
MASTER THESIS
Electrical and Electronic Section
Major in Information Technologies

Structured Auto-Encoder
with application to

Music Genre Recognition

Student
Michaël Defferrard

Professor
Pierre Vandergheynst

Supervisors
Xavier Bresson
Johan Paratte

EPFL LTS2 Laboratory

June 19, 2015

Abstract

In this work, we present a technique that learns discriminative
audio features for Music Information Retrieval (MIR). The novelty
of the proposed technique is to design auto-encoders that make
use of data structures to learn enhanced sparse data representa-
tions. The data structure is borrowed from the Manifold Learn-
ing field, that is data are supposed to be sampled from smooth
manifolds, which are here represented by graphs of proximities of
the input data. As a consequence, the proposed auto-encoders
finds sparse data representations that are quite robust w.r.t. per-
turbations. The model is formulated as a non-convex optimiza-
tion problem. However, it can be decomposed into iterative sub-
optimization problems that are convex and for which well-posed
iterative schemes are provided in the context of the Fast Itera-
tive Shrinkage-Thresholding (FISTA) framework. Our numerical
experiments show two main results. Firstly, our graph-based auto-
encoders improve the classification accuracy by 2% over the auto-
encoders without graph structure for the popular GTZAN music
dataset. Secondly, our model is significantly more robust as it is
8% more accurate than the standard model in the presence of 10%
of perturbations.

Acknowledgements

I would first like to thank Dr. Xavier Bresson for his dedicated
day-to-day supervision, which included a weekly meeting during
which we discussed the achieved results and debated new ideas. He
further provided me with many inputs, intuitions and references,
which were very helpful to clarify some concepts. Finally, I want
to thank him for his review of parts of this manuscript.

I would also like to thank Johan Paratte for his helpful intu-
itions at the beginning of the project and his advices on how to
structure the thesis.

Finally, I would like to thank Prof. Pierre Vandergheynst which
has made this very interesting project possible. Thanks to him and
this project, I’ve learned much more that the content of this thesis.

Contents

Introduction 4

I Algorithm 6

1 Background 7
1.1 Neural networks . 7
1.2 Auto-encoders . 8

2 Model 10
2.1 Assumptions . 10
2.2 Linear regression . 11
2.3 Sparse coding . 14
2.4 Dictionary learning . 15
2.5 Manifold learning . 16
2.6 Encoder . 18
2.7 Auto-encoder . 19
2.8 Approximate schemes . 20

3 Related works 22

4 Optimization 23

II Application 26

5 Music genre recognition 27
5.1 Problem formulation . 27
5.2 Dataset . 27

6 System 29
6.1 Preprocessing . 29
6.2 Feature extraction . 31
6.3 Classification . 31

2

7 Results 33
7.1 Spectrograms . 34
7.2 Figures of merit . 34
7.3 Classification performance . 35
7.4 Discussion . 36

Conclusion 38
Future work . 38

References 38

3

Introduction

This thesis introduces a structured auto-encoder, an auto-encoder variant which
preserves the structure of the data while transforming it in a sparse representa-
tion. It learns sparse representations that explicitly take into account the local
manifold structure of the data. The primary goal of the proposed algorithm
is unsupervised representation learning toward the goal of feature extraction,
while being robust to noisy data and fast at feature extraction (after the train-
ing phase). As the discriminative power of learned representations cannot be
directly evaluated, the proposed algorithm shall be evaluated through a classi-
fication task. We propose an application in Music Information Retrieval (MIR)
which consists of retrieving the genre of unknown musical clips.

This thesis report is divided in two parts. Through Part I, some back-
ground informations are given in Chapter 1 and the proposed model is con-
structed step by step in Chapter 2, which is the core of this work. Well-posed
iterative schemes to solve the resulting convex sub-optimization problems are
then proposed in Chapter 4.As a testbed of our algorithm’s performance, an
application to Music Genre Recognition (MGR) is proposed in Part II with
a presentation of the application in Chapter 5 and the proposed system in
Chapter 6. Chapter 7 is dedicated to the presentation of the experimental
results.

This work was accomplished as a Master thesis, which is an integral part
of the major in Information Technologies curriculum from the Electrical and
Electronic Section of the École Polytechnique Fédérale de Lausanne (EPFL).
It was conducted at the LTS2 laboratory1.

While the project was ongoing, I continuously published my thoughts, ob-
servations, findings, experiments, results and plans as well as a summary of
the weekly meetings with my supervisors on an online blog2 in the format of
an open laboratory notebook. In the spirit of open research, the code as well
as all the results, this report and the ongoing paper are versioned with git
and available online through GitHub3. Some continuation of this work shall
be submitted to the 41st IEEE International Conference on Acoustics, Speech

1The laboratory homepage is accessible at http://lts2www.epfl.ch/.
2My research blog is available at https://lts2research.epfl.ch/blog/mdeff/.
3My GitHub account can be found at https://github.com/mdeff.

4

http://lts2www.epfl.ch/
https://lts2research.epfl.ch/blog/mdeff/
https://github.com/mdeff

and Signal Processing (ICASSP).

5

Part I

Algorithm

6

Chapter 1

Background

1.1 Neural networks
Artificial Neural Networks (ANNs) are a family of statistical learning models
inspired by biological neural networks and are used to estimate or approxi-
mate functions that can depend on a large number of inputs and are generally
unknown. It is presented as a network of interconnected neurons whose con-
nections have numeric weights that can be tuned based on experience. It makes
the neural nets adaptive to inputs and capable of learning.

Such a network is composed by an input layer, a number of hidden layers
and an output layer. The activation of the neurons in the input layer corre-
sponds to the input vector, e.g. an image for computer vision, a song for MIR,
a word vector for machine translation and sentiment analysis. A weight ma-
trix, followed by a non-linear activation function, then transforms the vector in
another representation. The output vector of the first layer is the input vector
of the second, and so on until the output layer is reached. The activation of the
neurons in the output layer may represent classes, probability distributions, or
the estimated value of an unknown function to be learned.

In a feed-forward network, the connections go from one layer to the next,
i.e. information only goes in one direction, forward, from the input nodes,
through the hidden nodes (if any) and to the output nodes. Such networks are
known to be able to approximate any function. The perceptron, the Multi-
Layer Perceptron (MLP) and the Convolutional Neural Network (CNN) are
examples of this class of networks. By introducing backward connections,
i.e. the connections between units form a directed cycle, we obtain a so called
Recursive Neural Network (RNN). This creates an internal state of the network
which allows it to exhibit dynamic temporal behavior. Unlike feed-forward
neural networks, an RNN can use its internal memory to process arbitrary
sequences of inputs. It is known to be able to approximate any program. Such
networks have proven very successful for machine translation.

7

Chapter 1. Background

In a supervised learning setting, the network is trained by back-propagating
the error, gradient based learning method, from the output layer to the input
through all the hidden layers. The vanishing gradient problem, where errors
shrink exponentially with the number of layers as they propagate from layer to
layer, is a major issue of the algorithm [38]. Various methods, like unsupervised
pre-training or Long Short Term Memory (LSTM) [37], were developed to work
around this problem.

However, in an unsupervised learning setting, there is no desired output,
which implies that there is no error to back-propagate. The training algorithm
should thus optimize for another objective, which represent desired properties
about the output. We will introduce next such an algorithm, called an auto-
encoder.

1.2 Auto-encoders
An auto-encoder, auto-associator or Diabolo network is an artificial neural
network composed of n input and output units and m hidden units. It is used
for learning efficient codings [11, 36]. The aim of an auto-encoder is to learn
a distributed representation (encoding) for a set of data. An auto-encoder is
trained to encode the input x ∈ Rn into some representation z ∈ Rm so that
the input can be reconstructed from that representation. It is thus a generative
model. Hence the target output of the auto-encoder is the auto-encoder input
itself. Auto-encoders may further be stacked to form a Deep Belief Network
(DBN), while each layer can be trained separately [9, 70].

If there is one linear hidden layer and the mean squared error criterion is
used to train the network, then the k hidden units learn to project the input in
the span of the first k principal components of the data [11]. If the hidden layer
is non-linear, the auto-encoder behaves differently from Principal Component
Analysis (PCA), with the ability to capture multi-modal aspects of the input
distribution [42].

The hope is that the code z is a distributed representation that captures
the main factors of variation in the data: because z is viewed as a lossy rep-
resentation of x, it cannot be a good representation (with small loss) for all
x. So learning drives it to be one that is a good representation in particular
for training examples, and hopefully for others as well (and that is the sense
in which an auto-encoder generalizes), but not for arbitrary inputs.

It can typically be used for dimensionality reduction by learning a com-
pressed (m < n) representation of the data. Another application is feature
extraction before classification, for which we want an higher dimensionality
(m > n) for easier separability. One serious issue with this approach is that
if there is no other constraint, then an auto-encoder with n-dimensional in-
put and an encoding of dimension m ≥ n could potentially just learn the

8

Chapter 1. Background

identity function. There are different ways that an auto-encoder with more
hidden units than inputs could be prevented from learning the identity, and
still capture something useful about the input in its hidden representation z.

Sparse auto-encoders. One strategy, based on the concept of sparse cod-
ing, is to add a sparsity constraint on the code. While an ordinary auto-encoder
or an Restricted Boltzmann Machine (RBM) has an encoder part which com-
putes P (z|x) and a decoder part which computes P (x|z), sparse coding sys-
tems only parametrize the decoder: the encoder is implicitly defined as the
solution of an optimization. A middle ground between ordinary auto-encoders
and sparse coding was proposed in [69, 70] and applied to pattern recogni-
tion and machine vision tasks. They propose to let the codes z be free (as in
sparse coding algorithms), but include a parametric encoder (as in an ordinary
auto-encoder or RBM) and a penalty for the difference between the free non-
parametric codes z and the outputs of the parametric encoder. In this way,
the optimized codes z try to satisfy two objectives: reconstruct well the input
(like in sparse coding), while not being too far from the output of the encoder
(which is stable by construction, because of the simple parametrization of the
encoder). See Section 2.6 for the definition of our encoder.

Denoising auto-encoders. Another strategy is to add noise in the encod-
ing. The denoising auto-encoder thus minimizes the error in reconstructing
the input from a stochastically corrupted transformation of the input [83]. In-
tuitively, a denoising auto-encoder does two things: try to encode the input
(preserve the information about the input), and try to undo the effect of a cor-
ruption process stochastically applied to the input of the auto-encoder. This
is essentially what a RBM does [35].

9

Chapter 2

Model

This chapter presents the proposed structured auto-encoder. Built on linear
regression, the model increases in complexity as desired properties about its
internal representation are progressively integrated in the form of regulariza-
tions.

2.1 Assumptions
Sparse representation. We make the hypothesis that a set of sample sig-
nals drawn from the same distribution can be sparsely represented in some
frame1. Each signal should be approximately reconstructed by a linear com-
binations of a few atoms from a suitable dictionary. As we shall see, this
dictionary may be adaptive and learned directly from the data. Many ap-
proaches have been developed to achieve sparse representations, e.g. sparse
PCA [22], sparse NMF [39], K-SVD [2]. Sparse coding [62, 54] is however the
most popular one. Sparsity has become a concept of great interest recently,
not only in machine learning but also in statistics and signal processing, in
particular with the work on Compressed Sensing (CS) [14, 25].

Structured data. Our second hypothesis is that the dataset holds some
structure, in the sense that related samples are close to each other (with respect
to some metric). Given a large enough training set, the structure of the data
distribution should be able to be captured; i.e. a new valid sample (e.g. from
the testing set) should be close to the seen examples. It suggests that the
data is drawn from sampling a probability distribution that has support on or
near to a submanifold of the ambient space. This manifold is however often
unknown and must be learned. Self-Organizing Map (SOM) [45], Locally-
Linear Embedding (LLE) [72], Laplacian Eigenmaps [6] and ISOMAP [79] are

1A frame of a vector space is a set of vectors which may be linearly dependent. It is a
generalization of a basis.

10

Chapter 2. Model

some popular techniques which learn manifolds in a Non-Linear Dimensionality
Reduction (NLDR) framework. All these algorithms use the so-called locally
invariant idea [32], i.e. the nearby points are likely to have similar embeddings.
Auto-encoders used for dimensionality reduction are able to learn a map from
high to low-dimensional space with fewer hidden units than inputs. They are
trained to learn to optimally encode the input vectors into a small number of
dimensions and decode them back into the original space with minimal error
[11].

Encoder. We further make the assumption that a simple encoder can be
trained to avoid the need of an optimization process that extracts the features
during testing, i.e. after the training phase. The encoder shall be more ef-
ficient, in the computational sense, than the optimization process while not
degrading too much the quality of the extracted features. Note that even if
this hypothesis is not verified, the algorithm is still an auto-encoder; although
with an implicit encoder.

2.2 Linear regression
Model. Given a set {xi}Ni=1 ∈ Rn ofN signals, the subspace X = span{xi}Ni=1 ⊂
Rn is defined as the subspace spanned by the data. Then, given a signal x ∈ X
and a frame D ∈ Rn×m, we want to find a representation z ∈ Rm which satisfies
the linear regression model

x = Dz + ε, (2.1)

where ε ∈ Rn is the reconstruction error, which is not negligible as long as the
frame D is not complete on X .

Capacity. The hyper-parameter m defines the learning capacity of the auto-
encoder. A capacity m < n is good for dimensionality reduction as it exploits
the statistical regularities present in the training set while being more compact.
A capacity m > n is good for classification as it allows for an easier (linear)
separability enabled by the higher dimensional space.

Completeness. A frame is complete if it can represent any vector x ∈ X .
It is overcomplete if the removal of a vector from the frame results in a com-
plete frame. A set of n < m linearly independent vectors would indeed be
overcomplete on the whole space Rn and a set of m = n linearly indepen-
dent vectors, like the Fourier transform, would form a basis3 of Rn, which is

2Figure from Wikipedia.
3A basis is a set of linearly independent vectors who span the entire space, i.e. it is a

linearly independent spanning set.

11

Chapter 2. Model

Figure 2.1: An example of overcomplete frame. While the data lies in a two-
dimensional space, a four-dimensional space supported by an overcomplete
frame allows a better representation.2

obviously complete.
A complete frame which is not overcomplete allows bidirectional lossless

transformations. Such problems are well-posed as there exists a unique solution
to (2.1) with ε = 0.

If the frame is not complete, there exist no solution to (2.1) with ε = 0 as
the system is overdetermined. An error measure, like (2.2) for the Ordinary
Least Squares (OLS) method, should instead be minimized.

In different research, such as signal processing and function approximation,
overcomplete representations have been advocated because they have greater
robustness in the presence of noise, can be sparser, and can have greater flexi-
bility in matching structure in the data. However, because of this redundancy,
a signal can have multiple expressions under an overcomplete frame [50]. See
Figure 2.1 for an example of the flexibility of an overcomplete frame to repre-
sent a dataset. As there is then an infinite number of solutions to (2.1) with
ε = 0, i.e. the problem is ill-posed, a regularization over z shall be introduced.
Optimization techniques are then used to find the optimal solution which min-
imizes the sum of the error measure and the regularization term, controlled by
an hyper-parameter.

Ordinary least squares. The method of least squares is a standard ap-
proach in regression analysis to the approximate solution of overdetermined
systems. "Least squares" means that the overall solution minimizes the sum
of the squares of the errors made in the results of every single equation, i.e. it
finds

z∗ = arg min
z
‖x−Dz‖2

2, (2.2)

12

Chapter 2. Model

where ‖ · ‖2
2 denotes the squared `2, or Euclidean, norm. This problem has the

closed-form solution
z∗ = (DTD)−1DTx, (2.3)

where T denotes the matrix transpose. The primary assumption of OLS is
that there are zero or negligible errors in the independent variable D, since this
method only attempts to minimize the mean squared error in the dependent
variable x. That is not an issue in an auto-encoder setting where D is either
hand-crafted or learned.

Regularization. Tikhonov regularization [81], or ridge regression, is the
most commonly used method of regularization of ill-posed problems. It adds
a prior of the form λ‖Γz‖2

2 to the minimization problem (2.2) as follows:

z∗ = arg min
z
‖x−Dz‖2

2 + λ‖Γz‖2
2, (2.4)

where Γ is the Tikhonov matrix. This matrix is often chosen to be a mul-
tiple of the identity matrix, i.e. Γ = αI, giving preference to solutions with
smaller norms. In a Bayesian context, this is equivalent to placing a zero-mean
normally distributed prior on z [84]. In other cases, lowpass operators, e.g. a
difference operator or a weighted Fourier operator, may be used to enforce
smoothness if the underlying vector is believed to be mostly continuous. A
regularization of this kind will be introduced in our model in Section 2.5. An
explicit solution is given by

z∗ = (DTD + ΓTΓ)−1DTx. (2.5)

Another commonly used regularization is the Least Absolute Shrinkage and
Selection Operator (LASSO) [80], which adds the prior λ‖z‖1 to the minimiza-
tion problem (2.2) as follows:

z∗ = arg min
z
‖x−Dz‖2

2 + λ‖z‖1, (2.6)

where ‖z‖1 = ∑m
i=1 |zi| is the `1 norm of z, also called the Taxicab or Manhattan

norm. In a Bayesian context, this is equivalent to placing a zero-mean Laplace
prior distribution on z [66]. The advantage of the LASSO is that it promotes
the simplest solutions, i.e. the solutions with many zeros. Driving parameters
to zero effectively deselects the features from the regression. LASSO thus
automatically selects the most relevant features, whereas ridge regression never
fully discards any. For this reason, the LASSO and its variants are fundamental
to the field of CS. A regularization of this kind will be introduced in our model
in Section 2.3.

13

Chapter 2. Model

An extension of this approach is the elastic net regularization [91] which
linearly combines the `1 and `2 penalties of the LASSO and ridge methods as
follows:

z∗ = arg min
z
‖x−Dz‖2

2 + λ2‖z‖2
2 + λ1‖z‖1. (2.7)

This regularization overcomes some limitations of the `1 penalty, e.g. the
saturation which happens for high-dimensional data with few examples, or the
fact that the LASSO tends to select only one variable and ignore the others if
there is a group of highly correlated variables.

2.3 Sparse coding
The main idea behind sparse coding [62, 54] is to express the signal x ∈ X ⊂ Rn

as a sparse linear combination of basis functions {di}mi=1 ∈ Rn, or atoms, from
an overcomplete dictionary D ∈ Rn×m. The sparse code z∗ ∈ Rm is given by

z∗ = arg min
z

λd
2 ‖x−Dz‖2

2 + λz‖z‖0, (2.8)

where ‖z‖0 denotes the number of non-zero elements in z. λd and λz are the
(redundant) hyper-parameters setting the trade-off between the data term,
an accurate reconstruction, and the prior, a sparse solution. Overcomplete
sparse representations tend to be good features for classification systems as
they provide a succinct representation of the signal, are robust to noise and
are more likely to be linearly separable due to their high dimensionality.

Finding the sparse code z∗ however requires a combinatorial search which
is an NP-hard problem [59], intractable in high dimensional spaces. Various
approximations have thus been proposed. Matching Pursuit (MP) [56] offers
a greedy approximation to the solution while Basis Pursuit (BP) [17] is the
popular convex approximation

z∗ = arg min
z

λd
2 ‖x−Dz‖2

2 + λz‖z‖1, (2.9)

which is the LASSO regularized least square problem introduced in (2.6). As
is now well understood [14, 25], the `1 norm is a very good proxy for the `0
pseudo-norm and naturally induces sparse results. It can even be shown to
recover exactly the true sparse code, i.e. the solution of (2.8) (if there is one),
under mild conditions [26]. A number of algorithms have been proposed to
efficiently solve this problem [17, 5, 48, 51]. They however still rely on compu-
tationally expensive iterative procedures which limit the system’s scalability
and real-time applications. While a direct method will always be preferred
for feature extraction, iterative methods will still be necessary during training.
Distributed computing with Graphical Processing Unit (GPU) or via cloud
computing will hopefully accelerate the process.

14

Chapter 2. Model

2.4 Dictionary learning
Model. In classical sparse coding, the dictionary is composed of known func-
tions such as sinusoids [12], wavelets [55], Gabors [28], curvelets [13] or con-
tourlets [24]; i.e. hand-crafted features. One may also want to learn a dictio-
nary that is adaptive to the type of data at hand. This approach may allow an
even more compact representation and may lead to the discovery of previously
unknown discriminative features.

To use the dictionary D as an unknown variable, all the training data shall
be part of the objective function as the dictionary depends on all of them. The
energy function, composed by an `2 fidelity term and an `1 penalty, becomes

E1(Z,D) = λd
2 ‖X−DZ‖2

F + λz‖Z‖1, (2.10)

where ‖ · ‖2
F denotes the squared Frobenius norm, X = {xi}Ni=1 ∈ Rn×N is the

set of training vectors and Z = {zi}Ni=1 ∈ Rm×N their associated sparse codes.
N is naturally the number of training vectors, which should be much greater
than the size m of the dictionary to avoid the trivial solution where examples
are copied in the dictionary. The problem to solve is then

minimize
Z,D

E1(Z,D) s.t. ‖di‖2 ≤ 1, i = 1, . . . ,m, (2.11)

where the `2 ball constraint (usually implemented by rescaling the columns di
of D at each iteration) prevents the trivial solution where the code coefficients
go to zero while the bases are scaled up. While this problem is not convex, a
good approximate solution can be found by iteratively minimizing for Z and
D [62].

Completeness. The learned dictionary may be seen as an overcomplete
frame of the subspace X spanned by the training data. The overcomplete-
ness of the learned dictionary could indeed be tested: the frame should be
able to perfectly represent any training sample, i.e. in the absence of the `1
regularization, the reconstruction error ε of (2.1) should be zero.

Biological motivation. There is evidence that sparse coding may be a strat-
egy employed by the brain in the early stages of visual and auditory process-
ing [62, 64, 75]. Basis functions learned on natural images have been shown
to resemble the receptive fields of neurons in the visual cortex [62, 64]. Basis
functions learned on natural sounds were found to be highly similar to gam-
matone functions [75] which have been used to model the action of the basilar
membrane in the inner ear. Moreover, learning on natural time-varying stimuli
such as speech or video has been shown to produce localized bases [49, 63].

15

Chapter 2. Model

2.5 Manifold learning
Motivation. Most of the existing approaches to sparse coding do not con-
sider the geometrical structure of the data space. The data is however more
likely to reside on a low-dimensional submanifold embedded in the high-dimensional
ambient space. It has been shown that the learning performance of a sparse
coding scheme can be significantly enhanced if the geometrical structure is
exploited and the local invariance is considered [88].

Similarity graphs. Graphs are generic data representation forms which are
useful for describing the geometric structures of data domains in numerous
applications, including social, energy, transportation, sensor, and neuronal
networks [74]. The connectivity and weight associated with each edge in the
graph is either dictated by the physics of the problem at hand or inferred
from the data. Weighted graphs are commonly used to represent similarities
between data points in statistical learning problems for applications such as
machine vision [52] and automatic text classification [3].

From the set of training vectors X, we can construct an undirected, con-
nected and weighted graph G = {V , E ,W} which consists of a finite set of
vertices V with |V| = N , a set of edges E , and a weighted adjacency matrix
W = (wij) ∈ RN×N . Each vertex i ∈ V represents a training vector xi. If
there is an edge e = (i, j) connecting vertices i and j, the entry wij represents
the weight of the edge; otherwise, wij = 0. The set of sparse codes Z is a signal
which resides on the graph, i.e. a signal with one sample zi at each vertex i of
the graph.

While there exist several ways to define the edge weights when they are
not naturally defined by the application, they often represent the similarity
between the two vertices they connect [74]. For instance, the edge weight may
be inversely proportional to the Euclidean distance between the vectors:

wij = exp
(
−‖xi − xj‖2

2
2σ2

)
∈ [0, 1], (2.12)

where the Gaussian kernel width σ controls the width of the neighborhoods
and 〈·, ·〉 denotes the scalar product. While the Euclidean distance is a good
choice for low-dimensional data, its discriminative power vanishes in higher
dimensional space [1, 23]. An option is then to use the cosine similarity as the
edge weight:

wij = 1
2 + 1

2 cos(θ) = 1
2

(
1 + 〈xi,xj〉
‖xi‖2‖xj‖2

)
∈ [0, 1], (2.13)

where θ is the angle between the two vectors xi and xj. Another reason for the
popularity of the cosine similarity is that it is very efficient to evaluate, espe-

16

Chapter 2. Model

cially for sparse vectors, as only the non-zero dimensions need to be considered.
See [30] for other graph construction methods.

A fully connected graph is usually not wanted: the number of edges are
often artificially limited in order to reduce the storage and computational cost
associated with the graph manipulation, effectively sparsifying the weight ma-
trix W. The ε-neighborhood graph is the popular approach which sets to 0 any
weigh wij < ε for some threshold ε. A second common method is to connect
each vertex to its k-nearest neighbors only and drop the smallest weights; in
which case [87] suggests to set the Gaussian kernel scale σ to the mean of the
kst distances.

Graph Laplacian. The unnormalized graph Laplacian, also called the com-
binatorial graph Laplacian, is defined as

L = A−W, (2.14)

where the degree matrix A = (aij) ∈ RN×N is a diagonal matrix whose ith
diagonal element aii is equal to the sum of the weights of all the edges incident
to vertex i:

aii =
N∑
j=1

wij. (2.15)

The graph Laplacian is a difference operator as it satisfies

Lzi =
N∑
j=1

wij(zi − zj). (2.16)

Dirichlet energy. The Dirichlet energy is a measure of the smoothness of
a graph signal given by

tr(ZLZT) = 1
2

N∑
i=1

N∑
j=1

wij‖zi − zj‖2
2 ≥ 0, (2.17)

which is a suitable candidate for regularization [7]. The assumption that the
representations Z should be smooth on the similarity graph G constructed by
the training vectors X, usually referred to as the manifold assumption4, plays
an essential role in various kinds of algorithms including dimensionality re-
duction algorithms [6], clustering algorithms [61] and semi-supervised learning
algorithms [7, 89]. Note that the Euler-Lagrange of the Dirichlet energy is
precisely the graph Laplacian.

4Because the graph is used as a proxy for the manifold.

17

Chapter 2. Model

Consistency. Two normalized graph Laplacians are found in the literature
[18]:

Lsym = A−1/2LA−1/2 = I−A−1/2WA−1/2, (2.18)

and
Lrw = A−1L = I−A−1W, (2.19)

where I denotes the identity matrix. While there is no convergence guarantee
for the unnormalized graph Laplacian, these two normalized Laplacian can be
shown to converge to the continuous Laplace-Beltrami operator as the number
of samples increase [85]. The similarity graph is indeed a good approximation
of the unknown manifold.

Model. The geometrical information about the data is encoded in a simi-
larity graph constructed by the training vectors X and the graph Laplacian
is used as a smooth operator to preserve the local manifold structure. In-
troducing the Dirichlet energy into the objective function as an additional `2
regularization, similar to the Tikhonov regularization presented in Section 2.2,
gives

E2(Z,D) = λd
2 ‖X−DZ‖2

F + λz‖Z‖1 + λg
2 tr(ZTLZ). (2.20)

This regularization promotes a smooth variations of the representations along
the geodesics of the data manifold.

2.6 Encoder
Motivation. In order to avoid the iterative procedure typically required to
infer the sparse code, we aim at an explicit encoder which can quickly map
inputs to approximations of their sparse code. Several works [44, 31, 71] have
been done in this direction. The addition of an explicit encoder to the sparse
coding scheme bridges the gap between auto-encoders and sparse coding and
is often referred to as sparse auto-encoders [8].

Moreover, adding structure to the problem should enhance the behavior of
the loss function and help sparse recovery [46, 4, 40, 43].

Model. Introducing a trainable encoder E ∈ Rm×n, designed to predict
sparse codes from input vectors with minimum error, into our model gives
the energy function

E3(Z,D,E) = λd
2 ‖X−DZ‖2

F+λz‖Z‖1+λg
2 tr(ZTLZ)+λe

2 ‖Z−EX‖2
F, (2.21)

18

Chapter 2. Model

where λe is an additional hyper-parameter which controls the relative weight
of the prediction error. The problem is then defined by

minimize
Z,D,E

E3(Z,D,E) s.t. ‖di‖2 ≤ 1, ‖ek‖2 ≤ 1, i = 1, . . . ,m, k = 1, . . . , n,
(2.22)

where ek are the columns of E.

Energy. While it is often a good idea to control the energy, the constraint
on the columns of E is not needed in practice. While the columns of D
are constrained to a norm smaller than one, they are in practice normalized
because of the ‖Z‖1 objective. The energy of a vector transformed by D does
thus not change, which means that the inferred sparse code zi as the same
energy as its corresponding vector xi. The encoder does then not need to
add energy and will have a column norm smaller than one, even without the
constraint. It has been verified empirically.

2.7 Auto-encoder
Energy formulation. The energy function (2.21), which defines our model,
may be rewritten as a sum of functions of the variables Z, D and E as follows:

E(Z,D,E) = λd
2 ‖X−DZ‖2

F︸ ︷︷ ︸
fd(Z,D)

+λz‖Z‖1︸ ︷︷ ︸
fz(Z)

+ λg
2 tr(ZTLZ)︸ ︷︷ ︸

fg(Z)

+ λe
2 ‖Z− EX‖2

F︸ ︷︷ ︸
fe(Z,E)

.

(2.23)
An advantage of energetic formulations is that it is easy to control the relative
importance of the sub-objectives, whether they are fidelity or prior terms. As
seen through this chapter, the model can be easily constructed by sequentially
adding terms to the objective. They are as easily removed, or muted, when
experimentations require it. Other advantages include good understanding,
robustness, existence of solutions, design and analysis of optimization algo-
rithms.

Auto-encoder model. Training the model is akin to minimize the objective
function (2.23) over the variables, or model parameters Z, D and E:

minimize
Z,D,E

fd(Z,D) + fz(Z) + fg(Z) + fe(Z,E)

s.t. ‖di‖2 ≤ 1, ‖ek‖2 ≤ 1, i = 1, . . . ,m, k = 1, . . . , n. (2.24)

Posing the problem as the minimization of an objective function is a sound ex-
pression of the model. Indeed, many laws of nature are nothing but optimality
conditions, often expressed in terms of a minimum energy principle.

19

Chapter 2. Model

Note that the regularizations fz(Z) and fg(Z) on the internal representation
are preventing the auto-encoder to learn the identity D = E = I.

Encoder. The proposed model is an auto-encoder. Given its hyper-parameters
λd, λz, λg, λe ≥ 0 and a training set X, model (2.24) learns the auto-encoder
variables, i.e. the dictionary D and the encoder E. Then, given D and E,
the sparse and structured internal representation z∗ of an unseen sample x is
given by

z∗ = arg min
z

λd
2 ‖x−Dz‖2

2 + λz‖z‖1 + λg
2 〈z,Lz〉+ λe

2 ‖z− Ex‖2
2, (2.25)

where the graph Laplacian L is constructed from the data.

Decoder. Similarly, the mapping of a representation z back to the input
domain is given by

x∗ = arg min
x

λd
2 ‖x−Dz‖2

2 + λe
2 ‖z− Ex‖2

2. (2.26)

2.8 Approximate schemes
Motivation. While encoder (2.25) extracts the exact representation given
the auto-encoder model (2.24), it is computationally heavy. We aim at a
faster encoder model to infer an approximate representation z̃ ≈ z∗.

Direct encoder. Neglecting some of the terms in (2.25) because of our
model’s third assumption given in Section 2.1, the approximation:

z̃ = arg min
z

λe
2 ‖z− Ex‖2

F + λz‖z‖1 (2.27)

is able to infer good enough representations. Problem (2.27) holds a closed-
form solution:

z̃ = hλz/λe(Ex), (2.28)
where hλ is the shrinkage function defined here by

hλ(x)k = sign(xk) (|xk| − λ)+ , (2.29)

where (·)+ = max(·, 0). Therefore, the explicit encoder formulation introduced
in Section 2.6 allows a direct inference of the representation.

Note that although the dictionary D and the graph Laplacian L are not
used in the approximate scheme (2.28), they however add structure to the
problem because E is learned simultaneously with D and a regularization
which makes use of L. Additional structure has been shown to enhance the
behavior of the loss function and help sparse recovery [46, 4, 40, 43].

20

Chapter 2. Model

Direct decoder. Although we care less about decoder (2.26), a similar ap-
proach may be used to approximate x∗:

x̃ = arg min
x

λd
2 ‖x−Dz‖2

2 = Dz. (2.30)

21

Chapter 3

Related works

Standard auto-encoders. Auto-encoders, as introduced by [11, 36], are
defined by one linear hidden layer and the mean squared error criterion is used
to train the network, i.e. their model is (2.24) without any regularization.
Because of the lack of constraint, an auto-encoder with n-dimensional input
and an encoding of dimension at least n could potentially just learn the identity
function. However, it as been shown that Stochastic Gradient Descent (SGD)
with early stopping is similar to an `2 regularization of the parameters [90].

Sparse auto-encoders. Direct decoder (2.30) is the definition used for
sparse auto-encoders [69, 70]. While the encoder definition may vary, it in-
cludes at least the first two terms of encoder (2.25), related to sparse coding.

Predictive sparse decomposition. A technique introduced in [44] which,
similarly to us, adds an explicit encoder to the sparse coding scheme. Their
encoder architecture is very close to direct encoder (2.28). Using sparse coding,
their decoder is defined by direct decoder (2.30).

Denoising auto-encoders. Denoising auto-encoders share the same model
as the standard auto-encoders, but are trained with stochastically corrupted
data [83]. They thus learn to undo the effect of the corruption. In model
(2.24), the Dirichlet energy term promotes smooth variations along the data
manifold. It has the effect of pushing noisy samples toward the manifold,
effectively denoising them.

22

Chapter 4

Optimization

The whole process of training the auto-encoder is to solve the non-convex
optimization problem which defines model (2.24). Because of its non-convexity,
there is no guarantee to find its global minimum. The minimization will end
up in a local minimum depending on the initialization. That is, given the
same training data, different random initializations of the variables will lead
to different solutions.

Convex sub-problems. As problem (2.24) is non-convex only when all the
variables are taken together, a natural way is to decompose it into three convex
sub-problems:

minimize
Z

fd(Z,D) + fz(Z) + fg(Z) + fe(Z,E), (4.1)

minimize
D

fd(Z,D) s.t. ‖di‖2 ≤ 1, i = 1, . . . ,m, (4.2)

minimize
E

fe(Z,E) s.t. ‖ek‖2 ≤ 1, k = 1, . . . , n. (4.3)

Sub-problem (4.1) is an `1 and `2 regularized least squares problem while sub-
problems (4.2) and (4.2) are constrained least squares problems. Both of which
can efficiently be solved by several convex optimization methods [19, 5, 15].

Iterative scheme. The idea is to iteratively solve (4.1), (4.2) and (4.3),
i.e. to minimize the objective for one variable at a time while fixing the two
others. While we have no convergence guarantee, the overall loss function is
guaranteed to decrease monotonically if each convex sub-problem is optimally
solved, which is the case if we let each sub-minimization converge.

Proximal splitting. Proximal splitting methods are a class of algorithms
designed to solve convex problems of the form

minimize
x

f1(x) + f2(x), (4.4)

23

Chapter 4. Optimization

where f1 is a convex but non-smooth function and f2 is convex and differen-
tiable with a β-Lipschitz continuous gradient ∇f2, i.e.,

∀(x,y) ‖∇f2(x)−∇f2(y)‖2 ≤ β‖x− y‖2, (4.5)

where β ∈]0,+∞[.
It can be shown [20] that problem (4.4) admits at least one solution and

that, for any γ ∈]0,+∞[, its solutions are characterized by the fixed point
equation

x = proxγf1 (x− γ∇f2(x)) , (4.6)
where proxf denotes the proximity operator of f , defined as the minimization
problem

proxfx = minimize
y

f(y) + 1
2‖x− y‖2

2, (4.7)

which is an extension of the notion of a projection operator [57]. The fixed
point equation (4.6) suggests the possibility of iterating

xt+1 = proxγtf1︸ ︷︷ ︸
backward step

(
xt − γ∇f2(xt)

)
︸ ︷︷ ︸

forward step

(4.8)

for values of the step-size parameter γt in a suitable bounded interval which
depends on β. This type of scheme is known as a forward-backward splitting
algorithm. It can be broken up into a forward (explicit) gradient step using
the function f2, and a backward (implicit) step using the function f1 [19].

The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [5] is an
efficient forward-backward scheme which exploits variable time steps and mul-
tiple points. It achieves an optimal [60] O(1/t2) rate of convergence of the
objective function.

Sub-problems casting. To be solved via FISTA, each of the minimization
sub-problems (4.1), (4.2) and (4.3) has to be cast to the form of (4.4) and
provide the gradient ∇f2, its Lipschitz constant β and the proximity operator
of f1.

Sub-problem (4.1) is split into a smooth and a non-smooth part:

minimize
Z

fd(Z,D) + fg(Z) + fe(Z,E)︸ ︷︷ ︸
f2(Z)

+ fz(Z)︸ ︷︷ ︸
f1(Z)

. (4.9)

The gradient ∇f2, its Lipschitz constant β and the proximity operator of f1
are as follows:

∇f2(Z) = λdDT (X−DZ) + λe(Z− EX) + λgLZ (4.10)
β ≥ λe + λd‖DTD‖2 + λg‖L‖2 (4.11)

proxβ−1f1(D) = hλz/β(Z) (4.12)

24

Chapter 4. Optimization

where hλ is the shrinkage function (2.29).
The constraint of (4.2) can be integrated in the loss function via the La-

grange multiplier method:

minimize
D

λd
2 ‖X

T − ZTDT‖2
F︸ ︷︷ ︸

f2(D)

+ ιC(D)︸ ︷︷ ︸
f1(D)

, (4.13)

where ιC is the indicator function of the subset C ∈ Rn×m defined as

ιC(D) =
{

0, if ‖di‖2 ≤ 1, i = 1, . . . ,m;
+∞, otherwise. (4.14)

The gradient ∇f2, its Lipschitz constant β and the proximity operator of f1
are as follows:

∇f2(D) = λdZ(XT − ZTDT) (4.15)
β ≥ λd‖ZZT‖2 (4.16)

proxβ−1f1(D) =
{

di
max(1, ‖di‖2)

}m
i=1

. (4.17)

Similarly, for (4.3):

∇f2(E) = λeX(ZT −XTET) (4.18)
β ≥ λe‖XXT‖2 (4.19)

proxβ−1f1(E) =
{

ek
max(1, ‖ek‖2)

}n
k=1

. (4.20)

25

Part II

Application

26

Chapter 5

Music genre recognition

5.1 Problem formulation
Music genre recognition (MGR) is a common task for MIR and is the usual task
for the yearly Music Information Retrieval Evaluation eXchange (MIREX)1.
The MGR problem is the task of automatically recognizing the musical genre
of an unknown audio clip given a set of labeled clips. A clip is unknown in
the sense that only the raw audio is available, and there is no access to any
meta-data.

The accuracy of the classified clips is used as a proxy for the discriminative
power of the learned representations.

5.2 Dataset
The system’s performance is evaluated on GTZAN2, the most-used public
dataset for evaluation in machine listening research for MGR [77] which was
created by Tzanetakis and Cook for their work in the domain in 2002 [82].
It consists of 1000 30-second audio clips (all truncated to 660, 000 samples to
not bias the classifier in any ways) with 100 examples in each of 10 different
categories: blues, classical, country, disco, hiphop, jazz, metal, pop, reggae
and rock. All clips are sampled at 22,050 Hz.

The composition and integrity of the dataset has been analyzed in [76]. It
is known that the dataset contains recurrent faults: repetitions, mislabelings,
and distortions. These faults obviously challenge the interpretability of any
result derived using it. The work [78] goes even further and disprove the claims
that all MGR systems are affected in the same ways by these faults, and that
the performances of MGR systems in GTZAN, working with the same data

1http://www.music-ir.org/mirex/wiki/MIREX_HOME
2Available at http://marsyasweb.appspot.com/download/data_sets/.

27

http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://marsyasweb.appspot.com/download/data_sets/

Chapter 5. Music genre recognition

and faults, are still meaningfully comparable.

28

Chapter 6

System

The design of the genre recognition system is inspired by the work [34], which
uses a layer of sparse auto-encoder to learn sparse representations of audio
spectrograms targeted at MGR. Although they call their encoder technique
Predictive Sparse Decomposition (PSD) [44], it is effectively a sparse auto-
encoder [8]. The structured auto-encoder proposed and developed in Part I
generalizes the loss function of [34] as an energy function and introduces a
graph-based structuring term (Section 2.5).

The system mainly consists of three independent building blocks:

1. Preprocessing: the goal is to transform the raw audio signal into a
time-frequency representation. It is essentially a first feature extraction
pass, built on prior knowledge about signal processing and audio signals
in particular. The spectrograms are further sliced in short time frames
to provide time invariance.

2. Feature extraction: the set of spectrogram slices is given as input
vectors to the proposed structured auto-encoder which transforms them
into a sparse and structured representations.

3. Classification: the extracted features are used for genre classification
after a post-processing step analog to feature pooling. The accuracy is
assessed by a cross-validation scheme.

6.1 Preprocessing
Frames. Each clip is divided into short frames of na = 1024 samples, which
roughly corresponds to 46 ms of raw audio, in order to provide translation
invariance. A 50% overlap between consecutive frames introduces redundancy
in the data. The GTZAN dataset is thus decomposed inN = 1, 288, 000 frames
of dimensionality na = 1024.

29

Chapter 6. System

Constant-Q Transform (CQT). A spectral representation of each of those
frames is computed via the CQT with ns = 96 filters spanning four octaves
from C2 to C6 at quarter-tone resolution, where C4 is the middle C in the
scientific pitch notation [86]. The A440 tuning standard sets A4 = 440 Hz [41].

Apart from the constant quality factor, i.e. a constant frequency over
bandwidth ratio, an important property of the CQT is that the center fre-
quencies of the filters are logarithmically spaced, so that consecutive notes in
the musical scale are linearly spaced. This transform is generally well suited
to musical data: (i) the logarithm scale requires fewer frequency bins to cover
a given range effectively, which proves useful when frequencies span several oc-
taves, (ii) it mirrors the human auditory system, whereby at lower frequencies
spectral resolution is better, whereas temporal resolution improves at higher
frequencies, and (iii) the harmonics of musical notes form a pattern character-
istic of the timbre of the instrument; as the fundamental frequency changes,
the relative position of these harmonics remains constant.

This step is an efficient dimensionality reduction from na = 1024 to ns = 96.
It is efficient in the sense that it extracts useful features, as demonstrated by
the baseline experiment. See Section 7.1.

The implementation uses librosa1, a Python library which implements an
efficient algorithm proposed by the authors of [73]. An efficient and accurate
implementation of the necessary sample rate conversion is provided by libsam-
plerate2.

Local Contrast Normalization (LCN). A subtractive and divisive LCN,
described in [47], may then be applied to the spectrograms in order to enhance
the contrast. Consider a point in the spectrogram and its neighborhood along
both the time and frequency axes weighted by a Gaussian window. First,
the average of the weighted neighborhood is subtracted from each point (the
subtractive part). Then, each point is divided by the standard deviation of its
new weighted neighborhood (the divisive part).

The technique enforces competition between neighboring points in the spec-
trogram, so that low-energy signals are amplified while high-energy ones are
muted. The entire process can be seen as a simple form of Automatic Gain
Control (AGC). It acts as an inverse heat diffusion operator, similarly to a
shock filter [65]. The idea of contrast normalization is inspired by visual neu-
roscience models [53, 68].

Scaling. The range of the independent variables is finally rescaled in [0, 1]
to eliminate any bias toward features who have a broad range of values. Each
feature then contributes approximately proportionally to the distance between

1Available at https://github.com/bmcfee/librosa/.
2Available at http://www.mega-nerd.com/SRC/index.html.

30

https://github.com/bmcfee/librosa/
http://www.mega-nerd.com/SRC/index.html

Chapter 6. System

two features vectors. Another commonly used scaling method is standard-
ization: the independent variables are rescaled to have zero-mean and unit-
variance. Yet another method is to rescale each features vector to unit length,
which usually means dividing each component by the Euclidean length of the
vector.

6.2 Feature extraction
In a transductive learning paradigm [29], the auto-encoder model (Chapter 2) is
trained on the entire dataset (which includes the training and test sets without
labels). Under this paradigm, test samples are known in advance, and the
system is simply asked to produce labels for them. This paradigm was chosen
for speed and accuracy reasons: since training is computationally expensive,
it is best done only once per experiment. The training phase is essentially the
application of the algorithm presented in Chapter 4 to solve (2.24) over the
whole dataset. A structured and sparse representation is readily available for
each spectrogram of the dataset, they are a by-product of model fitting.

Note that while that paradigm is used for this application, the algorithm
proposed in Part I is still purely unsupervised, i.e. it makes no use of the
training labels. Note also that while the system was designed for transductive
learning, it can also act in a supervised way. A predictive model was built
during training, and, using the learned parameters, a representation for a
previously unknown spectrogram may be inferred with (2.25) or (2.28).

The optimization scheme presented in Chapter 2 is implemented with the
PyUNlocBoX3, an open-source Python convex optimization toolbox developed
and maintained by ourselves. The toolbox has been enhanced by the needs of
this project, e.g. its memory footprint has been greatly reduced. The FLANN
library [58] is used for a fast approximate k-nearest neighbors search, used to
construct the graph as described in Section 2.5.

6.3 Classification
Aggregate features. Aggregate features are computed for each song by
summing up the frame-level features over 5-second time windows overlapping
by half, which has been found to substantially improve classification perfor-
mance [10, 33]. Since each sparse code records which dictionary elements are
present in a given CQT frame, these aggregate features vectors can be thought
of as histograms recording the number of occurrences of each dictionary ele-
ment in the time window.

3Available at https://github.com/epfl-lts2/pyunlocbox.

31

https://github.com/epfl-lts2/pyunlocbox

Chapter 6. System

Support Vector Machine (SVM). Aggregate features are then classified
by SVM [21], which is a non-probabilistic binary linear classifier. It was chosen
because it is fast to train and scale well to large datasets (thanks to the few
support vectors), which is an important consideration in MIR.

In a one-vs-the-rest strategy to multi-class classification, SVM basically
constructs a set of maximum-margin hyperplanes which separate a class from
all the others. The alternative approach to multi-class, one-vs-one, requires to
train one classifier per pair of class.

The implementation uses the scikit-learn Python framework [67] which
provides wrappers to libsvm [16] and liblinear [27], two independent imple-
mentations of the SVM. We observed no significant variations between the
two.

Majority voting. The genre prediction for a clip is given by a majority
vote between the 12 aggregate features. Instead of using it in a winner-take-all
fashion, this information could be exploited as a confidence level about the
chosen class.

32

Chapter 7

Results

Performance evaluation Following standard practice, the classification ac-
curacy was measured by 10-fold cross-validation. For each fold, 10% of the
aggregate features were randomly selected to serve as a test set, wile the re-
maining 90% served as training data. This procedure was repeated 20 times,
and the results averaged to produce a final classification accuracy.

Furthermore, the classification accuracy was measured on aggregate fea-
tures, i.e. before majority voting, rather than on whole clip. The rational is
to capture the confidence about the class of a clip. Another positive impact is
the reduction of the variance caused by the increased number of samples.

Note also that no contrast enhancement (the LCN described in Section 6.1)
was applied to the spectrograms for these experiments.

Speed and memory considerations. The iterative optimization scheme
presented in Chapter 4 is, by definition, computationally heavy. Despite hav-
ing been sped up by an order of magnitude already, our implementation is still
quite sub-optimal from a computational point-of-view. As the algorithm itself
is still a prototype, we did not invest too much time to further optimize its im-
plementation. For this reason, the following experiments where all conducted
on a subset of the dataset.

Despite the fact that the memory consumption was divided by five since
the first working implementation, it is still not enough to run a simulation
with the whole dataset on a virtual served equipped with 30GB of RAM. Note
that the current implementation retains everything in memory.

Reproducibility. The complete simulation reports of all the conducted ex-
periments, whether they succeed or failed, may be viewed online1. The code

1The IPython notebooks are stored on GitHub and can be visualized at http://
nbviewer.ipython.org/github/mdeff/dlaudio_results/.

33

http://nbviewer.ipython.org/github/mdeff/dlaudio_results/
http://nbviewer.ipython.org/github/mdeff/dlaudio_results/

Chapter 7. Results

to reproduce all the results may also be downloaded2.

7.1 Spectrograms
On a classification experiment with Ngenres = 2 genres, Nclips = 100 clips per
genre and Nframes = 644 frames per clip, the system achieved a classification
accuracy of 96 (+/- 4.7) using the CQT spectrograms, whereas classification
with raw audio yielded an accuracy of 89 (+/- 5.0). It confirms that CQT
spectrograms have more discriminative power than raw audio.

Classifications with CQT spectrograms will be our baseline for further ex-
periments. Improvements in accuracy with the extracted features will be re-
ported with respect to this baseline.

7.2 Figures of merit

Figure 7.1: m = 128 atoms of a learned dictionary of spectrograms.

Learned dictionary. Figure 7.1 depicts a learned dictionary. Although the
atoms are not easily interpretable, single notes seem to appear here and there.

2Available at https://github.com/mdeff/dlaudio.

34

https://github.com/mdeff/dlaudio

Chapter 7. Results

[44] showed that dictionaries trained on individual octaves did discover har-
monics, chords and harmonies without any prior about music theory.

Figure 7.2: A learned sparse representation of spectrograms.

Sparse representations. Figure 7.2 shows the representations inferred by
(2.24) after convergence. With only 19.8% of non-zero coefficients, the learned
representations are indeed sparse.

Convergence. While the optimization always end in a different local mini-
mum (Chapter 4), a pretty stable convergence behavior has been observed in
all the experiments. Figure 7.3 shows the evolution of the various objectives
in a typical convergence of the algorithm.

7.3 Classification performance
Table 7.1 shows the classification accuracy when using CQT spectrograms (the
baseline), extracted features with λg = 0 (sparse auto-encoder) and λg = 100
(structured auto-encoder). The other hyper-parameters are set to λz = 1,
λd = 10 and λe = 0.

The first conclusion to draw from this experiment is that the representation
extracted from the spectrograms by the structured auto-encoder defined in

35

Chapter 7. Results

Part I is indeed more discriminative than the spectrograms themselves in a
classification task.

The second conclusion we can draw is that the addition of the smooth prior
on the data manifold (Section 2.5) always lead to an improved accuracy.

Finally, the sparse and structured representations are robust with respect
to noisy data. While a sparse auto-encoder (λg = 0) performs even worse than
the baseline, our structured auto-encoder (λg = 100) out-performs the baseline
by 7%.

Noise level (standard deviation) 0.00 0.10 0.20
Accuracy (baseline) [%] 69.7 58.7 46.9
Accuracy (λg = 0) [%] 75.9 57.1 42.6
Accuracy (λg = 100) [%] 78.0 65.9 51.6

Table 7.1: Classification accuracies on a subset of GTZAN: Ngenres = 5 genres,
Nclips = 100 clips per genre and Nframes = 149 frames per clip.

7.4 Discussion
Our experiments demonstrated the usefulness of an important property of
the proposed model: the conservation of the structure in the data via graph
regularization. When compared to a sparse auto-encoder, it always leads to a
better accuracy, especially in a noisy scenario, when the structure is the most
helpful.

We experimentally confirmed two assumptions of our model (Section 2.1):
the learned representations are sparse (Figure 7.2) and structured.

Higher classification accuracies are probably achievable by fine-tuning the
hyper-parameters and introducing adding further complexity; e.g. by apply-
ing a LCN to the CQT spectrograms or working on individual octaves, two
techniques used by [34]. We may even further improve the performance of our
model by creating better graphs, i.e. graphs more suited to the problem at
hand, for example by tuning the construction hyper-parameters.

36

Chapter 7. Results

(a) Sub-problem objectives f2(Z), f1(Z), f2(D) and f2(E) evaluated at each
inner iteration.

(b) Sub-objectives fd(Z, D), fe(Z, E), fz(Z) and fg(Z) evaluated at each
outer iteration.

(c) Global objective fd(Z, D) + fe(Z, E) + fz(Z) + fg(Z) evaluated at each
outer iteration.

Figure 7.3: Example of a typical convergence of the algorithm.
37

Conclusion

In this work we introduced a novel auto-encoder architecture, which main char-
acteristic is to learn sparse and structured representation of input data, borrow-
ing ideas from sparse coding and manifold learning. Precisely, it learns sparse
representations that explicitly take into account the local manifold structure
of the data. The experimental results on music genre recognition showed that
our model extracted more discriminant features than sparse auto-encoders.

38

Bibliography

[1] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the
surprising behavior of distance metrics in high dimensional space. Springer,
2001.

[2] Michal Aharon, Michael Elad, and Alfred Bruckstein. “K-SVD: An Al-
gorithm for Designing Overcomplete Dictionaries for Sparse Representa-
tion”. In: Signal Processing, IEEE Transactions on 54.11 (2006), pp. 4311–
4322.

[3] Chidanand Apté, Fred Damerau, and Sholom M Weiss. “Automated
learning of decision rules for text categorization”. In: ACM Transactions
on Information Systems (TOIS) 12.3 (1994), pp. 233–251.

[4] Richard G Baraniuk et al. “Model-based compressive sensing”. In: In-
formation Theory, IEEE Transactions on 56.4 (2010), pp. 1982–2001.

[5] Amir Beck and Marc Teboulle. “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems”. In: SIAM Journal on Imaging
Sciences 2.1 (2009), pp. 183–202.

[6] Mikhail Belkin and Partha Niyogi. “Laplacian Eigenmaps and Spectral
Techniques for Embedding and Clustering.” In: NIPS. Vol. 14. 2001,
pp. 585–591.

[7] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. “Manifold regular-
ization: A geometric framework for learning from labeled and unlabeled
examples”. In: The Journal of Machine Learning Research 7 (2006),
pp. 2399–2434.

[8] Yoshua Bengio. “Learning deep architectures for AI”. In: Foundations
and trends R© in Machine Learning 2.1 (2009), pp. 1–127.

[9] Yoshua Bengio et al. “Greedy layer-wise training of deep networks”. In:
Advances in neural information processing systems 19 (2007), p. 153.

[10] James Bergstra et al. “Aggregate features and AdaBoost for music clas-
sification”. In: Machine learning 65.2-3 (2006), pp. 473–484.

39

Bibliography

[11] Hervé Bourlard and Yves Kamp. “Auto-association by multilayer per-
ceptrons and singular value decomposition”. In: Biological cybernetics
59.4-5 (1988), pp. 291–294.

[12] Ron Bracewell. “The Fourier Transform and IIS Applications”. In: New
York (1965).

[13] Emmanuel J Candes and David L Donoho. “Recovering edges in ill-posed
inverse problems: Optimality of curvelet frames”. In: Annals of statistics
(2002), pp. 784–842.

[14] Emmanuel J Candes and Terence Tao. “Decoding by linear program-
ming”. In: Information Theory, IEEE Transactions on 51.12 (2005),
pp. 4203–4215.

[15] Antonin Chambolle and Thomas Pock. “A first-order primal-dual algo-
rithm for convex problems with applications to imaging”. In: Journal of
Mathematical Imaging and Vision 40.1 (2011), pp. 120–145.

[16] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: a library for support
vector machines”. In: ACM Transactions on Intelligent Systems and
Technology (TIST) 2.3 (2011), p. 27.

[17] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. “Atomic
decomposition by basis pursuit”. In: SIAM journal on scientific comput-
ing 20.1 (1998), pp. 33–61.

[18] Fan RK Chung. Spectral graph theory. Vol. 92. American Mathematical
Soc., 1997.

[19] Patrick L Combettes and Jean-Christophe Pesquet. “Proximal splitting
methods in signal processing”. In: Fixed-point algorithms for inverse
problems in science and engineering. Springer, 2011, pp. 185–212.

[20] Patrick L Combettes and Valérie R Wajs. “Signal recovery by proximal
forward-backward splitting”. In: Multiscale Modeling & Simulation 4.4
(2005), pp. 1168–1200.

[21] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In:
Machine learning 20.3 (1995), pp. 273–297.

[22] Alexandre d’Aspremont et al. “A direct formulation for sparse PCA using
semidefinite programming”. In: SIAM review 49.3 (2007), pp. 434–448.

[23] Pedro Domingos. “A few useful things to know about machine learning”.
In: Communications of the ACM 55.10 (2012), pp. 78–87.

[24] Minh N Do and Martin Vetterli. “Framing pyramids”. In: Signal Pro-
cessing, IEEE Transactions on 51.9 (2003), pp. 2329–2342.

[25] David L Donoho. “Compressed sensing”. In: Information Theory, IEEE
Transactions on 52.4 (2006), pp. 1289–1306.

40

Bibliography

[26] David L Donoho and Michael Elad. “Optimally sparse representation in
general (nonorthogonal) dictionaries via l1 minimization”. In: Proceed-
ings of the National Academy of Sciences 100.5 (2003), pp. 2197–2202.

[27] Rong-En Fan et al. “LIBLINEAR: A library for large linear classifica-
tion”. In: The Journal of Machine Learning Research 9 (2008), pp. 1871–
1874.

[28] Dennis Gabor. “Theory of communication. Part 1: The analysis of infor-
mation”. In: Journal of the Institution of Electrical Engineers-Part III:
Radio and Communication Engineering 93.26 (1946), pp. 429–441.

[29] Alexander Gammerman, Volodya Vovk, and Vladimir Vapnik. “Learn-
ing by transduction”. In: Proceedings of the Fourteenth conference on
Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.
1998, pp. 148–155.

[30] Leo J Grady and Jonathan Polimeni. Discrete calculus: Applied analysis
on graphs for computational science. Springer Science & Business Media,
2010.

[31] Karol Gregor and Yann LeCun. “Learning fast approximations of sparse
coding”. In: Proceedings of the 27th International Conference on Machine
Learning (ICML-10). 2010, pp. 399–406.

[32] Raia Hadsell, Sumit Chopra, and Yann LeCun. “Dimensionality reduc-
tion by learning an invariant mapping”. In: Computer vision and pattern
recognition, 2006 IEEE computer society conference on. Vol. 2. IEEE.
2006, pp. 1735–1742.

[33] Philippe Hamel and Douglas Eck. “Learning Features from Music Audio
with Deep Belief Networks.” In: ISMIR. Utrecht, The Netherlands. 2010,
pp. 339–344.

[34] Mikael Henaff et al. “Unsupervised learning of sparse features for scalable
audio classification.” In: ISMIR. Vol. 11. 2011, p. 276.

[35] Geoffrey E Hinton. “Training products of experts by minimizing con-
trastive divergence”. In: Neural computation 14.8 (2002), pp. 1771–1800.

[36] Geoffrey E Hinton and Richard S Zemel. “Autoencoders, minimum de-
scription length, and Helmholtz free energy”. In: Advances in neural
information processing systems (1994), pp. 3–3.

[37] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”.
In: Neural computation 9.8 (1997), pp. 1735–1780.

[38] Sepp Hochreiter et al. Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies. 2001.

41

Bibliography

[39] Patrik O Hoyer. “Non-negative matrix factorization with sparseness con-
straints”. In: The Journal of Machine Learning Research 5 (2004), pp. 1457–
1469.

[40] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. “Learning with
structured sparsity”. In: The Journal of Machine Learning Research 12
(2011), pp. 3371–3412.

[41] ISO. Acoustics – Standard tuning frequency (Standard musical pitch).
ISO 16:1975. Geneva, Switzerland: International Organization for Stan-
dardization, 1975.

[42] Nathalie Japkowicz, Stephen Jose Hanson, Mark Gluck, et al. “Nonlinear
autoassociation is not equivalent to PCA”. In: Neural computation 12.3
(2000), pp. 531–545.

[43] Rodolphe Jenatton, Jean-Yves Audibert, and Francis Bach. “Structured
variable selection with sparsity-inducing norms”. In: The Journal of Ma-
chine Learning Research 12 (2011), pp. 2777–2824.

[44] Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. “Fast in-
ference in sparse coding algorithms with applications to object recogni-
tion”. In: arXiv preprint arXiv:1010.3467 (2010).

[45] Teuvo Kohonen. “Self-organized formation of topologically correct fea-
ture maps”. In: Biological cybernetics 43.1 (1982), pp. 59–69.

[46] Matthieu Kowalski. “Sparse regression using mixed norms”. In: Applied
and Computational Harmonic Analysis 27.3 (2009), pp. 303–324.

[47] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. “Convolutional
networks and applications in vision”. In: Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on. IEEE. 2010,
pp. 253–256.

[48] Honglak Lee et al. “Efficient sparse coding algorithms”. In: Advances in
neural information processing systems. 2006, pp. 801–808.

[49] Michael Lewicki and Terrence Sejnowski. “Learning overcomplete repre-
sentations”. In: Neural computation 12.2 (2000), pp. 337–365.

[50] Michael S Lewicki and Terrence J Sejnowski. “Learning overcomplete
representations”. In: Neural computation 12.2 (2000), pp. 337–365.

[51] Yingying Li and Stanley Osher. “Coordinate descent optimization for
l1 minimization with application to compressed sensing; a greedy algo-
rithm”. In: Inverse Problems and Imaging 3.3 (2009), pp. 487–503.

[52] David G Lowe. “Object recognition from local scale-invariant features”.
In: Computer vision, 1999. The proceedings of the seventh IEEE inter-
national conference on. Vol. 2. Ieee. 1999, pp. 1150–1157.

42

Bibliography

[53] Siwei Lyu and Eero P Simoncelli. “Nonlinear image representation using
divisive normalization”. In: Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on. IEEE. 2008, pp. 1–8.

[54] Julien Mairal, Michael Elad, and Guillermo Sapiro. “Sparse representa-
tion for color image restoration”. In: Image Processing, IEEE Transac-
tions on 17.1 (2008), pp. 53–69.

[55] Stéphane Mallat. A wavelet tour of signal processing. Academic press,
1999.

[56] Stéphane G Mallat and Zhifeng Zhang. “Matching pursuits with time-
frequency dictionaries”. In: Signal Processing, IEEE Transactions on
41.12 (1993), pp. 3397–3415.

[57] Jean-Jacques Moreau. “Fonctions convexes duales et points proximaux
dans un espace hilbertien”. In: CR Acad. Sci. Paris Sér. A Math 255
(1962), pp. 2897–2899.

[58] Marius Muja and David G. Lowe. “Fast Approximate Nearest Neighbors
with Automatic Algorithm Configuration”. In: International Conference
on Computer Vision Theory and Application VISSAPP’09). INSTICC
Press, 2009, pp. 331–340.

[59] Balas Kausik Natarajan. “Sparse approximate solutions to linear sys-
tems”. In: SIAM journal on computing 24.2 (1995), pp. 227–234.

[60] Arkadi Semenovich Nemirovsky and David Borisovich Yudin. “Problem
complexity and method efficiency in optimization.” In: (1983).

[61] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. “On spectral clus-
tering: Analysis and an algorithm”. In: Advances in neural information
processing systems 2 (2002), pp. 849–856.

[62] Bruno A Olshausen et al. “Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images”. In: Nature 381.6583
(1996), pp. 607–609.

[63] Bruno A Olshausen. “Sparse coding of time-varying natural images”. In:
Proc. of the Int. Conf. on Independent Component Analysis and Blind
Source Separation. Citeseer. 2000, pp. 603–608.

[64] Bruno A Olshausen and David J Field. “Sparse coding with an overcom-
plete basis set: A strategy employed by V1?” In: Vision research 37.23
(1997), pp. 3311–3325.

[65] Stanley Osher and Leonid I Rudin. “Feature-oriented image enhance-
ment using shock filters”. In: SIAM Journal on Numerical Analysis 27.4
(1990), pp. 919–940.

43

Bibliography

[66] Trevor Park and George Casella. “The bayesian lasso”. In: Journal of
the American Statistical Association 103.482 (2008), pp. 681–686.

[67] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In:
The Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[68] Nicolas Pinto, David D Cox, and James J DiCarlo. “Why is real-world vi-
sual object recognition hard?” In: PLoS computational biology 4.1 (2008),
e27.

[69] Christopher Poultney, Sumit Chopra, Yann L Cun, et al. “Efficient learn-
ing of sparse representations with an energy-based model”. In: Advances
in neural information processing systems. 2006, pp. 1137–1144.

[70] Marc Aurelio Ranzato et al. “Unsupervised learning of invariant feature
hierarchies with applications to object recognition”. In: Computer Vision
and Pattern Recognition, 2007. CVPR’07. IEEE Conference on. IEEE.
2007, pp. 1–8.

[71] Jason Tyler Rolfe and Yann LeCun. “Discriminative recurrent sparse
auto-encoders”. In: arXiv preprint arXiv:1301.3775 (2013).

[72] Sam T Roweis and Lawrence K Saul. “Nonlinear dimensionality reduc-
tion by locally linear embedding”. In: Science 290.5500 (2000), pp. 2323–
2326.

[73] Christian Schörkhuber and Anssi Klapuri. “Constant-Q transform tool-
box for music processing”. In: 7th Sound and Music Computing Confer-
ence, Barcelona, Spain. 2010, pp. 3–64.

[74] David Shuman et al. “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregu-
lar domains”. In: Signal Processing Magazine, IEEE 30.3 (2013), pp. 83–
98.

[75] Evan C Smith and Michael S Lewicki. “Efficient auditory coding”. In:
Nature 439.7079 (2006), pp. 978–982.

[76] Bob L Sturm. “An analysis of the GTZAN music genre dataset”. In: Pro-
ceedings of the second international ACM workshop on Music informa-
tion retrieval with user-centered and multimodal strategies. ACM. 2012,
pp. 7–12.

[77] Bob L Sturm. “A survey of evaluation in music genre recognition”.
In: Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation.
Springer, 2014, pp. 29–66.

[78] Bob L Sturm. “The GTZAN dataset: Its contents, its faults, their effects
on evaluation, and its future use”. In: arXiv preprint arXiv:1306.1461
(2013).

44

Bibliography

[79] Joshua B Tenenbaum, Vin De Silva, and John C Langford. “A global
geometric framework for nonlinear dimensionality reduction”. In: Science
290.5500 (2000), pp. 2319–2323.

[80] Robert Tibshirani. “Regression shrinkage and selection via the lasso”.
In: Journal of the Royal Statistical Society. Series B (Methodological)
(1996), pp. 267–288.

[81] Andrey Tikhonov. “Solution of incorrectly formulated problems and the
regularization method”. In: Soviet Math. Dokl. Vol. 5. 1963, pp. 1035–
1038.

[82] George Tzanetakis and Perry Cook. “Musical genre classification of audio
signals”. In: Speech and Audio Processing, IEEE transactions on 10.5
(2002), pp. 293–302.

[83] Pascal Vincent et al. “Extracting and composing robust features with
denoising autoencoders”. In: Proceedings of the 25th international con-
ference on Machine learning. ACM. 2008, pp. 1096–1103.

[84] Curtis R Vogel. Computational methods for inverse problems. Vol. 23.
Siam, 2002.

[85] Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. “Consistency
of spectral clustering”. In: The Annals of Statistics (2008), pp. 555–586.

[86] Robert W Young. “Terminology for logarithmic frequency units”. In: The
Journal of the Acoustical Society of America 11.1 (1939), pp. 134–139.

[87] Lihi Zelnik-Manor and Pietro Perona. “Self-tuning spectral clustering”.
In: Advances in neural information processing systems. 2004, pp. 1601–
1608.

[88] Miao Zheng et al. “Graph regularized sparse coding for image repre-
sentation”. In: Image Processing, IEEE Transactions on 20.5 (2011),
pp. 1327–1336.

[89] Dengyong Zhou et al. “Learning with local and global consistency”. In:
Advances in neural information processing systems 16.16 (2004), pp. 321–
328.

[90] Martin Zinkevich. “Online convex programming and generalized infinites-
imal gradient ascent”. In: (2003).

[91] Hui Zou and Trevor Hastie. “Regularization and variable selection via
the elastic net”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 67.2 (2005), pp. 301–320.

45

	Introduction
	I Algorithm
	Background
	Neural networks
	Auto-encoders

	Model
	Assumptions
	Linear regression
	Sparse coding
	Dictionary learning
	Manifold learning
	Encoder
	Auto-encoder
	Approximate schemes

	Related works
	Optimization

	II Application
	Music genre recognition
	Problem formulation
	Dataset

	System
	Preprocessing
	Feature extraction
	Classification

	Results
	Spectrograms
	Figures of merit
	Classification performance
	Discussion

	Conclusion
	Future work

	References

