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Abstract

Feature tracking is a fundamental problem in computer
vision, with applications in many computer vision tasks,
such as visual SLAM and action recognition. This paper
introduces a novel multi-body feature tracker that exploits
a multi-body rigidity assumption to improve tracking ro-
bustness under a general perspective camera model. A
conventional approach to addressing this problem would
consist of alternating between solving two subtasks: mo-
tion segmentation and feature tracking under rigidity con-
straints for each segment. This approach, however, requires
knowing the number of motions, as well as assigning points
to motion groups, which is typically sensitive to the motion
estimates. By contrast, here, we introduce a segmentation-
free solution to multi-body feature tracking that bypasses
the motion assignment step and reduces to solving a series
of subproblems with closed-form solutions. Our experi-
ments demonstrate the benefits of our approach in terms of
tracking accuracy and robustness to noise.

1. Introduction
Feature tracking is a prerequisite for many computer

vision tasks, such as visual SLAM and action recognition.
Among all the feature tracking methods, the Kanade-Lucas-
Tomasi (KLT) tracker [17, 22, 20], although developed
30 years ago, still remains one of the most widely used
techniques. One of the reasons for this popularity is its
computational efficiency; the KLT tracker is local, in the
sense that it treats each local region independently of the
others, which makes it highly parallelizable. This local-
ity, however, comes at a cost in tracking robustness: the
tracking of each feature cannot benefit from intrinsic scene
constraints, and thus often suffers from drift.

Real-world scenes, however, are often strongly con-
strained. For example, in autonomous driving, most of
the moving objects (cars, vehicles, pedestrian) are rigid,
or quasi-rigid if seen from afar. Several methods have
therefore been proposed to exploit this scene rigidity to
improve feature tracking [23, 3, 19]. Unfortunately, these

methods all assume an affine camera model and are thus
ill-suited to handle strong perspective effects. More im-
portantly, they work either as a post-processing step on an
entire sequence [23], which is sensitive to initial tracking
results and does not apply to online feature tracking, or
within a temporal sliding window [3, 19], which is sensitive
to initialization in the first few frames.

By contrast, in this paper, we introduce a novel feature
tracker that takes advantage of multi-body scene rigidity
to improve tracking robustness under a general perspective
camera model. A conventional approach to addressing this
problem would consist of alternating between two subtasks:
motion segmentation and feature tracking under rigidity
constraints for each segment. This, however, suffers from
the following drawbacks: First, it requires knowing the
number of observed motions; and, second, it relies on as-
signing points to individual motions, which is very sensitive
to the initial motion estimates.

Here, we introduce a segmentation-free multi-body fea-
ture tracker that overcomes these drawbacks. Specifically,
our approach bypasses the motion assignment step by mak-
ing use of subspace constraints derived directly from the
epipolar constraints of multiple motions. As a result, our
algorithm does not require prior knowledge of the number
of motions. Furthermore, this allows us to formulate track-
ing as an optimization problem whose subproblems all have
closed-form solutions.

We demonstrate the effectiveness of our method on both
feature point tracking and frame-by-frame motion segmen-
tation on real world sequences. Our experiments show
that, by incorporating multi-motion constraints, our tracker
yields better accuracies and is more robust to noise than
the standard KLT tracker and the state-of-the-art tracking
algorithm of [19].

2. Related Work
The KLT tracker [22, 20] was derived from the Lucas-

Kanade algorithm for image alignment [17]. Feature track-
ing was achieved by optimizing the sum of squared dif-
ferences between a template patch and an image patch
with the Gauss-Newton method. It was later extended to
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handle relatively large displacements via the use of image
pyramids [1].

Global rigidity constraints have been incorporated in
feature point tracking to improve robustness. For instance,
Torresani and Bregler [23] proposed to regularize tracking
with a global low-rank constraint on the trajectory matrix of
the whole sequence. They relied on the original KLT tracker
to get a set of reliable tracks, and explicitly factorized the
reliable trajectory matrix into two low-rank matrices with
the rank given a priori. One of the low-rank matrices, called
the motion parameter matrix, was then used to rectify the
unreliable tracks. In short, this method can be viewed as a
post-processing step on the results of the KLT tracker, and
is therefore not suitable for online frame-to-frame tracking.

Instead of using the whole sequence, low-rank con-
straints [3] and similar subspace priors [19] were applied
within a temporal sliding window. Specifically, Buchanan
and Fitzgibbon [3] exploited the low-rank constraints within
a Bayesian tracking framework, making predictions of the
new location of a particular point using a low rank approxi-
mation obtained from the previous frames. Recently, Poling
et al. [19] proposed a better feature tracker by adding soft
subspace constraints to the original KLT tracker and jointly
solving for the displacement vectors of all feature points.
These methods, however, assume an affine camera model
within a temporal window, and are therefore ill-suited to
handle strong perspective effects. Moreover, since the low-
rank constraints are enforced in a temporal sliding window,
these methods are sensitive to initialization in the first few
frames.

By contrast, [18] exploits perspective projection by mak-
ing use of epipolar constraints to track edgels in two con-
secutive frames. This method, however, was specifically
designed to model a single motion, and thus does not easily
extend to the multi-body case.

In the closely related optical flow literature, several
methods have been devoted to improving robustness via
rigidity constraints. For instance, Valgaerts et al. [25] intro-
duced a variational model to jointly recover the fundamental
matrix and the optical flow; Wedel et al. [29, 28] leveraged
the fundamental matrix prior as an additional weak prior
within a variational framework. These methods, however,
assume that the scene is mostly stationary (and thus a single
fundamental matrix is estimated), and treat the dynamic
parts as outliers [28]. Garg et al. [6, 7] proposed to make
use of subspace constraints to regularize the multi-frame
optical flow within a variational approach. This approach,
however, assumes an affine camera model and works over
entire sequences.

While, to the best of our knowledge, explicitly modeling
multi-body motion has not been investigated in the context
of feature tracking and optical flow estimation, a large body
of work [4, 26, 30, 14, 15, 27, 5, 11, 13, 12] has been

devoted to multi-body motion segmentation given good
point trajectories in relatively long sequences. Typically,
these tracks are first obtained with the KLT tracker, and then
manually cleaned up, e.g., the Hopkins155 dataset [24]. In
a sense, the lack of better tracking algorithms that can incor-
porate the intrinsic constraints of dynamic scenes prevents
the practical use of these motion segmentation algorithms.

In this paper, we seek to track feature points in dy-
namic scenes where multiple motions are present. In this
scenario, a single fundamental matrix is not sufficient to
express the epipolar constraints any more. While one
could think of alternating between estimating multiple fun-
damental matrices, motion assignments and displacement
vectors, the resulting algorithm would typically be very
sensitive to initialization, since the motion assignments
strongly depend on the motion estimates. By contrast,
we introduce a segmentation-free approach that bypasses
the motion assignment problem by exploiting subspace
constraints derived from epipolar geometry. This yields a
robust multi-body tracking algorithm that, as demonstrated
by our experiments, opens up the possibility to perform
motion segmentation in realistic scenarios.

3. Multi-body Feature Tracker
We now introduce our approach to multi-body feature

tracking. Formally, let I(x) denote the current image,
T (x) the previous image (or template image), and xij =
[xij , yij ]

T the jth image point in the ith patch Ωi of the
template image. Our goal is to estimate the displacement
vector u = [uTi , · · · ,uTN ]T ∈ R2×N for all N tracked fea-
ture points. To this end, we rely on the standard brightness
constancy assumption [21], which lets us derive the data
term

D(u) =

N∑
i=1

∑
xij∈Ωi

ψ
(
I(xij + ui)− T (xij)

)
, (1)

where, typically, ψ(x) = x2 or ψ(x) = |x|. In particular,
we use the `1 norm, which provides robustness to outliers.

Estimating the displacements from this data term only is
typically sensitive to noise and may be subject to drift. A
general approach to making the process more robust con-
sists of introducing a regularizer R(u) to form an energy
function of the form

F(u) = γD(u) +R(u) . (2)

As mentioned above, several attempts at designing such
a regularizer have been proposed. For example, under
an affine camera model, R(u) can encode a low-rank
prior [23, 19]; with a general projective camera model,
R(u) can represent epipolar constraints (i.e., a fundamental
matrix prior) [29, 25, 18]. In the latter case, the fundamental



matrix can be either pre-computed via an existing feature
matching method [18], or re-computed iteratively.

When multiple motions are present, however, a single
epipolar constraint is not sufficient. Instead, multiple fun-
damental matrices should be estimated so as to respect the
assignments of the tracked points to individual motions. A
straightforward way to addressing this problem consists of
adding a motion segmentation step in the tracking algo-
rithm, so that the fundamental matrices can be iteratively
re-estimated. This leads to the simple segmentation-based
approach to multi-body feature tracking described below.

3.1. A First Attempt: Segmentation-based Tracking

To derive a segmentation-based approach, we rely on
epipolar constraints. Recall that, in epipolar geometry [9],
the homogeneous coordinates x̄′i = (x′i, y

′
i, 1)T and x̄i =

(xi, yi, 1)T of two corresponding image points in two
frames are related by a fundamental matrix F, such that

x̄′Ti Fx̄i = 0 . (3)

It is therefore natural to exploit these constraints to regu-
larize tracking according to the motion assignments of the
different points.

More specifically, in the segmentation-based approach,
three types of variables must be estimated: the displacement
vector u, the fundamental matrices {Fk}k=1,··· ,K (where
K is the number of motions), and the motion label of
each tracked point. Let us denote by x̄ki the homogeneous
coordinate of the ith feature point (i.e., the center of the
patch Ωi) assigned to motion k. We can define a multi-body
regularization term as

R1(u,Fk) =
∑
k

∑
i

[
(x̄ki + ūi)

TFkx̄ki
]2
, (4)

where ūi = [uTi , 0]T .
The energy function can then be approximately mini-

mized by iterating over the following three steps:

1. Update u by first-order gradient descent [19];
2. Estimate Fk for each motion given the current point

assignments;
3. Re-assign the motion labels of the feature points to the

nearest Fk.

This segmentation-based approach suffers from several
drawbacks. First, the number of motions needs to be
known a priori, which is typically hard for general-purpose
tracking. Second, and more importantly, the quality of the
solution obtained with this approach will strongly depend
on the initialization of Fk and of the motion labels. This, in
a sense, is a chicken-and-egg problem, since good initializa-
tion for these variables could be obtained from good motion

estimates. To overcome this, in the remainder of this sec-
tion, we introduce a new segmentation-free approach that
bypasses the need to explicitly compute the fundamental
matrices and the motion assignments.

3.2. Our Segmentation-free Approach

In this section, we introduce our segmentation-free
multi-body feature tracker, which is the key contribution
of this paper. We first show how the epipolar constraints
can be converted to subspace constraints, and incorporated
into our tracking formalism. We then derive the solution to
the resulting optimization problem by decomposing it into
several convex subproblems all with closed-form solutions.

3.2.1 Epipolar Subspace Constraints

As in the segmentation-based approach, we seek to rely on
epipolar geometry. To this end, we make use of the con-
straint expressed in Eq. 3. We first note that this constraint
can be re-writen as

fTvec(x̄′ix̄
T
i ) = 0 , (5)

where f ∈ R9 is the vectorized fundamental matrix F, and

vec(x̄′ix̄
T
i ) = (xix

′
i, xiy

′
i, xi, yix

′
i, yiy

′
i, yi, x

′
i, y
′
i, 1)T .

(6)
Let us define wi = vec(x̄′ix̄

T
i ). Then, wi lies in the

orthogonal complement of fT , which is a subspace of
dimension up to eight1, and which we call the epipolar
subspace. Since image points undergoing the same motion
share the same fundamental matrix, all wis corresponding
to points belonging to the same rigid motion lie on the same
subspace [15].

Therefore, in our multi-body feature tracking scenario,
if the feature points are correctly tracked, the data vectors
defined as

wi = vec
(
(x̄i + ūi)x̄

T
i

)
, ∀ 1 ≤ i ≤ N , (7)

should lie in a union of linear subspaces. This subspace
constraint can be characterized by the self-expressiveness
property [5, 11], i.e., a data point drawn from one subspace
in a union of subspaces can be represented as a linear
combination of the points lying in the same subspace.

In our case, this self-expressiveness property can be
expressed as

W(u) = W(u)C , (8)

where W(u) = [w1 · · ·wN ]2, and C is the coefficient
matrix encoding the linear combinations. On its own, this

1Note that, in practice, this dimension is typically smaller than 8, since,
in real scenes, the motion of objects, such as cars or people, is not arbitrary,
and thus corresponds to degenerate (i.e., low-rank) motion [15].

2In the following, we make use of subscript (u), i.e., W(u), to indicate
that W depends on the variable u. For compactness, and without causing
confusion, we drop this explicit dependency in Section 3.2.3.



term has a trivial solution for C (i.e., the identity matrix).
To avoid this solution, C needs to be regularized. In the
subspace clustering literature, C is encouraged to be either
sparse [5] by minimizing ‖C‖1, low rank [16] by mini-
mizing ‖C‖∗, or dense block diagonal [11] by minimizing
‖C‖2F . Here, we choose the Frobenius norm, which has
proven effective and is easy to optimize. Furthermore, we
explicitly model noise and outliers, which are inevitable in
real-world sequences.

More specifically, we write our regularization term for
multi-body tracking as

R2(u,C) =
1

2
‖C‖2F+λ‖E‖1 , s.t.W(u) = W(u)C+E ,

(9)
where E accounts for noise and outliers, and is thus en-
couraged to be sparse. Note that, for a given displacement
u, and ignoring noise, the optimal value of this regularizer
depends on the intrinsic dimension of the motion [11].
Since here we optimize u, this regularizer therefore tends
to favor degenerate rigid motions over purely arbitrary rigid
motions. This actually reflects reality, since, in real scenes,
cars, people and other objects typically move in a well-
constrained manner.

Importantly, this regularization term requires explicitly
computing neither the fundamental matrices, nor the motion
assignments. As such, it therefore yields a segmentation-
free approach.

Altogether, the energy function of our multi-body track-
ing framework can be written as

F(u,C) = γD(u) +R2(u,C) . (10)

Our goal is to minimize F(u,C) w.r.t. u and C. We next
show how to solve this optimization problem.

3.2.2 Approximation and Problem Reformulation

To optimize Eq. 10, we first approximate the data term in
the same manner as the original KLT. In other words, given
an initial displacement u0

i for patch i, we approximate the
intensity values I(xij + ui) with their first-order Taylor
expansion at xij + u0

i . This can be written as

I(xij+ui) ≈ I(xij+u0
i )+OI(xij+u0

i )(ui−u0
i ) . (11)

For notational convenience, let OIij = OI(xij + u0
i ), and

τij = OIiju0
i + T (xij)− I(xij +u0

i ). Then, the data term
can be expressed as

D(u) =
∑
i,j

|OIijui − τij | . (12)

By combining this data term with our regularizer, we get the
optimization problem

min
u,C,E

γ‖A(u)‖1 +
1

2
‖C‖2F + λ‖E‖1

s.t.W(u) = W(u)C + E ,

(13)

where Aij = OIijui − τij .
For convenience of optimization, we introduce an aux-

iliary variable Z = A(u). Then, (13) can be equivalently
written as

min
u,C,E,Z

γ‖Z‖1 +
1

2
‖C‖2F + λ‖E‖1

s.t. Z = A(u) ,W(u) = W(u)C + E .

(14)

The main hurdle in optimizing (14) now lies in the term with
W(u) due to its seemingly complicated dependency on u.
However, we show below that this term can be simplified
by a few matrix derivations.

First, note that, by definition, we have

vec(W(u)) =

x̄1 ⊗ I3×3

. . .
x̄N ⊗ I3×3


︸ ︷︷ ︸

P̄

(x̄ + ū) ,

(15)
where x̄ = [x̄T1 · · · x̄TN ]T , ū = [ūT1 · · · ūTN ]T , I3×3 is the
3× 3 identity matrix and ⊗ denotes the Kronecker product.
Let us define b = P̄x̄ (or equivalently bi = vec(x̄ix̄

T
i ) )

and introduce another auxiliary variable m = Pu (where
P is obtained by removing every 3ith column of P̄)3. Our
optimization problem then becomes

min
u,C,E,Z,m

γ‖Z‖1 +
1

2
‖C‖2F + λ‖E‖1

s.t. Z = A(u) ,W(m) = W(m)C + E ,m = Pu ,

(16)

where now vec(W(m)) = b + m.
The above optimization problem involves a large number

of variables. We propose to solve it via the Alternating
Direction Method of Multipliers (ADMM) [2], which de-
composes a big optimization problem into several small
subproblems. Below, we show how this can be achieved
for our problem.

3.2.3 ADMM Solution

To apply the ADMM, we first need to derive the aug-
mented Lagrangian of (16), which can be expressed as

Lρ = γ‖Z‖1 +
1

2
‖C‖2F + λ‖E‖1 + yT (m−Pu) + (17)

〈Y1,W −WC−E〉+ 〈Y2,Z−A(u)〉+
ρ

2

(
‖W −WC−E‖2F + ‖Z−A(u)‖2F + ‖m−Pu‖22

)
,

where 〈·, ·〉 denotes the matrix inner product, Y1,Y2, y are
Lagrange multipliers, and ρ is the penalty parameter. The
ADMM then works by alternatively minimizing Lρ w.r.t.

3Note that Pu = P̄ū, since ūi = [uTi , 0]T .



Algorithm 1 Solving (16) via the ADMM

Input:
Image I and template T , positions of the feature points x
in T , initial displacement vector u0, parameters γ, λ, ρ0,
ρm, η, ε

Initialize: C = 0, Y1 = 0, Y2 = 0, y = 0, A(u0), W(u0)

while not converged do
1. Update Z, E, C, u and m in closed-form via
Eqs. 18- 22, respectively;
2. Update A(u) and W(m) with updated u and m;
3. Update the Lagrange multipliers and penalty param-
eter via Eqs. 23- 26;
4. Check the convergence conditions ‖m − Pu‖∞ ≤
ε, ‖W(m)−W(m)C−E‖∞ ≤ ε, and ‖Z−A(u)‖∞ ≤
ε;

end while

Output: Displacement vector u, coefficient matrix C

one of the five variables u, C, E, Z, m while keeping the
remaining four fixed.

As shown in the supplementary material, the five sub-
problems derived from the augmented Lagrangian are all
convex problems that can be solved efficiently in closed-
form. These closed-form solutions can be written as

Z = T γ
ρ
[A(u) −Y2/ρ] , (18)

E = Tλ
ρ
[W −WC+Y1/ρ] , (19)

C = (I+ ρWTW)−1[ρWT (W −E+Y1/ρ)] , (20)

u = (ρPTP+ ρH)−1(g +PTy + ρPTm) , (21)

M = −(ρG+BQ+T)(λQ+ ρI)−1 , (22)

where m = vec(M) is the vectorized form of M, Tα[x] =
sign(x) ·max(|x| − α, 0) is the soft-thresholding operator,
and the definitions of g, H, Q, T are given in the supple-
mentary material.

Finally, the Lagrange multipliers and penalty parameter
can be updated as

Y1 = Y1 + ρ(W −WC−E) , (23)

Y2 = Y2 + ρ(Z−A(u)) , (24)

y = y + ρ(m−Pu) (25)

ρ = min(ηρ, ρm) , (26)

where η > 1, and ρm is the predefined maximum of ρ.
Our approach to solving (16) is outlined in Algorithm 1.

Note that the problem we are trying to solve is non-convex
in that (i) the intensity function I(x;u) is non-convex
w.r.t. u; (ii) the optimization problem (16) involves a
bilinear term in an equality constraint. While the ADMM
does not guarantee convergence, it has proven effective in
practice [10].

Algorithm 2 Our Multi-body Feature Tracker

Input:
Image I and template T , positions of the feature points x
in T , initial displacement vector u0, number of pyramid
levels L, parameters γ, λ, ρ, ρm, maxi, ε

for ` = L− 1 : 0 do
Update u0 ← u0/2`, x ← x0/2` and compute OI at
current image pyramid level;
for i = 1 : maxi do

1. Approximate the image intensities with Eq. 11,
and compute τ , P, H according to their definitions;
2. Update u with Algorithm 1;
3. Check the convergence condition ‖u− u0‖ < ε;
4. If not converged, update u0 = u.

end for
Update u← 2`u, u0 ← 2`u0, and x← 2`x.

end for

Output: Displacement vector u, coefficient matrix C

3.2.4 Our Complete Multi-body Feature Tracker

In the same spirit as [1], we make use of an image pyramid
to handle large displacements and avoid local optima. The
results obtained at a coarser level ` of the pyramid are used
as initialization for the next (finer) level `− 1. Within each
pyramid level, the initial displacement u0, where the first-
order Taylor approximation is performed, is updated with
the displacement vector of the previous iteration. We iterate
over successive Taylor approximations until the displace-
ment vector does not change significantly. Our complete
segmentation-free multi-body feature tracker is outlined in
Algorithm 2.

4. Experiments

To show the benefits of our multi-body feature tracker,
we performed extensive experiments on different se-
quences. In the remainder of this section, we present both
qualitative and quantitative results.

In our experiments, we compare our approach with the
following baselines: the original KLT tracker (KLT), the
L1-norm KLT tracker (L1-KLT), and the more recent Better
Feature Tracker (BFT) through Subspace Constraints [19].
For the original KLT, we used the Matlab built-in vision
toolbox vision.PointTracker; we implemented the L1-norm
KLT tracker using the same framework as our method by
just disabling the regularization term; and for BFT, we used
the code released by the authors.

Due to the lack of benchmark datasets for feature track-
ing, we make use of motion segmentation datasets where
both the ground-truth tracks and the original videos are



KLT L1-KLT BFT Our Method
Figure 1: Performance of different trackers on the 1RT2TC checkerboard sequence: The red points denote the current
positions of the feature points, and the green lines the motion since the previous frame. Best viewed zoomed-in on screen.

available. Since those videos are typically only provided for
illustration purpose, they are generally highly compressed
and not ideal for reliable feature tracking. This, however,
is not really a problem when one seeks to evaluate feature
tracking methods, since (i) it essentially represents a chal-
lenging scenario; and (ii) all algorithms are evaluated on
the same data. In particular, here, we employed 10 checker-
board (indoor) sequences and 12 cars-and-people (outdoor)
sequences from the well-known Hopkins155 dataset [24].
Moreover, we used another 8 outdoor sequences from the
more recent MTPV dataset [15]. To test the robustness of
the different methods, we added different levels of Gaussian
noise (with variance σ2 = 0.01, 0.02, 0.03, or 0.04)4

to the images. Altogether, this results in 150 evaluation
sequences. The values of the parameters (γ = 1.8 × 104

and λ = 1.0× 104) of our method were tuned on a separate
validation set and kept unchanged for all our experiments.

To compare the algorithms, we measure the number of
tracking errors, i.e., the number of points that drift from the
ground-truth by more than a certain error tolerance ε. Note
that, in the sequences that we use, the ground-truth was
obtained by the standard KLT tracker and then manually
cleaned up, so the ground-truth itself contains some noise
whose level depends on the scene itself. In particular, we
observed that the ground-truth of the indoor checkerboard
sequences generally has more noise than that of the outdoor
sequences. Therefore, we set a larger error tolerance for
the checkerboard sequences (ε = 10) than for the outdoor
ones (ε = 5). For every sequence, we compute the average
number of incorrectly tracked feature points over all the
frames, and then average this number over the sequences.

4.1. Hopkins Checkerboard Sequences

We first evaluated our method and the baselines on the
Hopkins checkerboard sequences, which depict controlled
indoor scenes with multiple rigidly moving objects. The
average number of tracks in this dataset is 202.9. Gener-
ally, the repetitive texture in these sequences makes feature

4Note that the intensity of the images is normalized to [0, 1]. Therefore,
a Gaussian noise with σ2 = 0.04 already represents a much stronger noise
than what typically occurs in practice.

Table 1: Average number of tracking errors (ε = 10) on
the Hopkins checkerboard sequences with noise of different
variances σ2. The lower, the better.

Methods KLT L1-KLT BFT Ours
σ2 = 0.00 47.63 34.69 39.68 27.77
σ2 = 0.01 46.92 30.86 39.30 27.32
σ2 = 0.02 45.95 29.69 38.84 27.13
σ2 = 0.03 46.59 30.16 39.16 28.18
σ2 = 0.04 47.19 31.16 39.35 27.21

tracking more ambiguous and thus harder. However, in this
experiment, we show that our multi-body feature tracker is
more robust to this ambiguity. To provide a fair comparison,
we used the same patch size (7×7) and the same number of
image pyramid levels (4) for all the methods. Furthermore,
we initialized all the tracking methods with the ground-truth
locations of the feature points in the first frame.

From Table 1, we can see that the L1-KLT tracker
consistently achieves better results than the original KLT
tracker and than BFT. Our algorithm, however, consistently
outperforms L1-KLT, which clearly evidences the benefits
of incorporating our multi-body prior. We observed that
BFT generally fails to track moving objects, as illustrated
in Fig.1. This is mainly because BFT heavily relies on a
good estimate of the global motion, obtained by registering
the entire current image to the previous one. For scenes
with multiple motions, however, global motion estimation
becomes unreliable, thus causing BFT to fail to track the
moving objects. Note that the performance of all the
trackers remain relatively unaffected as the noise level in-
creases. This is mainly due to the fact that the corners in the
checkerboard, while resembling each other, are very strong
features that are robust to noise.

4.2. Hopkins Car-and-People Sequences

We then evaluated the algorithms on the Hopkins Car-
and-People sequences, depicting real-world outdoor scenes
with multiple rigid motions. The number of tracks provided
by the ground-truth ranges from 147 to 548 with an average
of 369. Here, for all the methods, we used the same patch
size and image pyramid levels as in the previous experi-



Table 2: Average number of tracking errors (ε = 5) on the
Hopkins Car-and-People sequences with noise of different
variances σ2. The lower, the better.

Methods KLT L1-KLT BFT Ours
σ2 = 0.00 21.71 24.28 49.13 16.14
σ2 = 0.01 34.59 29.31 51.69 18.82
σ2 = 0.02 54.95 36.32 54.63 26.56
σ2 = 0.03 76.02 46.49 57.57 33.80
σ2 = 0.04 95.17 56.92 58.36 42.43

Frame number

2 4 6 8 10N
u

m
b

e
r 

o
f 

tr
a

c
k
in

g
 e

rr
o

rs
-c

a
rs

1

10

20

30

40
KLT

L1-KLT

BFT

Ours

Frame number

2 4 6 8 10N
u

m
b

e
r 

o
f 

tr
a

c
k
in

g
 e

rr
o

rs
-c

a
rs

2

10

20

30

40
KLT

L1-KLT

BFT

Ours

Figure 2: Tracking error as a function of the frame
number: In these two typical sequences, our method con-
sistently outperforms the baselines, and is less prone to
tracking drift over time.

ment, and initialized the feature points with their ground-
truth locations in the first frame. The average number of
tracking errors for the different methods under different
image noise levels is reported in Table 2. Again, our multi-
body feature tracker achieves the lowest tracking error
compared to the baselines, which confirms the robustness
of our method.

To give a better idea of the behavior of the methods over
time, in Fig. 2, we show the tracking error as a function
of the frame number for two typical sequences (cars1 and
cars2 with σ2=0.01).

4.3. MTPV Sequences

We further tested our method on the MTPV sequences,
which provide images of higher quality and resolution5

than the Hopkins dataset and include sequences with strong
perspective effects. In contrast to Hopkins, however, this
dataset contains some outliers and missing data. For evalua-
tion purpose, i.e., to create a complete and accurate ground-
truth, we discarded the outliers and missing data. Since the
image resolution is higher in this dataset, we used a larger
patch size of 13 × 13 for all the methods. The results of
all the algorithms are provided in Table 3. Note that we
still outperform all the baselines for most noise levels, with
the exception of BFT for σ2 = 0.04. We believe that
the slightly less impressive gap between our approach and
the baselines, in particular BFT, is due to the fact that the
feature points in this dataset are often dominated by the
background. See Fig. 3 for typical examples of this dataset.

5Note, however, that they are still highly compressed and not well-
suited for tracking, as pointed out in the readme file of the dataset.

Table 3: Average number of tracking errors (ε = 5) on the
MTPV sequences with noise of different variances σ2. The
lower, the better.

Methods KLT L1-KLT BFT Ours
σ2 = 0.00 3.07 13.34 6.83 2.34
σ2 = 0.01 17.76 22.12 8.84 3.87
σ2 = 0.02 28.39 27.26 11.17 6.94
σ2 = 0.03 40.61 35.53 11.26 9.92
σ2 = 0.04 47.69 38.93 12.34 13.22

Figure 3: The MAN and MONK sequences of the MTPV
dataset: The feature points are marked in red. Note that the
number of points on the walking man and monk is much
smaller than that on the background.

Table 4: Average number of tracking errors (ε = 5) on the
KITTI sequences with different noise variances σ2. The
lower, the better.

Methods KLT L1-KLT BFT Ours
σ2 = 0.01 21.43 22.05 27.48 14.18
σ2 = 0.02 24.35 22.85 27.80 16.70
σ2 = 0.03 31.15 26.88 27.85 17.70
σ2 = 0.04 34.43 29.23 27.75 20.33

4.4. KITTI Sequences

To evaluate the algorithms on realistic, high-quality
images, we employed four sequences6 from KITTI [8],
depicting street/traffic scenes with multiple motions. Since
no ground-truth trajectories are provided with this data, to
obtain quantitative results, we took 10 consecutive frames
from each sequence, applied the KLT tracker to them,
and manually cleaned up the results to get ground-truth
trajectories with an average of 177 points per sequence.
The results of this experiment for different levels of noise
added to the input are reported in Table 4, and Fig. 4 shows
a qualitative comparison of the algorithms. Note that our
method also outperforms the baselines on this data.

4.5. Frame-by-Frame Motion Segmentation

In our formulation, we optimize our energy function
w.r.t. two variables: the displacement vector u and the self-

62011 09 26 drive 0018, 2011 09 26 drive 0051, 2011 09 26 drive
0056, and 2011 09 28 drive 0016.
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Figure 4: Performance of different trackers on a KITTI sequence: The red points denote the current positions of the
feature points, and the green lines the motion since the previous frame. As evidenced by the regions highlighted with a blue
rectangle, L1-KLT and BFT make more tracking errors than our approach. Best viewed zoomed-in on screen.

Table 5: Average error rate (in %) of two-frame motion
segmentation on the 22 Hopkins sequences with noise of
different variances σ2. The lower, the better.

Methods KLT+SSC KLT+EDSC L1+SSC L1+EDSC Ours

σ2 = 0.00 19.76 20.57 18.71 19.11 8.97
σ2 = 0.01 19.76 20.61 19.61 20.41 9.35
σ2 = 0.02 19.21 20.99 21.02 21.92 9.33
σ2 = 0.03 20.63 20.69 22.21 20.48 9.89
σ2 = 0.04 20.38 19.82 21.35 20.80 11.26

expressiveness coefficients C. While the vector u provides
the tracking results, the matrix C, as in the subspace clus-
tering literature, can be used to build an affinity matrix for
spectral clustering, and thus, if we assume that the number
of motions is known a priori, lets us perform motion
segmentation. In other words, our method can also be inter-
preted as simultaneous feature tracking and frame-by-frame
motion segmentation. In this experiment, we therefore
aim to evaluate the frame-by-frame motion segmentation
accuracy of our method. Since, to the best of our knowl-
edge, no existing motion segmentation methods perform
feature tracking and frame-by-frame motion segmentation
jointly, we compare our results with the following two-
steps baselines: first, we find the tracks by KLT or L1-KLT
and form the epipolar subspaces as in Eq. 7; second, we
apply a subspace clustering method, i.e., Sparse Subspace
Clustering (SSC) or Efficient Dense Subspace Clustering
(EDSC), to perform motion segmentation. This results in
four baselines denoted by KLT+SSC [15], KLT+EDSC,
L1+SSC and L1+EDSC. The results of motion segmen-
tation on the 22 Hopkins sequences used previously are
shown in Table 5. These results clearly evidence that our
method outperforms the baselines significantly in terms of
motion segmentation accuracy.

Runtimes: Typical runtimes (e.g., car8 of Hopkins155
which contains 192 trajectories) are: KLT – 0.002 sec, L1-
KLT – 1.1 sec, BFT – 0.6 sec, Ours – 0.9 sec. This indicates
that, while much slower than the original KLT, L1-KLT,
BFT and our method are on par in terms of runtimes.

5. Conclusion and Future Work

In this paper, we have introduced a novel feature tracker
that incorporates a multi-body rigidity prior into feature
tracking. To this end, we have derived epipolar subspace
constraints that prevent us from having to compute funda-
mental matrices and motion assignments explicitly. Our
formulation only involves a series of convex subproblems,
all of which have closed-from solutions. We have demon-
strated the effectiveness of our method via extensive exper-
iments on indoor and outdoor sequences.

While adding global rigidity constraints (be it the low-
rank or the epipolar subspace constraints) to the local KLT
tracker improves robustness, it comes with some compu-
tational overhead. In the future, we will therefore study
how to speed up our approach, for instance by exploiting
the GPU. Furthermore, our current model assumes that
each patch undergoes only translation between consecutive
frames. We therefore plan to investigate the use of more
accurate models, such as affine transformations.
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