
SEMESTER PROJECT
Major in Information Technologies

GIIN

Graph-based Image Inpainting

Student
Michaël Defferrard

Professor
Pierre Vandergheynst

Supervisors
Johan Paratte

Nathanaël Perraudin
Yann Schoenenberger

Proposed by and conducted at the EPFL LTS2 laboratory.

February 12, 2015

GIIN: Graph-based Image Inpainting

Contents
1 Introduction 3

2 Background 4

3 Proposed method 5
3.1 Patches . 6
3.2 Non-local graph . 6
3.3 Node insertion . 8
3.4 Structure detector . 8
3.5 Patch priority . 10
3.6 Information propagation . 12
3.7 Global optimization . 12
3.8 Algorithm . 13

4 Results 13
4.1 Assumption validation . 14
4.2 Inpainting . 15
4.3 Graph quality . 16

5 Discussion 17

6 Conclusion 18

2/ 19

GIIN: Graph-based Image Inpainting

1 Introduction

This report presents the work accomplished during an eleven ECTS semester project
at EPFL LTS2 laboratory1. It is part of the major in Information Technologies
curriculum. The project goal was to explore the applications of graphs for image
inpainting. The main idea of this work was to use a non-local patch graph of the
image as the underlying structure to address the inpainting problem of large missing
chunks.

The objectives of the project were the following:

1. First a literature study was to be conducted. The following papers were used:
[5] for patch-based methods, [6] for image inpainting using a non-local patch
graph, [3] and [4] for the priority scheme and [1] for a non-linear dimensionality
reduction (NLDR) tool which was finally not used but nonetheless considered.
[7] was used as an introduction to signal processing on graphs.

2. We then wanted to show that a non-local patch graph indeed possesses enough
information about the image to convincingly inpaint it.

3. Once we proved it, we could work out a way to reconstruct the original graph
from a partial observation. We devised and implemented an inpainting scheme
based on the reconstruction of a non-local patch graph. The implementation
was done with MATLAB using the Graph Signal Processing Toolbox2 and the
UNLocBoX3, a convex optimization toolbox. The actual implementation of
the complete algorithm can be found on our GitLab4.

4. We finally wanted to assess the quality of the reconstructed graph.

This writing is meant to be a report of the work accomplished during the project as
well as a base for a following paper to be published. It is organized as follow: we
restate the problem and give some background information in section 2. Our method
is presented in section 3. Section 4 presents some experimental results, followed by
a discussion in section 5. We finally conclude in section 6.

1The laboratory homepage is accessible at http://lts2www.epfl.ch/.
2The GSPbox is developed and maintained by the LTS2 group. Code and documentation are

available at https://lts2research.epfl.ch/gsp/.
3The UNLocBoX is developed and maintained by the LTS2 group. Code and documentation

are available at http://unlocbox.sourceforge.net/.
4Our GitLab is accessible through https://lts2srv1.epfl.ch/gitlab/. The code is private

for now but we intend to publish it soon on GitHub under a free software license.

3/ 19

http://lts2www.epfl.ch/
https://lts2research.epfl.ch/gsp/
http://unlocbox.sourceforge.net/
https://lts2srv1.epfl.ch/gitlab/

GIIN: Graph-based Image Inpainting

2 Background

Image inpainting is the problem of finding missing parts of an image using only the
available content and some prior information. The hallucinated area should look
visually plausible to the human eye. Inpainting is thus a difficult image processing
problem involving knowledge about image models and regularization techniques. It
has gained in importance with the growth of the digital photography market as it
allows users to remove disturbing elements from their pictures.

Several researchers have previously considered texture synthesis as a way to fill
large regions with repetitive two-dimensional textural patterns. They developed and
applied alternative exemplar-based techniques which tackle the lack of an explicit
mathematical texture model. Theses textures could be repeated ad infinitum given
a small sample of pure texture. While these methods are effective to inpaint a hole in
a single texture, they fail to reconstruct transitions between such textures. Region
boundaries are indeed a complex product of mutual influences between different
textures.

Geometry-driven algorithms try to find a good continuation of the hole surround-
ing, effectively propagating linear structures, called isophotes, into the target region.
Theses techniques however lack support for texture information and are consequently
unable to reproduce them. The blur introduced by the diffusion also becomes no-
ticeable when filling larger regions. They are thus hardly suitable for wide area
inpainting.

Few attempts were made to conciliate both geometry and texture-based approaches
in an unified framework. [4] presented an algorithm which combines the strengths of
both approaches into a single, efficient algorithm. They use linear structures to in-
fluence the fill order of their exemplar-based texture synthesis algorithm. The result
is an algorithm that has the efficiency and qualitative performance of exemplar-
based texture synthesis, but which also respects the image constraints imposed by
surrounding linear structures.

Natural images have an important property: they are highly redundant. For small
enough blocks, chances are high that a bunch of similar patches can be found all
over the image. This redundancy is widely exploited by compression algorithms. It
can also be used to infer the pixel values of an unknown patch, given that we have
some information to match it to a cluster of similar patches.

A framework for image inpainting proposed by [6] relies on information diffusion on
non-local patch graph. The recent trend in non-local methods is due to the success of
the Non-Local Means denoising filter [2]. Their intuition is simple : similar-looking
patches are more likely to represent the same phenomenon, and hence should be used

4/ 19

GIIN: Graph-based Image Inpainting

when averaging pixels without considerations to their spatial distance to obtain an
efficient denoising process that also respects image textures. The use of graphs
makes the framework more flexible than other non-local formulations, allowing for
example to mix spatial and non-local constraints. The strength of the method is
that it combines exemplar-based (similarity between patches) and diffusion-based
(heat flow on graph) techniques for image inpainting and exploits the redundancy
of image data, finding a sparse representation (as for compression).

In this work, we present an algorithm which combines the strengths of the afore-
mentioned methods. We use a non-local patch graph representation of the image
for the flexibility it offers. As [4], we pay special attention to linear structures and
use them to influence the fill order. Instead of using a conventional edge detector,
we will introduce a novel approach which takes advantage of the non-local graph
representation. While [6] recomputes the graph after each numerical iteration (heat
flow), we continuously update our graph, leading to a faster algorithm.

3 Proposed method

A sketch of our algorithm goes as follow: first, given an input image I, the user
selects a target region, Ω, to be removed and filled. We then construct a non-local
patch graph from the known patches of the source region, Φ, defined as the en-
tire image minus the target region (Φ = I − Ω). The connection weight between
two patches is defined by some measure of their similarity. Unknown patches are
completely disconnected. Then start a sequential process: those among the discon-
nected patches who possess a sufficient amount of information (i.e. some fraction
of the pixels they represent have a value) are compared against all known and con-
nected patches and inserted into the graph with appropriate weights. The graph
is thus sequentially completed, while no pixels have actually been inpainted. To
allow further graph completion, we must indeed inpaint unknown pixels to recover
enough information about a patch to compare it to the others. A basic approach
is to select an unknown patch and copy its most similar known patch over. The
selection of the patch is given by a priority measure which objective is to favor the
most constrained areas. Our algorithm is thus an iterating process between node
insertion and pixel inpainting which indeed combine an exemplar-based synthesis
with a geometry-based priority assignment. We know present in greater details the
aforementioned steps.

5/ 19

GIIN: Graph-based Image Inpainting

3.1 Patches

Assume we are given an image I defined on a domain Ω ⊂ R2, usually a rectangle,
with values in R (for grayscale images) or R3 (for color images). We write x,y ∈
Ω×Ω two pixel locations. We define a patch extraction operator R who returns the
pixels into a squared

√
d×
√
d neighborhood around x and stacks them in a vector:

R(x) = (I(x1), ..., I(xd))T ∈ Rd. (1)

Given two patches, we define the distance between them as the usual squared Eu-
clidean distance

d(R(x), R(y)) = ‖R(x)−R(y)‖2
2 =

d∑
i=1

(R(x)i −R(y)i)2 . (2)

According to [5], the visual similarity between two patches normalized in [0,1] (rang-
ing from no similarity to identical) can be computed given the distance between them
by a simple exponential filtering:

w(x,y) = e−
d(x,y)
h2 . (3)

The parameter h controls the decay of the exponential function. A small h defines
a selective filters (only very similar patches will have a significant similarity score)
while a large h will attribute a more uniform importance to all the patches. This
parameter should be chosen such to flatten the weights distribution.

3.2 Non-local graph

The first step of our method is to construct a graph representation which models
the relationship between the patches extracted from an image. A weighted graph
G = {E, V, w} consists of a set of vertices V , a set of edges E, and a weight function
w : E → R+ which assigns a positive weight to each edge. Each pixel x of the image
is represented by a vertex u whose coordinates in the non-local space are given by
the patch R(x). Each pair of vertices u, v is connected by an edge e = (u, v) whose
weight is obtained by computing the similarity function w(x,y) := w(u, v). This
weight is positive and tends to zero when patches are highly dissimilar. In practice
we only connect the K nearest neighbors (KNN)5 to reduce the number of edges,

5Another option is to set weights that are smaller to some ε to zero.

6/ 19

GIIN: Graph-based Image Inpainting

thus the complexity of further filtering. As this approximation could potentially
create a directed graph, we further symmetrize the weight matrix: W = W+WT

2 .

The generated graph is termed non-local as it encodes the non-local relationship be-
tween patches. The similar patches should be well connected together while weakly
connected to the others, effectively forming clusters of patches belonging to a par-
ticular texture. The patches located at the transition between textures are ideally
mildly connected to both clusters.

There will be three kind of signals on this graph:

1. The pixel position, or coordinates, x ∈ R2.

2. The value I(x) ∈ R of the pixel located at x.

3. The pixel values R(x) ∈ Rd of a patch centered at x.

4. The priorities Pdata(i) ∈ R, Pconfidence(i) ∈ R and P (i) ∈ R.

To favor connections to closer patches we further introduce the center pixel location
x into the patch R(x), effectively introducing some locality into the graph construc-
tion:

Rα(x) = (R(x), αx)T = (I(x1), ..., I(xd), αx)T ∈ Rd+2. (4)

Weights who include both distance and similarity measures between patches may be
obtained from Eq. (3) with this updated patch definition. The parametric amount of
local information will favor the emergence of grid-like connections on large uniform
texture rather than random-like connections that would otherwise arise from the
KNN approximation.

Figure 1: Example of the connections of a non-local patch graph.

7/ 19

GIIN: Graph-based Image Inpainting

Finally, vertices representing patches who contain unknown pixels are not connected
to any other vertex during the construction of the graph. This graph is initially
disconnected and will ultimately be fully connected as these vertices are sequentially
inserted.

Fig. 1 shows the graph connections of an example binary image. Each dot represents
a pixel: there are black and white pixels. The red dots mark unknown pixels, i.e.
pixels of the target area ω. Note that all vertices i which patch R(x(i)) contains
an unknown value are disconnected (patch size d = 25). Patches composed solely
of white or black pixels are tightly connected, forming two distinct texture clusters.
Connections at the boundary between those textures form "lines" as similar patches
are arranged horizontally.

3.3 Node insertion

All the unconnected nodes which represent unknown patches (the red dots in Fig. 1)
are candidates for insertion into the graph. In the end, all the nodes will be con-
nected. To compute the weights of a node we need some information about the
represented patch. We thus select for insertion the patches who at least a fraction
L of their area is known, i.e. at least a fraction L of the pixels they represent have
a value. We then construct a comparison mask M ∈ {0, 1}d where ones represent
known pixels and zeros unknown pixels. Note that ‖M‖1 ≥ L. Each selected patch
x is compared against all known and connected patches y (the black and white dots
in Fig. 1) by a masked squared Euclidean distance

d(R(x), R(y)) = ‖MR(x)−R(y)‖2
2 =

d∑
i=1

(MiR(x)i −R(y)i)2 . (5)

The selected nodes are then connected to the K closest known nodes. Weights are
given by Eq. (3).

3.4 Structure detector

The goal of the structure detector is to discriminate a pixel who is part of a linear
structure from a pixel who is part of a texture. The idea is to observe how the
vertex u representing the pixel i is connected. If the set {Eu|w(u, v) ≥ 0} of edges
are spread in all directions around the vertex, chances are that the pixel is involved
in a texture. If in contrary the vertex connections form a line, the pixel is most
probably part of some structure.

8/ 19

GIIN: Graph-based Image Inpainting

Figure 2: Tig of four vertices on a binary image with a vertical edge.

To observe the connection of the vertex u we low-pass filter a signal si(j) = δij,
where δij denotes the Kronecker delta. The filter is defined by the heat kernel

g(x) = e−τ
x

λmax (6)

where τ is a scaling factor and λmax denotes the largest Laplacian eigenvalue. The
filtered signal Tig, where Ti is a generalized translation operator applied to the filter
g, is a representation of the energy diffusion. Fig. 2 shows how the Kronecker delta
energy spreads over a simple image.

A way to assess the type of connections is to measure the filtered signal sparsity

σ(i) = ‖Tig‖1

‖Tig‖2
= C

‖Tig‖2
(7)

where C is a constant equal to one6. A sparse signal means that the energy has
diffused along a well-defined direction which is due to strong edges between vertices
along the structure direction (see Fig. 3a). A non-sparse signal means that the
energy has spread all over the area which is due to the tight network of weak edges
in a texture area (see Fig. 3b).

We should synthesize linear structures first, realizing the "Connectivity Principle".
The (eventual) texture boundary is the most constrained part of the target region,

6‖Tig‖1 is a measure of the amount of energy. As ‖δij‖1 = 1 and heat diffusion only displaces
energy, the energy of the filtered signal is still one.

9/ 19

GIIN: Graph-based Image Inpainting

(a) Tig of a pixel i which is part of
a structure.

(b) Tig of a pixel i which is part of
a texture.

Figure 3: Structure detector examples.

it should be filled first. To give higher priority to linear structures we define the
data priority term as

Pdata(i) = 1
σ(i) = ‖Tig‖2. (8)

Fig. 4 shows the value of this priority over all the pixels of a natural image and the
influence of the λ parameter.

3.5 Patch priority

Our algorithm performs the synthesis task through a best-first filling strategy that
depends entirely on the priority values that are assigned to each patch on the fill
front.

While the most constrained part should be prioritized, a patch which half the pixels
are known is more likely to be correctly identified that one with only one known
pixel. The known pixels of a patch on the border of the fill region are certainly
more reliable that the hallucinated pixels in the middle of the fill region. In order
to fill first the parts we are most confident about, we should take into account the
confidence of the information we have about a patch.

Our confidence measure is defined as

Pconfidence(Ψx) =

∑
y∈Ψx

Pconfidence(y)

|Ψx|
(9)

where Ψx is the patch centered at the point x and |Ψx| its area. During initialization,
the function Pconfidence(x) is set to Pconfidence(x) = 1 ∀x ∈ Φ and Pconfidence(x) =

10/ 19

GIIN: Graph-based Image Inpainting

(a) Heat kernel width λ = 100.

(b) Heat kernel width λ = 500.

Figure 4: ‖Tig‖2 of all the pixels of a natural image.

0 ∀x ∈ Ω. When the patch Φx is filled, the pixel confidences are updated by

P t+1
confidence(y) =

{
Pconfidence(Ψx) for updated pixels
P t
confidence(y) for untouched pixels ∀y ∈ Ψx. (10)

Note that depending on the chosen information propagation scheme (see section 3.6),
not all pixels of a patch are updated when the patch is filled. As filling proceeds,
confidence values decay, indicating that we are less sure of the colour values of pixels
near the center of the target region.

The fill priority of the patch i, which is biased toward patches which are on the
continuation of strong edges (data term) and which are surrounded by reliable pixels
(confidence term), is given by

P (i) = Pdata(i) · Pconfidence(i). (11)

Note that if we drop the structure-based priority Pdata(i), we default to the "onion
peel" strategy which consist of filling the missing region from the edge inward.

11/ 19

GIIN: Graph-based Image Inpainting

3.6 Information propagation

After computation of the priorities, the highest priority patch Ψx̂ is selected and
filled with data extracted from the source region Φ.

To avoid the blur inevitably introduced by diffusion, we propagate information by
direct sampling of the source region, i.e. we leverage exemplar-based synthesis.
Using our graph representation, we search for that patch which is the most similar
to Ψx̂:

R = R(y) | y = arg max
y

w(x̂,y). (12)

In the spirit of the NL-means algorithm presented in [2], we could produce a denoised
example patch of the texture by a weighted average of the connected, thus similar,
patches:

R =
∑

y
w(x̂,y) ·R(y). (13)

We however observed that the non-local averaging does introduce some blur.

Having found the source exemplar Ψŷ, we update the pixels of the target Ψx̂. We
have here two options:

1. Overwrite: Overwrite all the pixels, even those who already have a color
value. R(x̂) = R.

2. Preserve: Only give a value to unknown pixels. Preserve the values of the
pixels that were already hallucinated. R(x̂) = M · R + M · R(x̂) where M is
a mask which indicates unknown pixels by ones.

This is a parameter of the algorithm. From our experience, the overwrite mode
often gives better visual results.

This suffices to achieve the propagation of both structure and texture information
from the source Φ to the target region Ω, one patch at a time.

3.7 Global optimization

An optional final step would be a global optimization which minimizes the TV or
Thikonov norm (the prior term) under the constraint of resemblance to the observed
image (the data term). This is the idea of [6], which interleaved this global opti-
mization step with a graph construction step. We however observed that any further
manipulation of the pixel values that does not explicitly depend upon statistics of

12/ 19

GIIN: Graph-based Image Inpainting

the source region is more likely to degrade visual similarity between the filled region
and the source region, than to improve it.

3.8 Algorithm

To resume, our algorithm is composed of the following steps:

1. Construct the non-local patch graph from the entirely known patches Λ. The
unknown patches Υ are ignored, their vertices are disconnected.

2. Loop until all unknown patches are processed:

(a) Select the patches from the set Υ who contain enough information to be
matched.

(b) Compare those patches to all known patches. Select the K strongest
e(u, v) and insert the new node in the graph.

(c) Update the priorities Pdata and Pconfidence.

(d) Select the highest priority patch x̂ = arg maxx P (x) = arg maxPdata(x) ·
Pconfidence(x).

(e) Update the pixel values of the selected patch x̂ using one the presented
scheme.

3. Optionally perform a global optimization.

4 Results

The first result we present is the assumption our method makes about the non-local
patch graph representation. We show that it indeed possesses enough information
about the image, which was an objective of this work. We then show some recon-
structions performed by our algorithm and discuss the effects of parameters and the
reasons of failures. We finally expose a quality measure of the reconstructed graph.

13/ 19

GIIN: Graph-based Image Inpainting

4.1 Assumption validation

We first wanted to verify the assumption that a non-local patch graph indeed possess
enough information about the image to allow a convincing reconstruction. While [6]
already showed that non-local patch graphs indeed possess the necessary informa-
tion, we wanted to try it on our own with our tools. For this purpose, we generated
a patch graph from the original image. We then masked some part of the image
without disconnecting any vertices. We then tried to inpaint the missing region
by minimizing the norm (the prior term) of the pixel signal under the constraint
of resemblance to the known parts of the image (the data term). See [6] for fur-
ther details. Energy will flow from the known patches toward the unknown ones by
diffusion, effectively solving the heat equation. Fig. 5 shows an example of such a
reconstruction, which indeed demonstrate that the graph contain enough informa-
tion to convincingly hallucinate the missing pixels. We are obviously not going to
be able to generate this graph in a real setting. The problem is to reconstruct a
graph as close as possible as the graph derived from the original image.

Figure 5: Inpainting using a graph constructed from the original image.

14/ 19

GIIN: Graph-based Image Inpainting

4.2 Inpainting

Fig. 6 shows a good example of inpainting with its associated priorities while Fig. 7
shows a bad one. A comparison of the hallucinated area with the shape of the
structure priority suggests that the fill order has a great impact on the quality of
the reconstructed image. While we only show a single example here, we made several
such observations during experimentations with parameter values. More experiences
should be conducted to determine the optimal set of parameters and their impact.

(a) Images. (b) Priorities.

Figure 6: Good example.

(a) Images. (b) Priorities.

Figure 7: Good example.

15/ 19

GIIN: Graph-based Image Inpainting

4.3 Graph quality

A useful indication of the performance of our reconstruction algorithm would be a
measure of the reconstructed graph quality. An idea is to compare this graph with
the one derived from the original image and some other graphs. The regularity of
the graph against the image signal may be such a comparison measure, given by

xLxT = ‖∇f‖2
2 (14)

where L is the graph laplacian and x the signal. Smaller the regularity, better the
graph represents the signal. The regularity difference between the reconstructed
graph and the original graph would then be an indication of the performance of our
method.

Figure 8: Regularity measure of some graphs against the original image signal.

Fig. 8 compares the regularity of four graphs :

1. The perfect graph : constructed with the complete original image.

2. The disconnected graph : constructed by leaving the unknown vertices
alone.

3. The reconstructed graph : constructed during the inpainting process.

4. A dumb graph : unknown vertices are connected by a grid.

As expected, the perfect graph is the most regular of the four. Surprisingly, the
disconnected and dumb graphs are more regular than the reconstructed graph. This
would indicate that our reconstruction scheme does not produce an ideal graph.

16/ 19

GIIN: Graph-based Image Inpainting

This measure however needs to be put into perspective as the regularity depends
on the number and weights of the connections. Some normalization term is thus
needed for a fair comparison. Such a normalization is still under investigation.

Note also that the relative importance α (see Eq. (4)) of locality in the graph con-
struction has a great impact on the regularity. From our experience, the regularity
measure prefers graphs who are more local. The lowest regularity (on the perfect
graph) was achieved with α = 0.1. If the graph is too local, the regularity increases
because there is connections across edges. If it is too non-local, the regularity in-
creases for no apparent reason.

5 Discussion

Some inherent limitations of our algorithm are:

1. The synthesis of regions for which similar patches do not exist will obviously
be problematic.

2. The algorithm does not handle depth ambiguities (i.e., what is in front of what
in the occluded area?).

As opposed to the work presented in [4], our structure detector is not inherently
limited to linear structures. It can handle curved structures.

A principal component analysis on a typical sets of patches showed that 92% of
the variance is contained in the first two components (depicted by Fig. 9) which
suggests that the data resides on a lower dimensional space. The wavelet and DCT
transforms should be investigated as a sparse patch representation which would
enable an embedding of the graph in lower dimension. Laplacian Eigenmaps should
also be considered as a non-linear dimensionality reduction tool as it would preserve
the similarity between patches by minimizing the regularity. It ensures that close
points on the original manifold stay close.

The graph weights are actually given by a measure of similarity between patches. A
superior method may be to use the normalized cross-correlation (NCC) which would
measure the correlation between patches, corrected for brightness. We may finally
use graph features.

Before further improvements, we should however compare our technique to compet-
ing algorithms using classical images.

17/ 19

GIIN: Graph-based Image Inpainting

Figure 9: The two principal components of patches.

6 Conclusion

This report presented and analyzed a new technique for image inpainting along with
a novel approach to structure detection. The algorithm is an exemplar-based tex-
ture synthesis technique which uses the image structure to determine the fill order,
leveraging the non-local patch graph representation of an image. The technique is
able to propagate both linear structure and two-dimensional texture into the target
region. The result is a plausible hallucination of the missing pixels that mimics
the appearance of the source region. While there is a lot more to experiment, we
showed that a non-local patch graph is an efficient representation of images for the
inpainting problem. We further showed that bad results are linked to bad estimation
of the structure priority, which reinforces the idea that the reconstruction quality is
highly dependent on the order in which the filling proceeds. As the result heavily
depends on the ability to extract meaningful structure, the structure detector, a
major contribution of this work, has a great role to play.

18/ 19

GIIN: Graph-based Image Inpainting

References

[1] Mikhail Belkin and Partha Niyogi. “Laplacian eigenmaps for dimensionality re-
duction and data representation”. In: Neural computation 15.6 (2003), pp. 1373–
1396.

[2] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. “A review of image
denoising algorithms, with a new one”. In: Multiscale Modeling & Simulation
4.2 (2005), pp. 490–530.

[3] Antonio Criminisi, Patrick Perez, and Kentaro Toyama. “Object removal by
exemplar-based inpainting”. In: Computer Vision and Pattern Recognition, 2003.
Proceedings. 2003 IEEE Computer Society Conference on. Vol. 2. IEEE. 2003,
pp. II–721.

[4] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. “Region filling and ob-
ject removal by exemplar-based image inpainting”. In: Image Processing, IEEE
Transactions on 13.9 (2004), pp. 1200–1212.

[5] Emmanuel d’Angelo. “Patch-based methods for variational image processing
problems”. PhD thesis. École polytechnique fédérale de Lausanne, 2013.

[6] Emmanuel d’Angelo and Pierre Vandergheynst. “Towards unifying diffusion
and exemplar-based inpainting”. In: Image Processing (ICIP), 2010 17th IEEE
International Conference on. IEEE. 2010, pp. 417–420.

[7] David I Shuman et al. “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular do-
mains”. In: Signal Processing Magazine, IEEE 30.3 (2013), pp. 83–98.

19/ 19

	Introduction
	Background
	Proposed method
	Patches
	Non-local graph
	Node insertion
	Structure detector
	Patch priority
	Information propagation
	Global optimization
	Algorithm

	Results
	Assumption validation
	Inpainting
	Graph quality

	Discussion
	Conclusion

