that the drag contributions of

small scales in natural fractal-like surfaces usually account for a significant percentage of the

total (Anderson and Meneveau, 2011; Anderson et al., 2012). This problem is addressed in

Chapter 5, where roughness properties of sea ice Antarctic surfaces are studied. In the specific,

a recently developed dynamic surface roughness model (DSR) (Anderson and Meneveau,

2011) is adapted for use in conjunction with the immersed boundary method (IBM) and with

LES. The effects of large-scale surface features on wind flow are accounted for through the

IBM approach, whereas drag forces caused by SGS surface features are accounted for via

the DSR model. The DSR model allows to estimate the (otherwise unknown) z0 parameter,

representative of SGS roughness features of sea ice surfaces, based on the first principle

constraint that total drag is invariant at grid- and test-filter scales. It thus represents a major

step forward in the simulation of flow over multi-scale rough surfaces, opening the doors for a

new avenue of research in the field.

In summary, the dissertation is organized around two complex surface environments, each

treating a separate problem within the broad realm of flows over complex terrain, as follows.

Part I is devoted to the analysis of turbulent slope flows, within the conceptual framework of

the Prandtl model.

• In Chapter 2, a closed form analytic solution is derived of the steady-state Prandtl

model equations, valid for spatially varying eddy diffusivities (O’Briens type) and Prandtl

number of unity. The original contributions to this chapter are the derivation of the

analytical solution itself, its analysis in terms of sensitivity to model parameters, and its

critical comparison against previous analytic solutions.

• Chapter 3 employs DNS to characterize the turbulent structure of slope flows within

the Prandtl model framework, and to determine the sensitivity of the solution to varia-

tions in the parameter space. The aim is to better understand the effects of turbulence

on the system, which is key to the development of reliable parameterizations for LES

and lower dimensional models. The original contributions of the chapter are the im-

plementation of the Prandtl slope flow equations in a parallelized (hybrid openMP /

MPI) pseudo-spectral DNS algorithm, and a critical statistical analysis of the sloping

angle dependence of several quantities, including integral constraints that the system
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has to satisfy, mean kinetic energy (MKE) and turbulent kinetic energy (TKE) budget

terms. Emphasis is put on the description of the mechanisms sustaining mean flow and

turbulence in katabatic and anabatic flows, and in the comparison among the two flow

regimes.

• Chapter 4 provides additional insights into the turbulent structure of katabatic flows.

A combination of statistical analysis and eduction criteria are adopted to identify and

characterize coherent energetic motions in katabatic flows over steep slopes, within

the DNS framework of Chapter 3. The original contributions in this chapter are the

identification and characterization of large scale motions, from both a geometrical and

energetic perspective. In addition, a katabatic flow hairpin model is proposed, to explain

the formation mechanisms of LSMs and VLSMs.

Part II is devoted to general problem of drag characterization in flows over multi-scale fractal-

like rough surfaces, with specific application to flow over sea ice floes.

• In Chapter 5 a DSR model is adapted for use in conjunction with the IBM, and applied

in LES to characterize surface roughness properties of multi-scale sea ice surfaces. The

IBM method is used to represent the underlying, resolvable, surface roughness, whereas

drag forces caused by subgrid-scale features are accounted for through the DSR model.

The original contributions of this chapter are the implementation and validation of a

DSR model, in conjunction with an IBM algorithm (adapted from a previously existing

version), and the use of such a tool to investigate drag properties and to derive the α

dimensionless roughness parameter for sea ice surfaces, of use in large scale models for

the computation of the hydrodynamic roughness length.

Concluding remarks and perspectives on future developments of this work are briefly dis-

cussed in the final conclusion.
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2 On the solution of katabatic flows
with spatially varying eddy viscosity
and diffusivity

Abstract

The Nieuwstadt closed form solution for the stationary Ekman-layer equations (Nieuwstadt,

1983) is here reconsidered and generalized to address the problem of katabatic flows within

the conceptual framework of the Prandtl model. The solution is valid for spatially varying eddy

viscosity and diffusivity (O’Briens type) and constant Prandtl number (Pr ). Momentum and

buoyancy transfer coefficients are here specified in accordance to Monin-Obukhov similarity

theory (MOST). The characteristics of the solution are discussed as a function of the dimen-

sionless model parameters Pr and ẑ0N̂ 2b̂−1
s , where ẑ0 is the hydrodynamic roughness length,

b̂s is the imposed surface buoyancy and N̂ is the Brunt-Väisälä frequency. For the considered

range of such parameters, velocity and buoyancy profiles show significant variations in both

phase and amplitude of extrema with respect to the classic constant-K model and a more

recent approximate solution, based on the Wentzel-Kramers-Brillouin (WKB) theory, hence

shedding new light on the problem. Near-wall regions are characterised by relatively stronger

surface momentum and buoyancy gradients, whose magnitude is inversely proportional to

Pr . In addition, slope-parallel momentum and buoyancy fluxes are reduced, the low-level

jet (LLJ) is further displaced toward the wall, and its peak velocity strongly depends on the

ẑ0N̂ 2b̂−1
s parameter.

2.1 Introduction

Slope flows are of interest not only as a fundamental problem in itself, but also because of

their important role in regulating local weather conditions in complex terrain, affecting at-

mospheric transport of momentum and of scalars such as heat and humidity (Whiteman,

1990, 2000; Monti et al., 2002; Nylen et al., 2004; Rotach and Zardi, 2007; Lehner et al., 2015).

Katabatic flows are responsible for the formation of cold pools in confined valleys (Whiteman

et al., 2001; Sheridan et al., 2014), which trap pollution and gases, thus affecting human health.
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g

z* z

x

Figure 2.1 – Slope-aligned coordinate system.

Persistent katabatic winds also characterise the atmospheric boundary layer over Antarctica

(Chu, 1987; Renfrew, 2004; Renfrew, I. and Anderson, P., 2006; Parish and Bromwich, 1991;

Parish, 1992; Parish and Bromwich, 1998) and over glaciers (Oerlemans and Vugts, 1993; Oer-

lemans, 1994; Greuell et al., 1994; Oerlemans, 1998; Oerlemans and Grisogono, 2002), and

therefore an accurate characterisation of such flows is essential to understand and model

weather and climate. However, the complex dynamics (e.g. turbulent intermittency, waves,

Kelvin-Helmholtz instabilities, low-level jets (LLJs)) and the lack of a satisfactory similarity

theory for such flows (Nadeau et al., 2013) pose a heavy burden in terms of computational

requirements for numerical modelers. In most cases the required resolution is in fact pro-

hibitively costly (Fedorovich and Shapiro, 2009a,b; Burkholder et al., 2011). Because of this,

conceptual models are still of great interest, and represent a valid tool for the characterisation

of such systems.

A cornerstone in the understanding slope flows is represented by the classic Prandtl ana-

lytic model (Prandtl, 1942), and its recent extensions, to include the effects of Coriolis force

(Gutman and Malbakhov, 1964), external winds (Lykosov and Gutman, 1972), and surface

heterogeneity (Shapiro and Fedorovich, 2007; Oldroyd et al., 2014), to name but a few. The

Prandtl model approximates the atmosphere in a Boussinesq sense and describes a steady

flow over a thermally perturbed unbounded planar sloping surface, that lies within a stratified

environment. The base stratification is assumed to be a function of the vertical coordinate

direction ẑ∗, and the evolution of the system is described adopting a slope-aligned reference

system (x̂, ŷ , ẑ), as displayed in Fig. 2.1. Prandtl assumed a balance between along-slope

buoyancy advection and slope-normal buoyancy diffusion, and between the downslope com-

ponent of buoyancy and slope-normal momentum diffusion, resulting in the following system

of ordinary differential equations:

−N̂ 2û(ẑ)sinα= [K̂H b̂ẑ ]ẑ , (2.1a)

b̂(ẑ)sinα= [K̂M ûẑ ]ẑ , (2.1b)

where (̂·) is used to denote a dimensional variable or parameter, ẑ denotes the normal-to-
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slope coordinate direction, û is the downslope velocity, b̂ ≡ ĝ θ̂′/θ̂0 is buoyancy, where ĝ is the

gravitational acceleration, θ̂′ is the potential temperature perturbation and θ̂0 is a reference

(constant) temperature, N̂ is the buoyancy frequency characterising the system (related to the

background stratification), α is the slope angle and K̂M and K̂H denote the eddy viscosity and

diffusivity (an eddy viscosity/diffusivity model has been used to parametrize turbulent fluxes

of momentum and buoyancy). Equations are defined in ẑ ∈ [ẑ0,∞) with boundary conditions

û(ẑ0) = 0, û(ẑ →∞) = 0, b̂(ẑ0) = b̂s and b̂(ẑ →∞) = 0 (b̂s > 0 for upslope flows, whereas b̂s < 0

for downslope flows). The flow is assumed to be invariant in the along-slope direction and the

model can be used to determine the slope-normal (ẑ) structure of velocity û(ẑ) and buoyancy

b̂(ẑ). The model thus applicable away from ridges and valleys, where non-linear advection

terms become negligible (Nappo and Shankar, 1987), and when a steady balance between

advection and diffusion (of both momentum and buoyancy) is achieved. Note that the latter

constraint is rather restrictive, as shown in Shapiro and Fedorovich (2005) and in Zardi and

Serafin (2015). The Prandtl constant-K solution reads

b̂ = b̂s exp(−σ̂c ẑ)cos(σ̂c ẑ) , (2.2a)

û =− b̂s

N Pr
exp(−σ̂c ẑ)sin(σ̂c ẑ) , (2.2b)

where

σ̂2
c ≡

σ̂0

2K̂H
, and σ̂0 ≡ N̂ sin(α)


Pr
. (2.3)

The model is able to represent the LLJ and the return flow region, key features of observed

katabatic and anabatic flows. However, the constant-K solution is also known to be over-

dissipative in the near-surface regions, and under dissipative above the LLJ regions (Defant,

1949; Oerlemans, 1998; Grisogono and Oerlemans, 2001). It is therefore not able to represent

the observed strong surface gradients of temperature and momentum, and – in addition – the

predicted wind speed typically decreases more rapidly than in reality. Simple variations in

the eddy diffusivity profiles were introduced in a patched analytic solution by Gutman (1983),

whereas more recently Grisogono and Oerlemans (2001) considered general variations in the

vertical structure of the eddy diffusivities, and derived a patched global solution based on the

WKB approximation (Bender and Orszag, 1979). The WKB solution to the Prandtl equations,

valid to leading-order in the inner layer and to first-order in the outer layer, reads

f̂i n ∼ exp

(
−(1± i )(σ̂0/2)1/2

∫ẑ

0
K̂ (ẑ)−1/2dz

)
ẑ ∈ [ẑ0, ĥ] , (2.4a)

f̂out ∼ [K̂ (ẑ)/K̂ (ĥ)]−1/4 exp

(
−(1± i )(σ̂0/2)1/2

∫ẑ

0
K̂ (ẑ)−1/2dz

)
ẑ ∈ [ĥ,∞) , (2.4b)

where f̂i n ≡ b̂i n + i ûi n represents the inner-layer solution, and f̂out ≡ b̂out + i ûout is the outer-

layer solution. f̂i n and f̂out are patched at ẑ = ĥ, which separates the inner from the outer
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layer. The WKB solution is able to account for additional dynamics while still retaining an

elegant form. However, WKB theory is only applicable when the model parameters (K̂M , K̂H )

vary more slowly than the solution (û, b̂), and the validity of such a constraint for slope flows

has been the subject of debate (Grisogono and Oerlemans, 2002).

Here, a closed-form solution to the Prandtl-model equations is derived on a finite domain

(ẑ ∈ [ẑ0, Ĥ ]), valid for eddy viscosity and diffusivity coefficients that are modeled as a limited

range of cubic polynomials, similar to what proposed in O’Brien (1970) for the planetary

boundary layer. The derivation is as a generalization of the solution proposed in Nieuwstadt

(1983), where the Ekman-layer equations were solved for the same form of momentum transfer

coefficient. Recall that the Ekman-layer equations can be reduced to the Prandtl equations

after simple changes of variables, as shown in Shapiro and Fedorovich (2007). The solution,

expressed as a combination of Gaussian hypergeometric functions, represents an exact alter-

native to the WKB formulation for the chosen form of the eddy diffusivities. Its sensitivity to

variations in the parameter space are here investigated within the MOST framework, to gain

insights on the coupling between the velocity and buoyancy fields.

2.2 Specification of K̂ (ẑ)

Here, eddy diffusivities are prescribed in line with the classic O’Brien’s model (O’Brien, 1970),

viz.

K̂ (ẑ) = κû∗ ẑ(1− ẑ/Ĥ)2 ẑ ∈ [ẑ0, Ĥ ] , (2.5)

where κ is the Von Kármán constant, û∗ = κ(ẑûẑ )|ẑ0 is the friction-velocity, and Ĥ is the height

of the domain, controlling both shape and magnitude of K̂ . The O’Brien model complies

with the K̂ -requirements defined in Grisogono and Oerlemans (2002), and has often been

used in studies of stable boundary layers (see for instance Pielke (1984) and Stull (1988)). A

generalized O’Brien model was also recently adopted in Grisogono and Oerlemans (2001) to

study katabatic flows. In the original O’Brien’s formulation Ĥ corresponds to the boundary

layer depth; here Ĥ = 3ĥ is evaluated iteratively under the constraint ĥ = ẑr , where ẑr is the

height of the peak velocity magnitude in the return flow region. Such a choice for ĥ is based

on results from direct numerical simulation of katabatic flows over steep slopes, which are

presented in Chapter 3.

Given the lack of a rigorous similarity theory for katabatic flows, this study is restricted to

the MOST framework, which is expected to yield acceptable approximations of transfer co-

efficients in the near-surface regions (Gutman, 1983). MOST is not expected to hold in the

above-jet regions, where eddy viscosity and diffusivity coefficients are likely to depend on an

additional set of parameters such as the sloping angle (α), the Brunt-Väisälä frequency (N̂ ),

and the imposed surface buoyancy b̂s (or buoyancy flux). Nevertheless, the proposed solution

is valid in a more general sense, and could easily be adapted to a different K̂ -parameterisation.

For instance, one could easily modify κ, to make it depend on the model parameters. Knowl-
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edge of û∗ and Ĥ (or equivalently ĥ) allows to univocally specify K̂ (ẑ) =κû∗ ẑ(1− ẑ/Ĥ)2.

2.3 The Analytic Solution

For the combination

f̂ = b̂ − (i N̂



Pr )û (2.6)

the system of Eqs. 2.1 is decoupled into a complex ordinary differential equation (ODE) for

the canonical variable f̂ :

f̂ =
[ −i K̂M (ẑ)

N̂ sin(α)



Pr
f̂ẑ

]
ẑ

ẑ ∈ [ẑ0, Ĥ ] , (2.7)

with boundary conditions f̂ (ẑ0) = b̂s and f̂ (Ĥ) = 0. Assigning a length, velocity and buoyancy

scale L̂ = û∗κ(N̂ sinα)−1, Û = |b̂s |N̂−1 and B̂ = |b̂s | respectively, Eq. 2.7 reduces to:

f = −i

Pr

[
KM (z) fz

]
z z ∈ [z0, H ] , (2.8)

where KM (z) = z(1−z/H )2 is the normalised eddy viscosity, z = ẑL̂−1, f = b̂B̂−1+(i



Pr )ûÛ−1,

H = Ĥ L̂−1 and z0 = ẑ0L̂−1, with boundary conditions f (z0) = −1, f (H) = 0. The canonical

form of Eq. 2.7 reads:

fzz +P fz +Q f = 0, (2.9)

where P (z) = Kz /K and Q(z) = (−i



Pr )/K . Second, it is an easy computation to show that

rewriting Eq. 2.9 for y = z
H results in

fy y + P̃ fy +Q̃ f = 0, (2.10)

where P̃ (y) = γy (y)/γ(y) and Q̃(y) = (−i



Pr H )/γ(y), with γ(y) = y(y−1)2. Eq. 2.10 is a second

order ODE with three regular singular points at y = 0,1 and ∞, as in Morse and Feshbach

(1953). This special case is known as the equation of Papperitz and its general solution is:

f (y) =α(1−y)μ 2F1(μ,1−μ′,1+μ−μ′,1−y)+β(1−y)μ
′

2F1(μ′,1−μ,1+μ′−μ,1−y) , (2.11)

where 2F1 are Gaussian hypergeometric functions and μ, μ′ are the solutions to the degree two

equation

x2 +x − i H



Pr = 0.

15



Chapter 2. On the solution of katabatic flows with spatially varying eddy viscosity and
diffusivity

Upon back-substitution of the independent variable and specification of the integration

constants α and β (through the imposition of boundary conditions), the solution in terms of

u and b is derived by separating the real and imaginary part of f

u(z) =− Im( f (z))

Pr

, b(z) = Re( f (z)). (2.12)

As stated in the introduction, the proposed derivation closely resembles that in Nieuwstadt

(1983), where the Ekman-layer equations have been solved in closed form for the same eddy

viscosity coefficient. Here, the solution is specified for the Prandtl model equations, and gen-

eralised to account for arbitrary (constant) Pr . In addition, the proposed solution considers a

finite z0, as opposite to that in Nieuwstadt (1983) (where the simplifying assumption z0 = 0

was adopted). A finite z0 (hence finite KM (z0) and KH (z0)) is required when solving the Prandtl

slope flow model, which would otherwise yield unphysical velocity and buoyancy profiles.

Despite the restrictive form of K (z), which might limit the range of applicability of the model,

the formulation allows for exact integration of Eqs. 2.1, hence providing a reference to study

the dependence of the flow on the dimensionless model parameters Pr and z0 ≡ ẑ0N̂ 2b̂−1
s .

It also represents a useful reference for the validation of numerical and patched/matched

solutions.

2.4 Examples

In Fig. 2.2 we compare the proposed analytic solution (A1) against the constant-K (A2)

and the WKB solution (A3), considering Pr = 1 (i.e., K̂M = K̂H ). The constant-K solution is

evaluated based on Eqs. 2.2, whereas the WKB solution is evaluated based on Eqs. 2.4. For

the sake of comparison, A1 and A3 are evaluated for the same z0 and H (hence same K (z))

parameters, whereas A2 is computed imposing K A2 = max(K )/3. ĥ is evaluated iteratively

in order to match zr of the A1 solution. Given that the resulting A1 solution is relatively

insensitive to the exact ĥ (in the neighborhood of the ĥ = ẑr value) only a few iterations are

sufficient to provide a good approximation of the desired K̂ . The chosen K (z) satisfies the

constraints defined in Grisogono and Oerlemans (2002) for the validity of the WKB method.

A1 is indistinguishable to a corresponding second-order centered finite-difference numerical

solution (also exact in double precision arithmetics), therefore the comparison is omitted. A1

shows a remarkably strong inversion in the near surface regions, when compared against its

analytical counterparts, suggesting an over-diffusive behavior of both A2 and A3. For instance,

normalised surface buoyancy gradients of simulation A1 are over an order of magnitude larger

than those of A3 (bA1
z /bA3

z =O (10) for z → z0). Nevertheless, uA1
z ≈ uA3

z for z → z0, confirming

the better dissipative properties of A3, when compared against the constant-K approach.

To underline the importance of a decreasing magnitude of eddy diffusivities as the surface

is approached, it is worth noting that uA1
z /uA2

z = O (10). Overall, the proposed normalised

solution differ significantly when compared against A2 and A3, in both amplitude and location

of extrema. Both the height of the LLJ and the peak velocity are significantly reduced, features
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Figure 2.2 – Comparison of the proposed analytic solution (A1) against the constant-K (A2)
and the WKB solution (A3). u is positive in the down-slope direction. The constant-K value is
fixed to KA2 = max(KA1)/3. Velocity profiles (u) are denoted with solid lines whereas buoyancy
profiles (b) are denoted by dashed lines. Here z0 = 0.001, Pr = 1 and H = 12. Assuming
N̂ = 10−2 (Hz), α̂ = 5◦ and b̂s = −0.1 (ms−2), the corresponding dimensional system, based
on u∗ ≡ û∗U−1 from the A1 solution, is characterised by ẑ0 = 0.08 (m) and û∗ = 0.18 (ms−1),
within the range of commonly observed atmospheric values.

that are of great importance for an accurate representation of the stable boundary layer and

from a parameterisation perspective (Mahrt, 1998). Besides, A1 predicts significantly reduced

mass and buoyancy (slope-parallel) fluxes, viz.
∫H

0 u dz and
∫H

0 b dz, with respect to A2 and

A3.

The sensitivity of the solution to variations in the z0 parameter is displayed in Fig. 2.3. Since

(u∗,b∗) ∝ z0, where b∗ ≡ κzbz , larger hydrodynamic roughness lengths (z0) correspond to

stronger transfer rates of momentum and buoyancy in the vertical direction, yielding a larger z j

and max(u). To highlight differences with respect to the WKB solution, the same z0 sensitivity

test is displayed for the A3 solution in Fig. 2.3. Because K ≈ z in the neighborhood of z = z0,

A3 predicts z j ≈ π2/32+ z0 and max(u) = 0.32. A3 is therefore able to describe the z0 (alias

K ) dependency of z j , but predicts a K -invariant max(u), as clear from Fig. 2.3. A2 is also

characterised by a K -invariant max(u). The proposed solution therefore provides additional

insights on the physics of the system, suggesting a somewhat different coupling between

the velocity and buoyancy fields, when compared to that predicted by previous analytic

solutions of the linear Prandtl model. It shows that positive variations of the z0 parameter

result in a higher and stronger LLJ ([z j ,max(u)] ∝ z0). Further, since L̂ = κû∗/(N̂ sinα), the

characteristic scale of the flow (L̂) will vary proportionally to z0 for a prescribed Û , B̂ ,α set.
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Figure 2.3 – Sensitivity of the normalised A1 (left) and A3 (right) solutions to the z0 parameter.
Solid lines denote down-slope velocity (u) whereas dashed lines denote buoyancy (b). Fixed
parameters: H = 12, Pr = 1.
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Figure 2.4 – Sensitivity of the normalised A1 (left) and A3 (right) solutions to the Pr param-
eter. Solid lines denote down-slope velocity (u) whereas dashed lines denote buoyancy (b).
Displayed solutions correspond to: H = 12, z0 = 0.001.
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Under stably stratified environments pressure fluctuations induced by gravity waves sum

to those induced by turbulence, and yield an increase in the total momentum flux, without

directly influencing the buoyancy flux (Mahrt, 1998). This results in turbulent Prandtl numbers

that are usually larger than unity. Variations by a factor of 2 for Pr , perhaps even more under

conditions of strong stratification, are common and that can lead changes the relative shapes

of vertical profiles of velocity and buoyancy considerably. The sensitivity of the solution to

variations in the Pr parameter is displayed in Fig. 2.4. As above, the closed form solution (A1)

is intercompared to the WKB solution (A3). Variations in Pr affect the solution throughout the

domain for both A1 and A3. larger Pr result in weaker thermal and dynamic boundary-layers,

and in a proportional decrease in u j and z j . Such a behavior could have been anticipated,

since a larger Pr in conjunction with the constant (imposed) surface buoyancy is expected to

result in a lower surface buoyancy flux, i.e. in a lower rate of potential energy injected into the

system.

To study the sensitivity of the solution on the h parameter we considered a ±10% h-variation,

and results are displayed in Fig. 2.5. Despite the non-negligible changes in K (z) in the outer

regions of the flow we observe a modest ≈±0.5% variation in max(u) and a ≈±5% variation in

z j , min(u) and zr (the location of min(u)), which is well within the degree of accuracy of the

current study. Recall that variations in h lead to the same first order Taylor expansion of K (z)

around z0, therefore the inner regions of the flow are relatively insensitive to the exact h value.

2.5 On the computation of the solution

The computation of the Gauss hypergeometric function 2F1 with all its parameters complex

is known to be a non-trivial task. Although the 2F1 function is merely a power series expan-

sion (whose implementation is apparently immediate), its use is prone to cancellation and

round-off error, which become especially significant for certain ranges of the parameters

and of the independent variable (Pearson, 2009). In our case, the solution f = b + i u is eval-

uated in y ∈ (z0/H ,1), which is within the radius of convergence (R) of the hypergeometric

functions that define f (the radius of convergence of 2F1(a,b,c, y) is |y | = 1). The solution

computed here represents the 2F1 functions as truncated power series, i.e. 2F1(a,b,c, y) =
[(a)k (b)k ]/[(c)k k !]yk , where a,b,c are the three input parameters, (·)k is the Pochhammer

symbol and k ! denotes the factorial of k = 1,2, . . . N . All computations are performed in double

precision arithmetic. In Fig. 2.5 we display the convergence of the solution, in terms of z j

and max(u), for a given set of z0 values and H = 10. The solution shows sub-logarithmic con-

vergence for both ez j = 100(zN
j − z j )/z j and emax(u) = 100[max(uN )−max(u)]/max(u), and

clearly, the smaller the z0 parameter, the slower the resulting convergence rate. This behavior

is justified by the fact that as z0 is reduced, the solution is evaluated closer to R, where the

convergence of 2F1 in its power series form is known to be retarded. Note that despite the slow

convergence of the solution, its evaluation is stable throughout the range of realistic z0, and is

significantly more efficient than a direct numerical solution of the equivalent model, which

for the considered z0 values would require an extremely fine spatial stencil. The efficacy of the
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Figure 2.5 – Left plot: Sensitivity of velocity u (solid lines) and buoyancy b (dashed lines)
profiles on the H parameter. Right plot: convergence test, relative percentage error for z j

(red lines) and max(u) (blue lines) as a function of N , where N represents the number of
terms considered in the truncated 2F1 series. Parameters for the H-sensitivity study (left
plot): H1 = 11.2, H2 = 14, H3 = 16.8 and z0 = 0.001. Parameters for the convergence test (right
plot): z0 = 0.00001 (squares), z0 = 0.0001 (circles), z0 = 0.001 (crosses) and H = 14. We define
ez j = 100(zN

j − z j )/z j and emax(u) = 100[max(uN )−max(u)]/max(u), where (·)N represents a
quantity computed truncating the 2F1 series to N terms, and where z j and max(u) represent
quantities that are exact in double precision arithmetic.
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series summation can be much improved by various techniques (e.g., Shanks method, Padé

summation, etc.), but such an analysis is beyond the goal of the current study.

2.6 Conclusions

To conclude, a closed form solution of the Prandtl model equations has been proposed herein,

valid for O’Brien-type eddy diffusivities and constant Prandtl number. The solution is con-

ceived for the specific problem of katabatic flows and is an adaptation of the solution proposed

in Nieuwstadt (1983) for the Ekman-layer equations, generalized to account for Pr �= 1. Its char-

acteristics have been discussed assuming transfer coefficients for momentum and buoyancy

in accordance to MOST (albeit the solution lend itself to more general K -parameterisations).

In the specific, the dependence of the normalised solution on the model dimensionless param-

eters Pr and ẑ0N̂ 2b̂−1
s has been tested and compared against corresponding WKB solutions.

For the same geometrical and physical parameters, profiles show significant variations in both

phase and amplitude of extrema with respect to their WKB counterparts: stronger surface gra-

dients (inversely proportional to Pr ) are combined with overall reduced slope-parallel fluxes,

and the LLJ is further displaced toward the wall. In addition, its peak velocity, LLJ height, and

surface gradients proved to be strongly sensitive to variations of the dimensionless parameter

ẑ0N̂ 2b̂−1
s , highlighting a more complex coupling between the velocity and buoyancy fields.

The proposed model can be of use to validate numerical or patched / matched solutions of

the Prandtl equations, and to improve future stable boundary layer parameterisations, when

coupled with other parts of the boundary layer physics.
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3 Direct numerical simulation of slope
flows: characterization of mean flow
and turbulence

Abstract

Turbulent convection of stably stratified fluid over an unbounded, smooth, sloping surface is

studied using Direct Numerical Simulations (DNS), within the framework of the Prandtl model.

DNS is computational expensive when compared to evaluating analytic one-dimensional

solutions (e.g. the one proposed in Ch. 2), but overcomes the need for a parameterization of

turbulent mixing, since turbulence is directly resolved down to the dissipative scales of the

flow. This makes it the method of choice in the current study, where the aim is to characterize

turbulence effects on the system, to inform parameterizations for use in lower-order models. In

the specific, the study focuses on variations of mean flow, second order statistics, and budgets

of mean (MKE) and turbulent kinetic energy (TKE), as a function of the sloping angle (α) and

Reynolds number (Re), at fixed Prandtl number (Pr = 1). Four sloping angles (α= 15◦,30◦,60◦

and 90◦) and three Reynolds number (Re = 3×105,4×105 and 4.6×105) are considered. A

dynamic and a thermodynamic identity are highlighted, which can diagnose the quality of the

averaging operation. Turbulent anabatic (upward moving warm fluid along the slope) and

katabatic (downward moving cold fluid along the slope) regimes are found to be structurally

similar at high sloping angles, qualitatively resembling the analytic solution presented in

Chapter 2, but undergo a different transition as the sloping angle decreases, leading to stark

statistical differences between the two flow regimes as α� 30◦. In addition, budget equations

show how MKE is fed into the system through the imposed surface buoyancy, and turbulent

fluctuations redistribute it from the low-level jet (LLJ) nose toward the below- and above-LLJ

regions. Analysis of the TKE budget equation suggests a subdivision of the boundary layer of

anabatic and katabatic flows into three distinct regions: 1. an outer layer, where turbulent

transport balances dissipation, 2. an intermediate layer, where shear and buoyant production

overcome dissipation, and turbulent and pressure transport terms relocate the excess of TKE,

and 3. a wall layer, capped by the jet nose, where pressure and turbulent transport balance

dissipation and viscous diffusion of TKE. Interestingly, a zone of global backscatter (energy
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transfer from the turbulent eddies to the mean flow) is consistently found below the LLJ in

both flow regimes.

3.1 Introduction

When an inclined surface is thermally perturbed, the resulting buoyancy force projects in both

the along- and across-slope directions. Surface cooling results in a downslope flow (katabatic

flow), whereas surface heating triggers an upslope flow (anabatic flow). The significance

of thermally driven flows along sloping surfaces is rarely disputed given the role they play

over a broad range of scales and applications. Katabatic and anabatic flows are ubiquitous

over complex terrain (Whiteman, 1990; Rampanelli et al., 2004; Haiden and Whiteman, 2005;

Fernando, 2010; Zardi and Whiteman, 2013; Oldroyd et al., 2014, 2015; Grachev et al., 2015),

and despite their local nature, their interaction with larger scale forcing mechanisms can

favor the development of cyclonic vorticity in the middle and upper troposphere (Parish,

1992; Parish and Bromwich, 1998). Katabatic winds are regulating energy, momentum and

mass transfer over the ice sheets of Greenland and Antarctica (Egger, 1985; Parish, 1992;

Parish and Bromwich, 1998; Renfrew, 2004; Renfrew, I. and Anderson, P., 2006), and are also

influencing the movement of the marginal ice zone (Chu, 1987). In addition, katabatic flows are

a permanent feature of the atmospheric boundary layer (ABL) over melting glaciers (Greuell

et al., 1994; Oerlemans, 1998), whose constant retreat is a matter of public interest, given its

impact on both the sea level rise and on water resource management.

Prandtl (1942) framed the problem of slope flows in a conceptually simple model, considering

a doubly-infinite (no leading edges) plate which is uniformly heated or cooled and lies within

a stably stratified environment. The Prandtl model (Prandtl, 1942) states that slope-parallel

advection of buoyancy is balanced by buoyancy flux divergence, whereas the parallel-to-

slope component of buoyancy balances with momentum flux divergence. This particular

type of flows are termed equilibrium flows (Mahrt, 1982), given the nature of the balance

between a turbulent flux divergence and a generation/destruction mechanism. Under such

settings the Boussinesq equations of motion and thermal energy reduce to one-dimensional

form, which allows for analytical treatment. Accounting for a base stratification allows the

solutions to approach steady-state conditions at large times, whereas in the absence of a stable

stratification (classical solutions), the thermal and dynamic boundary layers (TBL and DBL in

the following) grow in an unbounded manner (Menold and Yang, 1962).

The original model assumed constant turbulent diffusivities – and is therefore incapable of

representing the observed steep near-surface gradients, as shown in Chapter 2. In addition,

the return flow region predicted by the constant-K solution is usually stronger, when compared

to measurements or numerical simulations, and also vanishes more rapidly away from the

surface. These limitation were recently addressed in (Grisogono and Oerlemans, 2001, 2002),

where an approximate analytical solution able to account for spatially variable eddy diffusivi-

ties was proposed, valid under the WKB approximation (after Wentzel–Kramers–Brillouin).
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Modifications of the Prandtl model to allow for variations in surface forcing (Shapiro and

Fedorovich, 2007; Burkholder et al., 2009), in the slope angle (Zammett and Fowler, 2007), and

to account for weakly non-linear effects (Grisogono et al., 2015), were also recently proposed.

The Prandtl conceptual approach is also of interest for numerical modelers. It alleviates

computational costs by constraining the geometry to regular domains, thus allowing the

use of efficient numerical schemes such as methods based on finite differences or spectral

expansions. The existence of a statistically steady state solution also provides some bench-

mark quantitative analysis. The past decades have seen significant advances in computational

performance, achieved through both improvements of computer hardware and of numerical

algorithms to solve differential problems. Nevertheless, computational cost of simulating high

Re flows over long slopes remains prohibitively high, and has motivated the use of closure

models that aim at reducing the resolution requirements in the dissipative range, especially if

energy-containing scales are of primary interest (Pope, 2000). Schumann (1990) pioneered the

use of large-eddy simulation (LES) to resolve turbulent anabatic flows within the conceptual

settings of the Prandtl model. LES profiles were found to be in qualitative agreement with the

constant-K solution profiles in terms of sensitivity to the model parameters, but also confirmed

that transfer coefficients have to decrease as the surface is approached, for parameterized

lower dimensional models to match LES surface-dissipation rates. More recent LES studies

– all within the Prandtl model framework – also unfolded the main structure of mean flow

and turbulence in katabatic flows, and provided insights on the dependency of the solution

on the system parameters (Skyllingstad, 2003; Axelsen and Dop, 2009). Analytic solutions,

observations and numerical studies have shown that the structure of slope winds is further

complicated – when compared against classical boundary layer profiles – by the formation

of the LLJ and by the presence of several zero-gradient layers in the state variables. This is

direct manifestation of additional dynamics induced by the interplay of stable stratification,

turbulence and by the sloping surface. Such complications have led to a fundamental mistrust

on the performance and validity of classical LES closure models for simulation of slope flows.

For instance, because of the stable stratification, katabatic flows experience a reduction in the

size of the eddies, which leads to an increased reliance on subgrid-scale (SGS) terms in the

bulk of the flow. At the same time, because of the stable stratification, turbulence can become

spatially and temporally intermittent and highly anisotropic (Meroney et al., 1997; Mahrt, 1998,

2013). For such conditions, the main assumptions upon which SGS models are derived (i.e.

Kolmogorov’s theories) become questionable (Pope, 2000). Besides, the lack of a near-surface

closure theory (Monti et al., 2014) makes it impossible to prescribe adequate surface fluxes

in simulations. These limitations have motivated recent use of direct numerical simulations

(DNS), which, despite their modest range of Re, provide the most comprehensive view of

the flow structure (Shapiro and Fedorovich, 2004a,b; Fedorovich and Shapiro, 2009b). These

studies showed that slope flow statistics are sensitive to variations in the parameter space. The

magnitude of the surface forcing, the slope angle and the strength of the ambient stratification

all play a role in determining the characteristics of the flow. This finding motivated recent

efforts towards a derivation of scaling relations that allow the elimination of the dependency
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Figure 3.1 – Slope-aligned coordinate system.

of the solution on the sloping angle for instance (Shapiro and Fedorovich, 2014). Scaling

relations are of interest since they facilitate the design of experiments and have potentials to

yield significant computational savings in parametric studies when explored through LES and

DNS.

The problem of anabatic and katabatic flows and the properties of the LLJ in the near wall

region are here explored through high resolution DNS. The focus is on variations in the slope-

normal structure of selected flow’s statistics and in integrated quantities as a function of the

model parameters (the sloping angle and Re). Throughout the study, the flow is driven through

a homogeneous constant surface buoyancy force. Note that such a forcing has not yet received

much attention in numerical slope-flow simulation studies. In addition, we limit the study to

Pr = 1. Mean kinetic energy (MKE) and turbulent kinetic energy budget (TKE) terms are also

evaluated and their interaction across various layers within the boundary layer discussed. The

aim here is to explore interactions between turbulence and the mean state as well as the role

of the LLJ in energy and momentum exchanges. The long-term goal is to solicit improvements

of current turbulence closure models for sloping and stable conditions that can be imminently

used in large-scale atmospheric models.

The governing equations for the problem are derived in section 2. Section 3 provides details on

the the numerical algorithm and on the setup of simulations, and main results are presented

in §4 . Summary and concluding remarks follow in §5.

3.2 Equations of motion

Thermal convection of turbulent stratified fluid flow over sloping surfaces can be conveniently

described in a rotated reference system (x̂, ŷ , ẑ) aligned in the along-slope direction (̂̇ denotes

a dimensional variable), as displayed in Fig. 3.1, and to split the potential temperature θ̂(x̂, t̂ )

into a base state θ̂∞(x̂) and a perturbation component θ̂′′(x̂, t̂) ≡ θ̂(x̂, t̂ )− θ̂∞(x̂) as proposed

by Prandtl (1942). Assuming the base state θ̂∞(x̂) to be a linear function of the vertical coor-

dinate direction ẑ∗, results in N̂ ≡
√

β̂d θ̂∞
d ẑ∗ = const ant , where N̂ is the buoyancy frequency

30



3.2. Equations of motion

(equivalent to the Brunt–Väisälä frequency in stable flows). The thermal expansion coefficient

β̂= ĝ /θ̂∞ is set to be constant for convenience and ĝ is the gravitational acceleration constant.

Moreover, invoking the Boussinesq approximation (i.e. ignoring density differences except

where they appear in terms multiplied by ĝ ) and neglecting rotational effects, the conservation

equations in their dimensional form reduce to

∂ûi

∂t̂
+ û j

∂ûi

∂x̂ j
=− ∂π̂

∂x̂i
+ ν̂

∂2ûi

∂x̂2
j

− β̂θ̂′′(x̂, t̂ )[δi 1 sinα−δi 3 cosα], (3.1)

∂ûi

∂x̂i
= 0, (3.2)

∂θ̂′′

∂t̂
+ ∂û j θ̂

′′

∂x̂ j
=−∂û j θ̂∞

∂x̂ j
+ κ̂

∂2θ̂′′

∂x̂2
j

, (3.3)

where t̂ (s) denotes time, ûi (ms−1) are the velocity components in the three coordinate

directions (x̂, ŷ , ẑ) (m), π̂≡ [p̂ − p̂∞(x̂, ŷ , ẑ)]/ρ̂∞ (ms−2) is the normalized deviation of pressure

from the background hydrostatic value, ρ̂∞ (kgm−3) is a reference constant density, α (rad) is

the slope angle, ν̂ (m2 s−1) and κ̂ (m2 s−1) are the kinematic molecular viscosity and diffusivity

coefficients. Note that the dissipation term has been neglected in the energy equation due

to low velocities involved. Introducing the buoyancy variable b̂(x̂, t̂) ≡ β̂θ̂′′(x̂, t̂ ), and since

ẑ∗(x̂) ≡−x̂ sinα+ ẑ cosα, Eqs. 4.1, 4.2 and 4.3 can be re-written as follows

∂ûi

∂t̂
+ û j

∂ûi

∂x̂ j
=− ∂π̂

∂x̂i
+ ν̂

∂2ûi

∂x̂2
j

− b̂(x̂, t̂ )[δi 1 sinα−δi 3 cosα], (3.4)

∂ûi

∂x̂i
= 0, (3.5)

∂b̂

∂t̂
+ ∂û j b̂

∂x̂ j
= N̂ 2[û1 sinα− û3 cosα]+ κ̂

∂2b̂

∂x̂2
j

. (3.6)

3.2.1 Normalisation of the equations and governing parameters

To express the governing equations as a function of suitable dimensionless parameters we

define a characteristic velocity, buoyancy and length scales can be defined as

L̂ ≡ |b̂s |
N̂ 2

, B̂ ≡ |b̂s | , Û ≡ |b̂s |
N̂

, (3.7)

where b̂s is the surface buoyancy term. When the imposed b̂s > 0, the slope flow is termed an-

abatic. Conversely, when b̂s < 0, the slope flow is katabatic. These aforementioned parameters
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can now be used to introduce the following normalized variables:

xi ≡ x̂i /L̂ , ui ≡ ûi /Û , π≡ π̂/Û 2 , b ≡ b̂/B̂ . (3.8)

Relations 3.7 are derived selecting b̂s and N̂ as repeating parameters for convenience though

this choice is by no means unique and other options are possible. Substituting the expressions

3.8 into the governing equations 4.4, 3.5 and 3.6 results in

dui

d t
=− ∂π

∂xi
−b(δi 1 sinα−δi 3 cosα)+ 1

Re

∂2ui

∂x2
j

, (3.9)

∂ui

∂xi
= 0, (3.10)

db

d t
+ ∂u j b

∂x j
= (u1 sinα−u3 cosα)+ 1

RePr

∂2b

∂x2
j

, (3.11)

where Re = b̂2
s ν̂

−1 N̂−3 can be interpreted as a Reynolds number for the flow, defined as a ratio

between the energy production at the surface (given that b̂2
s > 0) and the work against the

background stratification and viscous forces. From equations (3.9), (3.10) and (3.11) it follows

that any relation between û, v̂ , ŵ , p̂, b̂, and x̂, ŷ , ẑ will be the same, if the different flows are

characterized by the same similarity parameters α, Re and Pr .

3.3 Simulations

Equations 3.9, 3.10 and 3.11 are integrated across a range of sloping angles α and Re, consider-

ing both anabatic (upslope) and katabatic (downslope) flow regimes, as summarized in Table

3.1. Given the computational cost of DNS, variations in the Re parameters are limited to the

α= 60◦ case.

The DNS algorithm is a modification of the code that has been previously used to study

land atmosphere interaction processes (Albertson and Parlange, 1999a,b), to develop and

test linear and nonlinear LES subgrid scale models (Meneveau et al., 1996; Porté-Agel et al.,

2000; Porté-Agel, 2004; Higgins et al., 2003; Porté-Agel, 2004; Bou-Zeid et al., 2005; Lu and

Porté-Agel, 2010, 2013), to design surface-flux parameterizations (Hultmark et al., 2013), and

to develop the dynamic surface roughness model (Anderson and Meneveau, 2011). Equations

are solved in rotational form to ensure conservation of mass and kinetic energy (Orszag and

Pao, 1975). A pseudospectral collocation approach (Orszag, 1969, 1970) based on truncated

Fourier expansions is used in the x, y coordinate directions whereas a second-order accurate

centered finite differences scheme is adopted in the slope-normal direction, requiring a

staggered grid approach for the u, v, p,b state variables (these are stored at (i +1/2)ΔZ , where

i denotes a given layer of collocation nodes in the slope-normal direction). Time integration
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Label Lx ×Ly ×Lz Nx ×Ny ×Nz α T Re bs

A,G 0.2522 ×0.384 3842 ×1032 90◦ 6.28 4.6×105 ±1

B , H 0.2522 ×0.384 3842 ×1032 60◦ 7.25 4.6×105 ±1

C , I 0.2522 ×0.384 3842 ×1032 30◦ 12.57 4.6×105 ±1

D, J 0.2522 ×0.384 3842 ×1032 15◦ 24.28 4.6×105 ±1

E ,K 0.2522 ×0.384 2562 ×1032 60◦ 7.25 4.0×105 ±1

F,L 0.2522 ×0.384 2562 ×1032 60◦ 7.25 3.0×105 ±1

Table 3.1 – Geometry and parameters for the DNS runs. Li denotes the domain size in the
three coordinate directions, Ni denotes the number of collocation nodes adopted in the
three coordinate directions, T denotes the characteristic oscillation period of internal waves
characterizing the system (see Sect. 3.4), Re = b̂2

s ν̂
−1 N̂−3 and bs is the imposed (normalized)

surface buoyancy. Simulations A−F correspond to bs =−1, whereas cases G −L correspond
to bs =+1.

is performed adopting a fully explicit second-order accurate Adams-Bashforth scheme. A

fractional step method (Chorin, 1968; Temam, 1968) is adopted to compute the pressure field

by solving an additional Poisson equation, which is derived enforcing mass continuity for the

incompressible fluid ∂ui
∂xi

= 0. Further, all nonlinear terms are de-aliased adopting a 3/2 rule so

as to avoid artificial pile up of energy at the high wavenumber range (Kravchenko and Moin,

1997; Canuto et al., 2006).

To allow this specific study, significant efforts have been devoted to speedup the original

algorithm, and to reduce its memory requirements. In the specific, openMP 4.0 (OpenMP

Architecture Review Board, 2013) directives have been included to allow for a shared memory

parallelization of loops which, together with a better organization of the structure of the

algorithm, has resulted in a O (10) speedup.

Equations are integrated over a regular domain [0,Lx ]× [0,Ly ]× [0,Lz ], with boundary con-

ditions u(x, y,0) = u(x, y,Lz ) = b(x, y,Lz ) = 0 and b(x, y,0) = b̂s/B̂ = ±1. The domain size is

chosen in order to allow the representation of coherent structures populating the thermal and

dynamic boundary layers, while at the same time allowing to resolve the flow in the dissipative

range of scales.

As shown in Fig. 3.2, the slope-normal grid stencil satisfies the resolvability condition ΔZ < 2η,

where η= Re−3/4ε−1/4 is the Kolmogorov length scale in normalized units. The horizontal grid

stencil (Δx =Δy = 3Δz ) does not fulfill the resolvability requirement, hence the need to verify

the quality of proposed results. To do so, a higher resolution DNS run is performed for the

α= 90◦ case, with grid satisfying Δ= (Δx ·Δy ·Δz )1/3 < 2η, where Δ denotes a reference grid

size (Scotti et al., 1993). First and second order statistics are found to be in good agreement

with those presented herein (not shown), underlining how current resolution is sufficient to

represent most of the dissipative scales.

33



Chapter 3. Direct numerical simulation of slope flows: characterization of mean flow and
turbulence

η, ΔZ

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

z

10-2

10-1

100

A

B

C

D

G

H

I

J

ΔZ

Figure 3.2 – Normalised Kolmogov’s scale η(z) = Re−3/4ε(z)−1/4 for anabatic (dashed lines)
and katabatic (solid lines) cases, compared against the slope-normal stencil Δz .

Simulations are run for a minimum of 7T , where T = 2πsin−1α is the characteristic (normal-

ized) period of internal gravity waves that arise in the system due to the imposed stable back-

ground stratification. Statistics are computed over the last 5T for the cases α= 90◦,α= 60◦,

and over the last 4T for the cases α = 30◦,α = 15◦ (previous steps are disregarded to allow

turbulence to fully develop). All simulations are characterized by Pr = 1.

Throughout the study 〈·〉 will denote averaging in time and along spatial coordinates of

statistical homogeneity (x, y) and time fluctuations are written as (·)′.

3.4 Time evolution and structure of the flow

The time evolution of the slope-normal integrated, space averaged, normalized stream-wise

velocity 〈u〉 and buoyancy 〈b〉 is displayed in Fig. 3.3. The system exhibits the classical

quasi-periodic, low-frequency, oscillatory behavior (surges), superimposed to a base flow,

as observed in previous DNS (Fedorovich and Shapiro, 2009b) and in experiments (Monti

et al., 2002; Princevac et al., 2008). It can be shown (McNider, 1982) that the slope-normal

integrated 〈u〉, 〈b〉 variables behave as a system of coupled (damped) oscillators, whereby

steady state is slowly reached through decaying oscillations characterized by a period T̂ =
2π(N̂ sinα)−1 (normalized period is T = 2πsin−1α), as shown here. For a typical atmospheric

value of N̂ = 10−2 (Hz) and sloping angles of 15◦, 30◦ and 60◦, such a period corresponds to

approximately 40, 20 and 10 minutes. Averaging Eqs. 3.9, 3.10 and 3.11 in time and over

directions of statistical homogeneity (x, y) results in

sin(α)〈b〉 = d〈τtot
xz 〉

d z , (3.12)

−sin(α)〈u〉 = d〈τtot
bz 〉

d z , (3.13)
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Figure 3.3 – Time evolution of slope-normal integrated 〈u〉 (solid lines) and 〈b〉 (dashed lines)
fields for simulations A, B , C , and D (katabatic flow regime). The total time-integration period
is shown for each run.
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Figure 3.4 – Dynamic (black lines) and thermodynamic (red lines) identities (equations 3.12
and 3.13) for the considered simulations. Profiles have been shifted on the y axis to allow for

proper visualization. We here denote 〈τtot
xz 〉 = 1

Re
d 2〈u〉
d z2 +〈u′w ′〉 and 〈τtot

bz 〉 = 1
RePr

d 2〈b〉
d z2 +〈b′w ′〉

(sum of molecular and turbulent kinematic fluxes of stream-wise momentum and buoyancy
in the slope-normal direction).

35



Chapter 3. Direct numerical simulation of slope flows: characterization of mean flow and
turbulence

Figure 3.5 – Color contours of instantaneous streamwise velocity u (top figures) and buoyancy
b (bottom figures), on the plane y = Ly /2 for simulations A (left figures) and D (right figures).
The displayed u(x, z) and b(x, z) fields correspond to the crest of the last simulated gravity-
wave oscillation for both runs. For detailed viewing, only the near-surface region of the total
domain is shown.

where 〈τtot
xz 〉 = 1

Re
d 2〈u〉
d z2 +〈u′w ′〉 and 〈τtot

bz 〉 = 1
RePr

d 2〈b〉
d z2 +〈b′w ′〉 are the normalised total (molec-

ular + turbulent) slope-normal kinematic momentum and buoyancy fluxes. Equations 3.12

and 3.13 can be used to test the quality of computed statistics (steady state is guaranteed

only if the two identities hold). Numerical results are displayed in Fig. 3.4, and certify that

averaging over 4T , after a transient of at least 3T is sufficient to satisfy both Eqs. 3.12 and 3.13.

Apparent oscillations characterizing the numerically computed thermodynamic identity (Eq.

3.13) are likely to be due to interpolation errors that arise when evaluating the flux gradient

term d〈τtot
bz 〉/d z in the near surface region.

Figure 3.5 and 3.6 display a contour of the instantaneous stream-wise normalised velocity

field (u) and of the normalised buoyancy field (b) for simulations A,D and G , J respectively.

The TBL appears to be much shallower when compared to the DBL, as noted in prior DNS of

sloping flows (Fedorovich and Shapiro, 2009a,b). A reversed flow characterizes the above-jet

regions, resulting from the interaction between the flow and the background stably strati-

fied environment, in qualitative agreement with the predictions of the linear Prandtl model
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3.4. Time evolution and structure of the flow

Figure 3.6 – Color contours of instantaneous streamwise velocity u (top figures) and buoyancy
b (bottom figures), on the plane y = Ly /2 for simulations G (left figures) and J (right figures).
The displayed u(x, z) and b(x, z) fields correspond to the crest of the last simulated gravity-
wave oscillation for both runs. For detailed viewing, only the near-surface region of the total
domain is shown.
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Figure 3.7 – Comparison of stream-wise velocity 〈u〉 (left) and buoyancy 〈b〉 (right) for anabatic
(dashed lines) and katabatic (solid lines) flow cases at Re = 4.6×105.

(Prandtl, 1942). Note the visual similarity between boundary layers for the α= 90◦ cases (left

plots in Fig. 3.5 and 3.6), and the dissimilarity at α= 15◦ (right plots in Fig. 3.5 and 3.6). As α

decreases, a broadening of scales for the anabatic flow cases occurs with significant thickening

of the LLJ region (negative up-slope velocity), likely induced by the convective type regime

characterizing the flow at small sloping angles. Katabatic flows are instead characterized by a

strong static stability at small sloping angles (see Fig. 3.5), which damps positive slope-normal

velocity fluctuations, thus maintaining the LLJ relatively close to the wall and reducing the

overall mixing of momentum and buoyancy in the near wall regions. Further, the strong

stability induced by the imposed surface buoyancy in the katabatic flow regime at small α

results in apparent laminarisation of the LLJ.

3.5 Mean flow and turbulence characteristics

3.5.1 Mean flow

Mean profiles of kinematic momentum 〈u〉 and buoyancy 〈b〉 are displayed in Fig. 3.7 for

anabatic and katabatic runs at the highest Re = 4.6× 105. The profiles here qualitatively

resemble those obtained from the Prandtl solution (Prandtl, 1942). The most important

features are a peak velocity (u j ) in the near wall regions – identifying the LLJ – and by a

return flow capping both the TBL and DBL. As previously observed in Fedorovich and Shapiro

(2009b), profiles are sensitive to the sloping angle (α). The smaller the α, the larger the

difference between the anabatic and the corresponding katabatic flow solution. In contrast to

the katabatic case, the anabatic regime is characterized by a sensitivity of both z j and u j to

α. As α decreases, a simultaneous increase in the height of the LLJ (z j ) and a reduction in u j

are observed. This behavior is related to the strengthening of the slope-normal component
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Figure 3.8 – Absolute value of the slope-normal integrated horizontal momentum flux (left)
and absolute value of the mean surface buoyancy flux (right) as a function of α for the highest
Re = 4.6×105 case.

of the imposed (positive) surface buoyancy as α decreases, which works against the stable

background stratification and enhances both TKE production and the slope-normal flux of

momentum in the near wall regions, leading to well mixed profiles of velocity and buoyancy,

in agreement with findings of Fedorovich and Shapiro (2009b).

Another apparent difference between the katabatic and anabatic flow solutions is the sensitiv-

ity of the TBL and DBL height to the sloping angle α. The zr delineating the distance from the

wall where the return flow reaches its peak velocity is inversely proportional to α in both kata-

batic and anabatic flow conditions. However, variations in the anabatic regime are arguably

larger as apparent from Fig. 3.7. For instance, at α= 90◦ the two regimes are characterized by

a similar zr but at a lower α= 15◦, zr of the anabatic flow solution is roughly three times larger

than its katabatic counterpart. The slope-normal integrated horizontal momentum flux in the

anabatic flow regime also shows a sensitivity to the α parameter, roughly varying by a factor of

three across the range of α values considered here (see Fig. 3.8).

Such behavior may be better understood when slope-normal integrating Eqs. 3.12 and 3.13.

Since 〈τtot
bz (z →∞)〉 = 0, this integration results in

∫LZ

0
〈u〉d z =−〈τbz〉|z=0

sinα
, (3.14)

where 〈τbz〉|z=0 is the surface buoyancy flux and
∫LZ

0 〈u〉d z is the slope-normal integrated

horizontal flux of momentum. Variations of
∫LZ

0 |〈u〉|d z and |〈τbz〉|z=0 as a function of the

α parameter are displayed in Fig. 3.8, where absolute values are considered to contrast the

two flow regimes. The anabatic flow solution is characterized by a relatively stronger mixing

induced by the positive (imposed) surface buoyancy bs , resulting in a weaker sensitivity of the
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Figure 3.9 – Sensitivity of the stream-wise velocity 〈u〉 (left) and buoyancy 〈b〉 (right) on the Re
parameter, for katabatic (solid lines) and anabatic (dashed lines) flow regimes at α= 60◦.

surface buoyancy flux to α. For this setup, the slope-normal integrated horizontal momentum

flux is proportional to sin−1(α). In the katabatic flow regime, a relatively steeper drop in the

surface buoyancy flux 〈τbz〉|z=0 is noted as α increases, proportional to sin−1(α), thus resulting

in an approximately constant slope-normal integrated horizontal momentum flux. Such a

behavior is justified when noting that as the sloping angle decreases, the normal-to-slope

bs component (bs cos(α)) increases, yielding a stronger inversion layer in the near surface

regions, which damps turbulent fluctuations and the related (turbulent) fluxes of buoyancy

and momentum.

As α decreases, the along-slope component of the imposed surface buoyancy bs also decreases,

but in conjunction with it, the effects of the background stratification becomes weaker, so it

is more likely that this reduction in 〈τbz〉|z=0 is related the strong inversion layer that forms

in the near surface regions, rather than to a decrease of the imposed along-slope forcing. In

Fedorovich and Shapiro (2009b) anabatic and katabatic flow solutions were found to share a

similar flow depth (zr ), inversely proportional to the sloping angle α, which is in contrast with

the proposed DNS results. This mismatch is likely related to the constant surface buoyancy flux

that was applied as boundary condition in the Fedorovich and Shapiro (2009b) study, which,

given the integral constraint 3.14, forces the slope-normal integrated horizontal momentum

flux to match between anabatic and related katabatic flow regimes.

The sensitivity of anabatic and katabatic flow solutions to variations in Re is displayed in

Fig. 3.9 for α= 60◦. For the (narrow) Re range considered, (z j ,u j , zr ) ∝ Re−1. The observed

behavior is justified based on the inverse proportionality of the normalized surface buoyancy

flux and Re, as apparent from Fig. 3.10. Increasing Re results in less energy that is fed into the

fluid system through the imposed surface buoyancy (bs), resulting in a weaker (normalized)

velocity profile.
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Figure 3.10 – Absolute value of the averaged surface buoyancy flux as a function of Re for
anabatic (red line) and katabatic (black line) flow regimes at α= 60◦ (simulations B,E,F, and
H,K,L respectively).

3.5.2 TKE and buoyancy variance

Slope-normal variations of TKE and of buoyancy variance 〈b′b′〉 are featured in Fig. 3.11. In

the katabatic regime, TKE exhibits a decrease in magnitude approximately proportional to α

with a TKE peak located between 3z j and 5z j . The proportionality of TKE to α in the katabatic

flow solution is clearly related to the strengthening of the normal-to-wall component of the

surface buoyancy, resulting in a stronger stable stratification. TKE profiles from the anabatic

flow solution are again more sensitive to α when compared to their katabatic counterparts.

The location of the TKE peak in the anabatic regime is inversely proportional to α, but its

magnitude shows no monotonic behavior, thus suggesting a more complex α-dependence.

Furthermore, the TKE in the neighborhood of the LLJ is characterized by a modest positive

slope-normal gradient (i.e. is approximately constant).

The buoyancy variance 〈b′b′〉 peaks in the near wall regions for both flow regimes where strong

buoyancy gradients occur, in agreement with Fedorovich and Shapiro (2009b). Variations

in 〈b′b′〉 as a function of α in the below-LLJ region are significant only for the katabatic flow

regime, with peak value and its location being directly and inversely proportional to the α

parameter respectively. The above-LLJ regions of the boundary layer are characterized by a

rapid decay in 〈b′b′〉, most evident for the katabatic flow regime. The anisotropic nature of

turbulence in slope flows is apparent from Fig. 3.12, where normal stress components 〈u′u′〉,
〈v ′v ′〉, and 〈w ′w ′〉 are inter-compared. The boundary layer character of the system is apparent

with the wall providing an effective damping of the 〈w ′w ′〉 central moment, in both anabatic

and katabatic flow regimes. It is to be noted that self-similarity in 〈w ′w ′〉 profiles emerge as

α is varied for both wind regimes. This behavior is related to the expected dependence of

〈w ′w ′〉 on the effective stratification (background + perturbation), given that buoyancy has

direct control on slope-normal velocity fluctuation w ′. Because of this, as α decreases, the
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Figure 3.11 – Comparison of turbulent kinetic energy (1/2〈u′
i u′

i 〉) (left) and buoyancy variance
(〈b′b′〉) (right) for the katabatic (solid lines) and the anabatic flow (dashed lines) regimes at
the highest Re = 4.6×105 cases.
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Figure 3.12 – Normal stress components 〈u′u′〉 (solid lines), 〈v ′v ′〉 (dashed lines) and 〈w ′w ′〉
(dot-dashed lines) for the katabatic (left) and the anabatic (right) flow regimes at the highest
Re = 4.6×105 cases.
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Figure 3.13 – Sensitivity of the turbulent kinetic energy ((1/2)〈u′
i u′

i 〉) (left) and buoyancy
variance (〈b′b′〉) (right) to the Re parameter for katabatic (solid lines) and anabatic (dashed
lines) flow regimes at α= 60◦.

turbulence characterizing katabatic flows becomes more anisotropic (the strong, effective,

stable stratification damps 〈w ′w ′〉) in contrast to its anabatic counterpart, where the interplay

between the background stable stratification and the positive surface buoyancy leads to an

isotropisation of turbulent motions. The observed trend here supports the recently proposed

scaling of Shapiro and Fedorovich (2014) based on the assumption of large scale separation

between slope-normal and slope-parallel motions populating katabatic flows, which might

indeed be effective at small sloping angles.

The sensitivity of normalized TKE and normalized buoyancy variance (〈b′b′〉) to Re is pre-

sented in Fig. 3.13 for both flow regimes. Commencing with below the LLJ regions, here

both TKE and 〈b′b′〉 are proportional to Re, despite the reduction in the overall energy that

is fed into the system as Re increases. This result is directly related to molecular dissipation,

which is effective in damping the small-scale near-wall turbulence. In the outer regions of the

flow we instead have a counterintuitive behavior, i.e. (T K E ,〈b′b′〉) ∝ Re−1. This is directly

linked to the chosen normalization, since the (normalized) energy of the system is inversely

proportional to Re, and to the fact that molecular dissipation does not directly affect the

large-scale outer-layer turbulent structures.

3.5.3 Momentum and buoyancy fluxes

Shear stresses and slope-normal buoyancy fluxes for the considered runs are displayed in Fig.

3.14. As observed in previous numerical and experimental studies (Axelsen and Dop, 2009b;

Fedorovich and Shapiro, 2009a,b; Oldroyd et al., 2014; Grachev et al., 2015), the near-wall

(below-LLJ) regions are characterized by a negative total momentum flux (〈τtot
xz 〉 < 0), on the

other hand, the above-LLJ region, where velocity gradients are negative, is characterized by
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Figure 3.14 – Total (solid lines) and turbulent (dashed lines) momentum flux for the katabatic
(top left) and the anabatic (top right) flow regimes, and total (solid lines) and turbulent
(dashed lines) buoyancy slope-normal flux for the katabatic (bottom left) and the anabatic
(bottom right) flow regimes. All cases are characterized by Re = 4.6×105. We denote the total
stream-wise momentum slope-normal flux as 〈τtot

xz 〉 ≡ (1/Re)(d〈u〉/d z)+〈u′w ′〉 and the total
slope-normal buoyancy flux as 〈τtot

bz 〉 ≡ (1/(RePr ))(d〈b〉/d z)+〈b′w ′〉. The height of the LLJ
(z j ) is displayed (dotted line) for the different cases to provide a reference.
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3.6. Budgets of mean and turbulent kinetic energy

a positive total momentum flux. Interestingly, the zero crossings in the mean profiles of 〈b〉
and 〈u〉 are not precisely co-located with the extrema of the total fluxes. At the LLJ location for

instance, a positive (negative) total slope-normal momentum flux for the katabatic (anabatic)

flow regime are observed. As discussed in the following, this will result in consistent counter

gradient fluxes and in negative TKE production rates in the neighborhood of the LLJ. In the

near wall regions, total momentum fluxes 〈τtot
xz 〉|z=0 are insensitive to variations in α for both

flow regimes. This insensitivity is partly justified by the fact that slope-normal momentum

transport in the below-LLJ regions is dominated by molecular diffusion (at all the considered α)

and is not affected by stability effects despite the finite T K E . This finding hints that turbulent

motion in the below-jet regions are ’inactive’ in the Townsend (1956) sense and contribute to

the overall TKE but do not appreciably contribute to the turbulent slope-normal transport of

momentum.

Near wall surface buoyancy fluxes in the anabatic flow regime are also insensitive to variations

in α, despite the non-negligible turbulent component. This is likely due to the interplay

between the positive surface buoyancy and the background stable stratification (whose mag-

nitude is proportional to α), which compensate each other. Conversely, a stark α dependency

characterizes total surface buoyancy fluxes in the katabatic flow regime, as apparent from Fig.

3.14. This again can be related to the combined effects of the background stable stratification

and the imposed surface buoyancy: as the sloping angle decreases, the increasing strength of

the inversion layer progressively damps w ′, resulting in a reduction of the turbulent buoyancy

flux 〈b′w ′〉.

3.6 Budgets of mean and turbulent kinetic energy

3.6.1 The mean kinetic energy budget

The budget equation for MKE, assuming horizontal homogeneity (∂〈·〉/∂x = ∂〈·〉/∂y = 0) and

no subsidence (〈w〉 = 0), is derived by multiplying the equation for 〈ui 〉 by 〈ui 〉. The derivation

subject to the aforementioned assumption leads to

1

2

∂(〈ui 〉〈ui 〉)
∂t

= 〈u′
i w ′〉∂〈ui 〉

∂z
−〈ui 〉〈b〉sin(α)− ∂(〈ui 〉〈u′

i w ′〉)
∂z

+ 1

Re
〈ui 〉∂

2〈ui 〉
∂z2 , (3.15)

where the left hand side of Eq. 3.15 is the storage term of MKE, P s ≡ 〈u′
i w ′〉∂〈ui 〉

∂z denotes shear

production / destruction of MKE, Pb ≡−〈ui 〉〈b〉sin(α) denotes buoyancy production / de-

struction of MKE, transport of MKE by turbulent motions is Tt ≡−∂(〈ui 〉〈u′
i w ′〉)

∂z and dissipation

of MKE by viscous diffusion is E ≡ 1
Re 〈ui 〉∂

2〈ui 〉
∂z2 . When the time-averaging is over a sufficiently

long enough period (as shown here), then ∂〈·〉/∂t = 0, and the storage term can be neglected.

The normalized MKE budget terms for the considered anabatic and katabatic runs are dis-

played in Fig. 3.15. Note that the choice of b̂s
2

N̂−1 as a normalizing factor is not critical for the
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Figure 3.15 – MKE budget for the katabatic (left) and the anabatic (right) flow regimes at
Re = 4.6×105. Profiles corresponding to α= 90◦,60◦,30◦ and 15◦ (simulations A,B ,C ,D for
the katabatic regime; G , H , I , J for the anabatic regime) are denoted with solid, dashed, dot-
dashed and dotted lines respectively. The location of the LLJ is highlighted with dotted black
lines for the various runs, to provide a reference height (note that as α decreases the LLJ height
increases, and note also that z j is the same for the α= 90◦ and the α= 60◦ runs). All terms are

normalized by Û 3 L̂−1 ≡ b̂s
2

N̂−1.

interpretation of the budget, since the relative magnitude of terms is unchanged. As expected,

the mean source of MKE is from buoyancy production (Pb), which peaks in the below-jet

regions, and is characterized by a gradual decrease throughout the boundary layer. In the

outer regions of the flow, Pb becomes a sink of MKE in both flow regimes starting from the

zero crossing of 〈b〉 and up to the start of the return flow region. Here, energy is provided by

turbulent transport (Tt ), which balances dissipation (E ) and buoyant production (Pb). At the

wall, buoyant production is overcome by dissipation for both upslope and downslope flows,

and transport from turbulent motions is responsible to close the MKE budget. Tt acts as a sink

of MKE in the highly energetic LLJ regions, displacing it toward the wall to balance dissipation,

and in the outer layer of the flow.

In both up-slope and down-slope flows, shear production of MKE (P s) acts as a sink of MKE

in the above-jet regions, draining energy from the mean flow and transferring it to turbulence

through the classical energy cascade process. Interestingly, for both regimes and sloping

angles, the below-jet regions are characterized by P s > 0, highlighting a region of global

energy backscatter, i.e. energy is transferred from the turbulent eddies to the mean flow.

Forward scatter is known to be mainly caused by vortex stretching by the strain rate, whereas

backscatter indicates vortex compression by the strain rate, which is not commonly observed

in canonical wall bounded flows.
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3.6.2 The turbulent kinetic energy budget

Under the assumptions leading to Eq. 3.15, the budget equation for the second central velocity

moment (1/2)〈u′
i u′

i 〉 (the so-called TKE budget equation), is given as

(
1

2

)
∂〈u′

i u′
i 〉

∂t
=−〈u′

i w ′〉∂〈ui 〉
∂z

+δ3i 〈b′u′
i 〉cos(α)−δ1i 〈b′u′

i 〉sin(α)− 1

2

∂〈u′
i u′

i w ′〉
∂z

−∂〈π′w ′〉
∂z

+ 1

2
ν
∂2〈u′

i u′
i 〉

∂z2 −ν〈∂u′
i∂u′

i

∂x2
j

〉 , (3.16)

where
(1

2

) ∂〈u′
i u′

i 〉
∂t is the storage of TKE term, shear production of TKE is denoted as Ps ≡

−〈u′
i w ′〉∂〈ui 〉

∂z , buoyant production / destruction of TKE is composed of two terms, namely

Pb,1 ≡ δ1i 〈b′u′
i 〉sin(α) and Pb,3 ≡ δ3i 〈b′u′

i 〉cos(α), turbulent transport of TKE is Tt ≡−1
2
∂〈u′

i u′
i w ′〉

∂z ,

pressure transport Tp ≡−∂〈π′w ′〉
∂z , viscous diffusion of TKE is Tν ≡ 1

2ν
∂2〈u′

i u′
i 〉

∂z2 and viscous dis-

sipation ε ≡ −ν〈∂u′
i∂u′

i

∂x2
j

〉. With regard to the buoyancy production / destruction terms, Pb,1

accounts for production / destruction of TKE due to cross-correlation between along-slope

velocity (u) and buoyancy (b), whereas Pb,3 accounts for production / destruction of TKE due

to cross-correlation between normal-to-slope velocity (w) and buoyancy (b). The splitting of

the buoyancy production term, which is commonly understood to act in the slope-normal

direction only, is clearly a result of the inclined reference system that is adopted to describe

the evolution of the system.

TKE budget terms for the considered runs at Re = 4.6×105 are displayed in Fig. 3.16. Shear

production (Ps) appears with opposite signs in the budgets of MKE and TKE as expected;

it is the net transfer from MKE to TKE as the result of their interactions that often sustains

turbulence in classical boundary layer theory on flat slopes. For both wind regimes, Ps is

characterized by two positive peaks, one in the above jet regions and one in the very near

wall regions, and by a negative region just below the LLJ, where global energy backscatter

occurs. Occurrence of negative Ps indicates local counter-gradient turbulent momentum flux.

Simulations at higher Re and a spectral analysis are needed for definitive conclusions about

the scales experiencing this energy backscatter. Nevertheless, the current results suggest that

closure models based on an imposed mixing length assumption, such as Smagorinsky-type

for instance (Smagorinsky, 1963; Germano et al., 1991; Lilly, 1992; Meneveau et al., 1996;

Porté-Agel et al., 2000; Bou-Zeid et al., 2005), might not be appropriate for such flows as

they cannot account for energy backscatter. In both katabatic and anabatic flow regimes

dissipation (ε) peaks at the wall, is approximately constant in the core of the flow, and then

decreases to zero in the return flow region. The Pb,3 is a sink of TKE for the katabatic regime

and a source of TKE for the anabatic regime, as expected. In the anabatic regime Pb,3 ≈ 0 at

α= 90(deg), but gains considerable importance (as a TKE source term) in the overall budget

as α decreases. For instance, considering the α = 15(deg) run, Pb,3 alone overcomes TKE

dissipation in the core of the LLJ. To the contrary, the modest magnitude of Pb,3 highlights
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Figure 3.16 – Comparison of TKE budged terms for katabatic (left) and anabatic (right) flow
regimes at Re = 4.6 × 105. Production and destruction terms (top) have been separated
from transport and residual terms (bottom). The α= 90◦,60◦,30◦ and 15◦ cases (simulations
A,B ,C ,D for the katabatic regime; G , H , I , J for the anabatic regime) are denoted with solid,
dashed, dot-dashed and dotted lines respectively. The location of the LLJ is highlighted with
dotted black lines for the various runs to facilitate interpretation (note that α∝ z j ). All terms
are normalized by Û 3L̂−1 ≡ b̂2

s N̂−1.
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Figure 3.17 – Comparison of return-to-isotropy terms for katabatic (left) and anabatic (right)
flow regimes. We denote Φ1 ≡ 〈p ′ ∂u′

∂x 〉, Φ2 ≡ 〈p ′ ∂v ′
∂y 〉, and Φ3 ≡ 〈p ′ ∂w ′

∂z 〉. The location of the
LLJ is once again highlighted with dotted grey lines and the α = 90◦, 60◦, 30◦ and 15◦ runs
(simulations A,B ,C ,D for the katabatic regime; G , H , I , J for the anabatic regime) are denoted
with solid, dashed, dot-dashed and dotted lines respectively. All terms are normalized by
Û 3 L̂−1 ≡ b̂2

s N̂−1.

how buoyant destruction of TKE is not the primary mechanism though which buoyancy acts

to suppress turbulence in katabatic flows. Following the same reasoning of Shah and Bou-Zeid

(2013) (where stability effects on the Ekman layer were studied through DNS), it is argued

here that negative buoyancy directly reduces 〈w ′w ′〉, thus reducing local production of 〈u′w ′〉.
A reduction in 〈u′w ′〉 would ultimately results in the observed decrease in 〈Ps〉 and related

T K E magnitude. Pb,1 is the major source of TKE at the LLJ for the katabatic flow regime at

all the considered α. On the other hand, in the anabatic flow regime Pb,3 overcomes Pb,1 as α

decreases, becoming the leading buoyant production term. Overall, the sum of production

terms (Ps +Pb,1+Pb,3) overcome dissipation in the above-jet regions (roughly up to 10z j ), and

transport terms are responsible to dislocate this excess in TKE down towards the wall, and

toward the outer regions of the flow. Turbulent transport (Tt ) is a more effective carrier of

TKE in the outer regions of the flow, whereas pressure fluctuations (Tp ) are more effective in

transporting TKE down toward the wall, to balance dissipation and viscous diffusion. The

viscous diffusion term Tν resembles its pressure-driven boundary layer analog, where Tν is a

sink of TKE in the buffer sublayer, and a source of TKE in the laminar sublayer, below z+ = 5

(corresponding to z = 5×10−4 in current units).

The return-to-isotropy term (also known as pressure redistribution term) contracts to zero,

and so vanishes from the TKE budget equation. However, such a term provides useful insights

on the nature of turbulence if plotted for the single TKE budget components, as displayed in

Fig. 3.17. The single components of the return-to-isotropy term (Φ1, Φ2, Φ3) show a consistent

behavior in the below-jet layer for all the considered sloping angles and flow regimes, redis-
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Figure 3.18 – Sensitivity of MKE budget terms to Re for the katabatic (left) and the anabatic
(right) flow regimes at α= 60◦. Profiles corresponding to Re = 3.0×105,4×105, and 4.6×105

(simulations B,E,F for the katabatic flow regime, and H,K,L for the anabatic flow regime) are
denoted with dot-dashed, dashed, and solid lines respectively. The location of the LLJ is
highlighted with dotted black lines for the various runs, to provide a reference height (note

that as Re increases the LLJ height decreases). All terms are normalized by Û 3 L̂−1 ≡ b̂s
2

N̂−1.

tributing energy from the slope-normal component (〈w ′w ′〉) to the horizontal components

(〈u′u′〉 and 〈v ′v ′〉 respectively). In the above-jet regions for the katabatic flow regime, a consis-

tent energy redistribution among the TKE components are observed across the sloping angles,

with energy being transferred from the stream-wise component (〈u′u′〉) to the span-wise and

slope-normal components (〈v ′v ′〉 and 〈w ′w ′〉 respectively). For the anabatic flow regime, the

return-to-isotropy terms in the above-jet regions highlight a transition in the dynamic and

thermodynamic properties of turbulence as a function of α. When the two highest sloping

angles are considered (α= 60◦ and α= 90◦), energy transfer is qualitatively equivalent to that

characterizing the katabatic flow regime, i.e. the stream-wise variance feeds the span-wise

and slope-normal variance components. For α= 15◦ and α= 30◦ the return-to-isotropy term

becomes a sink for 〈w ′w ′〉 and a source for 〈u′u′〉 and 〈v ′v ′〉, indicative of energy transfer

from the slope-normal TKE component, to the stream-wise and span-wise TKE components.

This transition suggests that at low sloping angles, anabatic flow regimes are characterized by

slope-normal elongated eddies, as apparent from the contours of Fig. 3.6, which feed 〈u′u′〉
and 〈v ′v ′〉 from 〈w ′w ′〉, the latter being directly sustained by the slope-normal component of

the imposed surface buoyancy. Conversely, katabatic flow eddies are streamwise elongated

and remove energy from 〈u′u′〉 – directly fed by the streamwise component of the imposed

surface buoyancy – to transfer it to 〈w ′w ′〉 and 〈v ′v ′〉. Katabatic flows are thus characterized by

a self-preservation of slope-normal velocity variance embedded in them through this energy

redistribution despite the adverse role of stability.

The dependence of MKE budget terms on Re is highlighted in Fig. 3.18. The MKE profiles
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Figure 3.19 – Sensitivity of TKE budget terms to Re for the katabatic (left) and the anabatic
(right) flow regimes at α= 60◦. Profiles corresponding to Re = 3.0×105,4×105, and 4.6×105

(simulations F,E,B for the katabatic flow regime, and L,K,H for the anabatic flow regime) are
denoted with dot-dashed, dashed, and solid lines respectively. The location of the LLJ is
highlighted with dotted black lines for the various runs, to provide a reference height (note

that as Re increases the LLJ height decreases). All terms are normalized by Û 3 L̂−1 ≡ b̂s
2

N̂−1.
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appear to be characterized by apparent self-similarity across the range of Re considered

here for the outer layer. The absolute magnitude of terms weakens as Re increases and the

characteristic scales also decrease. In contrast, in the LLJ and near-wall regions, P s ∝ Re

underlying how more energy is locally converted to TKE as Re increases, as expected. TKE

budget terms are also self-similar in the outer layer as apparent from Fig. 3.19. Near the wall,

positive variations of Re result in a decreased magnitude of ε and Tν and in a strengthening

of Ps . This suggests that at higher Re when compared to those considered herein, anabatic

and katabatic flows might be characterized by a relatively important local TKE production

rate in the below-LLJ regions, ultimately resulting in stronger TKE, and thus larger z j and in

well-mixed profiles of buoyancy and velocity. Such a region might well be the equivalent of the

overlap (logarithmic) region in canonical wall bounded turbulent flows, which is not observed

here, probably because of the relatively low Re.

Overall, current results suggest that the boundary layer characterizing slope flows at sloping

angles α≥ 15◦ and Re < 4.6×105 can be subdivided into three dynamically distinct regions,

namely

1. an outer layer, corresponding approximately to the return flow region, where turbulent

transport (Tt ) is the main source of TKE and balances dissipation (ε);

2. an intermediate layer, capped below by the LLJ, where the sum of shear and buoyant

production (Ps+Pb,1+Pb,3) overcomes dissipation (ε), and where turbulent and pressure

transport terms (Tt ,Tp ) are a sink of TKE;

3. a a wall layer, z ≤ z j , where TKE is provided by turbulent and pressure transport terms,

to balance viscous diffusion and dissipation.

3.7 Summary and conclusions

In this study DNS is used to characterize mean flow and turbulence of thermally-driven,

stably-stratified flows along an uniformly cooled/heated sloping plate, within the conceptual

framework of the Prandtl slope-flow model. The study focuses on the sensitivity of statistics to

variations in both the sloping angle (α) and Reynolds number (Re), for fixed Prandtl number

(Pr = 1). Four sloping angles are considered, (α= 15◦, 30◦, 60◦, and 90◦), and three Reynolds

number (Re = 3×105,4×105, and 4.6×105), where Re = b̂2
s ν̂

−1N̂−3 is a modified Reynolds

number, defined as the ratio between the energy production at the surface and the work

against the background stratification and viscous forces. The study naturally complements

the Fedorovich and Shapiro (2009b) analysis, where a similar range of sloping angle and Re is

considered, but where the flow is forced using a constant surface buoyancy flux.

The initial transient is characterized by quasi-stationary oscillatory patterns in the mean

variables, the normalized oscillation frequency being proportional to the sine of the sloping

angle, in agreement with field observations of slope flows (Princevac et al., 2008; Monti et al.,
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2014).

The quality of the averaging operation is tested against a dynamic and a thermodynamic

identity, readily derived from the equations of motions, that the average solution has to satisfy.

With respect to their basic features, the mean katabatic and anabatic flows appear similar to

the corresponding laminar (Prandtl) counterparts. Turbulent anabatic and katabatic regimes

are found to be structurally similar at high sloping angles, but to undergo a different transition

as the sloping angle decreases, leading to stark statistical differences between the two flow

regimes for the α� 30◦ range. As α decreases, the negative surface buoyancy driving down-

slope flows leads to the formation of a strong surface inversion layer, leading to a progressive

laminarisation of the solution in the below-jet regions and resulting in small variation in the

integrated horizontal momentum flux, and to an overall small variability of mean profiles with

respect to α. Anabatic flows on the other hand are characterized by a strengthening of TKE

production and turbulent momentum fluxes as α decreases, by a significant α-dependence of

the overall horizontal momentum flux, and by well mixed profiles of buoyancy and velocity,

suggesting the presence of convective cells for α� 30◦.

As in Fedorovich and Shapiro (2009b), we identified no region with constancy (even approxi-

mate) of any of the fluxes with distance from the wall.

Budget equations show how MKE is fed into the system through the imposed surface buoyancy,

and turbulent fluctuations redistribute it from the lower edge of the jet toward the wall and

toward the outer layer.

In addition, results show how the overall energy of the system is inversely proportional to

Re, in the considered range of the parameter space, and how turbulent fluctuations gain

importance in the below-jet regions as Re increases. Despite the low Reynolds range that was

here considered, based on the observed trends, one might speculate about the existence of a

(turbulent) overlap layer at higher Re, located in the below-LLJ region, separating the LLJ from

the laminar sublayer.

Interestingly, a zone of global backscatter (energy transfer from the turbulent eddies to the

mean flow) is consistently found in the below-jet regions, which highlights the presence of

a complex interaction between dynamics and thermodynamics, and suggest that closure

models based on a pre-set mixing length assumption might not be appropriate for the study

of slope flows.

Further, analysis of the α-dependence of TKE budget terms suggests a subdivision of the

boundary layer in three distinct regions for the considered range of Re and sloping angles: 1.

an outer layer, roughly corresponding to the return flow region, where turbulent transport

balances dissipation, 2. an intermediate layer, bounded below by the LLJ, where shear and

buoyant production overcome dissipation, and turbulent and pressure fluctuations are re-

sponsible to relocate the excess of TKE down toward the wall and toward the outer layer, and
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3. a wall layer, capped above by the LLJ, where pressure and turbulent transport balance

dissipation and viscous diffusion of TKE.
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4 Large and very-large-scale motions in
katabatic flows over steep slopes

Abstract

Evidence of Large and very-large-scale motions populating the outer layer in katabatic flows

over steep slopes via direct numerical simulations (DNS) is presented. DNS are performed

at a modified Reynolds number Rem = 967, considering four sloping angles. Large coherent

structures prove to be strongly dependent on the inclination of the underlying surface. Power

spectra certify the presence of large-scale motions (LSMs), characterized by a streamwise

extension in the order of the boundary layer thickness (δ). A second low-wavenumber mode

characterizes pre-multiplied spectra and co-spectra when the slope angle is below 70 degrees,

indicative of very-large-scale motions (VLSMs). VLSMs contribute to the turbulent kinetic

energy and shear stress in the above-jet regions up to 30% and 45% respectively. Both LSMs

and VLSMs are inactive in the near-wall regions. Results suggest that packets of hairpins,

characterized by a head located upstream in the return flow region and by tails protruding

downstream into the inner regions of the flow, concatenate in the streamwise direction to

form LSMs and VLSMs. The hairpins are pumping fluid from the LLJ regions up in the outer

layer, resulting in narrow bands of high momentum, flanked on each side by relatively broader

regions of low momentum fluid (also induced by the hairpin legs), resulting in the observed

LSMs and VLSMs statistical signatures.

4.1 Introduction

The structure of energy-containing turbulent motions populating the inner, overlap and outer

layers of zero-pressure-gradient boundary layer flows has been extensively studied in the

past decades, from both an experimental and a numerical perspective. Recent efforts have

focused on the characterization of LSMs (Adrian et al., 2000; Ganapatisubramani et al., 2003;

Del Lamo et al., 2004) and VLSMs (Kim and Adrian, 1999; Del Lamo et al., 2004; Guala et al.,

2006; Balakumar and Adrian, 2007), given their crucial role in the transport of mass and

momentum. Based on current understanding, LSMs are induced by packets of hairpins that
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align in the streamwise direction, and propagate with small velocity dispersion, pumping slow

fluid from the lower regions, and resulting in patches of approximately uniform momentum.

The alignment of hairpins and the self-regeneration properties (Zhou et al., 1999) justifies the

high length-to-width ratios of observed two-point correlation maps (Kovasznay et al., 1970)

and the highly energetic low-wavenumber peaks in the outer region pre-multiplied spectra

(Guala et al., 2006). Typical lengh scales connected to LSMs are in the order of the boundary

layer thickness δ.

VLSMs represent a relatively recent finding, and have been the focus of significant research.

VLSMs have been studied in pipe flows (Kim and Adrian, 1999; Guala et al., 2006), channel

flows (Del Lamo et al., 2004; Chung and McKeon, 2010), in laboratory boundary-layer flows

at low to moderate Reynolds numbers (Tomkins and Adrian, 2003; Hutchins and Marusic,

2007b; Lee and Sung, 2011), and in atmospheric boundary-layer flows at very high Reynolds

numbers (Hutchins et al., 2012; Shah and Bou-Zeid, 2014; Fang and Porté-Agel, 2015). Adrian

(2007) and Marusic et al. (2010) have provided an excellent review of these structures including

LSMs. Kim and Adrian (1999) examined pre-multiplied spectra for a turbulent pipe flow

at y+ = yuτν
−1 = 132, where uτ is the friction-velocity and ν denotes the fluid kinematic

viscosity, and interpreted their shapes as indicating a bimodal distribution in which the

wavelengths at which the maxima occur represent VLSMs and LSMs. Guala et al. (2006) and

Adrian (2007) have investigated the pre-multiplied power spectra of velocity fluctuations and

determined criteria for distinguishing between VLSMs and LSMs in turbulent pipe flows,

channel flows and boundary layers. They found that the maximum streamwise extent of LSMs

is about 3δ (δ denotes the boundary layer height), and that the boundary that distinguishes

VLSMs from LSMs and smaller motions is kxδ= 2 (kx denotes a streamwise wavenumber),

given the crossover in the co-spectra of the streamwise and vertical velocity components.

Typical features of the VLSMs in canonical boundary-layer flows include peaks occurring

at low frequencies in the pre-multiplied energy spectra, and highly streamwise-elongated,

alternating low- and high-speed, meandering zones in the instantaneous velocity field. Further,

it has been shown that VLSMs make significant contributions to the turbulent kinetic energy

and to the Reynolds shear stress (Hutchins and Marusic, 2007a), have strong influence on

the near-wall cycle (Hutchins and Marusic, 2007a,b; Mathis et al., 2009; Chung and McKeon,

2010), and coexist with large-scale counter-rotating roll modes of similar length (Marusic and

Hutchins, 2008; Hutchins et al., 2012).

The turbulence-structure knowledge that results from studies of canonical boundary-layer

flows can be easily transposed to study other types of boundary-layer flows, such as thermally

driven stratified flows over sloping surfaces, the so-called “slope flows". Slope flows have

been the focus of a significant study in the past two decades by the geophysical community,

given the important role they play from a meteorological perspective (Whiteman, 1990, 2000;

Fernando, 2010; Nadeau et al., 2013; Zardi and Whiteman, 2013; Sheridan et al., 2014; Monti

et al., 2014; Oldroyd et al., 2014, 2015; Grachev et al., 2015) and because of their strong connec-

tion to the problem of melting glaciers and mass, momentum and energy balance in polar

regions (Oerlemans and Vugts, 1993; Oerlemans, 1998; Parish and Bromwich, 1998; Renfrew, I.
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and Anderson, P., 2006). Analytical solutions (Prandtl, 1942; Gutman, 1983; Grisogono and

Oerlemans, 2001; Shapiro and Fedorovich, 2004a,b, 2007; Burkholder et al., 2009; Grisogono

et al., 2015), observations (Oerlemans and Vugts, 1993; Oerlemans, 1998; Renfrew, I. and

Anderson, P., 2006; Oldroyd et al., 2014) and numerical studies (Schumann, 1990; Skyllingstad,

2003; Axelsen and Dop, 2009; Fedorovich and Shapiro, 2009b,a; Shapiro and Fedorovich, 2014)

have shown the structure of slope winds is characterized by a so-called low-level jet (LLJ) near

the wall, and by a return flow in the upper regions of the boundary layer, thus significantly

differing from canonical wall-bounded flows. The current study aims at bridging the gap

between the relatively broad knowledge related to coherent structures populating classical

boundary layer flows, and the lack of information on coherent structures in slope flows. A

set of DNS is carried out, at a fixed Re number and considering different sloping angles, with

the aim of characterizing turbulent motions in the outer layer (above-jet regions) of katabatic

flows, and their interaction with the inner layer (below-jet regions). Given their theoretical

and practical interest, the study will focus on the identification and characterization of the

energetic scales populating the system, and on a qualitative and quantitative comparison

between the slope flow system and canonical wall-bounded flows. Specific questions we aim

at answering: 1. are slope flows characterized by LSMs and/or VLSMs? If so, 2. what is their

structure? 3. What are the underlying mechanisms responsible for the formation of LSMs and

VLSMs? And 4. do they interact with the inner regions of the flow?

4.2 Governing equations and simulation details

Considering a sloping surface immersed in a gravitationally stable environment and intro-

ducing a Cartesian coordinate system (x̂, ŷ , ẑ) aligned in the direction of the slope, the three-

dimensional Boussinesq equations for velocity, pressure and thermodynamic energy, read

∂ûi

∂t̂
+ û j

∂ûi

∂x̂ j
=− ∂π̂

∂x̂i
+ ν̂

∂2ûi

∂x̂2
j

− b̂(x̂, t̂ )[δi 1 sinα−δi 3 cosα], (4.1)

∂ûi

∂x̂i
= 0, (4.2)

∂b̂

∂t̂
+ ∂û j b̂

∂x̂ j
= N̂ 2[û1 sinα− û3 cosα]+ κ̂

∂2b̂

∂x̂2
j

. (4.3)

where (̂·) denotes a dimensional quantity, t̂ (s) denotes time, ûi (m s−1) are the velocity com-

ponents in the three coordinate directions (x̂, ŷ , ẑ) (m), π̂≡ [p̂ − p̂∞(x̂, ŷ , ẑ)]/ρ̂∞ (ms−2) is the

normalized deviation of pressure from the background hydrostatic value, ρ̂∞ (kgm−3) is a

reference constant density, b̂ (m s−2) denotes the buoyancy variable, α (rad) is the slope angle,

N̂ (Hz) is the environmental buoyancy frequency (assumed constant), and ν̂(m2 s−1) and

κ̂ (m2 s−1) are the kinematic molecular viscosity and diffusivity coefficients. Throughout the

study we assume Pr = 1, i.e. κ̂= ν̂, and neglect rotational effects. For a detailed derivation

63



Chapter 4. Large and very-large-scale motions in katabatic flows over steep slopes

Table 4.1 – Geometry and parameters for the DNS runs.

Label Lx ×Ly ×Lz Nx ×Ny ×Nz Rem α T

A 1200×200×100 1024×256×768 967 90◦ 6132

B 1200×200×100 1024×256×768 967 80◦ 6132

C 1600×400×200 1024×256×768 967 70◦ 6132

D 3200×400×200 2048×256×768 967 60◦ 6132

of Eqs. 4.1, 4.2 and 4.3 we refer the interested reader to Fedorovich and Shapiro (2009b).

Integration of Eqs. 4.1, 4.2 and 4.3 is performed over a regular bounded spatial domain

[0, L̂x ]×[0, L̂ y ]×[0, L̂z ], with periodic boundary conditions in the along-slope and across-slope

directions (x̂, ŷ) and where û(L̂z ) = b̂(L̂z ) = 0, û(0) = 0, and b̂(0) = b̂s .

Results are presented in normalized units, i.e. ui ≡ ûiÛ−1, b ≡ b̂B̂−1, xi ≡ x̂i L̂−1 where the

characteristic velocity Û , buoyancy B̂ and length L̂ scales are defined as

L̂ =
√

ν̂

N̂ sinα
, B̂ = |b̂s |, Û = |b̂s |

N̂
. (4.4)

Based on the Π theorem (Buckingham, 1914) it is possible to show that the dimensionless solu-

tion is a universal function of the three dimensionless parameters Rem = |b̂s |(N̂ 3/2ν̂sinα)−1, α,

and Pr , where Rem is a modified Reynolds number, which depends on α. Relations 4.4 were

found to significantly reduce the sensitivity of averaged mean profiles with respect to the

model dimensionless parameters, thus providing a solid ground for analysis. Further, the

current definition of Rem allows to maintain a constant prefactor to the viscous term in the

non-dimensional settings, therefore allowing for an equivalent scale separation (in terms

of turbulence) across the considered sloping angles. We solve the dimensionless version of

Eqs. 4.1, 4.2 and 4.3, where the non-linear terms are represented in their rotational form,

to ensure conservation of mass and kinetic energy. The DNS algorithm is a modification of

the code originally developed in (Albertson and Parlange, 1999b) to study land atmosphere

interaction processes. A pseudo-spectral collocation approach based on truncated Fourier

expansions is used in the x, y coordinate directions whereas a second-order accurate cen-

tered finite differences scheme is adopted in the vertical direction, requiring a staggered grid

approach for the u, v, p,b variables. Time integration is performed adopting a fully explicit

second-order accurate Adams-Bashforth scheme and a fractional step method is adopted to

compute the pressure field by solving an additional Poisson equation. All nonlinear terms

are de-aliased adopting the 3/2 rule (Canuto et al., 2006). Normalized boundary condition

are u(0) = u(Lz ) = b(Lz ) = 0 and b(0) =−1 (downslope flow). We fix Pr = 1 and the modified

Reynolds number Rem = 967 throughout the runs. The domain size is chosen in order to

allow a full representation of coherent structures populating the boundary layer. The current

resolution satisfies the resolvability condition in the normal-to-slope direction Δz < 2η, where

η= Re−3/4
m ε−1/4 (Kolmogorov length scale in normalized units). In the horizontal directions
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Figure 4.1 – Time and space averaged along-slope normalized velocity 〈u〉 (left) and Reynolds
stress 〈u′w ′〉 (right).

the grid stencil allows to resolve the turbulent scales at which the dissipation peak occurs,

but does not satisfy the resolvability condition, especially in the near surface regions. The

solution is therefore under-resolved. To determine the quality of the computed results an

additional simulation was performed for the α = 90◦ case, using a twice as fine resolution

in the horizontal directions. Results showed negligible differences in mean profiles and sec-

ond order statistics, thus certifying the quality of computations at the considered resolution.

Four sloping angles (α) are considered, as reported in table 5.1. For each case, a warm-up

simulation is first performed until dynamic equilibrium is reached (statistical steady-state).

Simulations are then further integrated over a minimum of 10T for the statistical analyses,

where T = 2πRem is the characteristic period of internal gravity waves that arise in the system,

due to the (imposed) stable background stratification.

Throughout the study 〈·〉 denotes averaging in time and along spatial coordinates of statistical

homogeneity (x, y), whereas (·)′ will denote a time fluctuation for a given variable.

4.3 Results and discussion

4.3.1 Mean flow and velocity fluctuations

Mean profiles of normalized along-slope velocity 〈u〉 and normalized Reynolds stress 〈u′w ′〉
are displayed in Fig. 4.1 for the four considered sloping angles (α). 〈u〉 profiles are character-
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ized by steep gradients in the near wall region, where a zero-gradient layer forms, the so-called

LLJ. Under the current settings the LLJ can be loosely regarded as a separation layer between

the inner (mostly laminar) and outer (turbulent) regions of the flow, characterized by a distinct

interplay between dynamics and thermodynamics. Note also the sign change of the average

Reynolds flux, which occurs roughly at the height of the LLJ (z j ). 〈u′w ′〉 peaks in the relatively

thick shear layer (characterized by a negative shear rate) located in the above-jet regions.

As previously mentioned, the proposed set of normalization constants Û , L̂ and B̂ allows to

remarkably collapse the location of the LLJ (z j ≈ 1.1), and to reduce the sensitivity of the outer

solution with respect to variations in α, when compared against variations of a corresponding

dimensional solution. The peak velocity (u j ) and the height of the dynamic boundary layer

δ, which we identify as the location of the second zero-crossing of 〈u〉 (above the return flow

region), vary by less than 15% and 25% respectively across the considered cases.

Figure 4.2 shows the fluctuations of the normalized streamwise velocity in the horizontal

plane at z = 8.2 for the four cases with different slope angles. The filled 2-D contour plots are

representative of the crest of the last internal wave oscillation that was simulated. There is

evidence of alternating high and low-speed streaks, elongated in the streamwise direction,

and meandering downstream, features that closely resemble those previously observed in the

logarithmic region of classic turbulent boundary layers (Kim and Adrian, 1999; Hutchins and

Marusic, 2007a; Lee and Sung, 2011). An importation observation here is that the lengths of

these streaks increase with decreasing slope angle, and that regions of high-momentum fluid

become apparently more sparse in space. For the case of α= 70◦, the streaks are clearly more

elongated than those characterizing the α = 80◦ and α = 90◦ runs. For the α = 60◦ run, the

lengths of the streaks is over 5δ, and the patterns resemble those of VLSMs observed in both

experimental and DNS studies of classic turbulent boundary layers (Hutchins and Marusic,

2007a; Lee and Sung, 2011), as well as field measurements of ABL flows (Hutchins et al., 2012).

4.3.2 Pre-multiplied power spectra, co-spectra and quadrant analysis

In support of these observations, Fig. 4.3 presents pre-multiplied power spectra of the stream-

wise velocity u, evaluated in the along-slope direction at various distances from the wall.

Premultiplying the spectrum by the wave number is a common technique that provides a

more intuitive picture of the energy distribution across wavelengths in logarithmic plots,

since equal areas under the curve correspond to equal energies. All the proposed spectra are

characterized by a low wavenumber mode located at λx ≈ δ, which indicates the presence of

LSMs within the dynamic boundary layer, affecting both the inner and outer regions of the

flow. These results are in agreement with findings from canonical boundary-layer flows, where

the average turbulent bulge is in the order of the boundary layer thickness (Robinson, 1991),

and extends from the buffer to the overlap logarithmic layer. Interestingly, the length of LSMs

in the outer layer seems to be independent of the sloping angle α. For the α= 70◦ and α= 60◦

cases, a second (larger wavelength) mode is apparent in the pre-multiplied power spectra, sig-

nature of VLSMs. The ratio between the two wavelengths is O (10), which is consistent with the
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Figure 4.2 – Fluctuations of the normalized streamwise velocity in the horizontal plane at
z = 8.2. The flow is from left to right. A smaller portion of the computational domain is shown
for each case.
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Figure 4.3 – Pre-multiplied power spectra as functions of streamwise wavelength for the
streamwise velocity u.
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Figure 4.4 – Pre-multiplied co-spectra of the streamwise and normal-to-slope velocity compo-
nents as functions of streamwise wavelength for the case D (α= 60◦).

definition of VLSMs by Kim and Adrian (1999). Note that as α decreases, the scale separation

between LSMs and VLSMs increases, together with the relative importance of VLSMs in the

overall contribution to the streamwise turbulent kinetic energy (TKE) component. Note also

that for the α= 60◦ case, the large wavelength peaks become prominent in the pre-multiplied

power spectrum, in particular at larger distances from the wall.

In addition, it is apparent how VLSMs have a modest footprint in the inner regions of the flow

for case D (α= 60◦). The structural information arising from the pre-multiplied power spectra

thus support from a statistical perspective observations based on the instantaneous flow

patterns that were presented in Fig. 4.2: the flow organizes itself in stream-wise elongated pat-

terns as the sloping angle departs from the vertical wall case (α= 90◦). It is worth mentioning

that, under the current settings, the pre-multiplied power spectra for α= 30◦ (not shown) do

not capture the higher mode of the distribution, and are characterized by an increasing energy

as a function of the wavelength λx . On one hand, this confirms the finding that decreasing the

slope angle leads to an increased size and importance of VLSMs, on the other hand, it suggests

that a sound study of coherent structures in katabatic flows over shallow slopes would require

a much larger domain size.

Pre-multiplied co-spectra of u and w for the case D are displayed in Fig. 4.4 as functions of the

streamwise wavelength λx . The pre-multiplied co-spectra share strong similarities with their

corresponding pre-multiplied power spectra, and further highlight the existence of LSMs and

VLSMs in the dynamic boundary layer. Note in particular the significant contribution of VLSMs

to the overall turbulent momentum flux with increasing distance from the wall, highlighting

their active role (in the Townsend (1956) sense) in the boundary layer. VLSMs carry a significant

portion of both the streamwise component of TKE and of the total turbulent momentum flux.

Integrating the computed spectra and co-spectra over λx > 5δ (corresponding to the range

of scales characterising VLSMs) we found that the contribution to the streamwise TKE and
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Figure 4.5 – Quadrants for the u′w ′ momentum flux for the case D (α= 60◦). From top left to
bottom right plots correspond to an increasing distance from the wall (z = 1.4,8.2,16.5 and 26
respectively).
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turbulent momentum flux of VLSMs increases with height and reaches a maximum of 30%

and 45% respectively at z = 16. The contribution of LSMs and VLSMs to the overall Reynolds

flux in the inner regions of the flow is small, as apparent from Fig. 4.4, suggesting large-scale

eddies primarily produce wall-parallel motions at the wall (due to its blocking effects), which

is consistent with Townsend’s idea of inactive motions (Townsend, 1956).

To gain further insights, in Fig. 4.5 we propose a quadrant decomposition of the turbulent

momentum flux u′w ′. Statistics are representative of values at horizontal x − y planes and

are computed over several internal-wave oscillations. The quadrant analysis highlights the

importance of Q1 events (u′ > 0, w ′ > 0) in the near LLJ regions, whereas Q3 events become

dominant at further distance from the wall. Note that, given the negative shear rate charac-

terizing the above-jet regions in katabatic flows, Q1 and Q3 events are positive contributions

to the turbulent momentum flux, whereas Q2 and Q4 events are a negative contribution.

The skewness of u′w ′, apparent in the quadrants (b), (c) and (d) of Fig. 4.5, highlights the

relative strength of ejections (Q1), when compared against sweeps (Q3), despite their rela-

tively minor contribution to the total vertical momentum flux. This is in agreement with the

instantaneous stream-wise velocity contour presented Fig. 4.2, where broad (in the spanwise

direction) regions of relatively uniform low momentum fluid are surrounded by relatively

narrow, stream-wise elongated high speed streaks. The relatively sparse high-speed regions

of case D, when compared against the more homogeneous velocity patterns, characterizing

cases A and B for instance (see Fig. 4.2), and the dominance of relatively modest Q3 events in

the outer regions of the boundary layer might be justified if one considers that as the sloping

angle (α) decreases, the flow is characterized by stronger static stability, induced by both the

imposed (negative) surface buoyancy, and the background stratification. Buoyancy has a

direct effect in damping vertical fluctuations of momentum w ′, thus suppressing ejections

events (Q1), and enhancing sweep events (Q3), which is consistent with presented results.

Based on this, one might already speculate that LSMs and VLSMs are bulges of alternating

relatively high- low-momentum fluid. High-momentum fluid is ejected from the LLJ regions

toward the outer layer, and flanked by broader (in the spanwise direction) regions of low

momentum fluid, which become dominant in the upper parts of the outer layer due to direct

buoyant suppression of w ′. Additional details on the structure and origin of LSMs and VLSMs

in katabatic flows will be provided in the following sections.

4.3.3 Two point correlation coefficients

To further characterize the flow’s structure, in Fig. 4.6 we display the two-point time and space

averaged streamwise correlation coefficients of the instantaneous u velocity (Ruu(Δx,0, z)), for

the case D . Profiles clearly indicate a streamwise and spanwise growth of motions up to z ≈ 16,

in the neighborhood of the first zero-crossing of the 〈u〉 velocity. The integrated Ruu confirms

the presence of structures characterized by an Eulerian length scale L11 ≈ δ, in agreement with

the definition of LSMs. Negative lobes in the correlation function in the spanwise direction are

indicative of regions of relatively higher/lower momentum flanking each others, in agreement
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Figure 4.6 – Streamwise (left) and spanwise (right) two-point correlation coefficients of the
streamwise velocity (Ruu(Δx,0, z) and Ruu(0,Δy, z)) calculated at different distances from the
wall for the case D.

to what observed in Fig. 4.2 and in agreement with results from canonical wall-bounded flows

(Marusic and Hutchins, 2008). A better picture and a quantification of the vertical coherency

of the flow result from the three dimensional spatial correlation function of the streamwise

velocity, defined as

R3d
uu(Δx,Δy, z, zr ) = 〈u′(x, y, zr )u′(x +Δx, y +Δy, z)〉

〈u′2(x, y, zr )〉 . (4.5)

Isosurfaces of R3d
uu are displayed in Figure 4.7, for zr = 16. The region of positive correlation

(marked by red) is highly elongated in the streamwise direction and, as expected, is flanked

on either side in the spanwise direction by a region of negative correlation (marked by blue).

The positive correlation iso-surface extends vertically over the entire layer characterized by a

negative shear rate (up to z ≈ 32). Moreover, the iso-surfaces are inclined upward along the

upstream direction and more elongated towards the downstream direction, in net contrast with

results from canonical boundary layer flows, where iso-surfaces are usually inclined upward in

the downstream direction and are characterized by an elongated tail in the upstream regions.

This, as explained in the following, is a direct consequence of the geometrical structure of

coherent motions in katabatic flows.
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Figure 4.7 – Iso-surfaces of R3d
uu with zr = 16. Red iso-surfaces show positive correlation

(R3d
uu = 0.1), whereas blue iso-surfaces show negative correlation (R3d

uu =−0.1).

Figure 4.8 – Visualization of the vortex distribution detected by the Q-criterion. The Q =
0.05Qmax iso-surfaces are colored by u′.
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Figure 4.9 – Vector plot of the instantaneous velocity field over a x − z plane intersecting a
high-momentum region, colored by the instantaneous velocity fluctuation with respect to the
instantaneous planar average value u′′ = u −〈u〉.

4.3.4 Characterization of LSMs and VLSMs

To gain further insights on the structure of LSMs and VLSMs iso-surfaces of the second

invariant of the full-velocity tensor (Jeong and Hussain, 1995)

Q =−1

2

∂u j

∂xi

∂ui

∂x j
(4.6)

are displayed in Fig. 4.8. The considered subset of the domain is centered in correspondence

of a high-momentum event. From Fig. 4.8 is clear how the boundary layer is populated by

LSMs of high momentum, flanked by similarly elongated regions of low momentum, and

coherent over a length scale proportional to the boundary layer thickness δ. The overall

picture is consistent with the observed peaks in the pre-multiplied spectra and co-spectra (see

Fig. 4.3 and 4.4), and with the trend of the two-point correlation coefficients (see Fig. 4.6). Fig.

4.8 suggests that, similarly to what is observed in canonical boundary layer flows, packets of

hairpins concatenate in the streamwise direction to form LSMs in the outer layer. It is also

apparent in Fig. 4.8 how LSMs further align to form larger structures, likely resulting in the

VLSMs signatures presented in Fig 4.3 and 4.4.

A velocity-vector map, displayed in Fig. 4.9, further confirms the presence of hairpins around

the high-momentum bulge. The observed katabatic flow hairpin vortices (KFHV in the fol-

lowing) are characterized by a head located upstream in the return flow region, and by legs

inclined at about 12◦, protruding downstream into the inner regions of the flow. The tails

are connected to the head by vortex necks inclined at roughly 45◦ to the wall. Note that the

specific inclination angles of the vortex neck and tail might depend on the sloping angle of

the underlying surface. The streamwise separation of KFHV structures is about δ/2. KFHV

are pumping high velocity fluid from the LLJ regions up in the outer layer, resulting in the
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Figure 4.10 – Schematic of a katabatic flow hairpin vortex and the induced motion. Adapted
from Adrian et al. (2000).

documented Q1 events (see Fig. 4.5). Adrian et al. (2000) described an idealized hairpin vortex

signature for canonical boundary layers as having three characteristics in a x − z plane: (1)

a vortex head, (2) an ejection of low-momentum fluid event, created by the induction of the

vortex legs, and (3) a stagnation point where the ejected low-momentum fluid meets the faster

upstream fluid. Based on the same reasoning, an idealized KFHV might be defined by three

characteristics in the x − z plane: (1) a vortex head, (2) an ejection of high-momentum fluid

event, created by the induction of the vortex legs, and (3) a stagnation point, where the ejected

fast-momentum fluid meets the slower upstream fluid, resulting often in a Q3 event and in

the formation of an inclined shear layer upstream. Q1-Q3 events can thus be regarded as

the characteristic signature of a hairpin vortex in katabatic flows. As in classical boundary

layer flows (Adrian et al., 2000; Tomkins and Adrian, 2003), these signatures in the x − z planes

appear frequently in groups in the streamwise direction, and thus the stagnation point might

not be present, because the upstream vortex prevents the impingement of the low-speed fluid

onto the high-speed fluid. This is the case in the velocity-vector map displayed in Fig. 4.9 for

instance. Figure 4.10 schematically depicts the structure of a typical KFHV and the induced

flow events on a x−z plane that cuts through the centre of the vortex. The schematic has been

adapted from Adrian et al. (2000), to highlight the apparent symmetries between katabatic

flows and canonical pressure-driven boundary layers.

Velocity-vector maps consistently report hairpins heads located in the return flow region (as

in Fig. 4.9). This might be justified from a purely dynamical point of view, considering the

Magnus effect resulting from the positive (anti-clockwise) rotation of the spanwise vortex:

heads in the regions of negative shear would experience a negative force in the normal-to-
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Figure 4.11 – Conditionally-averaged flow field, where the conditional event is a high-speed
event (of positive u fluctuation) at (x, y, z) = (0,0,16). An Iso-surface of positive u fluctu-
ation (u′ = 0.0039) is displayed in red, flanked by iso-surfaces of negative u fluctuation
(u′ = −0.0031). An inset providing a zoom on the velocity-vector map in the y − z plane
is also shown.

slope (z) direction, shifting them toward the wall, and likely resulting in a collapse of the

structure, whereas heads in the return flow region, which is characterized by a negligible shear

rate, are likely to hold their position over several eddy turnover times, and might likely be

responsible for the growth of the boundary layer δ.

To further clarify (from a statistical perspective) the structure of LSMs and VLSMs Fig. 4.11

displays the conditionally-averaged flow field, where the sampling condition is a high-speed

event at (x, y, z) = (0,0,16). At such distance from the wall VLSM provide the largest contri-

bution to 〈u′w ′〉. High-momentum regions are represented by a red iso-surface of positive u

fluctuation, whereas low-momentum regions are represented by a blue iso-surface of negative

u fluctuation. The visualized structures are centered around the conditional point and reach

up to z ≈ 32. Large-scale roll modes are apparent from the proposed inset, where velocity

vectors on the y − z cross-plane are displayed. The conditionally-averaged flow field validates

the schematic of Fig. 4.10, where a counter-rotating vortex pair (the legs of KFHVs) induce an

upwash of high momentum fluid in the above-jet regions. Besides, from Fig. 4.11 is apparent

how the counter-rotating vortex pair is directly responsible for the observed low-momentum

regions (blue iso-surfaces), generated by Q3 events. In particular, note the radial asymmetry

if the roll modes, whose axis is shifted toward the ejection event, resulting in narrow (in the
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spanwise direction), highly energetic ejection of high speed fluid, flanked on each side by

broad sweeps of low momentum fluid.

This suggests a decomposition of the outer layer in katabatic flows in sparse, stream-wise

elongated high momentum regions, Q1 events induced by the rotation of radially asymmetric

hairpin legs, flanked by broad, low momentum fluid: Q3 events also induced by rotation of

the hairpins’ legs. The asymmetry of the hairpins’ legs is likely a result of the background

stable stratification, which confines strong ejections to relatively narrow regions in the flow.

Iso-surfaces displayed in Fig. 4.11 further confirms the observed hairpin paradigm: a rela-

tively narrow high momentum fluid is flanked by relatively broader low momentum regions,

characterized by an overall stream-wise extension of about 5δ, induced by the clustering

and streamwise alignment of hairpin vortices. Note the similarity with the large-scale roll

modes previously observed in laboratory experiments of turbulent boundary layers (Marusic

and Hutchins, 2008) and large-eddy simulations of atmospheric boundary layers (Fang and

Porté-Agel, 2015). Further, from Fig. 4.11 it is also apparent how the high-momentum event is

characterized by a negligible time-averaged w component near the wall, likely resulting in the

observed inactive role of LSMs and VLSMs in such regions.

4.4 Summary and conclusions

Large and very-large scale motions populating katabatic flows over steep slopes are identified

and characterized from DNS at a modified Reynolds number, Rem ∼ 967, considering four

different slope angles. Based on flow visualization and statistical analysis it is apparent how

the energetic coherent structures in katabatic flows are strongly dependent on the slope angle.

Pre-multiplied power spectra and co-spectra confirm the presence of LSMs, characterized

by a streamwise extension on the order of the boundary layer thickness (δ). A second mode

characterizes pre-multiplied spectra and co-spectra when the slope angle is below 70 degrees,

indicative of VLSMs. For the smaller among the considered surface sloping angles, VLSMs

are found to carry a significant portion of the streamwise TKE component and shear stress

in the above-jet regions of the flow, which can represent 30% to 45% of the total TKE over

certain layers. Conversely, LSMs and VLSMs can be regarded as inactive motions in the

near-wall regions. Results highlight how LSMs and VLSMs are formed when harping vortices

concatenate in the streamwise direction, with typical separation of about δ/2. Katabatic flow

hairpin vortices (KFHV) are characterized by a head located upstream in the return flow region,

and by tails inclined at about 12◦ protruding downstream into the inner regions of the flow. In

addition, the tails are connected to the head by vortex necks inclined at roughly 45◦ to the wall.

The rotation of the hairpins’ legs induces high-momentum fluid from the LLJ regions in the

outer layer (Q1 event), followed by a sweep of low-momentum fluid (Q3 event) and resulting

in an inclined shear layer located upstream of the vortex. A sequence of Q1-Q3 events is hence

proposed as characteristic signature of KFHVs. The proposed hairpin paradigm identifies

LSMs and VLSMs as the observed alternation of narrow (in the spanwise direction) bulges

of high-momentum fluid, and the relatively broader regions of low momentum fluid, both
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induced by the rotation of hairpin’s legs. Results further suggest that a larger domain size is

necessary in order to accommodate VLSMs in katabatic flows over shallow slopes.
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5 Large-eddy simulation of atmospheric
boundary-layer flow over Antarctic
sea-ice formations using a dynamic
roughness model

5.1 Abstract

A series of large-eddy simulations (LES) of fully developed flow over high-resolution snow-ice

surfaces of Antarctic sea ice floes are performed to study surface drag and roughness parame-

ters at process scales from 1 cm to 100 m. Snow/ice surface morphology was obtained using

a terrestrial laser scanner during the SIPEX II (sea ice physics and ecosystem experiment II)

research voyage to East Antarctica (September-November 2012). The effects of large-scale

features of the surface on the wind flow (those features that can be resolved in LES) are ac-

counted for through an immersed boundary method (IBM). Conversely, the drag forces caused

by subgrid-scale features of the surface should be accounted for through a parameterization.

However the effective hydrodynamic surface roughness parameter (z0) for snow ice is not

known. Hence, a recently developed dynamic surface roughness (DSR) model is adopted, in

which z0 is determined using the first-principles based constraint that the total momentum

flux (drag) must be independent on the grid-filter scale. The model is found to be robust

and yields accurate flow predictions (resolution invariant). An estimate of the dimensionless

roughness parameter α is provided for use in climate, weather prediction, and scalar transport

models to prescribe the hydrodynamic roughness length z0

5.2 Introduction

Recent rapid changes in the climatology of sea ice extent in the Arctic as well as in the Antarctic

are only partially understood (Kimura et al., 2013; Holland et al., 2014) and the decrease in

Arctic sea ice contrasts the marked increase in the Antarctic counterpart (Simmonds, 2015). At

the same time, sea ice dynamics has such a large influence on the climate system as a whole

(e.g. Papritz et al. (2015)) that any climate or weather predictions remain uncertain if sea ice is
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not properly represented. One difficulty with accurate model predictions of sea ice dynamics is

the very complex and dynamic interaction between the ice/snow surface and the atmosphere.

Complex processes such as formation of snow ice (Eicken et al., 1994) or superimposed ice

(Nicolaus et al., 2003; Obleitner, 2004), limitation of thermodynamic ice growth (Eicken et

al., 1995), the formation of pressure ridges as well as drifting and blowing snow (Leonard

and Maksym, 2011) all contribute to this complexity. Snow surfaces are therefore among

the most dynamic surfaces on earth and roughness can change within hours (Trujillo et al.,

2016; Amory et al., 2015). A particular difficulty is the correct representation of wind-ice drift

relationships (Stössel et al., 2011; Uotila et al., 2014), which are intrinsically highly non-linear.

Since the roughness of the snow surface can change quickly and over very large areas, a correct

representation of momentum transfer is not only required to estimate large-scale ice drift and

total ice mass balance (Zhang, 2014) but also to correctly represent erosion and deposition of

snow in these heavily wind-blown environments (e.g. Groot Zwaaftink et al. (2014)). Only if the

snow and roughness dynamics of the snow-on-sea ice surface are sufficiently well represented,

progress in a quantitative assessment of the role of sea ice in the weather and climate system

will be possible. This includes important aspects on biological life, which depends on light

penetration through snow and ice (Nicolaus et al., 2012). While the importance of snow-

atmosphere interactions has been recognized, the simplifications used in atmospheric models

at the surface are still limiting, despite some recent progress in the area (Groot Zwaaftink et al.,

2014).

Measurements and modeling of canonical boundary-layer flows over rough surfaces is at

a somewhat more mature stage. The problem has in fact received great attention since

the early works of Schlichting (1936) and Nikuradse (1950), summarized in the reviews by

Raupach et al. (1991), Jimenez (2004) and Castro (2007). Much work has focused on flows

characterized by a few length scales (Xie and Castro, 2006; Cheng et al., 2007; Kono et al.,

2010; Anderson et al., 2015; Yang et al., 2016), which provide a convenient framework for the

analysis, but more recently, a considerable amount of work has also focused on flow over

objects and surfaces characterized by a broad range of scales, including fractal tree-like shapes

immersed in a turbulent boundary layer (Chester and Meneveau, 2007; Chester et al., 2007),

flows over urban-like obstacles (Cheng and Castro, 2002; Xie and Castro, 2009; Bou-Zeid et al.,

2009), flows over gravel-beds (Nikora et al., 2001, 2004, 2007; Mignot et al., 2008, 2009; Yuan

and Piomelli, 2014) and flows over fluvial-like landscapes (Anderson et al., 2012). Much of

this knowledge can be used to study turbulent flow over sea-ice surfaces. In simulations

of turbulent flow over rough, multi-scale surfaces, computational cost is the limiting factor.

Considering sea ice landscapes for instance, on one hand, there is need to properly represent

the flow interaction with the surface down to the smallest roughness elements, on the other

hand, to be reasonably free from direct roughness effects one would need H/max(h) � 50

(Jimenez, 2004), where H is the height of the computational domain, and h is the height of a

generic roughness element. Regarding flow over sea ice surfaces as in fully rough regime one

can set hu∗ν−1 = h+ � 80. Then, given the multi-scale nature of such surfaces, one can safely

assume (as lower bound) max(h)/min(h) = O (> 103), hence resulting in H+ � 4×106. The
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largest direct numerical simulation (DNS) of wall-bounded flows at present is H+ =O (103),

hence the need for approaches that aim at reducing computational costs.

In this regard, LES represent a valid alternative to DNS, but its use introduces an additional

roughness modeling requirement, as elaborated in the following. LES approaches rely on a

(implicitly understood or explicit) spatial filtering operation in the bulk of the flow, and on a

parameterization of the (removed) subgrid-scale (SGS) dynamics (see for instance Smagorin-

sky (1963); Germano et al. (1991)). In the case of landscapes characterized by a broad range of

scales, the filtering operation also applies to the underlying surface, so one needs to model

the effects of subgrid-scale roughness on the flow. Such a task is by no means trivial, given

the lack of knowledge on turbulent flows in the interfacial layer (the layer below max(h)), and

given that drag contributions of small scales in fractal-like surfaces is usually a significant

percentage of the total (Anderson and Meneveau, 2011; Anderson et al., 2012). In geophysical

applications, when all roughness elements are unresolved, and viscous drag is negligible, it is

common to rely on the equilibrium logarithmic law assumption (Prandtl, 1935; Monin and

Obukhov, 1954) to estimate the drag that the surface is exerting on the flow

U (z)

u�
= 1

κ
ln(

z −d

z0
), (5.1)

where u� =
√

τw ρ−1 is the friction velocity, τw is the wall stress, ρ is a reference constant

density, U (z) is the mean streamwise velocity at a given distance z from the wall, κ≈ 0.41 is the

von Kármán constant, z0 and d are the hydrodynamic roughness length and the zero-plane

displacement height respectively. z0 and d are parameters which needs to be specified. In

mechanical engineering a different form of expression 5.1 is often preferred, namely U (z)/u� =
κ−1 ln(z/ks)+B�, where ks is the so-called equivalent sand-grain roughness and B� ≈ 8.5.

The two expressions are equivalent, and related by z0 = ks exp(−B�κ).

z0 and d values have been deduced for a variety of geophysical flows, including flows over

plant canopies (Parlange and Brutsaert, 1989; Raupach et al., 1991; Böhm et al., 2013), over

urban canopies (see Grimmond and Oke (1999); Barlow and Coceal (2009) for an extensive

review), over snow surfaces(Clifton et al., 2008), and in pipe and channel flows (Zagarola and

Smits, 1998), to name but a few. Several models have been proposed to compute z0 and d

based on the morphometric characteristics of a given surface, where important parameters

are found to be the solidity λ f (projected frontal area per unit surface area), the planar density

λp (projected horizontal area per unit surface area), the r.m.s. of the height fluctuations

(σh) and the skewness of the height fluctuations sk . Among others, Brutsaert (2008) suggests

z0 = h0/10 for geophysical flows, where h0 is a characteristic height of the roughness elements,

Flack and Schultz (2010) propose ks ≈ 4.43σh(1+ sk )1.37, based on statistics of flows in fully

rough regime over a variety of roughness elements, Zagarola and Smits (1998) reports ks = 3σh

based on data from pipe flows with Gaussian height distributions. However, z0 and d are

hydrodynamic quantities, and thus, expressions based on purely geometrical statistics is

likely to be incomplete or case specific, as stressed in Schultz and Flack (2009). Some type of
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flow-dependent determination is necessary.

Recently, Anderson and Meneveau (2011) proposed a new dynamic approach to determine

the z0 parameter in LES of turbulent flow over multi-scale rough topographies, which display

scale-similarity over a range of length scales. In the so-called dynamic surface roughness

(DSR) model (Anderson and Meneveau, 2011), the z0 parameter is determined using the

first-principles based constraint that the total momentum flux (drag) must be independent on

the grid-filter scale. In traditional LES, the z0 coefficient must be prescribed ad hoc, whereas

the proposed dynamic approach has the advantage of determining the model coefficient at

runtime, leveraging the scale-invariance of the surface height statistics, in apparent analogy to

the dynamic Smagorisky model (Germano et al., 1991). The DSR model has been successfully

applied to study flow over synthetic topographies, constructed as a superposition of randomly

phase-shifted Fourier modes with prescribed spectral slopes (Anderson and Meneveau, 2011),

to simulate flow over fluvial-like landscapes (Anderson et al., 2012) and flow over ocean waves

(Yang et al., 2013). The good performance of the DSR model in such applications is due to the

self-similar behavior of the underlying surfaces at the LES filter-width. Scale-similarity is in

fact a typical property of natural surfaces, including evolved fluvial landscapes (Rinaldo et al.,

1993; Rodriguez-Iturbe et al., 1994; Rodriguez-Iturbe and Rinaldo, 1997), wind-driven ocean

surfaces (Yang et al., 2013), tree canopies (Raupach and Thom, 1981; Raupach et al., 1991;

Finnigan, 2000; Böhm et al., 2013), snow surfaces (Manes et al., 2008) and snow on topography

(Schirmer and Lehning, 2011). Recent analyses based on terrestrial laser scanning (Trujillo

et al., 2016) have shown how sea ice surfaces are also characterized by a power-law height

distribution, over a well defined range of wavelengths, spanning from the centimeter scale to

tens of meters. These results have motivated the current study.

Here, we perform a series of LES of fully developed flow over high-resolution snow/ice surfaces

of Antarctic sea ice floes, to determine the total surface drag and roughness parameters at

process scales from 1 cm to 100 m. Simulations are performed considering a neutrally stratified

atmospheric boundary layer (ABL), without rotational effects (Ro � 1), and where the flow

is forced by a constant streamwise pressure gradient. A high resolution snow/ice surface

morphology was obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics

and Ecosystem experiment II) research voyage to East Antarctica (September-November 2012)

and processed for use in LES. The effects of large-scale features of the surface on the wind

flow (those features that can be resolved in LES) are accounted for through an IBM approach.

Conversely, the drag forces caused by subgrid-scale features of the surface are accounted for

via the DSR model, which has been adapted for use in conjunction with the IBM.

An overview on the sea ice surfaces and on their processing for use in LES is provided in

Section §2. Details on the LES, IBM and DSR algorithms is provided in §3. §4 outlines the

setup of simulations and main results are presented in §5. Summary and concluding remarks

follow in section §6.
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Figure 5.1 – Resulting surface from aggregation of the point cloud dataset at 1 cm resolution
over a 100m × 100m area. Gaps are indicated by white areas.

5.3 Sea ice surface models and their processing for use in LES

Detailed observations of snow surface topography were made during the sea ice physics and

ecosystem experiment 2 (SIPEX-2) research voyage to East Antarctica in September-November

2012. Data collection during the experiment was performed over several sea ice floes along the

voyage track (ice stations). The surface considered in this study was collected on 2012-10-06

and at coordinates 65◦4.678′S,121◦40.321′E . Surface topographic information was obtained

using a terrestrial laser scanner (TLS, Leica C5). The operation requires the laser scanner to

be positioned at several locations to eliminate scan shade behind ridges and other surface

features, resulting in an integrated 3-D model of tens of millions of point returns for areas of

tens to hundreds of meters. The study area covers 100 m × 100 m, and the TLS point cloud

contains over 41 million points (average density = 4100+ points per m2). The point cloud

was post-processed to generate a regular Cartesian grid characterized by 1 cm grid-stencil in

the horizontal coordinate directions (displayed in Fig. 5.1). Gaps in the surface have been

filled through a least squares fit on a fourth order polynomial interpolator P4(x, y) on areas

of 10m × 10m. The resulting surface (Γb hereafter) reveals a vast amount of detail, such as

small-scale (∼ 30−50cm) dune-like surface patterns, human footsteps and penguin footprints.

The technological improvement that TLS provides over more traditional methods is in itself a

leap forward in surveying methods in extreme environments (e.g., Williams et al. (2013))

One-dimensional power spectra of surface heights for the x (streamwise) and y (spanwise)

directions are displayed in Fig. 5.2. Both spectra are characterized by a power-law behavior,

with spectral slopes β=−2.5 and β=−2.4 respectively. The range of wavelengths where the
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Figure 5.2 – One dimensional power spectral densities of surface heights in the x and y
coordinate directions. The LES grid size is highlighted with arrows, for the two resolutions that
were here considered. N denotes the number of grid nodes in the horizontal directions.

surface displays scale-similarity extends from few centimeters to tens of meters in both cases.

The LES filter width of the considered study is also displayed in Fig. 5.2, to highlight its

correspondence to wavelengths in the self-similar range of the height distribution (this will

have important implications for the DSR model).

For use in LES, Γb has been de-trended (linear trend) and spatially low-pass filtered using a

top-hat filter with support corresponding to the LES filter width, i.e.

Γ̃b = Γb ∗GΔ(x, y) (5.2)

where (̃·) denotes the spatial filtering operation, GΔ(x, y) is the impulse response of the linear

top-hat filter (of unit norm), ∗ denotes a cyclic convolution, and Δ is the LES filter width. This

operation removes aliasing errors when coarse sampling at the LES grid size, and returns a

periodized surface. Note that the original surface was characterized by an already negligible

trend, and that the resulting periodization does not generate corners or ridges of significant

height. Further, the surface was rotated, so that the x axes corresponds to the prevailing wind

direction. The prevailing wind direction is determined based on the observed erosion and

deposition patterns.

Variations in selected surface statistics as a function of the LES filter width are displayed in Fig.

5.3. Note the proportionality between the magnitude of the r.m.s. of the unresolved surface

features σΔ
h and the filter width Δ. Note also the fast drop in the variance of both the x and

y surface gradients. This behavior is justified if one considers that the underlying surface is

characterized by β≈−2.4 ≥−3, and thus the variance of the h-gradients is dominated by the

small scales.
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Figure 5.3 – Sea ice surface statistics as a function of the LES filter support (or grid stencil). sk

denotes the skewness of surface heights, σΔ
h denotes the r.m.s of the subgrid-scale surface

heights.

5.4 Numerical algorithm and the Dynamic Roughness Model

5.4.1 The LES algorithm

In LES, the energy containing scales are explicitly resolved, whereas subgrid-scale (SGS)

motions are modeled. The LES approach is particularly attractive if the support of the spatial

filter is the inertial subrange of turbulence (Meneveau and Katz, 2000), where the scale-

similarity of the flow allows simple parameterisations to be very effective.

We solve the rotational form of the iso-thermal filtered Navier-Stokes equations on a regular

domain Ω:

∂ũi

∂t
+ ũ j (

∂ũi

∂x j
− ∂ũ j

∂xi
) =− ∂π̃

∂xi
− ∂τi j

∂x j
− 1

ρ

∂p̃∞
∂xi

δi 1 , (5.3)

∂ũi

∂xi
= 0, (5.4)

where x, y are the horizontal (stream-wise and span-wise) coordinates and z identifies the

vertical coordinate direction, ũi are the filtered velocity components, π̃ is a modified filtered

pressure field, namely π̃= p̃
ρ + 1

3τi i + 1
2 ũi ũi , ρ is a reference density, and τi j represent the sub-

grid terms, which arise from the filtering operation (Pope, 2000) and 1
ρ
∂p̃∞
∂xi

δi 1 is a volumetric

forcing term which is introduced to drive the flow in the x direction. Solving the Navier-Stokes

equations in their rotational form ensures conservation of mass and kinetic energy (Orszag

and Pao, 1975). The computational boundary is partitioned as ∂Ω̃ = Γ̃b ∪ Γ̃t ∪ Γ̃l , where Γ̃t

and Γ̃l denote the top and lateral boundaries respectively. A free-lid boundary condition is
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prescribed at Γ̃t, whereas periodic boundary conditions apply in Γ̃l due to our Fourier partial-

sum spatial expansion. Γ̃b identifies the underlying (sea ice) surface, where a parameterised

boundary condition is applied, as explained in the following.

A pseudo-spectral collocation approach (Orszag, 1969, 1970) based on truncated Fourier ex-

pansions is used in the x, y coordinate directions, whereas a second-order accurate staggered

centered finite differences scheme is adopted in the vertical direction. Time integration is

performed via an explicit second-order accurate Adams-Bashforth scheme and a fractional

step method (Chorin, 1968; Kim and Moin, 1985) is adopted to compute the pressure field.

All nonlinear terms are de-aliased through the 3/2 rule (Canuto et al., 2006), to avoid the

detrimental effects induced by piling up of energy in the high wavenumber range (Kravchenko

and Moin, 1997). The core of the LES algorithm was developed in (Albertson and Parlange,

1999a,b), and equipped with an IBM in Chester et al. (2007), to account for underlying surfaces

/ objects interacting with the flow. The code has been extensively tested in simulation of

flow over rough topographies (see for instance (Bou-Zeid, 2004; Yue et al., 2007; Bou-Zeid

et al., 2009; Anderson and Meneveau, 2010; Calaf et al., 2010, 2011; Hultmark et al., 2013)) and

used to develop and test linear and non-linear LES subgrid-scale models (Meneveau et al.,

1996; Porté-Agel et al., 2000; Porté-Agel, 2004; Bou-Zeid et al., 2005; Lu and Porté-Agel, 2010,

2013). To close the system of equations 5.3 and 5.4 we rely on the Lagrangian Scale Dependent

Smagorinsky model (hereafter LASD) (Bou-Zeid et al., 2005), which was originally designed

for this numerical code. Smagorinsky models are based on the concept of mixing length, and

evaluate the traceless SGS stress tensor as function to the resolved strain rate tensor:

τi j =−2νt S̃i j =−2(cs,ΔΔ)2‖S̃‖2S̃i j , (5.5)

where νt represents the eddy viscosity, Δ is the filter width (usually proportional to the grid

size), S̃i j is the filtered shear rate tensor and cs,Δ is the Smagorinsky coefficient at scale Δ,

to be determined. Smagorinsky models are distinguished by the way they compute cs,Δ.

The LASD model has a number of advantages when used in simulations of wall bounded

flows and when coupled with complex geometries. For instance, it allows for a dynamic

evaluation of the model coefficient, thus overcoming the need to specify an ad hoc wall

damping function (Smagorinsky, 1963; Mason and Thomson, 1992). It also accounts for a

possible scale-dependency of the model coefficient (as opposite to the dynamic model of

Germano et al. (1991)), which is a desirable property at the wall, where the grid size approaches

the limits of the inertial subrange (Meneveau and Katz, 2000). Furthermore, the Lagrangian

averaging of the model coefficient makes the model well suited for applications involving

complex geometries since it preserves local variability, while overcoming the requirement

of homogeneous directions. We use a Gaussian filter in conjunction with the LASD model,

whose relatively compact support (in both physical and wavenumber space) reduces the Gibbs

oscillations that arise when the IBM approach is coupled with pseudo-spectral algorithm

(Tseng et al., 2006).
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Figure 5.4 – One-dimensional transect at y = 10m of the scanned sea ice surface, and equiva-
lent transect on a filtered version of the sea ice surface (filter support Δ= 6.3m). The displayed
transects have been vertically translated so that their average height equals zero.

5.4.2 The Immersed Boundary Method

As stated in the introduction, the underlying sea ice surface is accounted for through an IBM

algorithm (Mohd-Yusof, 1997; Mittal and Iaccarino, 2005). Γ̃b(x, y) is represented implicitly

as the zero level-set of a signed distance function φ̃(x, y, z), which is evaluated through a

recently developed projection algorithm. The IBM algorithm is a minor modification of the

Chester et al. (2007). The discrete forcing approach with indirect BC imposition results in great

variations of the pressure field inside the interface ( φ̃(x, y) < 0), thus complicating matters

for the DSR model (as elaborated in the following subsection). In the current version of the

IBM, ũi = 0 is thus enforced in φ̃≤ 0 as a boundary condition at time t , before advancing the

solution. In Fig. 5.4 we display a one-dimensional transect of the scanned sea ice surface at 1

cm resolution, and a filtered version of it, which corresponds to the underlying surface of a LES

simulation with grid stencil Δ= 6.3m. It is apparent how the filtered surface is smoother, i.e.

how a significant portion of the roughness features is removed. The form drag that would have

resulted from the interaction of the flow with such unresolved surface roughness needs to be

accounted for through a model. To account for the SGS contribution to the total drag force,

we rely on the equilibrium logarithmic law of the wall (Prandtl, 1935; Monin and Obukhov,

1954), enforced at all the collocation nodes which fall in the region −1.1Δ≤ φ̃≤ 1.1Δ, as in

Chester et al. (2007). In the specific, a local reference system is introduced: e1 = ũt ,e2 = ũ× ñ

and e3 = ñ, with ut = ũ− (ũ · ñ)ñ. In this coordinate system, the law of the wall is applied to

compute the τ13 = τ31 components of the Cauchy stress tensor (all other components are

assumed to be zero), resulting in

τ13 = τ31 =
(

κ‖ũt‖2

ln(dz/zΔ
0 )

)2

, (5.6)
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where dz represent the grid stencil in the vertical direction, ũt is the tangential-to-surface

velocity, evaluated at a normal-to-surface distance dz, and zΔ
0 is the hydrodynamic roughness

length that is used to account for the effects of the unresolved roughness (that below scale Δ).

The local stress tensor is then rotated back to the global (x, y, z) Cartesian reference system for

further differentiation. To alleviate the Gibbs oscillations that arise due to the C 0 nature of the

solution in an horizontal plane cutting the surface, a smooth velocity profile ũi is generated

inside the interface (φ̃≤ 0) before the spectral differentiation step (Tseng et al., 2006) adopting

a Laplacian smoothing operator which resembles the reconstruction scheme proposed in Cai

et al. (1989) and Greer and Banerjee (1997). Other techniques are also available (Fang et al.,

2011).

5.4.3 The dynamic surface roughness model

In the following, we will provide details on the dynamic surface roughness model, which was

recently developed in Anderson and Meneveau (2011), and here adapted for use in conjunction

with the current version of the IBM method. The low-pass filtering operation described in Sect.

5.3 decomposes the surface into a resolved and into a subgrid-scale height contribution. The

filtered height distribution Γ̃b is accounted for through the IBM method, whereas the effects

of the SGS height contribution on the flow is modeled using the equilibrium logarithmic

law of the wall (Prandtl, 1935; Monin and Obukhov, 1954) (as described above), where a

hydrodynamic roughness length z0,Δ has to be specified. The total force vector acting on the

fluid due to the underlying surface is given by

Fi =
∫∫

Γ̃b

(p̃ ñi )dΓ̃b +ρ

∫∫
Γ̃b

(τΔi j ñ j )dΓ̃b , (5.7)

where p̃ is the resolved pressure, ñi is the unit normal to the filtered surface, ρ is a reference

(constant) fluid density and τΔi j is the SGS kinematic surface stress, evaluated at scale Δ. In

the DSR approach, z0,Δ is set proportional to the r.m.s. of the (unresolved) surface roughness

below scale Δ:

z0,Δ ≡
√

z2
0,p + (ασΔ

h )2 , (5.8)

where z0,p is a regularization factor, and the dimensionless roughness parameter α is respon-

sible to adjust the geometrical length scale (σΔ
h ) to account for hydrodynamic effects. σΔ

h is

evaluated as the r.m.s. of the unresolved surface height on an area of Δ×Δ:

σΔ
h = 1

Δ2

∫∫
Δ×Δ

(h̃2 − h̃2)dS . (5.9)

Equation 5.8 is designed so that z0,p can also be regarded as a contribution from roughness

at scales below the resolution of the instrument (e.g., laser scanner) that allowed to build

the original surface. Throughout the study, we assume z0,p = 10−5 � ασΔ
h , thus treating

z0,p as a mere regularization factor. The unknown parameter α is evaluated dynamically by
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imposing a self-consistency condition on the averaged total drag force, which is assumed to

be scale-invariant at the grid- and at a test-filter width, i.e. FΔ
i = F 2Δ

i , resulting in

〈p̃ ñi 〉Γ̃b
+〈

(
κUΔ

ln(dz/z0,Δ)

)2 ũ∗
i

UΔ
〉
Γ̃b

= 〈p̃ ñi 〉Γ̃b
+〈

(
κU 2Δ

ln(dz/z0,2Δ)

)2
ũ
∗
i

U 2Δ
〉
Γ̃b

, (5.10)

where 〈·〉
Γ̃b

and 〈·〉
Γ̃b

denotes averaging over values at Γ̃b and Γ̃b respectively, UΔ(x, y) and

U 2Δ(x, y) are the resolved horizontal velocity magnitude at scale Δ and 2Δ, evaluated at a

normal-to-surface distance dz, i.e.

UΔ(x, y) ≡
√

ũ(r̃)2 + ṽ(r̃)2, U 2Δ(x, y) ≡
√

ũ(r̃)2 + ṽ(r̃)2, (5.11)

where (·) denotes filtering over horizontal planes (x, y) using a top-hat kernel with support

2Δ, and r = (x +dz n1, y +dz n2,Γb(x, y)+dz n3), where n1,n2,n3 are the components of the

normal-to-surface vector at the surface. Further, u∗
i (x, y) = ui (r). At scale 2Δ we expect a

reduced contribution from the resolved pressure field, and and increase in the SGS component,

to result in the same overall drag force (sum of resolved + SGS).

The only unknown in Eq. 5.10 is the parameter α, which can thus be computed through a

method of choice. In the current study we rely on the robust bisection method, which results

in negligible computational overhead. The bisection method is initialized adopting α1 = z0,p

and α2 = 1. Once α is specified, z0,Δ is readily derived, to be used in Eq. 5.6 to compute the SGS

surface stress tensors. Note that condition 5.10 is enforced adopting a simplified expression

for the SGS drag term, which circumvents the need of mapping local reference systems with

the global one for the computation of the SGS surface stress tensor, hence simplifying matters

from an algorithmic perspective. Such a simplification is justified if one considers that surface

gradients are small, and thus w is also expected to be relatively small, when compared against

u and v , in the near surface regions.

In formulating Eq. 5.10 it is implicitly assumed that the parameter α is scale-invariant (Men-

eveau and Katz, 2000). Because of this, an important conceptual requirement for the DSR

model, is that the LES filter width (or grid stencil) has to be in the landscape’s self-similar range,

where the height statistics display a scale-invariant behavior. From Fig. 5.5 is also apparent

how increasing the filter support progressively removes surface features. The contribution

from the IBM algorithm is thus expected to decrease as the filter width increases, and the SGS

stress contribution to increase, proportionally to the support of the filter. This because the

two parts of the force must still add up to the correct total value, independently of the scale.

In the current study we average quantities across the whole landscape, thus considering a

single z0,Δ, assumed to be representative of the entire surface. This choice is motivated by the

relative statistical homogeneity of the roughness features. A possible extension / improvement

of the model would be to average Eq. 5.10 over smaller subregions of the surface, allowing z0,Δ
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Figure 5.5 – Rendering of the periodic sea ice 100m × 100m filtered surfaces (top hat filter).
Filter support is Δ= 1.56m (a), Δ= 0.78m (b), Δ= 0.39m (c) and Δ= 0.195m (d) in the x, y
coordinate directions.

Label Lx /H ×Ly /H ×Lz /H Nx ×Ny ×Nz Δ/H z0,Δ/H

A 16.6×16.6×1 128×128×64 0.13 dynamic

B 16.6×16.6×1 64×64×32 0.26 dynamic

C 16.6×16.6×1 128×128×64 0.13 1.6×10−6

D 16.6×16.6×1 64×64×32 0.26 1.6×10−6

Table 5.1 – Geometry and parameters for the LES runs.

to vary in space.

5.5 Setup of simulations

Table 5.1 summarizes the setup of the current study. Four LES runs have been considered,

using two different filter support. Simulations A and B make use of the DSR model, whereas

simulations C and D do not, and are both characterized by a fixed z0,Δ = z0,p = 10−5 m. The

flow is forced by a constant pressure gradient ∂x p∞/ρ, which, together with lateral periodic

boundary conditions, defines a friction velocity uτ =
√

(δ−d)∂x p∞/ρ ≈ 0.45 m s-1. Simula-

tions are initialized from a logarithmic mean velocity profile, with superimposed white noise

with prescribed variance, to speedup the transition to turbulence thus shortening the initial

transient regime. Simulations are integrated in time for 40T , where T = H u−1
τ denotes a refer-

ence eddy turnover time. The first 20T are required to reach a dynamic equilibrium condition

(Monin, 1977), and statistics are collected during the last 20T . Averaging over 20T results in

good estimates of the expected value for first and second order statistics. As in Anderson and

Meneveau (2011), to preserve numerical stability of the DSR model, an initialization period of
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Figure 5.6 – Instantaneous (dimensional) stream-wise u velocity over the filtered sea ice
surface for case A. The realization corresponds to the last simulated time step.

0.2T is adopted, corresponding to the first 0.5% of the total simulation time, during which a

static α= 0.3 is adopted. Different values of the static α were found to have a negligible impact

on the initial transient and on the computed statistics. Throughout the study 〈·〉 will denote

the double averaging (DA) operator, where averaging is performed in time and along spatial

coordinates of statistical homogeneity (x, y), considering the fluid regions only (Nikora et al.,

2007). Time fluctuations are written as (·)′.

5.6 Results and discussion

Figure 5.6 displays a snapshot of the instantaneous (dimensional) stream-wise velocity field for

simulation A. As typical of LES approaches, the boundary layer is populated by a broad range of

scales, and is characterized by alternation of high- and low-momentum streamwise elongated

streaks, apparent signature of the so-called large-scale and very large-scale organized motions

(Tomkins and Adrian, 2003; Fang and Porté-Agel, 2015).

5.6.1 The DSR model

Fig. 5.7 depicts the typical dependence of the resolved, subgrid-scale, and of the resulting total

kinematic momentum fluxes, as a function of the α parameter, for the grid- and test-filter

scales. The solution we seek (through the bisection method) is represented by the intersection

of the total momentum flux curves (occurring at α= 4.5×10−4 in this specific case). Note how

the resolved stress component (which does not depend on α) is reduced at the test-filter scale

(2Δ), as expected, given that the filtering operation removes the highest wavenumber range of

roughness features, thus resulting in a lower contribution from small-scale pressure drag. The

SGS drag terms 〈τΔxz〉Γ̃b
and 〈τ2Δ

xz 〉Γ̃b
increase as a function of α, as expected. Moreover, in the

considered α range, 〈τ2Δ
xz 〉Γ̃b

is characterized by a faster increase with respect to 〈τΔxz〉Γ̃b
, thus
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Figure 5.7 – Resolved, SGS and total (resolved+SGS) surface stress as a function of the surface
roughness parameter α. Curves are representative of the last α-update step. Results are shown
for both grid-filter scale (Δ) (black lines) and test-filter scale (2Δ) (red lines). Symbols: solid
black lines, 〈τΔxz〉Γ̃b

+〈p̃i ñi 〉Γ̃b
; dashed black lines, 〈τΔxz〉Γ̃b

; black crosses, 〈p̃i ñi 〉Γ̃b
, solid red

lines, 〈τ2Δ
xz 〉Γ̃b

+〈p̃i ñi 〉Γ̃b
; dashed red lines, 〈τ2Δ

xz 〉Γ̃b
; red crosses, 〈p̃i ñi 〉Γ̃b

.

allowing the total stress to match at a given α.

Fig. 5.8 displays the evolution of the roughness parameter α and of the corresponding values

of the resolved and SGS stress components for simulation A. The α coefficient shows rapid

convergence from the initial imposed value (α= 0.3) to its surface-dependent range of values.

Note that the displayed time steps correspond to the initial transient phase, and as apparent,

both the α coefficient and the resolved and SGS kinematic stresses are characterized by a

negative linear trend, underlying a slow decrease in time, toward their equilibrium value. With

this regard, from Fig. 5.8 is indeed clear how the total momentum flux is out of equilibrium

with respect to the imposed pressure gradient forcing, since 〈p̃i ñi 〉Γ̃b
+〈τΔxz〉Γ̃b

> (1/ρ)∂p̃∞/∂x.

Note however that despite the transient regime, the resolved momentum flux at scale 2Δ is con-

sistently smaller than its counterpart at scale Δ, which results in a stable behavior of the model

(no instabilities). This is in large part related to the broad support of the averaging operator,

more localized averaging procedures might in fact require clipping of the α coefficient.

5.6.2 Velocity profiles

Mean stream-wise velocity profiles for cases A,B (DSR model) and C ,D (no DSR model) are

displayed in Fig. 5.9. Averaging is performed in time (20 T ) and in space over horizontal

planes using an intrinsic averaging approach (Nikora et al., 2007) (i.e. only fluid regions are

considered). It is apparent how applying the DSR model results in a better collapse of velocity

profiles in the logarithmic and outer layer, when compared to the cases where no DSR model

is applied. When no DSR model applies, higher resolution simulations account for a larger

amount of roughness features, thus resulting in enhanced surface drag, when compared to

lower resolution cases. Simulation C (Nx ×Ny ×Nz = 128×128×64) is in fact characterized by
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Figure 5.8 – Time evolution of the roughness parameter α (top) and corresponding values
of spatially averaged kinematic surface stress components (bottom) for case A. Symbols:
black squares, 〈τΔxz〉Γ̃b

; red squares, 〈τ2Δ
xz 〉Γ̃b

; black crosses, 〈p̃i ñi 〉Γ̃b
; red crosses, 〈p̃i ñi 〉Γ̃b

. α is

updated every 10 LES time steps, thus the displayed plot accounts for the first 3000 simulation
steps after the DSR model has been activated (corresponding to 0.75% of the total simulation
time).

Figure 5.9 – Averaged stream-wise velocity profile for cases A,B (left) and C,D (right).
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a relatively weaker mean flow with respect to case D (Nx ×Ny ×Nz = 64×64×32). When the

DSR model is applied, velocity profiles are very similar at the two considered scales (Δ and

2Δ), confirming the enhanced contribution of SGS momentum fluxes as the LES filter width

increases, thus resulting in a grid-independent surface drag force.

Based on current simulations, we report a preliminary value of α= 3.5×10−4 for the considered

sea ice surfaces, for flow along the prevailing wind direction. This value is consistent across

the considered resolutions, confirming the scale-invariance of the model coefficient, thus in-

directly validating the LES+IBM+DSR approach. It is also notable how the resulting roughness

parameter α is of the same order of magnitude of that reported in Anderson and Meneveau

(2011) for the same spectral slope. Anderson and Meneveau (2011) report α=O (10−4) for LES

of turbulent flow at Re →∞ over synthetically generated surfaces characterized by a spectral

slope β=−2.4. This indirectly confirms the good performance of the considered IBM and of

the SGD (Anderson and Meneveau, 2010) methods in accurately accounting for the aggregate

effects of roughness features that fall into the resolvable range of scales for LES.

5.7 Summary and conclusions

The current study has focused on characterizing roughness properties of Antarctic sea ice

floes via large-eddy simulation of fully developed boundary-layer flow. Snow/ice surface

morphology was obtained using a terrestrial laser scanner during the SIPEX II (sea ice physics

and ecosystem experiment II) research voyage to East Antarctica (September-November 2012),

and has been mapped to a 100m × 100m Cartesian grid at 1 cm resolution. Surface topography

is characterized by a power-law height distribution over a wide range of scales (from a few

cm to tens of meters), with spectral slope β ≈ −2.4. Current LES resolution is not capable

of resolving the flow down to the smallest roughness features, thus requiring a low-pass

filtering of the underlying surface, for use in simulations (to avoid aliasing errors). The range

of roughness scales directly representable through the LES grid is accounted for through

an IBM algorithm, whereas drag effects associated with unresolved roughness modes are

parameterized through a recently developed DSR model, which has been here adapted for use

in conjunction with the IBM. The DSR model is based on Monin-Obukhov similarity theory

to parameterize the drag from SGS roughness, and evaluates the z0,Δ parameter dynamically,

based on the self-consistency condition that total drag is independent on the grid-filter scale.

The dynamic surface roughness model is inspired by the Germano identity, traditionally used

to determine model parameters for closing subgrid-scale stresses in the bulk of a turbulent

flow, and overcomes the need to specify a-priory a z0,Δ, which for sea ice surfaces is not known.

The proposed DSR model is found to be robust, requiring no clipping of the α parameter, and

leads to accurate flow predictions (resolution invariant). The resulting estimate of the model

parameter is α= 3.5×10−4. α can be used to prescribe the hydrodynamic roughness length

z0,Δ in simulations based on purely geometrical statistics of the underlying sea ice surface,

thus greatly simplifying matters. Surface drag over sea ice is of primary control on sea ice flow
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patterns and deformations at scales that are important for climate and weather prediction

models. Therefore, an accurate specification of the hydrodynamic roughness length z0,Δ is of

great importance. Specification of the surface roughness parameter for sea ice surfaces over

a broader range of spectral slopes and approaching wind directions is the subject of current

research.
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6 Conclusions and Perspectives

Land-atmosphere interactions occur mostly over complex terrain, resulting in a broad variety

of phenomena governing the exchange of energy and mass between the ABL and the underly-

ing surface. In this thesis, two among the relevant phenomena were characterized, namely

that of slope flows, and ABL flow over multi-scale rough topographies.

In Chapter 2 a closed form analytic solution of the steady-state Prandtl model equations was

derived, valid for spatially varying eddy diffusivities (O’Briens type) and arbitrary constant

Prandtl number. The resulting velocity and buoyancy profiles show significant variations in

both phase and amplitude of minima and maxima compared to the classic constant eddy

viscosity model and the more recent (approximate) WKB solutions, thus shedding new light

on the problem. The near wall region is characterized by a relatively stronger surface inversion

and velocity gradients, the LLJ is further displaced toward the surface, with peak velocity

strongly depending on the model parameters. The proposed solution has the potential to be

used as surface closure in large-scale models, as an alternative to MOST.

In Chapter 3 DNS was employed to characterize the turbulent structure of slope flows and to

determine the sensitivity of the solution to variations in the parameter space. Simulations were

performed within the conceptual framework of the Prandtl model, with focus on variations

in the mean flow, second order statistics, and MKE and TKE budget terms, as a function of

the sloping angle α and Reynolds number Re. Turbulent anabatic and katabatic regimes

were found to be structurally similar at high sloping angles, qualitatively resembling the

Prandtl solution, but to undergo a different transition as the sloping angle decreases, leading

to stark statistical differences when α� 30◦. No region with constancy (even approximate)

of fluxes with distance from the wall was observed (basic requirement for MOST to hold). A

subdivision of the boundary layer was also proposed, based on analysis of the TKE budget

terms: 1. an outer layer, where turbulent transport balances dissipation, 2. an intermediate

layer, where shear and buoyant production overcome dissipation, and turbulent and pressure

fluctuations are responsible for relocating the excess of TKE, and 3. a wall layer, capped by the

jet, where pressure and turbulent transport balance dissipation and viscous diffusion of TKE.

Results complement previous findings on the topic (Fedorovich and Shapiro, 2009a,b), and
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provide insight on the system that are of great importance toward the development of reliable

parameterizations for use in LES and lower dimensional models (such as the one proposed in

Chapter 2).

Chapter 4 further explored the structure of turbulence in slope flows. Statistical analysis and

identification criteria were combined to characterize coherent energetic motions in katabatic

flows over steep slopes, within the DNS framework of Chapter 3. Coherent structures proved

to be strongly dependent on the slope angle. LSMs were persistently observed over the

considered range of sloping angles, characterized by a streamwise extension in the order of the

boundary layer thickness (δ). A second low-wavenumber mode characterized pre-multiplied

spectra and co-spectra when the slope angle was below 70 degrees, indicative of VLSMs, with

a streamwise extension of about 10δ, contributing to the turbulent kinetic energy and shear

stress in the above-jet regions up to 30% and 45%. LSMs and VLSMs were found to arise due

to streamwise alignment and concatenation of packets of hairpins, characterized by a head

located upstream in the return flow region and by tails protruding downstream into the inner

regions of the flow. Based on such hairpin paradigm, LSMs and VLSMs can be regarded as the

observed high momentum regions, flanked on each side by relatively broader regions of low

momentum fluid, also induced by rotation of the hairpin legs.

In Chapter 5, a recently developed DSR model was adapted for use in conjunction with the

immersed boundary method IBM to characterize surface drag and roughness properties of

multi-scale sea ice surfaces. Snow/ice surface morphology was obtained using a terrestrial

laser scanner during the SIPEX II (sea ice physics and ecosystem experiment II) research

voyage to East Antarctica (September-November 2012), and has been mapped to a 100m ×
100m Cartesian grid at 1 cm resolution. LES of fully developed ABL flow were performed,

relying on an IBM approach to represent large-scale surface features (the features that can be

resolved in LES). Conversely, the drag forces caused by subgrid-scale surface features were

accounted for through a DSR model, adapted for use in conjunction with the IBM. The DSR

model represents a major step forward in the study of flow over multi-scale rough surfaces. It

is based on Monin-Obukhov similarity theory to parameterize the drag from SGS roughness,

and evaluates the z0,Δ parameter dynamically, based on the self-consistency condition that

total drag is independent on the filter scale. An important conceptual requirement for the

DSR model to perform well, is that the grid- and test-filter scales have to be within the scale-

invariant range of the surface height distribution. Given the wide range of scales where sea

ice floes display a power-law height distribution (from a few cm to tens of meters), such an

approach is deemed as a successful avenue for future research. In the specific case considered

herein, the model generated accurate flow predictions (resolution invariant), and yielded a

well-defined, rapidly converging, roughness parameter (α = 3.5×10−4). Knowledge of the

roughness parameter α is of great use in climate, weather prediction and scalar transport

models, because it allows to evaluate the hydrodynamic roughness length (z0) of sea ice

surfaces, based on available geometrical statistics.

With regard to slope flows, this dissertation has provided relevant insight on the physical
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mechanisms sustaining mean flow and turbulence. Beyond some apparent (but not straight-

forward) further research directions, such as confirming observed trends over a broader range

of Reynolds numbers, perhaps the most relevant future development may be deriving a reli-

able parameterization of turbulent effects on the flow, of use in LES and in lower dimensional

models. For instance, an accurate model for the eddy viscosity and diffusivity coefficients for

anabatic and katabatic flows would represent a first important step toward the development of

a near-surface closure. Other possible research directions include using the setup of Chapters

3 and 4 to gain insight on coherent motions populating anabatic flows, and katabatic flows in

the lower range of sloping angles, although the latter would require a larger domain and hence

be very expensive from a computational perspective. Thus far, slope flows over an hydrauli-

cally smooth surface have been considered. Further developments include accounting for

explicitly resolved roughness elements, and for the presence of canopies in the slope, where

radiative transfer schemes in the canopy layer will be explicitly needed and considered.

Further research directions with regard to LES of flow over multi-scale rough surfaces include

generalizing the DSR model to account for spatial variability of the model coefficient, and for

its possible scale dependency. Spatial variations in the dimensionless roughness parameter

α would allow to account for heterogeneity of the underlying surface, in terms of roughness

properties, but also in terms of hydrodynamic regimes within the same surface. SGS effects

in regions of attached flow might in fact result in different α values, when compared to that

characterizing SGS effects in the wake of roughness elements. In Porté-Agel et al. (2000) the

scale-invariant dynamic Smagorinsky model was generalized to account for scale dependency

of the model coefficient, and yielded a better approximation of SGS effects in the bulk of a

turbulent flow, when the filter width was in the energy containing range of scales (away from

the self-similar inertial range). Accordingly, a further research direction would be to generalize

the DSR model to account for scale dependency of the model coefficient, according to some

functionality whose parameters have to be determined dynamically. This would likely yield

a more accurate approximation of the SGS drag contribution, especially when the LES filter

width is not in the self-similar range of scales.
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