What Players do with the Ball:
A Physically Constrained Interaction Modeling

Supplementary materials

Andrii Maksai Xinchao Wang Pascal Fua
Computer Vision Laboratory,

Ecole Polytechnique Fédérale de Lausanne (EPFL)

{andrii.maksai, xinchao.wang, pascal.fua}@epfl.ch

We begin by describing the ball states we use for different sports, and as-
sociated physical models, as discussed in Sec. 3.3 of the paper. Next, we give
the details of the state classifier that we use in Sec. 4. Then we describe the
details of ball graph creation procedure of Sec. 5. We finish by giving details of
the post-processing for the videos we show, and the details on computational
efficiency of our approach.

1 Ball states

Here we describe the physical models associated with the different ball states,
which we introduced in Sec. 3.3 of the paper. We use different states for the
ball in different sports. We use some states - flying, in_possession for all sports,
and others only for some. For volleyball we add strike, and for basketball pass.
For both soccer and volleyball we add rolling, and for basketball our sequences
did not feature the ball rolling on the ground. Tab. 1 describes the physical
constants for all states, introduced in Eq. 5 of the paper. Note that in all cases
we limit the absolute value of acceleration / speed / location of the ball, which
means that we actually have 2 constraints for each row in the table, with exactly
opposite coeflicients

AP (PL—2P! '+ P+ BY (Pl —P) +C% PI—F>° < K(3—M{ .~ M ' =M ?)
—A®(P!—2P! '+ P)~ B (P! =P) —C¥Pi4 F*° < K(3—M! ML —MLP) .
They limit the values from above and from below, respectively. Notation used
is the same notation we use in Eq. 5 of the paper. Note that physical models

for states flying, strike and pass are identical. We differentiate between those
states using our state classifier.

2 State classifier

Here we describe the state classifier, introduced in Sec. 4. For each sport, we
learn a multi-class Random Forest classifier to predict the ball state. We use

State(s) s Axis ¢ | A%¢ | B¢ | C*° Fee Explanation

flying, strike, X 1 0 0 0 Constant speed in

pass, rolling ground plane

flying, strike, Y 1 0 0 0 Constant speed in

pass, rolling ground plane

flying, strike, Z 1 0 0 f;—sgg Negative ¢ accel-

pass eration in vertical
plane

rolling Z 0 0 1 0 Constant height of
the ball

flying, pass, | X,Y,Z 0 1 0 %ﬁ;ﬂm) Maximum speed

rolling limitation

strike XY, Z| 0 1 0 %}S:ﬂm) Maximum speed
limitation

Table 1: Physical models associated with different states of the ball. g = 9810(™=3*)
denotes the free fall acceleration, fps denotes frame rate of the video sequence. Co-
efficients shown only for constraints that limit from above. Coefficients for limiting
from below have the same magnitude as those in the table but are negative.

the 3D ball location and the number of people around it as features. We use
neighbourhoods of sizes 1000mm / 500mm and 2000mm / 2500mm for volleyball
/ basketball / soccer respectively.

When we are simultaneously tracking the ball and the players, the ground
truth positions of the players are unknown. In this case, we substitute the
number of people by the predicted number of people, which we compute by
integrating the Probabilistic Occupancy Map near the ball location. To improve
the performance of the classifier given limited amount of available data we take
advantage of the court symmetry of the field with respect to the 180 degrees
rotation around the center. We treat all data points as if they were located on
one side of the field.

Fig. 1 presents a partial evaluation of tracking accuracy as a function of the
number of frames in the training data to address the question of whether the
training data we use is sufficient. Clearly, the more the better, but above 1000
frames the further improvement becomes small.

Fig. 2 depicts the output of our classifier for volleyball data. Near the ground,
probability of having a freely flying ball is low, and most predictions correspond
to flying and in_possession. At 2.5 meters height, predictions are mixed, with
flying predictions at the ends of the field, that correspond to locations from
which the players serve the ball. At the height of 3.5m predicted state is mostly
flying, except for a stripe in the middle, where players often strike the ball after
the jump. Possession by players at such height is not likely. Higher than 4
meters classifier predicts flying for all locations. We have checked that cross-
validation classification error was under 7% for all our datasets.

Volley-1 Basket-2

o
o
@

0.79 | /7/,~~ ~ -
0.66 _—

So077 e 5

& & 0.64 /

®0.75¢ ® /

> >
.62

8073} | gos

3 3

8071 g 06

2 2

£069} | S 058}

[} i Q

I | @

=067} F 0.56

|
|
0.65 L . . 0.54 . .
500 1000 1500 0 500 1000 1500
of training frames # of training frames

Figure 1: Tracking accuracy at 25 cm for volleyball and basketball as a function
of the number of training frames. For consistency, we increased the number of
training frames for Basket-2 to 1500.

3 Graph construction

Here we describe the full process of graph construction briefly introduced in
Sec. 5.2 of the paper. We first give details of graph construction for states
associated with a physical model. We then describe graph construction for
in_possession state, not_present state, and the rule for building edges between
nodes with different states.

3.1 States with physical model

As discussed in Sec. 5.2 of the paper, we compute tracklets by joining detections
using the K-Shortest-Paths algorithm (Fig. 2(a)). Then we create trajectories
that go through these tracklets, and additional trajectories that join track-
lets and previously built trajectories. The trajectories of the first type (red in
Fig. 2(b)) represent hypothesized ball locations where the detector has been
unable to find the ball. The trajectories of the second type (red in Fig. 2(c))
represent hypothesized ball locations when the whole trajectory is missing.

To create ball trajectories that go through the tracklets, we use the following
procedure:

1. We start from every pair of consecutive detections in the tracklet. We fit
a trajectory that obeys the physical model and goes through these two
points. Note that there is only one straight line (for rolling) and only
one parabola (for flying, strike, pass) that goes through two given points.
Uniqueness of parabola is due to fixed force of gravity.

2. We grow the trajectory. At each next frame, if there is indeed a detection
within the distance D; of the trajectory, we add it to the trajectory, and
recompute the best model fit through a new set of detections. If there
are several detections, we pick the one with the highest confidence. We
continue growing the trajectory until in leaves the tracking area

X

Figure 2: Example of the classifier output on the volleyball data. Input to the clasifier
is the 3D location of the ball and the number of people in the vicinity. Picture shows the
output of classifier for different xy-locations of the ball, and different heights. Ground-
plane positions of the players are denoted by little red circles. R,G,B components of the
color indiciate the output of the classifier, probability of states flying, in_possession,
and strike, respectively.

3. From a set of trajectories, we keep only those that are associated with the
maximal set of detections. In other words, if we have a trajectory with a
set of detections, that is a subset of detections of some other trajectory,
we discard the former.

A result of this procedure are the red curves of Fig. 2(b). D; represents the
distance between the detection and continuous location of the ball, as defined
by Eq. 4 of the paper. We use D; = 25c¢m for basketball and volleyball, and
D; = 75¢m for football. The value is larger for football both because the cameras
are further away from the players and because players often spin the ball so that
it follows a curved, rather than straight trajectory. Furthermore, friction can
be quite high for the rolling ball, violating the constant velocity constraint.

To join the tracklets and previously built trajectories, we consider all starting
and ending points of trajectories and tracklets. We link every pair that are at
most 4 seconds apart. We have empirically found that linking those further apart
does not improve matters in terms of accuracy, but increases the computational
burden. Fig. 2(c) depicts the result of this procedure.

3.2 In_possession state

For the in_possession state, we create a copy of every node and every edge in
the players graph. We associate with each node a detection with the highest
confidence at the distance of D, from the players possible location. We use
D, = 1m for basketball and volleyball, and D, = 2.5m for football. The value
is larger for football because players can bounce the ball further away from
themselves when they run with it.

.....

(a)
Figure 3: Example of building the ball graph. X-axis denotes frames index. Y-axis
denotes height of the ball. (a) Detections, joined into tracklets. (b) Blue: detections,
joined into tracklets. Red: set of trajectories associated with maximal sets of detec-

tions. (c) Blue: tracklets, and trajectories built in the previous step. Red: newly
built trajectories that join endpoints of tracklets and trajectories built in the previous
step. The resulting set of trajectories depicted is the whole set of nodes and edges
built using a particular physical model. Best viewed in color.

3.3 Not_present state

For the not_present state, we have one node associated with this state in each
time frame. We connect such node by an edge to the node with not_present
state in the next time frame, as well as to all nodes of all states close to the
border of the tracking area. More formally, we connect it to all nodes that
are within distance D™%* where D"*" is the maximum distance the ball can

travel in any of the states within one frame time. As shown in Tab. 1, we take
pmaz _ 35000(mm)
B fps

3.4 Edges between states

With the exception of not_present state, discussed above, we follow one rule for
all edges that connect nodes of different states: we join those in the neighbouring
frames which are within D™%* distance of each other.

3.5 Post-processing

We applied post-processing in the form of smoothing to the results for better
appearance of videos. Results reported in the paper are results without
smoothing. Furthermore, as we show below, smoothing does not
significantly affect tracking accuracy. Smoothing of the following form
was used:

e State smoothing. Ball that left possession of the player and returned
within 0.1 seconds is assumed to have never left.

e State smoothing. Ball that was assigned to possession, but returned to
flying withing 0.1 seconds and did not change course, is assumed to have
stayed on course during this period.

e Ground collision smoothing. We assume the ball to be in contact with the
ground in the case of collision if it is below a certain threshold. If there
are several such points, we assume them all to have equal zero height.

Smoothing effect

0.95 B
o
8 -t
- 0.9 o
> &
] .
Soss /
=1 &
8 0.8
© &
2o7s|
% b
@ 07F
o
-
il [Webneoina ||
With smoothing
0.6 L . . : 1
200 400 600 800 1000

Distance threshold, cm

Figure 4: Tracking accuracy curve for results with and without smoothing on Volley-1
dataset
As Fig. 3 shows, tracking accuracy with and without smoothing does not

differ much. It was obtained on Volley-1 dataset, and we saw similar results on
all other datasets.

4 Computational efficiency

We provide a partial evaluation in Table 2. Running on the volleyball and
basketball sequences is faster than on the soccer one, because the ball graph
of the soccer sequence is larger than the others by an order of magnitude due
to the spurious detections and higher edge density. More specifically, D,, the
vicinity in which the ball can be possessed by players, is higher for soccer as
mentioned in the supplementary materials. This results in more states for the
soccer graph.

Dataset | 100 frames | 250 frames 500 frames
1,2 0.2/0.4/1 0.5/1.2/2 3/5.3/15
1.2 0.1/0.3/0.9 5/9.1/12 8/12/38

Apidis | 0.2/0.4/0.6 1/2.2/3 7/13.1/25
Issia 3/4/5 16/38/60 | 794/1072/1350

Table 2: Min/Average/Max processing time (measured in seconds) on batches
of different lengths on a 2.5Hz Intel Core i7 processor. Results were computed
on several non-overlapping intervals.

