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A number of methods have recently been developed to identify early warning signals

(EWSs) within time-series structure typically characteristic of the rise of critical transitions.

Inherent technical constraints often limit the possibility to obtain from sediment both

regular and high-resolution time series rather most palaeoecological time series obtained

from sediment records represent time-aggregated ecological signals. In this study, the

robustness of EWS detection to temporal aggregation was addressed using simulated

time series mimicking ecological dynamics. Using a stochastic differential equation based

on a deterministic model exhibiting a critical transition between two stable equilibria,

two different scenarios were simulated using different combinations of forcing and

noise intensities (critical slowing-down and driver-mediated flickering scenarios). The

temporal resolution of each simulated time series was progressively decreased by

averaging the data from 1t = 1 up to 1t = 10 time-unit intervals. EWSs [standard

deviation, autocorrelation at lag-1 (AR(1)), skewness and kurtosis] were applied to all time

series. Robustness of EWSs to data aggregation was assessed through a block-based

approach using Kendall rank correlation Tau. Standard deviation appeared to be robust

to data aggregation up to 1t = 10 for the slowing-down scenario and up to 1t = 5

for the driver-mediated flickering scenario while autocorrelation remained robust up to

1t = 2 for the slowing-down scenario and did not support data aggregation for the

driver-mediated scenario. Skewness and kurtosis performed poorly for the two scenarios

and were not considered as robust EWSs even for the original simulated time series using

the block-based approach. Our results suggest that high-resolution palaeoecological

time series could be in a large extent suitable to support EWS analyses.
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Introduction

Since the Industrial Revolution, the enhancement of anthropogenic pressures worldwide led to
drastic changes in ecosystem functioning (Estes et al., 2011) and species dynamics (Anderson
et al., 2008). Ecosystems are complex adaptive systems and species exhibit a large number of
biotic and abiotic interactions, their responses to forcings can be linear and progressive but also
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nonlinear, exhibiting rapid, and abrupt changes (Scheffer et al.,
2001, 2012; Dakos et al., 2015). Such catastrophic shifts
are related to the existence of multiple attractors and fold
bifurcations in response to slow variations in forcing variables
(May, 1977; Seekell et al., 2013). In many cases, the human-
induced regime shifts of ecosystems or species trigger important
alterations of ecosystem services (Folke et al., 2004; Millennium
Ecosystem Assessment, 2005). As a consequence, over the last
decade, a growing body of research (Scheffer et al., 2001, 2009,
2012; Dakos et al., 2008, 2015; Carpenter et al., 2011) has been
developed to define indicators of the rising of a critical transition.
Various indicators or early warning signals (EWSs) have been
proposed to anticipate such regime shifts (reviewed in Scheffer
et al., 2012). The basic assumption is that the structure of the
time series of a state variable differs whether the system is close
to or far away from an attractor within the attraction basin. EWS
methods have been successfully used to identify changes in time
series prior of regime shift in various contexts such as climate
change (Dakos et al., 2008; Lenton et al., 2012), lakes (Carpenter
et al., 2011; Wang et al., 2012), plankton (Veraart et al., 2012)
and zooplankton (Drake and Griffen, 2010). Nonetheless, time
series required to seek for EWS should be long and recorded at
high-resolution. For instance, Dakos et al. (2012a) argued that
the frequency of the observations should be higher than the
characteristic rate of change of the state variable in the considered
dynamic system. This often limits the possibility of using EWS
methods to ecological time series and especially palaeoecological
time series, which usually have lower temporal resolution than
the genuine ecological dynamics it is supposed to describe.

Sediment records have commonly been used to obtain long-
term time series of ecosystem’s state variables (Dakos et al., 2008)
or species (Caswell and Frid, 2013). Spanning specific periods
of interest (e.g., late Glacial transition, Little Ice Age, Industrial
Revolution), the use of EWSs on reconstructed dynamics would
greatly improve our ability to better assess resilience and
stability of species or ecosystems. Unfortunately, finest time
resolution (i.e., 1–2 years) is seldom to be achieved due to
limited or changing sedimentation rate as well as bioturbation
that can induce errors in the relative age estimates between
successive samples. Interpolation has been regarded has a mean
to deal with unevenly spaced empirical time series (e.g., Dakos
et al., 2008). Nonetheless, interpolation can spuriously alter the
statistical properties of time series (Carstensen et al., 2013). As
an alternative, the robustness of EWSs to temporal upscaling
or data aggregation may be questioned. What is the lower
temporal resolution of data needed for a consistent EWS analysis?
Lenton et al. (2012) addressed the effect of data aggregation
on their GENIE-2 simulations over different time scales and
identify significant effects on the results (specifically temporal
autocorrelation) whereas Carstensen et al. (2013) questioned a
possible influence of the temporal resolution on EWS detection.

This study aims at assessing the effect of temporal resolution
on EWS detection using simulated time series. Specific questions
that motivated this study were: (i) To what extent EWS patterns
remain consistent after data aggregation? (ii) Is the influence of
data aggregation similar when dealing with different kinds of
regime shift scenarios?

Four hundred time series were simulated from a stochastic
version of the model of Ludwig et al. (1978) using two different
parameterizations (details below). This model, widely used in
ecological modeling (e.g., May, 1977; Dakos et al., 2012a),
exhibits alternative stable states and finely matches abrupt shifts
in ecosystem states or in species abundances. Species dynamics
greatly differed among species especially due to differences
among body size (Yodzis and Innes, 1992). Therefore, to cope
with these intrinsic differences, two intensities of Gaussian white
noise (i.e., high and low) were used (i) to enable the EWS
detection, (ii) to match with patterns found in real data. The
different combinations of noise and forcing rate of change aimed
at reproducing patterns mostly reported for ecological dynamics
prior to a critical transition, namely slowing-down or flickering.
Slowing-down is characterized by a slower recovery of the system
as long as the forcing variable increases in a context of low noise
level (Dakos et al., 2008; Lenton et al., 2012). The flickering
phenomenon is characterized by a high noise level which triggers
switch of the system state between two basins of attraction due
to relatively large disturbances (Guttal and Jayaprakash, 2007;
Dakos et al., 2013). In this case, a critical transition can be due
to both deterministic and stochastic processes.

Methods

Alternative Stable State Model
The model used to simulate time series is a stochastic differential
Equation (1) derived from the deterministic model of Ludwig
et al. (1978). The first part of the model provides the classical
logistic growth of a population X with maximum per-capita
growth rate r and carrying capacity K. For all simulations,K = 10
and r = 1. The second part of the model represents a harvest
function following a type-III S-shaped functional response
(Holling, 1959) mimicking nonlinear relationship between a
forcing and a response variable (often between a consumer and its
resource). The harvest function was retained as it corresponds to
a large number of interactions among aquatic species (Morozov,
2010). Ecologically, speaking, c expresses the extent of the
forcing intensity or saturation level of the predator for which
no more prey can be consumed and h represents a switching
value that indicates the scale at which predators switch on new
preys under learning process. Tuning this model for K = 10
allows producing alternative stable state scenarios intersected by
a critical transition (May, 1977). For all analyses, c (hereafter
forcing intensity) linearly increased (Table 1), and h was set
constant at 1. Noise consisted in Gaussian white (Wiener) noise
dW centered on 0with a constant standard deviation (σ, hereafter
noise intensity) and was introduced in the model to take into
account random variations in forcing pressure. The stochastic
equations were simulated using Euler discretization and solved
with Ito stochastic calculus (Horsthemke and Lefever, 1984).

dX = rX

(

1−
X

K

)

dt −
(

cdt + σdW
) X2

X2 + h2
(1)

Adjusting values for both forcing and noise intensities (c and
σ, respectively) led to simulate two different scenarios of time
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TABLE 1 | Characteristics of forcing (c) and noise intensities with σ

representing standard deviation used in the two different scenarios.

Critical slowing-down Driver-mediated flickering

c 1–3 1–3

σ 0.5 1.5

series that mimic different possible scenarios matching empirical
time series (Table 1). The “slowing-down scenario” was obtained
considering a slow linear increase for the forcing variable c and
a low and constant amount of noise σ. According to Dakos
et al. (2013), the flickering behavior is characterized by a high
amount of noise and is thought to express highly stochastic
dynamics compared to slowing-down scenario. Therefore, in
the “driver-mediated flickering” scenario the forcing variable c
increases also linearly with time but a higher constant level of
noise is applied. For the slowing-down scenario, the low noise
level was adjusted to trigger state shift very close to the actual
fold bifurcation (Dakos et al., 2013). By contrast, in the flickering
scenario the higher amount of noise was set so as the system
could flip from one state to another with forcing facilitation
(driver-mediated) (Dakos et al., 2013). For each scenario, 200
time series were simulated.

Time Series Aggregation
The process of aggregation of time series considered all full-
length time series simulated. The process produced surrogate
time series for which temporal resolution ranges from 1 to 10
time units. Explicitly, for the aggregated time series at 1t = 2
time units, each two consecutive values were averaged. Similarly,
for 1t = 3 time units, each three consecutive values were
averaged and so on until 1t = 10 time units. The range of
temporal aggregation, from 1 to 10 time units, was retained to
match the usual time intervals usually reached in high-resolution
palaeolimnological studies (e.g., Frossard et al., 2013; Millet et al.,
2014).

Early Warning Signals
A large array of EWS methods has been proposed over the
last years to detect change in time series structure prior to a
critical transition. Four indicators were used in the analyses.
(i) The standard deviation (SD) of the state variable X is
expected to increase due to wider fluctuations in the system
when approaching a tipping point as a consequence of lower
recovery rate following disturbances, entraining the system far
from the center of the basin of attraction. (ii) The temporal
autocorrelation was considered through the autoregressive
coefficient of an autoregressive model of order 1 fitted using
conditional least-squares method (AR(1)). AR(1) is also expected
to increase as the system approaches a critical transition because
fluctuations become larger, implying that the successive data
become progressively more similar and therefore autocorrelated.
(iii) Skewness and (iv) kurtosis, respectively the standardized
third and fourth moments around the mean of a distribution
of a X were also considered. These two indicators highlight
how, as the system reaches a critical transition, it exhibits slower
recovery and higher proportion of extreme values. Different

patterns can be produced by these two indicators whether the
next alternative stable state is lower or higher than the previous
one.

All time series were split in two parts using constrained
hierarchical clustering based on Euclidean distance between
successive time steps to obtain the portions of the simulated
time series prior to critical transition on which the analyses were
conducted. These portions were then adjusted to the shortest
time series in order to compare EWS patterns and detrended
using Gaussian kernels (Dakos et al., 2012a).

The use of a moving sliding window can introduce statistical
dependence among EWSs that biases statistical estimates of
trends and may limit our ability to detect true alarms (Boettiger
and Hastings, 2012). To overcome this issue we used a block-
based approach similarly to Wouters et al. (2015) to compute
independent EWSs. Time series from the critical slowing-down
scenario were restricted to 300 time steps (i.e., the shortest length
for driver-mediated scenario) so that each block for the two
scenarios had equal number of observations. Time series were
split in 10 blocks among which Gaussian detrending was applied
followed by EWS computation within each block. The length of
the time series (300 time steps) could not support aggregation for
higher numbers of blocks and restricted EWS computation for
aggregation level above 1t = 10. In the context of this study, it
can be considered among the longer ecological time series that
can be obtained. Kendall rank correlation Tau then was used to
assess the value and the significance of EWS pattern using the
block-based approach.

Simulations from the stochastic differential equation were
produced with Scilab 5.5.0 (Scilab Enterprises S.A.S). Data
aggregation and statistical analyses were performed using R 3.2.0
(R Core Team Development, 2015) as well as the packages
“earlywarnings” (Dakos et al., 2012a), “vegan” (Oksanen et al.,
2015) and “rioja” (Juggins, 2014).

Results

Two specific scenario patterns were obtained using different
combinations of c and σ (Table 1, Figure 1). Simulated time
series were split at the onset of the tipping points using
constrained cluster analysis and sections of the time series prior
the tipping points were retained to produce consistent EWS
comparison for the slowing-down and driver-mediated flickering
scenarios. Patterns for the different EWSs were then assessed
using Kendall correlations.

EWS Patterns
For each of the two scenarios, the 200 simulated time series
allowed accounting for particular behavior of time series
due to the stochastic part in Equation (1). Visual inspection
indicated that patterns differed among EWSs and that the effect
of data aggregation varied both among EWS and scenarios
(Figures 2, 3).

For the slowing-down scenario (Figure 2), increasing patterns
of autocorrelation can be identified at aggregation level of 1t =
1 and 1t = 2. At higher aggregation levels, patterns are flattened
and even exhibit a decrease in autocorrelation in the last block,
especially at 1t = 10. Differently, standard deviation exhibited
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FIGURE 1 | Examples of single time series simulated from Equation (1)

producing different patterns according to variations in c and σ. (A)

represents a slowing-down scenario for which c increases over time with a low

level of noise (small σ). (B) refers to a driver-mediated flickering scenario for

which c increases over time with a high level of noise (high σ). The gray vertical

lines indicate the time at which an observed bifurcation occurs toward a lower

alternative stable state using the constrained hierarchical clustering based on

Euclidian distance.

unambiguous increasing patterns over the range of aggregation.
Its variability among simulations within each block decreased
as aggregation increases, which is likely related to our data
averaging process. Standard deviation drastically increases in
the 10th block, the last sequence before the transition. The
time series we used did not integrate data after the transition.
Therefore, although an increase in standard deviation can be
informative between successive blocks, the last sequence prior
to the transition seems to clearly indicate the imminence of the
transition. Skewness and kurtosis were mostly characterized by
rather flat or decreasing trends at least up to the 8th block. As for
standard deviation, these two EWS increased drastically in the
last 10th block up to the data aggregation of 1t= 2. Although, it
seems to effectively indicate the rise of the transition, the lack of
previous trends limit greatly their ability of anticipate the critical
transition in this scenario.

For the driver-mediated flickering scenario, the highest noise
intensity compared to the slowing-down scenario produced EWS
patterns that were differently conserved over the aggregation
range considered (Figure 3). For autocorrelation, the within-
block variability was rather high as indicated by the large
standard error bars. Increasing patterns were not pronounced,
except for 1t = 1. A decrease in autocorrelation within the
last two blocks occurs up to 1t = 2. Differently for standard
deviation, increasing trends associated with a marked increase in
the last block were conserved up to 1t= 5. At 1t= 10, although
the 10th block exhibited clearly a high standard deviation, trend
prior the 10th block was absent. Neither, skewness nor kurtosis
exhibited increasing trends over any level of aggregation for the
driver-mediated scenario. In a majority of cases, these two EWS
tented to decrease over the last three blocks at aggregation level
up to 1t= 2.

Robustness of EWS to Aggregation
Important differences were found regarding EWS robustness
to data aggregation. For standard deviation, Kendall Tau was

significantly positive for the slowing-down scenario over the
range of aggregation. It increased from ∼0.5 to ∼1 from
1t = 1 to 1t = 10, indicating strong increasing pattern when
approaching the critical transition (Figure 4). For the driver-
mediated scenario, the Kendall Tau of the standard deviation was
still positive but close to significance at 1t = 1 and significant
at 1t = 2 and 1t = 5 (Figure 4). Kendall correlations for
temporal autocorrelation tended to decrease over the range of
data aggregation but were high for the low aggregation level at
∼0.5. They remain significant up to 1t = 2 for the slowing-
down scenario and were close to significance for the driver-
mediated scenario only at 1t = 1 (Figure 4). Skewness and
kurtosis did not exhibited significant trends even among the
original simulated time series (Figure 4). The Kendall Tau tended
to decrease with date aggregation as expected from the patterns
shown in Figures 2, 3. This decreasing pattern becoming more
pronounced as data aggregation increases, it can explain the
concomitant decrease of the p-value of Kendall Tau, especially
for skewness in the driver-mediated scenario. For skewness
and kurtosis trends tended to decrease with data aggregation.
This counterintuitive result could be due to the smaller sample
size in blocks over aggregation steps. Nonetheless, Kendall Tau
was negative, contrary to our primary expectations. Based on
our primary expectations of a positive and significant Kendall
Tau, these two EWSs did not meet the required criteria at any
level of aggregation to inform about the rising of a critical
transition. The robustness of EWSs, assessed using significance
of Kendall Tau from the block-based approach, is summarized in
Table 2.

Discussion

The expanding use of time series obtained from sediment
records to address current ecological threats and long-term
ecosystem dynamics progressively reconcile palaeoecology and
neoecology. A shared time continuum recently described by
Rull (2014) identifies time scales that can be retrieved from
lacustrine archives to reconstruct high-resolution, ecologically
relevant dynamics. The unprecedented increase of anthropogenic
forcings ongoing since the beginning of the twentieth century
(Anthropocene era; Steffen et al., 2011) deeply altered most of
natural ecosystems and their associated species fitness leading
to possible massive ecosystem or species collapses. In this
context, seeking for EWSs that could inform for the rise
of critical regime shifts among times series obtained from
lake sediments is likely to be a future important demand
of conservationists and practitioners to palaeoecologists in a
changing environment. Nevertheless, detectability and reliability
of EWSs using palaeoecological data were remaining to be
tested to develop with confidence their application to a
wide array of ecological variables that can be reached from
sediment archives. Justifications of model characteristics will
be first presented, before comparing EWS advantages in
different time series scenarios. The robustness of the EWSs is
then discussed prior to provide ecological considerations for
ecosystem and species dynamics that could be subjected to EWS
analyses.
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FIGURE 2 | Patterns of four EWSs for the slowing-down scenario from 200 simulated time series using the block-based approach. Time aggregation

ranged from 1t = 1 to 1t = 10. Black circles associated with whiskers represent mean values and standard errors of EWSs. As time scale is reversed, the transition

occurs at the end of the 10th block. AR(1), autocorrelation; SD, standard deviation; Sk, skewness; Ku, kurtosis. Kurtosis could not be computed for aggregation

1 = 10 because of the lack of data for each block (n = 3) for this aggregation level.

Model Choice and Parameterization
Various model formulations exhibiting alternative stable states
associated with catastrophic regime shifts have been proposed
(e.g., May, 1977; Carpenter et al., 1999). The current model
was considered because of its long use in theoretical ecology
and especially in recent EWS studies. Moreover, its simplicity
allows obtaining highly different scenarios only by varying two
parameters (c and σ) related to strong ecological assumptions
(forcing intensity, noise on the forcing). Directionality of shift
can influence the EWS patterns (Dakos et al., 2012b). For
instance, critical slowing-down can be especially detected when
the system shifts to basins of attraction from high to low
values and more hardly from low to high values. Hence, the
model retained was expected to be especially suitable to identify

EWS patterns for the different simulated scenarios. In the
model formulation, the stochastic component was set to be
multiplicative. Although multiplicative noise has been shown
to possibly produce spurious patterns leading to difficulties to
identify critical transition (Dakos et al., 2012b), this kind of noise
(white Gaussian noise applied on c) prevents the occurrence of
unrealistic negative results during the simulations especially in a
context of important noise.

Early Warning Patterns
The patterns of EWS prior to bifurcation differed among the two
studied scenarios. Standard deviation, autocorrelation increased
over time prior to the observed bifurcation point for both
scenarios. Our results for the driver-mediated flickering scenario
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FIGURE 3 | Patterns of four EWSs for the driver-mediated flickering scenario from 200 simulated time series using the block-based approach. Time

aggregation ranged from 1t = 1 to 1t = 10. Black circles associated with whiskers represent mean values and standard errors of EWSs. As time scale is reversed,

the transition occurs at the end of the 10th block. AR(1), autocorrelation; SD, standard deviation; Sk, skewness; Ku, kurtosis. Kurtosis could not be computed for

aggregation 1 = 10 because of the lack of data for each block (n = 3) for this aggregation level.

differed from those of Dakos et al. (2013) who used a different
model (Carpenter et al., 1999) for which standard deviation
and autocorrelation decreased prior to the theoretical critical
transition. These authors suggested that a decrease in system’s
sensitivity to forcings or a reduction of the system’s ability
to follow high-frequency variations in the environment could
explain this pattern. The difference with these results could also
be attributable to the fact that we considered only portions of
the simulated time series prior the observed critical transition
whereas Dakos et al. (2013) accounted the ones that encompass
the critical transitions. Nonetheless, by considering time series
up to the bifurcation point, we could show that, at least standard
deviation and autocorrelation showed an increasing pattern prior
a critical transition therefore supporting consistent patterns for

the two scenarios. Opposite alternative attractors between the
models of Carpenter et al. (1999) and May (1977) as well as the
use of portions of time series prior the critical transition are likely
to explain the failure to detect clear patterns for skewness whereas
Dakos et al. (2013) reported decreasing patterns. Clear patterns
for kurtosis were also almost absent prior to observed bifurcation
point for the two scenarios suggesting that these two latter EWSs
should be considered with caution to identify the rise of a fold
bifurcation.

Early Warning Robustness
The robustness of EWSs to data aggregation was addressed
using a block-based approach as recently developed by Wouters
et al. (2015) in order to produce independent EWS estimates
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FIGURE 4 | Effect of data aggregation on the detection of four EWS

patterns for the two scenarios using the block-based approach. Top:

slowing-down scenario. Bottom: driver-mediated flickering scenario. For both

scenarios, left panels show p-values and right panels show the estimates of

Kendall rank correlation for mean EWS patterns obtained from 200 simulated

time series. The gray lines indicate the threshold of P = 0.05 under which

correlations are considered significant. AR(1), autocorrelation; SD, standard

deviation; Sk, skewness; Ku, kurtosis. Kurtosis could not be computed for

aggregation 1 = 10 because of the lack of data for each block (n = 3) for this

aggregation level.

and prevent overestimation of the ability of EWS signal to
identify effective rise of a critical transition (Boettiger and
Hastings, 2012). Our analyses revealed clear influence of data
aggregation on EWSs, in line with Lenton et al. (2012)
who identified a significant influence of data aggregation
on temporal autocorrelation for the GENIE-2 simulations.
Dakos et al. (2012b) addressed the robustness of the standard
deviation and AR(1) on a similar model than ours but in
a different perspective. They showed that disturbances had
different effects when acting on different parameters of the
model. Important differences were found among the robustness
of EWS to data aggregation (Table 2). Standard deviation was
more robust to data aggregation than autocorrelation for the
two scenarios considered although is decreased from 1t =

10 for the slowing-down to 1t = 5 for the driver-mediated
flickering. Autocorrelation was less robust to data aggregation by
conserving increasing trends for the slowing-down scenario up
to 1t = 2 and only at 1t = 1 for the driver-mediated flickering.
The higher robustness of standard deviation could originate from
the different structure of the aggregated time series compared to
the original one. It was likely to be due to the aggregation that
merged successive high (or low) data (autocorrelation at lag-1
altered) whereas it can conserve the relative variability structure
of the time series. This finding reinforces the interest of standard
deviation as generic EWS for different scenarios thriving to a

TABLE 2 | Summary of the robustness of EWSs to data aggregation for the

two scenarios according to significance of Kendall Tau using the

block-based approach.

1t = 1 1t = 2 1t = 5 1t = 10

SLOWING-DOWN SCENARIO

SD × × × ×

AR(1) × ×

Sk

Ku

DRIVER-MEDIATED FLICKERING SCENARIO

SD × × ×

AR(1) ×

Sk

Ku

1t indicates the level of data aggregation. SD, AR(1), Sk and Ku refer to standard

deviation, autocorrelation, skewness, and kurtosis, respectively.

critical transition. Neither, skewness nor kurtosis met the criteria
to be robust EWS at any level of data aggregation even for
the original time series. Therefore, these two EWSs should be
used with caution when applied to ecological time series because
different patterns could be expected depending on the structure
of the data. As a consequence, the use of a combination of
EWSs is suggested to be needed to estimate confidently an
approaching regime shift as well as to help at distinguishing
between the different possible structures of palaeoecological time
series (slowing-down vs. flickering) especially if directionality
and extent of environmental fluctuations are unknown.

Ecological Opportunities
To date, reaching suitable ecological time series to perform EWS
analyses still remain challenging. Few field data have highlighted
changes in the statistical structure of time series prior to sudden
shifts exhibited at different time scales. Carpenter et al. (2011)
measured chlorophyll at a 5min time intervals during 3 years in
their whole-lake experiment and showed EWS from chlorophyll
(change in spectral power) following largemouth bass addition
one year prior the food web transition. Hewitt and Thrush
(2010) reported an increasing temporal variability (flickering)
in the composition of intertidal communities before a trophic
and functional change to an alternative community type using
bimonthly monitoring data over 20 years. At higher time scale,
Beaugrand et al. (2008) identified an increase in the local variance
of biological variables (e.g., phytoplankton, zooplancton) prior
abrupt climate-driven ecosystem shifts in the North Atlantic
using data at an annual scale over around 50 years.

Our results indicated that samples integrating up to 5 years
could be suitable for applying EWS among the two scenarios
considered (especially for standard deviation; Table 2). At higher
time scales, only standard deviation for the critical slowing-down
scenario appeared to be suitable, up to 10 year time sample, to
identify changes in the statistical structure of a time series prior
to a critical transition. The implicit assumption that one time unit
obtained from the model was equivalent to 1 year could be a bit
restrictive in different cases, for instance for plurivoltine species.
Apart technical difficulties to reach higher resolution than annual
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resolution from sediment cores, many lacustrine species are
nonetheless univoltine (annual recruitment) and or typically uni-
seasonal such as diatoms, meaning that they are also recorded
annually (Giguet-Covex et al., 2010). For populations and
communities, EWSs can provide relevant information especially
for abundant aquatic species whose past abundance can be
tracked in sediment archives through biological remains such as
chironomids (Frossard et al., 2013) or newly developedmolecular
analyses (ancient DNA, Savishcheva et al., 2011; Belle et al., 2014).

Species can be expected to intrinsically possess different
indicative potential toward EWS analyses because of their
different functional responses to environmental changes. For
instance, Brodersen et al. (2004, 2008), who studied respiration
of midges (Diptera; Chironomidae) in West Greenland and
British Columbian lakes, found that species sustained their
respiration along an oxygen gradient (forcing equivalent to c)
in different ways following linear, break-point and cubic-like
patterns. Oxygen being a primary environmental forcing for
these species their different physiological respiration is likely to
induce different patterns in EWS toward a population critical
transition. Additionally, because a critical transition is especially
expected in highly connected foodwebs (Scheffer et al., 2012),
the position and interaction linking a species to the others could
influence the indicative value of EWS for a specific species to
the sustainability of the whole foodweb. As a consequence, apical
species should be especially suitable to inform of a possible
regime shift as they theoretically embed information of basal
species (Sugihara et al., 2012). Luckily, they also usually exhibit
longer (pluriannual) generation times allowing a finematch using
palaeoecological records of their genuine dynamics.

The increasing anthropogenic forcings make the flickering
scenarios plausible in the present and future times, especially
driver-mediated flickering due to the increase of the number
and the strength of forcings (Steffen et al., 2011). Our analyses
showed that in this context, EWSs, especially standard deviation,

were robust to consistent time aggregation (1t = 5). Under
highly noisy dynamics (noise-mediated) for which flickering
can be induced by different causes (e.g., intrinsic and/or
environmental stochasticity), EWS detection could be especially
difficult (Contamin and Ellison, 2009; Perretti and Munch,
2012). Additionally, no linear dynamics could be triggered by
changes in forcing combinations leading to regime shifts not
preceded by EWSs before regime shift (Hastings and Wysham,
2010). Therefore, for the analyses of time series, EWSs should
be coupled to nonlinear analyses (Hsieh et al., 2008; Ives and
Dakos, 2012) to strengthen the robustness of palaeoecological
interpretations.

Conclusions

The detectability of the EWS tested was shown to be robust
to data aggregation usually found among high-resolution
palaeoecological time series. Nonetheless, the use of a
combination of EWSs associated with unbiased methods to
estimate statistics of EWS trends such as block-based Kendall
Tau should be encouraged to strengthen the robustness of
identified patterns. Considered as resilience metrics, EWSs

also offer promising decision tools to management ecologists
to assess ecological vulnerability under external and internal
forcings. They have also been shown to respond to other
types of threshold dynamics (e.g., transcritical transitions;
Kéfi et al., 2012; Hansen et al., 2013). Hence, their use
is expected to be relevant in a large context of ecological
dynamics.
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