
K Users Caching Two Files: An Improved
Achievable Rate
Saeid Sahraei∗, Michael Gastpar†

School of Computer and Communication Sciences, EPFL
Lausanne, Switzerland

Email: ∗saeid.sahraei@epfl.ch, †michael.gastpar@epfl.ch

Abstract—Caching is an approach to smoothen the variability
of traffic over time. Recently it has been proved that the local
memories at the users can be exploited for reducing the peak
traffic in a much more efficient way than previously believed. In
this work we improve upon the existing results and introduce
a novel caching strategy that takes advantage of simultaneous
coded placement and coded delivery in order to decrease the
worst case achievable rate with 2 files and K users. We will show
that for any cache size 1

K
< M < 1 our scheme outperforms the

state of the art.
Index Terms—Coded Caching, Content Delivery, Improved

Achievable Rate

The performance of content delivery services is highly
dependent on the habits of the users and how well the
servers model these habits and adapt their content distribution
strategies to them. A basic observation of these habits is the
temporal variability of the demands which in its simplest
form can be formulated as high congestion during a particular
time interval and low traffic for the rest of the day. One
popular mechanism that the network can adapt to cope with
this issue is caching: during the low traffic time interval,
typically mornings, the servers store parts of the content in
local memories of the users which may be helpful in the
evenings, and hence reduce the peak traffic load. A notable
challenge with this strategy is that typically the servers are
not aware of which contents will be requested by the users
in the peak time. Therefore, the caching of contents in local
memories must be performed in such a way that regardless of
what requests the users make, the contents are still helpful in
reducing the traffic, as much as possible.

Perhaps the simplest solution to this problem is to partially
store every file at the local caches of the users and transfer the
rest of the data uncoded according to the demands made in the
delivery time. In their seminal works [1], [2] Maddah-Ali and
Niesen have proved that by using network coding techniques
this simple strategy can be significantly outperformed if one
allows coding across different files on the server and jointly
optimizes the caching and the delivery strategies.

Despite its impressive potentials, the caching strategy intro-
duced in [1] is known to perform poorly when the cache size
is small, and in particular when the number of users is much
larger than the number of files, K � N . The applicability
of this paradigm in real world scenarios is manifold. A good
example is when the files on the server vary widely in their
popularity. It has been proved [3] that a nearly optimal caching

strategy is to group files with similar popularities and ignore
caching opportunities among files from different groups. The
cache of each user is then divided into several segments, each
segment dedicated to one such group. If the number of groups
is large, then the cache size dedicated to each group, as well as
the number of files within each group will be small. Another
case appears when there are few popular television hits, say
on Netflix, which are streamed by millions of users across the
world.

In this work we take a step in improving the performance
of caching strategies for small cache size M when K � N .
This scenario has been studied before [4] where a new point
(M,R) = (1

K , K−1
K N) is shown to be achievable for arbitrary

K and N that satisfy K ≥ N . In this work we will find K−1
new points for the case of N = 2 and K arbitrary. One of
these K − 1 points, namely (M,R) = (1

K , 2(K−1)
K) coincides

with the point found in [4].
For the sake of brevity we skip the formal statement of

the problem. It is precisely the setting described in [1]. The
rest of the paper is organized as follows: In Section I we
will demonstrate the ideas in our caching algorithm via a toy
example. In Section II we will provide formal description of
our placement and delivery strategies for the general case, that
is when K is arbitrary and M = m

K for some m ∈ {1, . . . ,K−
1}. In Section III we prove the correctness of our algorithm
and find its achievable rate. Finally, in Section IV we compare
the performance of our algorithm with the state of the art
techniques introduced in [1], [4].

I. EXAMPLE 1

We demonstrate our caching strategy via the simplest ex-
ample which fully represents all the ideas involved in our
algorithm. Assume we have N = 2 files A and B, of equal
size and K = 6 users each with a cache of size M = 0.5
(normalized by file size). We break each file into

(
6
3

)
= 20

parts of equal size and index each part by a set of size three
T = {d1, d2, d3} where 1 ≤ d1 < d2 < d3 ≤ 6. User
` = 1, . . . , 6 stores AT ⊕BT in its cache if and only if ` ∈ T .
In the following table we represent the content of the cache
of each user:

User 1 User 2 User 3
A123 ⊕B123 A123 ⊕B123 A123 ⊕B123

A124 ⊕B124 A124 ⊕B124 A134 ⊕B134

A125 ⊕B125 A125 ⊕B125 A135 ⊕B135

.
A156 ⊕B156 A256 ⊕B256 A356 ⊕B356

User 4 User 5 User 6
A124 ⊕B124 A125 ⊕B125 A126 ⊕B126

A134 ⊕B134 A135 ⊕B135 A136 ⊕B136

A145 ⊕B145 A145 ⊕B145 A146 ⊕B146

.
A456 ⊕B456 A456 ⊕B456 A456 ⊕B456

Since the size of each subfile is 1
20 and there are 10 subfiles

stored at each cache, the total size of each cache is M = 0.5.
Now assume users 1 and 2 ask for file A and users 3, 4, 5 and
6 ask for B. In the delivery phase we start by transmitting
subfiles of the form AT or BT . For each such index T we
decide whether to transmit AT or BT depending on how many
digits of T are from {1, 2} and how many are from {3, 4, 5, 6}.
More precisely, we fix an integer 0 ≤ j ≤ KM + 1 and for
every such set T follow this rule:

If |T
⋂
{3, 4, 5, 6}| ≥ j then transmit AT . Otherwise,

transmit BT .
As we will show in Section III, there is an optimal (not

necessarily unique) choice for this parameter j which in our
case is 2. Therefore, we transmit:

|T
⋂
{3, 4, 5, 6}| = 3 : A345, A346, A356, A456.

|T
⋂
{3, 4, 5, 6}| = 2 : A134, A135, A136, A145,

A146, A156, A234, A235, A236, A245, A246, A256.

|T
⋂
{3, 4, 5, 6}| = 1 : B123, B124, B125, B126.

At this stage, each user has access to every subfile he needs
except:

User 3 B145 B146 B156 B245 B246 B256 B456

User 4 B135 B136 B156 B235 B236 B256 B356

User 5 B134 B136 B146 B234 B236 B246 B346

User 6 B134 B135 B145 B234 B235 B245 B345

The last stage of the algorithm is to help each user recover
the remaining subfiles. We can transmit (a more formal way
of accomplishing this is given below in Section II-B).

B134 ⊕B135 ⊕B145 , B134 ⊕B136 ⊕B146

B135 ⊕B136 ⊕B156 , B145 ⊕B146 ⊕B156

B234 ⊕B235 ⊕B245 , B234 ⊕B236 ⊕B246

B235 ⊕B236 ⊕B256 , B245 ⊕B246 ⊕B256

B345 ⊕B346 ⊕B356 ⊕B456

which helps each user in {3, 4, 5, 6} recover their desired
subfiles. Nevertheless, an important observation here is that
the fourth and the eighth messages in the chain above, that
is B145 ⊕ B146 ⊕ B156 and B245 ⊕ B246 ⊕ B256 can already
be constructed using the earlier transmissions and there is no

need to separately transmit them:

B145 ⊕B146 ⊕B156 = (B134 ⊕B135 ⊕B145)⊕
(B134 ⊕B136 ⊕B146)⊕ (B135 ⊕B136 ⊕B156)

and

B245 ⊕B246 ⊕B256 = (B234 ⊕B235 ⊕B245)⊕
(B234 ⊕B236 ⊕B246)⊕ (B235 ⊕B236 ⊕B256) .

Therefore, in total, we are transmitting 27 messages in the
delivery phase which shows we are transmitting at rate R =
27
20 . The worst case achievable rate is obtained by considering
all possible choices of different users over A and B. In our
case, this happens precisely when two users ask for A and
the other four ask for B (or vice versa) which is the scenario
we studied. This proves that the point (M,R) = (0.5, 27

20) is
achievable when K = 6 and N = 2.

II. FORMAL DESCRIPTION OF THE CACHING ALGORITHM

In this section we describe our caching algorithm for the
general case. The setting is as follows: we have N = 2 files,
which we name A and B. We have K users each with a cache
of size M = m

K for some integer 1 ≤ m ≤ K − 1. Similar
to [1] our caching strategy is comprised of two phases: the
placement and the delivery phases. We now formally describe
each phase.

A. Placement Strategy

Suppose M = m
K for some integer 1 ≤ m ≤ K−1. Partition

each file into
(
K
m

)
subfiles of equal size and index each subfile

with a set of size m, i.e. T = {d1, . . . , dm} where 1 ≤ d1 <
d2 < · · · < dm ≤ K.
Store AT ⊕ BT at the cache of user ` if and only if ` ∈ T .

This requires (K−1
m−1)
(Km)

= m
K bits which is the size of the cache.

B. Delivery Strategy

Without loss of generality, assume the first L users ask
for file A and the last K − L users ask for B for some
L ∈ {0, . . . ,K} (otherwise sort and re-label the users and
the subfiles). If L = K or L = 0 we transmit all AT or BT
subfiles, respectively (therefore, the delivery rate is R = 1).
From here on we assume L ∈ {1, . . . ,K − 1}. The delivery
strategy is as follows: Fix an integer 0 ≤ j ≤ m+ 1. Then:

1) Transmit AT ⋃
S for all sets T and S such that |T | +

|S| = m and |S| ≥ j and T ⊆ {1, . . . , L} and S ⊆
{L+ 1, . . . ,K}.

2) Transmit BT ⋃
S for all sets T and S such that |T | +

|S| = m and |S| < j and T ⊆ {1, . . . , L} and S ⊆
{L+ 1, . . . ,K}.

3) Transmit MT ,S = AT
⋃
S ⊕

∑
t∈T A((T

⋃
{1})\{t})

⋃
S

for all sets S and T such that |S|+|T | = m and |S| < j
and T ⊆ {2, . . . , L} and S ⊆ {L+ 1, . . . ,K}.

4) TransmitNT ,S = BT
⋃
S⊕
∑

s∈S BT
⋃
((S

⋃
{L+1})\{s})

for all sets S and T such that |S|+|T | = m and |S| ≥ j
and T ⊆ {1, . . . , L} and S ⊆ {L+ 2, . . . ,K}.

III. ANALYSIS

A. Correctness

We will show that each user is capable of decoding his
desired file based on his cache content and based on the
messages sent in the delivery phase. Let us concentrate on
user ` for some ` ∈ {1, . . . , L}. The arguments are analogous
for ` ∈ {L+ 1, . . . ,K}.
Based on the messages sent in step 1 of the delivery phase,
user ` can decode all AT ⋃

S when |S| ≥ j. From the messages
in step 2, user ` can decode AT

⋃
S when |S| < j and ` ∈ T .

What are left to decode after these two phases are AT
⋃
S

when |S| < j and ` /∈ T . If ` = 1, he can decode these
messages from MT ,S = AT

⋃
S ⊕

∑
t∈T A((T

⋃
{1})\{t})

⋃
S

which are sent in step 3 of delivery. If ` 6= 1 but 1 ∈ T ,
user ` can again decode AT

⋃
S fromMT ′,S sent in step 3 of

delivery where T ′ = (T
⋃
{`})\{1}. Assume now that ` 6= 1

and 1 /∈ T . User ` forms:

MT ,S ⊕
∑
t∈T

M(T
⋃
{`})\{t},S

(a)
= AT

⋃
S ⊕

∑
t∈T

A((T
⋃
{`})\{t})

⋃
S . (1)

To establish (a), first note that each term of the form
A((T

⋃
{1})\{t1})

⋃
S , t1 ∈ T appears exactly twice on

the left hand side of the equation, once in MT ,S
and once in M(T

⋃
{`})\{t1},S . Each term of the form

A((T
⋃
{1,`})\{t1,t2})

⋃
S , t1, t2 ∈ T , t1 6= t2 also ap-

pears exactly twice, once in M(T
⋃
{`})\{t1},S and once

in M(T
⋃
{`})\{t2},S . On the other hand, each term of the

form A((T
⋃
{`})\{t1})

⋃
S , t1 ∈ T appears exactly once in

M(T
⋃
{`})\{t1},S . Finally, the term AT

⋃
S also appears ex-

actly once in MT ,S . From Equation (1) user ` can recover
AT

⋃
S since he knows every other term in the summation.

B. Achievable Rate

We count the total number of messages sent in the delivery
phase and multiply this by the size of each message that is
1

(Km)
.

First note that each index appears exactly once in the first
two steps of delivery. Therefore, the number of messages sent
in these two steps is

(
K
m

)
.

The number of messages sent in step 3 of delivery is

#msgs3 =

j−1∑
i=0

#msgs(|S| = i)

=

min(j−1,K−L)∑
i=max(0,m−L+1)

(
K − L

i

)(
L− 1

m− i

)
.

Similarly, the number of messages sent in step 4 of delivery
is

#msgs4 =

min(m,K−L−1)∑
i=max(j,m−L)

(
K − L− 1

i

)(
L

m− i

)
.

Therefore, the total number of messages sent in the delivery
phase multiplied by message size is:

RK(M,L, j) = 1 +

∑min(j−1,K−L)
i=max(0,m−L+1)

(
K−L

i

)(
L−1
m−i

)(
K
m

)
+

∑min(m,K−L−1)
i=max(j,m−L)

(
K−L−1

i

)(
L

m−i
)(

K
m

) .

We make the following observation:

Proposition 1. There exists a solution to j∗ =
argminj RK(M,L, j) that satisfies j∗ =

⌈
m(1− L

K)
⌉
.

Proof: First note that we can restrict j∗ to max(m−L+
1, 0) ≤ j∗ ≤ min(K−L,m+1) since if j∗ < max(m−L+
1, 0) then RK(M,L, j∗) ≥ RK(M,L,max(m−L+1, 0)) and
if j∗ > min(K − L,m + 1) then we have RK(M,L, j∗) ≥
RK(M,L,min(K − L,m+ 1)).

Next we prove that j∗ ≥ m(1 − L
K). If j∗ = min(K −

L,m+1) then the inequality is trivial. Assume j∗ < min(K−
L,m+1). Since j∗ is optimal, we have RK(M,L, j∗+1) ≥
RK(M,L, j∗). It follows that:

RK(M,L, j∗ + 1)−RK(M,L, j∗) ≥ 0

⇒

(
K − L

j∗

)(
L− 1

m− j∗

)
≥

(
K − L− 1

j∗

)(
L

m− j∗

)
⇒ K − L

K − L− j∗
− L

L−m+ j∗
≥ 0

⇒ j∗ ≥ m(1− L

K
).

Finally, we show that j∗ ≤ m(1− L
K)+1. If j∗ = max(m−L+

1, 0) then the inequality is trivial. Assume that j∗ > max(m−
L+ 1, 0). Then from optimality of j∗ it follows that (similar
to the previous case) RK(M,L, j∗ − 1) ≥ RK(M,L, j∗) ⇒
j∗ − 1 ≤ m(1 − L

K). Putting these two inequalities together,
we obtain j∗ =

⌈
m(1− L

K)
⌉
.

We can now define

RK(M,L) = 1 +

∑j∗−1
i=max(0,m−L+1)

(
K−L

i

)(
L−1
m−i

)(
K
m

)
+

∑min(m,K−L−1)
i=j∗

(
K−L−1

i

)(
L

m−i
)(

K
m

) (2)

with m = MK and j∗ =
⌈
m(1− L

K)
⌉
. The achievable rate

is the maximum of RK(M,L) over all possible 1 < L < K:

RK(M) = max
0<L<K

RK(M,L). (3)

IV. COMPARISON WITH THE STATE OF THE ART

In this section we perform a comparison between the achiev-
able rate of our scheme and that of [1], [4]. The achievable
rate of our scheme for K = 10 and N = 2 is plotted
in red in Figure 1 and is found via equation (3) for every
M ∈ { 1

K , . . . , K−1
K }. We again emphasize that the leftmost

point of our curve, here (1
10 ,

9
5) has been previously found

in [4]. The achievable rate via Maddah-Ali–Niesen caching

Cache Size, M
0 0.5 1 1.5 2

D
e
liv

e
ry

 R
a
te

,
R

K
(M

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
K =10, N = 2

Maddah-Ali--Niesen

New Strategy

Memory-Sharing

Lower Bound

Fig. 1. Comparison of the achievable rate of our caching strategy with that
of Maddah-Ali–Niesen for K = 10, N = 2.

strategy has been plotted in blue. Evidently from the plot, and
as has been proved in the following proposition, our scheme
outperforms that of [1] for every M at which both rates are
defined, that is: M ∈ { 2

K , 4
K . . . ,

2(dK2 e−1)
K } and for every K.

The proof is in Appendix A.

Proposition 2. Let RK(M) be our achievable rate as defined
in (3). Let R̂K(M) be the achievable rate from [1]. Then we
have:

RK(M) ≤ R̂K(M) ,

∀K, ∀M ∈ { 2
K

,
4

K
, . . . ,

2(dK
2
e − 1)

K
}.

The inequality is strict, except when both K is odd and M =
K−1
K .

For the sake of completeness we have plotted a lower bound
on the achievable rate (the dotted black line). Since [1], there
has been several works to improve this bound [5], [6], [7].
The bound that is plotted here corresponds to the work in [6]
(which in this case coincides with the lower bound given in
[1]).

A. Memory Sharing and Minimum Size of the Files

In Figure 1 we have also plotted the memory sharing region
(green curve). The two points marked by arrows contribute
to this region. The first point (found in [4]) is (1

10 ,
9
5) and

the second point is (3
10 ,

63
40) The leftmost point from [1] that

contributes to the memory sharing region is (1210 ,
4
7). As K

grows large there will be more points 0 < M < 1 contributing
to the memory-sharing region. For instance when K = 16,
there are three, namely (1

16 ,
15
8), (3

16 ,
97
56), and (5

16 ,
331
208) and

at K = 23 there are 4 new points. However this dependency
is not monotonic in K.

It is noteworthy that when the file size is small, the other
points found by our scheme which lie within the memory
sharing region are still relevant. Recall first that our scheme
requires each file A and B to be of size at least

(
10
m

)
for any

particular memory size M = m
K ,m ∈ {1, . . . ,K − 1}. On

the other hand, since the memory sharing strategy interpolates
between the points M = 3

10 and M = 12
10 , the minimum file

size for m ∈ {4, . . . , 9} must be (see Appendix B)

Fmin =

(
10

3

)
7(12−m)

gcd{7(12−m),m− 3}

+

(
10

6

)
m− 3

gcd{7(12−m),m− 3} (4)

which is strictly larger than
(
10
m

)
for any m ∈ {4, . . . , 9}.

The difference becomes particularly visible, for instance when
m = 9 where memory sharing requires a file size about 100
times larger than directly applying our caching strategy for
m = 9.

V. CONCLUSION

The small cache paradigm with much larger number of users
than files has not received as much attention in the literature
as it deserves. In this work we took a step in improving
the achievable rate of this regime by introducing a novel
caching strategy for arbitrary number of users and 2 files. Our
algorithm takes advantage of simultaneous coded placement
and coded delivery to improve upon the achievable rate of [1]
when the cache is smaller than the size of one file. Future
work will explore the possibility of generalizing our caching
algorithm to more than two files.

APPENDIX A

Proof of Proposition 2:
From [1]:

R̂K(M) = K(1− M

N
)min{ 1

1 + MK
N

,
N

K
}

=

{
1 if K is odd and M = K−1

K ,

2−M Otherwise.

If K is odd and M = K−1
K , then we have

RK(M,L) = RK(M,L, j = K − L) = 1 = R̂K(M).

We will show that if K is even or M < K−1
K then

RK(M) < R̂K(M). We consider three cases. First assume
L ≥ K −m. Then we have:

RK(M,L) ≤ RK(M,L, j = K − L)

= 1 +

∑K−L−1
i=max(0,m−L+1)

(
K−L

i

)(
L−1
m−i

)(
K
m

)
< 1 +

(
K−1
m

)(
K
m

) = 2− m

K
= R̂K(M).

Next, assume L < K −m and L < m+ 1. Then:

RK(M,L) ≤ RK(M,L, j = m− L+ 1)

= 1 +

∑m
i=m−L+1

(
K−L−1

i

)(
L

m−i
)(

K
m

)
< 1 +

(
K−1
m

)(
K
m

) = 2− m

K
= R̂K(M).

Finally, assume L < K −m and L ≥ m+ 1. Then:

RK(M,L) ≤ RK(M,L, j = m)

= 1 +

∑m−1
i=0

(
K−L

i

)(
L−1
m−i

)
+
(
K−L−1

m

)(
L
0

)(
K
m

)
= 1 +

(
K−1
m

)
−
(
K−L
m

)
+
(
K−L−1

m

)(
K
m

)
< 2− m

K
= R̂K(M).

APPENDIX B
Proof of Equation (4):
First note that the point M = 3

10 requires
(
10
3

)
bits and the

points M = 12
10 needs

(
10
6

)
bits (from [1]). In order to perform

memory sharing for a point M = m
K for some m ∈ {4, . . . , 9}

we need to first divide file A into two subfiles A(1) and A(2)

(same for B). We also break the cache into M (1) and M (2)

such that size(M (1)) = 12−m
m−3 size(M (2)). Due to the par-

ticular caching strategies used at the two end points, we have
size(M (1)) = 3

10size(A
(1)) and size(M (2)) = 12

10size(A
(2)).

Therefore,
3

10
size(A(1)) =

12

10
size(A(2))

12−m

m− 3

⇒ size(A(1)) =
4(12−m)

m− 3
size(A(2)).

But size(A(1)) must of the form
(
10
3

)
` for some integer `.

Similarly, size(A(2)) =
(
10
6

)
`′ for some integer `′. Thus:(

10

3

)
` =

4(12−m)

m− 3

(
10

6

)
`′

⇒ `

`′
=

7(12−m)

m− 3
.

To choose the smallest ` and `′ we have ` = 7(12−m)
gcd{m−3,7(12−m)}

and `′ = m−3
gcd{m−3,7(12−m)} . The claim follows since Fmin =

size(A(1)) + size(A(2)).

ACKNOWLEDGEMENT

This work was supported in part by the European ERC
Starting Grant 259530-ComCom.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
Information Theory, IEEE Transactions on, vol. 60, no. 5, pp. 2856–2867,
2014.

[2] ——, “Decentralized coded caching attains order-optimal memory-rate
tradeoff,” in Communication, Control, and Computing (Allerton), 2013
51st Annual Allerton Conference on. IEEE, 2013, pp. 421–427.

[3] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” in Computer Communications Workshops (INFOCOM WK-
SHPS), 2014 IEEE Conference on. IEEE, 2014, pp. 221–226.

[4] Z. Chen, P. Fan, and K. Ben Letaief, “Fundamental limits of caching:
Improved bounds for small buffer users,” arXiv preprint arXiv:1407.1935,
2014.

[5] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded
caching,” arXiv preprint arXiv:1501.06003, 2015.

[6] A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation of
storage-rate tradeoff for caching via new outer bounds,” in Information
Theory (ISIT), 2015 IEEE International Symposium on. IEEE, 2015, pp.
1691–1695.

[7] C. Tian, “A note on the fundamental limits of coded caching,” arXiv
preprint arXiv:1503.00010, 2015.

