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Abstract

Scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)

have proved to be valuable tools for the study of human brain function. Furthermore, the

two techniques have highly complementary substrates, strengths and limitations, and their

combination has been actively sought within neuroscience research. The important gains in

fMRI sensitivity achieved with higher field strengths open exciting perspectives for combined

EEG-fMRI. However, simultaneous EEG-fMRI acquisitions are subject to highly undesirable

interactions between the two modalities, which can strongly compromise data quality, and

raise concerns on subject safety. Most of these interactions are field strength-dependent,

and can become very problematic at higher field strengths such as 7 T. Despite continued

research efforts, many of these challenges remain open problems in the field, compromising

the applicability and reliability of this approach, especially at higher field strengths.

The work described in this thesis was centered on the development of simultaneous EEG-

fMRI in humans at 7 T, covering aspects of subject safety, signal quality assessment, and

quality improvement. Additionally, given the potential value of high-field EEG-fMRI to study

the neuronal correlates of so-called negative blood oxygenation level-dependent (BOLD)

responses, an initial fMRI study was dedicated to these phenomena, providing a starting point

for future investigations with EEG-fMRI.

The initial, pure-fMRI study aimed to characterize, in humans, positive (PBRs) and negative

BOLD responses (NBRs) to visual checkerboard stimulation of varying contrast and duration,

at 7 T, focusing on NBRs occurring in visual and in auditory cortical regions. Results showed

that visual PBRs and both visual and auditory NBRs significantly depend on stimulus contrast

and duration. Response amplitudes increased with stimulus contrast, with both visual and

auditory NBR amplitudes linearly correlated with the visual PBR. For stimuli up to 10–16 s,

all response durations remained linearly correlated. For longer stimulation periods, however,

both NBRs exhibited earlier returns to baseline than the PBR. These findings suggested a

highly dynamic system of visual-auditory interactions, sensitive to stimulus contrast and

duration. The neuronal correlates of these interactions could not be addressed in higher detail

with fMRI alone, yet could potentially be clarified in future work with combined EEG-fMRI.

Moving on to simultaneous EEG-fMRI implementation, the first stage comprised an assess-

ment of potential safety concerns for simultaneous acquisitions at 7 T, using the particular

setup intended to be applied in future studies. The safety tests comprised numerical simula-
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tions of RF power distribution and real temperature measurements on a phantom during fMRI

acquisition. Two distinct head RF coils were tested – a volume and an occipital surface coil.

Overall, no significant safety concerns were found for the setup tested. Simulations predicted a

moderate decrease in average power deposition with the introduction of the EEG system (4.9%

for the surface coil, 7.9% for the volume coil), with peak values also decreasing for the surface

coil (12.5%), and slightly increasing with the volume coil (10.2%). Temperature increases in the

monitored EEG electrodes remained below 1°C. Having found no significant safety concerns, a

characterization of artifacts induced on MRI data due to the presence of EEG components was

then performed. Image quality was assessed in both functional and anatomical human data,

and the underlying degradation mechanisms were investigated via �B0 and �B+
1 field mapping.

With the introduction of the EEG system, functional and anatomical images exhibited general

losses in spatial SNR (37% and 29%, respectively), with a more moderate loss in temporal SNR

(23%) in fMRI data. �B0 inhomogeneity increases were essentially limited to extra-cerebral

tissue. In contrast, �B+
1 maps evinced a general loss in amplitude across the head, along with

more accentuated local effects in central-superior regions. These results pointed towards RF

pulse disruption as the major degradation mechanism affecting MRI data. Nevertheless, the

resulting losses in functional sensitivity were found to be acceptable for fMRI applications,

particularly when addressing the visual cortex.

The main part of this work focused on EEG artifacts arising from the combination with MRI,

which can surpass the signals of interest by several orders of magnitude, especially at 7 T. The

first step focused on optimizing signal transmission between the EEG cap and amplifiers,

to minimize artifact contamination at this important stage of the setup. The effects of EEG

cable length and geometry were assessed in a phantom model, with specific attention to

He coldhead contributions. Adequate cable shortening and bundling effectively reduced

environment noise by up to 84% in average power and 91% in inter-channel variability. Si-

multaneous acquisitions were then performed on human volunteers, using the optimized

setup. EEG data exhibited clear eyes-closing alpha modulation and average visual evoked

potentials (VEP), with concomitant BOLD signal changes. On a single-trial level, alpha power

variations could be observed with relative confidence; VEP detection was more limited. In the

second step, a novel approach for head motion artifact detection was developed, based on

a simple modification of the EEG cap in which four electrodes were adapted to record only

electromagnetic induction effects. Simultaneous acquisitions were performed in volunteers

undergoing reversing-checkerboard visual stimulation. Data analysis assisted by the motion

sensors revealed that, after gradient artifact correction, EEG signal variance was largely domi-

nated by pulse artifacts, but contributions from spontaneous motion were still comparable to

or even larger than those of neuronal activity. Multiple approaches were tested to optimize

the denoising approach, and optimal results were obtained when applying an initial pulse

artifact correction step, followed by motion artifact correction, and finally ICA denoising. On

average, motion artifact correction yielded a 61% reduction in signal power and a 62% increase

in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power

reduction and an 86% increase in trial consistency.

Overall, the results obtained offer optimistic perspectives for the implementation of EEG-
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fMRI at ultra-high fields. No significant safety concerns were found for the setups tested.

Although MRI data quality was significantly affected by RF disruption effects, their impact was

found acceptable for studies of visual function, and could still potentially be reduced. The

improvements achieved in EEG data quality were well appreciable at single-subject as well as

single-trial levels, and set encouraging perspectives for future studies at 7 T, which may still be

further improved by additional future efforts, namely targeting gradient and pulse artifacts.

Keywords: EEG; fMRI; ultra-high field; negative BOLD; simultaneous EEG-fMRI; RF safety; RF

field disruption; environment noise; head motion
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Resumo

A electroencefalografia de escalpe (EEG) e a imagiologia por ressonância magnética funcional

(fMRI) são ferramentas valiosas para o estudo do funcionamento do cérebro humano. Para

além disto, as duas técnicas são altamente complementares ao nível dos processos biofísicos

que medem, vantagens e limitações, e a sua combinação tem sido activamente procurada em

áreas de investigação em Neurociências. Os importantes ganhos em sensibilidade para fMRI

que podem ser obtidos a campos magnéticos mais elevados abrem perspectivas motivadoras

para aplicações de EEG-fMRI. No entanto, as aquisições simultâneas de EEG-fMRI são tam-

bém afectadas por interacções altamente prejudiciais entre as duas modalidades, que podem

comprometer severamente a qualidade dos dados adquiridos, bem como levantar questões

a nível de segurança para os sujeitos submetidos às aquisições. Grande parte destas inte-

racções depende da intensidade do campo magnético aplicado, e pode tornar-se altamente

problemática a campos mais elevados como 7 T. Apesar de serem objecto de esforços contí-

nuos de investigação, muitos destes problemas permanecem em aberto, comprometendo a

aplicabilidade e fiabilidade dos dados adquiridos, especialmente a campos mais elevados.

O trabalho descrito nesta tese centrou-se no desenvolvimento da técnica de EEG-fMRI si-

multâneo para humanos a 7 T, englobando aspectos de segurança, avaliação da qualidade

dos sinais, e sua melhoria. Adicionalmente, dado o potencial desta técnica para o estudo das

origens neuronais das chamadas respostas de sinal BOLD negativas, um estudo inicial de

fMRI foi dedicado a este fenómeno, providenciando um ponto de partida para estudos futuros

de EEG-fMRI.

Neste estudo inicial, exclusivamente de fMRI, procurou caracterizar-se, em humanos, as

respostas BOLD positivas (PBRs) e negativas (NBRs) a um estímulo visual de xadrez alternado

de contraste e duração variável, a 7 T, com principal atenção para as NBRs que ocorrem em

regiões corticais visuais e auditivas. Os resultados obtidos mostraram que as PBRs visuais e

tanto as NBRs visuais como auditivas dependem significativamente do contraste e da duração

de estímulo. A amplitude das respostas aumentou com o contraste, e tanto a amplitude

das NBRs visuais como das auditivas exibiu uma correlação linear com a amplitude da PBR

visual. Para estímulos até 10–16 s, as durações de todos os tipos de resposta mantiveram-se

linearmente correlacionadas. No entanto, para períodos de estímulo mais longos, ambos

os tipos de NBR mostraram retornos mais precoces para o nível de repouso do que a PBR.

Estas observações sugeriram a presença de um sistema altamente dinâmico de interacções
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visual-auditivas, que depende de propriedades do estímulo como o contraste e a duração.

Os processos neuronais envolvidos nestas interacções não puderam ser isolados em maior

detalhe apenas com fMRI, mas poderão ser clarificados em estudos futuros com a combinação

de EEG e fMRI.

Passando ao EEG-fMRI simultâneo, a primeira fase de implementação consistiu num estudo

de possíveis riscos de segurança associados às aquisições simultâneas a 7 T, para o caso particu-

lar do sistema adoptado para este estudo, e estudos futuros. Os testes de segurança incluíram

simulações numéricas da distribuição de potência dos pulsos de RF, bem como medições reais

de temperatura num fantoma durante aquisições de EEG-fMRI. Foram testados dois modelos

distintos de antenas de RF – uma antena de volume, e uma antena de superfície occipital.

De um modo geral, não foram encontrados riscos de segurança para os sistemas estudados.

As simulações previram reduções moderadas na potência média transmitida aos tecidos da

cabeça aquando da introdução do sistema de EEG (de 4.9% para a antena de superfície, e

7.9% para a antena de volume), com os valores de pico também a decrescer para a antena de

superfície (12.5%) e a aumentar ligeiramente para a antena de volume (10.2%). Os aumentos

de temperatura nos eléctrodos de EEG medidos permaneceram abaixo de 1°C. Não tendo

encontrado riscos de segurança para o sistema estudado, passou-se seguidamente à caracteri-

zação dos artefactos induzidos nos dados de MRI devido à presença das componentes de EEG.

A qualidade das imagens foi avaliada em dados humanos, tanto funcionais como anatómicos,

e os mecanismos de degradação subjacentes foram investigados através do mapeamento dos

campos �B0 e �B+
1 . Com a introdução do sistema de EEG, tanto as imagens funcionais como

anatómicas exibiram perdas gerais de SNR espacial (de 37% e 29%, respectivamente), com

uma perda mais moderada de SNR temporal (23%) nos dados de fMRI. Perdas na homoge-

neidade do campo �B0 mostraram-se essencialmente limitadas a tecidos extra-cerebrais. Por

outro lado, os mapas de �B+
1 evidenciaram uma perda geral de amplitude em toda a região da

cabeça, aliada a efeitos locais mais acentuados em regiões centro-superiores. Estes resulta-

dos apontam para a disrupção dos pulsos de RF como principal mecanismo de degradação

dos dados de MRI. Todavia, as perdas em sensibilidade funcional resultantes mostraram-se

aceitáveis para aplicações de fMRI, particularmente quando dedicadas ao córtex visual.

A componente principal deste trabalho focou-se efectivamente nos artefactos de EEG resultan-

tes da combinação com MRI, que podem ultrapassar os sinais de interesse em várias ordens

de magnitude, especialmente a 7 T. A primeira fase centrou-se na optimização da transmissão

de sinal entre a touca de EEG e os amplificadores, de forma a minimizar a contaminação

por artefactos desta importante componente do sistema de aquisição. A influência do com-

primento e geometria dos cabos de transmissão foi estudada num fantoma, com especial

atenção dedicada a contribuições dos compressores de He. Observou-se que a redução do

comprimento dos cabos e a sua compressão levaram a reduções de ruído ambiente de até

84% em valor médio de potência, e até 91% na variabilidade entre canais. Foram seguida-

mente efectuadas aquisições de EEG-fMRI simultâneo em voluntários humanos, utilizando

o sistema optimizado. Os dados de EEG resultantes exibiram padrões claros de modulação

de ritmos alfa aquando do abrir/fechar de olhos, e potenciais visuais evocados (VEP), bem

como as correspondentes alterações no sinal BOLD esperadas para estes estímulos. Ao nível
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de repetições individuais, as variações na potência de ritmos alfa puderam ser robustamente

observadas; a detecção de VEPs foi mais limitada. Na segunda fase, desenvolveu-se um novo

método para detecção de artefactos induzidos por movimentos da cabeça, baseado numa

modificação simples da touca de EEG segundo a qual quatro eléctrodos são adaptados para

captar apenas efeitos de indução electromagnética. Aquisições simultâneas foram conduzidas

em voluntários durante estimulação visual com padrões de xadrez alternados. A análise dos

dados adquiridos assistida por informação dos sensores de movimento revelou que, após

remoção dos artefactos de gradiente, a variância do sinal de EEG foi fortemente dominada

pelos artefactos de pulso, mas as contribuições resultantes de movimentos espontâneos foram

ainda assim comparáveis ou até superiores às da actividade neuronal. Foram testadas múlti-

plas abordagens para optimizar o procedimento de redução de artefactos, tendo-se obtido os

resultados mais favoráveis mediante a aplicação de um passo inicial de correcção de artefactos

de pulso, seguido da correcção de artefactos de movimento, e finalmente um último passo

baseado em ICA. Em média, a correcção de artefactos de movimento resultou em reduções

na potência de sinal de 61%, e aumentos de 62% na consistência de VEPs de repetição para

repetição. Em combinação com ICA, estas melhorias cresceram para uma redução de 74% na

potência de sinal e um aumento de 86% na consistência dos VEPs.

De um modo geral, os resultados obtidos ao longo deste trabalho oferecem boas perspectivas

para a implementação da técnica de EEG-fMRI simultâneo a campos ultra-elevados. Não

foram encontrados riscos de segurança para os sistemas testados. Ainda que a qualidade

dos dados de MRI tenha sido significativamente afectada por efeitos de disrupção dos pul-

sos de RF, o impacto destes efeitos foi considerado aceitável para estudos de função visual,

e poderá ainda potencialmente vir a ser reduzido. As melhorias obtidas na qualidade dos

dados de EEG foram evidentes tanto ao nível de sujeitos como de repetições individuais, e

oferecem perspectivas encorajadoras para estudos futuros a 7 T, que poderão ainda ser conti-

nuamente melhoradas por desenvolvimentos futuros, nomeadamente focados nos artefactos

de gradiente e artefactos cardíacos.

Palavras-chave: EEG; fMRI; campo magnético ultra-elevado; resposta BOLD negativa; EEG-

fMRI simultâneo; segurança em RF; disrupção de campos de RF; ruído ambiente; artefactos

de movimento
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Résumé

L’électroencéphalographie (EEG) et l’imagerie par résonance magnétique fonctionnelle (fMRI)

sont des outils de grande valeur pour l’étude du fonctionnement du cerveau humain. En

outre, les deux techniques sont très complémentaires en termes de substrats, d’avantages

et de limites, et leur combinaison a été activement recherchée dans les neurosciences. Les

gains importants en sensitivité de la fMRI obtenus à très haut champ magnétique ouvrent

des perspectives intéressantes pour la combinaison de l’EEG et de la fMRI. Cependant, les

acquisitions simultanées EEG-fMRI sont soumises à des interactions hautement indésirables

entre les deux modalités, qui peuvent compromettre fortement la qualité des données, et

soulever des préoccupations sur la sécurité des sujets. La plupart de ces interactions sont

dépendantes de l’intensité du champ magnétique, et peuvent devenir très problématiques

à des plus hauts champs tel que 7 T. Malgré des efforts de recherche continus, ces défis

demeurent des problèmes ouverts dans ce domaine d’étude, et compromettent l’applicabilité

et la fiabilité de la technique, en particulier à intensités de champ plus élevées.

Le travail décrit dans cette thèse a été centré sur le développement de la technique de l’EEG-

fMRI simultanée pour les sujets humains à 7 T, couvrant les aspects de sécurité des sujets,

l’évaluation de la qualité du signal et l’amélioration de celle-ci. En outre, compte tenu de la

valeur potentielle de l’EEG-fMRI à haut champ pour étudier les corrélats neuronaux des soi-

disant réponses BOLD négatives, une première étude fMRI a été consacrée à ces phénomènes,

offrant un point de départ pour des futures enquêtes avec EEG-fMRI.

L’étude initiale de fMRI visait à caractériser, chez les sujets humains, les réponses BOLD

positives (PBR) et négatives (NBR) à la stimulation visuelle en damier de contraste et durée

variables, à 7 T, en se concentrant sur les NBR des régions corticales visuelles et auditives.

Les résultats ont montré que les PBR visuelles et les NBR visuelles et auditives dépendent de

manière significative du contraste et de la durée des stimules. Les amplitudes de réponse ont

augmenté avec le contraste, avec les amplitudes des NBR visuelles et auditives linéairement

corrélées avec la PBR visuelle. Pour des stimules allant jusqu’à 10–16 s, toutes les durées de

réponse sont restés linéairement corrélés. Cependant, pour les périodes de stimulation plus

longs, les deux NBR ont montré un retour au niveau de repos plus rapide que la PBR. Ces

résultats suggèrent un système très dynamique d’interactions visuelles et auditives, sensibles

au contraste et à la durée de stimulation. Les corrélats neuronaux de ces interactions ne

peuvent pas être abordés avec plus de détails en utilisant la fMRI seul, mais pourraient être
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clarifiées dans des travaux futurs avec l’EEG-fMRI.

Passant au développement de la technique de l’EEG-fMRI simultanée, la première étape a

été consacrée à l’évaluation des potentiels problèmes de sécurité pour les acquisitions si-

multanées à 7 T, en utilisant la configuration particulière destinée à être appliquée dans des

études futures. Les tests de sécurité comprirent des simulations numériques de distribution

de puissance RF, et des mesures de température réelles sur un fantôme lors de l’acquisition

fMRI. Deux antennes de RF pour la tête ont été testés - une antenne de volume et une antenne

de superficie occipital. Dans l’ensemble, aucun problème de sécurité important n’a été trouvé

pour les configurations testées. Les simulations prédirent une baisse modérée de dépôt de

puissance moyenne avec l’introduction du système de l’EEG (4.9% pour l’antenne de super-

ficie, et 7.9% pour l’antenne de volume), avec des valeurs maximales également en baisse

pour l’antenne de superficie (12.5%) et en légère augmentation avec l’antenne de volume

(10.2%). Les hausses de température dans les électrodes de l’EEG surveillés sont restées en

dessous de 1°C. N’ayant trouvé aucun problème de sécurité important, une caractérisation

des artefacts induits sur des images de la fMRI en raison de la présence des composants de

l’EEG a ensuite été effectuée. La qualité d’image a été évaluée avec des données humaines

anatomiques et fonctionnels, et les mécanismes de dégradation sous-jacents ont été étudiés

par la cartographie des champs �B0 et �B+
1 . Avec l’introduction du système de l’EEG, les images

fonctionnelles et anatomiques ont révélé des pertes générales de SNR spatial (37% et 29%,

respectivement), avec une perte plus modérée de SNR temporel (23%) dans les données de la

fMRI. Les hausses d’inhomogénéité du champ �B0 ont été essentiellement limitées aux tissus

extra-cérébrales. En revanche, le champ �B+
1 a manifesté une perte générale d’amplitude sur la

tête, avec des effets locaux plus accentués dans les régions central-supérieures. Ces résultats

indiquent que la perturbation du champ �B+
1 est le mécanisme de dégradation majeure affec-

tant les données de la MRI. Toutefois, les pertes résultantes sur la sensitivité fonctionnelle

ont été jugés acceptables pour des applications de la fMRI, en particulier lorsqu’on aborde le

cortex visuel.

La partie principale de ce travail a été consacrée aux artefacts de l’EEG découlant de la combi-

naison avec la MRI, qui peuvent dépasser les signaux d’intérêt par plusieurs ordres de grandeur,

en particulier à 7 T. La première étape a été centrée sur l’optimisation de la transmission du

signal entre le casque et les amplificateurs de l’EEG, pour minimiser la contamination par

artefacts à ce stade important de la configuration. Les effets de la longueur et de la géométrie

des câbles de l’EEG ont été évalués dans un fantôme, avec une attention particulière aux contri-

butions des compresseurs d’He. Le raccourcissement des câbles et son regroupement ont

produit des réductions dans le bruit de l’environnement jusqu’à 84% en puissance moyenne et

de 91% pour la variabilité inter-canal. Des acquisitions simultanées ont ensuite été effectuées

sur des volontaires humains, en utilisant la configuration optimisée. Les données de EEG

ont clairement montré des modulations des rythmes alpha avec la fermeture des yeux, et

des potentiels évoqués visuels (VEP) en moyenne, avec des changements de signal BOLD

concomitants. Au niveau des essais individuels, les variations de puissance d’alpha ont pu être

observées avec confiance ; la détection de VEP individuels a été plus limitée. Dans la deuxième

étape, une nouvelle approche pour la détection d’artefacts de mouvement de la tête a été dé-
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veloppée, basée sur une modification simple du casque de l’EEG dans lequel quatre électrodes

ont été adaptés pour enregistrer seulement des effets d’induction électromagnétique. Des

acquisitions simultanées ont été effectuées sur des volontaires humains, durant stimulation

visuelle en damier. L’analyse des données assistée par les détecteurs de mouvement a révélé

que, après correction de l’artefact de gradient, la variance du signal de l’EEG a été largement

dominée par des artefacts cardiaques, mais les contributions de mouvement spontané ont

été toujours comparables ou même plus grandes que celles de l’activité neuronale. Plusieurs

approches ont été testées afin d’optimiser l’approche de réduction d’artefacts, et des résultats

optimaux ont été obtenus lors de l’application d’une étape initiale de correction d’artefacts

cardiaques, suivie par la correction d’artefacts de mouvement et enfin par correction avec

l’ICA. En moyenne, la correction d’artefacts de mouvement a conduit à une réduction de 61%

de la puissance de signal et une augmentation de 62% de la cohérence de VEP entre essais.

Combiné avec l’ICA, ces améliorations ont réduit la puissance de 74% et augmenté de 86% la

cohérence entre essais.

Dans l’ensemble, les résultats obtenus offrent des bonnes perspectives pour la mise en œuvre

de la technique de l’EEG-fMRI à champ ultra-élevé. Aucun problème de sécurité important

n’a été trouvé pour les configurations testées. Bien que la qualité des données de la MRI a été

significativement affectée par des effets de perturbation de RF, leur impact a été jugée accep-

table pour les études de la fonction visuelle, et pourrait encore être potentiellement réduite.

Les améliorations apportées dans la qualité des données de l’EEG ont été bien appréciables

au niveau des sujets, ainsi que pour des essais individuels, et définissent des perspectives

encourageantes pour des études futures à 7 T, qui peut encore être améliorée par des efforts

futurs additionnels, comme par exemple dédiés aux artefacts de gradient et aux artefacts

cardiaques.

Mots-clefs : EEG ; fMRI ; champ magnétique ultra-élevé ; BOLD négative ; EEG-fMRI simulta-

née ; sécurité en RF ; perturbation des champs de RF ; bruit d’environnement ; artefacts de

mouvement de la tête
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Introduction

The human brain is a remarkably intricate organ, capable of a wide range of cognitive and

analytical operations, interlaced with complex emotions and motivations. Investigating the

mechanisms and interactions underlying brain function is no easy task, yet its contributions

can be tremendous, not only for the understanding of human nature and physiology per se,

but also for the development of more effective treatments for life-impairing diseases, as well

as inspiring technological advances in distinct scientific fields such as artificial intelligence.

With such goals in mind, Mankind has devoted remarkable scientific efforts to the study of

brain function over the last centuries.

To face the complex challenges of studying the brain, many techniques have been developed

and continually improved, each with its specific substrates, strengths and limitations. The

brain can be decomposed into basic units – the neurons, each of which a complex structure

that can provide valuable information about the whole. Nevertheless, it is in its function

as a dynamic, organized arrangement of neurons, influencing and influenced by internal

and external factors, including sensory information and a rich variety of metabolites flow-

ing throughout the body, that the brain attains its remarkable capabilities. For this reason,

techniques that can monitor aspects of the human brain as a whole, without affecting its

natural function – i.e. minimally invasive, are extremely valuable. Two such examples are

scalp electroncephalography (EEG) and functional magnetic resonance imaging (fMRI).

While both EEG and fMRI have proven to be valuable tools on their own for neuroscience re-

search, with numerous contributions for basic research and clinical studies alike, considerable

interest has also been devoted to their combined application, motivated by a strong degree

of complementarity between the two modalities. While EEG measures the electric potential

fluctuations generated by post-synaptic activity of neuronal populations, with high temporal

resolution but poor spatial specificity, fMRI is sensitive to a combination of metabolic and

hemodynamic changes induced by such neuronal activity, with lower temporal resolution

but higher spatial specificity. The two techniques can thus provide highly complementary

measures of brain function – like two pieces of a common "neuroimaging puzzle" (Babiloni

et al., 2004).

The combination of EEG and fMRI has been actively pursued for more than two decades,

both in basic neuroscience and clinical contexts, with continued technical improvements. In
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particular, a fundamental line of development for fMRI has been the pursuit of higher magnetic

field strengths, which leads to super-linear gains in functional sensitivity. These gains can

be valuable for numerous applications, and have likewise raised considerable interest in

the combination of EEG and fMRI at higher fields. Unfortunately, however, simultaneous

EEG-fMRI acquisitions are also subject to highly undesirable interactions occurring between

the two modalities, which can strongly compromise data quality, as well as raise concerns on

subject safety. Crucially, many of these deleterious interactions are field strength-dependent,

and can become very problematic at ultra-high field strengths such as 7 Tesla. For this reason,

before the benefits of ultra-high field imaging can be effectively explored in simultaneous

EEG-fMRI, important challenges must be addressed and overcome. With this purpose in mind,

the work described in this thesis was centered on the development of simultaneous EEG-fMRI

in humans at 7 T, covering aspects of subject safety, signal quality assessment, and quality

improvement. The findings here reported contribute to a recent, and still fairly unexplored line

of research focused on EEG-fMRI at ultra-high field, seeking to improve the applicability and

effectiveness of this approach, and ultimately helping to expand our current understanding of

human brain function, in both health and disease.

Thesis outline

This thesis is organized in six interrelated chapters. Chapter 1 provides a theoretical overview

of the biophysical principles underlying EEG and fMRI, followed by a review of the most

important aspects to consider in the integration of the two techniques for the study of brain

function. In Chapter 2, a purely fMRI-based study is reported, investigating both positive

and negative brain responses to visual stimulation, in visual and auditory regions. Chapters

3–5 cover technical aspects of the development of simultaneous EEG-fMRI at 7 T. Chapter

3 reports on the assessment of subject safety, an aspect of primary importance for human

experimentation, and includes both numerical simulations performed with realistic computa-

tional models and real temperature measurements conducted in phantom models. Chapter 4

provides a comprehensive evaluation of the impact of EEG equipment on MRI data quality,

with a particular focus on fMRI data. Chapter 5, the largest and possibly most important of

this thesis, addresses MRI-induced artifacts on EEG recordings, and presents a number of

novel modifications developed to reduce these highly-compromising artifact contributions.

Finally, Chapter 6 summarizes the main conclusions derived from this work, followed by an

outlook on relevant potential lines of future development.
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1 Fundamentals of EEG and fMRI

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are valu-

able tools for neuroscience, each with a remarkable record of contributions to the study of

brain function. Furthermore, beyond their individual value, the two techniques are highly

complementary to each other, and their combined application can yield improved descrip-

tions of the neurological, vascular and metabolic processes underlying brain function. This

chapter provides a theoretical overview of the biophysical principles underlying EEG and

fMRI, followed by a review of the aspects of most importance for the integration of the two

techniques.

1.1 Fundamentals of EEG

As a general definition, EEG is a technique that measures fluctuations in electric potentials

generated by brain activity. It is most commonly performed by placing electrodes in physical

contact with the scalp, with minimum invasiveness for the subject under study. The first

human scalp EEG recordings were performed by the neuropsychiatrist Hans Berger in 1925.

Berger, who coined the term "electroencephalogram", was the first to observe several impor-

tant features of the human EEG such as alpha oscillations, sleep spindles, and even hints

of epileptic activity (Niedermeyer and Lopes da Silva, 2005). Since then, the technique has

undergone remarkable technological improvements to enhance its sensitivity and temporal

resolution, accompanied by continuous developments in data analysis methodologies. In

parallel, widespread efforts using a variety of other techniques, both in vivo and in vitro, have

helped to form a better, and still growing understanding of what is exactly measured by EEG,

and how this information can provide insights into the underlying brain activity.

Parts of this chapter were adapted from:

EEG-fMRI integration for the study of human brain function, J. Jorge, W. van der Zwaag, P. Figueiredo, 2014,
Neuroimage 102 (1), p.24–34.
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Chapter 1. Fundamentals of EEG and fMRI

1.1.1 Neuronal substrates of EEG

It is currently well known that brain activity is accomplished through a complex network of

interactions carried by fundamental functional units – the neurons, assisted by supporting

units generally termed glia cells. Each neuron receives input from upstream neurons via

synaptic interactions, and its output is produced in the form of traveling action potentials

(also termed "spiking") that are sent to other neurons. When at rest, neurons typically maintain

a difference in electric potential between the intra and extracellular spaces of -70 to -90 mV.

This is achieved by maintaining a different concentration of ions such as Na+ and K+ inside

the cellular space, compared to the outside medium, achieved with active transport systems

at the cost of energy. When the transmembrane potential is raised above a threshold of

approximately -50 mV, in a specific point of the cell, it triggers the opening of voltage-gated

ion channels in the membrane, allowing ion fluxes that can reverse, and raise the potential

difference to approximately +35 mV – and thereby an action potential is formed. This event

tends to be quickly counteracted by other ion fluxes, leading to a return to the baseline state

after only a few milliseconds. Nevertheless, the depolarization of a certain point leads to

potential increases in neighboring regions, which can likewise trigger local action potentials.

This phenomenon allows the generation of traveling waves, which can propagate the action

potential along the cell membrane, typically from the cell dendrites down its axon, without

any decay in amplitude (Guyton and Hall, 2006).

In a typical neuronal synapse (Fig. 1.1a), action potentials arriving from the upstream or

presynaptic neuron to a presynaptic terminal can trigger the release of neurotransmitter

molecules to a narrow extracellular space termed synaptic cleft. Presynaptic terminals lie

close to the surface of post-synaptic neurons, along various regions such as the dendrites,

cell body, and even the axon. When released, the neurotransmitters can couple to highly

specific receptors in the cell membrane of the postsynaptic neuron, and either modulate the

excitability of the cell or directly change its transmembrane potential. The second effect is

mediated by ligand-dependent ion channels, and can be excitatory, inducing depolarization,

or inhibitory, inducing hyperpolarization. The ion fluxes across the cell membrane induced

by neurotransmitter reception are known as postsynaptic activity. These fluctuations create

differences in electric potential between the stimulated dendrites and sub-synaptic regions,

which in turn generate both intra and extracellular currents along the cell membrane (Fig.

1.1b). The latter currents generate the so-called local field potentials (LFPs), and can be

seen as equivalent electric dipoles formed between the dendrites and downstream regions

(Niedermeyer and Lopes da Silva, 2005). Because the brain is a conductive medium, the

extracellular currents generated near the neuron propagate almost virtually instantaneously

across its space, and thereby these LFPs can be detected at the surface of the head (Dale and

Halgren, 2001).

Besides LFPs, the generation and propagation of action potentials also causes extracellular

currents along the cell surface, which can be measured by electrodes placed close to the

originating neurons. On the other hand, electrodes placed in farther regions, particularly at

4



Chapter 1. Fundamentals of EEG and fMRI

a) b) 
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Figure 1.1: Neuronal substrates of EEG. a) Representation of a neuron, with a neuronal synapse.
Synapses can typically be observed in every dendrititc terminal, as well as in other regions of
the cell surface. b) Extracellular current generation (represented by red dashed arrows) due
to an excitatory synaptic interaction (blue arrow). Far from the neuron, the created potential
field can be approximated by that of a localized current dipole. If several neurons, aligned
in parallel with each other, are excited in synchrony, the resulting potentials are favorably
summed, facilitating detection.

the scalp, are considerably less sensitive, and can only detect the net dipole potentials created

by large neuronal populations functioning in synchrony. LFPs occur in a timescale that allows

favorable summation of group activity; on the other hand, fluctuations created by neuronal

spiking, also termed multi-unit activity (MUA), have considerably shorter timescales, and do

not achieve sufficient synchrony to be measurable at the scalp. The main neuronal substrate

of scalp EEG is, therefore, the LFP fluctuations created by synchronized postsynaptic activity

of large neuronal populations (Nunez and Silberstein, 2000).

Besides temporal constraints, the geometry of neuronal cell arrangements in the brain is

likewise a crucial factor for the sensitivity of scalp EEG. The cortex can be described in terms

of distinct layers, conventionally numbered I–VI, from the outside (pial surface) to the inside

(white matter). Each layer is characterized by a particular distribution of neuronal cell types

and connections; nevertheless, extensive connections can be observed between cells from

the different layers, often spanning the entire cortical depth. In the somatosensory cortex,

for example, incoming sensory signals typically excite layer IV neurons first, and then extend

towards more superficial and deeper layers; neurons from layers II and III send signals to

related cortical areas in the opposite hemisphere, while neurons in layers V and VI send

axons to deeper parts of the nervous system (Guyton and Hall, 2006). Along with its layer

differentiation, the cortex can also be described as a columnar structure, composed of basic

units denominated minicolumns, each with a cross-section diameter of approximately 50

μm, and main axis oriented perpendicularly to the pial surface. Each minicolumn comprises

a narrow chain of neurons extending vertically from the deeper to the more superficial layers.

Minicolumns can then form groups, linked together by short-range horizontal connections,

designated cortical columns – each including several dozens of minicolumns (several thou-

sands of neurons), with a cross-sectional diameter of several hundred μm. Minicolumns and

cortical columns have been proposed to form the basic units of cortical processing, under-
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going different dynamic states with high specificity and cooperating with each other in a

context-dependent manner. This columnar organization of cortical function is highly impor-

tant, and advantageous, for scalp EEG; in particular, a strong flow of information is created

vertically along each column, carried in great part by pyramidal cortical neurons. These

cells have the main axes of the dendritic trees parallel to each other and perpendicular to the

pial surface, and long axons that are similarly vertically-oriented – a "palisade" arrangement.

Extracellular currents created by post-synaptic activity in these neurons will thus have fairly

regular orientations, and the corresponding equivalent dipoles are favorably summed. The

(postsynaptic) activity of pyramidal cortical cells, arranged in functionally-specific columns,

forms thereby the major substrate of scalp EEG (Mulert and Lemieux, 2010).

1.1.2 Scalp potential generation and source estimation

In order to interpret the electric potential fluctuations measured at the scalp and draw in-

ferences regarding the underlying neuronal sources, particularly their strength and spatial

distribution, it is essential to design adequate biophysical models that can relate the LFPs

generated by neuronal activity with the fluctuations measured at the scalp. When studying

neurons at a microscopic scale, the local electric potential fields induced by postsynaptic

stimuli are considerably challenging to model, because the associated ion currents are typi-

cally formed from specific dendritic regions (near the activated synaptic receptors) to a more

distributed volume along the subsynaptic regions, which depends on the conductivities of

intra and extracellular fluids, as well as on the conductivity and capacitive properties of the

cell membrane. Fortunately, however, at the considerably larger spatial scale of EEG measure-

ments, these distributions can be adequately modeled as simpler "sink-source" configurations,

or equivalent current dipoles (Nunez and Srinivasan, 2006).

In empty space, the electric potential φ created by a static point charge q at a distance r from

the charge can be derived from Coulomb’s law, and is given by:

φ(r ) = 1

4πε0

q

r
(1.1)

where ε0 is the electric permittivity of empty space. A current dipole can be seen as a pair

of opposite monopoles (current "source" and current "sink"). While physically distinct from

static charges in an empty space or dielectric medium, current monopoles obey an analogous

form of Poisson’s equation, and their electric potential can be described by a mathematically-

equivalent form of Eq.1.1. In particular, for an infinitely-large, homogeneous, isotropic and

purely resistive conductive medium, the electric potential created by a current monopole pair

is equal to:

φ(r1,r2) = I

4πσ

(
1

r1
− 1

r2

)
(1.2)

where I is the magnitude of the current source (in units of electric current), σ is the electric
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Figure 1.2: Potential generation and source modeling. a) Electric potential distribution created
by a current source-sink pair in a homogeneous and isotropic conductive medium. b) A
schematic example of a simple concentric conductive shell model for EEG source estimation
in the head, differentiating scalp, skull, cerebrospinal fluid (CSF) and brain tissues.

conductivity of the medium, and r1 and r2 are the distances from the measuring point to each

of the two poles (Fig. 1.2a). If the measurement is performed far from the source compared to

the distance between the two poles (as is the case in scalp EEG), φ can be approximated by:

φ(r,θ) ≈ I

4πσ

d cosθ

r 2 (1.3)

where r is the distance from the dipole center to the measuring point, θ is the angle formed

between the dipole axis and the measuring position �r relative to the dipole center, and d

is the spatial extent of the dipole (i.e. the distance between monopoles). This is a suitable

approximation considering, for instance, that equivalent source-sink separations in pyramidal

cells are smaller than 1 mm, while the closest point at the scalp may be more than 1 cm

away. Considering the particular, fairly "vertical" geometry of pyramidal neurons, a more

appropriate model for postsynaptic excitatory potentials would, in fact, be that of a uniform

source distribution along a vertical segment of length d , with a point sink at the top (or vice-

versa, for inhibitory activity). The electric potential field created by this geometry can be

approximated by:

φ(r,θ) ≈ I

8πσ

d cosθ

r 2 (1.4)

which can be seen as an extension of Eq.1.3 where the effective distance is now d/2, owing to

the spatial dispersion of the sources (Nunez and Srinivasan, 2006).

Having established a suitable relationship between neuronal sources and electric potential dis-

tributions – the forward model, one can then attempt to estimate current dipole magnitudes

and orientations based on a series of electric potential measurements – a process known as

inverse modeling. Multiple dipolar sources can be considered and estimated from the same
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measurement set, as a linear combination of electric potentials, following the principle of

superposition. The homogeneous medium simplification provides insights into important

aspects of neuronal potential propagation: first, the signal amplitude decays with the square

of the distance to the source; second, the amplitude depends on the orientation of the dipole

relative to the position of the measurements (Nunez and Silberstein, 2000). Moving on to real

brain signals measured at the scalp, it is then necessary to improve the basic model to account

for important properties of this medium. The head is not an infinite volume, and its conductiv-

ity varies across different types of tissues, which include grey and white matter, cerebrospinal

fluid (CSF), various membranes, skull, and scalp – the skull, in particular, is considerably less

conductive than the other tissues (Mulert and Lemieux, 2010). A commonly-used model to

account for these differences is that of a set of concentric conductive shells approximating

the different head layers (Fig. 1.2b). Given approximated values for layer conductivity and

thickness, this model can be solved analytically for dipole estimation (Nunez and Srinivasan,

2006).

Although practical, the choice of a spherical geometry yields a poor approximation to model

the human head. To overcome this and other limitations, more elaborate (and typically itera-

tive) approaches have been proposed and continuously improved. Subject-specific models

can be estimated from real anatomical data (obtained with MRI or computed tomography, for

example), using numerical discretization approaches such as boundary element methods

(BEM) (Fuchs et al., 2002) or finite element methods (FEM) (Awada et al., 1997). The latter

class can additionally incorporate the effects of anisotropic conductivity (Wolters et al., 2006),

at the cost of increased computational demands. It is important to note that the challenge

of source estimation from scalp EEG is a very ill-posed problem – mathematically, a given

potential distribution measured at the surface has an infinite number of possible solutions

within the volume. For this reason, estimation approaches require heavy regularization, with

more or less biophysically-inspired constraints (Michel et al., 2004). In applications where

a few particularly dominant sources are expected, the number and/or orientation of source

dipoles can be restricted (down to a single dipole). In more elaborate variants of this approach,

the entire cortical tissue is segmented from anatomical data and parcellated into surface

patches; each patch is then given a dipole of fixed orientation (perpendicular to the cortical

surface), and only dipole magnitudes remain to be estimated (Hillebrand and Barnes, 2003).

Overall, however, even with strong regularization constraints, source estimation from scalp

EEG remains a challenging problem, and solutions typically have poor spatial specificity.

1.1.3 Scalp EEG recording

The fluctuations measurable by scalp EEG during normal brain function are typically below

100 μV, and mainly occupy a range of 0–100 Hz in the spectral domain (although interesting

features have been identified at higher frequencies as well (Andrade-Valenca et al., 2011)).

In order to capture these fluctuations, EEG recording systems must ensure good electrical

conductivity with the scalp, effective signal amplification, adequate temporal sampling, and

8



Chapter 1. Fundamentals of EEG and fMRI

shielding from potential artifact sources such as power line noise (50/60 Hz) (Mulert and

Lemieux, 2010). The first stage comprises a set of electrodes that are placed on the scalp, built

of a conductive material such as copper or gold. For some electrode types, an electrolyte paste

or gel is applied between the skin and the electrode, forming an electrolyte bridge to improve

conductivity between the two media. Electric potentials can be transmitted between these

media via redox reactions, using interface materials such as Ag/AgCl to coat the electrodes.

These interfaces must be adequately designed to ensure that the kinetics and efficiency of the

transmission processes do not alter the temporal properties of the measured signals. It is also

fundamental to ensure a good overall conductivity through the interface, since any additional

impedance elements in the circuit will lead to an attenuation of the signal measured at the

amplifiers (Fig. 1.3a) – to prevent significant attenuation, amplifier input impedances are

usually designed to reach several MΩ, whereas electrode impedances in the order of kΩ are

usually sought during cap preparation (Niedermeyer and Lopes da Silva, 2005). EEG systems

vary considerably in the number of electrodes used for recording (from as little as 2 to as

many as 512); higher numbers provide richer information and are especially beneficial for

source localization purposes, but are also less practical and require longer preparation times.

Electrode positions typically follow well-established standards such as the international 10–20

system.

In most recording setups, the electrodes are passive elements that simply detect and trans-

mit the electric potentials to a central amplification stage. Transmission is carried through

conductive leads. At the amplifiers, reference signals are subtracted from individual electrode

potentials, and these difference signals are then amplified. The two most common types of

systems employ either bipolar amplification, where each amplified signal is the difference

between a given electrode and its previous neighbor, in succession, or unipolar amplification,

where amplified signals are the difference between each electrode and one common reference

electrode. In either case, the signals that are common to both channels in each pair are thereby

excluded – a useful feature known as common-mode rejection. Following amplification, mod-

ern EEG systems employ a digitization step to convert the measured analog signals into digital

format, for subsequent storing and numerical analysis. Before digitization, it is also common

to apply some form of temporal filtering to remove the DC component and slow drifts, as

well as to prevent spectral aliasing (Mulert and Lemieux, 2010).

It is important to note that electric potential is not an absolute quantity, and EEG signals are

always recorded as potential differences between pairs of electrodes. This aspect must be

kept in mind when interpreting fluctuations measured at a given channel, and for certain

purposes, it becomes convenient to work with reference-independent features extracted from

the measured signals, or to bring the measurements into alternative, reference-free repre-

sentations (such as the space of neuronal sources, obtained via inverse modeling). Another

important consequence is that in order to detect any measurable differences between two

electrodes, they must be placed at some distance from each other (Fig. 1.3b). This spatial

separation imposes the formation of a non-negligible area within the circuit loop formed

by the electrodes, leads, amplifier and the subject head, which is exposed to any interfering
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Figure 1.3: Schematics of scalp EEG recording. a) Simplified diagram of the input circuit of
an EEG recording channel. Zel represents the electrode impedance, Zl d the lead impedance
and Zi n the amplifier input impedance; esg represents the EEG signal, in and en the noise
current and voltage sources, respectively, inherent to the amplifier. b) Signals are measured
as differences in electric potential between pairs of electrodes, requiring a certain degree of
spatial separation between the measuring points.

electromagnetic (EM) fields that may exist in the surrounding space. In particular, for a given

wire loop l , the presence of a temporally-varying magnetic field �B will induce an electromotive

force ξl in the loop according to Faraday’s law of induction, as follows:

ξl (t ) =−dΦΣ

d t
(t ) =− d

d t

∫
Σ

�B(�r , t ) · �N (�r , t )dΣ (1.5)

where ΦΣ is the magnetic flux through the surface Σ enclosed by the loop, and �N is the unitary

normal vector to the surface, at each position�r and instant t . In the case of an actual EEG loop,

this expression must be modified to account for the presence of the head, where current paths

are considerably more complex to describe (Yan et al., 2009). Nevertheless, its fundamental

aspects remain: the stronger the temporal variation of ΦΣ, or the larger the exposed surface Σ,

the stronger will be the contribution ξl . Also importantly, any such contribution will linearly

add to, and be amplified together with, the EEG signals of interest. It is therefore crucial to

minimize noise contamination at this stage. A common approach is to place both subject and

recording system inside a Faraday cage, or at least an isolated room, to minimize interfering

fields from surrounding sources; when this is not possible, careful analysis and design of

the transmission lead configuration should be considered instead, in order to minimize the

exposed loop areas.

1.1.4 Rhythmic and transient activity

EEG features can be grouped in two main categories: rhythmic and transient. Each feature

exhibits specific temporal properties, and is associated with a particular electric potential

topology across the scalp. When several neuronal sources are involved, this characteristic

topology may vary in time as well, provided the temporal resolution is sufficiently high.

10



Chapter 1. Fundamentals of EEG and fMRI

Rhythmic activity comprises signal oscillations of specific frequency that vary in power across

time. They reflect concomitant neuronal LFP fluctuations that are generated and regulated

by an interplay of several factors, both at cellular and at network levels. EEG signals can

exhibit rich spectral profiles, and different aspects of brain function have consistently been

associated with oscillations at particular frequency ranges. This has motivated a subdivision

of the EEG spectrum into a set of empirically-defined frequency bands, which include the

delta band (1–4 Hz), the theta band (4–8 Hz), the alpha band (8–12 Hz), the beta band (12–30

Hz) and the gamma band (above 30 Hz). In practice, the specified frequency intervals should

be regarded only as reference guidelines, with important deviations occurring due to various

factors such as age and species (Buzsáki, 2006). Oscillations in the delta band are commonly

found in adults during deep stages of the sleep cycle; they reflect various interactions arising

from the cortex or from the thalamus (Niedermeyer and Lopes da Silva, 2005). The theta

range has been prominently observed in the hippocampus of numerous animal species, and

associated with various cognitive features such as orientation, attention and active motor

behavior (Buzsáki, 2006); in the human cortex, theta oscillations have been observed, albeit

with some difficulty, in processes related with problem-solving, learning and memory, and

have also been associated with drowsiness, as well as relaxed and meditative states (Schacter,

1977). Oscillations in the alpha range can been observed in a wide variety of cognitive states

and functions, and have been extensively studied with EEG. Alpha waves become prominent in

subjects at rest, and can be enhanced specifically in posterior regions upon closing of the eyes.

These oscillations appear to play a major role in thalamocortical interactions, particularly

in less active cognitive states (Niedermeyer and Lopes da Silva, 2005). Idleness of the arms

and legs can also potentiate a specific type of rhythm, putatively analogous to visual alpha,

termed mu rhythm (Buzsáki, 2006). Oscillations observed at higher frequencies have generally

been associated with active processes requiring increased attention and cognitive demands.

Generators of these waves can be traced to superficial layers of the cortex (Roopun et al., 2006),

although not excluding possible interactions with the thalamus (Steriade et al., 1996). Waves

in the beta range can be modulated by motor behavior and demanding tasks or concentration,

and gamma-band oscillations tend to be amplified during a large variety of active cognitive or

motor functions (Mulert and Lemieux, 2010).

While the different bands can express very specific modulations for particular cognitive func-

tions and states, the lower frequency rhythms, namely alpha, tend to be more typically associ-

ated with large-scale, resting activity, while higher frequency rhythms such as gamma are more

associated with focal, active function. Crucially, while oscillatory patterns can be observed

with EEG at any ongoing state of the subject, they can also be enhanced or suppressed by

specific stimuli or tasks – a phenomenon termed event-related synchronization (ERS) or

desynchronization (ERD), respectively (Pfurtscheller and Lopes da Silva, 1999).

Transient activity comprises particular fluctuations in electric potential of diverse morphol-

ogy, appearing in specific points of the EEG timecourse. Certain types of activity can occur

spontaneously, while others appear in response to external stimuli or during cognitive and mo-

tor actions – generally termed event-related potentials (ERPs). Both types can contain highly
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relevant information regarding the underlying neuronal function. Examples of spontaneous

transient activity include sleep spindles and K-complexes, which occur during normal sleep

and are thought to reflect important processes of arousal suppression, learning, and memory

consolidation (Dang-Vu et al., 2010; Tamminen et al., 2010). Fluctuations observed during

seizures in epilepsy patients also form an important example of spontaneous (pathological)

transient activity (Gotman and Gloor, 1976). Another important class of transient states and

patterns comprises the so-called EEG microstates, commonly found during wakeful rest.

Microstates are observed as particular electric potential topologies that occur spontaneously

and briefly, and are thought to reflect the activation of specific functional networks in ongoing

mental activity (Lehmann et al., 1987). Microstate properties have shown alterations across

wakefulness and sleep stages (Cantero et al., 1999), as well as in schizophrenia (Koenig et al.,

1999). Event-related microstate occurrences have also been observed and studied.

In the ERP domain, various types of fluctuations have been found and systematically studied,

a prime example being the visual evoked potential (VEP), which can be elicited by presen-

tation of an image or visual pattern to the subject (ACNS, 2006). VEP fluctuations are more

accentuated in occipital regions, given their proximity to the visual cortex, and usually show an

anterior-posterior dipolar distribution across the scalp. This dipole arises most prominently at

approximately 100 ms from stimulus onset, with two additional relevant occurrences around

70 and 140 ms, with reversed polarity (Fig. 1.4). The three components are commonly desig-

nated P100, N70 and N140, respectively (Skrandies, 2005). As with any other ERP, VEPs are a

manifestation of the underlying neuronal processes elicited or modulated by the stimulus. In

this case, the primary network at play is the visual pathway, including the retina, the lateral

geniculate nucleus (LGN) of the thalamus, and the visual cortex (Felleman and Van Essen,

1991) – the latter being the main contributor for scalp EEG signals. Variations in certain

properties of the stimulus, such as intensity, frequency or field-of-view (FOV), will create

differences in the neuronal response, and consequently affect the properties of the measured

VEP. Similarly, anomalies in the visual pathway may also produce detectable alterations at the

VEP level (ACNS, 2006).

It should be noted that typical EEG recordings are performed with a high-pass filter time

constant of 1–10 s, or lower, and as such very slow oscillations, also known as slow cortical

potentials, can be suppressed by the high-pass filtering stage. Such fluctuations do carry

relevant information on the state of activity of neuronal cells. Important examples may include

the contingent negative variation, associated with stimulus anticipation and sensorimotor

integration (Walter et al., 1964), and altered physiological conditions such as hypercapnia

and asphyxia can also produce observable changes at long timescales (Niedermeyer and

Lopes da Silva, 2005). Unfortunately, while relevant in various contexts, these fluctuations are

technically challenging to measure due to spurious contributions introduced by sweat and

the galvanic skin response, for example, and are thereby less often studied (Niedermeyer and

Lopes da Silva, 2005).
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Figure 1.4: Human visual evoked potential elicited by flickering-checkerboard stimuli. The re-
sponses shown correspond to an average over 340 trials, with re-referencing to the mean scalp
timecourse. The instant t = 0 corresponds to stimulus delivery. a) Average scalp topography at
t = 104 ms, corresponding to the P100 component of the VEP. b) Average response timecourses
for an occipital channel where the response is most prominent (POz), and for all channels
together. c) Evolution of the scalp topography after stimulus delivery (averaged across trials).
The P100, N70 and N140 components are well visible in occipital channel responses.

1.1.5 Limitations of scalp EEG

For almost a century, scalp EEG has yielded countless contributions to both basic and clinical

neuroscience. Nevertheless, the technique carries important limitations that must be taken

into consideration. For instance, because the signals are measured at the surface of the head,
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their signal-to-noise ratio (SNR) and spatial specificity are relatively poor, compromised by

the presence of intermediate tissues separating the electrodes from the neuronal cells. The

skull is the most deleterious of these components, its very low conductivity producing a strong

reduction and spatial dispersion of volume currents arising from the brain to the scalp (Mulert

and Lemieux, 2010). This effect results in a spatial blurring of the signals measured at the scalp,

and a strong decrease in SNR, and thereby sensitivity. In practice, while post-synaptic activity

creates fluctuations of cell membrane potentials in the order of mV, the signals measured at

the scalp are limited to a range of a few hundreds of μV, even during large-scale synchronous

activity of thousands or millions of neurons.

Added to its low sensitivity and spatial resolution, scalp EEG is prone to various biasing factors

that have an important impact on the signals measured. First, since the electric potential

of a dipole falls with the square of the distance to the probe, the sensitivity of EEG is depth-

dependent, with more superficial sources such as cortical neurons dominating the signal,

and deeper structures such as thalamic nuclei being considerably harder to detect. Second,

because electric dipoles are vector quantities, favorable summation of individual neuronal

fluctuations must be attained not only in time but also in spatial orientation (Nunez and

Silberstein, 2000). As a result, a strong sensitivity bias exists towards more regularly-oriented

cells such as the pyramidal cortical neurons, while other cell types such as interneurons cannot

produce significant net dipoles due to field cancellation.

Finally, although scalp EEG is often regarded as a relatively direct measure of neuronal activ-

ity, a complete understanding of its neurophysiological substrates has in fact not yet been

achieved. While postsynaptic activity is thought to be the main source of scalp fluctuations, ad-

ditional contributions can be captured as well; in particular, membrane potential oscillations

and after-potentials following spike propagation share the frequency domain of postsynaptic

activity (altogether termed perisynaptic activity), and will also contribute to LFPs (Logothetis,

2008). Evidence suggests that the faster nature of action potentials prevents a favorable sum-

mation of large population activity; nevertheless, recent studies have shown that features from

certain scalp EEG frequency bands can be used to infer spiking activity as well (Whittingstall

and Logothetis, 2009). Furthermore, besides neurons, glial cells also possess a polarized

intracellular medium; despite not exhibiting postsynaptic activity or action potentials, these

cells can be depolarized when the extracellular K + concentration exceeds certain thresholds

(namely during repetitive neuronal firing), giving rise to local ion fluxes that will contribute to

existing LFPs (Niedermeyer and Lopes da Silva, 2005).

1.2 Fundamentals of fMRI

MRI is a technique that explores the magnetic spin properties of certain atomic nuclei, most

often hydrogen, to obtain high-contrast images of living tissues non-invasively and without

ionizing radiation. The spin of the proton and its interactions with applied magnetic fields

were first explored in the 1920’s by Rabi and colleagues, and extended by Bloch and Purcell
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in the 1930’s with a highly practical macroscopic description. Nevertheless, it was only later

on, in the 1970’s, that MR-based imaging effectively began, with the revolutionary ideas of

Lauterbur and Mansfield: these authors proposed the use of spatially-varying magnetic fields

to encode magnetic spins with space-dependent properties, and thereby obtain information

regarding their distribution in living tissues – and ultimately, images (Haacke et al., 1999).

Despite its relatively recent origins, the advantages of MRI over other imaging modalities were

soon recognized by the scientific and medical communities, and massive technological and

scientific efforts were devoted to its development, and widespread implementation in clinical

practice.

The fundamental laws at play in MRI make it an extremely versatile approach, and its original

focus on static anatomical imaging soon branched into various other applications. The

major breakthrough for the application of MRI to the study of brain function was achieved

in the early 1990’s by Ogawa and colleagues, with the discovery of the blood oxygenation

level-dependent (BOLD) contrast (Ogawa et al., 1990). This technique, sensitive to local

fluctuations in the metabolic and vascular properties of living tissues, allowed for the non-

invasive monitoring of human brain function with unprecedented spatial resolution, and

has since offered tremendous contributions to modern neuroscience. As MR technology

continues to improve, BOLD fMRI progressively reaches ever higher levels of sensitivity, which

allow the study of more subtle features of brain function, and can also be traded for increased

spatial resolution or higher temporal sampling rates. At the same time, fundamental studies

combining fMRI with additional modalities, such as EEG and positron emission tomography

(PET), continually contribute towards our understanding of the neurovascular substrates of

the BOLD response.

1.2.1 Nuclear magnetic resonance

MRI is fundamentally based on the phenomenon of nuclear magnetic resonance (NMR),

displayed by the nuclei of certain atomic species. Protons and neutrons are known to possess

a property designated intrinsic angular momentum (or "spin"), �P ; this can be seen as the

quantum equivalent of the classical angular momentum displayed by rotating macroscopic

bodies, in the sense that it is quantized (only specific discrete values are measured). Depend-

ing on the number of protons and neutrons in a certain atomic nucleus, it too can have a

net angular momentum different from zero, and as nuclei are by nature positively charged

particles, this angular momentum will be associated to a corresponding nuclear magnetic

moment, �μ. The angular momentum and magnetic moment of a given atomic nucleus are

related by a simple expression:

�μ= γ�P (1.6)

where γ is the gyromagnetic ratio, a nucleus-specific empirical constant. In a sample of

nuclei with non-zero magnetic moments, in the absence of external magnetic fields, these

moments are randomly oriented, and the summed magnetic moment of the sample equals
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zero (Fig. 1.5a). However, if a static magnetic field �B0 is applied to the sample, for instance

along the z-direction, each nucleus will adopt one of 2I +1 distinct, discrete energy levels,

with I being the nuclear spin number, which depends on the composition of the nucleus.

Each energy level corresponds to a specific orientation of the nuclear magnetic moment with

respect to �B0 (Fig. 1.5b), with its projection along z given by:

μz = γ
h

2π
mI (1.7)

where h is the Planck constant, and mI takes one of 2I + 1 possible values. Examples of

naturally-abundant nuclei with non-zero magnetic moments include 1H, 19F and 23Na. Of

these, hydrogen is undoubtedly the most important for biological applications – its presence

in water molecules, which make up a large fraction of living tissues such as the human body,

make it an ideal substrate for MRI. Other biologically-relevant elements such as carbon and

oxygen can also provide important insights into function and metabolism, but typically require

"artificial" increases of the rarer isotopes 13C and 17O, respectively, since the more abundant

forms (12C and 16O) have a null magnetic moment.

The 1H nucleus is essentially a single proton and has a spin number of 1/2. Its two energy

levels correspond to two opposite orientations: one of lowest energy, parallel to �B0, and

another of highest energy, antiparallel to �B0. The difference in energy between the two states

is proportional to the magnitude of �B0, and given by:

ΔEH = γH
h

2π
B0 (1.8)

which is analogous to the classical description of a magnetic dipole placed in a magnetic

field, E = −�μ · �B0 = −μz B0. In the absence of thermal agitation, all nuclei would acquire

the parallel conformation, leading the system to its minimum energy state. However, at

typical physiological temperatures, the energy involved in thermal agitation is significant

and dominates the energy difference ΔEH . The expected balance between the number of

antiparallel (N1) and parallel 1H nuclei (N2) can be estimated from Boltzmann’s equation, as:

N1

N2
= e−

ΔEH
kT (1.9)

where k is Boltzmann’s constant and T is the temperature. In the MRI context, this proportion

is typically very close to 1; for example, for an applied field of 1.5 T at room temperature,

Boltzmann’s equation predicts that only 10 nuclei in 1 million are expected to contribute for a

non-zero net magnetization (with the remaining nuclei canceling each other out) – this minute

but essential difference is, in fact, what is measured in typical MRI acquisitions (Jezzard et al.,

2001). Also importantly, the stronger the applied �B0, the larger the net magnetization available.

A proton in the lowest energy state can be excited to the higher energy state by radiation of

specific frequency ν, such that the photon energy E = hν matches ΔEH . This interaction,

which typically involves energies in the radiofrequency (RF) band (hundreds of MHz), is
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fundamental for NMR, and subsequently for MRI. For a sample of 1H nuclei in a static magnetic

field �B0, the net magnetization �M of the sample, comprising the sum of all the individual

magnetic moments, can be described as a vector parallel to �B0 (since all contributions cancel

each other out, except for the exceeding parallel component) (Fig. 1.5c). Although the nuclear

magnetic moment and its interactions with radiation are inherently quantum properties, it

has been shown that these phenomena can be treated in a classical framework, equivalent to

that of macroscopic magnetic dipoles. In particular, the magnetic moments can be regarded

as if precessing around �B0 at the so-called Larmor frequency, ωL , related to the field strength

by:

ωL = γB0 (1.10)

and thereby proportional to ΔEH as well. If a second, oscillatory field �B1, transverse to �B0,

is applied at a frequency similar to the Larmor frequency, it is said to be on resonance with

the precessing nuclei, and can then interact with the net magnetization �M and change its

equilibrium orientation (Fig. 1.5d). The process can be described analogously to its classical

equivalent, a macroscopic magnetic dipole, by:

d �M

d t
=−γ�B × �M (1.11)

where �B , in this context, is the sum of �B0 and �B1. An interaction of particular interest is

that achieved with a circularly-polarized field �B1, precessing in the x y-plane at the Larmor

frequency, perpendicular to �B0 (which remains constant along the z-axis). It can be shown

that such a pulse, applied for period of time τ, can rotate �M towards the x y-plane by a certain

angle α, called the flip angle, equal to:

α= γB1τ (1.12)

(given in radians). Except for the special cases of full excitation (α= 90ř) or inversion (α= 180ř),
�M will now have a longitudinal component �Mz , of magnitude M cos(α), and a transverse

component �Mx y , of magnitude M sin(α) and rotating about the z-axis at the Larmor frequency.

Because of this precession in time, the transverse component can be detected by an adequately-

placed receiver coil, by means of EM induction (based on Faraday’s law). An important aspect

of this process is its frequency-selectivity: if the precession frequency of �B1 differs from

the Larmor frequency of the sample under �B0, the probability of energy state transition by

individual nuclei is reduced. In the classical framework, this effect can be described as the

two magnetic fields acting together in a less efficient combination, and the resulting α will

typically be considerably smaller, or effectively negligible (Fig. 1.6c).

Once excited away from its equilibrium, the magnitude of �Mz and �Mx y will not remain con-

stant in time. In fact, the energy absorbed from �B1 by the sample is gradually dissipated,

and the net magnetization eventually returns to its equilibrium �M0, parallel to �B0, with �Mx y

becoming once again null. This process is termed spin relaxation, and includes various mech-
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Figure 1.5: Behavior of a nuclei sample (with I = 1/2) when placed in a strong magnetic
field along z. a) Nuclear magnetic moments are randomly oriented prior to the application
of a magnetic field. b) Gradually, the moments align either with the field or against it; the
slight preferential alignment along the direction of the field acts as a single net magnetization
vector �M . An oscillating magnetic field �B1 can change the orientation of some of the nuclear
moments from equilibrium (c), until there is a net magnetization vector in the x y-plane (d).

anisms that are of utmost importance for tissue differentiation, or in other words, for image

contrast in MRI. In biological tissues such as the human body, when the nuclei of interest are

excited, they undergo a complex process of energy dissipation by means of EM interactions

with surrounding particles. These interactions can be grouped into three distinct mechanisms:

a) A mechanism known as T1 relaxation or spin-lattice relaxation, by which the excited nuclei

dissipate their energy in interactions with surrounding molecules mediated by randomly-

fluctuating magnetic fields. The relevant fields for T1 relaxation, including contributions from

random molecular motion (translational, rotational and vibrational), are those occurring at

frequencies close to the Larmor frequency, to achieve the necessary transition energy. The

effectiveness of this mechanism depends, therefore, on both the strength of �B0 and the motion

characteristics of the medium. An important property governing the dynamics of fluctuating

magnetic fields is the so-called correlation time (τc ), defined as the expected time taken

by a molecule to rotate by one radian. The correlation time increases with the viscosity of

the medium and the size of the molecule, and decreases with temperature; T1 relaxation is

maximally accentuated when ωLτc � 1. The T1 relaxation process governs the regeneration of
�M along the z-axis, as described for each instant t after excitation by:

d Mz

d t
(t ) = M0 −Mz (t )

T1
⇒ Mz (t ) = M0 − (M0 −Mz (0))e−t/T1 (1.13)

b) A mechanism known as T2 relaxation or spin-spin relaxation, by which the excited nuclei

experience small variations in their Larmor frequency, due to low-frequency, microscopic

random fluctuations of the local magnetic field. These random field fluctuations, experienced

at a molecular level, are generated by tumbling with neighboring nuclei, and therefore the

process depends mainly on the motion characteristics of the medium. These small individual

variations in the Larmor frequency lead to a general loss of phase coherence for the individual

magnetic moments, resulting in a decrease of the magnitude of the transverse magnetization,
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�Mx y , as described by:

d Mx y

d t
(t ) =−Mx y (t )

T2
⇒ Mx y (t ) = Mx y (0)e−t/T2 (1.14)

c) Finally, a mechanism known as T ′
2 relaxation is also of great importance, especially for

BOLD-fMRI. Despite sharing similar principles to those of T2 relaxation, T ′
2 mechanisms are

associated with differences in Larmor frequency across a sample of nuclei due to "external",

macroscopic magnetic field inhomogeneities. These inhomogeneities can be caused by imper-

fections in the applied �B0 field, or by differences in magnetic susceptibility between structures

in the sample – at the proximity of air/tissue interfaces, for example, or in blood vessels. As

with T2 relaxation, these processes result in an exponential decrease of the transverse net

magnetization with time. The combination of the two types is commonly referred to as T ∗
2

relaxation, with a time constant T ∗
2 given by:

1

T ∗
2

= 1

T2
+ 1

T ′
2

(1.15)

It is worth mentioning that given their systematic (non-random) origins, T ′
2 contributions

can be countered by applying 180º pulses in the x y-plane (also called refocusing pulses).

This technique, known as spin echo, renders the transverse relaxation sensitive mainly to T2

mechanisms, and contrasts with so-called gradient-echo approaches, which retain the full T ∗
2

weighting.

The characteristic relaxation times T1, T2 and T ′
2 are intrinsic properties of each sample, which

depend on the various molecular species that exist together with the water protons, and the

microscopic architectures in which they are arranged. In the human body, different tissues

such as blood, fat deposits, grey matter and white matter, as well as various other tissue types,

display particular and considerably distinct time constants that differentiate them apart – this

property contributes to the excellent soft-tissue contrast that can be achieved with MRI.

The processes of excitation and relaxation can be jointly described by combining Eqs.1.11,

1.13 and 1.14 into a set of fundamental equations, also known as Bloch equations (Bloch,

1946):

d Mx

d t
(t ) = γ(My (t )Bz (t )−Mz (t )By (t ))− Mx (t )

T2

d My

d t
(t ) = γ(Mz (t )Bx (t )−Mx (t )Bz (t ))− My (t )

T2

d Mz

d t
(t ) = γ(Mx (t )By (t )−My (t )Bx (t ))− Mz (t )−M0

T1

(1.16)

These equations can be solved numerically for any pattern of applied magnetic fields, and

are useful to predict the behavior of nuclear magnetization throughout complex excitation

sequences. For certain applications, a commonly-used approach to simplify the system is
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Figure 1.6: A 90° pulse for spin excitation with a precessing magnetic field �B1, either on-
resonance (a,b)) or off-resonance, at 0.8 ωL (c)). The magnetization vector �M before excitation
is shown in grey (dashed line), and after excitation in blue. The magnetization trajectory
throughout the pulse is shown in black. a) excitation as seen from a reference frame rotating
at the Larmor frequency; the effective field �Be f f is static, along the x-direction. b,c) excitation
as seen from a static reference frame.

through the use of a rotating reference frame, particularly matching the rotation about the

z-axis at the Larmor frequency – with this reference change, the precession of �M due to �B0 is

excluded, as is that of �B1 when applied on-resonance (Fig. 1.6a).

A series of pulses with specific timings can be designed so as to highlight the effects of certain

relaxation mechanisms relative to others. For instance, if a 90° pulse is repeatedly applied

to the sample with a period TR (called repetition time), the longitudinal magnetization Mz

available just before each new pulse will obey:

Mz (T R−) ∝ M0(1−e−T R/T1 ) (1.17)

assuming that T ∗
2 � TR, and thereby no transverse contributions remain to be tipped back to

the z-direction with the next pulse. With each 90° pulse, the longitudinal component is fully

transferred to the transverse component, Mx y . After a time TE following excitation (called

echo time), Mx y will have relaxed according to:

Mx y (T E) ∝ M0(1−e−T R/T1 )e−T E/T ∗
2 (1.18)

The corresponding signal, if picked up by a nearby coil, will thus be weighted by contributions

from both T1 and T ∗
2 (or T2, if a refocusing pulse is included). Crucially, by appropriately

manipulating the acquisition parameters TR and TE, each of these contributions can be given

more or less emphasis, and the resulting signal will then be more sensitive to differences in

the associated time constant. This offers the user a certain degree of control over the contrast

achieved between different tissues.
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1.2.2 Magnetic resonance imaging

As previously discussed, NMR phenomena are highly frequency-specific, with resonant fre-

quencies being established by the externally applied fields. MRI techniques cleverly exploit

this property to be able to discriminate nuclear densities and medium properties across the

three dimensions of space. In practice, this is accomplished by superimposing magnetic field

gradients to the applied field �B0, so as to vary the Larmor frequency across a given sample.

Gradient forms are typically linear, leading to a field distribution of the form:

�B(x, y, z) = �B0 + (Gx x +Gy y +Gz z) �ez (1.19)

where Gx , Gy and Gz are the gradient slopes along the x, y and z direction, respectively, and

�ez is a unitary vector parallel to the z-axis.

One of the most elementary frameworks for image generation combines three types of spatial

encoding, one for each spatial dimension (Fig. 1.7). The first stage, designated slice selection,

comprises the excitation of a thin, planar slice across the object, at a certain orientation. For

example, to obtain an axial slice (perpendicular to the z-axis), centered at a well-defined

height zs , a gradient Gz is established (with Gx = Gy = 0), and an RF pulse �B1 is applied at

frequency ωs , such that:

ωs = γ(B0 +Gz zs) (1.20)

In practice, the RF pulse excites a range of frequencies centered at ωs , which will correspond

to a certain slice thickness in the image. In the time domain, the pulse can be modulated by an

approximation to a sinc function, for example, which corresponds to a square function in the

frequency domain, centered at ωs and spanning the desired frequency (thickness) interval.

After excitation of a slice, the magnetization of the corresponding nuclei acquires a non-zero
�Mx y component. In a macroscopic description, �Mx y can be considered a magnetization

density, continuous in space. It is also useful to describe �Mx y as a complex number, with the x

and y components forming the real and imaginary part, respectively. The complex equivalent

can then be treated in terms of its magnitude Mx y and phase φ, as:

�Mx y (x, y, z, t ) → Mx y (x, y, z, t )e jφ(x,y,z,t ) (1.21)

where the magnitude decreases in time with relaxation while the phase varies with precession.

After excitation, the resulting �Mx y can be detected by a nearby RF coil. For example, for

an axial slice at a height zs , the signal measured Szs , after demodulation from the reference

frequency and for the moment neglecting relaxation effects, will be described by:

Szs ∝
∫

X

∫
Y

Mx y (x, y, zs)d yd x (1.22)

Szs provides a measure of the total signal content of the slice, but cannot offer information on
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its distribution along the x and y directions. That discrimination is achieved with further use

of gradient fields, in two stages designated phase encoding and frequency encoding (Fig. 1.7).

The phase-encoding step, employed in the y direction, for example, consists in the application

of a gradient Gy during a time period τPE prior to data acquisition. This will introduce a

spatially-dependent phase shift φy of the form:

φy (y,Gy ,τPE ) = γGy yτPE (1.23)

After the application of Gy , frequency encoding (in the remaining x direction) is mediated by

a third gradient Gx applied simultaneously with signal acquisition ("readout") itself . Differen-

tiating the precession frequencies along the x direction, the presence of Gx results in a second,

space and time-dependent phase shift φx , of the form:

φx (x,Gx , t ) = γGx xt (1.24)

With the combination of the two encoding processes, the ωs-demodulated signal Szs , acquired

during frequency encoding, can be expressed as:

Szs (t ,Gx ,Gy ,τPE ) ∝
∫

X

∫
Y

Mx y (x, y, zs)e− jφx (x,Gx ,t )e− jφy (y,Gy ,τPE )d yd x

Szs (t ,Gx ,Gy ,τPE ) ∝
∫

X

∫
Y

Mx y (x, y, zs)e− jγGx xt e− jγGy yτPE d yd x

Szs (kx ,ky ) ∝
∫

X

∫
Y

Mx y (x, y, zs)e−2π j (kx x+ky y)d yd x

(1.25)

with kx = γGx t/2π and ky = γGyτPE /2π. This last formulation highlights the analogy of Szs

with the spatial Fourier transform of Mx y . Indeed, the acquisition process here described

can be regarded as the sampling of the Fourier transform of Mx y for a specific domain of

values of kx and ky , adequately named the k-space. Each phase-encoding stage sets a specific

ky , and the following frequency-encoding stage allows for the acquisition of a series of kx

(increasing in time under Gx ) for that ky – which can be regarded as a line of elements in

k-space. By repeating the process for several different values of ky , different lines are acquired,

and when the k-space is filled, a map of Mx y (x, y, zs) can be recovered via an inverse Fourier

transform. The whole process can likewise be repeated for a series of slices, yielding a full 3D

image of the object.

As would be expected, there is a close reciprocity between k-space and image-space properties:

the image FOV is inversely proportional to the resolution in k-space (Δk), and the image

resolution (Δx,Δy) is inversely proportional to the maximum range of sampled k-values

(given by kx = γGx tRO/2π and ky = γGymaxτPE /2π, respectively, with tRO corresponding to

the readout duration). It is important to note that the basic acquisition protocol presented

above is considered a 2D acquisition method, in the sense that multiple 2D slices are separately

acquired. Nevertheless, 3D extensions have also been developed, in which a single, thick slab is

excited by the RF pulse, and the slice direction is taken as a second phase-encoding direction.
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Figure 1.7: Block diagram representing the basic 2D gradient-recalled echo acquisition se-
quence, with slice selection along z, phase encoding along y and frequency encoding along x.
Phase-encoding and readout sections are repeated for several values of Gy , in order to sample
several phase-encoding lines in k-space. Refocusing gradients are included to compensate
for finite slice thickness and dephasing effects, balancing the phase evolution throughout the
sequence.

1.2.3 The BOLD contrast

Despite a number of limitations, the BOLD contrast has been the workhorse of fMRI since

its discovery in the early 1990’s. Normal blood can be regarded as a concentrated solution

of hemoglobin. As discovered by Pauling and Coryell in 1936, hemoglobin (Hb) behaves as

a diamagnetic substance when bound to oxygen (interacting with external magnetic fields

in a repulsive way), and as a paramagnetic substance when deoxygenated (interacting with

external magnetic fields in an attractive way) (Pauling and Coryell, 1936). Therefore, changes

in Hb oxygenation will influence the magnetic susceptibility of the blood, which in turn defines

how it will interact with, and distort, an applied magnetic field. In 1990, Ogawa et al. reported

gradient-echo MRI signal loss around blood vessels of cat brains under hypoxia, an effect

which would be reversed with normoxia. This was attributed to changes in the magnetic

susceptibility of the blood associated with deoxygenation: since both oxyhemoglobin and

brain tissues in general are diamagnetic, while deoxyhemoglobin (dHb) is paramagnetic, the

presence of the latter will generate local field gradients between the blood vessels and adjacent

tissues, locally decreasing T ∗
2 (Ogawa et al., 1990). The measured signal, given a T ∗

2 weighting

to enhance sensitivity to these effects, was baptized BOLD signal.

In fact, both T2 and T ∗
2 mechanisms are thought to be associated with the BOLD effect: inside

blood vessels, water protons diffuse freely in and out of red blood cells in the time scale of TE,

experiencing rapidly-changing magnetic fields around their vicinity, which induce shifts in

their Larmor frequency. As blood oxygenation is decreased, the field gradients between red
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blood cells and their surroundings become stronger, boosting the shift effects in water protons

– this can be regarded as a T2 relaxation process. On the other hand, in the tissues adjacent

to blood vessels, extravascular water protons experience significant local field gradients with

respect to the vessels (depending on proximity and relative orientation), which increase with

blood deoxygenation. The resulting effect can be considered a T ∗
2 relaxation process.

With the discovery of the BOLD effect, the association of changes in blood oxygenation with

neuronal activity, and therefore with brain function, was an intuitive leap that soon followed,

marking the birth of fMRI (Ogawa et al., 1992, 1993). In the brain, the local concentration of

dHB varies essentially with three factors: cerebral blood flow (CBF), cerebral blood volume

(CBV), and the cerebral metabolic rate of oxygen consumption (CMRO2) (Davis et al., 1998;

Buxton et al., 1998). Neuronal activity is tightly linked to metabolic pathways of ATP produc-

tion, which drive CMRO2 fluctuations, but is also known to exert a more direct influence on

local CBF (Logothetis, 2002; Attwell et al., 2010). Overall, a local increase in neuronal activity

will raise CMRO2, leading to an increase in [dHb], but also typically induce a strong increase in

CBF, mediated by local autoregulation mechanisms, resulting in a net decrease in [dHb], and

thereby a positive BOLD response (Buxton, 2012).

Given the combination of vascular and metabolic mechanisms generating the BOLD response,

its temporal dynamics are considerably slower than the underlying neuronal activity, and tend

to exhibit a more complex morphology. The typical BOLD response to a short visual stimulus

exhibits a main positive peak occurring 5–8 s after stimulus onset; if the stimulus has stopped,

the BOLD signal again decreases over a few seconds, reaching a level below the initial baseline,

often termed post-stimulus undershoot; a slow recovery to baseline level then follows, lasting

for 12–18 s (Fig. 1.8). The overall response can last for more than 20 s after stimulus cessation.

In a number of studies, with adequate temporal sampling, a negative inflection of the BOLD

signal has also been observed immediately after stimulus onset, lasting until the response

increase begins – this is usually referred to as initial dip (Ernst and Hennig, 1994).

The BOLD response here described for a short stimulus can be regarded as a hemodynamic

response function (HRF). Several studies have investigated the conditions under which an

analogy with impulse response functions of linear time-invariant systems is acceptable for

BOLD response prediction. Such a property is highly convenient, since it would allow complex

BOLD response patterns to be modeled by a timecourse of the stimulation or task paradigm

linearly convolved with a fixed impulse response function – defined, for example, as a standard,

canonical HRF (Friston et al., 1998) (Fig. 1.8a,b). Important studies have suggested that, while

this approach is inadequate to model responses to long-duration stimuli, where phenomena

such as habituation, for example, may become significant (Bandettini et al., 1997), it should

provide a reasonable approximation in cases where the stimulus duration is sufficiently close

to what is considered an "impulse" (Logothetis and Wandell, 2004).

An important feature of the BOLD contrast is its dependence on the applied field strength.

The SNR of MRI signals has been shown to increase linearly with B0 (Edelstein et al., 1986). Yet,
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Figure 1.8: Models and observations of the BOLD response timecourse. Left, center: Canonical
HRFs used in statistical analysis of the BOLD response, along with their temporal derivatives
(often included to account for small temporal shifts). These curves are intended to model
the response to brief stimuli of unit amplitude. Right: Real BOLD responses observed in the
visual cortex, for visual stimuli of varying duration: 4 s (blue), 10 s (green), 16 s (yellow) and 20
s (red).

while this linear increase is important per se, the BOLD contrast is still further enhanced by

additional field strength-dependent factors. First, the effects due to magnetic susceptibility

differences between tissues increase with B0; while this is a source of important artifacts, it is

also the origin of the BOLD effect, which relies on bulk magnetic susceptibility differences

between blood containing dHb and the surrounding tissues. The added effect leads to super-

linear gains in sensitivity (Turner et al., 1993; van der Zwaag et al., 2009a). Second, because

the T2 and T ∗
2 of venous blood are considerably shorter at higher field strengths such as 7 T,

the measured signal at typical TEs becomes strongly dominated by grey matter contributions

relative to draining vein contributions, resulting in a higher spatial specificity for functional

localization (Gati et al., 1997; Yacoub et al., 2001). This synergistic combination of benefits to

sensitivity and specificity has been a strong motivation for the pursuit of higher field strengths

for BOLD fMRI. Trading the added sensitivity for a higher spatial resolution, fMRI studies

conducted at ultra-high fields such as 7 T have achieved sub-millimeter voxel widths (Yacoub

et al., 2008), and higher field strengths continue to be pursued (Deelchand et al., 2010; Duyn,

2012).

1.2.4 BOLD fMRI acquisition

NMR-based interactions, as well as the techniques devised for imaging, require the appli-

cation of (electro)magnetic fields with extremely precise frequency, timing, amplitude and

spatial distribution. This is accomplished through highly sophisticated technology assembled

together as an MRI scanner, with an associated control room (Fig. 1.9).

A typical human scanner possesses a permanent static field �B0, maintained by a cylindrical

superconducting magnet, containing the volume of interest for imaging. This magnet is

25



Chapter 1. Fundamentals of EEG and fMRI

He coldheads 

Cryostat 

B0 magnet 

RF 

Gradients Gx 
amp 

Gy 
amp 

RF 
amp 

Host 
computer 

Scanner 
electronics 

Gz 
amp 

Figure 1.9: Simplified schematics of an MRI scanner. The scanner electronics produce signals
that are amplified before being sent to the gradient or RF coils. The detected signal is then
digitized for processing and image reconstruction.

kept at low temperatures to preserve its superconducting state, typically in a bath of liquid

helium (He), which has a boiling point below 4.3 K. In order to maintain this state, thermal

insulation layers are added to the bore, and one or more He coldheads (or equivalent systems)

are set on the top and work permanently to recover evaporating He. The coldheads work

in repeated thermodynamic cycles that apply mechanical energy to extract heat from the

medium, leading to the recondensation of ascending He gas. The resulting field �B0 is typically

in the order of 1–10 T (for human applications), constant in time, and made to be as spatially

homogeneous as possible within the volume of interest. This property can be further improved

through a process called �B0 shimming, which uses superimposed field components created

by additional coils, adjusted specifically to increase the field homogeneity in the desired FOV,

for a specific sample (Gruetter, 1993). The �B0 field naturally extends beyond the volume of

interest, and certain magnetic shielding measures must be adopted to limit its range, for

safety reasons. Passive shielding relies on reinforcing the magnet room walls with heavy

ferromagnetic layers, to confine the field; active shielding, developed more recently, employs

a second set of superconducting windings, outside of the main magnet and with opposite

current, to reduce the outer field. The latter approach results in a fast decay in field amplitude

with the distance from the magnet; reciprocally, a considerably steep field rise is created at the

entrance of the bore.

The gradient fields used for spatial encoding are generated by three sets of gradient coils

with orthogonal contributions (x,y ,z), fed by high-power current sources. They are designed

to generate spatially homogeneous field slopes with extremely fast rise-times, in order to

meet the demanding slew-rate requirements of fast spatial encoding schemes in MRI, and

particularly those used in fMRI acquisition. An important issue that must be well dealt with,

to allow for fast field switching, is the impact of opposing fields generated by eddy currents.

Nuclear spin excitation and detection is performed with RF coils, which can be designed

with various sizes, numbers of elements and geometries, for optimal performance in specific

applications and body regions. Transmission and detection can be performed by the same,

or by separate coils. The generated �B1 fields in MRI are typically in the radiofrequency range,
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and thus constitute non-ionizing radiation. Nevertheless, the power deposited in biological

tissues leads to heating, and may eventually cause injuries. For this reason, RF safety is an

important aspect of coil design, and determines the specific limits for power transmission

allowed for MRI acquisition. The distribution of power deposition in biological tissues is

highly dependent on the properties of both coil and sample, and can be estimated either with

computational simulations or through temperature measurements in phantom models – this

will be discussed in more detail in Chapter 3.

The generation of images requires a suitable, well-timed application of RF pulses and field

gradients, in predefined sequences. For BOLD fMRI, the main workhorse for image acquisition

has been the echo-planar imaging (EPI) technique. This sequence employs a rapid gradient-

encoding scheme that allows for the sampling of several k-space lines in a single excitation.

This is accomplished with a rectilinear "zig-zag" trajectory where several line readout blocks

are included, separated by short phase-encoding blips, which correspond to k-space line

shifts in the phase-encoding direction (Fig. 1.10). In its most common form, multislice 2D

EPI, a full k-space plane is sampled following each RF excitation, yielding an image slice per

excitation, and a full volume can be obtained within a few seconds. This temporal resolution

is essential for proper sampling of BOLD fluctuations. The TE of an EPI sequence is defined

as the time from excitation until the center of the readout train, at which point the k-space

origin is sampled. In order to minimize gradient-induced spin dephasing effects at t =TE,

additional gradients can be placed before the readout train (a gradient-echo approach), or

instead, a refocusing 180° pulse can be used (a spin-echo approach). It can be shown that

the TE offering optimal sensitivity for BOLD signal changes lies between the T ∗
2 values of

the activated and baseline states – typically close to 30 ms at 3 T, and 25 ms at 7 T (Yacoub

et al., 2001). This rather short duration requires a fast sampling of k-space planes, and for

higher spatial resolutions (which involve more sampling points) acceleration schemes based

on k-space undersampling are often employed (McGibney et al., 1993; Griswold et al., 2002).

Despite their obvious advantages in terms of acquisition speed, EPI techniques are particularly

sensitive to certain artifact types, mainly due to their rather long readouts, which result in a

low bandwidth for the phase-encoding direction. For instance, the resonance frequency of
1H protons in fat tissues have a chemical shift that accumulates throughout spatial encoding,

resulting in substantial displacements of the fat signal in the phase-encoding direction. �B0

inhomogeneities, especially strong at air-tissue boundaries such as in the nasal cavities,

generate off-resonance artifacts and phase slopes during encoding that arise as geometric

distortions in the images. The successive switching of the readout gradient polarity between

successive k-space lines produces an alternation in the direction of phase shifts, resulting

in Nyquist ghosting artifacts in the phase-encoding direction, shifted by half of the image

FOV. Numerous approaches have been devised to minimize each particular artifact type, and

may be advantageous for studies targeting particularly problematic brain regions. Despite

these artifacts, in general, given their high sampling speed, adequate spatial resolution and

functional sensitivity, EPI methods have remained the most widely used techniques for BOLD

fMRI data acquisition.
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Figure 1.10: A 2D gradient-echo EPI pulse sequence (a)) and its k-space traversal diagram (b))
for a 9×9-point image. The initial phase gradient moves the acquisition to the edge of k-space
in the phase-encoding direction. The alternating read gradient then causes a train of gradient
echoes to be formed and the subsequent gradient "blips" on the phase axis serve to step the
acquisition through k-space in the phase-encoding direction. The combination of frequency
and phase-encoding gradients yields a rectilinear trajectory of data points in k-space with the
direction of the readout gradient being switched for alternate lines.

1.2.5 Limitations of BOLD fMRI

Despite the tremendous impact of BOLD fMRI in modern neuroscience, the technique con-

tains a number of caveats that must be taken into consideration, and which introduce impor-

tant limitations to its applicability and the interpretation of results. Due to the slower nature

of vascular and metabolic processes compared to neuronal activity, BOLD responses have a

relatively poor temporal resolution. Even with extremely fast acquisition sequences, capable

of sampling entire brain volumes in only a few hundreds of milliseconds, the limitations

introduced by physiology cannot be avoided, and strongly hinder the estimation of response

timings and causal relationships in neuronal interactions.

While its poor temporal specificity is a limiting aspect, the strongest drawback of the BOLD

effect is in fact its interpretability. The coupling between neuronal activity and BOLD fluctua-

tions, resulting from an interplay of CBF, CBV and CMRO2, has proved to be highly complex

and still remains poorly understood (Logothetis, 2008). The vascular and metabolic processes

underlying the BOLD response throughout its various stages have been extensively studied,

and some points of consensus have been reached, yet many aspects remain unclear. For

instance, observations of the rather elusive initial dip have varied widely across studies, de-

pending on factors such as the acquisition parameters, stimulus type and animal species. This

feature has been hypothesized to reflect a rapid deoxygenation of capillary blood caused by

suddenly-increased synaptic activity, but evidence has also suggested it may instead be due to
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a local, rapid increase in capillary CBV (Uludag, 2010; Hu and Yacoub, 2012).

A few seconds after activity onset (with or without an observable initial dip), it is well accepted

that CBF displays an increase of about 50–70%, outweighing the CMRO2 increase, which is

only of 2–5% (Jezzard et al., 2001) – resulting in a main positive response peak. Although

very consistently observed, the rise in blood flow following increases in neuronal activity is

mediated by highly complex mechanisms involving both neurons and neighboring astrocytes.

Neurotransmitter-mediated signaling, particularly by glutamate, is currently thought to play

a major role in this process, although other regulation factors such as nitric oxide, arachidonic

acid and K+ are also involved, and the local concentration of O2 seems to modulate these

processes significantly (Attwell et al., 2010). The hierarchical level of the vascular structures

affected by these processes, as well as the propagation and timing of the alterations, are also a

subject of active debate (Hillman, 2014).

Following the main BOLD peak, the post-stimulus undershoot has also proved considerably

challenging to understand. Initial studies associated this effect to a slowly-resolving, passive

increase in CBV that lasts for a longer period than changes in CBF and CMRO2 – as described

by the so-called balloon model (Buxton et al., 1998). Although fairly well-accepted, alternatives

to this mechanism have been proposed, namely a prolonged high-CMRO2 state that outlasts

the CBF response (Lu et al., 2004), or a strong decrease in CBF accompanied by a smal drop

in CMRO2, below baseline (an inverse mechanism to that of the main peak). The latter

hypothesis suggests an actual influence from ongoing neuronal activity in the generation of

the undershoot, and has received increasing support in recent years (Sadaghiani et al., 2009;

Mullinger et al., 2013b).

Given the complexity of neurovascular coupling mechanisms, BOLD fluctuations must be

carefully interpreted. For instance, while deactivated populations may express negative BOLD

responses (Shmuel et al., 2006), complex arrangements of competing excitatory and inhibitory

activity can have unpredictable outcomes (Lauritzen and Gold, 2003). Neurovascular coupling

has been found to vary across brain regions (de Munck et al., 2007; Goense et al., 2012),

and alterations have also been identified in certain pathological conditions such as epilepsy

(Grouiller et al., 2010), cortical spreading depression, brain ischemia and Alzheimer’s disease

(Attwell et al., 2010). Given these various sources of variability, the linear time-invariant

modeling approach based on a canonical HRF can thus be expected to perform inaccurately.

Finally, the neuronal substrates of BOLD are also a point of important debate. Although not

undisputedly (Mukamel et al., 2005), evidence suggests that LFPs are more tightly correlated

with BOLD than MUA (Logothetis, 2002; Rauch et al., 2008). While this points to perisynaptic

activity as the best correlate of BOLD fluctuations, the problem becomes even more complex

as different LFP frequency bands tend to show distinct, context-dependent correlations with

BOLD (Niessing et al., 2005; Whitman et al., 2013). Finally, besides neurons, other cell types

such as astrocytes can influence hemodynamic fluctuations significantly (Schummers et al.,

2008). Moreover, ongoing physiological processes such as the cardiac and respiratory cycles
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can also introduce important confounds (Kruger et al., 2001; Jorge et al., 2013).

Given the limitations of the BOLD contrast, other MRI-based approaches have been proposed

and explored for functional imaging. An important alternative is arterial spin labeling (ASL),

which relies on the transient magnetic "labeling" of water protons traveling in proximal

blood vessels (using inversion RF pulses), yielding a signal which is directly proportional

to cerebral perfusion (Detre et al., 1994). Furthermore, if complemented by appropriate

calibration data, and following a number of assumptions, simultaneous ASL perfusion and

BOLD measurements can yield estimates of CMRO2 responses, a considerably more direct

measure of neuronal activity (Leontiev and Buxton, 2007). Other alternatives to BOLD include

the direct measurement of changes in CBV, based on approaches such as vascular space

occupancy (VASO) imaging (Lu et al., 2003). Unfortunately, in general, despite providing more

direct, quantitative measures of neuronal activity than BOLD fMRI, the currently-existing

alternatives still remain inferior in terms of image SNR and temporal resolution, among other

constraints, limiting their applicability.

1.3 EEG-fMRI integration

Having considered the physiological substrates, strengths and limitations of EEG and fMRI,

it is straightforward to recognize the potential benefits of combining the two techniques for

the study of brain function (Babiloni et al., 2004). Indeed, the first EEG recordings performed

inside an MRI scanner were accomplished shortly after fMRI started being applied to humans

(Ives et al., 1993), and aimed for a better spatial localization of epileptic networks in patients

undergoing presurgical evaluation (Patel et al., 1999). These initial localization attempts were

performed in an interleaved scheme, with the EEG recordings allowing for the identification

of seizure onsets in real time, and these being used to start fMRI acquisition. BOLD data from

these periods were then compared to "event-free" intervals, allowing for the identification of

brain regions with significant signal variation between the two states.

Importantly, due to their strong static magnetic field, rapidly-varying gradients and RF pulses,

MRI scanners impose a harsh environment for EEG recording, raising important issues in

both patient safety and data quality (Laufs, 2012). Safety concerns arise from the possible

generation of electric currents along the EEG wires and through biological tissues, induced

by the MRI gradients or RF pulses (Dempsey et al., 2001), as well as the disruption of �B1 field

distributions due to the presence of the conductive EEG components, possibly leading to

important changes in power deposition within the head (Angelone et al., 2004). Regarding data

quality, when EEG and fMRI are acquired simultaneously, both modalities can be affected

by severe artifacts. On the one hand, the presence of EEG materials can lead to MR image

degradation, caused by magnetic susceptibility effects between the head tissues and the EEG

components (Krakow et al., 2000), as well as �B1 disruption or shielding effects caused by

the EEG materials. On the other hand, the EEG recordings are affected by strong artifacts

essentially generated by EM induction, mainly caused by the MRI gradients (Allen et al.,
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2000), followed by various effects related to the cardiac cycle (Mullinger et al., 2013a), as

well as head motion in �B0, and vibrations propagated from the He coldheads (Mullinger

et al., 2008a) and ventilation systems (Nierhaus et al., 2013). These important challenges

encouraged a remarkable course of technological advancements in EEG system design and

fMRI acquisition protocols (Allen et al., 1998; Goldman et al., 2000; Mandelkow et al., 2006),

which mitigated many of the initial problems, and eventually allowed for a transition from

interleaved acquisitions, where "silent periods" are included in the fMRI protocol to allow the

recording of gradient artifact-free EEG intervals (Bonmassar et al., 1999; Kruggel et al., 2000),

to truly simultaneous acquisitions (Lemieux et al., 2001; Goldman et al., 2002; Moosmann

et al., 2003). Likewise, EEG-fMRI applications were rapidly extended from epilepsy to the

study of healthy brain function, with important contributions to its understanding (Debener

et al., 2006; Herrmann and Debener, 2008).

Despite these technological advances, combined studies still involve important conceptual

and methodological questions at the level of experimental design, data acquisition, modality-

specific data processing and multimodal data integration (Mullinger and Bowtell, 2011). These

aspects are introduced in this section, with some being discussed in greater detail later on in

Chapters 3–5.

1.3.1 Substrates of EEG, fMRI and behavior

While strongly dependent on the underlying neuronal activity, the signals captured by either

EEG or fMRI form a complex, biased expression of only part of that activity. Indeed, their

neuronal substrates can be schematized as two partially-overlapping domains contained

inside the larger pool of neuronal activity (Rosa et al., 2010a), which can itself be divided

into an event-related domain, comprising evoked activity associated to an experimental

paradigm, and an event-unrelated domain, comprising spontaneous activity (Debener et al.,

2006). Behavior can also be considered as a third domain of observation (Laufs, 2012) (Fig.

1.11). These representations highlight the subtleties of multimodal integration – for example, a

behavioral change may be accompanied by measurable changes in EEG, fMRI, or both, but the

underlying sources may differ (Nunez and Silberstein, 2000). Likewise, different integration

approaches involve different assumptions regarding this uncertainty, and thus carry specific

vulnerabilities when applied to the complex dynamics of brain function, which must not

be neglected (Martinez et al., 1999; Daunizeau et al., 2005; Im et al., 2005; Laufs et al., 2006;

Regenbogen et al., 2012).

1.3.2 Experimental design

A fundamental question regarding the combination of EEG and fMRI is whether the two

modalities should be acquired separately – in different sessions with similar experimental

paradigms, or simultaneously. More specifically, this relates to whether the scientific question

in hand can be answered satisfactorily from separately-acquired data (Debener et al., 2006).
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Figure 1.11: EEG, fMRI and behavior can be seen as separate measures of distinct, only
partially overlapping, substrates of the whole domain of brain activity. This larger domain
can be divided into externally-evoked activity, associated to an experimental protocol, and
spontaneous activity, comprising ongoing fluctuations.

Separate acquisitions carry two main advantages. First, due to the different temporal scales of

electrophysiology and hemodynamics, most stimulation or task designs cannot be optimized

for both modalities simultaneously. For example, while the maximum-amplitude responses to

alternating visual checkerboards have been identified at a reversing frequency of 8 Hz for both

EEG and fMRI, the full duration of a typical VEP cannot be resolved at such a high frequency

(Singh et al., 2003; Wan et al., 2006). Additionally, in interleaved acquisitions, the inclusion of

"MR-silent" periods affects the choice of TR and may further constrain stimulation timings

(Garreffa et al., 2004). Furthermore, a second, and often more important advantage, is that

separate acquisitions are not susceptible to the specific artifacts of simultaneous EEG-fMRI.

Despite the advantages of separate recordings, certain experimental confounds and applica-

bility limitations can only be overcome with simultaneous acquisitions. The distinct environ-

ments in which EEG and fMRI are typically acquired can present very different and potentially

confounding spurious stimuli (Novitski et al., 2003; Sammer et al., 2005). Separate sessions

can also introduce training or habituation effects (Debener et al., 2002), along with different

subjective impressions and experiences, as well as emotional and motivational states (Raichle

and Gusnard, 2005; Boly et al., 2007; Busch et al., 2009). Regarding applicability, the study of

spontaneous activity, such as in epilepsy (Tyvaert et al., 2008; Gotman and Pittau, 2011) and in

resting state (Mantini et al., 2007a; Scheeringa et al., 2008), simply cannot be accomplished in

separate sessions. The same applies to the study of trial-by-trial fluctuations, which have been

found to predict additional variability across modalities (Debener et al., 2005; Becker et al.,

2011). Given the distinct timescales of EEG and fMRI responses, experimental paradigms must

be carefully designed to highlight the phenomena of interest in each modality (Garreffa et al.,

2004), while dealing with potential sensitivity and specificity compromises (Liu et al., 2001).

Along this line, parametric designs, where stimuli are presented with controlled variations of a

specific parameter, have proved to be particularly insightful (Horovitz et al., 2004; Mulert et al.,
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2005; Schicke et al., 2006; Liu et al., 2010).

1.3.3 Generic data processing

Before integrated analysis, both EEG and fMRI data are usually subjected to a number of

modality-specific preprocessing stages (Fig. 1.12). For fMRI, typical steps include image recon-

struction from sampled k-space data, motion and slice-timing correction, spatial smoothing

and normalization, and slow-drift removal (Smith et al., 2004b; Strother, 2006). On the EEG

side, common steps are temporal filtering, epoch extraction, electrode re-referencing and

data resampling (Delorme and Makeig, 2004). Additionally, when acquired simultaneously

with fMRI, highly compromising artifacts are imposed on EEG data, and must be adequately

addressed in data preprocessing as well – this is investigated and discussed in more detail in

Chapter 4.

A few other techniques are worthy of mention given their frequent use in EEG-fMRI studies.

For instance, frequency-specific EEG power fluctuations, particularly in the alpha and gamma

bands, have been extensively analyzed. Such information is associated with a time-frequency

representation or "spectrogram", which can be obtained by segmenting the EEG timecourses

into small epochs and Fourier-transforming each individual epoch (Goldman et al., 2002).

This approach can be further improved with multi-tapering methods (Thomson, 1982), which

minimize the variance of higher-frequency estimates (Martuzzi et al., 2009; Scheeringa et al.,

2011). Also, instead of Fourier transforms, some authors have opted for wavelet-based analysis

(Moosmann et al., 2003; Mizuhara et al., 2005; Mulert et al., 2010), which allows a versatile

trade-off between time and frequency resolution (Tallon-Baudry et al., 1998).

As for fMRI, the identification of brain regions displaying significant signal changes in asso-

ciation with an external stimulus or task is often performed by general linear model (GLM)

analysis. Here, a model of the activity of interest is typically convolved with a suitable HRF

and used for voxel-by-voxel regression analysis, yielding statistical maps of associated BOLD

changes (Worsley and Friston, 1995). The adopted HRF, representing the transfer function as-

sumed to link neuronal activity to the BOLD signal, can be based on a commonly-established

canonical form (Friston et al., 1998), or specifically adapted to the data and context at hand

(Logothetis et al., 2001; de Munck et al., 2007; Grouiller et al., 2010).

Finally, in both EEG and fMRI alike, a growing number of studies have adopted the use of

independent component analysis (ICA), a fully data-based technique that aims to decompose

the data into a set of statistically-independent sources (Eichele et al., 2008; Marques et al., 2009;

Masterton et al., 2013). Both for EEG (Brown et al., 2001) and fMRI (McKeown and Sejnowski,

1998), ICA typically generates a set of timecourses associated to particular spatial distributions

in the brain or on the scalp. These sources can then be selected or excluded from further

analysis based on their spatial, temporal and/or spectral properties (Scheeringa et al., 2008). As

an example, EEG data are sometimes contaminated by line noise affecting individual channels,

which is often well separated by ICA as a component with a focal distribution centered on
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the affected channel(s) and a strong power peak at 50/60 Hz. Artifacts due to eye blinking are

also often well identified as a component with stronger incidence on frontal channels, and a

characteristic timecourse with sparse, large signal deflections. After having identified such

components, the decomposed EEG data can typically be reconstructed by back-projection

from the independent component space, using only the components of interest. Given the

different nature of the data from each modality, temporal ICA is usually applied to EEG data,

while spatial ICA is a more common choice for fMRI (Calhoun et al., 2009).

1.3.4 Data integration: comparison approaches

Many EEG-fMRI studies investigating neurovascular coupling have employed purely compar-

ative approaches, analyzing which measures of each modality yield the closest similarities

between the two (Fig. 1.12). Certain seminal studies involved the implantation of cortical

microelectrodes in experimental animals, allowing for the direct comparison of LFP and MUA

measures with the local BOLD response (Logothetis et al., 2001; Niessing et al., 2005). From

such recordings, LFP and MUA fluctuations can be estimated from lower and higher frequency

bands, respectively, convolved with suitable HRFs, and compared to local BOLD responses.

More recently, a few groups have also compared fMRI with intracranial EEG (icEEG, or "elec-

trocorticography", ECoG), in human patients undergoing presurgical evaluation. The few

simultaneous studies published so far have investigated responses to motor tasks, focusing

on time-frequency fluctuations of cortical activity and their BOLD correlates (Carmichael

et al., 2011), and interictal epileptiform activity, analyzing the propagation dynamics and

hemodynamic correlates of occurring discharges (Vulliemoz et al., 2011; Cunningham et al.,

2012). Separate fMRI and icEEG acquisitions have also been explored in a few cognitive studies

(Lachaux et al., 2007), allowing for more optimized experimental approaches such as the use

of ultra-high field strengths (Harvey et al., 2012). Although highly invasive, and limited in

brain coverage and applicability, the higher specificity and SNR of intracranial recordings are

sparking a rapidly-growing interest in their integration with fMRI (Hermes et al., 2012).

Despite their limitations compared to invasive electrophysiology, whole-brain approaches

integrating scalp EEG and fMRI have proven to be powerful tools for comparative analysis. For

instance, in event-related studies, EEG information from pre- and post-stimulus onset periods

can be statistically tested for task-related variations, and mapped across the brain with source

estimation techniques. These source maps can then be directly compared to the correspond-

ing task-related BOLD response maps, highlighting region- and feature-specific couplings

(Martuzzi et al., 2009; Yuan et al., 2010). Important work has also been dedicated to the study

of resting-state networks (RSNs), which comprise spontaneous but spatially-correlated fluctu-

ations in brain activity (Biswal et al., 1995; Fox and Raichle, 2007). Decomposition techniques

such as ICA can be used to identify prominent patterns of spontaneous activity in EEG signals,

often frequency-specific, and can also detect networks of coherent resting-state fluctuations

in BOLD data. The two types of patterns can then be compared and analyzed for significant
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Figure 1.12: A general scheme of the main EEG-fMRI data integration approaches proposed in
the literature, including purely comparative, asymmetrical and symmetrical techniques.

covariations in time (Mantini et al., 2007b; Meyer et al., 2013).

1.3.5 Data integration: asymmetrical approaches

In general, asymmetrical integration approaches rely on information extracted from one of the

two modalities to drive or constrain the analysis of the other (Fig. 1.12), aiming to complement
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its specific spatiotemporal limitations and yield better estimates. This idea has motivated a

wide variety of methods (Herrmann and Debener, 2008), which can be grouped into two main

categories: fMRI-driven EEG estimation, and EEG-derived BOLD prediction. In either case,

however, results must be interpreted carefully, as these approaches tend to rely heavily on the

assumption that the neuronal substrates of EEG and fMRI are coincident.

In fMRI-driven EEG estimation approaches, statistical maps of paradigm-related BOLD signal

changes are used to guide or constrain EEG source reconstruction. The ill-posed nature of

the EEG source estimation problem forcibly leads to the incorporation of spatial constraints

and regularization terms (Michel et al., 2004). Techniques such as MRI can provide useful

information for this purpose, namely with high-resolution, subject-specific head volume

conductance maps (Dale and Sereno, 1993; Wolters et al., 2006). In a further step, functional

information given by fMRI and PET has also been found useful to provide spatial constraints

and better-informed regularization criteria (Heinze et al., 1994). For instance, electric dipole

positions can be restricted to the cortical regions displaying significant BOLD responses,

thereby considerably reducing the number of unknown variables (Ullsperger and von Cramon,

2001; Bledowski et al., 2004). Dipole "seeds" are placed in the regions of interest, defined

with high spatial resolution, and source estimation can then be performed for each instant of

the EEG response, with high temporal resolution. This approach can yield very informative

descriptions of how different stationary brain sources interact and contribute to the observed

ERPs (Brass et al., 2005; Meyer et al., 2012).

Alternative approaches have also been proposed where fMRI is used not to specify source

locations but, instead, to guide the optimization of distributed source models, through the

inclusion of a priori information in their cost function. For instance, in a Bayesian formulation

seeking the solution that is most consistent with a given set of EEG and fMRI observations,

the fMRI-derived maps can be used to model the spatial covariance of source dipole strength

(Dale et al., 2000), and the introduced bias can be made adjustable to avoid over-regularization

(Babiloni et al., 2004, 2005). These models can then be taken even further by incorporating

constraints on the relationship between BOLD fluctuations and (integrated) EEG response

power, based on prior assumptions regarding neurovascular coupling (Liu and He, 2008).

EEG-derived BOLD prediction, a somewhat reciprocal approach to fMRI-driven EEG estima-

tion, opts for the extraction of meaningful activity timecourses from EEG data to model certain

contributions to BOLD signal variance ("integration by prediction"). Typically, EEG-derived

timecourses are HRF-convolved, down-sampled to match fMRI acquisition timings, and then

used as regressors in voxel-wise GLM analyses. While these stages are relatively common, the

selection of relevant EEG features can itself rely on very diverse assumptions and hypotheses

regarding the EEG-BOLD coupling, and various options have been explored. Frequency band-

specific power fluctuations are possibly the most extensively analyzed EEG feature for fMRI

prediction, including studies focused on specific frequency bands, especially alpha (Goldman

et al., 2002; Goncalves et al., 2006), and more expanded analyses exploring multiple-band

interactions (de Munck et al., 2009; Scholvinck et al., 2010; Scheeringa et al., 2011).
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Although meaningful correlations between BOLD and EEG power timecourses have often

been reported, these carry strong assumptions regarding the EEG-BOLD coupling, and must

be considered carefully. Supporting the approach, it has been suggested that, while both

neuronal and hemodynamic responses behave in a highly nonlinear manner with stimulus

strength and duration (Logothetis, 2002), the relationship between EEG source power and

BOLD amplitude remains itself close to linear, both in positive (Wan et al., 2006; Liu et al.,

2010) and negative responses (Arthurs et al., 2007). Nonetheless, recent studies have identified

particularly informative new metrics, such as the EEG "root-mean-squared frequency" (Kilner

et al., 2005). This heuristic measure has been found superior to power-weighted metrics for

BOLD prediction, highlighting the importance of relative power redistribution across the

spectrum, over absolute power fluctuations, in the modulation of BOLD amplitude (Rosa et al.,

2010b; Leite et al., 2013).

While power fluctuations have been the most extensively explored EEG features, other mea-

sures have proved meaningful as well. Long-range phase synchronization, thought to reflect

the functional integration of distributed neuronal units, is one such example (Mizuhara et al.,

2005; Jann et al., 2009). In event-related studies, certain ERP components can be associated to

activity in specific cortical regions. In agreement with this, the trial-by-trial fluctuations in

amplitude, as well as latency, of ERP components have proved to explain some of the inter-

trial variability of BOLD responses, aiding the localization of the associated sources (Eichele

et al., 2005; Benar et al., 2007). Slow cortical potentials have also been explored following this

approach (Khader et al., 2008). Other EEG features have been considered within the study of

spontaneous activity, including brief sleep phenomena (Laufs et al., 2007) and EEG microstates

(Britz et al., 2010; Yuan et al., 2012). Epilepsy studies, where concurrent EEG-fMRI has its roots,

have strongly benefited from EEG-based prediction approaches, and a substantial amount of

work has been dedicated to this application (Gotman and Pittau, 2011). As has been found,

the temporal dynamics of epileptic activity can often be captured with EEG and converted

into meaningful BOLD predictors, allowing for a more precise spatial localization of neuronal

generators and propagation networks (Tyvaert et al., 2008; Grouiller et al., 2011).

1.3.6 Data integration: symmetrical approaches

In contrast with asymmetrical approaches, which tend to rely on the assumption that the two

modalities probe coincident neuronal substrates, symmetrical approaches explicitly recognize

EEG and fMRI signals as measures of distinct, only partially overlapping substrates of neuronal

activity. These methodologies seek to establish a bilateral dependence between EEG and

fMRI (Rosa et al., 2010a), and can be grouped into two main categories: data-driven and

model-based (Fig. 1.12).

Data-driven symmetrical approaches typically rely on blind estimation methods that avoid

the need to explicitly model the complex neuronal population and neurovascular coupling

dynamics. A considerable variety of approaches have been explored. For example, some
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authors have proposed a finite parceling of the cortical surface into a set of functionally

homogeneous clusters, and modeled EEG and BOLD signals as linear systems with respect to

the distributed cortical dipoles and HRF. Spatial and temporal smoothness priors are specified

for this multimodal hierarchical model, and its posterior probability density function is then

iteratively estimated (Daunizeau et al., 2007; Luessi et al., 2011). Others have used Bayesian-

formulated criteria to match functional networks obtained separately from each modality by

spatial ICA, whereby fMRI networks are introduced as covariance priors to reconstruct the

sources of EEG networks (Lei et al., 2011).

Another approach of growing interest is that of joint ICA, where individual fMRI and ERP

data are merged and analyzed with ICA on a multi-subject scale. It is assumed that EEG

independent temporal components and the associated fMRI independent spatial components

are linearly combined across subjects by the same mixing matrix, and ICA can decompose the

global observation matrix to yield the underlying BOLD-ERP components that were combined

to form individual subject responses (Calhoun et al., 2009; Mijovic et al., 2012). In recent years,

various other heuristic methods have been proposed, for example exploring information

theory concepts, such as mutual information and synergy (Ostwald et al., 2011; Caballero-

Gaudes et al., 2013), combinations of EEG-based fMRI prediction with fMRI-driven EEG

estimation (Yang et al., 2010), canonical correlation analysis (Correa et al., 2010), and machine

learning concepts (De Martino et al., 2011a).

Model-based symmetrical approaches have addressed the integration problem through the

development of increasingly more realistic biophysical models describing the neuronal,

metabolic, and hemodynamic processes underlying EEG and BOLD signals, continuously

improved with information from brain architecture and function at diverse spatial scales (Rosa

et al., 2010a). The full modeling challenge can be decomposed into interacting stages, includ-

ing: (1) the neuronal response to external stimulation, neuronal population dynamics and

interactions; (2) the propagation of EM fluctuations to the scalp; and (3) the coupling between

neuronal activity, CMRO2 and CBF, the vascular mechanisms relating dHb concentration, CBF

and CBV, and the BOLD signal dependence thereon (Riera et al., 2006).

Neuronal population responses and interactions pose a remarkable modeling challenge (Lau-

ritzen and Gold, 2003). Earlier studies proposed to recreate neuronal and hemodynamic re-

sponses to stimulation with a simple inhibitory feedback system, describing the local neuronal

response as a balance between excitatory and inhibitory inputs (Buxton et al., 2004). Sub-

sequently, more biophysically-inspired approaches were continuously developed, first with

models of single cortical columns, receiving excitatory input and including inhibitory feedback

(Jansen and Rit, 1995), later on with multiple cortical columns, introducing anatomically-

plausible interactions between neighboring columns (Babajani and Soltanian-Zadeh, 2006),

and finally with multiple cortical areas, interacting via long-range connections (Babajani-

Feremi and Soltanian-Zadeh, 2010). Following neuronal response modeling, the link to mea-

surable scalp EEG fluctuations can then be established through a forward model of head

volume conduction (Dale and Sereno, 1993; Lenz et al., 2011).
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For BOLD signals, the link to neuronal activity is mediated by a complex cascade of metabolic

and hemodynamic processes governing CMRO2, CBF and CBV changes, of which many aspects

remain unclear (Riera and Sumiyoshi, 2010; Hillman, 2014). Earlier studies proposed a linear

relationship between synaptic activity and CBF, described by a set of differential equations

that included coupling efficacy, signal decay and auto-regulatory feedback effects (Friston

et al., 2000). Later models introduced more elaborate interactions, such as differences in the

metabolic and vascular effects of excitatory, relative to inhibitory synaptic activity (Sotero

and Trujillo-Barreto, 2007), and multiple-area interactions (Sotero and Trujillo-Barreto, 2008).

CBV changes in response to CBF and CMRO2 have also been addressed, especially through

the so-called balloon model, which assumes CBV changes to occur primarily in the venous

compartment, modeled as a balloon fed by the capillary bed output (Buxton et al., 1998).

This model was further extended with a resistive description of brain vasculature, to model

capillary and venous compliance (Mandeville et al., 1999), and has since been integrated in

numerous studies.

Overall, approaches for the integration of EEG and fMRI have been continually improved over

the last two decades, guided by insights arising from their application to various contexts,

as well as from parallel neuroscience investigations relying on complementary modalities.

With a better understanding of the substrates and limitations of each technique, as well as the

dynamics of coupling between synaptic activity, metabolic and hemodynamic mechanisms,

increasingly richer and more accurate predictions can be drawn with combined EEG-fMRI.

Many questions still remain to be clarified, such as, for example, the nature of ultra-high

frequency oscillations observed in EEG, and of negative BOLD responses observed in fMRI. In

parallel, widespread efforts continue to be dedicated to the improvement of data quality in

simultaneous acquisitions, which plays a vital role in subsequent data integration. Altogether,

these efforts continue to drive the development of data acquisition, analysis, multimodal

integration and interpretation, so as to explore the full potential of combined EEG-fMRI.
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2 The negative BOLD response to visual
stimulation

In fMRI studies, external stimulation often elicits negative BOLD responses in various brain

regions, and growing evidence supports their association with local neuronal deactivation,

giving functional meaning to this phenomenon. The fMRI study presented in this chapter

aimed to characterize, in humans, positive (PBRs) and negative BOLD responses (NBRs) to

visual checkerboard stimulation of varying contrast and duration, focusing on NBRs occurring

in visual and in auditory cortical regions. Response estimation was improved by excluding

large draining vein contributions and via ICA-assisted denoising, particularly important for au-

ditory NBRs. Results showed that visual PBRs and both visual and auditory NBRs significantly

depend on stimulus contrast (p < 0.01) and duration (p < 0.05). Response amplitudes increased

monotonically with stimulus contrast, with both visual and auditory NBR amplitudes linearly

correlated with the visual PBR amplitude. For stimuli up to 10–16 s, the areas under the

response curves increased with stimulus duration and all response areas remained linearly

correlated. For longer stimulation periods, however, both NBRs exhibited earlier returns to

baseline than the PBR. Under the hypothesis of neuronal deactivation, these findings suggest

a highly dynamic system of visual-auditory interactions, sensitive to stimulus contrast and

duration, which can occur even for the passive observation of basic visual stimuli.

2.1 Introduction

Since the discovery of the BOLD contrast, fMRI has been widely used for in vivo neuroscience.

The BOLD contrast is sensitive to the local concentration of deoxyhemoglobin, which in the

brain varies according to changes in CBF, CBV and CMRO2. The coupling mechanisms linking

neuronal activity with vascular and metabolic processes are still a topic of intense research

and debate (Hillman, 2014). Nevertheless, it is generally accepted that a local increase in

neuronal activity will raise CMRO2, but also typically induce a strong increase in CBF, resulting

in a net positive BOLD response (PBR).

Parts of this chapter were adapted from:

Stimulus dependence of the negative BOLD response to visual stimulation in visual and auditory cortical regions at
7 T, J. Jorge, P. Figueiredo, R. Gruetter, W. van der Zwaag, under review.
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While positive responses to a stimulation paradigm or task are the most commonly sought,

sustained paradigm-locked BOLD signal decreases are also often found in various brain re-

gions, and have captured considerable interest (Lauritzen et al., 2012). This effect, termed

negative BOLD response (NBR), has been robustly observed in humans during, for example,

visual stimulation (Shmuel et al., 2002; Smith et al., 2004a), tactile stimulation (Hlushchuk

and Hari, 2006; Kastrup et al., 2008; Klingner et al., 2010), and motor tasks (Hamzei et al.,

2002; Stefanovic et al., 2004). Cortical areas exhibiting NBRs are often found in close proxim-

ity to positively-responding regions (Shmuel et al., 2002), or symmetrically in the opposite

hemisphere, such as in somatosensory stimulation or motor tasks (Hlushchuk and Hari, 2006;

Mullinger et al., 2014b). In addition, NBRs have been reported in cortical regions not directly

related to the stimulus modality, namely in auditory areas during visual stimulation, as well

as in visual areas during auditory stimulation (Laurienti et al., 2002), and also in regions

coinciding with the default-mode network (DMN) (van der Zwaag et al., 2009b).

Due to the complex nature of the BOLD contrast, NBR interpretation has motivated intense

debate, with several hypotheses being proposed: (1) a pure decrease in CBF with no changes

in CMRO2, caused by "vascular steal" effects from activated neighboring regions, or by hypo-

thetical long-range CBF control mechanisms; (2) a decrease in CMRO2, with CBF reductions

that overcome the decreased CMRO2; (3) an increase in CMRO2 that is not compensated by

increased CBF (Wade, 2002; Mullinger et al., 2014b). While a number of studies have identified

vascular steal effects or suggested the existence of central mechanisms for CBF regulation,

competing with local demands (Smith et al., 2004a; Vafaee and Gjedde, 2004), considerable

evidence suggests a dominant influence of local neuronal activity in the generation of NBRs.

Negative responses have been found strongly coupled with decreased CMRO2 in the visual

cortex (Shmuel et al., 2002; Pasley et al., 2007), primary motor cortex (Stefanovic et al., 2004)

and DMN (Lin et al., 2011), and with psychophysiological measures of functional inhibition in

somatosensory (Kastrup et al., 2008) and motor studies (Hamzei et al., 2002). Studies com-

bining fMRI with local electrophysiology measures have provided additional, more direct

evidence of a neuronal origin for NBRs, including the observation of local field potential and

spiking decreases in primate visual cortex (Shmuel et al., 2006) and rat somatosensory cortex

(Boorman et al., 2010), as well as inhibitory activity (neuronal hyperpolarization) increases

in rat somatosensory cortex (Devor et al., 2007). Furthermore, in human studies using scalp

electroencephalography, NBR amplitudes in the visual cortex, auditory cortex and DMN have

been found to correlate with pre-stimulus alpha-band power (Mayhew et al., 2013), and NBRs

in the sensorimotor cortex have been related to increased mu oscillation power and evoked

potential amplitudes (Mullinger et al., 2014b). Overall, these observations suggest that NBRs

can be driven by decreases in excitatory activity, increases in inhibitory activity, or both; the

combination of these processes, as a whole, is hereafter referred to as "neuronal deactivation".

The association of NBRs with local neuronal deactivation, even without fully excluding hemo-

dynamic contributions, is an important landmark for fMRI. Under visual stimulation, results

from large single-subject datasets have unveiled widespread sustained NBRs in more than

50% of all grey matter (Gonzalez-Castillo et al., 2014). With both positive and negative BOLD
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responses demonstrating functional significance, their joint characterization is thus likely to

yield richer descriptions of brain function, including interactions within specific functional

regions, as well as across regions with distinct functional nature (also termed cross-modal

interactions). Relevant insights include not only response localization, but also their temporal

dynamics and stimulus dependence. Studies focused on the visual cortex, using visual stim-

uli of varying intensity and duration, have reported a tight covariation between PBRs and NBRs,

in both amplitude and temporal evolution (Shmuel et al., 2002). In the somatosensory cortex,

ipsilateral NBRs to median nerve stimulation were also found to intensify monotonically with

stimulus strength (Klingner et al., 2010). On the other hand, ipsilateral NBRs to prolonged (20

s) tactile stimulation have been shown to decay faster than contralateral PBRs (Hlushchuk

and Hari, 2006), and NBRs to median nerve stimulation revealed relevant differences in onset

and peak timing relative to the PBR (Klingner et al., 2011), contrasting with the "mirror-like"

behavior observed in visual responses (Shmuel et al., 2002). This suggests differences in the

temporal dynamics of neuronal activations and deactivations, or different hemodynamic

coupling properties (Mullinger et al., 2014b), which may be modality-specific or become

more evident with prolonged stimulation. Numerous questions thus remain to be addressed.

While visual NBRs to visual stimulation have been shown to vary with stimulus contrast and

duration (Shmuel et al., 2002), it is currently unknown whether the accompanying auditory

NBR (Laurienti et al., 2002) may exhibit similar stimulus dependence. It is also unknown

whether more prolonged visual stimuli may reveal differences in temporal profile between

PBRs and NBRs, as observed for tactile and median nerve stimulation, which were not evident

at shorter stimulus durations.

The study of NBRs is often limited by their inherently low amplitude when compared to PBRs,

and can thus greatly benefit from the use of stronger static magnetic fields for fMRI acqui-

sition, yielding super-linear gains in functional sensitivity (van der Zwaag et al., 2009a). In

addition to this, the shorter venous T ∗
2 at higher field strengths such as 7 T (Yacoub et al.,

2001) grants a lower sensitivity to contributions from draining veins, which can introduce

undesirable biases in response localization (Turner, 2002; Barth and Norris, 2007) and charac-

terization, including NBR-specific confounding effects (Bianciardi et al., 2011).

The aim of the work presented in this chapter was to study the positive and negative BOLD re-

sponses to visual stimulation, in humans, focusing on NBRs occurring in the visual cortex and

the primary auditory cortex. Visual and auditory NBRs were jointly elicited by visual stimuli

consisting of flickering checkerboards of varying contrast (2–80%) and an extended range of

durations (4–20 s). BOLD data were acquired at 7 T, to obtain NBR as well as PBR estimates at

fine spatial resolution (1.5 mm), especially relevant for auditory NBRs. Furthermore, the high

spatial resolution and short venous T ∗
2 allowed us to identify and separate large draining veins

from grey matter voxels, thereby being able to assess and reduce their potential confounding

effects. Response estimation was also improved by removing selected confounds obtained

from ICA decomposition of the data.
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2.2 Methods

This study was approved by the institutional review board of the local ethics committee

(Commission d’Éthique de la Recherche sur l’Être Humain du Canton de Vaud), and involved

the participation of 10 healthy volunteers (aged 23 ± 4 years old, 5 male/5 female), who

provided written informed consent.

2.2.1 Data acquisition

Functional data were acquired on a Magnetom 7 T head scanner (Siemens, Erlangen, Germany)

equipped with a 32-channel receive/single-channel quadrature transmit head coil (Nova

Medical, MA, USA). Functional images were acquired using a 2D multi-slice GE-EPI sequence

with TR/TE = 2000/25 ms, α = 78°, 2×-GRAPPA acceleration, 7/8 partial Fourier sampling

(McGibney et al., 1993) and sinusoidal readout. EPI volumes comprised 30 slices with 1.5 ×
1.5 × 1.5 mm3 spatial resolution (22.2 × 22.2 cm2 in-plane FOV, interleaved acquisition, 5%

inter-slice gaps), and were placed in an axial-oblique orientation to cover both the primary

visual cortex and primary auditory cortex.

2.2.2 Functional paradigms

All functional runs employed a repetition of blocks consisting of a visual stimulation period

followed by a baseline period (fixation). Stimulus delivery was set with an LCD projector placed

outside the scanner room, transmitting images through a small waveguide to a screen placed

at the back of the bore. Visual stimulation was performed with grey-scale checkerboards

reversing at 8 Hz (15° FOV central-field presentation, 12 segments across the diameter); the

total luminance was kept equal to baseline periods. A red cross was shown at the center of

the FOV at all times, with slight changes in color occurring twice per block at random times.

Subjects were instructed to remain focused on the cross and report color changes via a button

press, in order to ensure attention.

All subjects underwent 3 distinct paradigms: a functional localizer (FLoc), a contrast-varying

run (FCont), and a duration-varying run (FDur, Fig. 2.1). The localizer run was used to

unbiasedly identify regions of interest (ROIs) with significant responses to visual checkerboard

stimulation, which were then used for response averaging in FCont and FDur data. FLoc runs

comprised 8 blocks of 10 s stimulation separated by 20 s rest; checkerboards were presented

at 20% contrast. FCont runs comprised 32 blocks of 10 s stimulation separated by 20 s rest,

with each block of stimuli presented at one of 4 different contrast levels: 2%, 5%, 20% or

80%; each level was applied in 8 blocks throughout the run, in randomized order. These

contrast levels were chosen based on preliminary tests, aiming to cover a well-distributed

range of (positive) response amplitudes in the visual cortex. FDur runs comprised 32 blocks

of variable-length stimulation, at 20% contrast, separated by 20 s rest; each block employed

one of 4 different stimulus durations: 4 s, 10 s, 16 s or 20 s; each duration was likewise applied
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Figure 2.1: Functional paradigms employed for checkerboard-based visual stimulation. Upper:
Stimulation timecourses of the functional localizer (FLoc), varying-contrast (FCont) and
varying-duration (FDur) paradigms; for easier visualization, only the first 4 mins of FCont and
FDur are shown (of a total of 16 min each). Lower: Visual patterns employed during fixation
(baseline) and stimulation periods.

in 8 blocks throughout the run, in randomized order. Each subject underwent one of each

run type, separated by pauses of several minutes. The three run types were conducted in

counter-balanced order across subjects.

2.2.3 Data analysis

In order to estimate and characterize PBRs and NBRs to the applied stimuli, functional data

underwent a set of processing stages as outlined in Fig. 2.2. All steps were executed in Matlab

(Mathworks, Natick MA, USA) using routines developed in-house.

Pre-processing: Analysis started with a pre-processing stage consisting of motion correction

(6 degrees of freedom, referenced to the middle volume of the series) (Jenkinson et al., 2002),

slice-timing adjustment (set to the middle of each TR, via linear interpolation), brain seg-

mentation (Smith, 2002), and Gaussian spatial smoothing (FWHM = 2mm). For each subject,

the unsmoothed middle volume of each timecourse (coincident with the reference volume

for motion correction) was used to estimate the spatial registration parameters from FLoc to

FCont and to FDur (linear transformation, 9 degrees of freedom (Jenkinson et al., 2002)).

Large vein segmentation: The unsmoothed reference volume of each timecourse was also
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Figure 2.2: Schematic outline of the processing steps adopted for data analysis in this chapter,
with the goal of estimating positive and negative BOLD responses to the various stimulus
conditions applied during data acquisition.

used for the semi-automatic segmentation of large draining veins. This was performed via

multiscale vessel enhancement filtering (Frangi et al., 1998), an image-based technique which

uses second-order (curvature) information to highlight vessel-like structures. Originally

proposed for more dedicated angiography modalities, variants of this approach have been

successfully adapted for high-spatial resolution gradient-echo fMRI data, at 3 T (Koopmans

et al., 2010). For our GE-EPI, 1.5 mm-resolution 7 T images, the original filter (Frangi et al.,

1998) was found to perform well, with parameters α=β= 0.5, γ= 0.02, and covering spatial

scales of 0.5–3.0 mm (in 0.5 mm steps). These values were defined empirically for optimal

performance on the acquired dataset.

ICA-based confound extraction: For each subject and paradigm, the pre-processed func-

tional data were decomposed by ICA using the extended infomax algorithm (Lee et al., 1999),

imposing statistical independence in the spatial dimension. Data decomposition was pre-

ceded by a dimensionality reduction step based on principal component analysis, where

the most important components explaining 95% of total data variance were kept. Following

ICA, the resulting sources were manually reviewed in search for relevant confounds, mainly

related to subject motion (Kelly et al., 2010), physiological noise (Bianciardi et al., 2009) and

spontaneous brain activity, and avoiding any sources with temporal periodicities close to that

of the applied stimulation paradigm. For each dataset, a total of 0–6 task-irrelevant sources

were selected (3 on average), and the corresponding timecourses were included as confounds

in subsequent regression analyses.

General linear model analysis: All pre-processed functional datasets underwent GLM analy-
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sis (Worsley and Friston, 1995), for the purpose of response localization (FLoc) and timecourse

denoising (FCont and FDur). Functional paradigms were modeled as boxcar functions, con-

volved with a canonical HRF defined by a double-gamma curve. In FCont and FDur runs,

each contrast/duration level was modeled as a separate regressor. Each full model comprised

the set of paradigm regressors (convolved boxcars and their 1st order temporal derivatives), 4

slow-drift regressors (1st–3rd order polynomials), 6 motion confounds (the motion correction

parameters, consisting of 3 translation and 3 rotation timecourses), and the ICA-derived

confounds.

ROI definition and averaging: Following GLM analysis, for each subject, a Z-score map was

estimated from FLoc to quantify the statistical significance of BOLD responses to checkerboard

stimulation across the brain. This map was subsequently warped to FCont and FDur spaces

based on the previously estimated co-registration parameters. From each map, three ROIs

were then defined: a visual PBR ROI, a visual NBR ROI, and an auditory NBR ROI. Visual PBR

and visual NBR ROIs were restricted to the occipital lobe and comprised all voxels with Z ≥
+8.0 and Z ≤ -2.5, respectively; the auditory NBR ROI was restricted to the auditory cortex

(Brodmann areas 41 and 42) and included all voxels with Z ≤ -1.5. Based on the masks obtained

from vein segmentation, each of the 3 regions was finally split into 2 ROIs, one containing grey

matter (and non-detected vessels) and the other comprising large draining veins. Anatomical

ROI masking was based on the direct identification of landmarks such as the lateral fissure

and Heschl’s gyrus on individual functional images, a manual approach that proved more

accurate than alternatives based on spatial co-registration to standard atlases. The three

adopted Z-score thresholds were the same for all subjects, chosen empirically so that every

subject kept no less than 20 voxels in any of the 6 ROIs. No information from FCont or FDur

was used in ROI definition, except for the vein segmentation masks.

Prior to response averaging, FCont and FDur data were denoised by removing slow-drift,

motion and ICA confounds, appropriately weighted by the corresponding GLM fit coefficients.

The denoised voxel timecourses were then baseline-corrected on a block-by-block basis by

subtracting the mean value of the last two timepoints of the block, and divided by the mean

BOLD signal of the timecourse for normalization to a % signal change scale. The normalized

timecourses were finally averaged across repetitions, ROIs, and subjects.

2.3 Results

2.3.1 Positive and negative BOLD stimulus dependence

To characterize the stimulus dependence of PBRs and NBRs, response ROIs were obtained from

the FLoc paradigm, and applied to FCont and FDur data for spatial averaging of responses

to each contrast level and duration. Consistently across subjects, Z-score maps from the

FLoc paradigm exhibited several brain regions within the FOV with statistically significant

BOLD responses to checkerboard stimulation. Clusters with large positive scores were found
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Figure 2.3: BOLD response localization for the functional localizer paradigm (FLoc), in four
of the ten participating subjects. These subjects were chosen for having a slice orientation
favorable for displaying all three response types in the same slice. a) Z-score maps quantifying
the statistical significance of BOLD responses to checkerboard stimulation; these maps have
been anatomically masked and thresholded (|Z| > 1.5) to evince occipital regions with positive
and negative BOLD responses, and temporal regions (primary auditory cortex) with negative
BOLD responses; the color bar range was manually restricted for clearer visualization. b) ROIs
defined for response estimation, using more specific Z-thresholds (+8.0 for visual PBR ROIs,
-2.5 for visual NBR ROIs, and -1.5 for auditory NBR ROIs); visual PBR ROIs were more widely
distributed across slices than NBR ROIs, in some cases being more evident in lower slices than
the ones shown.

mainly within the visual cortex, while clusters with negative scores could be found both in

the visual and in the primary auditory cortex (Fig. 2.3), as well as in other areas such as the

somatosensory/motor cortex. Across subjects, the ROIs selected as visual PBR areas included

696 ± 191 voxels (already excluding detected veins) and displayed ROI-average Z-scores of

+8.76 to +9.86, with peak scores ranging from +9.44 to +14.71. NBR ROIs in visual areas included

1629 ± 340 voxels, with average Z-scores of -2.88 to -3.38 and peak scores of -4.57 to -9.46. ROIs

in auditory regions included 580 ± 94 voxels and exhibited average Z-scores of -1.92 to -2.18,

with peak scores ranging from -3.48 to -4.86. No systematic inter-hemispheric differences

were found across subjects for any of the three ROIs.

Contrast dependence: Under contrast-varying stimulation (FCont paradigm), group average
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Figure 2.4: Group average BOLD responses to 10s-checkerboard stimulation with varying
contrast (FCont), in grey matter. a) Visual PBRs (left), visual NBRs (center) and auditory NBRs
(right) to 4 different contrast levels (note the different amplitude scales for each response type).
b) Peak response amplitudes for each contrast level. c) Visual and auditory NBR amplitude
as a function of visual PBR amplitude, after normalization of each response to the amplitude
at 20% contrast; the diagonal grey line marks the identity function. All response curves and
amplitudes represent averages across stimulation blocks and subjects, with error margins and
bars representing the standard error across subjects.

BOLD responses exhibited clear stimulus dependence in all three grey matter ROIs (Fig. 2.4a),

with response peak amplitudes increasing monotonically with checkerboard contrast (Fig.

2.4b). The contrast dependence of response amplitudes was statistically significant for all

ROIs (p < 0.01 for the effect of stimulus contrast, balanced one-way ANOVA). NBRs were then

compared to the visual PBR by normalizing each set relative to its 20% contrast response

amplitude. This procedure revealed a linear correlation between both visual and auditory

NBR amplitudes and the visual PBR amplitude, at least for contrast levels up to 20% (Fig. 2.4c).

Within this range, pooling together the response amplitudes from all subjects and three (lower)

contrast levels, without normalization, a linear relationship was observed between the visual

PBR amplitude and both visual NBR (Pearson coefficient r = -0.50, with p < 0.01) and auditory

NBR amplitudes (r = -0.55, with p < 0.01). At 80% contrast, both normalized NBRs displayed a

comparable deviation from the PBR, with stronger relative increases in amplitude (Fig. 2.4c).

Overall, the two NBR types exhibited a similar dependence on stimulus contrast, although

with the visual NBR achieving larger amplitudes in general.
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Duration dependence: Under varying stimulus duration (FDur paradigm), group average

BOLD responses also exhibited a clear stimulus dependence, with response duration increas-

ing monotonically with stimulus duration in all grey matter ROIs (Fig. 2.5a). When comparing

the response timecourses from the three ROIs after amplitude normalization (Fig. 2.5b), posi-

tive and negative responses exhibited comparable temporal properties for shorter stimuli (4

s and 10 s), but for longer stimuli an earlier decay was observed in both visual and auditory

NBRs, compared to the visual PBR – although reaching the baseline at a similar time. This was

especially evident at the longest stimulation level (20 s). Response duration was quantified by

estimating the area under the normalized response curve for each stimulus level, excluding

the under/overshoot and subsequent periods (Fig. 2.5c). Duration dependence of the PBR

was statistically significant for all levels (p < 0.01 for the effect of stimulus duration, balanced

one-way ANOVA), while NBRs were only significantly stimulus-dependent (p < 0.05) for the

two shorter durations. A comparison between positive and negative response areas (normal-

ized to the respective 10 s values) suggested a linear correlation between both NBRs and the

visual PBR for shorter stimuli up to 10 s (Fig. 2.5d). This trend was also observed by pooling

together the response areas from all subjects for the two shorter stimulus durations, without

normalization, and comparing visual PBR areas with visual NBR (r = 0.53 with p < 0.01) and

auditory NBR areas (r = 0.33 with p = 0.07). Growing deviations to this linear correlation were

evident for longer stimuli (16 s, 20 s), where smaller relative increases in area were observed

for both visual and auditory NBRs compared to the visual PBR (Fig. 2.5d). This effect tended to

be more accentuated for auditory NBRs, and at 20 s duration the areas of the two normalized

NBR types did significantly differ from each other (p = 0.02, paired t-test).

2.3.2 Grey matter – vein separation

To assess the impact of vein contributions to BOLD response characterization, the voxels

identified as large draining veins (Fig. 2.6) were analyzed separately and compared to those

attributed to grey matter. Visual inspection of FLoc Z-score maps across subjects identified

several small clusters (1.5–4.5 mm diameter) dominated by a central Z-score peak, spatially

coincident with a large draining vein, as previously detected by the multiscale filtering ap-

proach (Fig. 2.7a). In general, responses to visual stimulation from vein-identified regions

were considerably stronger than in grey matter – approximately 3× higher in amplitude in

both positive and negative responses, for the ROIs defined in this work. Furthermore, visual

PBRs were visibly delayed in veins relative to grey matter (Fig. 2.7b). While the available

temporal resolution did not allow for proper quantification of the temporal delay, this effect

was robustly observed in visual PBRs at all contrast levels and durations, as well as in NBRs to

higher contrast levels. Finally, although roughly expressing similar trends, the stimulus depen-

dence of venous responses was considerably more irregular than in grey matter, especially for

NBRs (Fig. 2.7c). Upon merging vein and grey matter ROIs for each response type (as would

happen if no vein separation had been applied), response amplitudes and durations remained

roughly similar to those of "pure" grey matter for visual PBRs and NBRs, but showed relevant

perturbations for auditory NBRs (results not shown). Concordantly, in these merged ROIs, the
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Figure 2.5: Group average BOLD responses to 20% contrast-checkerboard stimulation with
varying duration (FDur), in grey matter. a) Visual PBRs (left), visual NBRs (center) and au-
ditory NBRs (right) to 4 different stimulus durations (note the different amplitude scales for
each response type). b) Comparison between positive and negative response shapes for each
duration level, after normalization of each response curve to its peak amplitude. c) Response
areas for each duration level, estimated as the area under the response curve, after amplitude
normalization. d) Visual and auditory NBR area as a function of visual PBR area, after normal-
ization of each response to the area at 10s stimulus duration; the diagonal grey line marks the
identity function. All response curves and areas represent averages across stimulation blocks
and subjects, with error margins and bars representing the standard error across subjects;
vertical lines mark the instant of stimulus cessation for each duration level.

effects of stimulus contrast and duration became less statistically significant in general, with

particular importance for the NBRs to varying stimulus duration (from p � 0.02 to p � 0.04 for

the visual NBR, and from p � 0.05 to p � 0.07 for the auditory NBR).
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Figure 2.6: Large draining vein segmentation performed on GE-EPI magnitude data, from a
representative subject. Top: Original magnitude image. Middle: "Vesselness" filter output –
higher values indicate a local morphology that is closer to a tubular structure. Bottom: Vein
segmentation obtained via thresholding of the vessel filter output map.

2.3.3 ICA-assisted denoising

The impact of ICA-assisted denoising on data quality was assessed based on both the variance

explained by ICA confounds and their effect on block-by-block response variability. System-

atically across subjects, ICA decomposition of the functional data produced a number of

components that could be clearly identified based on their spatial distribution and/or tem-

poral properties, such as paradigm-related sources, DMN sources, and physiological noise

sources related to cardiac or respiratory processes (Fig. 2.8).

Variance explained by ICA: the proportions of data variance explained by ICA confounds

were estimated based on the adjusted coefficient of determination (R2
ad j ) obtained from GLM

analyses performed with and without including those regressors (Jorge et al., 2013). A similar

estimation procedure was also applied to the paradigm regressors, for comparison. Across

ROI voxels and subjects (excluding three cases from FLoc and FCont data where no confounds
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Figure 2.7: The influence of large draining veins in response localization and temporal char-
acterization. a) GE-EPI data from a single subject (left), the respective vein mask obtained
with multiscale vessel enhancement filtering (center), and the thresholded Z-score map for
positive visual responses to the functional localizer; the blue arrows indicate two detected
veins which are positioned in the center of activation clusters, exhibiting large Z-scores. b)
Group average visual PBRs to checkerboard stimuli of 20% contrast and 10 s duration, in grey
matter (blue) and segmented vein voxels (red). c) Group average peak amplitude (left) and
response area (right) of visual and auditory NBRs to varying contrast level (left) and duration
(right), in segmented veins. All response curves and amplitudes/areas represent averages
across stimulation blocks and subjects, with error margins and bars representing the standard
error across subjects.

were included), the selected ICA confounds proved to explain significant amounts of data

variance, ranging from approximately 5% in visual PBR ROIs to 10% in visual and auditory NBR

ROIs (Fig. 2.9a). Conversely, the paradigm regressors were found to explain approximately 40%

of data variance in visual PBR ROIs, and only approximately 4% in visual and auditory NBR

ROIs, confirming the lower contrast-to-noise ratio of negative, compared to positive, BOLD

responses. The proportions of variance explained by ICA confounds tended to be higher in

FCont than in FDur data, but were nevertheless statistically significant in both cases (p < 0.01,

one-sample t-tests).

Impact on response variability: To assess block-by-block response variability, for each subject

and stimulus level, considering ROI-averaged BOLD timecourses, the standard deviation

across blocks was computed for each instant of the response window, and then averaged

across instants, stimulus levels, and subjects. In this sense, on average, ICA denoising reduced
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Figure 2.8: Maps and timecourses of typical independent components obtained from ICA
decomposition in one of the ten participating subjects. The examples shown correspond
to a paradigm-related (top), default mode network (middle) and physiological noise source,
probably of cardiac origin (bottom). These components were systematically encountered
across subjects, with the lower two being typical candidates for use as confound regressors.
Component maps (left) have been thresholded and overlaid on the reference EPI volume for
clearer visualization.

block-by-block response variability by approximately 35% in visual PBR ROIs and by almost

50% in visual and auditory NBR ROIs, similarly in both FCont and FDur data (Fig. 2.9b). The

effect of ICA denoising on response variability was statistically significant in both paradigms

(p < 0.01, balanced one-way ANOVA).

2.4 Discussion

This study shows that, under visual stimulation, the visual positive BOLD response and both

visual and auditory negative BOLD responses significantly depend on stimulus intensity

and duration. Response amplitudes increase monotonically with stimulus intensity and,

below response saturation levels, both visual and auditory NBRs are linearly correlated with

each other and with the PBR. For stimuli up to 10–16 s, response durations increase with

stimulus duration and are likewise linearly correlated, while for longer stimulation periods

both visual and auditory NBRs exhibit earlier decays to baseline than the corresponding

visual PBR. Regarding methodology, the performance of the adopted vein separation and
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Figure 2.9: The impact of ICA-assisted denoising on contrast- and duration-varying data
(FCont and FDur). a) Average percentages of data variance explained by ICA confounds in the
GLM analyses for visual PBR, visual NBR and auditory NBR ROIs. b) Block-by-block response
variability with and without previous ICA denoising. Bar heights indicate averages across
subjects, with error margins representing the standard error across subjects.

ICA-assisted denoising techniques indicates that both approaches can be highly valuable to

improve response estimation.

2.4.1 Positive and negative BOLD stimulus dependence

The stimulus dependence of visual negative BOLD to visual stimuli, often termed intra-modal

NBR, has been previously shown for both stimulus intensity and duration (Shmuel et al.,

2002). As for the auditory NBR to visual stimulation, although its occurrence has been robustly

observed in previous work (Laurienti et al., 2002), the stimulus dependence of this cross-

modal response remains largely unexplored, and is here shown for the first time. This finding

carries relevant implications: as with ipsilateral NBRs to tactile stimulation (Hlushchuk and

Hari, 2006; Kastrup et al., 2008; Klingner et al., 2010) and motor tasks (Hamzei et al., 2002;

Stefanovic et al., 2004), the auditory NBR to visual stimulation is spatially well separated

from the visual PBR region, and thus unlikely to be caused by passive "vascular steal" effects.

This strengthens the hypothesis of true local neuronal deactivation (Shmuel et al., 2006), or

alternatively of the existence of active, long-range vascular control mechanisms that affect

CBF in auditory regions (Smith et al., 2004a; Vafaee and Gjedde, 2004). Given the robust

stimulus dependence of the observed responses, the first hypothesis would hence imply that

auditory neuronal deactivation increases with visual stimulus intensity and is more prolonged

with longer stimuli. The second hypothesis could either imply a stimulus-dependent CBF

modulation (without changes in auditory neuronal activity), or an unvarying suppression of

CBF changes with stimulus-dependent increases in auditory neuronal activity (Wade, 2002).

Given the steadily-growing body of evidence associating negative BOLD with true neuronal

deactivation (Shmuel et al., 2006; Pasley et al., 2007; Boorman et al., 2010; Mullinger et al.,
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2014b), including electrophysiology data specifically showing that visual stimuli can modulate

the firing of neurons in the auditory cortex (Kayser et al., 2008), the hypothesis of neuronal

deactivation in the primary auditory cortex constitutes the strongest candidate to explain

the observed NBRs. Under this hypothesis, the results here obtained expose the existence of

highly dynamic visual-auditory interactions that depend on stimulus intensity and duration,

even under passive observation of basic, low attention-demanding visual stimuli.

Under contrast-varying checkerboard stimulation, the observed response amplitudes showed

a tight correlation between the visual NBR and the visual PBR, for contrast levels up to 20%

(Fig. 2.4c). This is consistent with previous observations at similar contrast ranges, up to 40%

(Shmuel et al., 2002). Notably, the auditory NBR was also strongly correlated to the visual PBR,

suggesting similar underlying neuronal interactions for both NBR instances, and possibly

analogous hemodynamic coupling dynamics relative to the visual PBR. At 80% contrast, the

visual PBR showed signs of possible saturation, with a lower relative increase (Fig. 2.4b). This

effect was not evinced by either visual or auditory NBRs, which maintained a steady relative

increase, and thus appeared to deviate from the PBR – although remaining well correlated to

each other. This is a potentially interesting behavior to be explored in future work, possibly

with new parameter combinations to boost stimulus intensity, which may push both positive

and negative responses to saturation. Another potentially interesting variable to explore would

be the stimulus frequency, which is known to exert a non-linear and non-monotonous effect

on visual PBR amplitude.

With varying stimulus duration, both visual and auditory NBR results suggested a linear

correlation with the visual PBR, for stimulus durations up to 10–16 s (Fig. 2.5d). For longer

stimuli, however, both NBR instances exhibited increasingly earlier decays to baseline relative

to the PBR (Fig. 2.5b), leading to growing deviations from linear covariation. This phenomenon

has not been observed in previous work focused on the visual NBR, which explored stimulus

durations only up to 16s (Shmuel et al., 2002). On the other hand, in tactile stimulation studies

using longer stimuli (20s), ipsilateral somatosensory NBRs have likewise been found to decay

faster than contralateral PBRs (Hlushchuk and Hari, 2006). This effect suggests either the

existence of differences between the hemodynamic coupling mechanisms of positive and

negative BOLD responses, which become more evident for sufficiently long stimuli, or the

possibility that neuronal deactivation may not be maintained as steadily in time as activation.

In the first case, the possibility of hemodynamic coupling differences between positive and

negative responses has been previously suggested by work in both visual (Shmuel et al., 2002)

and median nerve stimulation (Mullinger et al., 2014b), arising as differences in the ratio

of ΔCMRO2 to ΔCBF. Such differences, however, have not been found in the motor cortex

(Stefanovic et al., 2004) or DMN (Lin et al., 2011). These diverging observations could be related

to the time-dependent properties of the underlying coupling mechanisms, a topic which is still

under intense research and debate, even for the PBR per se (Hillman, 2014). In fact, for longer

periods of visual stimulation (several minutes), ΔCBF has been observed to decrease with time,

while ΔCMRO2 eventually starts to rise. This has been hypothesized to reflect a local transition

from non-oxidative to oxidative metabolism, with the latter process not eliciting increases in
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ΔCBF (Lin et al., 2009). If present, in some measure, at shorter timescales, this effect could

potentially have a different impact on NBR, relative to PBR regions, due to different metabolic

dynamics of neuronal activation and deactivation.

Following the second hypothesis, an attenuation of neuronal deactivation for longer stimuli

could suggest the existence of mechanisms which downplay the importance of visual stimuli

once these have been presented for sufficiently long periods of time, possibly acquiring some

form of "stationary character". Positive BOLD responses are known to suffer from habituation

effects for sufficiently long stimuli (Hoge et al., 1999), as is the underlying neuronal activity

(Janz et al., 2001). Here, however, an earlier response decay of NBRs was observed relative to

the PBR itself, suggesting that the hypothetical adaptation mechanisms involved in releasing

neuronal inhibition in NBR regions could be faster than those attenuating neuronal excitation

in PBR regions. Overall, future studies monitoring both BOLD and electrophysiological activity

in positive and negative BOLD regions could be highly relevant to address this question, with

potentially valuable contributions to the study of the nature of the NBR, and the neurovascular

coupling mechanisms underlying the BOLD signal in general. Another relevant question

regards the relationship between the different response types for stimulus durations below 4 s,

which were not covered in this study. Previous work has shown that the visual NBR amplitude

maintains a linear covariation with the visual PBR down to 2 s duration (Shmuel et al., 2002).

In our work, the auditory NBR has shown a comparable behavior to the visual NBR for all

tested stimulus durations and contrast levels (even when deviating from the PBR), which

suggests that this cross-modal response may similarly maintain its linear covariation with the

visual PBR for shorter stimulus durations. Nevertheless, it would be interesting to test this in

future experiments.

2.4.2 Grey matter – vein separation

To improve response estimation, large draining vein contributions were isolated and excluded

from ROI averaging. Draining veins are well known to influence response localization (Barth

and Norris, 2007) and have been shown to propagate activity-related changes in blood oxy-

genation for several millimeters downstream from activation sites (Turner, 2002). Furthermore,

as vein-propagated responses are delayed in time relative to the original activation site, their

contributions for response averaging can affect the temporal properties of the responses of

interest. Thus, although less influential at 7 T than at lower field strengths (Yacoub et al., 2001;

van der Zwaag et al., 2009a), venous contributions are highly undesirable, especially for the

characterization of typically lower-contrast responses, such as NBRs.

Various approaches for vein identification in fMRI have been proposed (Menon, 2002; Barth

and Norris, 2007; Koopmans et al., 2010). Given the high spatial resolution available at 7 T,

along with a decreased venous T ∗
2 (Yacoub et al., 2001), large veins are clearly discernible as

low-intensity, focal susceptibility artifacts in functional images, motivating the use of image-

based approaches for vein segmentation. To our knowledge, this is the first study applying
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multiscale vessel-enhancement filtering directly on GE-EPI data, an approach which presents

several advantages: first, it avoids the acquisition of separate "vein-sensitized" images, and

the necessary co-registration steps to fMRI data space, which need to be highly accurate

for correct vessel localization; second, being an image-based segmentation method, the

procedure can be easily verified and tuned through visual inspection; third, this approach

imposed no requirements on the sequence and parameters used for fMRI acquisition, and

could similarly be applied to other existing BOLD-sensitive GE-EPI datasets without additional

scans. Naturally, the sensitivity of the method will depend crucially on the discernibility of

veins in each dataset, which does constitute a disadvantage compared to the use of separate

acquisitions designed for optimal vein visualization, often with higher spatial resolution.

It should be noted that this segmentation approach does not yield actual venograms, as it

is based on the susceptibility artifacts created by veins, which expand beyond the vessels

and include adjacent tissues. While lowering the specificity of segmentation, this effect is

actually advantageous as it allows the detection of vessels thinner than the available spatial

resolution. Furthermore, it renders more accurate response estimations in grey matter, as

tissues with T ∗
2 perturbations due to the proximity of veins are likewise excluded. In this

work, the confounding effects of veins in both response localization and characterization

could be clearly observed (Fig. 2.7a,b). Moreover, the stimulus dependence of venous ROIs,

segmented as described above, was considerably less regular than that of grey matter ROIs

(Fig. 2.7c), potentially due to their inherently poorer response specificity and/or to a higher

sensitivity to subject motion and physiological noise. The impact of this behavior on response

estimation was further assessed by combining venous and grey matter responses as if no vein

separation had been performed. While maintaining the general trends observed in grey matter

alone, the stimulus dependence of merged responses did become less regular, especially for

auditory NBRs. This outcome is not surprising given the lower contrast-to-noise ratio (CNR)

of the auditory NBR, and suggests that vein separation was beneficial for the purpose of this

work, and may likewise be highly desirable for other studies targeting responses with similar

properties.

2.4.3 ICA-assisted denoising

The use of ICA for fMRI data analysis has been extensively explored for more than a decade.

Various ICA-based denoising approaches have been proposed, with distinguishing features in

mainly two aspects: source selection and noise removal. Source selection can be performed

in semi-automated ways based on temporal, spectral, and spatial properties of the sources

(Salimi-Khorshidi et al., 2014). Here, we opted instead for manual source selection performed

under fixed criteria, in line with previous works (van der Zwaag et al., 2009b; Kelly et al.,

2010), to ensure that no paradigm-related sources were taken as confounds. As for noise

removal, while many approaches rely on simply reconstructing the decomposed data without

the selected sources, we opted to include their timecourses as confounds in the regression

models, as often performed for motion and physiological noise reduction (Bianciardi et al.,
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2009), thus unifying response detection and noise modeling in the GLM analysis stage. This

allowed us to benefit from the model-free exploratory capabilities of ICA integrated in the

well-established framework of GLM analysis, and led to a more accurate statistical analysis as

the loss in degrees of freedom due to denoising was inherently accounted for in the models.

It should further be noted that, alternatively to noise source removal, ICA could be used to

select the paradigm-related sources instead (Fig. 2.8), excluding all others. This approach was

likewise avoided due to the danger of neglecting less evident paradigm-related sources in the

data, potentially affecting response properties.

As with vein exclusion, the motivation for ICA-assisted denoising in this work was the improve-

ment of BOLD response detection and characterization. The performance of this approach

was assessed with two complementary measures: the data variance explained by ICA con-

founds in GLM analyses, and their impact on block-by-block response variability. The first

measure is well-suited to quantify the relevance of specific regressor sets, as it relies on R2
ad j ,

which is independent of the number of degrees of freedom in the linear regression, and thus

allows for an unbiased comparison between models with different numbers of regressors. The

second measure is not independent of the number of degrees of freedom (always decreasing

as more regressors are added), but provides a more direct indication of improvements in

response denoising. In this work, both measures suggested benefits in including selected

ICA-based confounds. These regressors were found to explain significant proportions of data

variance in all three ROIs, and especially for NBR ROIs, potentially due to the lower CNR of

the negative responses (comprising smaller fractions of total data variance). Concordantly,

reductions in block-by-block variability were significant for all estimated responses, and were

also relatively stronger in NBR ROIs than for the PBR. As previously mentioned, and illustrated

in Fig. 2.8, the ICA decompositions revealed a number of important components that were

consistent across the subjects and paradigms included in this study, in terms of spatial and

time-frequency profile. This suggests a suitable level of reproducibility of the method, at least

within a subject group undergoing the same experimental protocol, which is an important

feature for consistent denoising across subjects. Overall, the use of ICA-derived confounds for

BOLD data denoising arises as a valuable approach, which can complement or even replace

other techniques targeting correlated noise sources, such as physiological noise modeling

based on external monitoring.

2.4.4 Conclusion

The results here obtained show that, under visual stimulation, the visual PBR and both visual

and auditory NBRs significantly depend on stimulus intensity and duration. Response ampli-

tudes increase monotonically with stimulus intensity, and both visual and auditory NBRs are

linearly correlated with the PBR. For stimuli up to 10–16 s, response durations increase with

stimulus duration and all responses remain linearly correlated, while for longer stimulation

periods both visual and auditory NBRs decay to baseline earlier than the corresponding visual

PBR. In light of the growing evidence associating the NBR with local neuronal deactivation,
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these findings suggest the existence of a highly dynamic system of visual-auditory interactions

which are sensitive to stimulus intensity and duration, even for the passive observation of

basic visual stimuli. The deviations from linear covariation observed with longer stimuli sug-

gest either that neuronal deactivation may be more quickly attenuated in time than neuronal

activation, or that the neurovascular coupling properties of NBRs may differ from those of the

PBR. Overall, future studies monitoring both BOLD and electrophysiological activity, such as

with EEG-fMRI, could be highly relevant to clarify the mechanisms underlying these dynamics,

with potentially valuable contributions to the study of the nature of the NBR, and the neurovas-

cular coupling mechanisms underlying the BOLD signal in general. Regarding methodology,

the performance of the vein separation and ICA-assisted denoising techniques adopted in this

work indicates that both approaches can be highly valuable to improve response estimation,

especially for the study of lower-CNR features such as negative BOLD responses.
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3 EEG-fMRI at 7T: subject safety

Simultaneous EEG-fMRI can provide unique insights into the dynamics of human brain func-

tion, and could greatly benefit from the increased functional sensitivity offered by ultra-high

field fMRI. Unfortunately, the combination of the two modalities is subject to highly unde-

sirable interactions that can compromise subject safety, especially at higher field strengths

such as 7 T. Here, a series of preliminary tests were conducted to assess the presence of any

potential safety concerns for simultaneous EEG-fMRI in humans at 7 T, using the particular ac-

quisition setup intended to be applied in future studies. The safety tests comprised numerical

simulations of EM field distribution on a realistic computational model, and real temperature

measurements on a phantom model during two 8 min-long, SAR-intensive fMRI acquisi-

tions. The tests were performed for two distinct RF coils: a single-channel transmit/8-channel

receive head loop array, and an in-house-built single-channel transmit/receive surface quadra-

ture coil for occipital head regions. Overall, no significant safety concerns were found for the

setup tested. For both RF coils, EM simulations predicted a decrease in average SAR with the

introduction of the EEG system (4.9% for the surface coil, 7.9% for the volume coil), with the

peak SAR also decreasing for the surface coil (12.5%), and slightly increasing (10.2%) with the

volume coil. Temperature increases in the EEG electrodes during the fMRI runs remained

below 1°C for both RF coils. The EEG amplifiers exhibited more significant heating effects (up

to 6.5°C), albeit still remaining well within the respective operating range.

3.1 Introduction

In simultaneous EEG-fMRI acquisitions, safety concerns arise from the possible generation

of electric currents along the EEG wires and through biological tissues, created by the fast-

switching MRI gradients used for spatial encoding, or by the RF pulses used for spin excitation.

These interactions can be associated with two distinct mechanisms: EM induction, and RF

antenna effects. EM induction occurs when the magnetic flux within the loops formed by EEG

Parts of this chapter were adapted from:

Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment, J. Jorge, F. Grouiller, Ö. Ipek,
R. Stoermer, C. M. Michel, P. Figueiredo, W. van der Zwaag, R. Gruetter, 2015, Neuroimage 105, p.132–144.
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leads and the head changes in time, causing electromotive forces that can generate currents

along the leads (as described by Eq. 1.5) (Dempsey and Condon, 2001). The currents created

along the EEG leads can be dissipated by ohmic heating, causing temperature increases.

Furthermore, because the leads terminate in electrodes that are in physical contact with the

head, the induced currents can flow through the biological tissues (also designated "contact

currents"), and potentially cause damage. Electric currents are expected to be induced in

the human body under normal scanning conditions; however, conducting loops provide a

low-impedance component for concentration of currents, which can generate a high current

density in the tissue under an electrode, thus constituting an important safety hazard. Finally,

additional heating can also arise due to eddy currents generated within the electrodes or the

gel (Lemieux et al., 1997).

RF antenna effects occur when EEG leads act as antenna wires that are sensitive to the electric

component of the RF field. Importantly, when the wire length approximately matches half the

radiation wavelength λ, resonant standing waves can be created, with electric field maxima

at the tips of the wire (Dempsey and Condon, 2001). This property makes antenna effects

especially relevant at higher field strengths, where the corresponding RF wavelengths become

fairly comparable to EEG wire lengths – at 7 T, for instance, the wavelength of 1H excitation

pulses in water is approximately 11 cm (Schick, 2005). Unlike EM induction effects, antenna

effects do not require the existence of loops to be generated. Additionally, the associated

currents remain confined to the EEG wires, and neither create measurable signals at the

amplifiers nor contact currents through the head. The main hazard associated with these

effects is the heating and possible damage of the conducting wires, and of resistors that may

be included at their extremities, where energy deposition is maximal (Lemieux et al., 1997).

To assure subject safety, the various interaction mechanisms described above must be carefully

studied and accounted for. A straightforward measure to reduce EM induction is to avoid

forming any unnecessary loops along the EEG leads (leaving only the "main" loops passing

through the head and amplifiers), and to electrically insulate each lead, from the others as

well as from the head tissues. In 1997, Lemieux and colleagues presented a comprehensive

assessment of all the aforementioned deleterious interactions, comprising both theoretical

predictions and experimental measurements. The authors considered worst-case scenarios

regarding gradient slew-rate and temporal shape, loop geometry and position, and RF pulse

power, duration and repetition time, and determined the RF fields to be the main source of

potential safety concerns for EEG-fMRI. The inclusion of current-limiting resistors near the

electrodes, in the order of 10 kΩ per electrode, was proposed as a general measure to constrain

the potential safety hazards, and has since been widely adopted by hardware manufacturers.

Additionally, manufacturers have recommended a careful selection of low-RF power MRI

sequences for both functional and structural acquisitions (Noth et al., 2012).

The proposed modifications and guidelines have provided a reliable framework for safe EEG-

fMRI acquisitions. Nevertheless, with the constant pursuit of higher field strengths, optimized

RF coils and novel fMRI sequences, continued attention must be given to maintain EM
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interactions under suitable safety limits. Particularly, if the �B0 field strength is increased,

the interference mechanisms tend to become more problematic, as RF pulse frequency, and

therefore energy, increases linearly with �B0, and gradient slew-rates tend to be increased as

well, to achieve higher spatial resolutions. Moreover, at 7 T, RF pulse wavelengths in water

become smaller than the typical sample size, and the risk of resonant antenna effects along

the EEG leads is also increased (Dempsey et al., 2001). Another aspect of great importance

is that the presence of the conductive EEG materials may alter the transmit �B1 (�B+
1 ) field

distribution across the head, introducing unpredicted changes in local power deposition

(Angelone et al., 2004). This problem also becomes more relevant for the shorter wavelengths

created at 7 T, which lead to decreased RF penetration (Roschmann, 1987) and considerably

more heterogeneous �B1 distributions across the head (Eggenschwiler et al., 2012).

Given the prime importance of subject safety for human studies, considerable efforts have

been dedicated to the assessment of potential injury risks for particular EEG-MRI setups,

especially at higher field strengths. Temperature is the most direct measure for risk assess-

ment, and as such temperature measurements during EEG-fMRI acquisition, in phantoms

and humans, are often performed. However, these measurements typically have a limited

coverage, with only a few points monitored simultaneously, and restricted to the surface when

testing with human subjects. MRI itself can be used to obtain 3D maps of the (�B+
1 ) field distri-

bution across the head; however, it is the electric component �E of the RF field that determines

power deposition, and this component cannot currently be measured with a similar approach.

Nevertheless, EM simulations can be performed with realistic models of the acquisition setup

and the acquired sample, applying Maxwell’s equations to predict both the �B+
1 and �E field

distributions across the head (Angelone et al., 2006). In general, these simulations are highly

relevant for RF coil design and calibration, and can likewise be applied to study the effects of

introducing EEG components in the sample (Angelone et al., 2006). A standard measure of

power deposition, widely used in MR safety analyses, is the specific absorption ratio (SAR),

which is related to the electric field as follows:

S AR = 1

V

∫
V

σ(�r )|�E(�r )|2
ρ(�r )

d�r (3.1)

where V is the volume of interest, and σ and ρ are respectively the electric conductivity and

density of the tissue at each position�r . SAR is therefore expressed in units of power per mass; a

typical choice for V is the volume corresponding to 10g of tissue, for local SAR calculation and

mapping. Naturally, power deposition in living tissues, and therefore SAR, is closely linked to

temperature increases. Although the dynamics of this relationship depend on various aspects

such as tissue type and dimensions, as well as the effectiveness of physiological mechanisms

of heat dissipation, computational simulations and animal studies have allowed for the evalua-

tion and establishment of general guidelines for RF-induced SAR increases (Hirata et al., 2009).

These guidelines determine the maximum SAR values allowed to be imposed on different

human tissues, and are currently defined by International Electrotechnical Commission (IEC)

standards; for MRI, these limits are described in IEC 60601-2-33 (2010). Together with EM
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simulation results, these guidelines determine the maximum power that can be fed to a given

RF coil for acquisitions on a given body region, which in turn will limit the RF pulse amplitude

and duty cycle (which are then closely related to sequence parameters such as the flip angle

and TR). These limits may or may not need to be adjusted in the presence of EEG components.

The present chapter reports on a series of EM simulations and phantom temperature mea-

surements conducted to assess the presence of any potential safety concerns for simultaneous

EEG-fMRI at 7 T, using the particular acquisition setup intended to be applied in future studies.

Both a volume and a surface head RF coil were tested for MRI acquisition.

3.2 Methods

Safety tests comprised EM simulations with a realistic computational model and real tempera-

ture measurements performed on a phantom. To assess the validity of EM simulations, B+
1

measurements were also performed on a human volunteer, with and without EEG.

3.2.1 EEG-(f )MRI acquisition setup

For both temperature and B+
1 measurements, the EEG-(f)MRI acquisition system was set as

similar as possible to the optimized setup intended to be used in future human studies. The

MRI system consisted of an actively-shielded Magnetom 7 T head-only scanner (Siemens,

Erlangen, Germany), equipped with an AC84 head gradient set (max. slew-rate 333 T/m/s) and

using either a single-channel transmit/8-channel receive head loop array (Rapid Biomedical,

Rimpar, Germany) or a single-channel quadrature transmit/receive occipital coil (home-

built). EEG data were recorded using two 32-channel BrainAmp MR Plus amplifiers (Brain

Products, Munich, Germany) and a customized BrainCap MR model (EasyCap, Herrsching,

Germany) with 64 Ag/AgCl ring-type electrodes ("multitrodes"), arranged according to the

international 10–20 system, and fitted with 5 kΩ resistors to limit induced currents. One of the

64 electrodes was placed on the back of the subject for electrocardiogram (ECG) recording.

The two amplifiers rested on top of each other, close to the head, placed on the RF gateway

box. In both phantom and human recordings, Abralyte gel (EasyCap) was used to reduce

electrode impedances. A more detailed description of the setup, including modifications at

the level of signal transmission, can be found in Chapter 5, section 5.3.

3.2.2 Electromagnetic simulations

EM simulations were performed to evaluate the impact of the custom EEG setup on B+
1 and

SAR distributions across the head. The measurement setup was simulated with the finite

difference time domain (FDTD) package SEMCAD X (SPEAG, Zürich, Switzerland), using the

realistic human meshed model Duke from the Virtual Family (Christ et al., 2010). For the RF

coils, the copper strips of the loops were modeled as perfect electric conductors (PEC), with
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a) b)

c)

Figure 3.1: Computational models developed for EM simulations assessing the impact of an
EEG cap on B+

1 and SAR distributions, using a either volume or a surface head RF coil, at 7 T.
a) Geometric model consisting of a realistic human head and a set of 66 ring electrodes, safety
resistors and leads simulating the EEG cap used in this work; the wire branching was designed
according to the real cap, terminating in two connectors close to the head; the electrolyte
gel and head array are not displayed. b,c) Voxel mesh obtained with either coil from the full
geometric model, including the electrolyte gel components.

capacitors and voltage sources inserted on each loop to ensure excitation of the circularly

polarized mode. For the EEG cap, ring electrodes were designed as a set of 66 PEC loops,

connected to PEC leads via 5 kΩ resistors. The leads converged in 8 branches towards the

2 connectors, standing approximately 2 cm above the scalp. Wire branching and connector

positions were modeled according to the real cap (Fig. 3.1a), with specific care to ensure that

no wires/electrodes were in physical contact with each other or the skin. Contact with the

scalp was modeled with small cylinders mimicking the Abralyte gel (Fig. 3.1b,c), with dielectric

properties εr = 68 and σ = 4.7 S/m, measured from a real gel sample using a dielectric probe

(DAKS, SPEAG, Zürich, Switzerland).

The simulation model was meshed in a non-uniform grid of approximately 8 MCells, with

voxeling steps ranging from 0.26×0.40×0.29 mm3 to 69×78×85 mm3, for the volume coil (Fig.

3.1b), and from 0.4×0.2×0.1 mm3 to 38×50×42 mm3 for the surface coil (Fig. 3.1c). A harmonic
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excitation at 297.2 MHz was applied, and steady-state conditions were achieved within 30

periods of simulation time. Perfectly matched layers in medium strength were used at the

edges of the FDTD domain. The B+
1 and SAR maps obtained for each coil, with and without

the cap, were normalized to a 1 W delivered power and then exported to Matlab (Mathworks,

Natick MA, USA) to be resampled into a uniform grid.2

The B+
1 maps obtained from a human volunteer for comparison with EM simulations were

acquired with a SA2RAGE sequence (64 sagittal slices, 2.0×2.5×2.0 mm3 resolution, TR/TE

= 2400/1.4 ms, TI1/TI2 = 65/1800 ms, α1/α2 = 4°/11°) (Eggenschwiler et al., 2012). These

tests were conducted after confirming adequate safety conditions with both EM simulations

and temperature measurements on a phantom (described in the following section), and

were approved by the institutional review board of the local ethics committee (Commission

d’Éthique de la Recherche sur l’Être Humain du Canton de Vaud). The volunteer provided

written informed consent prior to the acquisition.

3.2.3 Temperature measurements

Temperature monitoring was conducted on an agar gel phantom contained in a realistic head

shape, which was covered with an Abralyte gel layer and fitted with the EEG cap. Measurements

were performed using a 4-channel fiber optic temperature sensor (Neoptix, Québec, Canada).

For both RF coils, two probes were placed on electrodes AF8 and FT9 (directly in the gel within

the ring electrodes), one probe was placed in between the two EEG amplifiers, and another

was suspended above the phantom, for reference. This choice of electrodes was motivated by

the large loop area relative to �B0 formed by channel FT9, and by the position of channel AF8,

which was situated relatively close to a region of SAR increase predicted by the EM simulations

for the volume coil (see section 3.3.1 for details). For the surface coil, a second measurement

was also performed with probes placed on electrodes O1, P1 and FT9, and the fourth probe

suspended above the phantom. This choice was motivated by the particular transmission

profile of the surface coil, which is more focused in occipital head regions.

Temperature fluctuations were measured during 16 min-long sessions where two fMRI runs

were applied sequentially, for 8 min each: a sinusoidal gradient-echo (GE) EPI sequence (25

slices, 1.5×1.5×1.5 mm3 spatial resolution with 1.5 mm interslice gaps, TR/TE = 2000/25 ms, α

= 78°, 69% of SAR limit), followed by a spin-echo (SE) EPI sequence (20 slices, 1.5×1.5×1.5 mm3

spatial resolution, TR/TE = 5000/44 ms, α = 90°, 91% of SAR limit). For the volume coil tests,

the slices were set with axial orientation, whereas a coronal orientation was employed with the

surface coil. The two functional runs were separated by approximately 2 min, which included

shimming and other adjustment procedures for the second run. The patient ventilation

system, room and bore lights remained switched off at all times. No MRI acquisitions had

been performed on the scanner for several hours prior to each session.

2The model discretization and EM simulation steps were performed by Dr. Özlem Ipek (email:
ozlem.ipek@epfl.ch), who provided the resulting B+

1 and SAR maps in matrix format, for further analysis.

66



Chapter 3. EEG-fMRI at 7T: subject safety

3.3 Results

3.3.1 Electromagnetic simulations

To assess the impact of the custom EEG cap on B+
1 and SAR distributions across the head, EM

simulations performed with and without the cap in place were compared (Fig. 3.2).

Volume RF coil: For the volume coil, the presence of the EEG materials led to a general

loss in B+
1 amplitude – approximately 8.0% over the head region. The general properties

of the field distribution, with higher amplitude in the center and in occipital regions, were

roughly maintained with the inclusion of the EEG cap. Nevertheless, a number of local, more

accentuated effects were observed in superior regions, mostly restricted to the scalp, especially

in the vicinity of EEG leads (Fig. 3.2, arrow 1). These local effects included both field decreases

and increases, in some voxels up to 1.7× the nominal flip angle. SAR maps (averaged over 10g

of tissue) expressed similar trends, with the introduction of the EEG cap leading to an overall

decrease of approximately 7.9% over the whole head. A few local increases could be observed

in superior-anterior regions, close to the skin (Fig. 3.2, arrow 2), pushing the peak 10g-average

SAR value from 0.39 W/Kg without EEG to 0.43 W/Kg with the cap (normalized to 1 W power).

Surface RF coil: With the surface coil, a general reduction in B+
1 amplitude was also observed,

albeit more moderate – approximately 4.5% over the occipital region. As observed for the

volume array, the general properties of the field distribution obtained with the surface coil,

with higher amplitude in occipital regions and a steady decay with the distance to the el-

ements, were roughly maintained with the inclusion of the EEG cap. A subtle shift of the

field distribution in the upward direction could be noticed, although no local increases were

found; the peak amplitude actually decreased from 1.8 to 1.7× the nominal flip angle with

the introduction of the EEG cap. The estimated SAR distributions exhibited similar trends,

with an overall decrease of approximately 4.9% over the head. A slight upward shift in power

deposition could be observed (Fig. 3.2, arrow 3), albeit without any significant focal increases.

The peak 10g-average SAR value was reduced from 0.72 W/Kg to 0.63 W/Kg with the EEG cap.

Validation: The validity of the EM simulations was assessed by comparing the estimated B+
1

maps with real measurements performed on human subjects, with and without the EEG cap

in place (Fig. 3.3). In general, the in vivo measurements exhibited similar field distributions to

the simulated maps, with higher B+
1 in the center and occipital regions for the volume array, or

more concentrated in the occipital area for the surface coil. In the volume coil measurement,

a 12.8% overall decrease in B+
1 strength was observed upon introduction of the EEG cap.

Local B+
1 deviations occurring closer to the skin effectively differed in location and shape, but

expressed similar intensity variations, with in vivo measurements showing decreases down to

near-complete B+
1 loss and increases up to approximately 1.8× the nominal flip angle. With

the surface coil, B+
1 measurements showed an average amplitude reduction of 9.1% in the

occipital region. Similar to the volume coil, local B+
1 deviations occurring closer to the skin

effectively differed in location and shape; a peak amplitude of 1.5× the nominal flip angle was
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Figure 3.2: EM simulation results obtained with and without the EEG cap in place, using either
a volume or a surface RF coil. The slices presented contain the most relevant differences
between the two conditions. Left: B+

1 field distribution, expressed as a fraction of the nominal
flip angle; accentuated local field variations near the skin are indicated by arrow 1. Right: SAR
distribution, expressed as the average value over 10 g of tissue; for the volume coil, a moderate
increase in SAR in superior-anterior regions, near the scalp, is indicated by arrow 2; for the
surface coil, arrow 3 indicates a subtle upward shift in the SAR distribution.

found both with and without EEG.

3.3.2 Temperature measurements

Complementary to EM simulations, local heating effects due to the EEG system were assessed

by temperature monitoring on a phantom during a GE-EPI followed by a SE-EPI acquisition.

Volume RF coil: With the volume coil, during both 8 min runs, no significant temperature

increases were found in any of the monitored locations apart from the EEG amplifiers (Fig. 3.4,

top). In the reference probe suspended above the phantom, temperature increased from 19.7

to 20.0°C in the GE run and then up to 20.3°C during the SE run. The 2 probes placed on EEG
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Figure 3.3: Comparison of B+
1 field maps obtained from EM simulations, using a volume

or a surface RF coil, with real measurements performed on human volunteers. The field
distributions are expressed as a fraction of the nominal flip angle.

electrode sites exhibited similar trends, at slightly lower temperatures, with total increases

below 1°C – on AF8, temperature rose from 18.2 to 18.7°C (GE) and then up to 19.1°C (SE); FT9

showed an increase from 17.8 to 18.1°C (GE) and then up to 18.4°C (SE). The sensor placed on

the EEG amplifiers did measure stronger heating effects: from 21.4 to 25.8°C in the GE run,

and then up to 27.9°C during the SE run.

Surface RF coil: Regarding the surface coil, in the first experiment, focused on the same

locations as with the volume coil, similar trends were observed: the reference probe exhibited

a temperature increase from 18.7 to 19.1°C in the GE run and then up to 19.3°C during the SE

run. The 2 probes placed on EEG electrode sites remained at approximately 19.9°C (AF8) and

19.3°C (FT9) during both acquisition sequences, with fluctuations within a range of 0.2°C. Also

as before, the sensor placed on the EEG amplifiers measured stronger heating effects: from

21.4 to 24.0°C in the GE run, and then up to 26.8°C during the SE run (Fig. 3.4, bottom).

In the second measurement performed with the surface coil, monitoring more occipital
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Figure 3.4: Temperature fluctuations during an 8 min-long GE-EPI acquisition followed by an
8 min-long SE-EPI run, using either a volume or a surface RF coil. The two runs were separated
by approximately 2 min, which included shimming and adjustment procedures for the SE
run. Temperature monitoring was performed in two cap electrodes (AF8 and FT9, blue), in
between the two EEG amplifiers (orange), and suspended inside the bore above the phantom
(grey).

electrodes, the reference probe remained at approximately 18.4°C, with fluctuations within

a range of 0.2°C throughout both EPI runs. The probe placed at FT9 showed a fairly stable

temperature value of approximately 17.1°C, with fluctuations in the range of 0.1°C. The probes
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Figure 3.5: Temperature fluctuations during an 8 min-long GE-EPI acquisition followed by an
8 min-long SE-EPI run, using a surface RF coil. The two runs were separated by approximately
2 min, which included shimming and adjustment procedures for the SE run. Temperature
monitoring was performed in three cap electrodes (O1 in red, P1 in orange, and FT9 in blue),
and suspended inside the bore above the phantom (grey).

placed at P1 and O1 exhibited moderate, but steady temperature increases: both started at

17.4°C, then rose to 17.7°C (P1) and 18.0°C (O1) in the GE-EPI run, and finally to 17.9°C (P1)

and 18.3°C (O1) in the SE-EPI run (Fig. 3.5).

3.4 Discussion

Given the interactions that can occur between EEG materials and RF waves (Lemieux et al.,

1997), subject safety has always been a major point of concern with simultaneous EEG-fMRI

(Laufs, 2012). While safety guidelines do exist, the pursuit of increasingly higher field strengths,

higher EEG channel densities, and various custom modifications (coil designs, MR sequences),

has continuously demanded site-specific safety assessments for setup validation. Temperature

measurements in phantoms and humans have been extensively adopted for this purpose

(Lemieux et al., 1997; Lazeyras et al., 2001; Mullinger et al., 2008a). While useful and practical,

these tests are limited in spatial coverage, and cannot assess local SAR variations occurring in

vivo within the brain. As a valuable complement, EM simulations using realistic head models

allow for the estimation of high-resolution SAR distributions across the head, but only a small

number of studies have presented results from such approaches (Angelone et al., 2004, 2006).

In this work, we relied on both EM simulations and surface temperature measurements for

safety assessment, with neither approach raising significant concerns. In both tested RF
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coils, the introduction of the EEG cap led to a small overall decrease in SAR, which is in fact

contrasting with results from previous simulations conducted at 7 T, reporting overall increases

around 32% (Angelone et al., 2006). This may be related to various differences existing between

the two models, including electrode density, lead geometry, RF coil configuration, and the

electromagnetic properties of the human model. In our particular implementation, for the

volume coil, a number of areas exhibiting SAR increases did appear with the introduction

of the EEG cap (Fig. 3.2, top), notably in skin/skull regions, but the overall range of the SAR

distribution remained practically unaltered. It could be proposed that, in cases where peak

SAR values are steadily reduced in the presence of EEG, the established hardware limits could

be adjusted (increased), to counter B+
1 losses with higher RF transmission power. In particular,

this option could be considered for the surface coil tested in this work, where the peak SAR (as

well as the average SAR) was reduced upon introducing the EEG system. Such adjustments

could prove decisive for certain applications such as MR spectroscopy, where B+
1 efficiency

often plays a major role in acquisition. Nevertheless, given its crucial impact on subject safety,

the modification of transmit power limits should only be considered in cases of absolute

confidence regarding the effects of EEG on SAR.

The relevance and reliability of EM simulation results is, naturally, highly dependent on how

accurately they model the characteristics of the real system. To assess this, the estimated

B+
1 distributions were compared to real measurements performed on a human volunteer. In

general, the observed B+
1 distributions were remarkably similar to those predicted by simula-

tions, both before and after introduction of the EEG system. With EEG, general losses in B+
1

amplitude were observed, as well as a number of more accentuated local effects, especially in

more peripheral regions close to the skin (Fig. 3.3). Interestingly, for both coils, the average B+
1

losses predicted by simulations (8.0% and 4.5% for the volume and surface coil, respectively)

tended to underestimate the measurements obtained from this particular volunteer (12.8%

and 9.1%). This may be better clarified in future work by collecting B+
1 measurements with

and without EEG from a larger number of subjects, along with simulations from a range of

human head models (varying with age and gender, for example). Nevertheless, the high degree

of similarity between simulations and measurements already observed in this work confirms

that EM simulations can be a highly valuable tool for EEG-fMRI development, on the one

hand for safety assessment, to predict SAR distributions as well as to guide the placement of

temperature probes (as performed here with electrode AF8), and on the other hand to predict

alterations in B+
1 distribution. As will be further discussed in Chapter 4, B+

1 disruption stands

as the main contributor for MR image degradation in EEG-fMRI, and therefore, the ability to

predict such effects for a given setup improvement, before its actual implementation, may

prove highly useful for development and optimization purposes.

Regarding the temperature measurements, in all tests conducted with both RF coils, the

fluctuations observed in EEG electrodes over the two 8-minute acquisitions were below 1°C,

in good agreement with previous reports at 7 T (Angelone et al., 2006; Mullinger et al., 2008a).

Although our measurements were conducted over a relatively short period, compared to a

more common duration of approximately 1 hour for such sessions, the individual 8-minute
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runs were comparable to typical fMRI runs, and there were no reasons to expect any significant

changes in the observed trends for subsequent runs. As predicted by theoretical considerations

and confirmed by EM simulations, the B+
1 and SAR fields created by the surface coil were both

concentrated in the occipital region, closest to the coil itself. Consistent with this, temperature

measurements exhibited progressively stronger increases in the electrodes closest to this

region (P1, then O1), while farther electrodes such as FT9 and AF8 remained practically

unperturbed (Fig. 3.4, 3.5). In contrast, using the volume coil, both AF8 and FT9 exhibited

steadier, albeit moderate, temperature increases during the EPI acquisitions. This is likely due

to the more widely-distributed energy deposition created by this coil (Fig. 3.2, top).

The EEG amplifiers did experience considerably larger temperature increases than the elec-

trodes (6.5°C with the volume coil and 5.4°C with the surface coil, over 16 min of EPI acqui-

sition), although it was not possible to conclude how much of this heating was propagated

from the RF gateway box (on which the amplifiers were standing and which by itself warms

up during operation), or truly related to MR gradient or RF pulse effects. The slightly lower

temperature increase observed with the surface coil could indeed suggest a contribution from

RF transmission, since the volume coil can excite a considerably larger FOV than the surface

coil, which is more restricted to occipital areas, and thereby may impose a larger energy

deposition on the nearby amplifiers. Nevertheless, as each coil has a different RF gateway

box, differences in this component could likewise play a role in the different heating trends

observed. In any case, despite these increases, the observed values were still well within the

normal operating range of the amplifiers (10–40°C), thus raising no cause for concern.

3.4.1 Conclusion

In conclusion, under the conditions of typical functional acquisitions, the temperature mea-

surements and EM simulations conducted in this study showed no significant safety concerns

for this particular EEG-fMRI setup, using either a volume or a surface head RF coil. The EM

simulations proved valuable to predict the impact of these acquisition setups on B+
1 and SAR

distributions, and may become a useful tool to aid the design and optimization of future setup

developments.
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4 EEG-fMRI at 7T: MRI data quality

The presence of EEG components and materials in the MRI scanner can create important

deleterious effects that result in image quality degradation and reductions in functional

sensitivity. This chapter describes an extensive characterization of EEG-induced MRI data

artifacts, for the particular setup implemented in this thesis, at 7 T. Functional sensitivity was

assessed based on human fMRI acquisitions, performed with and without the EEG system

in place. Image quality was characterized in both functional and anatomical images, and

the underlying mechanisms of degradation were investigated via �B0 and �B+
1 field mapping.

Overall, both functional and anatomical images exhibited general losses in spatial SNR, of

approximately 37% and 29%, respectively. In fMRI data, white matter temporal SNR exhibited

a more moderate loss of 23 ± 6% across subjects. �B0 inhomogeneities introduced by the

EEG system were in general limited to extra-cerebral tissue, with the distribution in the brain

remaining comparable to the no-EEG situation. In contrast, �B+
1 maps evinced a general

loss of 12.8% in amplitude over the whole head, along with a number of more accentuated

local effects, particularly at superior regions, coinciding with areas of more focal SNR loss.

Hence, these results point towards RF pulse disruption as the major degradation mechanism

affecting MRI data acquired simultaneously with EEG.

4.1 Introduction

In addition to safety concerns, simultaneous recordings from both EEG and fMRI can be

affected by severe artifacts, many of which are field strength-dependent. On the fMRI side, the

presence of EEG components and materials can lead to MR image degradation through two

distinct mechanisms: magnetic susceptibility effects, and RF field disruption.

Magnetic susceptibility effects can arise due to differences in magnetic susceptibility between

the head tissues and the added EEG components, including the leads, safety resistors, elec-

Parts of this chapter were adapted from:

Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment, J. Jorge, F. Grouiller, Ö. Ipek,
R. Stoermer, C. M. Michel, P. Figueiredo, W. van der Zwaag, R. Gruetter, 2015, Neuroimage 105, p.132–144.
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trodes and electrolyte gel. When placed in �B0, a material with a certain magnetic susceptibility

χ will cause a disturbance in the field of the order of χ|�B0|. Consequently, when materials

with different susceptibilities are brought together, inhomogeneities arise in the resulting

static field, with most pronounced field gradients at the boundary between the materials.

These inhomogeneities can have an important impact on image properties: on the one hand,

T ∗
2 relaxation effects are accentuated on spins traveling through the field inhomogeneities,

leading to increased signal loss in these areas; on the other hand, if the variations in Larmor

frequency become similar in size to the frequency separation of voxels in the image, these can

interfere with the spatial encoding scheme, originating geometric distortions in the acquired

image (Jezzard et al., 2001). These effects are particularly problematic for EPI sequences,

which typically have a low bandwidth in the phase encoding direction. Even without EEG

hardware, air-tissue boundary regions such as in the nasal cavity are usually strongly affected

by signal loss and distortions. Likewise, the introduction of EEG materials has been observed

to introduce localized signal drops (Krakow et al., 2000; Mullinger et al., 2008b).

�B1 field disruption or shielding effects can be introduced due to the presence of EEG com-

ponents between the RF coil and the head. When submitted to RF fields, the electrically-

conductive EEG materials will promptly generate surface currents to screen the fields from

their interior volume, creating field distortions that extend to nearby regions. The resulting �B1

field inhomogeneities, already introduced in the previous chapter in the context of subject

safety, can likewise become an important degradation mechanism for the acquired images,

since both transmit and receive fields are affected. The resulting effects typically arise as SNR

losses, more accentuated in regions closer to the EEG components. Additionally, the power

lost in the interactions between the RF coil and the conductive EEG materials increases the

effective resistance of the RF coil, acting as a source of additional noise, and thereby also

leading to a global reduction in image SNR (Scarff et al., 2004; Mullinger et al., 2008b).

MRI data degradation effects during concurrent EEG recordings have been frequently observed

in previous methodological studies. A number of improvements to mitigate these effects have

been proposed, essentially through the use of certain alternative materials for the EEG wires

and electrodes, such as conductive ink (Vasios et al., 2006) or carbon (Negishi et al., 2008).

Fortunately, with modern EEG systems, even the more conventional silver- or copper-based

components have actually been found to have an acceptable impact on fMRI data quality at

fields up to 3 T (Bonmassar et al., 2001; Lazeyras et al., 2001). It has further been proposed

that functional sensitivity in fMRI is relatively well-preserved, since with any loss in image

SNR, physiological noise is also reduced (because it scales with image signal (Kruger et al.,

2001)), resulting in a more moderate reduction in temporal SNR (Luo and Glover, 2012).

Nevertheless, the acceptable reductions observed at lower fields may become considerably

more compromising as higher field strengths are pursued. Both magnetic susceptibility

and RF disruption effects are expected to worsen with field strength, and this trend has been

experimentally confirmed (Mullinger et al., 2008b). The report of Mullinger et al., covering field

strengths up to 7 T, is currently the only comprehensive assessment of fMRI data degradation

effects due to EEG available in the literature (Mullinger et al., 2008b). As such, additional
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studies of these effects at other centers, with particular differences in magnet characteristics,

gradients, RF coils and EEG setup, may prove valuable to complement the currently-limited

existing literature, especially at ultra-high field, and consolidate previous observations.

This chapter presents an extensive characterization of MRI data artifacts induced by EEG

components, for the particular setup implemented in this thesis, at 7 T. To evaluate changes

in functional sensitivity, GE-EPI data were acquired from a group of healthy volunteers with

concurrent EEG recording, and from a similar group without EEG. Additionally, from the first

group, one of the volunteers was scanned both with and without the EEG system in place. For

this subject, changes in data quality were assessed in both functional and anatomical images,

and the underlying mechanisms were investigated via �B0 and �B+
1 field mapping.

4.2 Methods

A total of 9 human volunteers (20 ± 2 years old) participated in this study, 5 of which under-

went concurrent EEG-fMRI acquisitions, whereas 4 were only subjected to fMRI. The study

was approved by the institutional review board of the local ethics committee (Commission

d’Éthique de la Recherche sur l’Être Humain du Canton de Vaud), and all volunteers provided

written informed consent.

4.2.1 MRI data acquisition

MRI data were acquired both with and without concurrent EEG recording, using the setup

previously introduced in Chapter 3, section 3.2.1, and further detailed in Chapter 5, section

5.3. When present, the EEG setup was kept operating similarly to a normal recording. For

the fMRI acquisitions, a GE-EPI sequence was used (25 axial slices, 1.5×1.5×1.5 mm3 spatial

resolution with 1.5 mm interslice gaps, TR/TE = 2000/25 ms, α = 78°, sinusoidal readout). A

timecourse of 120 volumes were acquired from each subject, corresponding to a duration of 4

minutes. Subjects were asked to simply lie still throughout the acquisition.

One subject was scanned with and without the EEG setup in place. For both cases, a set of four

MRI sequences was applied: a single GE-EPI volume (same parameters as described above), a

gradient-recalled echo (GRE) anatomical image (176 sagittal slices, 1.0×1.0×1.0 mm3 spatial

resolution, TR/TE = 6.5/2.8 ms, α = 4°), a GRE-based �B0 field map (30 slices, 3.0×3.0×3.0 mm3

resolution, TR/TE1/TE2 = 1050/4/5 ms, α = 40°), and a SA2RAGE image (64 sagittal slices,

2.0×2.5×2.0 mm3 resolution, TR/TE = 2400/1.4 ms, TI1/TI2 = 65/1800 ms, α1/α2 = 4°/11°) for
�B+

1 field mapping (Eggenschwiler et al., 2012).

4.2.2 MRI data analysis

Data quality assessment and comparison were performed through direct visual inspection,

and additionally, for functional and anatomical images, through the estimation of SNR losses.
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Spatial SNR: Spatial, or image SNR, was estimated as the mean amplitude in a specific region

within the head divided by the standard deviation of signal amplitudes outside the head

(avoiding areas potentially affected by Nyquist ghosting). Two head regions were considered:

one comprising more inferior areas not visibly affected by accentuated signal drops, for a

general measure of SNR loss, and another comprising more superior regions affected by

pronounced signal losses.

Temporal SNR: Given the importance of temporal, rather than spatial SNR for fMRI (Luo and

Glover, 2012), temporal SNR values were estimated from the EPI timecourses acquired from

the two subject groups. For each run, temporal SNR was calculated for each voxel as the

mean timecourse amplitude divided by the timecourse standard deviation, and then averaged

within a frontal white matter region (7×7×7 voxels) not affected by accentuated signal loss. All

estimated spatial and temporal SNR values were above 10, and therefore a compensation for

the Rician distribution of the noise was not necessary (Triantafyllou et al., 2005). The effect of

GRAPPA acceleration on background noise was present, but similar on both conditions.

4.3 Results

The impact of the EEG system on MRI data quality was assessed in functional and anatomical

images acquired with and without the EEG system, and its underlying mechanisms were

investigated via �B0 and �B+
1 mapping.

SNR: In the single-subject dataset, both functional (GE-EPI) and anatomical (GRE) images

exhibited general losses in spatial SNR of approximately 37% and 29%, respectively. Central-

superior regions were particularly affected (arrows 1–2 in Fig. 4.1), with SNR losses rising to

62% (functional) and 44% (anatomical) in the top-most axial slices. In the group acquisitions,

similar degradation effects could be observed when comparing with-EEG and without-EEG

EPI images, with both general losses in SNR and more accentuated losses in central-superior

regions (Fig. 4.2). On average across subjects, white matter temporal SNR values decreased

from 22 ± 1 in fMRI-only runs to 17 ± 1 in EEG-fMRI runs, corresponding to an average loss of

23 ± 6%.

Field mapping: in the single-subject dataset, with the EEG system in place, the �B0 distribution

did evince a number of local inhomogeneities along the scalp (arrow 3 in Fig. 4.1), likely

corresponding to individual electrodes and gel. However, these inhomogeneities were in

general limited to extra-cerebral tissue, whereas in the brain the �B0 distribution remained

comparable to the no-EEG situation. This is in agreement with the observation that no

geometric deformations were found in GE-EPI or GRE images with the introduction of the EEG

cap. In contrast, �B+
1 maps evinced clear differences between the two conditions, including

both a general 12.8% loss in amplitude over the whole head and a number of more accentuated

local effects (arrow 4 in Fig. 4.1), as predicted by previous EM simulations (Chapter 3). Relevant

increases were mainly located outside the brain, while accentuated local decreases could also

be seen in deeper regions.
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Figure 4.1: MRI data quality in a human subject scanned without (1st and 3rd rows) and with
the EEG cap (2nd and 4th rows). The slices presented contain the most relevant differences
between the two conditions. Top-left: GE-EPI image acquired with similar parameters to the
functional runs (although with larger coverage). Top-right: GRE-based anatomical image.
Arrows 1 and 2 indicate accentuated local signal drops. In both functional and anatomical
images, the intensity scale is kept fixed between no-EEG and with-EEG conditions. Bottom-
left: �B0 field distribution, expressed as the phase shift relative to the nominal precession;
local phase shifts appearing along the skin are indicated by arrow 3. Bottom-right: �B+

1 field
distribution, expressed as a fraction of the nominal flip angle; accentuated local field variations
are indicated by arrow 4. Both �B0 and �B+

1 field maps here shown were masked to remove
background regions in which there was no MR signal.

4.4 Discussion

The functional (GE-EPI) and anatomical (GRE) images acquired for data quality assessment

(Fig. 4.2, 4.1) evinced artifacts caused by the introduction of the EEG system, notably an

overall loss in spatial SNR and a few accentuated drops localized in superior regions. Temporal

SNR losses were comparable to previous estimates at 7 T using a more standard EEG setup

(Mullinger et al., 2008b), although here performed at a higher spatial resolution. Importantly,

although significant, the losses observed in temporal SNR were considerably less severe than

in spatial SNR, in good agreement with previous theoretical and experimental work (Luo and

Glover, 2012). BOLD functional sensitivity is determined by its contrast-to-noise ratio, which
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Figure 4.2: fMRI data quality in a group of subjects scanned either without (top) or with the
EEG system in place (bottom). Two slices are shown per subject: a more inferior slice without
focal SNR losses (2), and a superior slice with more pronounced focal losses (1). The slices
shown were taken from the middle volume of each 4D dataset; image intensities were scaled
from 0 to the 99th percentile of voxel intensities across the volume. Subject 6 is the subject
who underwent additional field mapping and anatomical acquisitions, with and without EEG.

is in turn directly modulated by its temporal SNR (Luo and Glover, 2012, Eq. 1); therefore, the

observed effects on temporal, compared to spatial SNR, indicate that functional sensitivity is

in fact less affected by the introduction of EEG equipment than anatomical MR signals per se.

Also in agreement with previous studies (Bonmassar et al., 2001; Lazeyras et al., 2001; Mullinger

et al., 2008b), the �B0 maps exhibited local susceptibility artifacts along the skin, likely coin-

ciding with EEG electrodes, but focal enough not to extend into actual brain regions, which

remained largely unaffected in terms of �B0 homogeneity. �B+
1 maps, on the other hand, dis-

played clear alterations both globally and in specific regions, which were largely coincident

with the more accentuated local SNR drops observed in functional and anatomical images.

It is important to note that the central-superior regions where these stronger losses were

observed lie essentially below a region of the cap where most EEG leads converge to a single
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bundle, before leaving the cap surface (see Fig. 5.2c in Chapter 5). This area will thus contain

a particularly high density of conductive material. Although it is hard to develop a consistent

intuition for the effects of RF field disruption, and to confirm a causal relationship between the

cap geometry and the observed artifacts, it is fairly likely that the two aspects may be strongly

related. In fact, these local degradation effects had also been observed, with considerable

similarity, in the EM simulations performed in Chapter 3, which employed a realistic model

of the EEG cap geometry. Such simulations could thus present a useful platform to test and

optimize novel EEG lead geometries, which may be able to minimize the observed local effects,

or alternatively shift them towards other regions, according to specific research interests.

4.4.1 Conclusion

Overall, the results obtained in this study strengthen the growing view that the properties of

modern EEG caps have managed to limit susceptibility artifacts to a satisfactory level, even at

ultra-high field (Krakow et al., 2000; Lazeyras et al., 2001). RF pulse disruption, in contrast,

stands as an important degradation effect that can significantly reduce the available SNR, as

well as compromise the performance of brain segmentation and other image processing steps

(Mullinger et al., 2008b). �B+
1 inhomogeneity is already by itself a topic of intense research in

ultra-high field MRI (Eggenschwiler et al., 2012). Aided by dedicated setup improvements,

such as novel electrode and lead materials (Vasios et al., 2006), it is likely that EEG-related �B+
1

degradation can be satisfactorily reduced in the future.
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The deleterious interactions occurring between EEG and fMRI during simultaneous acqui-

sitions can create important artifacts in the recordings of both modalities, most of which

increase with �B0 field strength. In particular, the artifacts induced on EEG recordings can

surpass the signals of interest by several orders of magnitude and severely compromise data

quality, especially at 7 T. For this reason, EEG artifact characterization and reduction has be-

come a fundamental aspect of EEG-fMRI studies, and accordingly comprises the largest part

of this thesis. The work here described was mainly focused on two aspects: signal transmission

from the EEG cap to the amplifiers, and artifacts due to head motion in �B0.

In the first study, the signal transmission stage between the EEG cap and amplifiers was

studied and optimized, so as to minimize artifact contamination at this level of the setup.

The effects of EEG cable length and geometry for signal transmission were assessed in a

phantom model, with specific attention to noise contributions from the MR scanner coldheads.

Cable shortening (down to 12 cm from cap to amplifiers) and bundling effectively reduced

environment noise by up to 84% in average power and 91% in inter-channel power variability.

With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on healthy

volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a VEP

paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha

modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a

single-trial level, alpha power variations could be observed with relative confidence on all

trials; VEP detection was more limited, although statistically significant responses could be

detected in more than 50% of trials for every subject.

In the second study, a novel approach for head motion artifact detection was developed and

integrated in the optimized EEG setup. This approach is based on a simple modification of

Parts of this chapter were adapted from:

Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment, J. Jorge, F. Grouiller, Ö. Ipek,
R. Stoermer, C. M. Michel, P. Figueiredo, W. van der Zwaag, R. Gruetter, 2015, Neuroimage 105, p.132–144.

Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion, J.
Jorge, F. Grouiller, R. Gruetter, W. van der Zwaag, P. Figueiredo, 2015, Neuroimage 120, p.143–153.
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the EEG cap, in which four electrodes are non-permanently adapted to record only magnetic

induction effects. EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers

undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by

the motion sensors revealed that, after gradient artifact correction, EEG signal variance was

largely dominated by pulse artifacts (81–93%), but contributions from spontaneous motion

(4–13%) were still comparable to or even larger than those of actual neuronal activity (3–9%).

Multiple approaches were tested to determine the most effective procedure for denoising EEG

data incorporating motion sensor information. Optimal results were obtained by applying

an initial pulse artifact correction step (AAS-based), followed by motion artifact correction

(based on the motion sensors) and ICA denoising. On average, motion artifact correction

(after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial

consistency. Combined with ICA, these improvements rose to a 74% power reduction and an

86% increase in trial consistency. Overall, the improvements achieved were well appreciable

at single-subject and single-trial levels, and set encouraging perspectives for simultaneous

EEG-fMRI at ultra-high field.

5.1 Introduction

Simultaneous EEG-fMRI acquisitions at ultra-high field suffer from various undesirable inter-

actions that can degrade data quality and potentially compromise subject safety (Dempsey

et al., 2001; Neuner et al., 2014). Safety concerns have been effectively moderated through a

number of modifications in hardware and acquisition guidelines (Lemieux et al., 1997; Noth

et al., 2012), and acquisitions thereafter have been confirmed safe, even at 7 T (as discussed in

Chapter 3). Moreover, as observed and discussed in Chapter 4, although EEG components

can reduce the SNR of MR images, numerous studies have found that losses in temporal SNR

remain acceptable for fMRI, even at ultra-high field strengths with fairly high electrode densi-

ties (Mullinger et al., 2008b; Luo and Glover, 2012). In contrast, the artifacts induced in EEG

recordings by the magnetic fields used in fMRI can surpass the signals of interest by several

orders of magnitude, and severely compromise data quality (Allen et al., 2000; Debener et al.,

2008). This is currently the most limiting obstacle for high-quality EEG-fMRI acquisitions,

particularly at higher field strengths such as 7 T.

5.1.1 Gradient and pulse artifacts

EEG artifacts are mainly created by electromagnetic induction in the loops formed by the EEG

leads and the head, which occurs whenever the existing magnetic field changes in time, or

when loop geometry is changed relative to the field (Yan et al., 2009). The strongest contri-

butions are generally due to the fast-switching gradient fields applied for image encoding

(Allen et al., 2000). Cardiac activity can also cause large artifacts through various mechanisms,

including bulk head motion prompted by the arrival of the ejected blood, scalp expansion due

to arterial pulsation, and Hall effects occurring in the moving blood – altogether known as
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pulse artifacts, or "ballistocardiogram" artifacts (Yan et al., 2010; Mullinger et al., 2013a).

Given their importance, a considerable amount of work has been dedicated to the study

of gradient and pulse artifacts, and the development of strategies for their minimization

(Mullinger and Bowtell, 2011). The inherent reproducibility of gradient artifacts across volumes

and slices renders them suitable for correction based on average artifact subtraction (AAS)

(Allen et al., 2000), guided by image acquisition triggers obtained from the scanner, and

possibly complemented with optimal basis set (OBS) methods (Niazy et al., 2005). AAS

corrects each artifact instance (an fMRI volume or slice) by subtracting a template created

from the average of its N closest neighboring instances. The underlying assumption of this

approach is that the morphology of artifact instances varies slowly with time, and thereby

local averaging should provide an adequate template for correction of each instance. OBS

can be considered an extension of the AAS approach, which aims to correct each artifact

by fitting a linear model composed not only of the average artifact template, but also of the

M most important principal components extracted from a population of artifact instances

(typically from the whole timecourse), through principal component analysis (PCA). OBS can,

in principle, overcome more complex variability patterns across artifact instances than AAS;

on the other hand, its higher flexibility may also result in overfitting effects.

Cardiac activity is also cyclic in nature, which has motivated a widespread use of AAS and

OBS-based approaches for pulse artifact correction, in this case guided by triggers from a

separate cardiac trace such as the ECG (Allen et al., 1998; Niazy et al., 2005). Naturally, the

variability of pulse artifacts across time is considerably higher than that of gradient artifacts,

making its correction more challenging, which has motivated the development of various

other correction techniques. ICA, for instance, has often been explored to separate the data

into true EEG components and pulse artifact-related components, following specific selection

criteria (Srivastava et al., 2005; Liu et al., 2012). The two types of components (pulse and non

pulse-related) are expected to be statistically independent from each other, and thus suitable

for ICA decomposition. On the other hand, this approach must be considered with some

caution, since ICA requires that the underlying components to be separated have stationary

spatial distributions, whereas the pulse artifact is, in fact, known to be non-stationary in its

scalp topography, especially at higher field strengths, thereby violating this assumption and

potentially leading to ineffective decompositions (Debener et al., 2008).

5.1.2 Environment noise

Given their dependence on Faraday’s law of induction, many EEG artifact contributions scale

with the amplitude of �B0. The pulse artifact has been shown to increase with field strength,

not only in amplitude but also in spatial variability (Debener et al., 2008). Gradient artifacts

depend more directly on the specified slew-rates than on �B0 itself, but since spatial resolution

is typically higher, slew-rates tend to be pushed as well to quickly achieve the necessary

gradient strengths. Furthermore, besides gradient and pulse contributions, other previously
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less relevant artifact sources can also attain important roles in data degradation at 7 T. These

include mechanical vibrations propagated from the scanner environment, particularly due

to the He compression systems (Mullinger et al., 2008a) and patient ventilation (Nierhaus et al.,

2013). Compared to gradient and pulse artifacts, considerably less work has been devoted to

these contributions.

Vibration-induced noise can be avoided by switching off the associated sources during acqui-

sition, when possible (Mullinger et al., 2008a; Nierhaus et al., 2013). The periodic structure of

He coldhead contributions, in particular, has motivated a few novel data-based correction

approaches as well (Rothlubbers et al., 2013; Kim et al., 2014). While EEG noise correction

algorithms are currently indispensable, reducing noise contributions during acquisition is

undoubtedly the most desirable way to improve data quality, especially at ultra-high field.

This can be done, for instance, by reducing the total areas formed by electrode leads between

each channel and the reference, thereby reducing magnetic induction effects. Accordingly,

in the first study within this chapter, the importance of EEG cable length and geometry on

noise sensitivity was assessed, at the level of transmission between the cap and amplifiers.

The benefits of shorter signal chains have previously been observed at lower fields (Assecondi

et al., 2013), as has the importance of cable geometry (Chowdhury et al., 2012). Here, on

a phantom model, the effects of different cable lengths and geometries on EEG recordings

were for the first time assessed together, at 7 T, with specific attention given to He coldhead

contributions. An optimized EEG setup with ultra-short bundled cables (approximately 12 cm

from cap to amplifiers) was implemented (Fig. 5.1), and employed for simultaneous EEG-fMRI

acquisitions on healthy volunteers under two visual paradigms: an eyes-open/eyes-closed

task and a VEP run using reversing-checkerboard stimulation.

5.1.3 Head motion artifacts

Besides environment noise, spontaneous head motion in �B0 can likewise become highly

problematic at higher field strengths, with visible artifact contributions even for experienced,

steady subjects, and very limiting data degradation for less compliant subjects. In contrast

with He coldhead contributions, spontaneous head motion is highly unpredictable, and while

periods of large movement can often be identified by visual inspection and excluded, more

subtle and widespread contributions can prove very hard to discern from true EEG patterns,

even on simplified data decompositions such as those given by ICA (Debener et al., 2007;

Arrubla et al., 2013). To address this challenge, a few groups have instead explored the use

of dedicated motion sensors, recorded along with EEG-fMRI, which can be used to estimate

and remove motion artifacts from the EEG data (Hill et al., 1995). At 1.5 T, Bonmassar et

al. used a piezoelectric transducer to record motion information, and applied an adaptive

denoising technique based on Kalman filtering to reduce both spontaneous motion and the

motion-related component of the pulse artifact (Bonmassar et al., 2002). In a later study

at 3 T, Masterton et al. (2007) proposed the use of multiple sensors based on carbon wire

loops, distributed over the EEG cap and sensitive to magnetic induction effects (Masterton
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Figure 5.1: The custom EEG-fMRI setup developed in this work. a) A schematic representation
of the custom setup, including the 7 T magnet (light grey), static field distribution (red),
gradient system (dark grey), custom EEG cap (grey, shown in detail in b)), short bundled cables
(purple, shown in detail in d)), RF coil and gateway box (blue, shown in detail in c)), and EEG
amplifiers (pink). e) Examples of the ribbon cable configurations tested for noise sensitivity in
the first study, which included three different lengths (100, 50 and 12 cm) and two different
geometries (flat and bundled). All components are shown with permission from the respective
manufacturers.

et al., 2007). These sensors were shown to provide richer information for motion and pulse

artifact estimation, with clear benefits for the identification of epileptiform activity (Abbott

et al., 2014). More recently, so-called reference layer methods have been explored, where

EEG-like electrodes are distributed on a conductive layer on top of the EEG cap, but isolated

from the scalp, recording only induction effects. These approaches aimed at both motion and

pulse artifacts (Luo et al., 2014) and even gradient artifacts (Chowdhury et al., 2014), at the

cost of requiring larger numbers of sensors. Alternatively, some studies have also explored

the use of optical head motion tracking devices to correct for spontaneous and pulse-related

motion artifacts; although subtle, these head movements were shown to be adequately tracked,

allowing for an effective reduction of the resulting artifacts (LeVan et al., 2013).

While the use of dedicated sensors for artifact monitoring and reduction has shown clear

benefits for EEG data quality (Flanagan et al., 2009; Chowdhury et al., 2014; Luo et al., 2014),

these approaches have so far not achieved widespread use. This is possibly due to the need for

additional recording equipment for the sensors (including amplification, synchronization with

EEG acquisition, etc.), as well as other customized elements (electrodes, gel layers), altogether

increasing the cost and complexity of acquisition setups. This is a rather unfavorable situation

given the unique potential of these approaches for motion artifact reduction, with crucial

importance at higher field strengths. Accordingly, in the second study of this chapter, a novel

approach for motion artifact recording and EEG data denoising is proposed, and its benefits

for simultaneous EEG-fMRI at 7 T are assessed. Artifact detection was performed with a simple

and non-permanent modification of the EEG cap, where four electrodes were isolated from the
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scalp and connected to the reference electrode via added resistors, measuring only magnetic

induction effects. Several analysis approaches were investigated for optimal use of the sensor

recordings in EEG signal correction, including: (I) a study of the combination of motion and

pulse artifact correction techniques, (II) the development of different techniques for offline

motion artifact correction, along with an assessment of artifact contributions at 7 T, and (III)

the integration of motion artifact correction with ICA-based denoising. Throughout each part,

data quality improvements were evaluated in terms of EEG power reduction and of increases

in sensitivity to VEPs, particularly at a single-trial level.

5.2 Theory

Here, the mechanisms underlying EEG artifact generation are described, to provide a theoreti-

cal basis for the development of effective reduction strategies.

5.2.1 EEG artifact generation

As discussed in Chapter 1, the presence of a temporally-varying magnetic field �B will induce

electromotive forces in the EEG loops according to Faraday’s law of induction (Yan et al.,

2010), as approximated by Eq. 1.5. This is the mechanism underlying gradient artifact gen-

eration. Reciprocally, when the loops move in space relative to a static field, such as �B0,

electromotive forces will be generated as well – this is the mechanism behind motion-related

artifacts, such as due to vibration propagation, spontaneous head motion, and at least part of

pulse artifact contributions.

Although Eq. 1.5 is only accurate for a pure wire loop (it does not account for the complex

current paths traversing the head, between the electrodes (Yan et al., 2009)), the importance

of reducing the exposed area within the loops to minimize artifact contamination becomes

evident. While a certain spatial separation between electrodes at the scalp is necessary for EEG

signal measurements, any loop areas formed between each channel and the reference at the

level of transmission between the cap and the amplifiers can and should be minimized. This

can be done by shortening the transmission cables, and/or by bundling the respective wires

closer together, thereby reducing their spatial separation. In the first case, some care must be

taken to ensure that the EEG amplifiers, being brought closer to the head, can withstand the

increased gradient field strength and RF power deposition without being damaged.

5.2.2 Motion artifact generation

As previously discussed, EEG artifacts due to head motion in the static field �B0 can be described

by Faraday’s law of induction. For an EEG channel Ci and reference channel CRe f , Eq. 1.5
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becomes:

ξi (t ) =−dΦΣ

d t
(t ) =− d

d t

∫
Σ

�B0(�r , t ) · �N (�r , t )dΣ (5.1)

where ξi is the induced eletromotive force, ΦΣ is the magnetic flux through the surface Σ

enclosed by the loop (Fig. 5.2), and �N is the unitary normal vector to the surface, at each

position �r and instant t . As before, the current path between Ci and CRe f is treated as a

linear path along the scalp surface (a more rigorous approximation would involve modeling

the volume conduction properties of the head). Additionally, flux contributions from wire

segments leaving the cap surface are assumed to be minimal, as a result of cable optimization

during the first study here reported. If �B0 is spatially homogenous, stationary and parallel to

the z-axis, and assuming rigid-body motion, Eq. 5.1 can be simplified to:

ξi (t ) =−B0

∫
Σ

d

d t
Nz (�r , t )dΣ (5.2)

where Nz is the z-component of the surface normal vector. It follows from Eq. 5.2 that only

rotations along the x- and y-axis can produce induction effects, as Nz (�r , t ) does not change

with translations or with rotations along the z-axis. Under the rigid-body assumption, the

evolution of Nz (�r , t ) with x- and y-axis head rotations (globally described by angles φ and θ,

respectively) can be written as:

Nz (�r , t ) = sin(θ)N 0
x (�r )− sin(φ)cos(θ)N 0

y (�r )+cos(φ)cos(θ)N 0
z (�r ) (5.3)

where N 0
x , N 0

y , N 0
z are the original components of the normal vector. Inserting this decompo-

sition in Eq. 5.2 and applying the temporal derivative, we obtain an expression of the form:

ξi (t ) = Fi (φ(t ),θ(t ))
dφ

d t
(t )+Gi (φ(t ),θ(t ))

dθ

d t
(t ) (5.4)

where Fi and Gi are surface integrals of linear combinations of sine and cosine functions of φ

and θ, weighted by N 0
x , N 0

y , N 0
z at each position�r . The potential difference created between Ci

and CRe f will then be proportional to ξi , and is measured in addition to the true, physiological

EEG signal.

The structure of Eq. 5.4 suggests that this contribution can be approximated by a linear model

with two degrees of freedom, dφ/d t and dθ/d t , weighted by temporally-varying coefficients,

F (φ,θ) and G(φ,θ). While the coefficients are channel-specific, the two rotations are common

to all loops in the rigid body. This thus motivates the use of loop-based motion sensors,

sensitive to similar induction effects, and the use of adaptive linear models to combine their

timecourses and estimate the artifact contributions affecting actual EEG channels.
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5.2.3 Motion artifact correction

We consider a recorded signal y = s+m, where s is the EEG signal of interest and m is a motion

artifact timecourse. The two components are assumed to be uncorrelated. Based on a set of

motion sensor signals xi , recorded along with y , the timecourse m is then modeled as a linear

combination of the sensors, weighted by time-varying coefficients wi :

m(t ) =∑
i

wi (t )xi (t ) (5.5)

The channels xi capture only EM induction-related artifacts, and thus their measured signals

are expected to be proportional to the electromotive forces ξi induced in the corresponding

loops, depending on dφ/d t and dθ/d t as described above. The coefficients wi (t) can be

estimated through various approaches, as described below.

Linear regression with basis set coefficients (BLS): the model described by Eq. 5.5 can be

made parametric by defining the coefficients wi as linear expansions of appropriate basis

functions b j (Huang et al., 2002):

wi (t ) =∑
j

ai , j b j (t ) (5.6)

The introduction of Eq. 5.6 in Eq. 5.5 leads to a new linear model with fixed coefficients ai , j for

each product b j xi , which can then be estimated analytically using an ordinary least-squares

approach.

Sliding-window weighted least squares (WLS): in the model described by Eq. 5.5, the coef-

ficients wi can be determined at each instant t by considering a local time window of the

data centered on t , Vt , and applying weighted least-squares linear regression to that segment

(Hoover et al., 1998; Fan and Zhang, 2000). In this sense, the least-squares cost function to

minimize is defined as:

E(w, t ) = ∑
τ∈Vt

Ω(τ− t )
(

y(τ)−∑
i

wi xi (τ)
)2

(5.7)

where Ω is a weight function that can be chosen to attribute more importance to instants

closer to t .

Multi-channel recursive least squares (M-RLS): originally proposed for active noise control

in audio applications (Bouchard and Quednau, 2000), multi-channel recursive least-squares

(M-RLS) is a real-time estimation method based on Kalman filtering, which has already been

successfully applied to EEG data with loop-based motion sensors (Masterton et al., 2007). In

this method, the linear model includes the original sensor timecourses xi along with time-

shifted versions, forming a finite impulse response (FIR) filter. For each instant t , the fitting

weights wi are updated from t−1 to produce the best estimate of m(t ), combining FIR-filtering,

regressor decorrelation and least-squares fitting within the same update. A scalar parameter λ
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Figure 5.2: Schematics of EEG motion artifact generation and detection. a) Representation of
a loop formed by a given EEG channel Ci with the reference CRe f , covering an area Σ on the
scalp surface; the static magnetic field �B0 is depicted along the z-direction. b) Representation
of the non-permanent cap modifications employed for motion artifact detection: each of the
selected channels (T7, T8, F5 and F6) was isolated from the scalp and given a direct connection
to the reference via a 5 kΩ resistor. c) The modified cap after preparation on a human subject;
schematic details of the Ag/AgCl electrodes used to dip in the ring electrodes of the EEG cap
are also shown, along with their flexible Ag termination, which was soldered to a copper wire
for connecting to the reference.

controls the adaptability of the algorithm.

5.3 Methods: signal transmission

5.3.1 MRI system

All measurements were performed on an actively-shielded Magnetom 7 T head-only scanner

(Siemens, Erlangen, Germany), with ultra-short bore length (Magnex Scientific, Oxford, UK)

and 680 mm bore diameter (Fig. 5.1a). The scanner was equipped with an AC84 head gradient

set (max. slew-rate 333 T/m/s) and a single-channel transmit/8-channel receive head RF loop

array (Rapid Biomedical, Rimpar, Germany; Fig. 5.1c) was used.

5.3.2 Signal transmission optimization

Here, EEG noise sensitivity was assessed depending on the length and geometry of the rib-

bon cables (Fig. 5.1e). EEG recordings were performed with an agar gel phantom, with no

concurrent MRI acquisition. Patient ventilation, room and bore lights, and the scanner host
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remained switched off at all times. Recordings were performed both with and without the

scanner coldheads in operation.

EEG acquisition: EEG data were recorded using a single 32-channel BrainAmp MR Plus am-

plifier (Brain Products, Munich, Germany) connected via a ribbon cable to an MR-compatible

signal tester box. This signal tester, where each channel is directly linked to the reference via

a 5 kΩ resistor, was then tightly fixed to the top (head side) of the agar gel phantom. This

approach avoided the use of an actual EEG cap, so as to capture strictly cable-related noise

contributions. EEG signals were recorded for approximately 2 min for each configuration,

with a 500 Hz sampling frequency, hardware bandpass filtering of 0.016–250 Hz, and 0.5 μV

amplitude resolution.

Cable configurations: a total of 6 different ribbon cables were tested, comprising 3 different

lengths (100, 50, and 12 cm) and 2 different geometries: (i) the typical flat ribbon configuration,

with the reference channel running approximately in the middle, and (ii) a bundled configura-

tion where all channels are tightly bunched together in a cylindrical shape (Fig. 5.1d–e). For

the shortest cable length (12 cm), the EEG amplifier was placed on top of the RF coil gateway

box; for longer cable lengths, the amplifier was suspended on a wooden support mechanically

isolated from the bed, maintaining a similar position relative to the central axis of the scanner

bore.

EEG data analysis: following acquisitions, EEG noise contamination was assessed and com-

pared across different cable configurations. A qualitative comparison relied on visual inspec-

tion of channel timecourses and channel-averaged noise spectra, estimated via fast Fourier

transform over a 30s period. For a quantitative comparison between configurations, an aver-

age full-spectrum noise power estimate was computed for each channel in each condition,

based on the mean of the squared signal over 30s. These estimates were then statistically

analyzed via a 3-way ANOVA, incorporating the factors of cable length, cable geometry, and

He coldhead state.

5.3.3 Optimized EEG setup

Following the transmission tests, an optimized setup was implemented for tests in human

volunteers: EEG data were recorded using two 32-channel BrainAmp MR Plus amplifiers

and a customized BrainCap MR model (EasyCap, Herrsching, Germany). The cap contained

64 Ag/AgCl ring-type electrodes ("multitrodes"), arranged according to an extended 10-20

system, and was designed with shortened electrode leads terminating in two connectors at

approximately 1–3 cm from the cap surface (Fig. 5.1b). Each copper electrode lead contained

a 5 kΩ resistor near the electrode and another inside the connector. One of the 64 electrodes

was placed on the back of the subject for ECG recording. The cap connectors were linked

to the EEG amplifiers via two 12 cm bundled cables (Fig. 5.1d). The two amplifiers rested

on top of each other just outside the head array, on the RF gateway box (Fig. 5.1a). After

bandpass filtering (0.016–250 Hz) and digitization (0.5 μV resolution), the EEG signals were
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transmitted to the control room via two fiber optic cables. EEG sampling was performed at

5 kHz, synchronized with the scanner 10 MHz clock. Scanner triggers marking the onset of

each fMRI volume were also recorded. In both phantom and human recordings, Abralyte gel

(EasyCap) was used to reduce electrode impedances. The scanner He coldheads were kept in

operation at all times.

5.3.4 Human acquisitions

Human tests comprised the final stage of this study, intended to assess BOLD and EEG data

quality using the optimized setup, particularly in terms of functional sensitivity and potential

use for single-trial studies. A total of 5 healthy male volunteers (20 ± 2 years old) participated in

this study, having provided written informed consent. The study had been previously approved

by the institutional review board of the local ethics committee (Commission d’Éthique de la

Recherche sur l’Être Humain du Canton de Vaud). Volunteers were asked to remain as still as

possible during the acquisitions, and foam pads were placed between the head and the RF coil

to further constrain motion. Due to time constraints, one of the volunteers did not undergo

the eyes-open/eyes-closed run.

Functional paradigms: volunteers underwent two functional runs: (i) an eyes-open/eyes-

closed run mediated by auditory cues, and (ii) a VEP run applying reduced-field reversing-

checkerboard stimuli. The eyes-open/closed run comprised eight blocks of 15s eyes-closed

followed by 15s eyes-open periods. Instructions were given to the subjects from the control

room via the patient communication system, with the room lights kept ON throughout the

experiment. For the VEP run, checkerboards were presented during eight 10s blocks at a

reversal frequency of approximately 4 Hz (totaling 39 reversals per block), followed by 20s

of rest (fixation). A red cross was shown at the center of the FOV at all times, with slight

shifts in color occurring twice per block at random time delays. Subjects were instructed to

remain focused on the cross and report color shifts via a button press. Checkerboards were

presented at 50% contrast, maintaining an equivalent average luminance to the rest periods.

The stimulation FOV was limited to approximately 7°, a fairly selective central-field stimulus

(ACNS, 2006). This was both due to technical limitations (the images were projected from the

back of the bore, with the EEG amplifiers partially obstructing the FOV), and intentionally

in order to assess sensitivity for a weaker stimulus, especially on a single-trial scale. As the

stimulation was performed using an LCD projector, a StimTracker box (Cedrus Corporation,

San Pedro CA, USA) equipped with a photodiode sensor was used to record the precise timing

of checkerboard reversals. Room lights were kept OFF for this run. The two 4-minute runs

were presented in counter-balanced order across subjects, separated by a short pause for

communication with the subject and pre-scanning adjustments.

EEG-fMRI acquisition: simultaneous acquisitions were performed with the optimized EEG

setup described in section 5.3.3, using a multislice 2D GE-EPI sequence (25 axial slices,

1.5×1.5×1.5 mm3 spatial resolution with 1.5 mm interslice gaps, TR/TE = 2000/25 ms, α
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= 78°, 2×-GRAPPA acceleration, 7/8 partial Fourier imaging and sinusoidal readout). The EPI

volume slab was placed in an axial-oblique orientation fit to contain as much of the primary

visual cortex as possible. Volume triggers were received from the scanner at the start of each

EPI volume and recorded along with the EEG traces. Bore lights and the patient ventilation

system were kept OFF throughout the sessions, with no discomfort reported by the subjects.

EEG data analysis: data analysis was performed in Matlab using routines developed in-house.

For each run, based on the recorded volume triggers, slice triggers were produced by splitting

each volume interval in 25 equal segments. The resulting slice triggers were then fine-tuned

by maximizing inter-slice correlations, in a 10×-upsampled EEG channel (Niazy et al., 2005).

Gradient artifacts were then corrected slice-by-slice via AAS and OBS techniques (Allen et al.,

2000; Niazy et al., 2005). For AAS, each slice was subtracted of an average over 50 slice

samples (25 from the preceding and 25 from the following slices), with randomly-jittered

steps of 4–6 slices separating the selected samples. With this spacing, the samples selected

for averaging were thus spread over a period of approximately 20s (250 slices) centered on

the slice to be corrected. Step jittering was applied to mitigate the removal of EEG activity of

interest, especially for VEP data, where stimulation (250 ms period) was phase-locked with

slice acquisition (80 ms) every 25 slices. Furthermore, the LCD projector used for checkerboard

presentation had a variable delay of 0–17 ms (which was monitored with a photodiode for VEP

triggering), providing an additional jitter to the acquisition-stimulation timing relationship.

Cardiac triggers were estimated from the ECG channel through a sliding-window correlation

approach, in which a representative cardiac cycle was first manually segmented, and then

correlated in time with the full ECG trace. The local maxima of the resulting correlation

timecourse were selected as cardiac triggers, and then fine-tuned by another correlation-

maximization approach, using a combination of EEG channels where pulse artifacts were

most prominent. Based on these triggers, pulse artifacts were reduced via OBS, using the 3–5

most important principal components, depending on the stability of this artifact throughout

each run. Data were then downsampled to 500 Hz, and bad channels were identified (1–5

per dataset) and replaced by weighted averages of 3–4 neighboring electrodes. For the eyes-

open/closed run, data were re-referenced to the average reference, decomposed via ICA, and

then reconstructed by manual selection of the components exhibiting differences in alpha

power (8–12 Hz) between eyes-open and eyes-closed conditions. For the VEP run, data were

bandpass filtered to 4–30 Hz, re-referenced to the average reference, and decomposed via

ICA. The datasets were then reconstructed by manual selection of components displaying

non-artifactual, potentially VEP-related dynamics, based on their topography, trial average

response and trial-by-trial variability (Arrubla et al., 2013; Neuner et al., 2013). Component

selection was always performed by the same operator (J.J.), using similar criteria.

fMRI data analysis: data analysis was performed using custom routines implemented in

Matlab. For both runs, fMRI data underwent motion correction, slice-timing adjustments,

brain segmentation, spatial smoothing (2 mm FWHM) and temporal de-trending (Smith et al.,

2004b). The datasets were then analyzed voxel by voxel with a GLM approach (Worsley and
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Friston, 1995). Here, a "boxcar" timecourse was designed for each experiment (1’s during

eyes-closed periods and 0’s during eyes-open periods, for the eyes-open/closed run, and

1’s during checkerboard stimulation and 0’s during fixation, for the VEP run). These binary

timecourses were then convolved with a (double-gamma) canonical HRF. Motion parameters

were also included as confounds.

5.4 Methods: head motion

This study was approved by the institutional review board of the local ethics committee, and

involved the participation of 6 healthy volunteers (20 ± 2 years old), who provided written

informed consent. Volunteers were asked to remain as still as possible during the acquisitions,

and foam pads were placed between the head and the RF coil to further constrain motion.

5.4.1 Data acquisition

Simultaneous EEG-fMRI acquisitions were performed on a Magnetom 7 T head scanner as

described in section 5.3.1. The scanner He coldheads were kept in function at all times, while

patient ventilation and room lights were switched off. Functional images were acquired with a

multislice 2D GE-EPI sequence, as described in section 5.3.4. EEG data were recorded using

the optimized setup described in section 5.3.3. All EEG artifact corrections were performed

offline, after acquisition.

Motion sensors: in this setup, four of the EEG electrodes (T7, T8, F5 and F6) were adapted to

serve as motion artifact sensors. For this set, each electrode was isolated from the scalp and

given a direct connection to the reference electrode (FCz) via a copper wire fitted with a non-

magnetic 5 kΩ resistor (Vishay, Malvern PA, USA) (Fig. 5.2b). Connections were performed in

a non-permanent way: the selected electrodes were isolated from the scalp by placing plastic

tape underneath, and then filled with gel within the ring; the connecting wires terminated in

small Ag/AgCl probes (Warner Instruments, Hamden CT, USA) that were dipped in the gel (Fig.

5.2c), allowing conduction between the four electrodes and the reference electrode (which

was not isolated and kept functioning as normal). Given the high input impedance of the

amplifiers, current flows along the wires due to neuronal activity can be considered negligible

(Yan et al., 2009), and as such the electric potential measured by each of the adapted electrodes

will be equal to the potential at the reference, added by magnetically-induced fluctuations

occurring in the loop. As the system records EEG signals as the difference in potential between

each channel and the reference, by design, these four channels will then monitor essentially

magnetic induction effects – including gradient, pulse, vibration and spontaneous motion

artifacts. The channels employed for this modification were chosen in order to cover different

areas of the scalp in lateral and frontal regions; occipital regions were avoided because these

are pressed down against the bed when the subject is lying in the scanner. For each subject,

the sensor connections were placed after minimizing the impedances for the other electrodes,

adding approximately 5 minutes of preparation time.
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Functional paradigm: each of the 6 volunteers underwent a 5-minute VEP run using reversing-

checkerboard stimuli. Checkerboards were presented during ten 10s blocks at a reversal

frequency of 3.35 Hz (totaling 33 reversals per block), followed by 20s of rest (fixation). The

7°-wide field of view featured a red cross at its center at all times, with slight shifts in color

occurring twice per block at random time delays. Subjects were instructed to focus on the cross

and report color shifts via a button press. Checkerboards were presented at 50% contrast, with

an equivalent average luminance to the fixation periods. A StimTracker box with a photodiode

sensor was used to record the timing of checkerboard reversals.

5.4.2 fMRI data analysis

The fMRI data acquired concurrently with EEG was analyzed to determine the white matter

temporal SNR obtained with the current optimized setup, with added motion sensors. For each

subject, the fMRI data were first motion-corrected; temporal SNR was then calculated for each

voxel as the mean timecourse amplitude divided by the timecourse standard deviation, and

finally averaged within a frontal white matter region (7×7×7 voxels), similar to the approach

followed in Chapter 4.

5.4.3 EEG data analysis

Data analysis was performed in Matlab using routines developed in-house. All functional runs

underwent an initial preprocessing pipeline, and were then studied in three distinct parts,

addressing (I) the integration of motion and pulse artifact correction, (II) the optimization and

comparison of motion correction approaches, and (III) the integration of motion correction

with ICA denoising.

Data preprocessing: all recorded channels, including the motion sensors, underwent the

same preprocessing routine. For each run, based on the recorded fMRI volume triggers, slice

triggers were obtained and fine-tuned as described in section 5.3.4. Gradient artifacts were

then corrected slice-by-slice via AAS (Allen et al., 2000); each slice was corrected by subtracting

an average over 100 slice samples (50 from the preceding and 50 from the following slices), with

jittered steps of 8–13 slices separating the selected samples. These steps permitted sufficient

spacing between samples to avoid removing lower-frequency EEG activity (Niazy et al., 2005),

and yielded a balanced distribution of samples relative to the visual stimulation cycle (3.35

Hz), mitigating phase-locking effects.

Cardiac triggers were estimated from the ECG channel and fine-tuned as described in section

5.3.4. Based on these triggers, pulse artifacts were reduced via AAS, subtracting each instance

of an average over the closest 50 pulse samples (25 of the preceding and 25 of the following

cardiac cycles). AAS was chosen for this step because each artifact instance is corrected with

a fixed linear combination of its neighbors, which is the same for every channel (both EEG

and motion sensors), thus preserving the linearity relationships of Eq. 5.4. This would not
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hold for certain approaches such as OBS, where each instance is corrected by a local fit (not a

subtraction) of basis functions, which is differently biased by the ongoing motion artifacts and

EEG fluctuations of each channel (see section 5.1.1 for details on both approaches).

Following gradient and pulse artifact correction, EEG data were downsampled to 250 Hz,

and bad channels were identified (2–5 per subject) and replaced by weighted averages of

3–4 of the neighboring electrodes. Each functional run was also inspected based on its GFP

timecourse, obtained as the standard deviation of signal amplitudes across the scalp at each

instant in time. Periods displaying strong GFP peaks, likely caused by large abrupt motion,

were manually excluded from all subsequent analyses (a total of approximately 20–40s per

5-minute run). These periods were excluded as they would likely cause very fast variations in

the linear coefficients F (φ,θ) and G(φ,θ), described in section 5.2.2, for which the proposed

models would possibly not yield an accurate estimation.

Part I – pulse and motion artifact correction: previous studies have assumed the pulse arti-

fact to be mainly caused by bulk head motion, relying on sensor information to correct both

pulse and spontaneous motion artifacts (Bonmassar et al., 2002; Masterton et al., 2007). Here,

the potential benefits of combining motion artifact correction with a dedicated pulse artifact

correction step (AAS-based, as described above), at 7 T, were investigated. The original data

were preprocessed in two versions, one with and another without pulse artifact correction.

Both datasets underwent temporal highpass-filtering (1 Hz) and then motion artifact correc-

tion with M-RLS, implemented exactly as proposed in Masterton et al. (35 shifts for the FIR

kernel with 2×-downsampling, λ= 1−10−8).

Part II – optimization of motion artifact correction: this part focused on the comparison of

different approaches for optimal sensor-based motion artifact correction. Based on the results

from part I, pulse artifact correction was included in data preprocessing. Temporal bandpass

filtering was also applied, set at 2–120 Hz for EEG data and 2–30 Hz for the motion sensors. The

choice of a highpass cutoff of 2 Hz was motivated by preliminary tests showing that increasing

the cutoff frequency improved motion artifact estimation, likely due to reduced biases from

slow-drift contributions; this compromise comes at the cost of excluding EEG information

from part of the delta band, but did not affect VEP morphology (Widmann et al., 2015). The

choice of a lowpass cutoff of 30 Hz for the motion sensors was again based on insights from part

I, pointing that this is the relevant frequency band for motion contributions. Motion correction

was based on the linear model of Eq. 5.5, and explored the three approaches introduced in

section 5.2.3: BLS, sliding-window WLS and M-RLS. In all cases, the model regressors xi

included the 4 original sensors and a set of shifted versions of their timecourses, to produce

a subject-specific FIR kernel (Bonmassar et al., 2002). The number and spacing of the shifts

were optimized by testing multiple models with linear fits to the data (assuming constant

weights wi ), and then comparing the respective adjusted coefficients of determination (R2
ad j ),

as well as the impact on visual response amplitude. R2
ad j is a goodness-of-fit measure that

is independent of the number of regressors in a model, and is thus particularly suitable for

model comparison (Jorge et al., 2013). As a model (in this case, the kernel) is improved with
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additional regressors (in this case, shifts), R2
ad j is expected to increase, until the point where

adding more regressors does not explain more variance than would otherwise be achieved by

simply adding random regressors; after this point, the model R2
ad j will begin to decrease. As

all approaches were designed for offline correction, both positive and negative shifts could

be included in the models – this was confirmed to produce better results than including only

shifts from the past, as in real-time correction.

BLS: for this approach, three basis sets were tested to model the time-varying coefficients wi ,

all designed to model smooth fluctuations: (i) a discrete cosine transform expansion (DCT),

(ii) a full Fourier series expansion with an initial linear slope term, and (iii) a cardinal cubic

B-spline set (Huang et al., 2002). The optimal expansion degree for each case was estimated

by a similar empirical procedure to the one used for FIR kernel optimization.

Sliding-window WLS: for this approach, a Gaussian distribution was chosen as weight function

for the sliding window, with its full width at half maximum (FWHM) controlling the temporal

adaptability of the estimation. Preliminary tests yielded a value of 60s as a good compromise

between adaptability and robustness.

Offline M-RLS (oM-RLS): this approach was based on the method described by Masterton

et al. (2007), with a number of modifications that took advantage of the choice for post-

acquisition data correction: (i) both forward and backward shifts were included in the FIR

kernel, optimized as described above; (ii) the coefficients wi were updated for every time

instant; and (iii) the coefficient timecourses were estimated with a double pass, where the

iterations were first performed forwards in time (each wi (t ) was updated from wi (t −1), from

the beginning to the end of the timecourse), and then backwards (each wi (t) was updated

from wi (t + 1), from the end to the beginning). This yielded a cleaner estimation for the

starting periods, where the initial pass is not accurate since the coefficients take a certain time

to converge from the initial set value (wi (0) = 0) to the least-squares solution (see Fig. 5.3 for

an example). The adaptability parameter λ was kept at a value of 1−10−8 (Masterton et al.,

2007).

Besides the comparison of the three correction approaches, an additional characterization

of the different artifact contributions to EEG signal power was performed in this part, based

on the results from oM-RLS correction. For each subject, the EEG data resulting from three

stages of the correction pipeline were considered: gradient artifact-corrected, gradient + pulse

artifact-corrected, and finally gradient + pulse + motion artifact-corrected. At each stage,

an estimate of the signal variance was obtained for each channel, and then averaged across

channels. The decreases in variance across stages were then computed, as an estimate of

the fraction of total signal variance expressed by each of the targeted sources (assuming all

sources are uncorrelated).

Part III – motion artifact correction and ICA: as discussed in Chapter 1, section 1.3.3, ICA is

a powerful exploratory technique that is often used in EEG data denoising. In this last section,

we compared the performance of motion artifact correction based on motion sensors with
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Figure 5.3: Coefficient timecourses estimated by M-RLS and oM-RLS for the FIR kernel of one
motion sensor during the 5-minute functional run of a single subject. The second pass applied
in oM-RLS corrects the initial period of coefficient convergence, retaining only the smooth
variations attributed to changes in head position. The position-related variations were found
to be relatively small compared to the range of values across the kernel, and thus appear to be
almost constant with this color scale.

an approach based on ICA denoising, and investigated the potential benefits of combining

the two techniques. As in part II, data preprocessing included pulse artifact correction and

temporal bandpass filtering (2–120 Hz for EEG data, 2–30 Hz for the motion sensors). Data

were then corrected based on the motion sensors, ICA, or a combination of motion artifact

correction followed by ICA denoising. The approach here chosen for motion artifact correction

was oM-RLS (as discussed in section 5.7.5). ICA decomposition was performed with the ex-

tended infomax algorithm (Lee et al., 1999), imposing statistical independence in the temporal

dimension. The resulting components were then reviewed based on their topography, trial-

average response and trial-by-trial consistency (Arrubla et al., 2013). Components found to be

clearly not related to the visual response (pulse and motion artifacts/residuals, eye-movement

artifacts, etc.) were marked and excluded from subsequent data reconstruction. Additionally,

an alternative ICA-based approach was tested where the motion sensor timecourses were

included as additional channels in the ICA decomposition, and reconstruction was performed

after manually rejecting components with strong projection weights in the motion channels.

This approach guided by motion information was termed motion-integrated ICA (miICA).

Performance measures: for the three main parts of data analysis (I–III), the performance of

the different correction approaches under study was assessed based on EEG signal power

and VEP single-trial consistency. EEG power was computed for each channel via fast Fourier

transform of the entire timecourse, and estimated for the full frequency band (1–125 Hz), as
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well as for specific bands delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz) and

gamma (30–100 Hz), in part I. For part I, relative power reductions obtained with correction

were also estimated in dB as 10log10(P f /Pi ) (with Pi and P f being the power before and after

correction, respectively), for direct comparison with results from Masterton et al. (2007) at 3 T.

VEP trial consistency was estimated after bandpass filtering (3–40 Hz) and re-referencing to

the channel average, and involved computing the trial-average response in each channel, and

then performing a least-squares fit of the average to each single trial. This yielded a Z-score

of the fit per trial and per channel; the scores of all trials from occipital channels (Oz,1,2 and

POz,3,4,7,8) were then averaged together, to yield a single Z-score per subject. The more

restrictive filtering range of 3–40 Hz employed for this estimation was previously confirmed

not to affect the average VEP morphology, while leading to more accurate single-trial fits.

While signal power provides a more direct measure of the impact of denoising approaches on

signal variability, VEP trial consistency is more informative of changes in response sensitivity

due to artifact reduction, including potential effects of over-correction (since, under the

assumption that the motion timecourses are uncorrelated with the visual responses, over-

corrections will affect the different trials differently, and thereby reduce trial consistency).

It should nevertheless be noted that this measure is only intended to monitor the effects

of artifact correction, as it does not differentiate the natural variability of brain responses

(Debener et al., 2006) from the variability introduced by the artifacts. For both measures, the

values obtained with each correction approach were then compared via paired t-tests across

subjects, assuming a maximum p-value of 0.05 for statistical significance. Relative variations

in power and trial consistency reported in the text are shown as average ± standard error

across subjects. In part III, the quality improvements obtained with the optimal correction

approach were further analyzed by direct observation of its effects on the trial-average and

single-trial responses of individual subjects.

5.5 Results: signal transmission

5.5.1 EEG cable noise contributions

Based on preliminary tests, the scanner electronic hardware, room and bore lights, and host

computer were found to have a negligible effect on EEG signal quality. The patient ventilation

system produced relevant noise contributions at frequencies below 30 Hz, but could be

switched off throughout all recordings without relevant consequences. With the scanner

coldheads in function, using a 100 cm conventional (flat) ribbon cable, most EEG channels

clearly displayed a stationary noise pattern of high frequency oscillations, with a fundamental

period of approximately 1s (Fig. 5.4, left). This pattern disappeared upon switching off the

coldheads. In the setup used for this study, channel numbers were attributed in sequence

according to the position of each wire lane running along the cable, with the reference channel

running approximately in the middle (between channels 16 and 17, and most distant from

channels 1 and 32). A progressive increase in noise amplitude was clearly seen for channels

running farther away from the reference, as would be expected from an artifact generated
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Figure 5.4: Channel-by-channel noise sensitivity of EEG ribbon cables depending on the
distance relative to the reference channel, which runs along the middle of the cable. Left: EEG
channel timecourses during a 3s window acquired with a 100 cm conventional (flat) ribbon
cable, with the He coldheads in function; only even-numbered channels are shown in order to
limit the figure size. Right: average noise power in each channel over a 30s period, for both
flat and bundled ribbon cables, 100 cm long, with the coldheads in function.

by magnetic induction. This trend was quantified by computing full-spectrum noise power

estimates for each channel and then comparing these values with results obtained with a

similar configuration but using a bundled cable (Fig. 5.4, right). The dependence of channel

noise power on the distance to the reference was evident for the flat type, but became greatly

attenuated in the bundled configuration. Over all channels, for this cable length of 100 cm,

the bundled type yielded a reduction of 58% in channel-averaged total noise power, and an

81% reduction in inter-channel noise power variability.

To compare the different cables tested, channel-averaged noise spectra were computed for

each configuration. Different cable lengths and geometries displayed distinct overall power

amplitudes, along with some differences in spectral distribution (Fig. 5.5). The scanner

coldheads showed a major impact on noise amplitudes in the range of 20 up to 150 Hz,

producing a considerable fraction of total noise power. The source(s) of the remaining noise

could not be experimentally identified, but were confirmed not to be caused by the patient

ventilation system, room or bore lights, scanner hardware or the host computer.

For a quantitative comparison between cable configurations, a full-spectrum noise power

estimate was computed for each channel in each condition. Channel-averaged results are

presented in Fig. 5.6. The influence of cable length and geometry on noise power was found

highly statistically significant, as was the impact of coldhead contributions (all 3 effects with

p < 0.01). Over all tested lengths, bundled cables yielded reductions of 0.2–69% in total

noise power relative to flat cables, with the coldheads switched OFF, and of 43–63% with
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Figure 5.5: Channel-averaged EEG noise spectra for different ribbon cable configurations, with
the He coldheads turned on (upper row) as well as off (lower row). All spectra were estimated
from 30s periods of data.

the coldheads ON. Inter-channel variability was reduced by 18–88% with the coldheads OFF

and by 47–81% with the coldheads ON when using bundled cables, compared to flat cables.

Conversely, over the two geometry types, shortening from 100 to 12 cm yielded reductions of

44–70% in total noise power with the coldheads OFF and of 58–62% with the coldheads ON.

Inter-channel variability was reduced by 59–83% with the coldheads OFF and by 52–63% with

the coldheads ON, through cable shortening. Overall, the combination of cable bundling and

shortening (from 100 to 12 cm) led to a reduction of 84% in total noise power and of 91% in

inter-channel noise power variability, with the coldheads in operation.

5.5.2 Simultaneous acquisitions in humans

The feasibility of simultaneous EEG-fMRI at 7 T using the proposed setup was evaluated in 5

healthy volunteers, none of whom reported any unusual skin heating effects. Likewise, the

EEG amplifiers operated normally throughout all runs, without heating-related impairments.

EEG data: gradient and pulse artifact correction steps produced strong changes on the original

data (Fig. 5.7). Across all subjects and paradigms, full-spectrum (1–250 Hz) EEG power was

reduced by 99.6 ± 0.1% with AAS-based gradient artifact correction, subsequently by 1.9 ± 0.4%

with OBS-based residual gradient artifact correction, and finally by 64.3± 5.9% with OBS-based

pulse artifact correction (each reduction estimated relative to the data from the preceding
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Figure 5.6: Average EEG noise power for different ribbon cable configurations, with the He cold-
heads turned on as well as off. For each channel, noise power estimates were obtained from
30s periods. Bar heights represent channel averages, and error bars represent the standard
deviation across channels.

correction step). Following ICA decomposition, 5–7 sources per subject were selected as

relevant from the eyes-open/closed data, and 4–6 sources were selected from the VEP data.

The ICA-reconstructed EEG data from the eyes-open/closed run revealed accentuated alpha

modulation in occipital channels (Fig. 5.8a). Alpha power increases could be clearly observed

in single-channel timecourses during most of the eyes-closed blocks, compared to eyes-open

periods (Fig. 5.8b). The 4th subject did not show any task-related alpha power variations,

consistent with the absence of significant task-related BOLD signal changes – it is thus likely

that the subject did not properly follow the auditory cues for eyes-closing/opening.

For the VEP run, all 5 subjects exhibited an average response in occipital regions dominated by

a positive peak occurring approximately 100 ms after stimulus onset (checkerboard reversal),

commonly known as the P100 component (Bonmassar et al., 1999; Mahajan and McArthur,

2012). Over the scalp, the P100 peak reflected an anterior-posterior dipole (Fig. 5.9a), dominat-

ing the average GFP response at the same latency (Fig. 5.9b), in good agreement with previous

reports (Skrandies, 2005; Bucher et al., 2006). On a single-trial scale, occipital responses were

considerably noisier, with only a moderate fraction of the trials exhibiting a clear response

pattern consistent with the average VEP (Fig. 5.9c). Nevertheless, a trial-by-trial regression

analysis using a 2-regressor model, comprising the average VEP and its temporal derivative (to

allow for variability in visual response latencies), showed that statistically significant responses

(p < 0.05) were found in 164–177 trials out of 312 for this group of 5 subjects. The trials where

VEPs were significantly detected were generally well spread across the paradigm timecourse,
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Figure 5.7: EEG channel timecourses before and after gradient and pulse artifact correction,
selected from a representative dataset. a) Original EEG data. b) EEG data following gradient
artifact correction with AAS (red) and AAS+OBS (black); the two outcomes are visually similar
as OBS-based correction yielded relatively moderate improvements, most relevant above
100 Hz (frequencies not shown). c) EEG data before (red) and after (black) OBS-based pulse
artifact correction. d) Bandpass filtered data (4–30 Hz) after artifact correction. Data presented
in b) and c) are also shown bandpass filtered (1–100 Hz) for clearer visualization.
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Figure 5.8: Alpha power variations in 3 human volunteers undergoing an eyes-open/eyes-
closed task, as captured by EEG during simultaneous EEG-fMRI acquisitions. a) Average
increases in alpha power over the scalp comparing an eyes-open to an eyes-closed state.
b) Alpha power fluctuations during the full run, in a relevant occipital channel (POz); grey-
shaded intervals mark the periods where subjects were instructed to have their eyes closed.
The 4th subject did not show task-related alpha power variations, likely due to improper
compliance with the task, and is therefore not shown. All results presented are derived from
the reconstructed EEG datasets following ICA decomposition and source selection.

suggesting that habituation effects did not play a significant role in response sensitivity.

fMRI data: in the eyes-open/closed run, statistically significant negative BOLD signal changes

were detected for eyes-closed periods in occipital regions in the same 3 out of 4 subjects

showing significant EEG responses (Fig. 5.10a). Across these subjects, average Z-scores within

significantly active regions (Z < -3.5) ranged from -5.6 to -4.4, with percent signal changes of -

3.9% to -3.7%. Peak Z-scores ranged from -11.1 to -9.4. For the VEP run (Fig. 5.10b), statistically

significant positive signal changes, correlated with checkerboard stimulation periods, were

detected in occipital regions for all 5 subjects. Average Z-scores within significantly active

regions (Z > +3.5) ranged from +4.9 to +5.2, with percent signal changes of +3.0% to +3.8%.

Peak Z-scores ranged from +10.4 to +13.5.

5.6 Results: head motion

Tests conducted with the motion sensors showed no discernible contamination of the motion

timecourses with neuronal activity. In particular, for EEG recordings performed outside

the scanner on a volunteer at rest, signal power in the motion channels was below 1.4 μV2,

compared to an average across the scalp of 41 ± 28 μV2 for the EEG channels. A power peak
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Figure 5.9: Responses to reduced-field reversing checkerboard stimulation in 3 human vol-
unteers, as captured by EEG during simultaneous EEG-fMRI acquisitions. a) Scalp potential
maps at the timing of the expected P100 peak. b) Trial-averaged responses of all 63 EEG
channels, and the corresponding GFP response. c) Average and single-trial responses in a
relevant occipital channel (POz or Oz), aligned at the onset of checkerboard reversal (t = 0
ms); single trial responses are ordered from top to bottom according to their correlation with
the average response; only the 200 best trials (out of 312) are displayed. All results shown
are derived from the reconstructed EEG datasets following ICA decomposition and source
selection. The 3 subjects shown exhibited the clearest response patterns of the group.
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Figure 5.10: BOLD responses to (a) an eyes-open/eyes-closed task and (b) a reduced-field
reversing checkerboard stimulation run, expressed as Z-score statistical maps, for the same
subjects presented in Fig. 5.8 and Fig. 5.9. a) Negative values reflect negative BOLD signal
changes during eyes-closed periods; maps were thresholded at Z = -3.5. b) Positive values re-
flect positive signal changes during checkerboard stimulation periods; maps were thresholded
at Z = +3.5. Color bar ranges were manually restricted for clearer visualization.

in the alpha band was clearly identifiable in most EEG channels, including those adjacent to

the reference electrode (Fz, Cz, FC1, FC2), but not on the motion sensors; accordingly, the

temporal correlation between motion timecourses and EEG timecourses was, on average,

0.04 ± 0.02. The impact of the sensor modification on fMRI data quality was found negligible,

adding no visible susceptibility artifacts to the images; a white matter temporal SNR of 19 ± 1

was estimated for this subject group, whereas a value of 17 ± 1 had been obtained in previous

work, described in Chapter 3, with a group of similar size and the same MRI acquisition

parameters, using a non-modified EEG setup.

5.6.1 Part I: pulse and motion artifact correction

The impact of motion artifact correction with M-RLS was clearly visible in both the temporal

and spectral domains of each subject dataset, even when pulse artifact correction had been

applied beforehand with AAS (see Fig. 5.11 for an example). The three correction approaches

(AAS, M-RLS and AAS+M-RLS) also brought appreciable changes to VEP morphologies across

the scalp for each subject.
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Figure 5.11: The impact of AAS and M-RLS artifact correction on EEG data from one repre-
sentative subject, in the temporal and spectral domains. The timecourses shown correspond
to EEG channels close to motion sensors F5 and T7, along with an occipital channel (POz).
The impact of motion correction in the channels close to F5 and T7 is visibly consistent with
the fluctuations observed in the motion timecourses (examples are marked by red lines). The
spectra shown correspond to the average spectrum in motion sensors and in EEG channels,
respectively, across the whole timecourse; as in the time domain, the impact of M-RLS is
clearly visible and consistent with the profile of the motion sensor spectrum.

To evaluate the impact of AAS, M-RLS and AAS+M-RLS, the corrected and uncorrected data

were compared in terms of signal power and VEP trial consistency. Across delta, theta, alpha

and beta bands, all three approaches produced statistically significant reductions in signal
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Figure 5.12: The impact of AAS-based pulse artifact correction and M-RLS motion artifact
correction on EEG signal power, after gradient artifact correction. a) Average EEG power
per frequency band, before correction and after AAS, M-RLS, or AAS followed by M-RLS. b)
Relative power reduction achieved with M-RLS or with AAS followed by M-RLS, relative to
pre-processed, uncorrected data; values obtained in a previous study using M-RLS at 3 T
(Masterton et al., 2007), without prior AAS, are included for comparison. Bar heights represent
averages across channels and subjects, and error bars represent the standard error across
subjects; frequency band definitions are reported in section 5.4.3.

power, with M-RLS performing more effectively than AAS, but the combination of AAS followed

by M-RLS achieving the largest power reductions (Fig. 5.12a). For the gamma band, no

significant changes in power were found for any of the approaches. Compared to results

obtained at 3 T using a similar M-RLS implementation (Masterton et al., 2007), the power

attenuation achieved (without prior pulse correction) was approximately 1.5× larger in the

delta band, 2.3× larger in the theta and alpha bands, and 4.8× larger in the beta band, at 7 T

(Fig. 5.12b).

Across subjects, full-band EEG signal power achieved its lowest average value with the combi-

nation of AAS and M-RLS, corresponding to a 91 ± 1% reduction relative to the uncorrected

data (Fig. 5.13a). The power achieved with the combined approach was significantly lower

than with each method separately. An equivalent outcome was found for VEP trial consistency,

with the combination of AAS and M-RLS yielding an average increase of 55 ± 5% in consis-

tency Z-score (Fig. 5.13b). The value achieved was significantly higher than with AAS alone,

and also superior to M-RLS alone, although not reaching significance (p = 0.12). Regarding

full-band power distributions across the scalp, the original (preprocessed) data exhibited a

strong concentration of power at the most lateral electrodes, along with a more moderate

presence at occipital electrodes (Fig. 5.13c). Across the scalp, the use of AAS appeared to have
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Figure 5.13: The impact of AAS-based pulse artifact correction and M-RLS motion artifact cor-
rection on a) EEG signal power and b) VEP trial consistency, after gradient artifact correction.
Bar heights represent averages across channels and subjects, and error bars represent the
standard error across subjects. c) Subject-averaged full-band power topographies before (Orig)
and after corrections (AAS, M-RLS, AAS+M-RLS), and the relative power reduction achieved
with M-RLS after AAS correction (please note different scales on the color bars).

a higher impact on occipital electrodes, while M-RLS produced stronger changes in more

lateral electrodes. The combination of both approaches led to the most balanced, radial power

distribution (centered at the reference electrode). The power attenuation achieved by M-RLS,

after AAS correction, was confirmed to be strongest at more lateral regions (Fig. 5.13c, right).

5.6.2 Part II: optimization of motion artifact correction

Regarding model optimization, the preliminary tests performed for each subject, iterated in

steps of 5 added shifts, indicated optimal kernel sizes of 11–61 regressors per motion sensor

(41, 11, 61, 41, 61 and 21 for subjects 1–6, respectively), centered at Δt = 0 and spanning both

positive and negative shifts in steps of 4 time samples (i.e. -80, -64, -48, -32, -16, 0, +16, +32,

+48, +64, +80 ms for subject 2, for example). Regarding the BLS approach, the three bases
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Figure 5.14: The impact of motion artifact correction on a) EEG signal power and b) VEP trial
consistency, after gradient and AAS-based pulse artifact correction. The techniques tested
included DCT-based BLS, sliding-window WLS and oM-RLS. Bar heights represent averages
across channels and subjects, and error bars represent the standard error across subjects.

tested yielded very similar results for this subject group, and as such only the simplest, DCT,

was considered for further comparisons. For this basis set, an expansion up to 2nd degree

(cosine period equal to the total timecourse length) showed a good compromise between

temporal adaptability and model size.

Following optimization, the different approaches developed for motion artifact correction

(DCT-based BLS, WLS and oM-RLS) were applied to the data and then compared in terms

of signal power and trial consistency. All three approaches achieved statistically significant

power reductions of 62 ± 4% (DCT), 63 ± 4% (WLS) and 61 ± 4% (oM-RLS), relative to the

preprocessed, pulse-corrected data (Fig. 5.14a). Analogously, in trial consistency, these

approaches led to significant improvements of 58 ± 15% (DCT), 57 ± 14% (WLS) and 62 ±
17% (oM-RLS) in consistency Z-score (Fig. 5.14b). No significant differences between the

three correction approaches were found for either measure. Alongside group-average effects,

motion artifact correction produced clear improvements on visual response quality at the

level of individual subjects – a detailed description is given below in part III (section 5.6.3 and

Fig. 5.17).

The characterization of signal variance contributions yielded consistent results across the

subject group, with pulse artifact contributions explaining 81–93% of the total variance, while
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Figure 5.15: EEG signal power distribution after gradient artifact correction, based on AAS
pulse artifact correction and oM-RLS motion artifact correction. The percentages shown for
each subject correspond to averages across EEG channels. As should be noted, these estimates
were obtained based on the outcome of the artifact correction procedures, and as such are
not perfect; in particular, the estimates for spontaneous motion contributions are expected to
contain residuals of pulse artifacts, and vice versa.

spontaneous motion artifacts and actual neuronal activity (plus residual artifacts) expressed

more moderate contributions of 4–13% and 3–9%, respectively (Fig. 5.15). Overall, sponta-

neous motion contributions were comparable or superior to neuronal contributions in this

subject group.

5.6.3 Part III: motion artifact correction and ICA

To evaluate the performance of ICA, miICA and oM-RLS artifact correction, the corrected

and uncorrected data of all subjects were analyzed in terms of signal power and VEP trial

consistency. On average, full-band EEG power was reduced by 53 ± 5% with miICA, 60 ±
4% with ICA, 61 ± 4% with oM-RLS, and 74 ± 3% with oM-RLS followed by ICA, relative

to the preprocessed pulse-corrected data (Fig. 5.16a). The EEG power achieved with the

combined approach was significantly lower than with individual methods. Regarding VEP trial

consistency, the average Z-score was increased by 12 ± 11% with miICA, 37 ± 15% with ICA,

62 ± 17% with oM-RLS, and 86 ± 19% with oM-RLS followed by ICA (Fig. 5.16b). The value

achieved with the combined approach was significantly higher than with miICA and oM-RLS

alone, and tended to be superior to ICA as well (p = 0.06). The outcome of oM-RLS alone was

significantly superior to that of miICA and, on average, also tended to be superior to ICA.

Besides group-average effects, motion artifact correction also yielded clear improvements

on visual response quality for each individual subject (Fig. 5.17). In several cases, oM-RLS

effectively enabled the recovery of the main expected features of the VEP response, including

the larger P100 component and even the more subtle N75 and N140 components. Scalp

topographies at the timing of the P100 component were also improved considerably, showing

a clearer anterior-posterior dipole and minimal left-to-right asymmetries. While trial-average

responses were more drastically corrected in lateral channels, single-trial responses were

still visibly improved in occipital channels, allowing for the detection of P100, N75 and N140
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Figure 5.16: The impact of ICA denoising and oM-RLS motion artifact correction on a) EEG sig-
nal power and b) VEP trial consistency, after gradient and AAS-based pulse artifact correction.
The approaches tested comprised ICA, with and without including the motion sensor time-
courses (miICA, ICA), oM-RLS, and oM-RLS followed by ICA. Bar heights represent averages
across channels and subjects, and error bars represent the standard error across subjects.

components in a large fraction of trials. The use of ICA after oM-RLS further added smaller,

yet important benefits to signal quality, especially at a single-trial level (Fig. 5.17).

5.7 Discussion

The work presented in this chapter, devoted to the assessment and improvement of EEG

data quality acquired concurrently with fMRI, at 7 T, was organized in two main studies. The

first study demonstrates clear benefits in EEG cable shortening and bundling for artifact

prevention, at the level of signal transmission between collection (EEG cap) and amplification

(after which the signals are digitized). An optimized acquisition setup with ultra-short bundled

transmission cables was implemented, and tested in simultaneous acquisitions on a group of

5 volunteers. The resulting data were analyzed to assess trial-average and single-trial response

detection sensitivity.

In the second study, a novel technique for online measurement of EEG head motion artifacts

was developed and implemented for simultaneous EEG-fMRI at 7 T. Data were collected from

6 healthy subjects, and several aspects of post-processing artifact reduction methodology were

analyzed, aiming for optimal data quality improvements using the motion information. The

impact of spontaneous motion artifacts on EEG data at 7 T was for the first time quantitatively
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Figure 5.17: EEG responses to visual stimulation with reversing checkerboards, in two subjects,
before and after correction with oM-RLS, and with oM-RLS followed by ICA. These subjects
were chosen for illustration because in Subject 3, motion artifact correction provided the
largest quality improvements, while in Subject 6 the benefits added by ICA were also con-
siderably relevant. The scalp topographies shown correspond to the P100 component of the
VEP, and are presented in a blue-white-red color scale centered at 0 V, with symmetric limits.
The shaded margins in single-channel trial-averaged responses (3rd column) indicate the
standard error across trials; the channel displayed was selected for having the largest average
P100 amplitude amongst the occipital channels. All 330 single-trial responses are shown, with
Gaussian smoothing across trials (σ = 3 trials).
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assessed, and significant improvements in visual response sensitivity were achieved with

artifact reduction.

5.7.1 EEG signal transmission optimization

The noise measurements performed in the first study provide clear insights into the impor-

tance of EEG setup optimization. Consistent with previous studies (Mullinger et al., 2008a),

the He coldheads were shown to have a major impact on EEG recordings performed at 7

T, producing the largest noise contributions in the absence of gradient, pulse, and subject

motion artifacts. Spanning a wide range of frequencies, well within the relevant EEG domain,

coldhead-related contributions exhibited complex spectral profiles that are likely to depend

on a multitude of properties of the overall mechanical system linking the coldheads, EEG

amplifiers, patient bed and the patient itself. While these contributions can be fully avoided by

switching off the compression systems during acquisition (Mullinger et al., 2008a; Ritter et al.,

2010), this procedure is simply not allowed in many clinical and research sites, and becomes

increasingly prohibitive as He availability decreases worldwide (Nuttall et al., 2012).

While initial developments have been presented to reduce vibration-related artifacts via

post-acquisition data analysis (Rothlubbers et al., 2013), these approaches remain largely

unexplored. Notably low coldhead-related contributions have been reported for a 9.4 T human

scanner in which the coldheads are mounted on extended turrets and not directly on the

magnet vessel (Neuner et al., 2014). While highly advantageous, this configuration is currently

also rather unique. In this work, we directed our focus to the EEG acquisition system. The clear

dependence of noise power on channel loop areas (Fig. 5.4) provided yet another indication

that electromagnetic induction is the fundamental mechanism mediating coldhead-related

noise propagation, and possibly of other environment sources. By reducing loop areas along

the EEG transmission cables, significant improvements in signal quality were achieved through

relatively simple modifications, which are inexpensive compared to the long-term costs of

scanning with the coldheads switched off, or even modifying their placement. Furthermore,

although not directly assessed in this work, gradient artifacts and a part of pulse artifacts

are likewise strongly thought to be caused by magnetic induction effects on the EEG wire

loops (Allen et al., 1998, 2000; Chowdhury et al., 2012; Mullinger et al., 2013a). As such, cable

bundling is also likely to have significantly reduced the impact of these important noise

sources at the level of EEG transmission cables. The effects of cable shortening, while probably

also favorable for pulse artifact reduction, are more complex for gradient artifacts, as longer

cables may in some scanners reach a point where the gradient profile has become inverted,

and thus benefit to some extent from flux cancellation effects.

Naturally, given the site-specificity of vibration-related noise contributions, the results ob-

tained in this study cannot be directly translated to other EEG-fMRI setups, which may differ

in coldhead configuration, scanner and patient bed architecture, �B0 field distribution, and

even surrounding equipment that may propagate vibrations to the scanner room. Likewise,

115



Chapter 5. EEG-fMRI at 7T: EEG data quality

the variations seen within this study are likely to have been affected not only by differences

in cable length and geometry but also by properties such as stiffness and mass (for example,

bundled cables tended to be stiffer than flat cables). This may explain some of the differences

in spectral distribution (apart from overall power) observed for different cable configurations

(Fig. 5.5). Another aspect of great importance is the extent to which the EEG setup can actually

be shortened without affecting the operation of the amplifiers. As reported in Chapter 3,

for this particular setup, using shielded amplifiers and a head-only MRI system, equipped

with short gradients and a Tx/Rx head RF array, it was possible to conduct simultaneous

acquisitions at 7 T with the amplifiers placed just outside the RF coil, even with spin-echo

EPI. While the �B0 field extent does not significantly influence amplifier heating, and many

imaging centers are equipped with head Tx/Rx arrays for imaging, short gradients are less

common and may play an important role in this setup – although the EEG amplifiers were

actually positioned already inside the gradient region (Fig. 5.1). In general, it is likely that

each particular EEG-MRI system configuration will require specific cable shortening tests

prior to human studies, with gradual amplifier repositioning, or gradual increases in gradient

slew-rates and RF power.

Finally, it is important to note that the noise reductions reported in the present study, while

considerably large, are ascribed only to the contributions arising from the cables themselves.

Loop areas formed by the leads on the cap surface remain at play and will still contribute to

noise. Nonetheless, minimizing cable contributions is an important achievement by itself, and

a potentially valuable step to improve the validity of various noise modeling and correction

techniques already proposed in the literature, as well as the motion correction approaches pro-

posed in the second study, which focus mainly on the cap and assume negligible contributions

from the following connection cables (Masterton et al., 2007; Yan et al., 2010).

5.7.2 Optimized EEG-fMRI acquisitions

In addition to this work, only a handful of studies so far have conducted simultaneous EEG-

fMRI acquisitions in humans above 4 T (Vasios et al., 2006; Mullinger et al., 2008a; Brookes

et al., 2009). Following prior safety assessments on phantom and numerical models, human

recordings proceeded without any indication of heating. Clear average EEG responses were

observed for most subjects over both eyes-open/closed and VEP runs, coherent with the pat-

terns expected for the respective paradigms (Pfurtscheller and Lopes da Silva, 1999; Skrandies,

2005).

At a single-trial level, response detection sensitivity was considerably different for the two runs:

in the eyes-open/closed task, alpha power variations could be clearly observed over most

blocks in 3 of the 4 subjects, while for the VEP run only approximately half of the trials in each

run/subject exhibited statistically significant responses. These discrepancies in sensitivity may

be related to the nature of the elicited responses: alpha power modulation via eyes-closing

tasks is known to be a strong and robust effect, which has been successfully observed at
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fields up to 9.4 T (Neuner et al., 2013). In contrast, the checkerboard stimuli used in this

study were presented with a reduced FOV, likely to elicit weaker responses which are harder

to decouple from artifacts and ongoing neuronal activity (ACNS, 2006). On the other hand,

alpha fluctuations occur at a frequency range (8–12 Hz) which lies above the major part of

pulse artifact contributions and below the major part of gradient artifact contributions, a

factor which may have also favored this difference. Also worthy of note, visual stimulation in

the VEP paradigm was phase-locked with slice acquisition every 25 slices, rendering gradient

artifact correction potentially more susceptible to remove VEP signal. This was addressed with

a fairly EEG-conservative AAS approach, using fixed gaps between averaged slices of 400 ms to

mitigate the reduction of correlated EEG activity (Niazy et al., 2005), combined with random

jittering to reduce phase locking with the VEP. The adopted spacing in turn required averaging

over relatively large time windows (approximately 20s), leading to a certain compromise in

adaptability to changes in the artifact profile. This limitation was potentially relevant in cases

where the artifact was less stationary, such as due to frequent subject motion, although artifact

residuals were still further reduced by OBS and temporal bandpass filtering, and were not

found to be problematic in these data.

It is also important to note that the use of ICA for denoising in these datasets, while undeniably

valuable, can be compromised by the fact that motion artifacts, including residual pulse

artifacts and spontaneous subject movements, are not truly stationary sources, especially

at high field (Debener et al., 2008), and thus may not be adequately separable from true

neuronal sources. Given the importance of response sensitivity at a single-trial level for

simultaneous EEG-fMRI, it is desirable to further explore this question in future work, for

example by comparing responses to checkerboards of different FOV/contrast, and exploring

alternative denoising techniques such as iterative ICA (Iyer and Zouridakis, 2007), wavelet-

based approaches (Quian Quiroga and Garcia, 2003), or beamformer methodologies (Brookes

et al., 2009).

Data from fMRI acquisitions exhibited clear responses in both functional runs for all but

one subject, with significant paradigm-related signal changes arising, as expected, in visual

areas (Fig. 5.10). In the eyes-open/closed run, the 4th subject showed neither task-related

alpha power variations nor BOLD signal changes, suggesting non-compliance with the task.

In general, the robustness of the elicited responses suggests that the �B+
1 disruption effects

observed in Chapter 3, while clearly reducing image SNR in the parietal lobe, did not hinder

BOLD sensitivity in the occipital cortex. This discrepancy may be due to the distinct spatial

localization of the two regions, but may also be related to the inherent differences between

spatial SNR and functional sensitivity (temporal SNR), as previously mentioned, especially

given the importance of signal-dependent physiological noise contributions at higher fields.

In any case, this outcome follows the trend observed in various other studies at lower fields,

with diverse types of stimuli, reporting little to no effects of the presence of the EEG system on

BOLD sensitivity (Bonmassar et al., 2001; Lazeyras et al., 2001; Luo and Glover, 2012).
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5.7.3 Motion artifact detection

The impact of spontaneous head motion on EEG recordings performed in strong magnetic

fields is a well-known problem in EEG-fMRI studies (Flanagan et al., 2009; Jansen et al., 2012),

most often addressed simply by excluding affected periods from data analysis, and in the

worst cases discarding entire datasets. This approach incurs losses in acquisition time and

costs, and tends to become less effective in acquisitions performed at higher magnetic fields.

As discussed here (sections 5.1.3 and 5.2.2) and in previous studies (Debener et al., 2008; Yan

et al., 2010), motion artifacts are based on magnetic induction effects that scale with �B0. In this

work, at 7 T, it was estimated that contributions to signal variance from spontaneous motion

artifacts are comparable to or even larger than those of actual neuronal activity (Fig. 5.15).

The main artifact contributions were associated with the MRI gradients and the cardiac cycle,

but while these contributions are approximately periodic, and thus more suited to temporal

segmentation for averaging and subtraction, spontaneous motion does not follow regular

patterns, and can thus highly benefit from an external monitoring system.

Several approaches for head motion detection have been proposed, including the use of highly

sensitive optical systems (Maclaren et al., 2012), piezoelectric sensors (Bonmassar et al., 2002),

and conductive wire loops (Masterton et al., 2007). Loop-based sensors were chosen in this

work since they share similar mechanisms of artifact generation with EEG loops, and can be

directly incorporated in linear regression models for EEG signal correction (as shown in section

5.2.2). Similar to Masterton et al. (2007), the present approach used multiple conductive loops

distributed across the scalp, but while their approach uses a separate acquisition and recording

system for the loops, these sensors were here implemented by adapting a number of electrodes

from the EEG cap. This approach is not limited for use at 7 T, and requires neither additional

amplification, gel layers or other recording equipment, nor modifications to the existing

amplifiers, which are often the most expensive component of the EEG setup. While the cap

adaptations, as implemented in this study, were non-permanent and set in place during each

cap preparation, there should be no impediments in the design of new cap models with these

modifications permanently integrated. In particular, based on the tests conducted with the

current implementation, a modification with a similar number of sensors and resistor types

is expected to have a negligible impact on either EEG or fMRI data quality. As a benefit, a

permanent modification would not only save preparation time but also allow for a more

geometrically optimal placement of the sensors (Abbott et al., 2014), which here was limited

to the positions of the existing EEG electrodes. It should be noted that these sensors are

connected to the reference electrode, and are thus not electrically isolated from the scalp. As

such, an additional resistor was included in each connection to ensure subject safety, resulting

in a total resistance of 25 kΩ for each motion loop (considering the two 5 kΩ resistors inserted

in each channel lead), not including the resistance of gel interfaces between the electrodes

and the skin. It is also important that the input impedance of the amplifiers is sufficiently high

to ensure that currents in the leads created by true neuronal activity are effectively negligible,

so that the potential difference measured between each motion sensor and the reference will

effectively comprise only magnetic induction effects.
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Finally, since under certain assumptions EEG artifacts due to rigid-body head motion only

depend on two degrees of freedom (head rotations, as described in section 5.2.2), it should

be pointed out that motion artifact reduction could potentially be performed using only two

independent sensors. Nevertheless, here, as in previous studies (Masterton et al., 2007; Luo

et al., 2014), an "overdetermined" detection approach was adopted instead, to ensure more

robust estimations and for a higher sensitivity to eventual non-rigid motion effects – with

the disadvantage of leaving less electrodes for actual EEG recording. Future studies may

focus on the optimization of both the number and position of motion loops, possibly based

on numerical simulations (Yan et al., 2010; Mullinger et al., 2014a), towards the design of

optimally effective motion sensor loops. The importance of minimizing noise contributions at

the transmission stage between the cap and amplifiers should also be stressed, as these sources

do not follow rigid-body properties. In the current, optimized setup, such contributions have

been minimized by appropriate cable shortening and bundling, as described in the first study

of this chapter.

5.7.4 Motion artifact correction

Motion information can be used in various ways for data analysis, a simple and direct option

being to use the sensor timecourses as an independent measure of head motion, which can

guide epoch exclusion and help determining whether particular fluctuations can effectively

be attributed to neuronal activity (Abbott et al., 2014). Here, the sensor timecourses were used

to reduce motion contributions throughout the EEG timecourses. The linear relationships

between the artifacts captured by loop sensors and EEG channels (as described in section

5.2.2) render them particularly suitable for linear regression methods, which were systemically

explored in this work, in line with previous studies (Masterton et al., 2007; Luo et al., 2014).

It should be noted that this type of approach relies on the assumption that motion artifacts

are uncorrelated with neuronal activity (which forms the residuals of the linear fit). This

assumption may become compromised in studies involving motor tasks, painful stimulation

or attention modulations, for example, where subject motion may be more strongly correlated

with the paradigm. Also important, as the weights of the linear relationships depend on

the current head position (Eq. 5.4), these linear models incorporated temporally-adaptive

coefficients (Eq. 5.5). The approaches here tested assume these coefficients to vary smoothly,

and are thus less precise in the presence of large abrupt motion. Conversely, if the coefficients

are allowed to adapt too quickly, the estimation may instead become significantly biased by

neuronal activity. It was here opted to circumvent this compromise by rejecting the periods of

most abrupt motion from data analysis, based on GFP fluctuations. The denoising of such

periods would possibly require the use of other methods such as reference layer subtraction,

where each electrode has a "copy" placed in the same position but connected to a reference

layer, and denoising is performed with a direct signal subtraction, instead of a fit (Chowdhury

et al., 2014). This could also be a potentially effective alternative for studies in which motion is

expected to strongly correlate with brain activity. On the other hand, this approach requires

twice as many recording channels, along with an additional gel layer, and residuals may
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still persist due to differences in the current paths across the scalp and across the reference

layer; the additional (conductive) components are also more likely to affect MRI data quality

(Mullinger et al., 2008b).

An important question investigated in this work regarded the combination of motion and

pulse artifact correction (part I). In the acquired subject group, the use of an AAS-based pulse

artifact correction step followed by a motion sensor-based correction step was found to be

more effective than either of the two techniques alone (Fig. 5.13). Consistent with this, while

several studies have assumed the pulse artifact to be mainly caused by bulk head rotation,

proposing to reduce both artifact types with motion sensors (Bonmassar et al., 2002; Masterton

et al., 2007; Luo et al., 2014), substantial evidence exists for additional contributions to the

pulse artifact, including local scalp dilations due to arterial pulsation, and the Hall effect

occurring in charged particles carried by the blood as it flows in �B0 (Tenforde et al., 1983;

Debener et al., 2008). In particular, the Hall effect has evinced more important contributions

to pulse artifact variability than head rotation per se, at 3 T (Mullinger et al., 2013a), and

all three contributions are expected to scale with field strength. The results obtained here

suggest that the additional sources of the pulse artifact do create important contributions at 7

T, which should be addressed with a dedicated correction step. At lower fields, some caution

should be taken with this approach, since the prior reduction of pulse artifacts leaves the

linear fitting essentially dependent on spontaneous motion fluctuations alone, which at such

field strengths may not be sufficiently strong for a robust, unbiased fit (given that brain activity

does not scale with �B0, and its correlation with motion is never exactly null). The choice of a

dedicated correction should thus be carefully considered depending on the field strength and

the performance of each subject group.

Having settled for including a dedicated pulse artifact correction step, the study then focused

on determining optimal methods to tackle the contributions from spontaneous motion (part

II). The three approaches tested led to similar outcomes in data denoising (Fig. 5.14), but do

differ from each other in several aspects. Regarding computational speed, for comparison

purposes, in the particular system and implementations used (no parallelization added),

BLS took less than 2s to process each 5 min-long, 59-channel dataset, while oM-RLS took

approximately 40 min, and WLS took more than 2h. BLS is by far the fastest method and thus

most suitable for exploratory tests and model optimization (the FIR kernel, for example); on

the other hand, being based on parametric modeling, its adaptability depends on particular

dataset properties such as the timecourse length. Sliding-window WLS avoids that limitation

and relies on an intuitive adaptability parameter (the window FWHM), but was found to

be considerably slower (although parallelization techniques could be applied both across

channels and time). Finally, oM-RLS is a non-parametric technique based on a previously

validated method for EEG data correction (Masterton et al., 2007), and provided a good

compromise between versatility and computational speed, thus motivating some preference

for this method. Additionally, the original M-RLS can be used for real-time correction.
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5.7.5 Motion artifacts and ICA

The third part of this study compared the performance of motion sensor-based correction

with that of ICA denoising, and investigated the benefits of combining the two techniques.

ICA is often employed for EEG data analysis and denoising, both in pure EEG studies (Makeig

et al., 1996; Onton et al., 2006) and with EEG-fMRI (Marques et al., 2009; Arrubla et al., 2013).

In the second case, however, a number of authors have obtained suboptimal results with this

approach, especially at fields above 1.5 T (Debener et al., 2007). Similarly, the tests performed

here with ICA denoising alone systematically showed inferior results to those obtained with

ICA after oM-RLS (Fig. 5.16), even with prior pulse correction applied in both cases. Without

oM-RLS, the ICA component explaining the most variance was consistently found to be

motion-related, with a left-to-right dipolar topography and low stimulus-locked periodicity.

Furthermore, the components associated with visual responses had considerably lower SNR

than those obtained after oM-RLS, appearing to be still significantly contaminated with

motion artifact contributions. Analogous results were found with miICA, where components

attributed to the visual responses frequently exhibited appreciable projections on the motion

channels. These issues are currently thought to be due to a violation of source stationarity,

one of ICA’s most important assumptions: while neuronal sources are measured as stationary

(as long as the electrodes retain their positions on the scalp), motion-related artifacts are

not. The pulse artifact, for instance, has been shown to increase in both amplitude and

spatial variability with field strength (Debener et al., 2008), and the theoretical bases of motion

artifacts (section 5.2.2) clearly show their dependence on the current head position, thus

varying their topography as head position drifts in time.

Despite the suboptimal performance obtained with ICA alone, its application following oM-

RLS did improve data quality. This is not unexpected since motion artifact correction does not

cover other typical EEG artifacts (ocular movements, for example), which ICA can effectively

isolate. Overall, for the 7 T datasets analyzed in this work, the combination of AAS-based pulse

artifact correction, oM-RLS motion artifact correction and ICA denoising yielded optimal

improvements in EEG data quality, with well appreciable benefits for visual response sensitivity.

These were not only indicated by signal power and trial consistency measures, but also

confirmed by direct observation of single subject results, both at trial-average and single-

trial levels (Fig. 5.17). Motion artifact correction had a stronger impact on more lateral

electrodes (namely FT7–10, TP7–10, F7–8, T7–8, P7–8; Fig. 5.13c), as could be expected since

the respective loops have the largest projection areas relative to �B0. Nevertheless, occipital

channels still exhibited crucial improvements at a single-trial level.

5.7.6 Conclusion

The results obtained in the first study of this chapter demonstrate important benefits of

careful optimization of the EEG signal chain for simultaneous EEG-fMRI. Focusing on the

transmission stage between the EEG cap and amplifiers, it was confirmed that both cable
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shortening and bundling effectively help reducing cable noise contributions to large extents.

Based on human recordings performed under eyes-open/closed tasks and checkerboard

stimulation, it can be concluded that alpha-wave modulation, VEPs and the concomitant

BOLD signal changes can be detected with adequate sensitivity. The second study builds on

the previously optimized setup, and demonstrates clear improvements in EEG data quality

through the minimization of motion-induced artifacts using information from independent

loop sensors. Three distinct methods for the estimation and correction of motion artifacts

were proposed, with generally comparable outcomes, but important differences in speed and

adaptability. At 7 T, spontaneous motion contributions to EEG signal variance were found

to be comparable to or even larger than those of neuronal activity, and their removal led to

strong improvements in the detection of visual responses, particularly at a single-trial level.
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The results obtained throughout this work offer optimistic perspectives for the implementation

of EEG-fMRI at ultra-high fields. This work addressed three main aspects: subject safety,

MRI data quality, and EEG data quality – all three essential for the implementation of this

multimodal technique. This work was preceded by a pure-fMRI study aiming to characterize

human positive and negative BOLD responses to visual stimulation, focusing on visual and

auditory negative responses. The observed trends suggested the presence of a highly dynamic

system of visual-auditory interactions, sensitive to stimulus contrast and duration. The

neuronal correlates of these interactions could not be addressed in higher detail with fMRI

alone, yet could potentially be clarified in future work with combined EEG-fMRI.

From the results obtained throughout the EEG-fMRI development work, overall, it can be

concluded that simultaneous EEG-fMRI acquisitions can be safely performed in humans at 7

T, and with appropriate modifications in acquisition hardware and data analysis, the quality

of the acquired data can be significantly improved, with marked benefits for the detection of

relevant functional features at a single-subject, single-trial level.

For the EEG-MRI setup used in this work, the assessment of subject safety and MRI data

quality revealed, in both cases, acceptable conditions for human studies. Based on both EM

simulations and real temperature measurements, no significant safety concerns were found

for the setup tested, using either a volume or a surface head RF coil. The stronger heating

effects observed on EEG amplifiers are worthy of note, and possibly arose as a consequence

of the compact setup optimization applied to the EEG system. On the other hand, the use of

head coils for RF transmission, as opposed to full body coils, is likely to have countered the

trend for increased heating to some extent, and overall, the temperature increases remained

well within acceptable operating ranges. While the benefits of head-only RF transmission were

not systematically assessed in this work, this is likely to be an important factor to prevent EEG

hardware damage, and is therefore highly recommended instead of full-body RF transmission.

Regarding MRI data quality when acquired together with EEG, the results obtained show

that magnetic susceptibility effects are currently not problematic for fMRI, the associated
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signal drops being sufficiently small to remain essentially outside the brain region. In contrast,

the disruption of RF field distributions caused by the conductive EEG materials resulted in

significant signal losses, especially for central-superior brain regions, and therefore arises as

the main cause of EEG-related MR image degradation. Nevertheless, for occipital areas, this

effect did not prevent the detection of responses to visual stimulation with relatively high

sensitivity (high Z-scores), in agreement with previous studies conducted at lower fields.

In contrast with safety and MRI data quality, EEG data revealed highly-compromising artifact

contamination effects that could not be satisfactorily addressed with existing standard ap-

proaches, and thus required considerably more attention. An initial study focused on signal

transmission between the EEG cap and amplifiers demonstrated important benefits of careful

optimization of the EEG signal chain. Its results confirm that both cable shortening and

bundling effectively help reducing cable noise contributions to large extents. The use of this

setup in human recordings demonstrated favorable sensitivity for alpha-wave modulation

and average VEP estimations, albeit with more limited outcomes at a single-trial level. A

second study was focused on artifacts created by subject head motion. Building on the previ-

ously optimized setup, and integrating information obtained from added loop sensors, the

minimization of motion-induced artifacts yielded clear improvements in EEG data quality.

At lower fields, the large majority of studies have focused on improving gradient and pulse

artifact minimization, with other sources such as motion and environment noise remaining

less explored. At 7 T, spontaneous motion contributions to EEG signal variance were found

to be comparable to or even larger than those of neuronal activity, and their removal led to

strong improvements in the detection of visual responses, particularly at a single-subject,

single-trial level. It can thus be concluded that a thorough reduction of exposed loops in signal

transmission, and the use of independent sensors for artifact monitoring and reduction, can

significantly improve EEG data quality in simultaneous EEG-fMRI, and are therefore highly

recommended. It can further be noted that, although especially important at higher field

strengths, these modifications can likewise be of significant benefit for studies at lower fields,

particularly when probing more subtle EEG features, or dealing with less compliant subjects.

6.1 Outlook

The level of data quality that has currently been achieved appears to be favorable for the start

of new acquisitions, more applied to the study of human brain function. Accordingly, we

have recently started acquisitions on epilepsy patients, in collaboration with neurologists,

with some preliminary results already confirming the feasibility of epileptic source detection

at 7 T (Grouiller et al., 2015). Patients with drug-resistant epilepsy often need to undergo

surgical interventions, aiming to remove the problematic sources of epileptic activity. The

high functional sensitivity and spatial resolution offered by 7 T fMRI could provide crucial

improvements in source/network localization, leading to better-informed pre-surgical plan-

ning, and thereby potentially more successful outcomes. Preliminary tests have also been

directed to the study of resting-state activity, another major application of simultaneous
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EEG-fMRI. The added benefits of ultra high-field imaging for resting-state analysis have so

far remained relatively little explored, although the increased spatial resolution has proved to

yield superior intra-network correlations in certain brain regions (Newton et al., 2012) and

more accurate spatial co-registrations for group analysis (De Martino et al., 2011b). On the

other hand, the increased functional sensitivity could facilitate the investigation of particular

features at a single-subject level, and their comparison to group data (Laumann et al., 2015).

Another promising application lies in the study of negative BOLD; as discussed in Chapter

2, the investigation of the electrophysiological correlates of negative BOLD responses may

bring crucial insights into the nature and dynamics of these phenomena, their dependence

on stimulus intensity and duration, and their interactions with positively-responding regions.

Alongside new applications, as previously mentioned, further developments in various aspects

of data acquisition and denoising could still bring additional improvements in data quality.

Regarding MRI data, the problem of �B1 disruption could potentially be mitigated through

the optimization of EEG lead materials (Vasios et al., 2006), resistivity (Angelone et al., 2006),

and their geometrical arrangement over the cap. The use of accessory pads composed of

dielectric materials, which can significantly alter �B1 distributions created in the head (Yang

et al., 2006), could also potentially bring relevant improvements. Conveniently, all these

factors can be included and tested in EM simulations analogous to those performed in this

work. This approach is highly practical for systematic testing and optimization of particular

technical aspects, and also advantageous in terms of safety control, since SAR distributions

are estimated together with �B+
1 for all tested conditions. Moving on to in vivo tests, the field

disruption effects, and potential improvements, could then be more thoroughly assessed with

data acquired during motor or somatosensory paradigms, for example, where BOLD responses

are expected to occur very close to the most affected (central-superior) brain regions, when

using the present type of EEG cap and volume RF coil. Compared to visual studies, this would

allow a more direct evaluation of worst-case losses in functional sensitivity, and eventual gains

with the aforementioned modifications.

Regarding EEG data quality, while significant improvements have been achieved, it is very

likely that further advances can still offer important gains in artifact reduction. In fact, despite

more than twenty years of methodological developments, which the work described in this

thesis has built upon, EEG data recorded during fMRI is still notably inferior in quality to data

recorded outside the scanner. This clearly reflects the complexity of EEG artifact reduction

in simultaneous EEG-fMRI, especially at higher field strengths. Gradient and pulse artifacts

have received considerable attention since the first reports of the technique, and awareness

for environment noise and head motion has grown considerably with the pursuit of higher

field strengths. An aspect of great importance is the interdependence between gradient and

pulse artifacts and head motion artifacts: when motion occurs, specific fluctuations are

imposed on the signals, while at the same time, the change in orientation leads to changes

in morphology for both gradient and pulse artifacts. While most studies so far have tackled

the different artifact types individually, this coupling suggests that a more unified correction

approach could be pursued, aiming to deal with all artifact types together while exploiting their
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interdependence, for a more accurate estimation. The ability to monitor head motion during

acquisition, as pursued in this work, would likely be an essential step towards this goal. In

general, the combination of specific hardware modifications to reduce artifact contamination,

together with improved data processing methods for artifact correction, should steadily aid

to bring simultaneous EEG-fMRI to satisfactory standards of signal quality, robustness and

sensitivity, thereby allowing for the full exploit of the benefits offered by high-field imaging.

126



Bibliography

D. F. Abbott, R. A. Masterton, J. S. Archer, S. W. Fleming, A. E. Warren, and G. D. Jackson.

Constructing carbon fiber motion-detection loops for simultaneous EEG-fMRI. Front

Neurol, 5:260, 2014.

ACNS. Guideline 9b: Guidelines on visual evoked potentials, 2006.

P. J. Allen, G. Polizzi, K. Krakow, D. R. Fish, and L. Lemieux. Identification of EEG events in the

MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage, 8

(3):229–39, 1998.

P. J. Allen, O. Josephs, and R. Turner. A method for removing imaging artifact from continuous

EEG recorded during functional MRI. Neuroimage, 12(2):230–9, 2000.

L. P. Andrade-Valenca, F. Dubeau, F. Mari, R. Zelmann, and J. Gotman. Interictal scalp fast

oscillations as a marker of the seizure onset zone. Neurology, 77(6):524–31, 2011.

L. M. Angelone, A. Potthast, F. Segonne, S. Iwaki, J. W. Belliveau, and G. Bonmassar. Metallic

electrodes and leads in simultaneous EEG-MRI: specific absorption rate (sar) simulation

studies. Bioelectromagnetics, 25(4):285–95, 2004.

L. M. Angelone, C. E. Vasios, G. Wiggins, P. L. Purdon, and G. Bonmassar. On the effect of resis-

tive EEG electrodes and leads during 7T MRI: simulation and temperature measurement

studies. Magn Reson Imaging, 24(6):801–12, 2006.

J. Arrubla, I. Neuner, D. Hahn, F. Boers, and N. J. Shah. Recording visual evoked potentials and

auditory evoked p300 at 9.4t static magnetic field. PLoS One, 8(5):e62915, 2013.

O. J. Arthurs, T. Donovan, D. J. Spiegelhalter, J. D. Pickard, and S. J. Boniface. Intracortically dis-

tributed neurovascular coupling relationships within and between human somatosensory

cortices. Cereb Cortex, 17(3):661–8, 2007.

S. Assecondi, P. Ferrari, and J. Jovicich. A compact setup to improve the quality of EEG data

recorded during fMRI. In Proceedings of the 21st Annual ISMRM Meeting, Salt Lake City,

USA, 2013.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman. Glial

and neuronal control of brain blood flow. Nature, 468(7321):232–43, 2010.

127



Bibliography

K. A. Awada, D. R. Jackson, J. T. Williams, D. R. Wilton, S. B. Baumann, and A. C. Papanicolaou.

Computational aspects of finite element modeling in EEG source localization. IEEE Trans

Biomed Eng, 44(8):736–52, 1997.

A. Babajani and H. Soltanian-Zadeh. Integrated MEG/EEG and fMRI model based on neural

masses. IEEE Trans Biomed Eng, 53(9):1794–801, 2006.

A. Babajani-Feremi and H. Soltanian-Zadeh. Multi-area neural mass modeling of EEG and

MEG signals. Neuroimage, 52(3):793–811, 2010.

F. Babiloni, D. Mattia, C. Babiloni, L. Astolfi, S. Salinari, A. Basilisco, P. M. Rossini, M. G.

Marciani, and F. Cincotti. Multimodal integration of EEG, MEG and fMRI data for the

solution of the neuroimage puzzle. Magn Reson Imaging, 22(10):1471–6, 2004.

F. Babiloni, F. Cincotti, C. Babiloni, F. Carducci, D. Mattia, L. Astolfi, A. Basilisco, P. M. Rossini,

L. Ding, Y. Ni, J. Cheng, K. Christine, J. Sweeney, and B. He. Estimation of the cortical

functional connectivity with the multimodal integration of high-resolution EEG and fMRI

data by directed transfer function. Neuroimage, 24(1):118–31, 2005.

P. A. Bandettini, K. K. Kwong, T. L. Davis, R. B. Tootell, E. C. Wong, P. T. Fox, J. W. Belliveau,

R. M. Weisskoff, and B. R. Rosen. Characterization of cerebral blood oxygenation and flow

changes during prolonged brain activation. Hum Brain Mapp, 5(2):93–109, 1997.

M. Barth and D. G. Norris. Very high-resolution three-dimensional functional MRI of the

human visual cortex with elimination of large venous vessels. NMR Biomed, 20(5):477–84,

2007.

R. Becker, M. Reinacher, F. Freyer, A. Villringer, and P. Ritter. How ongoing neuronal oscillations

account for evoked fMRI variability. J Neurosci, 31(30):11016–27, 2011.

C. G. Benar, D. Schon, S. Grimault, B. Nazarian, B. Burle, M. Roth, J. M. Badier, P. Marquis,

C. Liegeois-Chauvel, and J. L. Anton. Single-trial analysis of oddball event-related potentials

in simultaneous EEG-fMRI. Hum Brain Mapp, 28(7):602–13, 2007.

M. Bianciardi, M. Fukunaga, P. van Gelderen, S. G. Horovitz, J. A. de Zwart, K. Shmueli, and

J. H. Duyn. Sources of functional magnetic resonance imaging signal fluctuations in the

human brain at rest: a 7T study. Magn Reson Imaging, 27(8):1019–29, 2009.

M. Bianciardi, M. Fukunaga, P. van Gelderen, J. A. de Zwart, and J. H. Duyn. Negative BOLD-

fMRI signals in large cerebral veins. J Cereb Blood Flow Metab, 31(2):401–12, 2011.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde. Functional connectivity in the motor

cortex of resting human brain using echo-planar MRI. Magn Reson Med, 34(4):537–41, 1995.

C. Bledowski, D. Prvulovic, K. Hoechstetter, M. Scherg, M. Wibral, R. Goebel, and D. E. Linden.

Localizing p300 generators in visual target and distractor processing: a combined event-

related potential and functional magnetic resonance imaging study. J Neurosci, 24(42):

9353–60, 2004.

128



Bibliography

F. Bloch. Nuclear induction. Physical Review, 70(7-8):460–474, 1946.

M. Boly, E. Balteau, C. Schnakers, C. Degueldre, G. Moonen, A. Luxen, C. Phillips, P. Peigneux,

P. Maquet, and S. Laureys. Baseline brain activity fluctuations predict somatosensory

perception in humans. Proc Natl Acad Sci U S A, 104(29):12187–92, 2007.

G. Bonmassar, K. Anami, J. Ives, and J. W. Belliveau. Visual evoked potential (vep) measured

by simultaneous 64-channel EEG and 3t fMRI. Neuroreport, 10(9):1893–7, 1999.

G. Bonmassar, N. Hadjikhani, J. R. Ives, D. Hinton, and J. W. Belliveau. Influence of EEG

electrodes on the BOLD fMRI signal. Hum Brain Mapp, 14(2):108–15, 2001.

G. Bonmassar, P. L. Purdon, I. P. Jaaskelainen, K. Chiappa, V. Solo, E. N. Brown, and J. W.

Belliveau. Motion and ballistocardiogram artifact removal for interleaved recording of EEG

and eps during MRI. Neuroimage, 16(4):1127–41, 2002.

L. Boorman, A. J. Kennerley, D. Johnston, M. Jones, Y. Zheng, P. Redgrave, and J. Berwick.

Negative blood oxygen level dependence in the rat: a model for investigating the role of

suppression in neurovascular coupling. J Neurosci, 30(12):4285–94, 2010.

M. Bouchard and S. Quednau. Multichannel recursive-least-square algorithms and fast-

transversal-filter algorithms for active noise control and sound reproduction systems.

Speech and Audio Processing, IEEE Transactions on, 8(5):606–618, 2000.

M. Brass, M. Ullsperger, T. R. Knoesche, D. Y. von Cramon, and N. A. Phillips. Who comes first?

the role of the prefrontal and parietal cortex in cognitive control. J Cogn Neurosci, 17(9):

1367–75, 2005.

J. Britz, D. Van De Ville, and C. M. Michel. BOLD correlates of EEG topography reveal rapid

resting-state network dynamics. Neuroimage, 52(4):1162–70, 2010.

M. J. Brookes, J. Vrba, K. J. Mullinger, G. B. Geirsdottir, W. X. Yan, C. M. Stevenson, R. Bowtell,

and P. G. Morris. Source localisation in concurrent EEG/fMRI: applications at 7T. Neuroim-

age, 45(2):440–52, 2009.

G. D. Brown, S. Yamada, and T. J. Sejnowski. Independent component analysis at the neural

cocktail party. Trends Neurosci, 24(1):54–63, 2001.

K. Bucher, T. Dietrich, V. L. Marcar, S. Brem, P. Halder, S. Boujraf, P. Summers, D. Brandeis,

E. Martin, and T. Loenneker. Maturation of luminance- and motion-defined form perception

beyond adolescence: a combined erp and fmri study. Neuroimage, 31(4):1625–36, 2006.

N. A. Busch, J. Dubois, and R. VanRullen. The phase of ongoing EEG oscillations predicts visual

perception. J Neurosci, 29(24):7869–76, 2009.

R. B. Buxton. Dynamic models of BOLD contrast. Neuroimage, 62(2):953–61, 2012.

129



Bibliography

R. B. Buxton, E. C. Wong, and L. R. Frank. Dynamics of blood flow and oxygenation changes

during brain activation: the balloon model. Magn Reson Med, 39(6):855–64, 1998.

R. B. Buxton, K. Uludag, D. J. Dubowitz, and T. T. Liu. Modeling the hemodynamic response to

brain activation. Neuroimage, 23 Suppl 1:S220–33, 2004.

G. Buzsáki. Rhythms of the brain. Oxford University Press, New York, 1st edition, 2006.

C. Caballero-Gaudes, D. Van de Ville, F. Grouiller, R. Thornton, L. Lemieux, M. Seeck, F. Lazeyras,

and S. Vulliemoz. Mapping interictal epileptic discharges using mutual information between

concurrent EEG and fMRI. Neuroimage, 68:248–62, 2013.

V. D. Calhoun, J. Liu, and T. Adali. A review of group ica for fMRI data and ica for joint inference

of imaging, genetic, and erp data. Neuroimage, 45(1 Suppl):S163–72, 2009.

J. L. Cantero, M. Atienza, R. M. Salas, and C. M. Gomez. Brain spatial microstates of human

spontaneous alpha activity in relaxed wakefulness, drowsiness period, and rem sleep. Brain

Topogr, 11(4):257–63, 1999.

D. W. Carmichael, S. Vulliemoz, R. Rodionov, M. Walker, K. Rosenkranz, A. McEvoy, and

L. Lemieux. Simultaneous intracranial EEG-fMRI in humans suggests that high gamma

frequencies are the closest neurophysiological correlate of BOLD fMRI. In Proceedings of

the 19th Annual ISMRM Meeting, Montreal, Canada, 2011.

M. Chowdhury, K. Mullinger, and R. Bowtell. Simultaneous EEG-fMRI: evaluating the effect of

the cabling configuration on the gradient artefact. In Proceedings of the 20th Annual ISMRM

Meeting, Melbourne, Australia, 2012.

M. E. Chowdhury, K. J. Mullinger, P. Glover, and R. Bowtell. Reference layer artefact subtraction

(rlas): a novel method of minimizing EEG artefacts during simultaneous fMRI. Neuroimage,

84:307–19, 2014.

A. Christ, W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, W. Rascher, R. Janka,

W. Bautz, J. Chen, B. Kiefer, P. Schmitt, H. P. Hollenbach, J. Shen, M. Oberle, D. Szczerba,

A. Kam, J. W. Guag, and N. Kuster. The virtual family–development of surface-based anatom-

ical models of two adults and two children for dosimetric simulations. Phys Med Biol, 55(2):

N23–38, 2010.

N. M. Correa, T. Eichele, T. Adali, Y. O. Li, and V. D. Calhoun. Multi-set canonical correlation

analysis for the fusion of concurrent single trial erp and functional MRI. Neuroimage, 50(4):

1438–45, 2010.

C. B. Cunningham, B. G. Goodyear, R. Badawy, F. Zaamout, D. J. Pittman, C. A. Beers, and

P. Federico. Intracranial EEG-fMRI analysis of focal epileptiform discharges in humans.

Epilepsia, 53(9):1636–48, 2012.

A. M. Dale and E. Halgren. Spatiotemporal mapping of brain activity by integration of multiple

imaging modalities. Curr Opin Neurobiol, 11(2):202–8, 2001.

130



Bibliography

A. M. Dale and M. I. Sereno. Improved localization of cortical activity by combining EEG and

MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci, 5(2):

162–176, 1993.

A. M. Dale, A. K. Liu, B. R. Fischl, R. L. Buckner, J. W. Belliveau, J. D. Lewine, and E. Halgren.

Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution

imaging of cortical activity. Neuron, 26(1):55–67, 2000.

T. T. Dang-Vu, S. M. McKinney, O. M. Buxton, J. M. Solet, and J. M. Ellenbogen. Spontaneous

brain rhythms predict sleep stability in the face of noise. Curr Biol, 20(15):R626–7, 2010.

J. Daunizeau, C. Grova, J. Mattout, G. Marrelec, D. Clonda, B. Goulard, M. Pelegrini-Issac,

J. M. Lina, and H. Benali. Assessing the relevance of fMRI-based prior in the EEG inverse

problem: A bayesian model comparison approach. Ieee Transactions on Signal Processing,

53(9):3461–3472, 2005.

J. Daunizeau, C. Grova, G. Marrelec, J. Mattout, S. Jbabdi, M. Pelegrini-Issac, J. M. Lina, and

H. Benali. Symmetrical event-related EEG/fMRI information fusion in a variational bayesian

framework. Neuroimage, 36(1):69–87, 2007.

T. L. Davis, K. K. Kwong, R. M. Weisskoff, and B. R. Rosen. Calibrated functional MRI: mapping

the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A, 95(4):1834–9, 1998.

F. De Martino, A. W. de Borst, G. Valente, R. Goebel, and E. Formisano. Predicting EEG

single trial responses with simultaneous fMRI and relevance vector machine regression.

Neuroimage, 56(2):826–36, 2011a.

F. De Martino, F. Esposito, P. F. van de Moortele, N. Harel, E. Formisano, R. Goebel, K. Ugurbil,

and E. Yacoub. Whole brain high-resolution functional imaging at ultra high magnetic fields:

an application to the analysis of resting state networks. Neuroimage, 57(3):1031–44, 2011b.

J. C. de Munck, S. I. Goncalves, L. Huijboom, J. P. Kuijer, P. J. Pouwels, R. M. Heethaar, and

F. H. Lopes da Silva. The hemodynamic response of the alpha rhythm: an EEG/fMRI study.

Neuroimage, 35(3):1142–51, 2007.

J. C. de Munck, S. I. Goncalves, R. Mammoliti, R. M. Heethaar, and F. H. Lopes da Silva. Inter-

actions between different EEG frequency bands and their effect on alpha-fMRI correlations.

Neuroimage, 47(1):69–76, 2009.

S. Debener, C. Kranczioch, C. S. Herrmann, and A. K. Engel. Auditory novelty oddball allows

reliable distinction of top-down and bottom-up processes of attention. Int J Psychophysiol,

46(1):77–84, 2002.

S. Debener, M. Ullsperger, M. Siegel, K. Fiehler, D. Y. von Cramon, and A. K. Engel. Trial-by-trial

coupling of concurrent electroencephalogram and functional magnetic resonance imaging

identifies the dynamics of performance monitoring. J Neurosci, 25(50):11730–7, 2005.

131



Bibliography

S. Debener, M. Ullsperger, M. Siegel, and A. K. Engel. Single-trial EEG-fMRI reveals the

dynamics of cognitive function. Trends Cogn Sci, 10(12):558–63, 2006.

S. Debener, A. Strobel, B. Sorger, J. Peters, C. Kranczioch, A. K. Engel, and R. Goebel. Improved

quality of auditory event-related potentials recorded simultaneously with 3-t fMRI: removal

of the ballistocardiogram artefact. Neuroimage, 34(2):587–97, 2007.

S. Debener, K. J. Mullinger, R. K. Niazy, and R. W. Bowtell. Properties of the ballistocardiogram

artefact as revealed by EEG recordings at 1.5, 3 and 7T static magnetic field strength. Int J

Psychophysiol, 67(3):189–99, 2008.

D. K. Deelchand, P. F. Van de Moortele, G. Adriany, I. Iltis, P. Andersen, J. P. Strupp, J. T. Vaughan,

K. Ugurbil, and P. G. Henry. In vivo 1h nmr spectroscopy of the human brain at 9.4 t: initial

results. J Magn Reson, 206(1):74–80, 2010.

A. Delorme and S. Makeig. EEGlab: an open source toolbox for analysis of single-trial EEG

dynamics including independent component analysis. J Neurosci Methods, 134(1):9–21,

2004.

M. F. Dempsey and B. Condon. Thermal injuries associated with MRI. Clin Radiol, 56(6):

457–65, 2001.

M. F. Dempsey, B. Condon, and D. M. Hadley. Investigation of the factors responsible for burns

during MRI. J Magn Reson Imaging, 13(4):627–31, 2001.

J. A. Detre, W. Zhang, D. A. Roberts, A. C. Silva, D. S. Williams, D. J. Grandis, A. P. Koretsky, and

J. S. Leigh. Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed, 7

(1-2):75–82, 1994.

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. Hillman, S. N. Narayanan, I. Ulbert, D. A.

Boas, D. Kleinfeld, and A. M. Dale. Suppressed neuronal activity and concurrent arteriolar

vasoconstriction may explain negative blood oxygenation level-dependent signal. J Neurosci,

27(16):4452–9, 2007.

J. H. Duyn. The future of ultra-high field MRI and fMRI for study of the human brain. Neu-

roimage, 62(2):1241–8, 2012.

W. A. Edelstein, G. H. Glover, C. J. Hardy, and R. W. Redington. The intrinsic signal-to-noise

ratio in nmr imaging. Magn Reson Med, 3(4):604–18, 1986.

F. Eggenschwiler, T. Kober, A. W. Magill, R. Gruetter, and J. P. Marques. Sa2rage: a new sequence

for fast b1+ -mapping. Magn Reson Med, 67(6):1609–19, 2012.

T. Eichele, K. Specht, M. Moosmann, M. L. Jongsma, R. Q. Quiroga, H. Nordby, and K. Hugdahl.

Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related

potentials and functional MRI. Proc Natl Acad Sci U S A, 102(49):17798–803, 2005.

132



Bibliography

T. Eichele, V. D. Calhoun, M. Moosmann, K. Specht, M. L. Jongsma, R. Q. Quiroga, H. Nordby,

and K. Hugdahl. Unmixing concurrent EEG-fMRI with parallel independent component

analysis. Int J Psychophysiol, 67(3):222–34, 2008.

T. Ernst and J. Hennig. Observation of a fast response in functional MR. Magn Reson Med, 32

(1):146–9, 1994.

Jianqing Fan and Wenyang Zhang. Simultaneous confidence bands and hypothesis testing in

varying-coefficient models. Scandinavian Journal of Statistics, 27(4):715–731, 2000.

D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing in the primate cerebral

cortex. Cereb Cortex, 1(1):1–47, 1991.

D. Flanagan, D. F. Abbott, and G. D. Jackson. How wrong can we be? the effect of inaccurate

mark-up of EEG/fMRI studies in epilepsy. Clin Neurophysiol, 120(9):1637–47, 2009.

M. D. Fox and M. E. Raichle. Spontaneous fluctuations in brain activity observed with func-

tional magnetic resonance imaging. Nat Rev Neurosci, 8(9):700–11, 2007.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever. Multiscale vessel enhancement

filtering. Medical Image Computing and Computer-Assisted Intervention - Miccai’98, 1496:

130–137, 1998.

K. J. Friston, P. Fletcher, O. Josephs, A. Holmes, M. D. Rugg, and R. Turner. Event-related fMRI:

characterizing differential responses. Neuroimage, 7(1):30–40, 1998.

K. J. Friston, A. Mechelli, R. Turner, and C. J. Price. Nonlinear responses in fMRI: the balloon

model, volterra kernels, and other hemodynamics. Neuroimage, 12(4):466–77, 2000.

M. Fuchs, J. Kastner, M. Wagner, S. Hawes, and J. S. Ebersole. A standardized boundary element

method volume conductor model. Clin Neurophysiol, 113(5):702–12, 2002.

G. Garreffa, M. Bianciardi, G. E. Hagberg, E. Macaluso, M. G. Marciani, B. Maraviglia, M. Ab-

bafati, M. Carni, I. Bruni, and L. Bianchi. Simultaneous EEG-fMRI acquisition: how far is it

from being a standardized technique? Magn Reson Imaging, 22(10):1445–55, 2004.

J. S. Gati, R. S. Menon, K. Ugurbil, and B. K. Rutt. Experimental determination of the BOLD

field strength dependence in vessels and tissue. Magn Reson Med, 38(2):296–302, 1997.

J. Goense, H. Merkle, and N. K. Logothetis. High-resolution fMRI reveals laminar differences

in neurovascular coupling between positive and negative BOLD responses. Neuron, 76(3):

629–39, 2012.

R. I. Goldman, J. M. Stern, Jr. Engel, J., and M. S. Cohen. Acquiring simultaneous EEG and

functional MRI. Clin Neurophysiol, 111(11):1974–80, 2000.

R. I. Goldman, J. M. Stern, Jr. Engel, J., and M. S. Cohen. Simultaneous EEG and fMRI of the

alpha rhythm. Neuroreport, 13(18):2487–92, 2002.

133



Bibliography

S. I. Goncalves, J. C. de Munck, P. J. Pouwels, R. Schoonhoven, J. P. Kuijer, N. M. Maurits, J. M.

Hoogduin, E. J. Van Someren, R. M. Heethaar, and F. H. Lopes da Silva. Correlating the alpha

rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. Neuroimage, 30

(1):203–13, 2006.

Javier Gonzalez-Castillo, Colin W. Hoy, Daniel A. Handwerker, Vinai Roopchansingh, Souheil J.

Inati, Ziad S. Saad, Robert W. Cox, and Peter A. Bandettini. Task dependence, tissue speci-

ficity, and spatial distribution of widespread activations in large single-subject functional

MRI datasets at 7T. Cerebral Cortex, 2014.

J. Gotman and P. Gloor. Automatic recognition and quantification of interictal epileptic activity

in the human scalp EEG. Electroencephalogr Clin Neurophysiol, 41(5):513–29, 1976.

J. Gotman and F. Pittau. Combining EEG and fMRI in the study of epileptic discharges.

Epilepsia, 52-4:38–42, 2011.

M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, and

A. Haase. Generalized autocalibrating partially parallel acquisitions (grappa). Magn Reson

Med, 47(6):1202–10, 2002.

F. Grouiller, L. Vercueil, A. Krainik, C. Segebarth, P. Kahane, and O. David. Characterization of

the hemodynamic modes associated with interictal epileptic activity using a deformable

model-based analysis of combined EEG and functional MRI recordings. Hum Brain Mapp,

31(8):1157–73, 2010.

F. Grouiller, R. C. Thornton, K. Groening, L. Spinelli, J. S. Duncan, K. Schaller, M. Siniatchkin,

L. Lemieux, M. Seeck, C. M. Michel, and S. Vulliemoz. With or without spikes: localization

of focal epileptic activity by simultaneous electroencephalography and functional magnetic

resonance imaging. Brain, 134:2867–2886, 2011.

F. Grouiller, J. Jorge, F. Pittau, P. Martelli, W. van der Zwaag, C. M. Michel, S. Vulliémoz, M. I.

Vargas, and F. Lazeyras. Mapping epileptic networks using simultaneous EEG-MRI at ultra-

high field. In Proceedings of the 23rd Annual ISMRM Meeting, Toronto, Canada, 2015.

R. Gruetter. Automatic, localized in vivo adjustment of all first- and second-order shim coils.

Magn Reson Med, 29(6):804–11, 1993.

A. Guyton and J. Hall. Textbook of medical physiology. Elsevier Saunders, Philadelphia, 11th

edition, 2006.

E. Haacke, R. Brown, M. Thompson, and R. Venkatesan. Magnetic resonance imaging : physical

principles and sequence design. Wiley-Liss, New York, 1st edition, 1999.

F. Hamzei, C. Dettmers, R. Rzanny, J. Liepert, C. Buchel, and C. Weiller. Reduction of excitability

("inhibition") in the ipsilateral primary motor cortex is mirrored by fMRI signal decreases.

Neuroimage, 17(1):490–6, 2002.

134



Bibliography

B. M. Harvey, M. J. Vansteensel, C. H. Ferrier, N. Petridou, W. Zuiderbaan, E. J. Aarnoutse,

M. G. Bleichner, H. C. Dijkerman, M. J. van Zandvoort, F. S. Leijten, N. F. Ramsey, and S. O.

Dumoulin. Frequency specific spatial interactions in human electrocorticography: V1 alpha

oscillations reflect surround suppression. Neuroimage, 2012.

H. J. Heinze, G. R. Mangun, W. Burchert, H. Hinrichs, M. Scholz, T. F. Munte, A. Gos, M. Scherg,

S. Johannes, H. Hundeshagen, and et al. Combined spatial and temporal imaging of brain

activity during visual selective attention in humans. Nature, 372(6506):543–6, 1994.

D. Hermes, K. J. Miller, M. J. Vansteensel, E. J. Aarnoutse, F. S. Leijten, and N. F. Ramsey.

Neurophysiologic correlates of fMRI in human motor cortex. Hum Brain Mapp, 33(7):

1689–99, 2012.

C. S. Herrmann and S. Debener. Simultaneous recording of EEG and BOLD responses: a

historical perspective. Int J Psychophysiol, 67(3):161–8, 2008.

R. A. Hill, K. H. Chiappa, F. Huang-Hellinger, and B. G. Jenkins. EEG during MR imaging:

differentiation of movement artifact from paroxysmal cortical activity. Neurology, 45(10):

1942–3, 1995.

A. Hillebrand and G. R. Barnes. The use of anatomical constraints with MEG beamformers.

Neuroimage, 20(4):2302–13, 2003.

E. M. Hillman. Coupling mechanism and significance of the BOLD signal: A status report.

Annu Rev Neurosci, 37:161–81, 2014.

A. Hirata, H. Sugiyama, and O. Fujiwara. Estimation of core temperature elevation in humans

and animals for whole-body averaged sar. Progress in Electromagnetics Research-Pier, 99:

53–70, 2009.

Y. Hlushchuk and R. Hari. Transient suppression of ipsilateral primary somatosensory cortex

during tactile finger stimulation. J Neurosci, 26(21):5819–24, 2006.

R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike. Stimulus-dependent

BOLD and perfusion dynamics in human v1. Neuroimage, 9(6 Pt 1):573–85, 1999.

Donald R. Hoover, John A. Rice, Colin O. Wu, and Li-Ping Yang. Nonparametric smoothing

estimates of time-varying coefficient models with longitudinal data. Biometrika, 85(4):

809–822, 1998.

S. G. Horovitz, B. Rossion, P. Skudlarski, and J. C. Gore. Parametric design and correlational

analyses help integrating fMRI and electrophysiological data during face processing. Neu-

roimage, 22(4):1587–95, 2004.

X. Hu and E. Yacoub. The story of the initial dip in fMRI. Neuroimage, 62(2):1103–8, 2012.

135



Bibliography

Jianhua Z. Huang, Colin O. Wu, and Lan Zhou. Varying-coefficient models and basis function

approximations for the analysis of repeated measurements. Biometrika, 89(1):111–128,

2002.

C. H. Im, H. K. Jung, and N. Fujimaki. fMRI-constrained MEG source imaging and considera-

tion of fMRI invisible sources. Hum Brain Mapp, 26(2):110–8, 2005.

J. R. Ives, S. Warach, F. Schmitt, R. R. Edelman, and D. L. Schomer. Monitoring the patient’s

EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol, 87(6):417–20, 1993.

D. Iyer and G. Zouridakis. Single-trial evoked potential estimation: comparison between

independent component analysis and wavelet denoising. Clin Neurophysiol, 118(3):495–

504, 2007.

K. Jann, T. Dierks, C. Boesch, M. Kottlow, W. Strik, and T. Koenig. BOLD correlates of EEG alpha

phase-locking and the fMRI default mode network. Neuroimage, 45(3):903–16, 2009.

B. H. Jansen and V. G. Rit. Electroencephalogram and visual evoked potential generation in a

mathematical model of coupled cortical columns. Biol Cybern, 73(4):357–66, 1995.

M. Jansen, T. P. White, K. J. Mullinger, E. B. Liddle, P. A. Gowland, S. T. Francis, R. Bowtell,

and P. F. Liddle. Motion-related artefacts in EEG predict neuronally plausible patterns of

activation in fMRI data. Neuroimage, 59(1):261–70, 2012.

C. Janz, S. P. Heinrich, J. Kornmayer, M. Bach, and J. Hennig. Coupling of neural activity

and BOLD fMRI response: new insights by combination of fMRI and vep experiments in

transition from single events to continuous stimulation. Magn Reson Med, 46(3):482–6,

2001.

M. Jenkinson, P. Bannister, M. Brady, and S. Smith. Improved optimization for the robust

and accurate linear registration and motion correction of brain images. Neuroimage, 17(2):

825–41, 2002.

P. Jezzard, P. Matthews, and S. Smith. Functional MRI : an introduction to methods. Oxford

University Press, New York, 2001.

J. Jorge, P. Figueiredo, W. van der Zwaag, and J. P. Marques. Signal fluctuations in fMRI data

acquired with 2d-epi and 3d-epi at 7 tesla. Magn Reson Imaging, 31(2):212–20, 2013.

A. Kastrup, J. Baudewig, S. Schnaudigel, R. Huonker, L. Becker, J. M. Sohns, P. Dechent,

C. Klingner, and O. W. Witte. Behavioral correlates of negative BOLD signal changes in

the primary somatosensory cortex. Neuroimage, 41(4):1364–71, 2008.

C. Kayser, C. I. Petkov, and N. K. Logothetis. Visual modulation of neurons in auditory cortex.

Cereb Cortex, 18(7):1560–74, 2008.

136



Bibliography

Jr. Kelly, R. E., G. S. Alexopoulos, Z. Wang, F. M. Gunning, C. F. Murphy, S. S. Morimoto,

D. Kanellopoulos, Z. Jia, K. O. Lim, and M. J. Hoptman. Visual inspection of independent

components: defining a procedure for artifact removal from fMRI data. J Neurosci Methods,

189(2):233–45, 2010.

P. Khader, T. Schicke, B. Roder, and F. Rosler. On the relationship between slow cortical

potentials and BOLD signal changes in humans. International Journal of Psychophysiology,

67(3):252–261, 2008.

J. M. Kilner, J. Mattout, R. Henson, and K. J. Friston. Hemodynamic correlates of EEG: a

heuristic. Neuroimage, 28(1):280–6, 2005.

H. C. Kim, S. S. Yoo, and J. H. Lee. Recursive approach of EEG-segment-based principal

component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-

fMRI data. Neuroimage, 2014.

C. M. Klingner, C. Hasler, S. Brodoehl, and O. W. Witte. Dependence of the negative BOLD

response on somatosensory stimulus intensity. Neuroimage, 53(1):189–95, 2010.

C. M. Klingner, R. Huonker, S. Flemming, C. Hasler, S. Brodoehl, C. Preul, H. Burmeister,

A. Kastrup, and O. W. Witte. Functional deactivations: multiple ipsilateral brain areas

engaged in the processing of somatosensory information. Hum Brain Mapp, 32(1):127–40,

2011.

T. Koenig, D. Lehmann, M. C. Merlo, K. Kochi, D. Hell, and M. Koukkou. A deviant EEG brain

microstate in acute, neuroleptic-naive schizophrenics at rest. Eur Arch Psychiatry Clin

Neurosci, 249(4):205–11, 1999.

P. J. Koopmans, M. Barth, and D. G. Norris. Layer-specific BOLD activation in human v1. Hum

Brain Mapp, 31(9):1297–304, 2010.

K. Krakow, P. J. Allen, M. R. Symms, L. Lemieux, O. Josephs, and D. R. Fish. EEG recording

during fMRI experiments: image quality. Hum Brain Mapp, 10(1):10–5, 2000.

G. Kruger, A. Kastrup, and G. H. Glover. Neuroimaging at 1.5 t and 3.0 t: comparison of

oxygenation-sensitive magnetic resonance imaging. Magn Reson Med, 45(4):595–604, 2001.

F. Kruggel, C. J. Wiggins, C. S. Herrmann, and D. Y. von Cramon. Recording of the event-related

potentials during functional MRI at 3.0 tesla field strength. Magn Reson Med, 44(2):277–82,

2000.

J. P. Lachaux, P. Fonlupt, P. Kahane, L. Minotti, D. Hoffmann, O. Bertrand, and M. Baciu.

Relationship between task-related gamma oscillations and BOLD signal: new insights from

combined fMRI and intracranial EEG. Hum Brain Mapp, 28(12):1368–75, 2007.

H. Laufs. A personalized history of EEG-fMRI integration. Neuroimage, 62(2):1056–67, 2012.

137



Bibliography

H. Laufs, J. L. Holt, R. Elfont, M. Krams, J. S. Paul, K. Krakow, and A. Kleinschmidt. Where the

BOLD signal goes when alpha EEG leaves. Neuroimage, 31(4):1408–18, 2006.

H. Laufs, M. C. Walker, and T. E. Lund. Brain activation and hypothalamic functional connec-

tivity during human non-rapid eye movement sleep: an EEG/fMRI study’–its limitations

and an alternative approach. Brain, 130(Pt 7):e75; author reply e76, 2007.

T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W. Gilmore, K. B.

McDermott, S. M. Nelson, N. U. Dosenbach, B. L. Schlaggar, J. A. Mumford, R. A. Poldrack,

and S. E. Petersen. Functional system and areal organization of a highly sampled individual

human brain. Neuron, 2015.

P. J. Laurienti, J. H. Burdette, M. T. Wallace, Y. F. Yen, A. S. Field, and B. E. Stein. Deactivation of

sensory-specific cortex by cross-modal stimuli. J Cogn Neurosci, 14(3):420–9, 2002.

M. Lauritzen and L. Gold. Brain function and neurophysiological correlates of signals used in

functional neuroimaging. J Neurosci, 23(10):3972–80, 2003.

M. Lauritzen, C. Mathiesen, K. Schaefer, and K. J. Thomsen. Neuronal inhibition and excitation,

and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage, 62

(2):1040–50, 2012.

F. Lazeyras, I. Zimine, O. Blanke, S. H. Perrig, and M. Seeck. Functional MRI with simultaneous

EEG recording: feasibility and application to motor and visual activation. J Magn Reson

Imaging, 13(6):943–8, 2001.

T. W. Lee, M. Girolami, and T. J. Sejnowski. Independent component analysis using an extended

infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation,

11(2):417–441, 1999.

D. Lehmann, H. Ozaki, and I. Pal. EEG alpha map series: brain micro-states by space-oriented

adaptive segmentation. Electroencephalogr Clin Neurophysiol, 67(3):271–88, 1987.

X. Lei, D. Ostwald, J. Hu, C. Qiu, C. Porcaro, A. P. Bagshaw, and D. Yao. Multimodal functional

network connectivity: an EEG-fMRI fusion in network space. PLoS One, 6(9):e24642, 2011.

Marco Leite, Alberto Leal, and Patricia Figueiredo. Transfer function between EEG and BOLD

signals of epileptic activity. Frontiers in Neurology, 4, 2013.

L. Lemieux, P. J. Allen, F. Franconi, M. R. Symms, and D. R. Fish. Recording of EEG during fMRI

experiments: patient safety. Magn Reson Med, 38(6):943–52, 1997.

L. Lemieux, A. Salek-Haddadi, O. Josephs, P. Allen, N. Toms, C. Scott, K. Krakow, R. Turner, and

D. R. Fish. Event-related fMRI with simultaneous and continuous EEG: description of the

method and initial case report. Neuroimage, 14(3):780–7, 2001.

138



Bibliography

M. Lenz, M. Musso, Y. Linke, O. Tuscher, J. Timmer, C. Weiller, and B. Schelter. Joint EEG/fMRI

state space model for the detection of directed interactions in human brains–a simulation

study. Physiol Meas, 32(11):1725–36, 2011.

O. Leontiev and R. B. Buxton. Reproducibility of BOLD, perfusion, and cmro2 measurements

with calibrated-BOLD fMRI. Neuroimage, 35(1):175–84, 2007.

P. LeVan, J. Maclaren, M. Herbst, R. Sostheim, M. Zaitsev, and J. Hennig. Ballistocardiographic

artifact removal from simultaneous EEG-fMRI using an optical motion-tracking system.

Neuroimage, 75:1–11, 2013.

A. L. Lin, P. T. Fox, Y. Yang, H. Lu, L. H. Tan, and J. H. Gao. Time-dependent correlation of

cerebral blood flow with oxygen metabolism in activated human visual cortex as measured

by fMRI. Neuroimage, 44(1):16–22, 2009.

P. Lin, U. Hasson, J. Jovicich, and S. Robinson. A neuronal basis for task-negative responses in

the human brain. Cereb Cortex, 21(4):821–30, 2011.

T. T. Liu, L. R. Frank, E. C. Wong, and R. B. Buxton. Detection power, estimation efficiency, and

predictability in event-related fMRI. Neuroimage, 13(4):759–73, 2001.

Z. Liu and B. He. fMRI-EEG integrated cortical source imaging by use of time-variant spatial

constraints. Neuroimage, 39(3):1198–214, 2008.

Z. Liu, C. Rios, N. Zhang, L. Yang, W. Chen, and B. He. Linear and nonlinear relationships

between visual stimuli, EEG and BOLD fMRI signals. Neuroimage, 50(3):1054–66, 2010.

Z. Liu, J. A. de Zwart, P. van Gelderen, L. W. Kuo, and J. H. Duyn. Statistical feature extraction

for artifact removal from concurrent fMRI-EEG recordings. Neuroimage, 59(3):2073–87,

2012.

N. K. Logothetis. The neural basis of the blood-oxygen-level-dependent functional magnetic

resonance imaging signal. Philos Trans R Soc Lond B Biol Sci, 357(1424):1003–37, 2002.

N. K. Logothetis. What we can do and what we cannot do with fMRI. Nature, 453(7197):869–78,

2008.

N. K. Logothetis and B. A. Wandell. Interpreting the BOLD signal. Annu Rev Physiol, 66:735–69,

2004.

N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann. Neurophysiological

investigation of the basis of the fMRI signal. Nature, 412(6843):150–7, 2001.

H. Lu, X. Golay, J. J. Pekar, and P. C. Van Zijl. Functional magnetic resonance imaging based on

changes in vascular space occupancy. Magn Reson Med, 50(2):263–74, 2003.

H. Lu, X. Golay, J. J. Pekar, and P. C. Van Zijl. Sustained poststimulus elevation in cerebral

oxygen utilization after vascular recovery. J Cereb Blood Flow Metab, 24(7):764–70, 2004.

139



Bibliography

M. Luessi, S. D. Babacan, R. Molina, J. R. Booth, and A. K. Katsaggelos. Bayesian symmetrical

EEG/fMRI fusion with spatially adaptive priors. Neuroimage, 55(1):113–32, 2011.

Q. Luo and G. H. Glover. Influence of dense-array EEG cap on fMRI signal. Magn Reson Med,

68(3):807–15, 2012.

Q. Luo, X. Huang, and G. H. Glover. Ballistocardiogram artifact removal with a reference layer

and standard EEG cap. J Neurosci Methods, 233:137–49, 2014.

J. Maclaren, B. S. Armstrong, R. T. Barrows, K. A. Danishad, T. Ernst, C. L. Foster, K. Gumus,

M. Herbst, I. Y. Kadashevich, T. P. Kusik, Q. Li, C. Lovell-Smith, T. Prieto, P. Schulze, O. Speck,

D. Stucht, and M. Zaitsev. Measurement and correction of microscopic head motion during

magnetic resonance imaging of the brain. PLoS One, 7(11):e48088, 2012.

Y. Mahajan and G. McArthur. Maturation of visual evoked potentials across adolescence. Brain

Dev, 34(8):655–66, 2012.

S. Makeig, A. J. Bell, T. P. Jung, and T. J. Sejnowski. Independent component analysis of

electroencephalographic data. Advances in Neural Information Processing Systems 8, 8:

145–151, 1996.

H. Mandelkow, P. Halder, P. Boesiger, and D. Brandeis. Synchronization facilitates removal of

MRI artefacts from concurrent EEG recordings and increases usable bandwidth. Neuroim-

age, 32(3):1120–6, 2006.

J. B. Mandeville, J. J. Marota, C. Ayata, G. Zaharchuk, M. A. Moskowitz, B. R. Rosen, and R. M.

Weisskoff. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance.

J Cereb Blood Flow Metab, 19(6):679–89, 1999.

D. Mantini, M. G. Perrucci, S. Cugini, A. Ferretti, G. L. Romani, and C. Del Gratta. Complete

artifact removal for EEG recorded during continuous fMRI using independent component

analysis. Neuroimage, 34(2):598–607, 2007a.

D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta. Electrophysiological

signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A, 104(32):

13170–5, 2007b.

J. P. Marques, J. Rebola, P. Figueiredo, A. Pinto, F. Sales, and M. Castelo-Branco. Ica decom-

position of EEG signal for fMRI processing in epilepsy. Hum Brain Mapp, 30(9):2986–96,

2009.

A. Martinez, L. Anllo-Vento, M. I. Sereno, L. R. Frank, R. B. Buxton, D. J. Dubowitz, E. C. Wong,

H. Hinrichs, H. J. Heinze, and S. A. Hillyard. Involvement of striate and extrastriate visual

cortical areas in spatial attention. Nat Neurosci, 2(4):364–9, 1999.

R. Martuzzi, M. M. Murray, R. A. Meuli, J. P. Thiran, P. P. Maeder, C. M. Michel, R. Grave de

Peralta Menendez, and S. L. Gonzalez Andino. Methods for determining frequency- and

140



Bibliography

region-dependent relationships between estimated lfps and BOLD responses in humans. J

Neurophysiol, 101(1):491–502, 2009.

R. A. Masterton, D. F. Abbott, S. W. Fleming, and G. D. Jackson. Measurement and reduction

of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings.

Neuroimage, 37(1):202–11, 2007.

R. A. Masterton, G. D. Jackson, and D. F. Abbott. Mapping brain activity using event-related

independent components analysis (eica): Specific advantages for EEG-fMRI. Neuroimage,

70:164–174, 2013.

S. D. Mayhew, D. Ostwald, C. Porcaro, and A. P. Bagshaw. Spontaneous EEG alpha oscillation

interacts with positive and negative BOLD responses in the visual-auditory cortices and

default-mode network. Neuroimage, 76:362–72, 2013.

G. McGibney, M. R. Smith, S. T. Nichols, and A. Crawley. Quantitative evaluation of several

partial fourier reconstruction algorithms used in MRI. Magn Reson Med, 30(1):51–9, 1993.

M. J. McKeown and T. J. Sejnowski. Independent component analysis of fMRI data: examining

the assumptions. Hum Brain Mapp, 6(5-6):368–72, 1998.

R. S. Menon. Postacquisition suppression of large-vessel BOLD signals in high-resolution

fMRI. Magn Reson Med, 47(1):1–9, 2002.

L. Meyer, J. Obleser, S. J. Kiebel, and A. D. Friederici. Spatiotemporal dynamics of argument

retrieval and reordering: an fmri and EEG study on sentence processing. Front Psychol, 3:

523, 2012.

M. C. Meyer, E. S. van Oort, and M. Barth. Electrophysiological correlation patterns of resting

state networks in single subjects: A combined EEG-fMRI study. Brain Topogr, 26(1):98–109,

2013.

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta. EEG

source imaging. Clin Neurophysiol, 115(10):2195–222, 2004.

B. Mijovic, K. Vanderperren, N. Novitskiy, B. Vanrumste, P. Stiers, B. V. Bergh, L. Lagae,

S. Sunaert, J. Wagemans, S. V. Huffel, and M. D. Vos. The "why" and "how" of jointica:

results from a visual detection task. Neuroimage, 60(2):1171–85, 2012.

H. Mizuhara, L. Q. Wang, K. Kobayashi, and Y. Yamaguchi. Long-range EEG phase synchro-

nization during an arithmetic task indexes a coherent cortical network simultaneously

measured by fMRI. Neuroimage, 27(3):553–63, 2005.

M. Moosmann, P. Ritter, I. Krastel, A. Brink, S. Thees, F. Blankenburg, B. Taskin, H. Obrig, and

A. Villringer. Correlates of alpha rhythm in functional magnetic resonance imaging and

near infrared spectroscopy. Neuroimage, 20(1):145–58, 2003.

141



Bibliography

R. Mukamel, H. Gelbard, A. Arieli, U. Hasson, I. Fried, and R. Malach. Coupling between

neuronal firing, field potentials, and fmri in human auditory cortex. Science, 309(5736):

951–4, 2005.

C. Mulert and L. Lemieux. EEG-fMRI : physiological basis, technique, and applications.

Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.

C. Mulert, L. Jager, S. Propp, S. Karch, S. Stormann, O. Pogarell, H. J. Moller, G. Juckel, and

U. Hegerl. Sound level dependence of the primary auditory cortex: Simultaneous measure-

ment with 61-channel EEG and fMRI. Neuroimage, 28(1):49–58, 2005.

C. Mulert, G. Leicht, P. Hepp, V. Kirsch, S. Karch, O. Pogarell, M. Reiser, U. Hegerl, L. Jager, H. J.

Moller, and R. W. McCarley. Single-trial coupling of the gamma-band response and the

corresponding BOLD signal. Neuroimage, 49(3):2238–47, 2010.

K. Mullinger and R. Bowtell. Combining EEG and fMRI. Methods Mol Biol, 711:303–26, 2011.

K. Mullinger, M. Brookes, C. Stevenson, P. Morgan, and R. Bowtell. Exploring the feasibility

of simultaneous electroencephalography/functional magnetic resonance imaging at 7T.

Magn Reson Imaging, 26(7):968–77, 2008a.

K. Mullinger, S. Debener, R. Coxon, and R. Bowtell. Effects of simultaneous EEG recording on

MRI data quality at 1.5, 3 and 7 tesla. Int J Psychophysiol, 67(3):178–88, 2008b.

K. J. Mullinger, J. Havenhand, and R. Bowtell. Identifying the sources of the pulse artefact in

EEG recordings made inside an MR scanner. Neuroimage, 71:75–83, 2013a.

K. J. Mullinger, S. D. Mayhew, A. P. Bagshaw, R. Bowtell, and S. T. Francis. Poststimulus under-

shoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus

neuronal activity. Proc Natl Acad Sci U S A, 110(33):13636–41, 2013b.

K. J. Mullinger, M. E. Chowdhury, and R. Bowtell. Investigating the effect of modifying the EEG

cap lead configuration on the gradient artifact in simultaneous EEG-fMRI. Front Neurosci,

8:226, 2014a.

K. J. Mullinger, S. D. Mayhew, A. P. Bagshaw, R. Bowtell, and S. T. Francis. Evidence that the

negative BOLD response is neuronal in origin: a simultaneous EEG-BOLD-cbf study in

humans. Neuroimage, 94:263–74, 2014b.

M. Negishi, M. Abildgaard, I. Laufer, T. Nixon, and R. T. Constable. An EEG (electroencephalo-

gram) recording system with carbon wire electrodes for simultaneous EEG-fMRI (functional

magnetic resonance imaging) recording. J Neurosci Methods, 173(1):99–107, 2008.

I. Neuner, T. Warbrick, J. Arrubla, J. Felder, A. Celik, M. Reske, F. Boers, and N. J. Shah. EEG

acquisition in ultra-high static magnetic fields up to 9.4 t. Neuroimage, 68:214–20, 2013.

142



Bibliography

I. Neuner, J. Arrubla, J. Felder, and N. J. Shah. Simultaneous EEG-fMRI acquisition at low, high

and ultra-high magnetic fields up to 9.4t: Perspectives and challenges. Neuroimage, 102(1):

71–79, 2014.

A. T. Newton, B. P. Rogers, J. C. Gore, and V. L. Morgan. Improving measurement of functional

connectivity through decreasing partial volume effects at 7T. Neuroimage, 59(3):2511–7,

2012.

R. K. Niazy, C. F. Beckmann, G. D. Iannetti, J. M. Brady, and S. M. Smith. Removal of fmri

environment artifacts from EEG data using optimal basis sets. Neuroimage, 28(3):720–37,

2005.

E. Niedermeyer and F. H. Lopes da Silva. Electroencephalography : basic principles, clinical

applications, and related fields. Lippincott Williams and Wilkins, Philadelphia, 5th edition,

2005.

T. Nierhaus, C. Gundlach, D. Goltz, S. D. Thiel, B. Pleger, and A. Villringer. Internal ventila-

tion system of MR scanners induces specific EEG artifact during simultaneous EEG-fMRI.

Neuroimage, 74:70–6, 2013.

J. Niessing, B. Ebisch, K. E. Schmidt, M. Niessing, W. Singer, and R. A. Galuske. Hemodynamic

signals correlate tightly with synchronized gamma oscillations. Science, 309(5736):948–51,

2005.

U. Noth, H. Laufs, R. Stoermer, and R. Deichmann. Simultaneous electroencephalography-

functional MRI at 3 t: an analysis of safety risks imposed by performing anatomical reference

scans with the EEG equipment in place. J Magn Reson Imaging, 35(3):561–71, 2012.

N. Novitski, I. Anourova, S. Martinkauppi, H. J. Aronen, R. Naatanen, and S. Carlson. Effects of

noise from functional magnetic resonance imaging on auditory event-related potentials in

working memory task. Neuroimage, 20(2):1320–8, 2003.

P. Nunez and R. Srinivasan. Electric fields of the brain. Oxford University Press, New York, 2nd

edition, 2006.

P. L. Nunez and R. B. Silberstein. On the relationship of synaptic activity to macroscopic

measurements: does co-registration of EEG with fMRI make sense? Brain Topogr, 13(2):

79–96, 2000.

W. J. Nuttall, R. H. Clarke, and B. A. Glowacki. Resources: Stop squandering helium. Nature,

485(7400):573–5, 2012.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank. Brain magnetic resonance imaging with contrast

dependent on blood oxygenation. Proc Natl Acad Sci U S A, 87(24):9868–72, 1990.

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil. Intrinsic

signal changes accompanying sensory stimulation: functional brain mapping with magnetic

resonance imaging. Proc Natl Acad Sci U S A, 89(13):5951–5, 1992.

143



Bibliography

S. Ogawa, R. S. Menon, D. W. Tank, S. G. Kim, H. Merkle, J. M. Ellermann, and K. Ugurbil. Func-

tional brain mapping by blood oxygenation level-dependent contrast magnetic resonance

imaging. a comparison of signal characteristics with a biophysical model. Biophys J, 64(3):

803–12, 1993.

J. Onton, M. Westerfield, J. Townsend, and S. Makeig. Imaging human EEG dynamics using

independent component analysis. Neurosci Biobehav Rev, 30(6):808–22, 2006.

D. Ostwald, C. Porcaro, and A. P. Bagshaw. Voxel-wise information theoretic EEG-fMRI feature

integration. Neuroimage, 55(3):1270–86, 2011.

B. N. Pasley, B. A. Inglis, and R. D. Freeman. Analysis of oxygen metabolism implies a neural

origin for the negative BOLD response in human visual cortex. Neuroimage, 36(2):269–76,

2007.

M. R. Patel, A. Blum, J. D. Pearlman, N. Yousuf, J. R. Ives, S. Saeteng, D. L. Schomer, and R. R.

Edelman. Echo-planar functional MR imaging of epilepsy with concurrent EEG monitoring.

AJNR Am J Neuroradiol, 20(10):1916–9, 1999.

L. Pauling and C. D. Coryell. The magnetic properties and structure of hemoglobin, oxyhe-

moglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A, 22(4):210–6, 1936.

G. Pfurtscheller and F. H. Lopes da Silva. Event-related EEG/MEG synchronization and desyn-

chronization: basic principles. Clin Neurophysiol, 110(11):1842–57, 1999.

R. Quian Quiroga and H. Garcia. Single-trial event-related potentials with wavelet denoising.

Clin Neurophysiol, 114(2):376–90, 2003.

M. E. Raichle and D. A. Gusnard. Intrinsic brain activity sets the stage for expression of

motivated behavior. J Comp Neurol, 493(1):167–76, 2005.

A. Rauch, G. Rainer, and N. K. Logothetis. The effect of a serotonin-induced dissociation

between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci U S

A, 105(18):6759–64, 2008.

C. Regenbogen, M. De Vos, S. Debener, B. I. Turetsky, C. Mossnang, A. Finkelmeyer, U. Ha-

bel, I. Neuner, and T. Kellermann. Auditory processing under cross-modal visual load

investigated with simultaneous EEG-fMRI. PLoS One, 7(12):e52267, 2012.

J. J. Riera and A. Sumiyoshi. Brain oscillations: ideal scenery to understand the neurovascular

coupling. Curr Opin Neurol, 23(4):374–81, 2010.

J. J. Riera, X. Wan, J. C. Jimenez, and R. Kawashima. Nonlinear local electrovascular coupling. i:

A theoretical model. Hum Brain Mapp, 27(11):896–914, 2006.

Petra Ritter, Robert Becker, Frank Freyer, and Arno Villringer. EEG Quality:The Image Acquisi-

tion Artefact, chapter 9, pages 153–171. Springer Berlin Heidelberg, 2010.

144



Bibliography

A. K. Roopun, S. J. Middleton, M. O. Cunningham, F. E. LeBeau, A. Bibbig, M. A. Whittington,

and R. D. Traub. A beta2-frequency (20-30 hz) oscillation in nonsynaptic networks of

somatosensory cortex. Proc Natl Acad Sci U S A, 103(42):15646–50, 2006.

M. J. Rosa, J. Daunizeau, and K. J. Friston. EEG-fMRI integration: a critical review of biophysical

modeling and data analysis approaches. J Integr Neurosci, 9(4):453–76, 2010a.

M. J. Rosa, J. Kilner, F. Blankenburg, O. Josephs, and W. Penny. Estimating the transfer function

from neuronal activity to BOLD using simultaneous EEG-fMRI. Neuroimage, 49(2):1496–509,

2010b.

P. Roschmann. Radiofrequency penetration and absorption in the human body: limitations to

high-field whole-body nuclear magnetic resonance imaging. Med Phys, 14(6):922–31, 1987.

S. Rothlubbers, V. Relvas, A. Leal, and P. Figueiredo. Reduction of EEG artefacts induced by

vibration in the MR-environment. Conf Proc IEEE Eng Med Biol Soc, 2013:2092–5, 2013.

S. Sadaghiani, K. Ugurbil, and K. Uludag. Neural activity-induced modulation of BOLD

poststimulus undershoot independent of the positive signal. Magn Reson Imaging, 27(8):

1030–8, 2009.

G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, and S. M. Smith.

Automatic denoising of functional MRI data: combining independent component analysis

and hierarchical fusion of classifiers. Neuroimage, 90:449–68, 2014.

G. Sammer, C. Blecker, H. Gebhardt, P. Kirsch, R. Stark, and D. Vaitl. Acquisition of typical EEG

waveforms during fMRI: Ssvep, lrp, and frontal theta. Neuroimage, 24(4):1012–24, 2005.

C. J. Scarff, A. Reynolds, B. G. Goodyear, C. W. Ponton, J. C. Dort, and J. J. Eggermont. Si-

multaneous 3-t fMRI and high-density recording of human auditory evoked potentials.

Neuroimage, 23(3):1129–42, 2004.

D. L. Schacter. EEG theta waves and psychological phenomena: a review and analysis. Biol

Psychol, 5(1):47–82, 1977.

R. Scheeringa, M. C. Bastiaansen, K. M. Petersson, R. Oostenveld, D. G. Norris, and P. Hagoort.

Frontal theta EEG activity correlates negatively with the default mode network in resting

state. Int J Psychophysiol, 67(3):242–51, 2008.

R. Scheeringa, P. Fries, K. M. Petersson, R. Oostenveld, I. Grothe, D. G. Norris, P. Hagoort, and

M. C. Bastiaansen. Neuronal dynamics underlying high- and low-frequency EEG oscillations

contribute independently to the human BOLD signal. Neuron, 69(3):572–83, 2011.

F. Schick. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol, 15

(5):946–59, 2005.

145



Bibliography

T. Schicke, L. Muckli, A. L. Beer, M. Wibral, W. Singer, R. Goebel, F. Rosler, and B. Roder. Tight

covariation of BOLD signal changes and slow erps in the parietal cortex in a parametric

spatial imagery task with haptic acquisition. Eur J Neurosci, 23(7):1910–8, 2006.

M. L. Scholvinck, A. Maier, F. Q. Ye, J. H. Duyn, and D. A. Leopold. Neural basis of global

resting-state fMRI activity. Proc Natl Acad Sci U S A, 107(22):10238–43, 2010.

J. Schummers, H. Yu, and M. Sur. Tuned responses of astrocytes and their influence on

hemodynamic signals in the visual cortex. Science, 320(5883):1638–43, 2008.

A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. Hu, and K. Ugurbil.

Sustained negative BOLD, blood flow and oxygen consumption response and its coupling

to the positive response in the human brain. Neuron, 36(6):1195–210, 2002.

A. Shmuel, M. Augath, A. Oeltermann, and N. K. Logothetis. Negative functional MRI response

correlates with decreases in neuronal activity in monkey visual area v1. Nat Neurosci, 9(4):

569–77, 2006.

M. Singh, S. Kim, and T. S. Kim. Correlation between BOLD-fMRI and EEG signal changes in

response to visual stimulus frequency in humans. Magnetic Resonance in Medicine, 49(1):

108–114, 2003.

W. Skrandies. Brain mapping of visual evoked activity–topographical and functional compo-

nents. Acta Neurol Taiwan, 14(4):164–78, 2005.

A. T. Smith, A. L. Williams, and K. D. Singh. Negative BOLD in the visual cortex: evidence

against blood stealing. Hum Brain Mapp, 21(4):213–20, 2004a.

S. M. Smith. Fast robust automated brain extraction. Hum Brain Mapp, 17(3):143–55, 2002.

S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. Behrens, H. Johansen-Berg,

P. R. Bannister, M. De Luca, I. Drobnjak, D. E. Flitney, R. K. Niazy, J. Saunders, J. Vickers,

Y. Zhang, N. De Stefano, J. M. Brady, and P. M. Matthews. Advances in functional and

structural MR image analysis and implementation as fsl. Neuroimage, 23(1):S208–19, 2004b.

R. C. Sotero and N. J. Trujillo-Barreto. Modelling the role of excitatory and inhibitory neuronal

activity in the generation of the BOLD signal. Neuroimage, 35(1):149–65, 2007.

R. C. Sotero and N. J. Trujillo-Barreto. Biophysical model for integrating neuronal activity, EEG,

fMRI and metabolism. Neuroimage, 39(1):290–309, 2008.

G. Srivastava, S. Crottaz-Herbette, K. M. Lau, G. H. Glover, and V. Menon. Ica-based procedures

for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner.

Neuroimage, 24(1):50–60, 2005.

B. Stefanovic, J. M. Warnking, and G. B. Pike. Hemodynamic and metabolic responses to

neuronal inhibition. Neuroimage, 22(2):771–8, 2004.

146



Bibliography

M. Steriade, D. Contreras, F. Amzica, and I. Timofeev. Synchronization of fast (30-40 hz)

spontaneous oscillations in intrathalamic and thalamocortical networks. J Neurosci, 16(8):

2788–808, 1996.

S. C. Strother. Evaluating fMRI preprocessing pipelines. IEEE Eng Med Biol Mag, 25(2):27–41,

2006.

C. Tallon-Baudry, O. Bertrand, F. Peronnet, and J. Pernier. Induced gamma-band activity

during the delay of a visual short-term memory task in humans. J Neurosci, 18(11):4244–54,

1998.

J. Tamminen, J. D. Payne, R. Stickgold, E. J. Wamsley, and M. G. Gaskell. Sleep spindle activity

is associated with the integration of new memories and existing knowledge. J Neurosci, 30

(43):14356–60, 2010.

T. S. Tenforde, C. T. Gaffey, B. R. Moyer, and T. F. Budinger. Cardiovascular alterations in macaca

monkeys exposed to stationary magnetic fields: experimental observations and theoretical

analysis. Bioelectromagnetics, 4(1):1–9, 1983.

D. J. Thomson. Spectrum estimation and harmonic-analysis. Proceedings of the Ieee, 70(9):

1055–1096, 1982.

C. Triantafyllou, R. D. Hoge, G. Krueger, C. J. Wiggins, A. Potthast, G. C. Wiggins, and L. L. Wald.

Comparison of physiological noise at 1.5 t, 3 t and 7T and optimization of fMRI acquisition

parameters. Neuroimage, 26(1):243–50, 2005.

R. Turner. How much cortex can a vein drain? downstream dilution of activation-related

cerebral blood oxygenation changes. Neuroimage, 16(4):1062–7, 2002.

R. Turner, P. Jezzard, H. Wen, K. K. Kwong, D. Le Bihan, T. Zeffiro, and R. S. Balaban. Functional

mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast epi.

Magn Reson Med, 29(2):277–9, 1993.

L. Tyvaert, C. Hawco, E. Kobayashi, P. LeVan, F. Dubeau, and J. Gotman. Different structures in-

volved during ictal and interictal epileptic activity in malformations of cortical development:

an EEG-fMRI study. Brain, 131(8):2042–60, 2008.

M. Ullsperger and D. Y. von Cramon. Subprocesses of performance monitoring: a dissociation

of error processing and response competition revealed by event-related fMRI and erps.

Neuroimage, 14(6):1387–401, 2001.

K. Uludag. To dip or not to dip: reconciling optical imaging and fMRI data. Proc Natl Acad Sci

U S A, 107(6):E23; author reply E24, 2010.

M. S. Vafaee and A. Gjedde. Spatially dissociated flow-metabolism coupling in brain activation.

Neuroimage, 21(2):507–15, 2004.

147



Bibliography

W. van der Zwaag, S. Francis, K. Head, A. Peters, P. Gowland, P. Morris, and R. Bowtell. fMRI at

1.5, 3 and 7T: characterising BOLD signal changes. Neuroimage, 47(4):1425–34, 2009a.

W. van der Zwaag, J. P. Marques, M. Hergt, and R. Gruetter. Investigation of high-resolution

functional magnetic resonance imaging by means of surface and array radiofrequency coils

at 7T. Magn Reson Imaging, 27(8):1011–8, 2009b.

C. E. Vasios, L. M. Angelone, P. L. Purdon, J. Ahveninen, J. W. Belliveau, and G. Bonmassar.

EEG/(f)MRI measurements at 7 tesla using a new EEG cap ("inkcap"). Neuroimage, 33(4):

1082–92, 2006.

S. Vulliemoz, D. W. Carmichael, K. Rosenkranz, B. Diehl, R. Rodionov, M. C. Walker, A. W.

McEvoy, and L. Lemieux. Simultaneous intracranial EEG and fMRI of interictal epileptic

discharges in humans. Neuroimage, 54(1):182–90, 2011.

A. R. Wade. The negative BOLD signal unmasked. Neuron, 36(6):993–5, 2002.

W. G. Walter, R. Cooper, V. J. Aldridge, W. C. McCallum, and A. L. Winter. Contingent negative

variation: An electric sign of sensorimotor association and expectancy in the human brain.

Nature, 203:380–4, 1964.

X. Wan, J. Riera, K. Iwata, M. Takahashi, T. Wakabayashi, and R. Kawashima. The neural basis

of the hemodynamic response nonlinearity in human primary visual cortex: Implications

for neurovascular coupling mechanism. Neuroimage, 32(2):616–25, 2006.

J. C. Whitman, L. M. Ward, and T. S. Woodward. Patterns of cortical oscillations organize

neural activity into whole-brain functional networks evident in the fMRI BOLD signal. Front

Hum Neurosci, 7:80, 2013.

K. Whittingstall and N. K. Logothetis. Frequency-band coupling in surface EEG reflects spiking

activity in monkey visual cortex. Neuron, 64(2):281–9, 2009.

A. Widmann, E. Schroger, and B. Maess. Digital filter design for electrophysiological data - a

practical approach. J Neurosci Methods, 250:34–46, 2015.

C. H. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. A. Koch, and R. S. MacLeod. Influence

of tissue conductivity anisotropy on EEG/MEG field and return current computation in

a realistic head model: a simulation and visualization study using high-resolution finite

element modeling. Neuroimage, 30(3):813–26, 2006.

K. J. Worsley and K. J. Friston. Analysis of fMRI time-series revisited–again. Neuroimage, 2(3):

173–81, 1995.

E. Yacoub, A. Shmuel, J. Pfeuffer, P. F. Van De Moortele, G. Adriany, P. Andersen, J. T. Vaughan,

H. Merkle, K. Ugurbil, and X. Hu. Imaging brain function in humans at 7 tesla. Magn Reson

Med, 45(4):588–94, 2001.

148



Bibliography

E. Yacoub, N. Harel, and K. Ugurbil. High-field fMRI unveils orientation columns in humans.

Proc Natl Acad Sci U S A, 105(30):10607–12, 2008.

W. X. Yan, K. J. Mullinger, M. J. Brookes, and R. Bowtell. Understanding gradient artefacts in

simultaneous EEG/fMRI. Neuroimage, 46(2):459–71, 2009.

W. X. Yan, K. J. Mullinger, G. B. Geirsdottir, and R. Bowtell. Physical modeling of pulse artefact

sources in simultaneous EEG/fMRI. Hum Brain Mapp, 31(4):604–20, 2010.

L. Yang, Z. Liu, and B. He. EEG-fMRI reciprocal functional neuroimaging. Clin Neurophysiol,

121(8):1240–50, 2010.

Q. X. Yang, W. Mao, J. Wang, M. B. Smith, H. Lei, X. Zhang, K. Ugurbil, and W. Chen. Manipula-

tion of image intensity distribution at 7.0 t: passive rf shimming and focusing with dielectric

materials. J Magn Reson Imaging, 24(1):197–202, 2006.

H. Yuan, T. Liu, R. Szarkowski, C. Rios, J. Ashe, and B. He. Negative covariation between task-

related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an

EEG and fMRI study of motor imagery and movements. Neuroimage, 49(3):2596–606, 2010.

H. Yuan, V. Zotev, R. Phillips, W. C. Drevets, and J. Bodurka. Spatiotemporal dynamics of the

brain at rest - exploring EEG microstates as electrophysiological signatures of BOLD resting

state networks. Neuroimage, 60(4):2062–2072, 2012.

149





List of Figures

1.1 Neuronal substrates of EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Potential generation and source modeling . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Scalp EEG recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Visual evoked potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Nuclear magnetization of a nuclei sample . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Spin excitation with a precessing magnetic field . . . . . . . . . . . . . . . . . . . 20

1.7 2D MRI acquisition block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.8 BOLD response timecourse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.9 Hardware for MRI data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.10 EPI sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.11 Substrates of EEG, fMRI and behavior . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.12 EEG-fMRI data integration approaches . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Functional paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Data analysis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 BOLD response functional localizer . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Responses to contrast-varying stimulation . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Responses to duration-varying stimulation . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Large draining vein segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Influence of large draining veins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

151



List of Figures

2.8 Typical fMRI independent components . . . . . . . . . . . . . . . . . . . . . . . . 54

2.9 Impact of ICA-asisted denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Computational models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Electromagnetic simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Validation of electromagnetic simulations . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Temperature measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Additional temperature measurement results . . . . . . . . . . . . . . . . . . . . 71

4.1 MRI data quality characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 fMRI data quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Compact EEG-fMRI setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 EEG motion artifact detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 M-RLS and oM-RLS coefficient timecourses . . . . . . . . . . . . . . . . . . . . . 99

5.4 Noise sensitivity of ribbon cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Noise spectra for different cable configurations . . . . . . . . . . . . . . . . . . . 102

5.6 Noise power for different cable configurations . . . . . . . . . . . . . . . . . . . . 103

5.7 EEG timecourses with gradient and pulse artifact correction . . . . . . . . . . . 104

5.8 Alpha power during eyes-open/eyes-closed . . . . . . . . . . . . . . . . . . . . . 105

5.9 Evoked potentials during visual stimulation . . . . . . . . . . . . . . . . . . . . . 106

5.10 Bold response to eyes-open/eyes-closed and visual stimulation . . . . . . . . . 107

5.11 Impact of M-RLS in time and frequency . . . . . . . . . . . . . . . . . . . . . . . . 108

5.12 Impact of AAS and M-RLS on band-specific signal power . . . . . . . . . . . . . 109

5.13 Impact of AAS and M-RLS on signal power and trial consistency . . . . . . . . . 110

5.14 Impact of motion artifact correction . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.15 EEG signal power characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.16 Impact of ICA denoising and motion artifact correction . . . . . . . . . . . . . . 113

152



List of Figures

5.17 Visual responses with artifact correction . . . . . . . . . . . . . . . . . . . . . . . 114

153





Publications arising from this thesis

Journal articles

Stimulus dependence of the negative BOLD response to visual stimulation in visual and auditory

cortical regions at 7T, João Jorge, Patrícia Figueiredo, Rolf Gruetter, Wietske van der Zwaag;

submitted

Towards high-quality simultaneous EEG-fMRI at 7 Tesla: detection and reduction of EEG

artifacts due to head motion, João Jorge, Frédéric Grouiller, Rolf Gruetter, Wietske van der

Zwaag, Patrícia Figueiredo; NeuroImage 120, 2015, pp.143-153

Simultaneous EEG–fMRI at ultra-high field: Artifact prevention and safety assessment, João Jorge,

Frédéric Grouiller, Özlem Ipek, Robert Stoermer, Christoph M Michel, Patrícia Figueiredo,

Wietske van der Zwaag, Rolf Gruetter; NeuroImage 105, 2015, pp.132-144

EEG-fMRI integration for the study of human brain function, João Jorge, Wietske van der Zwaag,

Patrícia Figueiredo; NeuroImage 102, 2014, pp.24-34

Conference abstracts

Improving simultaneous EEG-fMRI acquisitions at 7 Tesla: detection, characterization and

reduction of EEG artifacts due to head motion, João Jorge, Frédéric Grouiller, Rolf Gruetter,

Wietske van der Zwaag, Patrícia Figueiredo; oral presentation at the 2nd bi-annual BaCI

meeting, Utrecht, Netherlands, September 2015

Towards high-quality simultaneous EEG-fMRI acquisitions at 7 Tesla: detection and reduction

of EEG artifacts due to head motion in B0, João Jorge, Frédéric Grouiller, Wietske van der Zwaag,

Rolf Gruetter, Patrícia Figueiredo; e-poster presentation at the 23r d Annual ISMRM Meeting,

Toronto, Canada, May 2015

Contrast and duration dependence of the negative BOLD response to visual stimulation in visual

and auditory cortical regions at 7T, João Jorge, Patrícia Figueiredo, Rolf Gruetter, Wietske van

155



Publications arising from this thesis

der Zwaag; poster presentation at the 23r d Annual ISMRM Meeting, Toronto, Canada, May

2015

Mapping epileptic networks using simultaneous EEG-MRI at ultra-high field, Frédéric Grouiller,

João Jorge, Francesca Pittau, Pascal Martelli, Wietske van der Zwaag, Christoph M Michel,

Serge Vulliémoz, Maria I Vargas, François Lazeyras; poster presentation at the 23r d Annual

ISMRM Meeting, Toronto, Canada, May 2015

RF safety assessment of simultaneous EEG-fMRI at 7T MR, Özlem Ipek, João Jorge, Frédéric

Grouiller, Wietske van der Zwaag, Lijing Xin, Rolf Gruetter; poster presentation at the 23r d

Annual ISMRM Meeting, Toronto, Canada, May 2015

An optimized setup for simultaneous EEG-fMRI at ultra-high field in a head-only 7T scanner,

João Jorge, Frédéric Grouiller, Robert Stoermer, Christoph M Michel, Patrícia Figueiredo,

Wietske van der Zwaag, Rolf Gruetter; poster presentation at the 22nd Annual ISMRM Meeting,

Milan, Italy, May 2014

Intra and cross-modal negative BOLD responses in grey matter regions and large draining

veins under contrast-varying visual stimulation, João Jorge, Patrícia Figueiredo, Rolf Gruetter,

Wietske van der Zwaag; poster presentation at the Annual SfN Meeting, San Diego, USA,

November 2013

Intra and cross-modal negative BOLD response to contrast-varying visual stimuli, João Jorge,

Patrícia Figueiredo, Rolf Gruetter, Wietske van der Zwaag; oral presentation at the 29th Annual

ESMRMB Scientific Meeting, Lisbon, October 2012

156



 

Curriculum Vitae 
 
 

PERSONAL 
INFORMATION 

João Pedro Forjaco Jorge 
 (41) 21 6930582 

 joao.jorge@epfl.ch 

Sex Male | Date of birth 28/04/1987 | Nationality Portuguese  
 
 

EDUCATION  

 

 

 

 
WORK EXPERIENCE  

 

 

 
PERSONAL SKILLS  

 

 

 

 

Jul 2011 onwards Doctoral Program in Biomedical Engineering 
  (not yet completed) 
École Polytechnique Fédérale de Lausanne, Switzerland 
Instituto Superior Técnico, Universidade de Lisboa, Portugal 

▪ Functional magnetic resonance imaging, electroencephalography, neuroscience 

2008 – 2010 Integrated Master in Biomedical Engineering (2nd Cycle) 
  Master’s degree (final grade: 19 out of 20) 
Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal 

▪ Physics, mathematics, chemistry, biology, physiology, computer programming 

2005 – 2008 Integrated Master in Biomedical Engineering (1st Cycle) 
  Bachelor’s degree (final grade: 18 out of 20) 
Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal 

▪ Physics, mathematics, chemistry, biology, physiology, computer programming 

Jan 2011 – Jun 2011 Researcher (Research Grant) 
ISR – Department of Electrical and Computer Engineering, Instituto Superior Técnico 

▪ Brain imaging, structural and functional MRI data processing 

Mar 2009 – Dec 2010 Researcher (Scientific Initiation Grant) 
ICIST – Department of Civil Engineering and Architecture, Instituto Superior Técnico 

▪ MRI data processing, computational modelling, finite element analysis in biomechanics 

Mother tongue Portuguese 

Other language(s) English (fluent),     French (basic) 

Computer skills ▪ Familiarity with Matlab, C, Mathematica, and EEG and fMRI data processing tools such as 
EEGLab, FSL and SPM 

Other skills ▪ Acoustic/electric guitar, as a hobby 

Driving licence ▪ Categories B1 and B 
157



   Curriculum Vitae  João Jorge  

 

 
PUBLICATIONS  

 
 

 

 

 

Journal articles 
(first author) 

▪ Stimulus dependence of the negative BOLD response to visual stimulation in visual and auditory 
cortical regions at 7T, Jorge J,  Figueiredo P,  Gruetter R,  van der Zwaag W, submitted 

▪ Towards high-quality simultaneous EEG-fMRI at 7 Tesla: detection and reduction of EEG artifacts 
due to head motion, Jorge J, Grouiller F,  Gruetter R,  van der Zwaag W, Figueiredo P, 
NeuroImage 120, 2015, pp.143-153 

▪ Simultaneous EEG–fMRI at ultra-high field: Artifact prevention and safety assessment, Jorge J, 
Grouiller F, Ipek Ö, Stoermer R, Michel CM, Figueiredo P, van der Zwaag W, Gruetter R, 
NeuroImage 105, 2015, pp.132-144 

▪ EEG-fMRI integration for the study of human brain function, Jorge J, van der Zwaag W, 
Figueiredo P,  NeuroImage 102, 2014, pp.24-34 

▪ Signal fluctuations in fMRI data acquired with 2D-EPI and 3D-EPI at 7 Tesla, Jorge J, Figueiredo 
P, van der Zwaag W, Marques JP, Magnetic Resonance Imaging 31(2), 2013, pp.212–220 

▪ Finite element simulations of a hip joint with femoroacetabular impingement, Jorge JP, Simões 
FM, Pires EB, Rego PA, Tavares DG, Lopes DS, Gaspar A,  Computer Methods in Biomechanics 
and Biomedical Engineering 17(11), 2014, pp.1275-1284 

Journal articles 
(co-author) 

▪ Presurgical brain mapping in epilepsy using simultaneous EEG and functional MRI at ultra-high 
field: feasibility and first results,  Grouiller F, Jorge J, Pittau F, van der Zwaag W, Michel CM, 
Vulliémoz S, Gruetter R, Vargas MI, Lazeyras F, submitted 

▪ Fourier modelling of the BOLD response to a breath-hold task: optimization and reproducibility, 
Pinto J, Jorge J, Sousa I, Vilela P, Figueiredo P, submitted 

▪ Ballistocardiogram artefact correction taking into account physiological signal preservation in 
simultaneous EEG-fMRI, Abreu R, Leite M, Jorge J, Grouiller F, van der Zwaag W, Leal A, 
Figueiredo P, submitted 

▪ Physiological noise in human cerebellar fMRI, van der Zwaag W, Jorge J, Butticaz D, Gruetter R, 
MAGMA, DOI 10.1007/s10334-015-0483-6 

▪ Femoroacetabular impingement of the cam type: Finite element simulations and comparison 
with a non-cam hip, Simões F, Tavares D, Jorge J, Pires E, Rego P, Journal of Biomechanics 45, 
2012, pp.S270 

Conference articles 
 

▪ Sources of signal fluctuations in functional magnetic resonance imaging at 7 Tesla, Jorge JPF, 
Figueiredo P, van der Zwaag W, Marques JP, 1st Portuguese Meeting in Bioengineering 
(ENBENG), March 2011 

▪ Finite element studies of a hip joint with femoroacetabular impingement of the Cam type, João 
Jorge, Fernando Simões, Eduardo Borges Pires, Daniel Lopes, Paulo Rego, 2010, 9th 
International Symposium Computer Methods in Biomechanics and Biomedical Engineering 
2010 

▪ A three-dimensional geometric model of a hip joint presenting a femoral head deformity based on 
radial magnetic resonance arthrography images, Daniel Lopes, João Jorge, Eduardo Borges 
Pires, Fernando Simões, Paulo Rego, 2009, VIPIMAGE 2009 

▪ Pressão de contacto intra-articular no conflito femuro-acetabular, estudo tridimensional por 
elementos finitos, Paulo Rego, João Jorge, Fernando Simões, Eduardo Borges Pires, Daniel 
Lopes, P. Pinto, A. Spranger, F. Oliveira, A. Gaspar, Jacinto Monteiro, 2010, Revista Portuguesa de 
Ortopedia e Traumatologia, XXX Congresso Nacional de Ortopedia e Traumatologia 
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Conference participations 
 

▪ Improving simultaneous EEG-fMRI acquisitions at 7 Tesla: detection, characterization and 
reduction of EEG artifacts due to head motion, J Jorge, F Grouiller, R Gruetter, W van der Zwaag, 
P Figueiredo. Oral presentation at the 2nd bi-annual BaCI meeting, Utrecht, Netherlands, 
September 2015 

▪ Towards high-quality simultaneous EEG-fMRI acquisitions at 7 Tesla: detection and reduction of 
EEG artifacts due to head motion in B0, J Jorge, F Grouiller, W van der Zwaag, R Gruetter, P 
Figueiredo. E-poster presentation at the 23rd Annual ISMRM Meeting, Toronto, Canada, May 
2015 

▪ Contrast and duration dependence of the negative BOLD response to visual stimulation in visual 
and auditory cortical regions at 7T, J Jorge, P Figueiredo, R Gruetter, W van der Zwaag. Poster 
presentation at the 23rd Annual ISMRM Meeting, Toronto, Canada, May 2015 

▪ Mapping epileptic networks using simultaneous EEG-MRI at ultra-high field, F Grouiller, J Jorge, 
F Pittau, P Martelli, W van der Zwaag, C M Michel, S Vulliémoz, M I Vargas, and F Lazeyras. 
Poster presentation at the 23rd Annual ISMRM Meeting, Toronto, Canada, May 2015 

▪ RF safety assessment of simultaneous EEG-fMRI at 7T MR, Ö Ipek, J Jorge, F Grouiller, W van der 
Zwaag, L Xin, and R Gruetter.  Poster presentation at the 23rd Annual ISMRM Meeting, Toronto, 
Canada, May 2015 

▪ An optimized setup for simultaneous EEG-fMRI at ultra-high field in a head-only 7T scanner, J 
Jorge,  F Grouiller, R Stoermer, C M Michel, P Figueiredo, W van der Zwaag, R Gruetter. Poster 
presentation at the 22nd Annual ISMRM Meeting, Milan, Italy, May 2014 

▪ Intra and cross-modal negative BOLD responses in grey matter regions and large draining veins 
under contrast-varying visual stimulation, J Jorge, P Figueiredo, R Gruetter, W van der Zwaag. 
Poster presentation at the Annual SfN Meeting, San Diego, USA, November 2013 

▪ Intra and cross-modal negative BOLD response to contrast-varying visual stimuli, J Jorge, P 
Figueiredo, R Gruetter, W van der Zwaag. Oral presentation at the 29th Annual ESMRMB 
Scientific Meeting, Lisbon, October 2012 

▪ Improving the characterization of the BOLD response to breath-hold challenges, J Jorge, P Vilela,
W van der Zwaag, P Figueiredo. Poster presentation at the 18th Annual HBM Meeting, Beijing, 
June 2012 

▪ High temporal resolution and physiological noise removal improve BOLD detection in brainstem 
and auditory cortex at 7T, W van der Zwaag, M Narsude, J Jorge, J Marques, R Gruetter. E-
poster presentation at the 20th Annual ISMRM Meeting, Melbourne, Australia, May 2012 

▪ Correlated noise correction in 2D and 3D fMRI at 7 Tesla, J Jorge, P Figueiredo, W van der 
Zwaag, M Narsude, J Marques. Poster presentation at the 17th Annual HBM Meeting, Quebec 
City, Canada, June 2011 

▪ Sources of signal fluctuations in single-shot 2D EPI and segmented 3D EVI acquisitions for fMRI at 
7T, J Jorge, P Figueiredo, W van der Zwaag, M Narsude, J Marques. E-poster presentation at the 
19th Annual ISMRM Meeting, Montréal, Canada, May 2011 

Article peer-reviewing 
 

▪ NeuroImage 

▪ Journal of Neuroscience Methods 

Master’s Thesis 
 

▪ Sources of signal fluctuations in fMRI at 7 Tesla (grade: 20/20), 2010, Instituto Superior Técnico 
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▪ Carlos Lima Award (honorable mention) attributed to Pressão de contacto intra-articular no 
conflito femuro-acetabular, estudo tridimensional por elementos finitos, P. Rego, J.P. Jorge, F.M. 
Simões, E.B. Pires, D.S. Lopes, P. Pinto, A. Spranger, F. Oliveira, A. Gaspar, J. Monteiro, 2010, 
Revista Portuguesa de Ortopedia e Traumatologia, XXX Congresso Nacional de Ortopedia e 
Traumatologia 

▪ Study award scholarship from Instituto Superior Técnico for exceptional academic 
performance in the academic year of 2007-2008 

▪ Study award scholarship from Instituto Superior Técnico for exceptional academic 
performance in the academic year of 2005-2006 
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