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Abstract

This thesis addresses the development and implementation of efficient and parallel
algorithms for the numerical simulation of Fluid-Structure Interaction (FSI) problems in
hemodynamics. Indeed, hemodynamic conditions in large arteries are significantly affected
by the interaction of the pulsatile blood flow with the arterial wall. The simulation
of fluid-structure interaction problems requires the approximation of a coupled system
of Partial Differential Equations (PDEs) and the set up of efficient numerical solution
strategies.
Blood is modeled as an incompressible Newtonian fluid whose dynamics is governed
by the Navier-Stokes equations. Different constituive models are used to describe the
mechanical response of the arterial wall; specifically, we rely on hyperelastic isotropic and
anistotropic material laws. The finite element method is used for the space discretization
of both the fluid and structure problems. In particular, for the Navier-Stokes equations we
consider a semi-discrete formulation based on the Variational Multiscale (VMS) method.
Among a wide range of possible solution strategies for the FSI problem, here we focus on
strongly coupled monolithic approaches wherein the nonlinearities are treated in a fully
implicit mode. To cope with the high computational complexity of the three dimensional
FSI problem, a parallel solution framework is often mandatory. To this end, we develop
a new block parallel preconditioner for the coupled linearized FSI system obtained after
space and time discretization. The proposed preconditioner, named FaCSI, exploits the
factorized form of the FSI Jacobian matrix, the use of static condensation to formally
eliminate the interface degrees of freedom of the fluid equations, and the use of a SIMPLE
preconditioner for unsteady Navier-Stokes equations.
In FSI problems, the different resolution requirements in the fluid and structure physical
domains, as well as the presence of complex interface geometries make the use of matching
fluid and structure meshes problematic. In such situations, it is much simpler to deal
with discretizations that are nonconforming at the interface, provided however that the
matching conditions at the interface are properly fulfilled. In this thesis we develop a
novel interpolation-based method, named INTERNODES, for numerically solving partial
differential equations by Galerkin methods on computational domains that are split into
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two (or several) subdomains featuring nonconforming interfaces. By this we mean that
either a priori independent grids and/or local polynomial degrees are used to discretize
each subdomain. INTERNODES can be regarded as an alternative to the mortar element
method: it combines the accuracy of the latter with the easiness of implementation in a
numerical code.
The aforementioned techniques have been applied for the numerical simulation of large-
scale fluid-structure interaction problems in the context of biomechanics. The parallel
algorithms developed showed scalability up to thousands of cores utilized on high perfor-
mance computing machines.

Key words: fluid-structure interaction, fluid dynamics, parallel algorithms, high perfor-
mance computing, finite element method, nonconforming discretizations, biomechanics.
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Résumé

Cette thèse aborde le développement et l’implémentation d’algorithmes parallèles pour
des problèmes d’interaction fluide-structure (FSI) en écoulements sanguins. En effet,
les conditions hémodynamiques dans les grandes artères sont fortement influencées par
les interactions entre l’écoulement pulsatile et les parois artérielles. La simulation de
problèmes d’interaction fluide-structure nécessite une approximation numérique d’un
système couplé d’équations aux dérivées partielles (PDE) et la mise en place de schémas
numériques efficaces.
Le sang est modélisé par un fluide Newtonien incompressible dont la dynamique est
régie par les équations de Navier-Stokes. La réponse mécanique des parois artérielles est
représentée par plusieurs modèles constitutifs ; en particulier, des modèles hyperélastiques,
anisotropes et isotropes. La méthode des éléments finis est utilisée pour discrétiser en
espace les domaines fluide et solide. Une formulation semi-discrète basée sur les multi-
échelles variationnelles (VMS) est utilisée pour les équations de Navier-Stokes.
Parmi les différentes stratégies pour résoudre des problèmes d’interaction fluide-structure,
ce travail présente des approches monolithiques où les non-linéarités sont traitées de
manière implicite. La complexité des problèmes FSI tridimensionnels implique souvent
l’adoption d’une structure de résolution parallélisée. C’est pourquoi un nouveau précon-
ditionneur parallèle par bloc est developpé et appliqué au système d’équations linéarisées
obtenu après une discrétisation en temps et en espace. Le préconditionneur proposé,
nommé FaCSI, exploite la forme factorisée de la matrice jacobienne du système FSI,
l’usage de condensation statique pour explicitement éliminer les degrés de liberté des
équations fluides à l’interface et l’usage d’un préconditionneur SIMPLE pour les équations
de Navier-Stokes instationnaires.
Dans les problèmes FSI, les différentes exigences en résolution dans les domaines fluides
et solides et la complexité des géométries d’interface rendent le traitement du maillage
difficile. Dans ces cas, il est plus simple d’utiliser des maillages non conformes tout
en s’assurant que les conditions à l’interface soient satisfaites. Dans cette thèse, un
nouvel outil basé sur l’interpolation est développé. Appellée INTERNODES, cette
méthode permet de résoudre par des méthodes de Galerkin des PDE sur des domaines
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computationels divisés en plusieurs sous-domaines aux interfaces non-conformes. Ceci
signifie que des maillages et/ou des degrés de polynomes à priori indépendants peuvent
être utilisés pour discrétiser chaque sous-domaine. INTERNODES peut être considérée
comme un alternative à la méthode mortar : elle combine la justesse de ce dernier à une
facilité d’implémentation dans un code numérique.

Mots clefs : interaction fluide-structure, simulation de la mécanique des fluides, algorithmes
parallèles, calcul haute performance, méthode des éléments finis, maillages non conformes,
biomécanique.
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Introduction

In the last decades the interest for Fluid-Structure Interaction (FSI) problems has
increased significantly. Generally we deal with fluid-structure interaction problem when
the effect of fluid dynamics on elastic bodies and vice-versa is of primary interest. The
simulation of various processes in engineering and nature requires the coupled solution
of this type of multi-physical problems. Many examples of multi-field systems can be
found in practice: aeroelastic instabilities in aircrafts, turbomachinery design, modeling
of cardiovascular system and wind-sail dynamics, involve fluid-structure interaction
phenomena whose analysis is crucial for an accurate and efficient design. The main
aspects involved in this kind of problems is the unsteady computation of the dynamics of
different physical domains (i.e. multi-physics) and their coupling across moving interface
conditions.

The interaction between fluid and structure takes place at the interface separating the
two media. The pressure and shear stress exerted by the fluid result in a force which
acts on the part of the structural boundary which is in contact with the fluid. This force,
in turn, may deform or simply move rigidly the structure. The deformations induced by
the fluid to the solid may be quite significant or negligible, depending on the pressure
and velocity of the flow field and also on the material properties of the solid itself. As
a consequence of the solid deformation, the fluid domain deforms accordingly, leading
to a change in the flow field. Specifically, the velocity and pressure fields of the fluid
will change, and therefore we need to treat the problem using a bidirectional coupled
multi-physics analysis: the fluid flow and pressure fields affect the structural deformations,
and the structural deformations affect the flow and pressure. To summarize, the solution
of fluid-structure interaction involves the integrated and coupled study of the underlying
fluid and structure physical phenomena.

The fluid and the structure problems themselves have been studied separately for many
years in great detail. For applications stemming from real-life problems, the coupled fluid-
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structure interaction problem can not be solved analytically and so it has to be studied
by means of experiments or by numerical simulation. In this thesis we focus on fluid-
structure interaction problems arising in hemodynamics. The mechanics of an internal
blood flow interacting with an elastic arterial wall can be modeled by a coupled nonlinear
system of partial differential equations describing the fluid flow and the deformation
of the wall structure together with suitable coupling conditions. The modeling, the
discretization and the design of numerical schemes to solve efficiently the coupled FSI
problem are still challenging tasks and major topic of ongoing research. Indeed, nowadays
the modeling of the cardiovascular system is receiving increasing attention from both
the medical and mathematical environments because of, from the one hand, the great
influence of hemodynamics on cardiovascular diseases and, from the other hand, its
challenging complexity that keeps open the debate about the setting up of appropriate
models and algorithms. The numerical simulation of such complex system may provide
detailed and quantitative information improving the understanding of the underlying
complex physical phenomena, thus helping and supporting the development of more
effective clinical treatments. For instance, stress distributions in walls of in vivo arteries
(transmural stresses) are a major factor driving, e.g., the processes of arteriosclerosis
and arteriogenesis which are well-known to have a major relevance on the human health.
Realistic predictions of transmural stress distributions require a dynamic simulation of
the interaction of the blood flow with the vessel wall (fluid-structure interaction). The
computational simulation of atherosclerotic arteries is important for an optimization of
medical treatment by reducing the number of animal tests.

The biological complexity of the cardiovascular system poses numerous challenges for
its modeling, numerical discretization and simulation. For instance, the mathematical
models of the constituents of the cardiovascular system such as the arterial wall and blood
should be able to reproduce their most important physiological features and the biological
interactions among them. In this work blood is modeled as Newtonian incompressible
fluid, see e.g. [Bazilevs et al., 2009b, Formaggia et al., 2009, Küttler et al., 2010, Crosetto
et al., 2011, Bazilevs et al., 2013b]. The modeling of the arterial tissue represents
a challenging task since these materials behave almost incompressibly, undergo large
strains, and are characterized by a strong anisotropy. In this thesis we consider different
constituive models to describe the mechanical response of the arterial wall; specifically,
we rely on hyperelastic isotropic and anistotropic material laws [Holzapfel and Gasser,
2001, Schröder et al., 2004, Schröder et al., 2005, Ogden and Holzapfel, 2006, Balzani et al.,
2006b, Balzani et al., 2006a, Balzani et al., 2007a, Balzani, 2006, Tricerri, 2014, Balzani
et al., 2015].

We model the behavior of the blood flow dynamics (fluid) and the mechanical deformation
of the arterial wall (structure) by a set of partial differential equations together with
suitable coupling conditions (interaction). At this level, a first distinction between
the different methodologies comes from the choice of the frame of reference in which
we formulate the problem. In fluid-structure interaction, a common choice consists in
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describing the fluid equations using an Arbitrary Lagrangian-Eulerian (ALE) frame
of reference, see e.g., [Souli et al., 2000, Nobile., 2001, Wall et al., 2006, Hron and
Turek, 2006, Bazilevs et al., 2008, Formaggia et al., 2009, Gee et al., 2010, Küttler et al.,
2010, Crosetto et al., 2011, Bazilevs et al., 2013b] in which one needs to introduce a
new equation for the fluid domain motion. In addition, the dependence of the fluid
computational domain on the solution of the FSI problem introduces a further nonlinearity.
A different approach may consist in using a space-time formulation of the FSI problem.
It involves a discretization of the computational domain in time slabs, and each solution
in a time slab is then computed sequentially (see [Tezduyar and Sathe, 2007, Tezduyar
et al., 2008, Takizawa and Tezduyar, 2011, Bazilevs et al., 2013b] for a complete overview
on this formulation). Another approach would be to formulate the FSI problem in a fully
Eulerian frame of reference [Cottet et al., 2008, Wang et al., 2008, Richter, 2013], i.e. on
a fixed fluid domain, but it additionally requires one to keep track of the position of the
fluid-structure interface. In [Dunne, 2007, Rannacher and Richter, 2010, Richter, 2010], a
fully Eulerian formulation of FSI is used in two dimensions to avoid the degeneration of
the ALE mapping and to facilitate mesh adaptivity. Another approach is the immersed
boundary method, where the fluid is written in Eulerian coordinates, while the structure
is still in a Lagrangian frame of reference [Peskin, 2002, Mittal and Iaccarino, 2005, Boffi
et al., 2011]. A further alternative approach to ALE methods may be based on the use
of the Extended Finite Element method (XFEM) [Gerstenberger and Wall, 2008, Wall
et al., 2010, Mayer et al., 2010].

The use of an ALE formulation for the fluid, together with a Lagrangian frame for the
structure, yields an FSI problem that is composed by three subproblems, namely the fluid
problem, which allows for the computation of the velocity and pressure inside the fluid
domain, the solid problem, which describes the deformation of the vessel wall, and the so-
called geometry problem, which accounts for the change in time of the computational fluid
domain. A peculiarity in biomechanics is the similar density of the fluid and the structure
which, combined with incompressible flows, leads to increased numerical effort due to the
well-known added-mass effect [Causin et al., 2005, Badia et al., 2008b, Van Brummelen,
2009, Van Brummelen, 2011]. For this reason many solution schemes have been devised
for this type of coupled FSI problems. A modular approach to solve the FSI problem
would consist in dealing with the three problems separately. For example, one can
consider the fluid-structure coupled problem using different type of interface conditions
(Dirichlet-Neumann [Le Tallec and Mouro, 2001, Matthies et al., 2006, Küttler and Wall,
2008b, Langer and Yang, 2012, Langer and Yang, 2015], Robin-Robin [Badia et al.,
2008b, Badia et al., 2009, Nobile et al., 2014], Robin-Neumann [Fernández et al., 2015],
Neumann-Neumann [Deparis et al., 2015c], FETI [Deparis et al., 2006b], etc. [Toselli
and Widlund, 2005]) to ensure the coupling. A comparison of different coupling schemes
for FSI problems in hemodynamics is carried out in [Küttler et al., 2010]. A further
approach makes use of a Steklov-Poincaré formulation [Deparis et al., 2006a] to enforce
the coupling on the fluid-structure interface. Furthermore, one can also solve the coupled
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fluid-structure problem and, separately, the geometry one, therefore in two separate steps,
as in the case of the so-called Geometry Convective Explicit (GCE) scheme [Badia et al.,
2008a, Crosetto et al., 2011].

Extensive work has been carried out on the development of algorithms for the solution
of time-dependent FSI problems in the framework of biomechanics. The approaches
are typically categorized either as segregated or as monolithic schemes although the
distinction is not always straightforward. Segregated schemes can range from simple,
loosely coupled fixed point iterations to schemes which still use segregated solvers but
apply a much stronger coupling. Monolithic schemes may include block preconditioners
constructed from segregated solvers as well as preconditioners for the fully coupled
problem which are not constructed from separate solvers. In monolithic schemes all
the unknowns of the FSI problem are solved simultaneously. Monolithic algorithms
were investigated, e.g., in [Michler et al., 2004, Hron and Turek, 2006, Bazilevs et al.,
2008, Küttler et al., 2010, Gee et al., 2010, Barker and Cai, 2010, Wu and Cai, 2014,
Crosetto et al., 2011, Grandperrin, 2013]. In [Deparis et al., 2015c], we have recently
compared the performance of the strongly coupled Steklov-Poincaré algorithm using the
Dirichlet-Neumann, Neumann-Dirichlet, and Neumann- Neumann preconditioners with a
monolithic approach preconditioned by a Dirichlet-Neumann preconditioner.

The way the coupled set of equations describing the FSI phenomena are discretized in
time induces further distinctions. One approach may consist in dealing with all the
nonlinearities of the problem in an implicit mode, leading to the so-called Fully Implicit
(FI) strategy [Fernández and Moubachir, 2003, Heil, 2004, Tezduyar et al., 2006, Dettmer
and Perić, 2007, Bazilevs et al., 2008, Heil et al., 2008, Barker and Cai, 2010, Küttler et al.,
2010, Gee et al., 2010, Wu and Cai, 2014]. Although this approach is the most stable, it is
also the most expensive choice. A large variety of alternative time discretizations can be
devised. For instance, a Convective Explicit time discretization is used in [Crosetto et al.,
2011], in which the nonlinear convective term in the unsteady Navier-Stokes equations
is treated using a semi-implicit approach. Further, a Geometry-Convective Explicit
discretization is proposed in [Badia et al., 2008b] wherein the moving geometry is taken
at the previous time step and the convective term is treated semi-implicitly. A possible
approach to deal with the nonlinearity makes use of the Aitken accelerated fixed point
algorithm, see e.g. [Le Tallec and Mouro, 2001, Causin et al., 2005, Küttler and Wall,
2008a, Küttler and Wall, 2008b, Badia et al., 2008b, Deparis et al., 2006a, Matthies
et al., 2006]. In this way each fixed point iteration requires one residual evaluation.
Otherwise the time discretized problem can be linearized via the Newton method, either
considering the full Jacobian matrix, as in [Gee et al., 2010, Fernández and Moubachir,
2003, Tezduyar et al., 2006, Grandperrin, 2013], or neglecting some of its contributions,
as in [Gerbeau and Vidrascu, 2003, Degroote et al., 2009, Heil, 2004]. We notice that
the FSI Jacobian matrix is often available only as matrix-vector multiplication. In these
cases a matrix-free method like GMRES may be employed to solve exactly the linearized
system. Each nonlinear Newton iteration requires a solve of the linearized subproblems.
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Thus the cost of each nonlinear iteration corresponds to the cost of one residual evaluation
plus a variable number of solutions of the linearized subproblems.

After spatial and time discretization, one of the key aspects which characterizes the
different methodologies is the choice of the preconditioner. For instance, relying on
monolithic schemes, one may use block preconditioners built upon physic-specific solvers
as well as preconditioners for the fully coupled problem which are not constructed from
separate solvers. Several strategies have been proposed in literature, see e.g., [Heil,
2004, Badia et al., 2008b, Badia et al., 2008c, Gee et al., 2010, Barker and Cai, 2010,
Crosetto et al., 2011, Grandperrin, 2013, Wu and Cai, 2014]. Overlapping Schwarz
methods within monolithic approaches were studied in different regimes of severity of
the added-mass effect in [Crosetto et al., 2011] confirming successful results for 2D
obtained already reported in [Barker and Cai, 2010]. A monolithic FSI approach coupling
nonlinear hyperelastic solid models with Navier-Stokes equations is presented in [Hron
and Turek, 2006], considering the incompressible case for the solid. A block preconditioner
with Schur complements for the monolithic system is presented in [Janssen and Wick,
2010]. A scalable monolithic solver for an FSI problem coupling blood flow with a
conforming arterial wall in two dimensions is presented in [Barker, 2009, Barker and Cai,
2010]. There, a Newton scheme with an explicitly computed Jacobian is applied; see
also [Fernández and Moubachir, 2003, Bazilevs et al., 2008, Barker and Cai, 2010]. For the
solution of the FSI linearized systems, in [Barker and Cai, 2010] the authors use a hybrid
multilevel Schwarz preconditioner which uses restricted additive Schwarz on the fine level
and multiplicative Schwarz on the coarse level. The parallel Newton-Krylov-Schwarz
approach for the monolithic system is extended to three dimensions in [Wu and Cai, 2014],
and scalability is shown for up to three thousand processors. Parallel algebraic multigrid
preconditioners have recently been applied to fully monolithic ALE formulations of FSI
problems in the setting of biomechanics, see, e.g., [Gee et al., 2010, Wiesner, 2015].
Specifically, in [Gee et al., 2010], the authors propose two preconditioners that apply
algebraic multigrid techniques to the linearized monolithic FSI system obtained after
spatial and time discretizations.

Typically, solution algorithms for fluid-structure interaction problems are derived with
the assumption of conforming fluid-structure discretizations at their interface separating
the two computational domains. However, due to the different resolution requirements
in the fluid and structure physical domains, as well as the presence of complex interface
geometries make the use of matching fluid and structure meshes problematic. In these
situations, it would be much simpler to deal with discretizations that are nonconforming,
provided however that the coupling conditions at the interface are properly enforced.
The mortar element method is a well known and mature technique commonly used
to deal with nonconforming discretizations. It has been originally introduced in the
context of nonoverlapping domain partitions [Bernardi et al., 1993, Bernardi et al.,
1994]. In the mortar element method the interface coupling conditions are enforced in
a variational mode. The mortar element method has been already used not only in
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the context of nonconforming fluid-structure interaction problems, see e.g. [Baaijens,
2001, Gerstenberger and Wall, 2008, Klöppel et al., 2011, Mayr et al., 2015, Mayer
et al., 2010], but also in other challenging engineering applications, such as contact
problems [Wohlmuth and Krause, 2003, Popp et al., 2009, Popp et al., 2010, Laursen
et al., 2012]. In the context of nonconforming fluid-structure interaction problems, in
[Popp et al., 2010] the authors make use of a dual mortar method [Wohlmuth, 2000, Puso,
2004, Lamichhane et al., 2005] with discrete Lagrange multipliers that are constructed
based on a biorthogonality relation with the primal shape functions at the fluid–structure
interface. Besides the mortar element method, other coupling strategies have been
proposed in the framework of partitioned solution schemes for fluid-structure interaction
problems, see [Farhat et al., 1998, Cho et al., 2005, De Boer et al., 2007] and references
therein.

Outline of the thesis and main contributions

In this thesis we focus on the development and implementation of efficient and parallel
algorithms for the numerical simulation of Fluid-Structure Interaction. We model blood
as an incompressible Newtonian fluid whose dynamics is governed by the Navier-Stokes
equations. Hyperelastic isotropic and anistotropic material laws are used to describe the
mechanical response of the arterial wall. We use the finite element method for the spatial
discretization of both the fluid and structure problems. In particular, for the Navier-Stokes
equations we consider a semi-discrete formulation based on the Variational Multiscale
(VMS) method. Among a wide range of possible solution strategies for the FSI problem,
here we focus on strongly coupled monolithic approaches wherein all the nonlinearities of
the coupled problem are treated fully-implicitly. Since the spatial discretization of the
problem by finite elements may lead easily to very large linear systems of equations with
several millions of degrees of freedom in three dimensions within realistic applications, we
also move forward towards the development of parallel scalable preconditioners and solvers
bringing the fully nonlinear fluid-structure interaction to high performance computing
machines. To this end, we develop a new block parallel preconditioner, called FaCSI,
for the coupled linearized FSI system obtained after space and time discretization. The
proposed preconditioner uses static condensation to formally eliminate the interface
degrees of freedom of the fluid equations, and a SIMPLE preconditioner for the unsteady
Navier-Stokes equations. Further, to deal with fluid-structure discretizations that are
nonconforming at the interface, in this thesis we develop a novel interpolation-based
method, named INTERNODES, for numerically solving partial differential equations
by Galerkin methods on computational domains that are split into two (or several)
subdomains featuring nonconforming interfaces. INTERNODES can be regarded as an
alternative to the mortar element method which combines the accuracy of the latter with
an easier implementation in a numerical code. All these methods will be instrumental
to an efficient parallel numerical solution of several large-scale complex problems in
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hemodynamics on high performance computing machines.

This thesis is structured in two parts and six chapters. In Part I, after describing the
models for the blood (the fluid) and the vessel wall (the structure), we focus on the
set up and efficient numerical solution of fluid-structure interaction problems in which
conforming discretizations are adopted at the fluid-structure interface. In Part II we
focus on the nonconforming case, i.e. the fluid and structure dicretizations do not match
at their interface.

We report below an outline of this thesis, highlighting its original contributions.

Chapter 1: the focus of this Chapter is to describe the fluid model adopted in this work.
We address an efficient semi-implicit time discretization of the Navier-Stokes equations
with Variational Multiscale-Large Eddy Simulation modeling. Furthermore, we develop
a parallel solver based on the GMRES method preconditioned by an algebraic multigrid
preconditioner. We validate the methodology developed by simulating fluid flow past
a squared cylinder obstacle. We compare the performance and the results obtained by
the semi-implicit approach with those generated by a fully implicit one simulating the
transitional blood flow in a patient-specific healthy Aorta geometry.

Chapter 2: in this Chapter we address the mechanical modeling of the arterial tissue
for large sized arteries. We start by recalling the main concepts necessary to write
the equation of motion for a continuous media. Then, we address the description of
isotropic linear elastic as well as a more sophisticated nonlinear anisotropic hyperelastic
material model. This Chapter mainly serves the purpose of setting up the fluid-structure
interaction problem carried out in the Chapter 3.

Chapter 3: here we deal with the modeling, discretization and efficient numerical
solution of fluid-structure interaction problems. We propose a new block preconditioner
called FaCSI for FSI simulations. We analyze the strong and weak scalability properties of
FaCSI on the solution of FSI in a benchmark cylindrical configuration and on a realistic
large-scale problem of hemodynamics. Furthermore, we show that FaCSI compares
successfully with state of the art preconditioners for FSI.

Chapter 4: we describe a benchmark problem which aims at mimicking blood flow
in idealized coronary arteries. We address precise simulation settings for the set up of
an easily reproducible test which is still able to capture all the numerical difficulties
arising in realistic simulations. We provide measures that may be useful for comparisons
with future simulations, experiments or for code validation. Different material models
are studied, including anisotropic and viscoelastic ones at finite strains. This Chapter
concludes the first part of this thesis.

Chapter 5: we propose a novel interpolation based method called INTERNODES for
the numerical solution of partial differential equations on domains decomposed into two
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(or several) subdomains featuring nonconforming interfaces. We extensively investigate
the convergence properties of INTERNODES by solving numerically an elliptic problem
in which the subdomains were discretized by non-conforming Galerkin methods. We
carry out comparative study with the mortar method and we show that the orders of
convergence obtained by INTERNODES compare successfully with those generated by
mortar.

Chapter 6: we addressed the numerical solution of FSI problems in which nonconforming
discretizations are used at the interface separating the computational domain of the fluid
from the one of the structure. To deal with nonconforming fluid-structure discretizations
we use INTERNODES. We numerically solve the pressure wave propagation through an
elastic tube and we simulate the blood flow through a patient specific femoropopliteal
bypass.

All the numerical methods described in this thesis have been implemented by the author
in the open-source finite element library LifeV (www.lifev.org).

This thesis contains results which have been already published in journal articles or have
been submitted for publication in a similar form. Chapter 1 is based upon a joint work
with L. Dedè which has already been published in [Forti and Dedè, 2015]. Chapter 2 is
partially based upon a joint work with D. Balzani, S. Deparis, S. Fausten, A. Heinlein,
A. Klawonn, A. Quarteroni, O. Rheinbach, and J. Schröder which has already been
published in [Balzani et al., 2015]. Chapter 3 is mainly based upon a joint work with S.
Deparis, G. Grandperrin and A. Quarteroni available as submitted pre-print in [Deparis
et al., 2015b] and partially on a joint work with S. Deparis, A. Heinlein, A. Klawonn, A.
Quarteroni and O. Rheinbach published in [Deparis et al., 2015c]. Chapter 4 is based on
the numerical results published in [Balzani et al., 2015]. The numerical method presented
in Chapter 5 is based on a joint work with S. Deparis, P. Gervasio and A. Quarteroni
available as submitted pre-print in [Deparis et al., 2015a]; in addition, Chapter 5 is also
partially based on the published paper [Deparis et al., 2014a]. Finally, a small part
of Chapter 6 have been already presented in [Deparis et al., 2015d] and accepted for
publication. The whole presentation, however, is original.
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1 Variational Multiscale method for
Navier–Stokes equations

In this Chapter, we focus on the description of the fluid model adopted in this thesis,
its numerical approximation and efficient solution in a parallel computing framework.
The fluid dynamics is described by the Navier–Stokes equations (for an incompressible
and Newtonian fluid) with Variational Multiscale method. The time discretization is
carried out by Backward Differentiation Formulas (BDF) while in space we use the
finite element method. The nonlinearities of the problem are treated using either a
semi–implicit approach for which we linearize the nonlinear terms by Newton–Gregory
backward polynomials, or in a fully–implicit fashion. The resulting linear system is then
solved by the GMRES method preconditioned by a right multigrid preconditioner.

The contents of this Chapter, with the exception of subsection 1.6.2, have been already
published in [Forti and Dedè, 2015].

1.1 Preliminaries

In this Chapter, the description of the fluid model adopted in this work, its discretization
and efficient numerical solution in a parallel setting are addressed. We focus our attention
on cardiovascular flows, more specifically on flows in large sized arteries in which we model
the blood flow dynamics by the Navier–Stokes equations for Newtonian incompressible
fluids. Rigorously speaking blood is a suspension of particles in the plasma, the latter
being made of water rather than a fluid. Nevertheless, despite the complexity of the
blood rheology [Robertson et al., 2009], at the scale of large arteries, a Newtonian
incompressible fluid is a suitable model for blood [Formaggia et al., 2009].
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Chapter 1. Variational Multiscale method for Navier–Stokes equations

Nowadays, the accurate and efficient simulation of fluid dynamics problems still represents
a major challenge, even in a High Performance Computing (HPC) framework. The Direct
Numerical Simulation (DNS) of fluid flows requires the full representation of the whole
range of spatial and temporal scales at the discrete level [Kim et al., 1987, Moser et al.,
1999, Pope, 2000]; as consequence, even for moderate Reynolds numbers, the DNS may
be unfeasible for several problems of practical interest. Conversely, the study of flows by
Large Eddy Simulation (LES) approaches [Nicoud and Ducros, 1999, Pope, 2000, Sagaut,
2006], only the “large” scales of the flow field are fully represented and resolved at the
discrete level, while the effect of the “small” unresolved scales is taken into account by
means of suitable models based on the resolved scales, thus making the computational
costs more affordable; among the others, examples of established LES models there
are the Smagorinsky [Smagorinsky, 1963] and dynamic Smagorinsky [Germano et al.,
1991, Lilly, 1992] models.

Variational Multiscale (VMS) approximations of for the Navier-Stokes equations has
been introduced in [Hughes et al., 2000, Hughes, 1995, Hughes et al., 2004] and further
extended in [Hughes et al., 2001a, Hughes et al., 2001b]; since then, the so called VMS
method has been widely developed and used for the numerical simulation of flows in
several benchmarking and applicative contexts [Akkerman et al., 2008, Bazilevs et al.,
2007, Bazilevs et al., 2009a, Bazilevs et al., 2013b, Colomés et al., 2015, Gravemeier
et al., 2010, Koobus and Farhat, 2004, Hsu et al., 2010, Hughes et al., 2005]. Indeed,
VMS is a flexible approach since it provides a unified framework for the definition of
spatial approximation schemes which are stable, capable of controlling the numerical
instabilities arising in the convective dominated regimes at high Reynolds number, and
also adequate to represent the turbulence LES modeling.

The layout of the Chapter is the following: in Section 1.2 and 1.3 after recalling the
Navier–Stokes equations and the VMS method, we introduce the spatial discretization of
the coarse scale velocity and pressure fields by means of the finite element method. In
Section 1.4, we focus on the time discretization of the problem by means of BDF formulas.
Then, in Section 1.5, we describe the parallel solver developed for the fully discrete
problem, as well as the multigrid preconditioner used. Numerical results are reported
in Section 1.6: after validating our solver by solving the well known square cylinder
benchmark problem [Koobus and Farhat, 2004], we address the blood flow dynamics in a
patient specific aorta.

1.2 The Navier–Stokes equations for incompressible fluids

Let Ωf ⊂ Rd, d ≥ 2, be the spatial fluid domain with piecewise smooth boundary
Γ ≡ ∂Ωf ; we denote with ΓD the subset of Γ where the essential (Dirichlet) boundary
conditions are applied, while natural (Neumann) boundary conditions will be considered
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1.2. The Navier–Stokes equations for incompressible fluids

on ΓN = Γ\ΓD. The Navier–Stokes equations for an incompressible fluid read:

ρf
∂uf

∂t
+ ρf uf · ∇uf − ∇·σf (uf , pf ) = f in Ωf × (0, T ), (1.1)

∇·uf = 0 in Ωf × (0, T ), (1.2)
uf = g on ΓD × (0, T ), (1.3)

σf (uf , pf )n̂ = h on ΓN × (0, T ), (1.4)
uf (0) = uf 0 in Ωf × {0}, (1.5)

where the dependent variables uf and p indicate the velocity and the pressure of the
fluid, respectively, ρf is the fluid density, f is the vector of external forces, n̂ is the
outward directed unit normal vector to ΓN , and σf is the stress tensor defined, for a
Newtonian fluid, as:

σf (uf , p) = −pI + 2μf εf (uf ). (1.6)

We denoted by μ the dynamic viscosity of the fluid and by I the second order identity
tensor, while εf (uf ) is the strain tensor:

εf (uf ) =
1
2

(∇uf + (∇uf )T ). (1.7)

The functions g and h indicate the Dirichlet and Neumann data, respectively, while u0
is the initial data. We recall that Eqs. (1.1)–(1.5) represent the balance of momentum in
convective form, the mass conservation, the essential and natural boundary conditions,
and the initial condition on the velocity, respectively. In view of the spatial approximation
of the Navier–Stokes equations, we introduce the infinite dimensional function spaces

Vg = {uf ∈
[
H1(Ωf )

]d
: uf |ΓD

= g},

V0 = {uf ∈
[
H1(Ωf )

]d
: uf |ΓD

= 0},

Q = L2(Ωf ).

In addition, we define the function spaces Vg = Vg × Q and V0 = V0 × Q. Then, the
weak formulation of the Navier–Stokes equations reads, for all t ∈ (0, T ):

find U = U(t) = {uf , pf } ∈ Vg :(
w, ρf

∂uf

∂t

)
+ (w, ρf uf · ∇uf ) + (∇w, μf (∇uf + ∇uf

T )) − (∇·w, pf ) + (q, ∇·uf )
= (w, f) + (w, h)ΓN

for all W = {w, q} ∈ V0,

(1.8)
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Chapter 1. Variational Multiscale method for Navier–Stokes equations

where uf (0) = uf 0; (·, ·) denotes the standard L2 inner product with respect to the
spatial domain Ωf and (·, ·)ΓN

the one on ΓN .

We remark that, in certain circumstances, the solution of the Navier-Stokes equations may
develop instabilities. Without entering into details, it is well known that the responsible
is the dynamics induced by the non-linear convection term ρf uf · ∇uf . To measure the
importance of this term compared with the diffusive part μf (∇ · (∇uf + ∇uf

T )) we use
the Reynolds number

Re =
ρf LU

μf
, (1.9)

where L and U denote a characteristic length of the domain and velocity of the flow,
respectively. If the Reynolds number is small the flow remains stable, and is called
laminar. For Reynolds numbers in the range 1’000-3’000 the flow is in a transitional
regime, while for Reynolds values greater than 3’000 the flow becomes turbulent and the
dynamics is dominated by the nonlinear convective term.

Along the arterial tree, typical values of the Reynolds number range from 1 to 3’000 a part
from the Aorta wherein during the systolic phase of the heart cycle it may reach values
of approximately 4’500 [Formaggia et al., 2009]. Under normal physiological conditions,
the values of the Reynolds number in the cardiovascular system do not allow for the
formation of full scale turbulence. Some flow instabilities may occur at the exit of the
aortic valve and are limited to the systolic phase. In this region, the Reynolds number
may reach the value of few thousands only during the peak of the systole; nevertheless,
there is not enough time for a full turbulent flow to develop. For example, in [Ku, 1997]
the peak Reynolds number in a human Aorta has been measured to be approximately
4’000. Several factors may induce transition from laminar to turbulent flows: for instance,
the increase of flow velocity because of physical exercise, or due to the presence of a
stenotic artery or a prosthetic implant may produce an increase of the local Reynolds
number and eventually lead to localised turbulence.

1.3 Spatial approximation: Finite Elements and VMS mod-
eling

We consider the Variational Multiscale (VMS) [Hughes et al., 2004, Bazilevs et al., 2007]
method applied to the standard weak form of the Navier–Stokes equations (1.8). The
VMS method introduces an a priori decomposition of the solution into coarse and fine
scales. Accordingly, the weak formulation of the Navier–Stokes equations (1.8) is split
into coarse and fine scale subproblems. At the numerical level, the coarse scale solution is
identified with the numerical approximation given by the finite element method, while the
fine scale component needs to be modeled. We remark that the fine scale components of
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1.3. Spatial approximation: Finite Elements and VMS modeling

the solution are often modeled analytically (in closed form), written in terms depending
both on the data of the problem and the coarse scale solution, and finally substituted in
the coarse scale subproblem. In virtue of a projection of the fine scale solution into the
coarse one, a finite dimensional system for the coarse scale component of the solution is
obtained.

Let us introduce at this point a suitable finite element discretization, specifically with
piecewise Lagrange polynomials of degree r ≥ 1 over the computational domain Ωf

that is triangulated with a mesh Th of tetrahedrons. In this respect, we indicate with
Xr

h :=
{

vh ∈ C0(Ωf ) : vh|K ∈ Pr, for all K ∈ Th

}
the function space of finite element

and with hK the diameter of the mesh element K ∈ Th.

We consider a multiscale direct–sum decomposition of a general function space V , which
can be interpreted either as Vg or V0, into the coarse and fine scales subspaces as:

V = Vh ⊕ V ′, (1.10)

where Vh is the coarse scale function space associated to the finite element discretization
and V ′ is an infinite dimensional function space representing the fine scales not directly
represented in the discretization. More specifically, we have Vh = Vhg × Qh or Vh =
Vh0 × Qh, with Vhg := Vg ∩

[
Xru

h

]d, Vh0 := V0 ∩
[
Xru

h

]d, and Qh := Q ∩ X
rp

h . Then, we
have from Eq. (1.10) the following decompositions:

w = wh + w′, (1.11)
q = qh + q′, (1.12)

uf = uf h + uf
′, (1.13)

pf = pf h + p′
f . (1.14)

We follow the approach proposed in [Bazilevs et al., 2007], for which we decompose
Eq. (1.8) into coarse and fine scale equations, we integrate by parts the fine scale terms
appearing into the coarse scale equations, and finally we model the fine scale velocity
and pressure variables on every K ∈ Th as ([Bazilevs et al., 2007]):

uf
′ 	 −τM (uf h) rM (uf h, pf h), (1.15)

p′
f 	 −τC(uf h) rC(uf h), (1.16)

where rM (uf h, pf h) and rC(uf h) indicate the residuals (in strong form) of the momentum
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Chapter 1. Variational Multiscale method for Navier–Stokes equations

and continuity equations, respectively:

rM (uf h, pf h) = ρf
∂uf h

∂t
+ ρf uf h · ∇uf h + ∇pf h − μf Δuf h − f , (1.17)

rC(uf h) = ∇· uf h, (1.18)

respectively. Moreover, τM and τC are the stabilization parameters, which on every
K ∈ Th we choose similarly to [Bazilevs et al., 2007] as:

τM = τM (uf h) =
(

σ2ρ2
f

Δt2 +
ρ2

f

h2
K

|uf h|2 +
μ2

f

h4
K

Cr

)−1/2

, (1.19)

τC = τC(uf h) =
h2

K

τM (uf h)
, (1.20)

where Cr = 60 · 2ru−2 is a constant obtained by an inverse inequality relation [Quarteroni
and Valli, 1994], σ is a constant equal to the order of the time discretization chosen
and Δt is the time step. We remark that the expression chosen for the stabilization
parameter τM does not account for the projection of the advective and diffusive terms
onto the characteristic sizes of the mesh element along the Cartesian components as e.g.
in [Bazilevs et al., 2007, Hsu et al., 2010, Tezduyar and Sathe, 2003], but rather it is
“averaged” for simplicity over the mesh element.

Finally, the semi–discrete variational multiscale formulation of the Navier–Stokes equa-
tions written in terms of the weak residual reads, for all t ∈ (0, T ):

find Uh = Uh(t) = {uf h, pf h} ∈ Vhg :
A(W h, Uh) − F (W h) = 0 for all W h = {wh, qh} ∈ Vh0,

with uf h(0) = uf
0
h, where:

A(W h, Uh) = ANS(W h, Uh) + AV MS(W h, Uh), (1.21)
F (W h) = (wh, f) + (wh, h)ΓN

, (1.22)

with:

ANS(W h, Uh) =
(
wh, ρf

∂uf h
∂t

)
+
(
wh, ρf uf h · ∇uf h

)
+
(
∇wh, μf (∇uf h + (∇uf h)T )

)
−
(
∇·wh, pf h

)
+
(
qh, ∇·uf h

)
,

(1.23)
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and

AV MS(W h, Uh) =
(
ρf uf h · ∇wh + ∇qh, τM (uf h) rM (uf h, pf h)

)
+
(
∇·wh, τC(uf h) rC(uf h)

)
+
(
ρf uf h · (∇uf h)T , τM (uf h) rM (uf h, pf h)

)
−
(
∇wh, τM (uf h) rM (uf h, pf h) ⊗ τM (uf h) rM (uf h, pf h)

)
.

(1.24)

Remark 1.1: Eq. (1.23) defines the standard terms of the Navier–Stokes equations in
weak form, while Eq. (1.24) contains the terms obtained from the application of the
VMS method. In this respect, the first two rows of Eq. (1.24) represents the classical
Streamline-Upwind Petrov-Galerkin (SUPG) stabilization terms, while the third and
fourth rows contain terms peculiar of the VMS stabilization; specifically, the third row
indicates an additional stabilization term complementing the SUPG ones and finally the
fourth row models the Reynolds cross-stresses [Bazilevs et al., 2007].

Remark 1.2: In this thesis we call VMS-LES formulation of the Navier-Stokes equations
the case in which all the terms on the right hand side of Eq. (1.24) are accounted for.
By dropping the LES terms (fourth row of Eq. (1.24)) in the definition of AV MS(·, ·)
we obtain what we call the VMS-SUPG formulation. As already pointed in Remark
1.1, with respect to classical the SUPG the VMS-SUPG formulation contains additional
terms (third row of Eq. (1.24)) peculiar of the VMS stabilization. Thus VMS-SUPG
differs from classical SUPG stabilization. We notice that the VMS-SUPG formulation
may represent a suitable choice for the study of the blood flow dynamics in large arteries
(being the typical Reynolds numbers in a laminar regime [Formaggia et al., 2009]).

1.4 Time discretization

We discretize in time problem (1.21) by means of Backward Differentiation Formulas
(BDF) [Brenan et al., 1989, Gear, 1971, Quarteroni et al., 2007], a family of linear
multistep methods for which the first order derivative is replaced by a one–sided, high
order incremental ratio; such BDF schemes are often used in computational fluid dynamics,
as for example in [Gervasio et al., 2006].

1.4.1 Fully implicit BDF schemes

Let us partition the time interval [0, T ] into Nt subintervals of equal size Δt = T
Nt

for
which the discrete time instances are tn = n Δt for n = 0, . . . , Nt. Furthermore, let us
denote with uf

n
h and pf

n
h the approximations of the velocity uf h and pressure pf h fields

at the time tn. According to the order σ of the BDF scheme, the approximation of the
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Chapter 1. Variational Multiscale method for Navier–Stokes equations

time derivative of the velocity appearing in the Navier–Stokes equations reads:

∂uf h

∂t
≈ ασuf

n+1
h − uf

n,BDFσ
h

Δt
, (1.25)

where for BDF schemes of orders σ = 1, 2, 3 we have:

uf
n,BDFσ
h =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
uf

n
h if n ≥ 0, for σ = 1 (BDF1),

2uf
n
h − 1

2uf
n−1
h if n ≥ 1, for σ = 2 (BDF2),

3uf
n
h − 3

2uf
n−1
h + 1

3uf
n−2
h if n ≥ 2, for σ = 3 (BDF3),

(1.26)

and

ασ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, for σ = 1 (BDF1),

3
2 , for σ = 2 (BDF2),

11
6 , for σ = 3 (BDF3),

(1.27)

We notice that the BDF1 scheme coincides with the Backward Euler method. According
to the approximation of the time derivative, Eq. (1.25) is replaced in Eq. (1.21), while
the other time dependent terms are evaluated at the discrete time instance tn+1. In this
way, after spatial and temporal discretization, the fully discrete formulation of problem
(1.21) reads at time tn+1 and for a given BDF scheme of order σ as:

find uf
n+1
h ∈ Vhg and pf

n+1
h ∈ Qh:

RV MS(uf
n+1
h , pf

n+1
h ) = 0 for all wh ∈ Vh0 and qh ∈ Qh, ∀n ≥ σ − 1, (1.28)

where

RV MS(uf
n+1
h , pf

n+1
h ) =

(
wh, ρf

ασuf
n+1
h

−uf
n,BDFσ
h

Δt

)
+
(
wh, ρf uf

n+1
h · ∇uf

n+1
h

)
+
(
∇wh, μf

(
∇uf

n+1
h + (∇uf

n+1
h )T

))
−
(
∇·wh, pf

n+1
h

)
+
(
qh, ∇·uf

n+1
h

)
+
(
ρf uf

n+1
h · ∇wh + ∇qh, τM (uf

n+1
h ) rM (uf

n+1
h , pf

n+1
h )

)
+
(
∇·wh, τC(uf

n+1
h ) rC(uf

n+1
h )

)
+
(
ρf uf

n+1
h · (∇wh)T , τM (uf

n+1
h ) rM (uf

n+1
h , pf

n+1
h )

)
−
(
∇wh, τM (uf

n+1
h ) rM (uf

n+1
h , pf

n+1
h ) ⊗ τM (uf

n+1
h ) rM (uf

n+1
h , pf

n+1
h )

)
−
(
wh, fn+1

)
−
(
wh, hn+1)

ΓN
,

(1.29)

given uf
n
h, . . . , uf

n+1−σ
h , with fn+1 = f(tn+1) and hn+1 = h(tn+1).
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1.4. Time discretization

At each discrete time tn, the BDF scheme yields a nonlinear problem to be solved, since
(1.28) is nonlinear in the variables uf

n+1
h and pf

n+1
h . An approximation of this nonlinear

problem can be obtained for example with the Newton method [Quarteroni et al., 2007].
This requires, at each Newton iterate k, the assembly of the Jacobian matrix JV MS and
the solution of the linear system:

JV MS(uf
n+1
h,k , pf

n+1
h,k )(δuf h, δpf h)T = −RV MS(uf

n+1
h,k , pf

n+1
h,k ) (1.30)

to compute the corrections δuf h and δp for the velocity and pressure variables yielding

uf
n+1
h,k+1 = uf

n+1
h,k + δuf h, pf

n+1
h,k+1 = pf

n+1
h,k + δpf h.

A fully implicit approach, although obtained for different time discretizations (e.g.
generalized alpha method), has been widely used for the study of incompressible fluid
flows as e.g. in [Bazilevs et al., 2007, Koobus and Farhat, 2004, Masud and Calderer, 2009].
However, while a fully implicit approach is generally yielding a stable time discretization
scheme, the associated computational costs may be significantly high due to the repeated
assembly of the residual vector and Jacobian matrix and the solution of the associated
linear system.

1.4.2 Semi–implicit BDF schemes

To contain the computational burden associated to the use of a fully implicit BDF
approach (1.28), we consider instead a semi–implicit BDF scheme derived from prob-
lem (1.28), for which the nonlinear terms in uf

n+1
h and pf

n+1
h are extrapolated by means

of the Newton–Gregory backward polynomials [Cellier and Kofman, 2006, Rao, 2009].
Without entering into the details of the derivation, for which we refer the reader to e.g.
[Cellier and Kofman, 2006, Rao, 2009], we consider the following extrapolations of orders
σ = 1, 2, 3 for the velocity and pressure variables at the discrete time tn+1:

uf
n+1,σ
h =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
uf

n
h if n ≥ 0, for σ = 1 (BDF1),

2 uf
n
h − uf

n−1
h if n ≥ 1, for σ = 2 (BDF2),

3 uf
n
h − 3 uf

n−1
h + uf

n−2
h if n ≥ 2, for σ = 3 (BDF3),

(1.31)

and similarly:

pf
n+1,σ
h =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pf

n
h if n ≥ 0, for σ = 1 (BDF1),

2 pf
n
h − pf

n−1
h if n ≥ 1, for σ = 2 (BDF2),

3 pf
n
h − 3 pf

n−1
h + pf

n−2
h if n ≥ 2, for σ = 3 (BDF3).

(1.32)
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Chapter 1. Variational Multiscale method for Navier–Stokes equations

Starting from the fully implicit formulation (1.28), we use the above extrapolations. In
this way, for a given BDF scheme of order σ, the fully discrete linearized semi–implicit
formulation of problem (1.28) reads:

find uf
n+1
h ∈ Vhg and pf

n+1
h ∈ Qh:

Rσ
V MS(uf

n+1
h , pf

n+1
h ) = 0 for all wh ∈ Vh0 and qh ∈ Qh, ∀n ≥ σ − 1, (1.33)

where

Rσ
V MS(uf

n+1
h , pf

n+1
h ) =(

wh, ρf
ασuf

n+1
h

−uf
n,BDFσ
h

Δt

)
+
(
wh, ρf uf

n+1,σ
h · ∇uf

n+1
h

)
+
(
∇wh, μf (∇uf

n+1
h + (∇uf

n+1
h )T )

)
−
(
∇·wh, pf

n+1
h

)
+
(
qh, ∇·uf

n+1
h

)
+
(
ρf uf

n+1,σ
h · ∇wh + ∇qh, τn+1,σ

M rn+1,σ
M (uf

n+1
h , pf

n+1
h )

)
+
(
∇·wh, τn+1,σ

C rC(uf
n+1
h )

)
+
(
ρf uf

n+1,σ
h · (∇wh)T , τn+1,σ

M rn+1,σ
M (uf

n+1
h , pf

n+1
h )

)
−
(
∇wh, τn+1,σ

M r̂ n+1,σ
M ⊗ τn+1,σ

M r̃ n+1,σ
M (uf

n+1
h , pf

n+1
h )

)
−
(

∇wh, τn+1,σ
M r̂ n+1,σ

M ⊗ τn+1,σ
M ρf ασ

uf
n+1
h

Δt

)
+
(

∇wh, τn+1,σ
M rn+1,σ

M (uf
n+1
h , pf

n+1
h ) ⊗ τn+1,σ

M ρf
uf

n,BDF σ
h

Δt

)
−
(
wh, fn+1

)
−
(
wh, hn+1)

ΓN
,

(1.34)

given uf
h
n, . . . , uf

h
n+1−σ. In every K ∈ Th the stabilization parameters are defined as

follows:

τn+1,σ
M :=

(
σ2ρ2

f

Δt2 +
ρ2

f

h2
K

∣∣∣uf
n+1,σ
h

∣∣∣2 +
μ2

f

h4
K

Cr

)−1/2

, (1.35)

τn+1,σ
C =

h2
K

τn+1,σ
M

, (1.36)

and the residuals read:

rn+1,σ
M (uf

n+1
h , pf

n+1
h ) := ρf

(
ασuf

n+1
h

−uf
n,BDFσ
h

Δt

)
+ ρf uf

n+1,σ
h · ∇uf

n+1
h

+∇pf
n+1
h − μf Δuf

n+1
h − fn+1,

r̂ n+1,σ
M := rn+1,σ

M (uf
n+1,σ
h , pf

n+1,σ
h ),

r̃ n+1,σ
M (uf

n+1
h , pf

n+1
h ) := ρf uf

n+1,σ
h · ∇uf

n+1
h + ∇pf

n+1
h − μf Δuf

n+1
h − fn+1.

(1.37)
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1.5. Linear parallel solver: GMRES with multigrid preconditioner

Thanks to the time discretization proposed, the fully discrete semi–implicit formula-
tion (1.33) yields a linear problem in the variables uf

n+1
h and pf

n+1
h to be solved only

once at each time tn. We remark that the Newton–Gregory extrapolation of the pressure
variable in Eq. (1.32) is required by the terms of the formulation which carry the LES
modeling. We finally notice that a linearization of Eq. (1.28) by means of first order
Fréchèt differentiation would have led to a semi–implicit formulation with a larger number
of terms than in Eq. (1.33), thus resulting in a larger assembly cost.

1.5 Linear parallel solver: GMRES with multigrid precon-
ditioner

We implemented both the fully–implicit and the semi–implicit VMS algorithms in
LifeV (www.lifev.org), an open–source finite element library for the solution of problems
described by PDEs in a High Performance Computing framework. In our numerical solver,
the linear system arising from either Eq. (1.28) or (1.33) is solved in a parallel setting using
the GMRES method preconditioned by an algebraic three levels multigrid preconditioner
based on the ML package of Trilinos [Gee et al., 2006]; see e.g. [Quarteroni and Valli,
1999, Toselli and Widlund, 2005]. For the application of the ML right preconditioner
to the linear system matrix we perform three sweeps of the Gauss–Seidel algorithm for
pre– and post–smoothing, while the solution on the coarsest level is based on a LU

factorization [Quarteroni et al., 2007]. In our computations, we consider the relative
residual as stopping criterion for the GMRES method with tolerance equal to 10−6.

1.6 Numerical Results

In Section 1.6.1 we validate our fluid solver towards the benchmark problem of the
vortex shedding induced by the fluid flow past a squared cylinder at high Reynolds
number [Koobus and Farhat, 2004]. The simulations are carried out for different orders of
temporal and spatial discretizations and for different time steps with the aim of studying
their influence on the accuracy of the numerical solution. We discuss the numerical
performance of the solver and analyze the influence of the stabilization parameters on
the numerical results.

As a second numerical example, in Section 1.6.2 we study the fluid dynamics in a patient-
specific thoracic aorta for which the peak Reynolds number at systole is approximately
6’600. In this example, we compare the numerical results and the computational costs
obtained by using a fully-implicit or semi–implicit time discretizations and the VMS-LES
or VMS-SUPG formulation of the Navier-Stokes equations.
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D

Lout

2H
Lin

Ls
x

y

z

Γin

Γout

Figure 1.1: Computational domain Ωf considered for the squared cylinder benchmark
problem.

1.6.1 The benchmark problem: flow past a squared cylinder

As a validation test, we numerically simulate the flow past a squared cylinder at Reynolds
number Re = 22’000. This problem has been already investigated both experimentally
[Bearman and Obasaju, 1981, Lyn et al., 1995] and numerically by using Smagorinsky
and dynamic LES models [Rodi et al., 1997, Sohankar et al., 2000], as well as with a VMS
formulation for the compressible Euler equations approximated by the finite volumes
method [Koobus and Farhat, 2004].

The geometrical setting considered for this benchmark problem is schematically illustrated
in Figure 1.1, for which D = 1 m is the side length of the squared cylinder, Lin = 4.5 D

and Lout = 15.5 D are the distances between the cylinder and the inflow and outflow
surface boundaries, respectively, Ls = 4 D is the width of the domain and H = 6.5 D is
the distance between the cylinder and the bottom and top walls.

Regarding the boundary conditions, at the surfaces on the top and bottom of the domain
we set a null normal component of the velocity vector uf · n̂ = 0; similarly, at the lateral
boundaries we set the normal velocity component uf · n̂ = 0. At the inflow of the domain
Γin, we prescribe a velocity profile uf in(t) that is uniform along the inflow section and it
is dependent only on time as:

uf in(t) =

⎧⎪⎨⎪⎩
V∞
2

(
1 − cos

(
π

t

Tr

))
if 0 ≤ t < Tr,

V∞ if t ≥ Tr.

In our numerical tests we have consider Tr = 0.3 s and the reference inflow velocity
V∞ = 22 m/s. At the outflow boundary Γout, we consider the following natural boundary
condition [Bazilevs et al., 2009a]:

−pf n̂ + 2μf (∇uf + (∇uf )T ) · n̂ − ρf ({uf · n̂}−)uf = 0 on Γout, (1.38)
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1.6. Numerical Results

Figure 1.2: Computational mesh used for the numerical simulation of the flow past a
squared cylinder.

where n̂ is the outward directed unit vector normal to Γout and {uf · n̂}− denotes the
negative part of uf · n̂:

{uf · n̂}− =

⎧⎨⎩uf · n̂ if uf · n̂ < 0,

0 if uf · n̂ ≥ 0.

The above boundary condition is introduced to weakly penalize the reverse flow induced
by the vortexes at Γout, which may render unstable the discrete formulation of the
problem. Indeed, we observe that only if uf · n̂ < 0 on Γout, the last term in the left
hand side of Eq. (1.38) is active; if uf · n̂ ≥ 0 Γout, the outflow boundary condition
reduces to the well known stress–free condition. On the squared cylinder surface we
impose a no slip boundary condition (uf = 0). We consider the fluid to have density
ρf = 1, 000 kg/m3 and a dynamic viscosity μf = 1 Pa s. In this way the Reynolds number

is Re =
ρf V∞D

μf
= 22’000.

We discretize the computational domain Ωf by a mesh made of 330’764 vertices and
1’853’500 tetrahedral elements. In Figure 1.2, two images of the computational mesh Th

are presented: on the left we show a vertical cut plane of the mesh and on the right an
horizontal cut through the squared cylinder. Along the side length of the cylinder we
considered about 20 mesh elements, corresponding to a length hbl = 0.05 m. We remark
that the mesh size is not uniform in Ωf and the ratio between the largest and the smallest
local mesh sizes is about 10–15.

We solve the benchmark problem using the semi–implicit VMS–LES method based on the
BDF formulas. We analyze the performance of the method with respect to the use of first
(σ = 1) and second (σ = 2) order BDF schemes for different time steps (Δt = 0.005 s,
Δt = 0.0025 s, and Δt = 0.00125 s) and different degrees of polynomials used for the
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FE discretization Number of dofs

P1–P1 1’323’056
P2–P2 9’209’040

Table 1.1: Number of degrees of freedom used in our simulations for the mesh of Figure
1.2.

finite element approximation, specifically P1–P1 and P2–P2. The time interval considered
for the simulations is (0, 14) s. In Table 1.1 we report the number of degrees of freedom
associated to the discretized problem for the numerical simulations performed.

In Figure 1.3 we show a post–processing of the solution obtained by using P2–P2 finite
elements and BDF2 scheme at time t = 10 s for Δt = 0.0025 s, i.e. when the turbulent
flow is fully developed. Figure 1.3(a) shows the coherent vortex structures characterizing
the wake (we identified the structures by means of the λ2 criterion [Jeong and Hussain,
1995]); in Figure 1.3(b), we highlight the considerable three–dimensional features of
the turbulent flow occurring in the wake region adjacent to the cylinder by means of a
representation of the streamlines colored by the vorticity field. Figure 1.3(c) illustrates
the pressure field at a plane located at z = 0, as well as some significant isosurfaces; we
showed only negative values of the pressure field in order to highlight the low pressure
zones characterizing the center of the vortexes in the wake region. In Figure 1.3(d) we
illustrate the vorticity field, both on the squared cylinder and on a cut plane at z = 0, on
which we also show, by means of a surface LIC, the recirculation of the flow detaching
from the cylinder.

In order to compare our results with those available in literature obtained by other LES
methods, we compute the drag and lift coefficients on the cylinder. Let us introduce
v̂∞ =

v∞
‖V∞‖ , that is a unit vector directed as the incoming flow, and n̂∞, a unit vector

orthogonal to the direction v̂∞ of the incoming flow. The aerodynamic drag and lift
coefficients for the cylinder are defined as:

CD(uf , p) = − 1
q∞|ΓBODY |

∮
ΓBODY

(σ(uf , pf ) n̂) · v̂∞ dΓ, (1.39)

CL(uf , p) =
1

q∞|ΓBODY |

∮
ΓBODY

(σ(uf , pf ) n̂) · n̂∞ dΓ, (1.40)

where q∞ = 1
2ρf V 2∞ is the dynamic pressure, and |ΓBODY | is the surface area of the

cylinder; in Eq. (1.39) the minus sign takes into account that, by convention, the force is
positive if acting on the fluid. In practice, we compute the aerodynamic drag and lift
coefficients by means of the weak residual form ([Becker and Rannacher, 2001, Dedè,
2007, Hoffman, 2005]) which ensures higher accuracy than the direct use of Eqs. (1.39)
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1.6. Numerical Results

(a) Coherent vortex structures of the wake. (b) Streamlines.

(c) Pressure field. (d) Vorticity field.

Figure 1.3: Postprocessing of the results at time t = 10 s. Solution obtained using P2–P2
finite element, BDF2, and Δt = 0.0025 s.

and (1.40); with this aim, we use the test functions d∞ ∈ {[H1(Ωf )]d : d∞|ΓBODY
=

v̂∞, d∞|∂Ωf \ΓBODY
= 0} and l∞ ∈ {[H1(Ωf )]d : l∞|ΓBODY

= n̂∞, l∞|∂Ωf \ΓBODY
= 0}

in Eq. (1.28). In Figure 1.4 we illustrate, for the different time steps considered, the
evolution of the drag (left–hand side) and lift (right–hand side) coefficients when using a
first order scheme for both the spatial and the time discretizations (σ = 1 and P1-P1 finite
elements). In the same way, Figures 1.5 and 1.6 show the evolution of the coefficients using
a second order BDF scheme σ = 2 in time and a first and second order approximations in
space, respectively. By a comparison of the numerical results obtained using P1–P1 finite
element (Figures 1.4 and 1.5) we highlight the effects of the time discretization. In detail,
we can observe that the amplitude of the oscillations of the lift and drag coefficients are
substantially reduced when using a second order time discretization. In the same way,
the results of Figures 1.5 and 1.6 (both obtained using the BDF2) allows to analyze the
effects of spatial discretization on the solution. When using P1–P1 finite elements, the
smaller Δt reduces both the amplitudes of the oscillations of lift and drag coefficients,
as well as the mean drag coefficients CD. On the contrary, when a second order spatial
discretization is adopted, smaller time steps lead to wider oscillations of the coefficients
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FE discretization Time step BDF order CD rms(CD) rms(CL) Strouhal

P1–P1

Δt = 0.01 s 1 2.51 0.250 1.59 0.127
Δt = 0.005 s 1 2.49 0.226 1.49 0.133
Δt = 0.0025 s 1 2.35 0.112 1.18 0.138
Δt = 0.00125 s 1 2.24 0.0785 0.895 0.142

Δt = 0.01 s 2 2.33 0.204 1.11 0.142
Δt = 0.005 s 2 2.27 0.0896 0.897 0.144
Δt = 0.0025 s 2 2.16 0.0622 0.658 0.146
Δt = 0.00125 s 2 2.05 0.0420 0.576 0.146

P2–P2
Δt = 0.005 s 2 1.98 0.102 0.580 0.142
Δt = 0.0025 s 2 2.24 0.121 0.986 0.141
Δt = 0.00125 s 2 2.71 0.153 1.49 0.129

Table 1.2: Results obtained by the semi–implicit VMS–LES method by considering
different time steps Δt and orders for the spatial and time discretizations.

Literature CD rms(CD) rms(CL) Strouhal

FV-VMS ([Koobus and Farhat, 2004]) 2.10 0.18 1.08 0.136
Smagorinsky ([Rodi et al., 1997]) [1.66–2.77] [0.1–0.27] [0.38–1.79] [0.07–0.15]
Dynamic LES ([Sohankar et al., 2000]) [2.00–2.32] [0.16–0.20] [1.23–1.54] [0.127–0.135]

Table 1.3: Results obtained by different numerical simulations based on LES models
(results between brackets indicate a range of values).

and to higher mean values of the mean of the drag.

In order to compare the numerical results with those available in literature, we evaluate
the mean drag coefficient CD, the root mean square of the lift and of the drag coefficients,
say rms(CD) and rms(CL), and the Strouhal number obtained from a Fourier analysis
of the lift coefficient. In Table 1.2 we report the results predicted by the semi– implicit
VMS–LES method, whereas Table 1.3 contains the values obtained by other LES methods:
in particular, we consider the results obtained with the VMS–Finite Volumes method of
Koobus et al. [Koobus and Farhat, 2004], LES models of Rodi et al. [Rodi et al., 1997],
and Smagorinsky models of Sohankar et al. [Sohankar et al., 2000].

The choice of the time step Δt for the simulations has an important effect on the aerody-
namic coefficients independently from the order of the spatial and time discretizations.
Indeed, from Table 1.2 we observe that the estimation of the mean drag coefficient CD

obtained with Δt = 0.005 s and Δt = 0.00125 s varies of approximately ±5% with respect
to the value obtained with Δt = 0.0025 s. We notice that the use of P1–P1 finite elements
yields a mean drag coefficient CD that decreases as the time step gets smaller; on the
contrary, by using P2–P2 finite element to approximate the velocity and pressure fields,
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Figure 1.4: Results obtained by P1–P1 finite elements and the BDF1 scheme; CD (left) and
CL (right) vs. time t [s] for Δt = 0.005 s (top), 0.0025 s (mid), and 0.00125 s (bottom).

the value of CD increases as Δt decreases. The same consideration follows from the
analysis of the root mean square values of both the lift and drag coefficients. The results
obtained using a first order spatial–time discretizations (P1–P1 and BDF1) are in line
with those available in literature: although the largest time step under consideration
leads already to an accurate prediction of the Strouhal number, the smallest one, i.e.
Δt = 0.00125 s, yields good estimation of all the coefficients. We notice that the use of
a first order discretization in space and second in time (P1–P1 and BDF2) leads to an
underestimation of the root mean square of the lift and drag coefficients with respect
to the results available in literature for LES models, although the prediction of CD is
sufficiently accurate. Finally, by employing a second order space–time discretization (P2–
P2 and BDF2) we notice that the rms(CL) and rms(CD) are in line with those obtained
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Figure 1.5: Results obtained by P1–P1 finite elements and the BDF2 scheme; CD (left) and
CL (right) vs. time t [s] for Δt = 0.005 s (top), 0.0025 s (mid), and 0.00125 s (bottom).

with other LES methods, although the smallest time step yields an overestimation of the
mean drag coefficient CD.

Parallel performance of the solver

In Figure 1.7 we report a strong scalability study of the solver performed using the P2–P2
and BDF2 discretizations of the benchmark problem for Δt = 0.0025 s. We recall that
in this settings the total number of degrees of freedom is equal to 9’209’040. In our
investigation, we consider a varying number of cores ranging from 64 to 4’096 and we
monitor the time to build the preconditioner (Figure 1.7(a)), to solve the linear system
by the preconditioned GMRES method (Figure 1.7(b)), and to perform a time step, i.e.
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Figure 1.6: Results obtained by P2–P2 finite elements and the BDF2 scheme; CD (left) and
CL (right) vs. time t [s] for Δt = 0.005 s (top), 0.0025 s (mid), and 0.00125 s (bottom).

the sum of the time spent to update the convective and the VMS–LES terms in the
assembly phase, to build the preconditioner, and to solve the linear system (Figure 1.7(c)).
Furthermore, in Figure 1.7(d) we show the mean number of GMRES iterations employed
to solve the linear system with the prescribed tolerance. All the computations are
carried out using Piz Dora, a Cray XC40 supercomputer installed at the Swiss National
Supercomputing Center (CSCS) whose main technical specifications are reported in
Table 1.4.

The results reported in Figure 1.7 show the excellent scalability properties of the solver
up to 2’048 cores: in fact, all the indicators scale almost perfectly and the number of
iterations of the GMRES solver remains constant. More specifically, only when using
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Number of compute nodes 1’256
Processor 64–bit Intel Xeon processor

E5-2690v3-Haswell
Memory 64GB per node in 1’192 nodes

128GB per node in 64 nodes
Memory bandwidth Up to 137 GB/s per node
Network Dragonfly interconnect

Table 1.4: Piz Dora Cray XC40 technical data.

2’048 cores we start to observe an initial deterioration in the scalability of the time to
build the preconditioner and to solve the linear system. Nevertheless, in terms of time
to perform a time step, remarkably only with 4’096 cores we start to notice a slight
deterioration of the performance. This is due to the fact that, within the overall count of
the operations required to perform a time step, the assembly phase necessary to update
the convective and VMS–LES stabilization terms is the most expensive, taking around
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Figure 1.7: Scalability analysis of the solver. Simulations performed using P2 − P2 finite
element, BDF2 and Δt = 0.0025 s.
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1.6. Numerical Results

(a) Velocity field at time 10.0 s. (b) Pressure field at time 10.0 s.

Figure 1.8: Reference velocity (a) and pressure (b) fields computed at time t = 10.0 s
using P1–P1 finite elements and the BDF2 scheme with Δt = 0.0025 s; the velocity field
is used to evaluate the stabilization parameters τn+1,σ

M and τn+1,σ
C .

the 85% of the total time spent for a time step.

Stabilization parameters

We address, for the benchmark problem at hand, the dependency of the stabilization
parameters τn+1,σ

M and τn+1,σ
C of Eqs. (1.35) and (1.36) on the choice of the time step

Δt. With this aim, we visualize the spatial distributions of τn+1,σ
M and τn+1,σ

C on the
mid plane of the computational domain starting from the velocity field computed at the
time t = 10.0 s by means of P1–P1 finite element and the BDF2 scheme for Δt = 0.0025
s; the corresponding computed velocity and pressure fields are reported in Figure 1.8,
while the values of τn+1,σ

M and τn+1,σ
C for the time steps Δt = 0.01, 0.005, 0.0025, and

0.00125 s are reported in Figures 1.9 and 1.10. From Figure 1.9(a) we observe that the
largest time step under consideration, Δt = 0.01 s, leads to a distribution of τn+1,σ

M that
reflects the value of the local mesh size hK and velocity field uf

n+1,σ
h . However, as the

time step Δt diminishes, the magnitude of the stabilization parameter τn+1,σ
M diminishes

and its spatial distribution only mildly depends on the local mesh size and the velocity
magnitude. In fact, from the definition of τn+1,σ

M in Eq. (1.35), we remark that the use of
small time steps tends to annihilate the dependence on hK and uf

n+1,σ
h , as it is possible

to observe in Figure 1.9(d) where τn+1,σ
M mostly behaves as Δt

ρf
for Δt → 0. We report in

Figure 1.10 the behavior of the stabilization parameter τn+1,σ
C computed as in Eq. (1.36).

We notice that, since mild dependencies of τn+1,σ
M on hK and uf

n+1,σ
h are observed for

the values of the Δt under considerations, the parameter τn+1,σ
C mostly depends on the
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(a) Δt = 0.01 s. (b) Δt = 0.005 s.

(c) Δt = 0.0025 s. (d) Δt = 0.00125 s.

Figure 1.9: Spatial distribution (on the mid plane of Ωf ) of the stabilization parameter
τn+1,σ

M computed from the reference velocity field of Figure 1.8(a) using P1–P1 finite
element and the BDF2 scheme for different time steps Δt = 0.01, 0.005, 0.0025, and
0.00125 s.

local mesh size hK ; indeed, we have considered a variable mesh size as highlighted in
Figure 1.2. As consequence, the ratio between the largest and smallest local values of
τn+1,σ

C in Ωf is approximatively 150 regardless of the time step Δt under consideration.

While it is well known that the stabilization parameters chosen as in Eqs. (1.35) and (1.36)
degenerate as the time step decreases (see e.g. [Colomés et al., 2015, Hsu et al., 2010]),
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(a) Δt = 0.01 s. (b) Δt = 0.005 s.

(c) Δt = 0.0025 s. (d) Δt = 0.00125 s.

Figure 1.10: Spatial distribution (on the mid plane of Ωf ) of the stabilization parameter
τn+1,σ

C computed from the reference velocity field of Figure 1.8(a) and the parameters
τn+1,σ

M of Figure 1.9 using P1–P1 finite element and the BDF2 scheme for different time
steps Δt = 0.01, 0.005, 0.0025, and 0.00125 s.

i.e τn+1,σ
M ∼ Δt → 0 and τn+1,σ

C ∼ 1
Δt → ∞ for Δt → 0, and hence the stabilization and

turbulence LES modeling may be ineffective for relatively small values of Δt ([Colomés
et al., 2015]), we stress the fact that we did not encounter any stabilization issue in our
numerical simulations for the time steps under consideration. However, our experience
based on numerical tests indicates that for very “small” values of Δt, i.e. when the term
related to Δt in τn+1,σ

M is not correctly balanced with respect to the other ones, the
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(a) τ̃ n+1,σ
M . (b) τ̃ n+1,σ

C .

Figure 1.11: Spatial distribution (on the mid plane of Ωf ) of the stabilization parameters
τ̃ n+1,σ

M and τ̃ n+1,σ
C computed from the reference velocity field of Figure 1.8(a) using

P1–P1 finite element.

degeneration of the parameters τn+1,σ
M and τn+1,σ

C is reflected at the numerical level by
convergence issues of the linear solver and eventually by the inability of assembling a
suitable preconditioner.

An alternative formulation of the stabilization parameters of Eqs. (1.35) and (1.36)
can be used by completely neglecting the effect of time dependency of the fine scale
velocity u′ in the fine scale momentum equation, where one assumes that

∂u′
f

∂t 	 0. This
leads to consider stabilization parameters τ̃ n+1,σ

M and τ̃ n+1,σ
C in Eqs. (1.15) and (1.16)

independent of the time step Δt, which read on every K ∈ Th:

τ̃M
n+1,σ =

(
ρ2

f

h2
K

∣∣∣uf
n+1,σ
h

∣∣∣2 +
μ2

f

h4
K

Cr

)−1/2

,

τ̃ n+1,σ
C =

h2
K

τ̃ n+1,σ
M

.

However, we remark that we were unable to successfully perform numerical simulations
by using the previous definitions of the stabilization parameters, even for different choices
of Δt; specifically, we experienced convergence issues using the GMRES solver with ML
preconditioner, which prevented the simulations to significantly advance beyond the
time Tv = 0.3 s. Our interpretation of this outcome is that a suitable preconditioner
can not be “easily” assembled when the stabilization parameters τ̃ n+1,σ

M and τ̃ n+1,σ
C are
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significantly varying in the computational domain Ωf . Following the procedure described
before, we plot in Figure 1.11 the spatial distributions of the parameters τ̃ n+1,σ

M and
τ̃ n+1,σ

C ; in particular, we highlight that τ̃ n+1,σ
M varies of approximately two orders of

magnitude in Ωf , while the ratio between the largest and smallest local values of τ̃ n+1,σ
C

is approximatively 3′000, a value much larger than the one obtained with τn+1,σ
C , which

was about 150. We notice that τ̃ n+1,σ
M is relatively “large” where the velocity magnitude

is nearly zero, as it occurs in the boundary layers and some regions in the vortexes wake.
This, in combination with the “small” mesh size hK in the boundary layers and wake
regions, renders the parameter τ̃ n+1,σ

C relatively “small” locally in Ωf ; conversely, this
becomes “large” far from the cylinder, where the mesh is locally coarse and the velocity
magnitude nearly equal to V∞.

We finally remark that the choice of the stabilization parameters may have a significant
impact on the numerical results, especially if, as in this work, we take into account
only in an approximate manner for the time dependencies of the fine scales using the
parameters τn+1,σ

M and τn+1,σ
C of Eqs. (1.35) and (1.36). While this can be improved by

using dynamic subscales models [Codina, 2002, Codina et al., 2007, Colomés et al., 2015],
the latter require to solve systems of ordinary differential equations to determine the
fine scale solutions u′

f and p′
f , which may increase the accuracy of the results, but also

the computational cost of the simulations. Since in this work we focus on the efficiency
aspects of the numerical solver, we decided to consider the stabilization parameters as
in Eqs. (1.35) and (1.36), which nevertheless represent a common choice in literature
[Bazilevs et al., 2007, Bazilevs et al., 2009a, Gamnitzer et al., 2010, Gravemeier et al.,
2010, Tezduyar and Sathe, 2003].

1.6.2 Blood flow dynamics in a patient specific aorta

As a second test-case we address the study of the blood flow dynamics in a Thoracic
Aorta under physiological conditions. The Thoracic Aorta is the artery that exits from
the left ventricle and the ejection of the blood into this vessel is regulated by the aortic
valve which opens and closes during the heart cycle. In physiological conditions, the
flowrates in the aorta are the biggest along the whole cardiovascular network.

The geometrical domain of the Aorta used for the numerical simulations has been obtained
through the post-processing of CT-scan images and it is illustrated in Figure 1.13. The
simulations are started from fluid at rest and four heart beats are simulated before post-
processing the results in order to be sure that a time periodic flow is established. The
problem is approximated in space by means of P1-P1 finite elements while in time by a
second order BDF scheme. The time step used in the numerical simulations is Δt = 0.005
s. The physical parameters that characterize the fluid are ρf = 1.05 g/cm3 and μf = 0.035
g/cm/s. The computational mesh used is comprised of 989’646 elements, yielding a total
number of 682’892 degrees of freedom. We test our fluid solver with the focus being on
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the comparison between (i) semi-implicit vs fully-implicit time discretizations and (ii)
VMS-SUPG (see Remark 1.2 Section 1.3) vs VMS-LES formulation of the Navier-Stokes
equations. In Figure 1.12 we report the flowrate profiles used in our simulations: they
are prescribed using Dirichlet boundary conditions, i.e., mapping each flowrate through
a parabolic velocity profile. At the outflow boundary Γout, we consider the boundary
condition reported in Eq. (1.38).

Figure 1.12: Flowrate profiles used in our simulations. At the outflow section of the
domain we impose the boundary condition reported in Eq. (1.38).

In Figure 1.14 we report a post-processing of the numerical solution obtained using the
semi-implicit time discretization and the VMS-LES formulation. More specifically, we
visualize the streamlines of the flow colored by the velocity magnitude (left hand side)
and the vortex structures (right hand side) colored by the vorticity field, at different
times during the heart beat. The fluid features transitional to turbulent flows developing
in the downstream part of the aorta (peak Reynolds number Re ≈ 6’6001) where indeed
we notice the presence of the biggest vortices right after the systolic peak which occurs
at time t = 0.19 s (see Figure 1.14).

We aim at comparing and quantifying the differences in the numerical solutions obtained

1The Reynolds number is based on the characteristic length L = 2.2 cm (vessel diameter) and flow
velocity U = 100 cm/s.
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Figure 1.13: Visualization of the geometry, inflow flowrate profile and location of the
cross sections at which we study the elicity of the flow.

with a semi-implicit vs fully-implicit time discretization as well as the importance of using
the LES terms in the formulation. To this end, in order to highlight the differences of the
flow patterns associated to the solutions obtained by the different approaches considered,
we compare the secondary flows computed by means of the helicity indicator [Caputo
et al., 2013]. We recall that helicity on an infinitesinal portion of fluid is defined as the
scalar product of the velocity uf and vorticity field, namely (∇ × uf ) · uf , and actually
measures the alignment of the velocity and vorticity vectors. Thereby we compare, at
different time steps during the heart cycle, the elicity patterns at different cross sections
orthogonal to the centerlines of the geometry, see Figure 1.13. In Figure 1.15, 1.16, 1.17,
1.18 the contour plot of the helicity indicator is reported: positive values of helicity (red
color) correspond to a clockwise rotation of the flow while negative values (blue color) to
a counter clockwise rotation.

The results reported in Figure 1.15, 1.16, 1.17, 1.18 show that almost identical helicity
patterns are obtained for both the semi-implicit and fully-implicit time discretizations
(either using VMS-SUPG or the VMS-LES formulation). In the same way, we notice also
that even at systole (i.e. t = 1.1925 s) the helicity plots obtained at all the cross sections
considered using the VMS-SUPG and VMS-LES formulations feature very mild (almost
imperceptible) differences.

Finally, in Table 1.5 we report the computational costs: we notice that the number of
linear solver iterations is almost the same for all the different approaches considered.
In terms of time spent to perform a single time step, we observe that the use of a
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t = 0.4650 s

Figure 1.14: Post-processing of the simulation performed with semi-implicit time dis-
cretization and using the VMS-LES formulation. Visualization of the streamlines (left
hand side) and coherent vortex structures (right hand side) at different times during the
heart beat. The vortex structures are identified by means of the Q criterion [Dubief and
Delcayre, 2000].38
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fully-implicit time discretization leads, as expected, to an increase of the computational
time w.r.t. the semi-implicit case by a factor roughly equal to three (that is the number
of Newton iterations performed per time step).

GMRES iterations Newton iterations Time per time step
VMS-SUPG semi-implicit 29.1 - 11.8 s

VMS-SUPG fully-implicit 27.2 3.2 33.6 s

VMS-LES semi-implicit 32.9 - 14.3 s

VMS-LES fully-implicit 31.3 3.1 45.5 s

Table 1.5: Comparison of the computational costs for the different approaches considered
(values averaged on the heart beats simulated).

VMS-SUPG VMS-SUPG VMS-LES VMS-LES
semi-implicit fully-implicit semi-implicit fully-implicit

Figure 1.15: Section 1, helicity at times 0.1925 s (top), 0.3025 s (mid) and 0.4650 s
(bottom).
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VMS-SUPG VMS-SUPG VMS-LES VMS-LES
semi-implicit fully-implicit semi-implicit fully-implicit

Figure 1.16: Section 2, helicity at times 0.1925 s (top), 0.3025 s (mid) and 0.4650 s
(bottom).

VMS-SUPG VMS-SUPG VMS-LES VMS-LES
semi-implicit fully-implicit semi-implicit fully-implicit

Figure 1.17: Section 3, helicity at times 0.1925 s (top), 0.3025 s (mid) and 0.4650 s
(bottom).
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VMS-SUPG VMS-SUPG VMS-LES VMS-LES
semi-implicit fully-implicit semi-implicit fully-implicit

Figure 1.18: Section 4, helicity at times 0.1925 s (top), 0.3025 s (mid) and 0.4650 s
(bottom).
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2 Mechanical modeling for the
arterial tissue

This Chapter deals with the mechanical modeling for the tissue of large sized arteries. It
does not contain original contributions but rather serves the purpose of setting up of the
fluid-structure interaction problem that will be addressed in Chapter 3. In Section 2.1
we briefly recall the histology and the mechanical behavior of the healty arterial tissue
from a general point of view. Section 2.2 introduces the main concepts of the continuum
mechanics theory, specifically the basic vectorial and tensorial notation necessary in
Section 2.3 in order to write the equations of motion for a continuous media. In Section 2.4
we collect the constitutive models for the arterial tissue used in this thesis. Specifically, in
Section 2.4.1 we first focus on the description of the isotropic linear elastic material model,
while a more sophisticated nonlinear anisotropic hyperelastic model is then addressed in
Section 2.4.2.

2.1 Biomechanics of the arterial tissue

Arterial walls of major human arteries are composite materials consisting of three main
layers: the intima, media and adventitia, separated by thin elastic laminae, see Figure
2.1. The intima is the innermost, thin layer, which is mainly composed of endothelial
cells. The contribution to the overall mechanical properties of the arterial wall carried
by the intima layer is negligible in healty individuals. However, in pathological cases,
for instance when atherosclerosis occurs, due to intima thickening and stiffening its
contribution might become mechanically relevant [Holzapfel et al., 2000]. The intima
is separated from the media by a dense elastic membrane called the internal elastic
lamina. The media, which represents the thickest layer of the vessel wall, is the middle
layer and it is mainly composed of elongated smooth muscle cells, and also elastin
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Figure 2.1: Schematic representation of the three main layers which compose a healty
elastic artery. Image from [Holzapfel et al., 2000].

and collagen. Elastic fibres allow the vessel to expand with systole and contract with
diastole, thereby propelling blood forward throughout the arterial tree. The media is
separated from the adventitia by a dense elastic membrane called the external elastic
lamina. The adventitia is the outermost layer, and it is manly composed of collagen
fibrils, elastic sheets and elastic fibrils. This composition yields an anisotropic and
viscoelastic material response at finite strains. Various models have been proposed in
literature for the modeling of the hyperelastic response of arterial vessels, however, the
essential condition of polyconvexity [Ball, 1977] was considered only since approximately
10 years. This is due to the fact that the first anisotropic polyconvex functions were
just introduced in [Schröder and Neff, 2003], although later it was observed that also
previously proposed anisotropic functions were indeed polyconvex, see, e.g., the function
introduced in [Holzapfel et al., 2000]. Based thereon, in [Balzani et al., 2006a] a variety
of polyconvex functions which a priori satisfied the condition of a stress-free reference
configuration were constructed. They were compared in [Brands et al., 2008] with respect
to their numerical performance using parallel iterative solvers, i.e., the FETI-DP domain
decomposition method [Toselli and Widlund, 2005]. A larger structural simulation of an
arterial wall for a diseased artery using one of these anisotropic, almost incompressible
hyperelastic material models was then presented in [Klawonn and Rheinbach, 2010],
applying a Newton-Krylov FETI-DP approach. Anisotropy, to model embedded collagen
fibers, is still one of the numerical challenges present in models for soft biological tissue.
In [Balzani et al., 2010] it was observed numerically that the anisotropy of soft tissue
significantly affects the convergence of the Newton method as well as of the iterative
linear solver but that at the same time the effect is not severe in the physiological range.
Damage of the fibers from overstretch [Balzani et al., 2006b, Balzani, 2006, Balzani et al.,
2007b] has been considered in computations with the FETI-DP method, for an arterial
segment, in [Rheinbach, 2009, Balzani et al., 2007a]. It was observed that it poses no
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additional challenge to the solver of the linearized system as it rather decreases the effect
of the anisotropy.

Using these results, patient-specific simulations of arteries, neglecting the influence of
the blood-flow and a viscoelastic material behavior, were shown in [Balzani et al., 2012].
Viscoelastic effects in fluid-structure interaction, using reduced models, were already
considered and compared with experiments in [Čanić et al., 2006]. In [Schröder et al.,
2005], it was found that the well-known model of [Holzapfel et al., 2000] also fulfills the
polyconvexity condition. A model that goes beyond the concept of hyperelasticity and
which includes also the viscoelastic material behavior of arteries is given in [Holzapfel and
Gasser, 2001]. This approach is mainly based on the original framework for viscoelasticity
at finite strains of [Simo, 1987]. However, the formulation is restricted to a volumetric-
isochoric split of the strain energy function and therefore it allows for stresses induced
in the fibers by a volumetric strain; cf. [Sansour, 2008]. Furthermore, the viscoelastic
behavior is not only associated with the smooth muscle cells as it considers overstresses
in the complete isochoric part including the response of the elastin matrix. A unified
approach for the inelastic response of arterial tissues is given in [Itskov and Ehret, 2009].

2.2 Continuum mechanics, preliminaries

Let us denote by Ω̂ ⊂ R3 and Ωt ⊂ R3 the reference and current domains configurations,
respectively. In the same way, x̂ ∈ Ω̂ and x ∈ Ωt are the coordinates of two points
belonging to the reference and current configurations. In order to describe the kinematics
of the continuum media we may adopt a frame of reference with respect to the x̂ or x
coordinate, yielding to Lagrangian or Eulerian description of the problem, repectively.
We can further define a function φ representing the motion, being φ : Ω̂ ×R+ → Ωt ⊂ R3,
such that φ(x̂, t) represents a deformation evolving in time. Thanks to this definition,
the relations between Lagrangian and Eulerian frames of reference read:

x = φ(x̂, t),
x̂ = φ−1(x, t). (2.1)

During motion and deformation, the displacement experienced by each point x̂ ∈ Ω̂ is
measured by the material displacement field d̂s which is defined by d̂s = x − x̂. One of
the most important kinematic quantities in the framework of continuum mechanics is
the deformation gradient

F :=
∂φ̂

∂x̂
=

∂d̂s

∂x̂
+ I, (2.2)

45



Chapter 2. Mechanical modeling for the arterial tissue

where
∂d̂s

∂x̂
represents the material gradient of d̂s and I is the second order identity tensor

in R3. F locally measures the deformations experienced by the continuous body during
its motion. We notice that the Jacobian of transformation (2.1) could also be interpreted
as the relative volume increment between current and reference configurations, namely:
det(F)dΩ̂ = dΩ. In the sequel we will suppose that map φ−1 always exists due to the
hypothesis of dealing with continuum media, i.e. during motion the body would not be
lacerated, by assuming

J := det(F) > 0. (2.3)

We remark that the case J < 0 is not considered physically admissible due to the
impenetrability of matter [Holzapfel et al., 2000, Ogden, 1997].

2.3 The equation of motion for a continuous media

In this Section we briefly recall, thanks to the momentum conservation law, the equation of
motion for the continuous media with respect to a Lagrangian frame of reference [Gurtin,
1982]. Let us denote by V an arbitrary control volume in the current configuration, and
by ∂V its surface boundary. The conservation of momentum reads [Holzapfel et al., 2000]

D

Dt

∫
V

ρs
˙̂ds dV =

∫
V

ρsfs dV +
∫

∂V
t dS, (2.4)

where we indicated with fs and t the force terms per unit mass and per unit surface,
respectively. Thanks to the Cauchy relation t = σsn, together with the Nanson’s formula
which relates the element area between the current and the reference configurations

ndS = JF−T n̂dŜ (2.5)

we may write:

D

Dt

∫
V̂

JρS
˙̂ds dV̂ =

∫
V̂

JρSfs dV̂ +
∫

∂V̂
JσsF−T n̂dŜ, (2.6)

where we also adopted relation dV = JdV̂ . At this point, in order to write the balance
of momentum in Lagrangian coordinates we introduce the first Piola-Kirchhoff stress
tensor

ΣI = JσsF−T , (2.7)
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which represents a tensorial field defined on the reference configuration. By defining ΣI

and thanks to the divergence theorem, we rewrite Eq. (2.6) as follows:

D

Dt

∫
V̂

ρ̂S
˙̂dS dV̂ =

∫
V̂

ρ̂Sfs dV̂ +
∫

V̂
∇̂ · ΣI dV̂ . (2.8)

Finally, adopting both the localization argument and the fact that V̂ is fixed, we obtain:

ρ̂s
∂2d̂s

∂t2 − ∇̂ · ΣI = ρ̂sfs, (2.9)

which represents the equation of motion for the continuous media in a Lagrangian frame
of reference.

2.4 Constitutive models for the arterial tissue

To complete the derivation of the equation of motion for the continuum media, we
need to characterize the constitutive law, i.e. the relationship between stress and strain.
Constitutive laws are usually formulated based on empirical observations and they model
the material response. The mechanical response of the large arteries wall to a given strain
is mainly due to the elastin and collagen components. The former one is responsible
for the elastic response in physiological conditions, while the latter activates when the
strains reach a certain critical value and it is much stiffer. Furthermore the collagen
component is made of fibers, which inhibit the elongation along the fiber direction. To
accurately predict the mechanisms of the arterial wall one should take into account these
characteristics in the constitutive law. Furthermore, as almost all biological tissues,
the arterial wall is incompressible, which introduces another constraint. In literature
accurate models for the arterial wall can be found in [Balzani, 2006, Holzapfel et al.,
2000, Holzapfel et al., 2002, Zhao et al., 2008, Vorp et al., 1998] and references therein.
We refer to [Ogden and Holzapfel, 2006, Balzani, 2006] for a complete overview of the
mechanical properties and models. Complex material models, such as inelastic materials,
may be found in [Simo and Hughes, 2006].

2.4.1 Isotropic linear elastic material model

In this Section, the description of an isotropic linear elastic material law suitable for
the modeling of the mechanical behavior of large arteries is addressed. The material is
considered as an isotropic media, thus assuming its mechanical properties independent of
the direction. More specifically, isotropic constitutive models are of phenomenological
type for which the tissue is assumed to behave as an isotropic material regardless of its
fibrous nature. In Eq. (2.9) we observe that the tensor ΣI is not symmetric. Therefore,
to write the constitutive relation with respect to a symmetric tensor we introduce the
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second Piola-Kirchhoff stress tensor:

ΣII = F−1ΣI . (2.10)

We notice that ΣII is symmetric and it respects the axiom of frame indifference as
well. More specifically ΣII is independent from rigid body motions (frame indifference):
we can explain this concept through the introduction of a rotation tensor R that is
orthogonal (RRT = I); by indicating with (̄·) the rotated entities, we can write:

Σ̄II = JF̄−1σ̄F̄−T = J(F−1RT )(RσRT )(RF−T ) = ΣII , (2.11)

such that Σ̄II = ΣII . The constitutive law is written using the Green-Lagrange strain
tensor:

εs =
1
2

(C − I), (2.12)

where C = FT F is the right Cauchy-Green deformation tensor. If there exists a scalar
valued strain energy function ψ depending on εs, such that:

∂ψ(εs)
∂εs

= ΣII(εs), (2.13)

the material is called hyperelastic. Given the second Piola-Kirchhoff stress tensor, the
Cauchy stress is computed as follows:

σs = J−1FΣIIFT . (2.14)

The tensor of elastic moduli CCC is then defined as the second derivative of the strain
energy ψ with respect to εs

CCC =
∂2ψ(εs)
∂εs∂εs

. (2.15)

The St. Venant-Kirchhoff strain energy function may be used to characterize the behavior
of the isotropic media

ψ(εs) =
1
2

εs : CCCεs =
λs

2
(tr(εs))2 + μstr(ε2

s), (2.16)

where λs and μs represent the Lamé coefficients defining the mechanical characteristics
of the material. In this way, taking the derivative of (2.13) we obtain:

ΣII = λs(tr(εs))I + 2μsεs. (2.17)

Since expression (2.17) is linear, we may rewrite it into a more compact way:

ΣII = CCC : εs (component-wise ΣIIik
= Cikrsεsrs), (2.18)
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being CCC a fourth-order tensor. Instead of using, as shown in (2.16), the Lamé constants
to characterize the St. Venant-Kirchhoff materials, we will refer hereafter to the Young
modulus E and the Poisson ratio ν; Eq. (2.19) expresses the relation held between the
two sets of coefficients:

E = μs
3λs + 2μs

λs + μs
, λs =

Eν

(1 − 2ν)(1 + ν)
,

ν =
λs

2(λs + μs)
, μs =

E

2(1 + ν)
. (2.19)

We remark that the constitutive law introduced is nonlinear in the displacement d̂s,
since both ΣII and εs are nonlinear in F. Assuming small deformations we further
proceed by neglecting the terms which are of order higher than one in εs, leading to the
approximations

εs =
1
2

[(∇̂d̂s)T + ∇̂d̂s + ((∇̂d̂s)T · ∇̂d̂s)] ≈ 1
2

[(∇̂d̂s)T + ∇̂d̂s] = ε̃s, (2.20)

where ε̃s indicates the symmetric part of the displacement gradient, and

λs(tr(εs))I + 2μsεs = ΣII = F−1ΣI ≈ ΣI . (2.21)

Thanks to the simplifications introduced, we obtain the equation of the linear elasticity:

∂2d̂s

∂t2 − ∇̂ · (λs(tr(ε̃s))I + 2μsε̃s) = ρ̂sfs. (2.22)

We remark that Eq. (2.22) models the behavior of continuum media under the hypothesis
of small strain, small rotations.

2.4.2 Anisotropic polyconvex hyperelastic material model

In this Section the description of an anisotropic polyconvex hyperelastic material model
for the vessel wall is addressed. This model, which was originally proposed in [Balzani,
2006], is formulated in terms of classical continuum mechanics at finite strains, where the
deformation gradient F and the right Cauchy-Green tensor C = FT F are considered. In
order to account for the anisotropy resulting mainly from the reinforcing fibers (collagen
and smooth muscle cells) the concept of structural tensors is applied, see, e.g., [Boehler,
1987]. In arteries mainly two fiber family directions are arranged cross-wise helically
around the wall. By assuming a weak interaction of these two families the standard
approach is to consider an additively decoupled energy ψ consisting of an isotropic part
ψisot for the elastin-rich ground substance and the superposition of two transversely
isotropic parts ψti,∞

(a) for the individual fiber family (a) with direction vector a(a). The
isotropic energy is considered to depend on the right Cauchy-Green tensor in order
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to a priori fulfill the objectivity condition, i.e., ψisot := ψisot(C). For the transversely
isotropic part, an additional argument tensor, the structural tensor for transverse isotropy
M(a) = a(a) ⊗ a(a), is considered such that ψti,∞

(a) := ψti,∞
(a) (C, M(a)). In order to arrive

at a more convenient construction of specific energy functions, a coordinate-invariant
representation in terms of the principal and mixed invariants

I1 = tr(C) , I2 = tr(Cof(C)) , I3 = det(C) (2.23)

and

J
(a)
4 = tr(CM(a)) , J

(a)
5 = tr(C2M(a)), a = 1, 2 (2.24)

is considered. For the isotropic part, we focus on a Neo-Hooke-type representation and
skip the dependency of I2. For the transversely isotropic part note that the fifth invariant
is not polyconvex by itself and thus the alternative invariant

K
(a)
3 := I1J

(a)
4 − J

(a)
5 , a = 1, 2 (2.25)

is considered, see [Schröder and Neff, 2003]. Finally, the polynomial basis for the
representation of the strain energy for two fiber families reads P := {I1, I3, K

(1)
3 , K

(2)
3 }

and the structure of the strain energy is

ψ(C, M(1), M(2)) = ψisot(I1, I3) +
2∑

a=1
ψti,∞

(a) (I1, K
(a)
3 ), (2.26)

cf. [Holzapfel et al., 2000]. The polyconvexity condition in the sense of [Ball, 1977]
is the essential condition to ensure the existence of minimizers and material stability,
cf. [Schröder et al., 2005], where the latter aspect is analyzed in terms of an accompanied
localization analysis. Therefore, polyconvex energy functions have to be considered
and thus, the Neo-Hooke-type function is considered for the isotropic part and for the
transversely isotropic part the function for arterial tissues proposed in [Balzani et al.,
2006a] is used, see also [Balzani et al., 2008], where this function is also applied in an
engineering context. The two parts of the strain energy function are then given by

ψisot = ε1
(
Iε2

3 + I−ε2
3 − 2

)
+ c1

(
I1 I

−1/3
3 − 3

)
(2.27)

and

ψti,∞
(a) = α1

〈
K

(a)
3 − 2

〉α2
, (2.28)

where the restrictions c1 > 0, ε1 > 0, ε2 > 1, α1 > 0 and α2 > 2 ensure polyconvexity and
smooth tangent moduli; the Macaulay brackets are defined as 〈(•)〉 = 1/2(|(•)| + (•)).
Note that a volumetric-isochoric split is considered for the isotropic function, but not
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for the transversely isotropic part in order to avoid the unphysical behavior observed
in [Sansour, 2008]. The Cauchy stresses can then be computed by σ = J−1FΣIIFT ,
wherein the second Piola-Kirchhoff stresses are obtained by deriving the strain energy
function with respect to the right Cauchy-Green tensor, i.e., ΣII = 2∂Cψ(C). We remark
that the hyperelastic parameters c1, ε1, ε2, α1 and α2 that will be used for the numerical
simulation of Chapter 4 are taken from [Brands et al., 2008], where they have been
adjusted to experimental data of a media of a human abdominal aorta with the side
constraint that an improved robustness of numerical computations can be achieved.
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3 Parallel preconditioners for fluid-
structure interaction problems

In Chapters 1 and 2 we addressed the models adopted for the blood (the fluid) and the
arterial wall (the structure), respectively. They serve now, together with suitable coupling
conditions, as the two main components for the set up of the fluid-structure interaction
problem. Indeed, in this Chapter we consider fluid-structure interaction problems to
model the blood flow dynamics in arteries undergoing relatively large deformations, with
the focus being on their efficient numerical solution in a parallel setting.

This Chapter is organized as follows. In Section 3.1 we provide an introduction to FSI
problems in the context of hemodynamics. In Section 3.2 we recall the fluid-structure
interaction model adopted in this work while in Sections 3.3 and 3.4 we introduce the weak
form of the equations and their spatial and temporal discretizations, respectively. Then,
in Section 3.5, we address the numerical solution of the resulting nonlinear FSI system
by the Newton method. In Section 3.6, we focus on the preconditioning strategy: in
particular, we address the description of the preconditioner FaCSI [Deparis et al., 2015b]
and how it compares with preconditioners devised from other condensed formulations.
Finally, in Section 3.7, after assessing the weak and strong scalability properties of FaCSI
on a benchmark problem, we apply it in the context of large- scale simulations of the
blood flow in a patient-specific femoropopliteal bypass where about 150 milions of degrees
of freedom are used.

The remaining part of this Chapter is taken from [Deparis et al., 2015b], with exception
of a new mesh convergence study that is reported in subsection 3.7.1.
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3.1 Preliminaries

The mechanics of an internal blood flow interacting with an elastic arterial wall can
be modeled by a coupled nonlinear system of partial differential equations describing
the fluid flow and the deformation of the wall structure together with suitable coupling
conditions. A problem of this type is commonly referred to as fluid-structure interaction
problem.

We are interested in the specific situation where the fluid is formulated in an Arbitrary
Lagrangian Eulerian (ALE) frame of reference as in, e.g., [Nobile., 2001, Formaggia et al.,
2009, Crosetto et al., 2011, Bazilevs et al., 2013a]. An alternative approach to the ALE
would be to formulate the FSI problem in a fully Eulerian frame of reference [Cottet et al.,
2008, Wang et al., 2008, Richter, 2013], i.e. on a fixed fluid domain, but it additionally
requires one to keep track of the position of the fluid-structure interface. In [Dunne,
2007, Rannacher and Richter, 2010, Richter, 2010], a fully Eulerian formulation of FSI is
used in two dimensions to avoid the degeneration of the ALE mapping and to facilitate
mesh adaptivity. Another approach is that of the immersed boundary method, where
the fluid is written in Eulerian coordinates, while the structure is still in a Lagrangian
frame of reference [Peskin, 2002, Mittal and Iaccarino, 2005, Boffi et al., 2011]. A further
alternative approach to ALE methods may be based on the use of the Extended Finite
Element method (XFEM) [Gerstenberger and Wall, 2008, Wall et al., 2010, Mayer et al.,
2010]. See, e.g., [Formaggia et al., 2009, Bazilevs et al., 2013a] and references therein for
an overview of the subject.

The use of an ALE formulation for the fluid, together with a Lagrangian frame for the
structure, yields an FSI problem that is composed by three subproblems, namely the fluid
problem, which allows for the computation of the velocity and pressure inside the fluid
domain, the solid problem, which describes the deformation of the vessel wall, and the
so-called geometry problem, which accounts for the change in time of the computational
fluid domain. A modular approach to solve the FSI problem would consist in dealing with
the three problems separately. For example, one can consider the fluid-structure coupled
problem using different type of interface conditions to ensure the coupling: Dirichlet-
Neumann [Matthies et al., 2006, Küttler and Wall, 2008b, Langer and Yang, 2012, Langer
and Yang, 2015], Robin-Robin [Badia et al., 2008b, Badia et al., 2009, Nobile et al.,
2014], Robin-Neumann [Fernández et al., 2015], Neumann-Neumann, FETI [Deparis
et al., 2006b], etc. [Toselli and Widlund, 2005]. A further approach makes use of a
Steklov-Poincaré formulation [Deparis et al., 2006a] to enforce the coupling on the fluid-
structure interface. Furthermore, one can also solve the coupled fluid-structure problem
and, separately, the geometry one, therefore in two separate steps, as in the case of the
so-called Geometry Convective Explicit (GCE) scheme [Badia et al., 2008a, Crosetto
et al., 2011].

Extensive work has been carried out on the development of algorithms for the solution
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of time-dependent FSI problems in the framework of biomechanics. The approaches are
typically categorized either as segregated or as monolithic schemes. Segregated schemes
can range from loosely coupled iterative schemes, such as simple, possibly accelerated,
fixed point iterations, to schemes with a much stronger coupling which still use separate
solvers for fluid and structure. Conversely, in monolithic schemes all the unknowns of
the FSI problem are solved simultaneously.

Monolithic algorithms were investigated, e.g., in [Bazilevs et al., 2008, Hron and Turek,
2006, Küttler et al., 2010, Gee et al., 2010, Barker and Cai, 2010, Crosetto et al.,
2011, Grandperrin, 2013, Wu and Cai, 2014]. In [Deparis et al., 2015c], we have recently
compared the performance of the strongly coupled Steklov-Poincaré algorithm using
the Dirichlet-Neumann, Neumann-Dirichlet, and Neumann-Neumann preconditioners
have been compared with those of a monolithic approach preconditioned by a Dirichlet-
Neumann preconditioner.

In this thesis, we use a monolithic solution algorithm and therefore we consider the
coupled problem as a single system involving all the state variables, including the
fluid domain displacement. This system is nonlinear because of the convective term in
the Navier-Stokes equations, the possible nonlinearity of the constitutive law used to
model the vessel wall, and the changing-in-time fluid computational domain. The time
discretization of the fluid problem is carried out by second order backward differentiation
formulas, while for the structure we use the Newmark method. The spatial discretization
is based on finite elements: we use P2-P1 Lagrange polynomials for the approximation of
the fluid velocity and pressure, respectively, P2 for the structure displacement and P2 for
the ALE map, using conforming meshes at the fluid-structure interface.

After spatial and temporal discretization we solve the fully coupled nonlinear FSI system
in its implicit form by using the Newton method with an exact Jacobian system, as
in, e.g., [Fernández and Moubachir, 2003, Heil, 2004, Tezduyar et al., 2006, Dettmer
and Perić, 2007, Bazilevs et al., 2008, Heil et al., 2008, Barker and Cai, 2010, Küttler
et al., 2010, Gee et al., 2010, Wu and Cai, 2014]. Other strategies may be employed to
linearize the nonlinear FSI system: for instance, one can use relaxed fixed point iterations
using Aitken acceleration [Le Tallec and Mouro, 2001, Causin et al., 2005, Küttler and
Wall, 2008b, Matthies et al., 2006] or inexact Newton methods [Gerbeau and Vidrascu,
2003, Degroote et al., 2009], which may not converge or converge only linearly.

The numerical solution of the fully coupled 3D FSI problem is computationally expensive;
to lower the time to solution, the use of an efficient preconditioner is crucial. In this regard,
several strategies have been proposed in, e.g., [Heil, 2004, Badia et al., 2008b, Badia
et al., 2008c, Gee et al., 2010, Barker and Cai, 2010, Crosetto et al., 2011, Grandperrin,
2013, Wu and Cai, 2014]. Overlapping Schwarz methods within monolithic approaches
were studied in different regimes of severity of the added-mass effect in [Crosetto et al.,
2011] confirming successful results for 2D obtained already reported in [Barker and Cai,
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2010]. A monolithic FSI approach coupling nonlinear hyperelastic solid models with
Navier-Stokes is presented in [Hron and Turek, 2006], considering the incompressible case
for the solid. For the solution of the linear saddle point systems a sparse direct solver,
an ILU preconditioner, and a geometric multigrid method with a Vanka-type smoother
are considered. A block preconditioner with Schur complements for the monolithic
system is presented in [Janssen and Wick, 2010]. A scalable monolithic solver for an
FSI problem coupling blood flow with a conforming arterial wall in 2D is presented
[Barker, 2009, Barker and Cai, 2010]. There, a Newton scheme with an explicitly
computed Jacobian is applied; see also [Fernández and Moubachir, 2003, Bazilevs et al.,
2008, Barker and Cai, 2010]. For the solution of the FSI linearized systems, in [Barker
and Cai, 2010] the authors use a hybrid multilevel Schwarz preconditioner which uses
restricted additive Schwarz on the fine level and multiplicative Schwarz on the coarse level.
The parallel Newton-Krylov-Schwarz approach for the monolithic system is extended to
three dimensions in [Wu and Cai, 2014], and scalability is shown for up to three thousand
processors. Parallel algebraic multigrid preconditioners have recently been applied to
fully monolithic ALE formulations of FSI problems in the setting of biomechanics, see,
e.g., [Gee et al., 2010, Wiesner, 2015, Mayr et al., 2015]. Specifically, in [Gee et al., 2010],
the authors propose two preconditioners that apply algebraic multigrid techniques to the
linearized monolithic FSI system obtained after spatial and temporal discretizations.

In this Chapter, we focus on parallel block preconditioners for FSI problems. Indeed,
the mixed nature of the equations involving fluid, structure, and geometry motivates
the development of preconditioners that are built upon the specific features of each of
these three subproblems. These preconditioners enjoy the same modularity property
of fully segregated methods where each subproblem is solved separately. Our block
preconditioner, that we named FaCSI, is constructed through the following steps. First,
we consider a block Gauss-Seidel approximation of the FSI Jacobian matrix: this amounts
to drop the block associated to the kinematic coupling condition. This simplification can
be reinterpreted as imposing (one-sided) Dirichlet boundary conditions on the structure
displacement at the fluid-structure interface. Then, by a proper matrix factorization we
identify three block-triangular matrices: the first matrix refers solely to the structural
problem, the second one solely to the geometry and the last solely to the fluid. Special
attention is paid to the fluid matrix whose saddle-point structure features the additional
presence of two coupling blocks: after carrying out static condensation of the interface
fluid variables, we use a SIMPLE preconditioner [Patankar and Spalding, 1972, Pernice
and Tocci, 2001, Elman et al., 2006, Elman et al., 2008, ur Rehman et al., 2008, ur Rehman
et al., 2009, Deparis et al., 2014b] on the reduced fluid matrix. Finally, on the approximate
factorization, FaCSI is obtained by replacing the diagonal blocks referring to each physical
subproblem by suitable parallel preconditioners, e.g, those based on domain decomposition
or multigrid strategies. In spite of their similarities, we show in Section 3.6.2 that FaCSI
differs from the block Gauss-Seidel preconditioner proposed in [Gee et al., 2010] .
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3.2 Fluid structure interaction model

The fluid-structure interaction model used here consists in a fluid governed by the
incompressible Navier-Stokes equations written in the Arbitrary Lagrangian Eulerian
(ALE) frame of reference, coupled with a linear elastic structure, see, e.g, [Crosetto
et al., 2011, Reymond et al., 2013]. It is convenient to separate the FSI problem into
three coupled subproblems, namely the fluid problem, the structure problem, and the
geometry problem. The latter determines the displacement of the fluid domain d̂f which
defines in turn the ALE map. We consider d̂f as an harmonic extension to the fluid

Ωs
t

Ω
f
t

Ω̂s

Ω̂ fΩ̂ f

At(x̂)

Figure 3.1: The ALE frame of reference.

reference domain Ω̂f ⊂ R3 of the trace of the solid displacement d̂s at the reference
fluid-structure interface Γ̂ :⎧⎨⎩−Δd̂f = 0 in Ω̂f ,

d̂f = d̂s on Γ̂ .

(3.1a)
(3.1b)

The solution of the geometry problem defines the ALE map At(x̂) = x̂ + d̂f (x̂, t)
∀x̂ ∈ Ω̂f , and the current fluid domain configuration. The Navier-Stokes equations for
an incompressible fluid written in ALE coordinates read:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf
∂uf

∂t

∣∣∣∣
x̂

+ ρf ((uf − w) · ∇)uf − ∇ · σf = 0 in Ωf
t ,

∇ · uf = 0 in Ωf
t ,

uf = hf on Γ f
D,

σf nf = gf on Γ f
N ,

uf ◦ At =
∂d̂s

∂t
on Γ̂ ,

(3.2a)

(3.2b)

(3.2c)

where ∂
∂t

∣∣∣
x̂

= ∂
∂t + w · ∇ is the ALE derivative, w(x) = ∂At(x)

∂t is fluid domain velocity,
uf and pf are the velocity and pressure of the fluid, respectively. In (3.2a) we denoted
by ρf the density of the fluid and by σf the Cauchy stress tensor

σf = μf (∇uf + (∇uf )T ) − pf I,
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with I being the identity tensor, μf the dynamic viscosity of the fluid, and nf the outward
unit normal vector to ∂Ωf

t . The functions hf and gf indicate the Dirichlet and Neumann
data applied at the the Dirichlet and Neumann boundaries Γ f

D and Γ f
N , respectively, of

Ωf
t . From (3.1b), (3.2c) and the definition of w, we have that

uf ◦ At = w on Γ̂ . (3.3)

We model the structure by linear elasticity in a Lagrangian frame of reference (see
Chapter 2):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ̂s
∂2d̂s

∂t2 − ∇x̂ · Π(d̂s) = 0 in Ω̂s,

d̂s = hs on Γ̂ s
D,

Π(d̂s)n̂s = 0 on Γ̂ s
N ,

Π(d̂s)n̂s + σ̂f n̂f = 0 on Γ̂ .

(3.4a)

(3.4b)

Here n̂s and n̂f represent the outward unit normal vector to ∂Ω̂s and ∂Ω̂f , respectively,
σ̂f = (det[F]) F−T σf and F = I+∇x̂d̂s is the deformation gradient tensor. The function
hs indicates the Dirichlet data applied at the Dirichlet boundary Γ s

D of Ω̂s. The material
is characterized by the Young modulus Es and the Poisson ratio νs, which define in turn
the first Piola-Kirchhoff stress tensor

Π(d̂s) = λs Tr
(

∇d̂s + (∇d̂s)T

2

)
I + μs(∇d̂s + (∇d̂s)T ),

where

λs =
Esνs

(1 − 2νs)(1 + νs)
and μs =

Es

2(1 + νs)
.

The coupling between these three subproblems is ensured by imposing the geometry
adherence, the continuity of the velocity and the continuity of the normal component of
the stresses at the interface through Equations (3.1b), (3.2c), and (3.4b), respectively.
The resulting system is nonlinear due to the convective term in the fluid momentum
equation, to the possible nonlinear material model and to the moving fluid domain.

3.3 Weak formulation

We follow [Nobile., 2001, Le Tallec and Mouro, 2001] to derive the weak form of the
FSI problem in the nonconservative form. The velocity coupling condition is imposed
strongly, while the continuity of the normal component of the stresses is imposed in weak
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form. Let us introduce the following functional spaces:

Uf = {v = v̂ ◦ A−1
t | v̂ ∈ [H1(Ω̂f )]3},

Uf
D = {v = v̂ ◦ A−1

t | v̂ ∈ [H1(Ω̂f )]3, v̂ = 0 on Γ f
D},

Qf = {q = q̂ ◦ A−1
t | q̂ ∈ L2(Ω̂f )},

U s = [H1(Ω̂s)]3, U s
D = {v ∈ [H1(Ω̂s)]3 | v = 0 on Γ s

D},

Ug = [H1(Ω̂f )]3, Ug
D = {v ∈ [H1(Ω̂f )]3 | v = 0 on Γ f

fixed},

Uλ = [H−1/2(Γ̂ )]3.

Γ f
fixed is the part of the fluid boundary Ω̂f where the domain motion is prescribed (e.g.

when a portion of the fluid domain boundary is fixed). The weak form of the fluid
and structure equations is standard [Formaggia et al., 2009]. We introduce an auxiliary
variable λ ∈ Uλ

λ := σ̂f n̂f = −Π(d̂s)n̂s in Uλ, (3.5)

that can be regarded as a Lagrange multiplier used to enforce the continuity of the
velocity at the interface.

We recall the notation for the Dirichlet boundary data for the fluid, structure and
geometry subproblem: hf : Γ f

D → R2, hs : Γ s
D → R2, hg : Γ f

fixed → R2, respectively. The
weak form of the FSI problem reads: for all t ∈ (0, T ], find uf ∈ Uf such that uf = hf

on Γ f
D, pf ∈ Qf , d̂s ∈ U s such that d̂s = hs on Γ s

D, d̂f ∈ Ug such that d̂f = hg on
Γ f

fixed, and λ ∈ Uλ satisfying

∫
Ωf

t

(
ρf

∂uf

∂t

∣∣∣∣
x̂

· vf + ρf ((uf − w) · ∇)uf · vf + σf : ∇vf

)
dΩf

t +
∫

Γ̂
λ · (vf ◦ At) dγ̂

=
∫

Γ f
N

gf · vf dγ ∀vf ∈ Uf
D,∫

Ωf
t

q ∇ · uf dΩf
t = 0 ∀q ∈ Qf , (3.6)

∫
Ω̂s

(
ρ̂s

∂2d̂s

∂t2 · vs + Π(d̂s) : ∇x̂vs

)
dΩ̂s −

∫
Γ̂

λ · vs dγ̂ =
∫

Γ s
N

gs · vs dγ ∀vs ∈ U s
D,

∫
Γ̂

(uf ◦ At) · η dγ −
∫

Γ̂

∂d̂s

∂t
· η dγ = 0 ∀η ∈ [H−1/2(Γ̂ )]3,∫

Γ̂
∇x̂d̂f : ∇x̂vg dΩ̂f = 0 ∀vg ∈ Ug

D,

d̂f = d̂s on Γ̂ ,

where w = ∂d̂f

∂t represents the rate of deformation of the fluid domain. In system (3.6)
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integrals on Γ̂ should be intended in the sense of the duality.

3.4 Temporal and spatial discretizations

We consider a Fully Implicit (FI) scheme for which all the nonlinearities are treated
implicitly. We discretize the time derivative of the fluid problem by second order backward
differentation formulas [Gervasio et al., 2006, Forti and Dedè, 2015]

∂uf

∂t
(tn+1)

∣∣∣∣
x̂

≈
3un+1

f − 4un
f + un−1

f

2Δt
. (3.7)

The time discretization of the structural problem is carried out by the Newmark method
[Newmark, 1959, Hughes, 2012]

∂2d̂s

∂t2 (tn+1) ≈ 1
βΔt2 d̂n+1

s − 1
βΔt2 (d̂n

s + Δt
˙̂dn

s ) − 1 − 2β

2β
¨̂dn

s , (3.8)

where:

¨̂dn
s =

1
βΔt2 d̂n

s − 1
βΔt2 (d̂n−1

s + Δt
˙̂dn−1

s ) − 1 − 2β

2β
¨̂dn−1

s , (3.9)

˙̂dn
s = ˙̂dn−1

s + Δt (γ ¨̂dn
s + (1 − γ) ¨̂dn−1

s ). (3.10)

We choose the coefficients γ = 0.5 and β = 0.25 such that the scheme is unconditionally
stable and second order. In space, we consider a Galerkin finite elements approximation
using P2-P1 Lagrange polynomials for the representation of the fluid variables uf and
pf , respectively, P2 for the structure displacement d̂s, and P2 for the harmonic extension
d̂f . At each time step, the resulting nonlinear system to be solved may be rewritten as⎛⎜⎜⎜⎜⎝

S(d̂n+1
s ) + 0 + 0 − IT

Γ sλn+1

−IΓ sd̂n+1
s + G(d̂n+1

f ) + 0 + 0
0 + 0 + F (un+1

f , pn+1
f , d̂n+1

f ) + IT
Γ f λn+1

− γ
βΔt IΓ sd̂n+1

s + 0 + IΓ f un+1
f + 0

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
bs

0
bf

bc

⎞⎟⎟⎟⎟⎠ . (3.11)

We denoted by d̂n+1
s , d̂n+1

f , un+1
f , pn+1

f , and λn+1, the unknown displacement of the
structure, the displacement of the fluid domain, the velocity and pressure of the fluid,
and the Lagrange multipliers, respectively. We make use of an augmented formulation
wherein the vector of Lagrange multipliers λn+1 is used to impose the continuity of the
velocity at the fluid-structure interface. We notice that the Lagrange multipliers may
formally be removed from the set of unknowns of the problem by static condensation,
as in [Gee et al., 2010, Mayr et al., 2015]. However, we remark that we do not perform
static condensation at this stage because it would lead to additional implementation
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difficulties in our code.

The diagonal blocks on the left hand side of (3.11) account for the discretized solid,
geometry and fluid problems. We remark that F is nonlinear due to the convective term
and the fact that fluid domain moves. The matrices IΓ f and IΓ s are the restriction of
fluid and structure vectors to the interface and in (3.11) account for the continuity of
velocities and the geometry adherence, which are imposed strongly. Their transposes
account for the continuity of the normal component of the stresses, which is imposed
weakly. Last row of (3.11) represents the discretized kinematic coupling condition at the
fluid-structure interface:

IΓ f uf − γ

βΔt
IΓ sd̂n+1

s = bc, (3.12)

where

bc = IΓ s
˙̂dn

s − γ

βΔt
(IΓ sd̂n

s +Δt IΓ s
˙̂dn

s )−Δt γ
1 − 2β

2β
IΓ s

¨̂dn
s +Δt (1−γ) IΓ s

¨̂dn
s . (3.13)

The ALE velocity w is approximated by second order backward differentiation formulas

w(tn+1) =
dd̂f

dt
(tn+1) ≈

3d̂n+1
f − 4d̂n

f + d̂n−1
f

2Δt
. (3.14)

We notice that this scheme is not compatible with Eq. (3.10) and therefore, at the discrete
level, w �= uf ◦ At on Γ̂ . To impose this equality one should use the Newmark formulas
(3.9) and (3.10) also for the approximation of w.

3.5 Solution algorithms for the FSI problem

We solve the nonlinear fully coupled FSI problem (3.11) using the Newton method as
in, e.g., [Fernández and Moubachir, 2003, Tezduyar et al., 2006, Heil, 2004, Bazilevs
et al., 2008]. Let us denote the solution of (3.11) at time tn = n Δt by Xn =
(d̂n

s , d̂n
f , un

f , pn
f , λn)T . At each timestep, we compute a sequence of approximations

Xn+1
1 , Xn+1

2 , etc. until the numerical solution converges up to a prescribed toler-
ance. The generic k + 1 iteration of the Newton method applied to (3.11) is de-
scribed as follows. Starting from an approximation of Xn+1

k , we compute the residual
Rn+1

k = (rn+1
ds,k, rn+1

df ,k, rn+1
uf ,k, rn+1

pf ,k , rn+1
λ,k )T :

Rn+1
k =

⎛⎜⎜⎜⎜⎝
bs

0
bf

bc

⎞⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎜⎝
S(d̂n+1

s,k ) −IT
Γ sλn+1

k

−IΓ sd̂n+1
s,k +G(d̂n+1

f,k )
F (un+1

f,k , pn+1
f,k , d̂n+1

f,k ) +IT
Γ f λn+1

k

− γ

βΔt
IΓ sd̂n+1

s,k +IΓ f un+1
f,k

⎞⎟⎟⎟⎟⎟⎠ . (3.15)
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Then, we compute the Newton correction vector δXn+1
k = (δd̂n+1

s,k , δd̂n+1
f,k , δun+1

f,k , δpn+1
f,k ,

δλn+1
k )T by solving the Jacobian linear system

JF SI δXn+1
k = −Rn+1

k , (3.16)

being

JF SI =

⎛⎜⎜⎜⎜⎜⎝
S 0 0 −IT

Γ s

−IΓ s G 0 0
0 D F IT

Γ f

− γ

βΔt
IΓ s 0 IΓ f 0

⎞⎟⎟⎟⎟⎟⎠ , (3.17)

where S, G and F represent the linearized structure, geometry and fluid problems,
respectively; D are the shape derivatives, i.e. the derivatives of F (un+1

f , pn+1
f , d̂n+1

f ) with
respect to d̂n+1

f (for their exact computation see [Fernández and Moubachir, 2003]).

Finally, we update the solution: Xn+1
k+1 = Xn+1

k + δXn+1
k . We stop the Newton iterations

when

‖Rn+1
k ‖∞

‖Rn+1
0 ‖∞

≤ ε, (3.18)

where Rn+1
0 is the residual at the first Newton iteration and ε is a given tolerance.

3.6 Preconditioning strategy

In analogy with what is proposed in [Crosetto et al., 2011], we exploit the block structure
of the Jacobian matrix associated to the fully coupled FSI problem (3.11) to build our
preconditioner:

JF SI =

⎛⎜⎜⎜⎜⎜⎝
S 0

−IΓ s G
0 −IT

Γ s

0 0

0 D
− γ

βΔt IΓ s 0
F IT

Γ f

IΓ f 0

⎞⎟⎟⎟⎟⎟⎠ ,

which is lower block triangular up to the −IT
Γ s block. By neglecting this block, we obtain

the following Gauss-Seidel preconditioner for the matrix JF SI :

PF SI =

⎛⎜⎜⎜⎜⎝
S 0 0 0

−IΓ s G 0 0
0 D F IT

Γ f

− γ
βΔt IΓ s 0 IΓ f 0

⎞⎟⎟⎟⎟⎠ . (3.19)
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Having dropped −IT
Γ s in JF SI amounts to neglect the kinematic coupling condition: more

precisely this can be reinterpreted as imposing (one-sided) Dirichlet boundary conditions
on d̂s at the fluid-structure interface, see also Section 3.6.2 for more in depth comments. A
similar strategy was used for a Geometry Convective Explicit (GCE) scheme in [Crosetto
et al., 2011]. PF SI can be factorized into three physics-specific nonsingular matrices,
namely PS , PG , and PF corresponding to the structure, the geometry, and the fluid
problem, respectively:

PF SI =

⎛⎜⎜⎜⎜⎝
S 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

PS

⎛⎜⎜⎜⎜⎝
I 0 0 0

−IΓ s G 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

PG

⎛⎜⎜⎜⎜⎜⎝
I 0
0 I

0 0
0 0

0 D
− γ

βΔt IΓ s 0
F IT

Γ f

IΓ f 0

⎞⎟⎟⎟⎟⎟⎠ .

︸ ︷︷ ︸
PF

(3.20)

PS is block diagonal while both PG and PF can be further factorized into matrices
featuring simpler block structures:

PG =

⎛⎜⎜⎜⎜⎝
I 0 0 0

−IΓ s I 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

I 0 0 0
0 G 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎟⎠ = P
(1)
G P

(2)
G , (3.21)

PF =

⎛⎜⎜⎜⎜⎝
I 0 0 0
0 I 0 0
0 D I 0
0 0 0 I

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0
0 0 I 0

− γ
βΔt IΓ s 0 0 I

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0
0 0 F IT

Γ f

0 0 IΓ f 0

⎞⎟⎟⎟⎟⎠ = P
(1)
F P

(2)
F P

(3)
F .

(3.22)

The factors P
(1)
G , P

(1)
F and P

(2)
F can be inverted exactly (and cost-free). Since S and G

appear (as diagonal blocks) in different factors, physics-specific ad-hoc preconditioners
can be efficiently used to approximate their inverses. Unfortunately, this is only partially
true for the fluid subproblem F whose saddle point structure features the additional
presence of the two coupling blocks IΓ f and IT

Γ f .

We remark that factorization (3.20) has already been used in [Crosetto et al., 2011],
where after factorization, the inverses of PS , PG and PF were approximated by the one
level algebraic additive Schwarz method [Quarteroni and Valli, 1999, Toselli and Widlund,
2005].

The novelty here with respect to [Crosetto et al., 2011] consists in operating a static
condensation on the interface fluid variables, and in using SIMPLE [Patankar and
Spalding, 1972, Pernice and Tocci, 2001, Elman et al., 2006, Elman et al., 2008, ur Rehman
et al., 2008, ur Rehman et al., 2009] to precondition the resulting reduced fluid matrix.
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In fact, we notice that according to the (further) factorization (3.22) of PF , the critical
term is P

(3)
F which corresponds to a linearized Navier-Stokes problem with additional

constraints. Our goal is to replace it, after removing the Lagrange multipliers, by a
convenient approximation built on an efficient SIMPLE preconditioner.

We point out that our static condensation of the interface variables is operated at the
level of the fluid preconditioner. A different approach, see e.g. [Gee et al., 2010, Mayr
et al., 2015], consists in removing the interface variables directly from the set of unknowns
of the FSI problem (3.16). In Section 3.6.2 we will show that the corresponding block
preconditioner introduced in [Gee et al., 2010] differs from ours and we will compare the
results obtained by the two approaches.

3.6.1 Static condensation and approximation of P
(3)
F based on SIMPLE

preconditioner

By static condensation of the degrees of freedom related to the Lagrange multipliers λ,
we show that the application of P

(3)
F is equivalent to solving a linearized Navier-Stokes

problem with Dirichlet boundary conditions at the fluid-structure interface. Let us
extract from P

(3)
F the blocks associated to the fluid and the coupling parts, yielding the

following saddle-point problem:⎛⎜⎝
(

K BT

B 0

)
IT

Γ f

IΓ f 0

⎞⎟⎠
⎛⎜⎝δun+1

f,k

δpn+1
f,k

δλn+1
k

⎞⎟⎠ =

⎛⎜⎝rn+1
u,k

rn+1
p,k

rn+1
λ,k

⎞⎟⎠ , (3.23)

where we highlighted the block structure of F

F =
(

K BT

B 0

)
, (3.24)

being K, B, and BT the block matrices of F representing the linearized advection-diffusion-
reaction, the divergence, and the gradient operators, respectively. We notice that the
coupling matrix IΓ f features the following structure:

IΓ f =
(
IΓ

uf

... 0
)
,

where IΓ
uf is the restriction of the fluid velocity to the interface Γ . The linear system

(3.23) is equivalent to:⎧⎪⎪⎨⎪⎪⎩
Kδun+1

f,k + BT δpn+1
f,k + IT

Γ
uf δλn+1

k = rn+1
u,k , (3.25a)

Bδun+1
f,k = rn+1

p,k , (3.25b)
IΓ

uf δun+1
f,k = rn+1

λ,k . (3.25c)
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By splitting δun+1
f,k into its internal component δun+1

f,k,i and its interface component δun+1
f,k,Γ ,

the first step consists in eliminating the variables δun+1
f,k,Γ using Eq. (3.25c).

The second step proceeds by replacing the newly computed variables δun+1
f,k,Γ into (3.25a)

and (3.25b). This leads to a new system from which the variable δλn+1
k can be formally

eliminated, yielding:

δλn+1
k = IΓ

uf IT
Γ

uf δλn+1
k = IΓ

uf

(
rn+1

uf ,k − Kδun+1
f,k − BT δpn+1

f,k

)
. (3.26)

The remaining equations consist then in the system(
Kii BT

i

Bi 0

)(
δun+1

f,k,i

δpn+1
f,k

)
=
(

rn+1
u,k,i − KiΓ δun+1

f,k,Γ

rn+1
p,k − BΓ δun+1

f,k,Γ

)
, (3.27)

where Kii and BT
i are the matrices representing the linearized advection-diffusion-reaction

and gradient terms, respectively, restricted to the internal degrees of freedom δun+1
f,k,i. Eq.

(3.27) features the classical saddle-point form of a system associated to the linearized
Navier-Stokes equations.

At this point we replace the matrix in (3.27) by its approximation based on SIMPLE
preconditioner

F ∼= F̃ =
(

Kii 0
Bi −S̃

)(
I D−1BT

i

0 I

)
, (3.28)

where D is the diagonal of Kii, and S̃ = BiD
−1BT

i the approximated Schur complement
of (3.27). In the application of FaCSI, the inverses of S, G, Kii and S̃ are approximated
by efficient preconditioners denoted by HS , HG , HKii and H

S̃
, respectively, based, e.g.,

on domain decomposition or the multigrid method. This concludes the construction of
the preconditioner FaCSI for JF SI , which takes then the following final form:

PF aCSI = P ap
S · P ap

G · P ap
F , (3.29)

where:

P ap
S =

⎛⎜⎜⎜⎜⎝
HS 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎟⎠ , P ap
G =

⎛⎜⎜⎜⎜⎝
I 0 0 0

−IΓ s HG 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎟⎠ (3.30)

65



Chapter 3. Parallel preconditioners for fluid-structure interaction problems

and

P ap
F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

0 D

⎛⎜⎝I 0 0
0 IΓ 0
0 0 I

⎞⎟⎠
⎛⎜⎝0

0
0

⎞⎟⎠
− γ

βΔt IΓ s 0
(
0 0 0

)
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

0 0

⎛⎜⎝I 0 0
0 0 0
0 0 I

⎞⎟⎠
⎛⎜⎝ 0

IΓ

0

⎞⎟⎠
0 0

(
0 IΓ 0

)
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

0 0

⎛⎜⎝HKii KiΓ 0
0 IΓ 0
Bi BΓ −H

S̃

⎞⎟⎠
⎛⎜⎝ 0

IΓ

0

⎞⎟⎠
0 0

(
0 0 0

)
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

0 0

⎛⎜⎝I 0 D−1BT
i

0 IΓ 0
0 0 I

⎞⎟⎠
⎛⎜⎝ 0

IΓ

0

⎞⎟⎠
0 0

(
0 0 0

)
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

0 0

⎛⎜⎝I 0 0
0 IΓ 0
0 0 I

⎞⎟⎠
⎛⎜⎝0

0
0

⎞⎟⎠
0 0

(
KΓ i KΓ Γ BT

Γ

)
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.31)

For the sake of clarity, we point out that, for a given residual r = (rds , rdf
, ruf

, rpf
, rλ)T ,

the application of our preconditioner amounts to solve PF aCSIw = r, therefore involving
the following steps:

1. Application of (P ap
S )−1: wds = H−1

S rds .

2. Application of (P ap
G )−1: wdf

= H−1
G (rdf

+ IΓ swds).

3. Application of (P ap
F )−1: compute zF = rF − Dwdf

and zλ = rλ + γ
βΔt IΓ swds .

Then, after denoting by wu and wp, zu and zp the velocity and pressure components
of wF and zF , respectively, thanks to (3.25c) we set zu,Γ = zλ. The application of
the SIMPLE preconditioner involves the following steps:

a) yu,i = H−1
Kii

(zu,i − KiΓ zu,Γ ),
b) wp = H−1

S̃
(Biyu,i − zp + BΓ zu,Γ ),

c) wu = (wu,i, wu,Γ )T = (yu,i − D−1BT
i wp, zu,Γ )T .

Finally, we compute wλ = IΓ
uf (zu − Kwu − BT wp).

In [Grandperrin, 2013] a similar factorization as in Eq. (3.20) was used, and a SIMPLE
preconditioner was exploited to directly approximate the factor P

(3)
F . However, no static

66



3.6. Preconditioning strategy

condensation was used to eliminate the interface fluid variables, yielding therefore to a
different preconditioner. In Section 3.7.2 we show that static condensation substantially
increases the performance with respect to the version proposed in [Grandperrin, 2013].

Note that in the following case our preconditioner may be singular and FaCSI not
applicable: at both the inflow and outflow sections ∂Ωf ∩ ∂Ω, either the fluid velocity
or the flow rates are prescribed; moreover at the lateral structure boundary ∂Ωs ∩ ∂Ω

a Neumann condition is enforced. Even though the whole FSI problem is well posed,
the matrix F , and therefore PF , is singular. In such a situation, a possible turnaround
consists in replacing the Dirichlet condition for the velocity on the interface with an
equivalent Robin condition, as done e.g. in [Crosetto, 2011]. This alternative, however,
is not analyzed in this thesis.

3.6.2 Comparison with other condensed formulations

In [Gee et al., 2010] the authors consider a condensed formulation of the coupled FSI
problem for which the unknowns are d̂s,i, d̂f,i, uF,i, uF,Γ being d̂s,i and d̂f,i the structure
and fluid mesh displacement associated to the internal degrees of freedom, respectively,
and uF,· = (uf,·, pf,·)T . In particular, the vector of Lagrange multipliers is condensed
into the structural displacement unknowns at the interface. In our case λ is condensed
into the fluid velocity.

The block Gauss-Seidel preconditioner of [Gee et al., 2010] (see Eq. (43) in [Gee et al.,
2010]) reads:

M =

⎛⎜⎜⎜⎜⎜⎝
Sii 0

(
0 0

)
0 Gii

(
0 0

)(
SΓ i

0

) (
DΓ i

Dii

) (
δSΓ Γ + FΓ Γ + δDΓ Γ FΓ i

FiΓ + δDiΓ Fii

)
⎞⎟⎟⎟⎟⎟⎠ (3.32)

In (3.32) each matrix block (i.e. S, G, F and D) is split into its internal (index i) and
interface (index Γ ) components; δ is a factor which converts displacement into velocity.

By comparing (3.19) with (3.32) we observe that the two block preconditioners are
different. More specifically, the nature of the subproblems change: in (3.32) the structure
bears a Dirichlet problem, the ALE is still of Dirichlet type and decoupled from the
structure, while the fluid is a Neumann problem. In FaCSI, the structure bears a
Neumann problem, the ALE is of Dirichlet type and it is coupled with the structure
while the fluid is of Dirichlet type. Furthermore, we notice that due to the condensed
formulation adopted in [Gee et al., 2010], we observe that the fluid diagonal block in
(3.32) slightly differs from ours at the interface.

The aforemetioned differences may be summarized by stating that the block Gauss-Seidel
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preconditioner devised in [Gee et al., 2010] is of Neumann-Dirichlet type while FaCSI is
of Dirichlet-Neumann type. In [Deparis et al., 2015c] a comparison of the performance of
Dirichlet-Neumann, Neumann-Dirichlet and Neumann-Neumann preconditioners for the
Steklov-Poincaré formulation of the FSI problem was carried out. There, it was shown
that the Dirichlet-Neumann preconditioner was the most efficient in terms of requested
both CPU time and linear solver iterations.

Finally, we report the equivalent form of the Gauss-Seidel preconditioner PF SI (see Eq.
(3.19)) for the condensed formulation of the FSI problem:

MDN =

⎛⎜⎜⎜⎜⎝
Sii δSiΓ 0 0
SΓ i δSΓ Γ 0 0
0 δGiΓ Gii 0
0 FiΓ + δDiΓ Dii Fii

⎞⎟⎟⎟⎟⎠ . (3.33)

With respect to (3.32), in (3.33) we reordered the unknowns of the FSI problem. Indeed,
in (3.33) the unknowns are d̂s,i, uF,Γ , d̂f,i and uF,i. MDN is a preconditioner of Dirichlet-
Neumann type since the structure bears a Neumann problem, the ALE is of Dirichlet
type and it is coupled with the structure, while the fluid is of Dirichlet type.

3.7 Numerical results

We test our FSI preconditioner on two different test cases: the first is an FSI example
in which we study the fluid flow in a straight flexible tube, the second consists in the
simulation of the hemodynamics in a femoropopliteal bypass. We measure the weak and
strong scalability of the proposed preconditioner, namely the wall time and iterations
count.

The FSI problem is discretized by a Fully Implicit (FI) second order scheme in time
and space. The resulting nonlinear system is solved by the exact Newton method using
tolerance ε = 10−6 in (3.18). We solve the linearized problem at each Newton iteration
by the right preconditioned GMRES method [Saad and Schultz, 1986] which is never
restarted. The stopping criterion of the linear solver is set to 10−6 and it is based on the
residual scaled by the right hand side. We remark that since in our case the matrices
associated to the harmonic extension and the structure are constant throughout the
simulation, their preconditioners HS and HG are computed once and stored. Conversely,
we recompute the preconditioner associated to the fluid problem, namely HKii and H

S̃
, at

each Newton iteration. At each time step tn+1, the initial guess for the Newton method
is given by the solution of the FSI problem at time tn. In practice, better choices can be
made, e.g., by taking as initial guess an extrapolation of the solutions at the previous
time steps.

We have implemented our parallel algorithm in LifeV, an open-source C++ finite element
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library which makes intensive use of Trilinos [Heroux et al., 2005]. Our linear iterative
solver (GMRES) is based on the Belos package [Bavier et al., 2012]. In this work we
consider preconditioners HS , HG , HKii and H

S̃
based on either the one level Algebraic

Additive Schwarz (AAS) method implemented in Ifpack [Sala and Heroux, 2005] or on
Algebraic Multigrid (AMG) via ML [Gee et al., 2006]. Whenever mesh coarsening is
required, aggregates are computed using METIS/ParMETIS [Karypis et al., 1998, Karypis
et al., 2003]. All the computations reported in this work have been made on Piz Dora at
CSCS, a Cray XC40 machine whose main technical specifications are reported in Table
1.4.

3.7.1 FSI in a straight flexible tube

Our first numerical example is a benchmark problem proposed in [Nobile., 2001] and
numerically solved, e.g., in [Crosetto et al., 2011, Deparis et al., 2006a, Gee et al.,
2010, Wu and Cai, 2014]. The geometry of the fluid consists in a straight cylinder
of length L = 5 cm and radius R = 0.5 cm, surrounded by a structure with uniform
thickness t = 0.1 cm. A constant normal stress σ · n = 1.33 × 104 dyne/cm2 is applied
at the fluid inflow for t ≤ 0.003 s, while a homogeneous Neumann boundary condition
is used at the fluid outflow. The structure is clamped at both the ends. The fluid is
characterized by a density ρf = 1.0 g/cm3 and a dynamic viscosity μf = 0.03 g/(cm s)
while the structure by a density ρs = 1.2 g/cm3, Poisson’s ratio νs = 0.3 and Young’s
modulus Es = 3 × 106 dyne/cm2. The time step used in our simulations is Δt = 10−4 s.

Mesh convergence study

To validate the solver implemented, in Figure 3.2 we show a post-processing of the
numerical solution obtained by simulating 100 time steps: the results reported well
compare with those in [Deparis et al., 2006a, Fernández and Moubachir, 2003, Gee et al.,
2010, Wu and Cai, 2014].
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Chapter 3. Parallel preconditioners for fluid-structure interaction problems

(a) t = 2 ms. (b) t = 4 ms. (c) t = 6 ms. (d) t = 8 ms.

Figure 3.2: Top row: pressure wave propagation throughout the deformed fluid do-
main; bottom row: structural displacement. Deformation magnified by a factor 10 for
visualization purpose.

Furthermore, a mesh convergence study is carried out using both “P1” and “P2” spatial
discretizations, see Table 3.1. We remark that in the “P1” case, the fluid problem is
stabilized using a VMS-SUPG stabilization, see Section 1.3. To this end, we consider five
meshes of increasing refinement for the fluid and structure domains. In Table 3.2 we report
the information of the meshes considered while in Table 3.3 and 3.4 their corresponding
number of degrees of freedom obtaied using the “P1” and the “P2” discretizations. In
Figure 3.3, 3.4 and 3.5 we show the mesh convergence results in terms of pressure, radial
displacement and radial velocity, respectively, at the fluid-structure interface along the
line between points P1 = (0.5,0.0,0.0) and P1 = (0.5,0.0,5.0).

Discretization Fluid velocity Fluid pressure Structure displacement ALE

“P1” P1 P1 P1 P1

“P2” P2 P1 P2 P2

Table 3.1: Discretizations used for the mesh convergence study.

Fluid Structure
# Vertices # Tetrahedra # Vertices # Tetrahedra

Mesh # 1 2’337 11’040 2’460 9’600

Mesh # 2 13’603 72’000 8’052 31’680

Mesh # 3 64’943 362’400 23’028 91’200

Mesh # 4 183’300 1’045’800 60’912 272’160

Mesh # 5 285’912 1’641’180 84’816 379’440

Table 3.2: Details of the meshes used for the mesh convergence study.
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Fluid DoF Structure DoF Coupling DoF Geometry DoF Total
Mesh # 1 9’348 7’380 2’340 7’011 26’079

Mesh # 2 54’412 24’156 7’788 40’809 127’165

Mesh # 3 259’772 69’084 22’572 194’829 546’257

Mesh # 4 733’200 182’736 45’036 549’900 1’510’872

Mesh # 5 1’143’648 254’448 62’868 857’736 2’318’700

Table 3.3: Mesh convergence study: number of Degrees of Freedom (DoF) obtained using
the “P1” discretization.
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Figure 3.3: Mesh convergence of the pressure at the fluid-structure interface. Left and
right columns refer to the “P1” and “P2” discretizations, respectively.
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Figure 3.4: Mesh convergence of the radial displacement at the fluid-structure interface.
Left and right columns refer to the “P1” and “P2” discretizations, respectively.
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Figure 3.5: Mesh convergence of the radial velocity at the fluid-structure interface. Left
and right columns refer to the “P1” and “P2” discretizations, respectively.74
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Fluid DoF Structure DoF Coupling DoF Geometry DoF Total
Mesh # 1 52’152 48’600 9’480 49’815 160’047

Mesh # 2 320’338 159’720 31’416 306’735 818’209

Mesh # 3 1’568’222 458’280 90’744 1’503’279 3’620’525

Mesh # 4 4’473’327 1’274’616 180’792 4’290’027 10’218’762

Mesh # 5 6’997’815 1’775’928 238’962 6’711’903 15’724’608

Table 3.4: Mesh convergence study: number of Degrees of Freedom (DoF) obtained using
the “P2” discretization.

Parallel performance of FaCSI

We are interested in studying the weak and strong scalability performance of FaCSI when
different choices for HS , HG , HKii and H

S̃
are considered. In Table 3.5 we report the

different configurations adopted to customize FaCSI for the analysis. As reported in

Configuration Preconditioner Approximation

set A

HS 1 level AAS
HG 1 level AAS

HKii 1 level AAS
H

S̃
1 level AAS

set B

HS 3 level AMG, ω=0.79
HG 3 level AMG, ω=1.0

HKii 3 level AMG, ω=0.69
H

S̃
3 level AMG, ω=1.0

set C

HS 1 level AAS
HG 1 level AAS

HKii 3 level AMG, ω=0.69
H

S̃
3 level AMG, ω=1.0

Table 3.5: Different configurations of FaCSI considered for this analysis.

Table 3.5, three different configurations are studied: in the first (set A) we consider the
one level AAS preconditioner with an algebraic overlap δ = 2 (i.e., roughly two times the
mesh size h) for HS , HG , HKii and H

S̃
. In set B, the 3 level AMG method is used: we

consider a symmetric Gauss-Seidel smoother (ω is the damping parameter) for levels 1
and 2 while at the coarsest level, i.e. level 3, the problem is solved exactly. Set C is a
combination of set A and set B: we make use of the AAS method for HS , HG , while the
3 level AMG method is used for HKii and H

S̃
. In both Set B and Set C, for HKii we

used the parameters setting NSSA (Nonsymmetic Smoothed Aggregation) of ML, while
for H

S̃
we used SA (classical Smoothed Aggregation). In Set B, for both HS , HG we

used the DD (Domain Decomposition) parameter settings of ML.
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We remark that the exact local subdomain solves for AAS as well as the exact coarse
solve of the AMG preconditioner are carried out by LU factorization using the library
MUMPS [Amestoy et al., 2001, Amestoy et al., 2006].

In Table 3.6 and 3.7 we report the information concerning the meshes used in our
simulations and the correponding number of degrees of freedom.

Fluid Structure
# Vertices # Tetrahedra # Vertices # Tetrahedra

Mesh # 1 210’090 1’202’040 65’424 292’320

Mesh # 2 559’471 3’228’960 191’080 913’920

Mesh # 3 841’341 4’880’640 300’456 1’497’600

Table 3.6: Details of the meshes used for the straight cylinder example.

Fluid DoF Structure DoF Coupling DoF Geometry DoF Total
Mesh # 1 5’134’050 1’369’030 195’576 4’923’960 11’622’616

Mesh # 2 13’728’971 4’119’980 456’114 13’169’500 31’474’595

Mesh # 3 20’696’341 6’599’740 598’104 19’855’000 47’749’185

Table 3.7: Straight flexible tube test case: number of Degrees of Freedom (DoF).

The strong and weak scalability performance of FaCSI are tested by solving the straight
flexible tube example using three sets of fluid-structure meshes (that are conforming
at the interface) of increasing refinement and three different configurations of FaCSI.
In Figure 3.6 and 3.7 we report the weak and strong scalability results, respectively
(consisting in average values over the first 10 time steps simulated).

In the weak scalability study, the problem size (workload) assigned to each core is kept
constant. In our investigation we address the cases of 30’000, 40’000 and 50’000 degrees
of freedom per core. In terms of GMRES iterations (first row of Figure 3.6), we notice
that FaCSI configured with set C performs better with respect to configurations of set A
and set B. In fact, set C yields an iteration count which mildly depends on both the mesh
size (along each curve the number of iterations vary from roughly 22 to 34 iterations)
and the number of degrees of freedom per core since the three curves almost overlap.
Configuration of set A leads to a number of linear iterations which on the one hand
mildly depends on the core workload but on the other is rather sensitive to the mesh
size (along each curve the iterations vary from roughly 30 to 60 iterations). We observe
that FaCSI configured with set B yields iteration counts that are affected by both the
mesh size and the number of degrees of freedom per core. We focus now on the weak
scalability of the time to compute a single time step (second row of Figure 3.6). FaCSI
configured with set A leads to computational times that are weakly scalable for all the
core workloads taken into account. Nevertheless, comparing the results obtained by set
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Figure 3.6: Weak scalability results obtained using three different configurations of FaCSI
(see Table 3.5).

A with those generated with set B and C, we notice that set A is the most computational
expensive. In particular, we highlight that the time to compute a time step using set C
with 50’000 Dofs per core (which is roughly 70 s) is smaller than the one with workload
30’000 Dofs per core using set A (that is roughly 80 s). FaCSI configured with set B is
not weakly scalable as the timings obtained vary significantly (in particular when 30’000
Dofs per core are used). Using set C, we notice that the time to compute a single time
step is weakly scalable for a core workload of 50’000 Dofs while for 30’000 and 40’000 it
increases with the cores count as the time spent by communication is larger than the
actual one associated to the relatively small amount of computational work required on
each individual core.

In Figure 3.7 we show the strong scalability results obtained. In the first row of Figure
3.7 we report the number of GMRES iterations, in the second row the time to build the
preconditioner of the fluid problem, in the third row the time to solve the linear system
while in the fourth row the time to compute a single time step. We remark that in the
second row of Figure 3.7 we report the time to build only the preconditioner for the fluid
problem: in fact, since the harmonic extension and the structure matrices are constant
throughout the simulation, their preconditioners are built only once and stored at the
beginning.

In terms of linear solver iterations we notice that FaCSI configured with set C performs
better than both set A and set B (in line with what we observed in the study of the weak
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scalability). Indeed, for all the 3 meshes considered, we notice that the use of set C leads
to a number of linear solver iterations that is the lowest and which is less affected by the
number of cores utilized.

Regarding the time to build the fluid preconditioner, although set A leads to strongly
scalable results ( the red curve behaves almost as the black one of the ideal scaling), we
notice that up to 2’048 cores set B and set C allows for a remarkably faster computation
w.r.t. set A. For instance, when a small number of cores is used, the construction of
the fluid preconditioner by the algebraic multigrid method (set B and set C) is roughly
ten times lower then the one of the overlapping algebraic additive Schwarz (set A).
Nevertheless, although AMG leads to a very fast construction of the preconditioner, we
notice that in our numerical experiments its construction scales up to 512 cores (on Mesh
# 3). We remark that the curves in the second row of Figure 3.7 associated to set B and
set C are overlapping since their settings for the fluid problem are the same (see Table
3.5). In terms of time to solve the linear system, we notice that with the configurations
of set A FaCSI scales up to 2’048 cores, with set B until 512 cores whereas using set C
linear scaling is obtained up to 1’024 cores. It is noteworthy that until 1’024 cores the
solution of the linear system carried out by FaCSI customized by set C is the fastest
(in particular almost two times faster than set A). The last row of Figure 3.7 shows the
strong scalability of the time to compute a single time step. Strong scalability of FaCSI
customized with set A, set B and set C is observed up to 4’096, 1’024 and 2’048 cores,
respectively. Also in this case we notice that until FaCSI configured with set C scales
linearly, it is the fastest. For instance, until 2’048 cores on Mesh # 3, we remark that
the computational times associated to set A are roughly the same of those obtained by
set C using, for the latter, half of the cores.

Based on the analysis presented so far we conclude that FaCSI customized with set C
(i.e. using the one level AAS method for both HS and HG , and the 3 level AMG method
for HKii and H

S̃
) is the most computationally efficient and robust with respect to the

mesh size among all the configurations taken into account in our analysis.

Comparison of FaCSI with other preconditioners

We compare the performance of FaCSI (hereafter configured using set C) with some state
of the art preconditioners for FSI. In particular, we compare with the two preconditioners
based on algebraic multigrid techniques proposed in [Gee et al., 2010] and the one level
overlapping additive Schwarz preconditioner proposed in [Wu and Cai, 2014]. In both [Wu
and Cai, 2014, Gee et al., 2010] the numerical example of the pressure wave propagation
throughout a flexible tube is addressed. To carry out the comparison with [Gee et al.,
2010] (in which hexahedral elements were used, whereas we use tetrahedra) we solve the
FSI problem using both first order and second order space discretizations (denoted as
“P1” and “P2” in Table 3.8). The comparison with [Wu and Cai, 2014] is carried out
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Figure 3.7: Strong scalability results obtained on meshes of increasing refinement (see
Table 3.6). Black lines denote ideal scaling.

using the “P1” discretization (same settings of [Wu and Cai, 2014]). We remark that in
the “P1” case, the fluid problem is stabilized using the same stabilization of [Wu and
Cai, 2014].
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Chapter 3. Parallel preconditioners for fluid-structure interaction problems

For both the “P1” and “P2” discretizations the fluid-structure meshes have been generated
such that the numbers of degrees of freedom of the fluid, structure and geometry fields
are similar to those reported in [Gee et al., 2010] (see Table III discretization pw3 ).
Discretization “P1” in Table 3.8 has almost the same number of degrees of freedom of
the finer one used in [Wu and Cai, 2014] (that is 3.08 × 106). The comparisons of the
results obtained by FaCSI with those reported in [Gee et al., 2010] and [Wu and Cai,
2014] are shown in Table 3.9 and in Figure 3.8, respectively: we notice that FaCSI well
compares with both the preconditioners taken into account for the analysis.

Discretization Fluid DoF Structure DoF Coupling DoF Geometry DoF Total
“P1” 1’539’226 456’120 75’180 1’154’420 3’224’946
“P2” 1’568’223 458’280 90’744 1’503’280 3’620’527

Table 3.8: Degrees of freedom of the discretized FSI problem for the comparisons with
[Gee et al., 2010, Wu and Cai, 2014].

# unknowns CPUs # GMRES
BGS(AMG), pw3 3’063’312 16 41.77
AMG(BGS), pw3 3’063’312 16 30.29
FaCSI, “P1” 3’224’946 16 23.24
FaCSI, “P2” 3’620’527 16 17.09

Table 3.9: Comparison of FaCSI with the preconditioners proposed in [Gee et al., 2010].
Note that # GMRES is the average number of GMRES iterations per Newton step (that
is 3 both for us and [Gee et al., 2010]).
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Figure 3.8: Comparison of FaCSI (using the “P1” discretization, see Table 3.8) with the
overlapping additive Schwarz preconditioner proposed in [Wu and Cai, 2014] (red curve
taken from right-most plot in Figure 4 of [Wu and Cai, 2014]).

3.7.2 FSI in a patient-specific femoropopliteal bypass

We consider a hemodynamic simulation in a femoropopliteal bypass. This problem has
already been investigated in [Marchandise et al., 2012]. The geometric model of the
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(a) Fluid domain.
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(b) Structure domain.

Figure 3.9: Femoropopliteal bypass test case: labels of the boundaries.

femoropopliteal bypass was obtained through a 3T MRI scanner while the computational
unstructured meshes used in our simulations were generated using VMTK and Gmsh
[Faggiano and Antiga, 2015]. We consider the blood characterized by a density ρf = 1
g/cm3 and by a dynamic viscosity μf = 0.035 g/(cm s). The physical parameters of
the vessel wall are set as follows: the Young’s modulus is Es = 4 × 106 dyne/cm2, the
Poisson’s ratio is νs = 0.45, and the density is ρs = 1.2 g/cm3. The boundaries of the
computational domain are labeled as illustrated in Figure 3.9. We impose patient-specific
measured flow rate on Γ f

in while homogeneous Dirichlet conditions are applied at the
occluded branch Γ f

occl. At the outflow section of the domain Γ f
out we apply a mean

pressure taken from [Colciago, 2014, Section 3.2.3], in which the same bypass geometry
and inflow flow rate profile were considered. The structure is clamped at the inlets and
the outlet rings Γ s

in, Γ s
occl and Γ s

out where we impose d̂s = 0. Homogenous Neumann
boundary conditions are imposed at the outer surface of the vessel Γ s

ext. The time step
used is Δt = 0.001 s.

(a) Front and back view, Mesh
#1.

(b) Top view: Mesh # 1 (first row) and Mesh # 2 (second row).

Figure 3.10: Meshes generated for the femoropopliteal bypass test case.

In our numerical simulations, we study the robustness of the proposed preconditioner
with respect to the mesh size for a varying number of cores utilized. To analyze the
robustness of the preconditioner proposed with respect to the mesh size, we consider
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Chapter 3. Parallel preconditioners for fluid-structure interaction problems

two set of fluid-structure meshes that are conforming at the interface, whose number of
vertices and elements are summarized in Table 3.10. Figure 3.10 shows the computational
meshes generated for the femoropopliteal bypass. In Table 3.11 we report the information
concerning the number of degrees of freedom associated to the meshes used.

Fluid Structure
# Vertices # Tetrahedra # Vertices # Tetrahedra

Mesh # 1 354’178 2’153’476 113’380 508’374

Mesh # 2 2’768’791 17’247’246 451’900 2’029’878

Table 3.10: Details of the coarse and fine meshes used for the femoropopliteal bypass
example.

The strong scalability results of FaCSI (configured with set C of Table 3.5) are reported in
Figure 3.11. In Figure 3.12 we show a post-processing of the numerical solution computed
using Mesh # 2 at three time instances during the third heart beat simulated.

Fluid DoF Structure DoF Coupling DoF Geometry DoF Total
Mesh # 1 9’029’128 2’376’720 338’295 8’674’950 20’419’093

Mesh # 2 71’480’725 9’481’350 1’352’020 68’711’934 151’026’029

Table 3.11: Femoropopliteal bypass test case: number of degrees of freedom.
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Figure 3.11: Strong scalability results for the femoropopliteal bypass example.
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Figure 3.12: Post-processing of the results at time t = 1.8 s (left), 1.9 s (middle) and
2.0 s (right). Time t = 1.8 s coincides with the systolic peak of the third heart beat
simulated. In the top row we show the streamlines of the fluid flow, in the middle row
the magnitude of the structural displacement while in the bottom row the Wall Shear
Stress.
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As shown in Figure 3.11, we observe the robustness of FaCSI with respect to both the
mesh size and the number of cores utilized. Indeed, on the smaller mesh (Mesh # 1) the
number of linear solver iterations ranges from roughly 30 (with 128 cores) to 40 iterations
(with 2’048 cores). On the larger mesh (Mesh # 2) the GMRES iterations increase from
roughly 40 (using 512 cores) to 70 (with 16’384 cores). On the smaller mesh the strong
scalability of the time to compute a single time step is close to the ideal scaling up to 512
cores while on the larger mesh is close to the be linear until 4’096 cores. We observe that
on both Mesh # 1 and Mesh # 2, FaCSI scales almost linearly until the local number of
degrees of freedom per core is roughly 40’000. For instance, on Mesh # 1 using 512 cores
and on Mesh # 2 using 4’096 cores the single core workload is approximately 40’000.
When the number of degrees of freedom per core is lower than 40’000 the communication
occurring for the construction of the preconditioner and the solution of the linear system
(as shown in Figure 3.11) dominates the relatively small amount of computational work
performed by each single core. This behavior is in line with the weak scalability results
reported in Figure 3.6, where we observed that FaCSI (configured by set C) was weakly
scalable up to 40’000 degrees of freedom per core.

We recall that in [Grandperrin, 2013] a similar factorization as in Eq. (3.20) was used,
and a SIMPLE preconditioner was exploited to directly approximate the factor P

(3)
F .

However, no static condensation was used to eliminate the interface fluid variables,
yielding therefore to a different preconditioner (that in [Grandperrin, 2013] is called
FSI-SIMPLE).

For the sake of illustration, in Figure 3.13 we show the number of linear solver iterations
reported in [Grandperrin, 2013] to solve the femoropopliteal bypass example, with the
same fluid and solid geometries and the same boundary conditions adopted here. The
results of Figure 3.13 refer to a discretization of the FSI problem using 8’142’612 degrees
of freedom, hence coarser than Mesh # 1 used in our Table 3.11. Moreover, we notice
that the results of Figure 3.13 were obtained using subiterations for the application of
the preconditioner FSI-SIMPLE. Subiterations allow to impose more accurately the
preconditioner and in general ensure that the number of iterations remains almost constant
as the number of cores utilized increases. We remark that the FaCSI preconditioner does
not require subiterations.

By comparing the results of Figure 3.13 with the number of linear solver iterations
associated to Mesh # 1 reported in Figure 3.11, we notice that the performance of
FaCSI is much better than that of FSI-SIMPLE [Grandperrin, 2013] (without static
condensation). In particular, it is noteworthy that the number of linear solver iterations
of FaCSI (which ranges from roughly 30 to 40 on Mesh # 1) is remarkably smaller that
those of FSI-SIMPLE (roughly 220) when 20 or 40 subiterations are used for the latter.
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Figure 3.13: Femoropopliteal bypass example: number of linear solver iterations reported
in [Grandperrin, 2013], Figure 5.18(c). The FSI problem is discretized using 8’142’612
degrees of freedom.
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4 Benchmark problem for FSI in
hemodynamics with complex
nonlinear material models

In this Chapter, we consider a benchmark problem for blood flowing through a vessel wall
representing an idealized coronary artery which includes fluid-structure interaction. This
benchmark was proposed in [Balzani et al., 2015]. It has been designed to provide a useful
testbed for fluid-structure interaction simulations in biomechanics featuring nonlinear
structural models. Although being set on a simple geometry it still captures all numerical
difficulties arising in realistic simulations and it is fully reproducible. We provide measures
that may be useful for comparisons with future simulations and experiments or for code
validation.

The geometry consists of a curved pipe that mimicks a tract of an artery. Physiologically-
based inflow and outflow boundary conditions suited for blood flow in coronaries are
considered. The simulation consists in a first initialization phase, followed by the
simulation of several heartbeats. The initialization phase is carried out in order to raise
the fluid pressure and the flowrate up to physiological reference values. It is crucial
because the resulting prestretch in the structure strongly influences the fluid-structure
interaction during the second phase. After describing the geometry, the boundary
conditions and the physical parameters used for the fluid and the structure, we discuss
both space discretizations, mesh convergence, sensitivity of the results w.r.t. the boundary
conditions and thw material models used.

The content of this Chapter represents a revisitation of the results published in [Balzani
et al., 2015].
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4.1 Benchmark setup

The geometry of our benchmark problem shown in Figure 4.1 consists of a pipe in which
a first curved part is followed by a straight one.

Inner radius of the structure 0.15cm
Outer radius of the structure 0.21cm

R, radius of curved part 1.0cm
L, length of straight part 1.0cm

Inflow

OutflowR

L

Figure 4.1: Geometry of the benchmark problem.

The wall thickness is chosen accordingly to realistic coronary arteries. We remark that
the structural domain represents only the layer corresponding to the media of the artery.
This choice represents a simplification w.r.t. the actual histology of human arteries:
indeed, healthy arteries consist of mainly three layers, the intima, the media, and the
adventitia, cf. [Holzapfel et al., 2000, Formaggia et al., 2009]. However, since we are
interested in the set up of an easily reproducible benchmark problem, here focus on the
mechanically most relevant layer, i.e. the media.

We model the mechanical response of the media using an anisotropic hyperelastic
(see Chapter 2) and an anisotropic viscoelastic (see [Balzani et al., 2015], Section 2)
material law. The material parameters used for the hyperelastic material model are
taken from [Brands et al., 2008, Balzani et al., 2012, (ΨA Set 2)], see Table 4.1. These
parameters are fitted to the material response of the media of a human abdominal
aorta. As for the viscoelastic material model, we use two different sets of parameters,
see Table 4.2. In Table 4.2 we denote by τ1 the relaxation time while by β1 the viscoelastic
intensity [Balzani et al., 2015]. We remark that in Table 4.2, the parameters of Set 2
induce a short relaxation time in the structure such that the viscoelastic effects are more
evident.

c1 [kPa] ε1 [kPa] ε2 α1 [kPa] α2
17.5 499.8 2.4 30 001.9 5.1

Table 4.1: Parameters used for the hyperelastic material model.

Set c1 [kPa] ε1 [kPa] ε2 α1 [kPa] α2 τ1 β1
1 17.5 499.8 2.4 30 001.9 5.1 2.0 1.0
2 17.5 499.8 2.4 30 001.9 5.1 0.3 1.8

Table 4.2: Parameters used for the viscoelastic material model: long relaxation time (Set
1), and short relaxation time (Set 2).

Eight different meshes of increasing refinement are generated to carry out a mesh
convergence study of the numerical results obtained, see Table 4.4. In our analysis we
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consider three different spatial discretizations of the FSI problem, that we shortly name
P1, P2 and F̄ , see Table 4.3. In the F̄ discretization (see Remark 4.1, for the structure
we use a a three-field (mixed) formulation which aims at avoiding locking effects in the
finite element solution due to the almost incompressibility (see [Simo, 1998]).

Discretization Fluid velocity Fluid pressure Structure displacement ALE

P1 P1 P1 P1 P1

P2 P2 P1 P2 P2

F̄ P2 P1 F̄ P2

Table 4.3: Discretizations used for the mesh convergence study.

When using the P1 discretization, the mesh convergence study will be carried out using
meshes from #1 up to #7; for P2 and F̄ discretizations, we make use only of meshes from
#0 up to #4. In Tables 4.5 and 4.6 we report the number of degrees of freedom associated
to the discretizations used. Note that, if we are only interested in fluid quantities, P1
elements for the structure can suffice if a comparatively high number of degrees of freedom
is considered. Conversely, P2 or even better F̄ elements for the structure are necessary
for an accurate analysis of the structural stress distributions at a lower number of degrees
of freedom.

Mesh # Tetrahedra mesh fluid # Tetrahedra mesh structure
#0 2’404 12’348
#1 6’549 21’636
#2 8’187 45’360
#3 12’670 98’742
#4 19’978 183’420
#5 40’011 274’500
#6 78’318 517’464
#7 179’513 1’036’800

Table 4.4: Details of the computational meshes used in our analysis.

Mesh Fluid DoF Structure DoF Coupling DoF Geometry DoF Total
#1 7’240 14’664 3’546 5’430 30’880
#2 9’076 27’648 4’464 6’807 47995
#3 14’060 57’096 6’969 10’545 88’670
#4 20’460 101’937 9’075 15’345 146’817
#5 37’036 152’295 13’605 27’777 230’713
#6 68’544 282’165 21’417 51’408 423’534
#7 150’900 564’252 42’996 113’175 871’323

Table 4.5: Degrees of freedom associated to the P1 discretization.
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Mesh Fluid DoF Structure DoF Coupling DoF Geometry DoF Total
#0 15348 58’296 8’136 14’505 96’285
#1 36178 101’808 14’304 34’368 186’658
#2 45340 201’168 18’000 43’071 307’579
#3 70163 425’700 28’044 66’648 590’555
#4 105570 774’396 36’492 100’455 1’016’913

Table 4.6: Degrees of freedom associated to the P2 and F̄ discretizations. The internal
degrees of freedom in the F̄ approach are statically condensated and are thus not
considered (see Remark 4.1).

In the initialization phase we raise the fluid pressure and flowrate up to physiological
reference values: this is crucial because the resulting prestretch in the structure will
strongly influence the fluid-structure interaction during the subsequent simulation of the
heartbeats.

In Sections 4.2 and 4.3 we describe the boundary conditions used and we discuss the
numerical results obtained by solving part 1 and part 2, repectively, of the benchmark
problem proposed.

The F̄ element

As shown in Table 4.3, different spatial approximations for the structure subproblem are
considered. Besides the use of P1 and P2 finite elements, we will also make use the F̄
element type. The F̄ element stems from a three-field (mixed) formulation adopted for
the structure problem; it was introduced to avoid locking effects in the finite element
solution due to the almost incompressibility. Let J = J(ϕ) = det(F), then we have

F = J1/3F̃, F̃ = J−1/3F.

We introduce a new scalar variable θ, satisfying θ = J in a weak sense, and we define

F̄ := θ1/3F̃, C̄ := F̄T F̄

with F̄ = F̄(ϕ, θ), C̄ = C̄(ϕ, θ). We consider the following three-field Lagrangian

Ł(ϕ, θ, π) =
∫

Ω
W (C̄(ϕ, θ)) + π(J(ϕ) − θ)dx − Vext(ϕ),

where Vext(ϕ) is the potential energy of external forces; for more details, see [Simo, 1998,
Section 45]. Hereafter, we understand by F̄ element a P2-P0-P0 mixed finite element
discretization, i.e., piecewise quadratic elements for the deformation field ϕ and piecewise
constant elements for the scalar fields θ and π. In our formulation we perform static
condensation of the degrees of freedom θ and π on each finite element.
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4.2 Part 1: the initialization phase

4.2.1 Boundary conditions

At the inlet and outlet sections of the structure we apply homogeneous Dirichlet boundary
conditions to the components of the structural displacement that are perpendicular to
the respective faces. Specifically, we set d̂z = 0 and d̂x = 0 at the inlet and outlet sections
of the structure, respectively. Additionally, to statically determine the artery, we impose
zero displacement in y-direction for all degrees of freedom at the inlet and outlet of the
structure located at y = 0, i.e. those on the red lines of Figure 4.2.

Figure 4.2: Dirichlet boundary condition at the inlet and outlet of the structure: y
component of the displacement fixed at the red colored lines.

In the initialization phase, at the fluid inflow and outflow sections we apply an increasing
inflow flow rate and an absorbing boundary condition, respectively. These boundary
conditions allow the physical system to reach a steady condition at the end of the
initialization phase in which the outflow pressure is psteady = 80mmHg and the inflow
flow rate is Qsteady = 3cm3/s [Spiller et al., 1983]. In this way a prestretch of the arterial
wall is generated and serves as a starting configuration for the subsequent simulation of
several heart beats.

At the fluid inflow we prescribe a flow rate Qin(t) using a Dirichlet boundary condition,
i.e., mapping Qin(t) through a parabolic inflow velocity profile. Specifically, at each
dicrete time instance tn+1, the value of Qn+1

in = Qin(tn+1) is imposed at the inflow section
of the fluid domain Γ f

t,in by a Dirichlet boundary condition on the velocity, namely
un+1(x)|

Γ f
t,in

= (0, 0, uz(x)) with

un+1
z (x) = αn+1 ûz ◦ A−1

t (x), (4.1)

where

ûz(x̂) =
R2

in − ‖x̂ − x̂c‖2

R2
in

. (4.2)

ûz is a parabolic profile defined on Γ̂ f
in, which is the inflow section of the fluid domain at

time t0 = 0 s. Rin and x̂c are the radius and the barycenter of Γ̂ f
in, respectively, while
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αn+1 reads

αn+1 =
Qn+1

in
Q̂n+1

in
, being Q̂n+1

in =
∫

Γ f
t,in

ûz ◦ A−1
t (x) · nf dγ. (4.3)

Indeed, this choice ensures that∫
Γ f

t,in

un+1 · n = Qn+1
in . (4.4)

We raise the inflow flowrate Qin from 0cm3/s up to the physiological value of 3cm3/s by
means of a ramp function. There are many possible choices for the ramp function; here
we consider both linear and cosine-type ramps. When using a linear ramp, the flow rate
at the fluid inflow is raised according to:

Qin(t) =

⎧⎨⎩ Qsteady
t

Tramp
for t0 ≤ t ≤ Tramp,

Qsteady for Tramp ≤ t ≤ Tsteady,
(4.5)

where Tramp denotes the time until the inflow flow rate reaches Qsteady and Tsteady is
the time at which the physical system reaches the steady state. Similarly, the use of a
cosine-type ramp reads:

Qin(t) =

⎧⎪⎨⎪⎩
1
2

Qsteady

(
1 − cos

(
π

t

Tramp

))
for t0 ≤ t ≤ Tramp,

Qsteady for Tramp ≤ t ≤ Tsteady.

(4.6)

As we will see in Section 4.2.2, the time Tsteady strongly depends on the choice of both
Tramp and the type of ramp function used. In Figure 4.3 we report an example of linear
and cosine-type ramps used for our analysis. In the initialization phase, to prescribe
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Figure 4.3: Linear (left) and cosine (right) type ramp with Tramp = 0.1 s.

a desired physiological outflow fluid pressure at steady state, we consider a modified
version of the absorbing boundary condition proposed in [Nobile and Vergara, 2008]. We
recall that the absorbing boundary condition internally builds on a lower dimensional
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linear elastic material model. In our nonlinear setting, in general, we can not expect this
absorbing boundary condition to completely remove wave reflections. At time tn+1, the
following absorbing boundary condition is used:

σn+1
f · nf |Γout = pn+1

foutnf |Γout (4.7)

where

pn+1
out =

⎛⎝√
ρF

2
√

2
Qn

out
A

+

√
tE

1 − ν2
π

A0

√
A0

⎞⎠2

− tE

1 − ν2
π

A0

√
A0 + pref . (4.8)

In (4.8), E, ν and t are Young’s modulus, Poisson’s ratio and the thickness of the
structure, respectively, pref is a reference fluid pressure, Qn

out is the outflow flow rate at
the discrete time tn, while A0 is the area of the outflow section of the fluid domain in its
reference configuration. In our setting, A is computed from (4.8) by imposing the steady
state conditions, i.e., pn+1

out = psteady = 80mmHg when Qn
out = Qsteady = 3cm3/s.

We remark that the values of Young’s modulus E and Poisson’s ratio ν are adjusted
to the response of the nonlinear anisotropic hyperelastic material model described in
Section 2.4.2. Here, only the material behavior in circumferential direction is considered
for the adjustment of the linear elastic absorbing boundary condition, resulting in a
Young’s modulus of 120kPa and a Poisson’s ratio of 0.49.

For the sake of visualization, in Figure 4.4 we show the prestreching obtained for the
structure domain at the end of the intialization phase.

Inflow

Outflow

Inflow

Outflow

Figure 4.4: Geometry at a pressure of 0mmHg (left) and 80mmHg (right); displacement
amplified by a factor of 3.0.

4.2.2 Sensitivity of the results to the choice of the ramp function

Linear ramp

In this Section we show the results obtained using the linear ramp (4.5) using the P1
discretization. We measure the flow rate, the average pressure, and the cross sectional
area at the inflow and the outflow of the fluid domain, see Figure 4.1. The results of our
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simulations are presented in Figure 4.5.
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Figure 4.5: P1 mesh convergence study for the hyperelastic material using the linear
ramp with TR = 0.1s. Flow rate (left), average pressure (middle), lumen cross sectional
area (right), over time at the inlet (top) and outlet (bottom).

As expected, the pressure at the inflow, see Figure 4.5 (top, middle), is slightly higher
than the outflow pressure, cf. Figure 4.6. Furthermore, in Figure 4.6, we also notice that
after Tramp, small oscillations are still present and both their frequency and amplitude
seem to be independent of the mesh size.

Regarding the outflow flow rate and pressure, see Figure 4.5 (bottom), small perturbations
at the beginning of the ramp phase can be observed for the Meshes #2, #3, and #4.
At the first glance, they could be attributed to the steep slope of the linear ramp, and
thus the first time steps are very hard to solve. As we will discuss in Section 4.2.2, they
are in fact due to the use of the P1 discretization. Within the simulation time of 0.3s,
which corresponds to 3’000 time steps, the oscillations occuring after Tramp decrease but
do not vanish. Since we want to start the heartbeat from a steady state configuration,
the use of a linear ramp requires the simulation to be continued until the oscillations
decrease further.

Cosine-type ramp

We focus now on the results obtained by using the cosine ramp (4.6). We remark that this
ramp is a C1-function which satisfies Q̇ramp(t0) = 0, meaning that the transition between
the increasing and the flat part of the ramps is smooth and therefore the difficulty of
solving the first time steps is expected to decrease.
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Figure 4.6: Inflow minus outflow pressure for the hyperelastic material using the linear
ramp with Tramp = 0.1 s.

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 P
re

ss
ur

e 
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 P
re

ss
ur

e 
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 P
re

ss
ur

e 
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Figure 4.7: Outflow pressure for the hyperelastic material using the cosine-type ramp
with Tramp = 0.1 s for P1 (left), P2 (middle) and F̄ discretizations.

Let us first discuss the perturbations in the outflow quantities (e.g., see bottom-left plot
of Figure 4.5). We consider Meshes #1 to #7 for the P1 discretization, and Mesh #0 to
Mesh #4 for both P2 and F̄ , see Table 4.4 and Table 4.6. In Figure 4.7, the corresponding
outflow pressure is shown and we can see that the perturbations remain also for this
smoother ramp. However, for P2 (middle) and F̄ (right) discretizations, the perturbations
at the beginning of the ramp vanish.

Mesh Linear ramp P1 Cosine ramp P1 Cosine ramp P2 Cosine ramp F̄

#0 - - 2.7 · 10−5 2.7 · 10−5

#1 1.1 · 10−4 3.6 · 10−6 2.8 · 10−5 2.8 · 10−5

#2 1.2 · 10−4 8.6 · 10−6 2.7 · 10−5 2.7 · 10−5

#3 1.3 · 10−4 1.1 · 10−5 2.7 · 10−5 2.7 · 10−5

#4 1.3 · 10−4 1.3 · 10−5 2.7 · 10−5 2.7 · 10−5

#5 1.4 · 10−4 1.6 · 10−5 - -
#6 1.2 · 10−4 1.9 · 10−5 - -
#7 1.2 · 10−4 2.0 · 10−5 - -

Table 4.7: Amplitude of the oscillations of the outflow cross sectional area at t = 0.2 s.

Another reason for using the cosine ramp is to try to reduce the oscillations occuring
after Tramp, hence in the constant part of the ramp function. In Figure 4.8, the outflow
cross sectional area for the P1, P2, and F̄ discretizations is reported for the different
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Figure 4.8: Mesh convergence study of the outflow cross sectional area for the hyperelastic
material using the cosine-type ramp with Tramp = 0.1 s for P1 (left), P2 (middle) and
F̄ discretizations. In this diagram, the graphs for Mesh #3 and Mesh #4 completely
overlap for P2 and F̄ discretizations.

meshes and discretizations considered. Comparing these results to those of Figure 4.5, on
the visible scale we appreciate a substantial reduction of the amplitude of the oscillations.
More precisely, the amplitude is reduced by one order of magnitude, see Table 4.7, using
the cosine ramp instead of the linear one.

In order to investigate grid convergence, we foucus on the numerical results shown in
Figure 4.8. As in Figure 4.5, grid convergence can not yet be observed for P1 elements
(left). On the other hand, the results for P2 (middle) and F̄ (right) discretizations do
suggest mesh convergence. From the results presented here, from now on, we will use a
cosine ramp because it yields to imperceptible oscillations in the output of interest after
Tramp. In the next Section we investigate whether we can further decrease Tramp.

4.2.3 Sensitivity to the steepness of the ramp

In this Section we focus on the use of the cosine ramp and we consider three different
values of Tramp, namely Tramp ∈ {0.05 s, 0.1 s, 0.2 s}. We investigate how the choice of
Tramp affects the behavior of the outflow cross sectional area in time. In this regard,
we restrict ourselves to the use of Mesh #1 for the P2 discretization. Furthermore, in
addition to the hyperelastic material model, here we also consider a viscoelastic one
(see [Balzani et al., 2015]). For the parameter Set 1 of Table 4.2, which has been used for
the simulation, the overstresses are small and the relaxation time is long. Specifically,
the relaxation time of the viscoelastic material model used here is longer than 2 s, and
thus the system cannot reach the steady state before 2 s. Thus, viscoelastic effects are
difficult to observe.

In Figure 4.9, oscillations are visible only for the steepest ramp considered, i.e. with
Tramp = 0.05 s. For both the longer ramps, namely for Tramp = 0.1 s and Tramp = 0.2 s,
the oscillations are not visible at the scale presented, and thus are considered as acceptable.
The qualitative behavior of the hyperelastic and the viscoelastic material is similar,
however, we can observe that the cross sectional area is lower for the viscoelastic material
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and slowly increases due to creep behavior. We will not focus on the differences between
the material models now, but refer to Section 4.2.5, for a discussion on the influence of
viscoelasticity in the fluid-structure interaction simulations with regard to the chosen
space discretization.

Based on the conclusions reached so far we will use a cosine ramp of lenght Tramp = 0.1
s. After another 0.2 s of constant inflow flow rate we consider the system to be at steady
state, i.e., Tsteady = 0.3 s, and ready for the subsequent simulation of the heart beats.
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Figure 4.9: Outflow cross sectional area using the P2 discretization on Mesh #1. Hyper-
elastic (left), and viscoelastic (right) material models using, for the latter, parameter Set
1 of Table 4.2.

4.2.4 Sensitivity to parameters of the absorbing boundary conditions

In this Section we further investigate on the oscillations observed in the numerical results
reported so far after Tramp: in particular, we are interested in assessing whether the
reason could be the absorbing boundary condition that we prescribe at the fluid outflow
to remove wave reflections. We recall that the absorbing boundary condition is based
on the assumpion that a one dimensional linear elastic model is appended at the outlet
boundary section. Since here we use highly nonlinear material models, it is not clear if
the absorbing boundary condition will be able to completely remove wave reflections
at the outlet, especially if the corresponding linear elastic material parameters are not
chosen appropriately.

We investigate the influence of Young’s modulus E in the absorbing boundary condition.
In order to minimize the computational effort, for these simulations we used the P1
discretization on Mesh #1.

As can be seen in Figure 4.10, neither the inflow pressure (left) nor the outflow cross
sectional area (right) are influenced strongly by the varying Young’s modulus. These
measured quantities showed the strongest oscillations in the previous sections, which are
however relatively small due to the particular choice of the ramp. This suggests that the
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Figure 4.10: Sensitivity analysis for the absorbing boundary conditions performed using
the P1 discretization on Mesh #1: inflow average pressure (left), and outflow lumen
cross sectional area (right). All curves overlap completely. Global view (top), and zoom
(bottom).

remaining oscillations in the constant part of the ramp are not caused by the absorbing
boundary condition used.

4.2.5 Influence of viscoelasticity

As already mentioned in Section 4.2.2, our results suggest to favor P2 and F̄ with respect
to P1. In this Section, we compare the different space discretizations in detail with the
focus being on the influence of viscoelasticity on the numerical results. As a result of
our analysis we will find that the P1 discretization does not only show disadvantageous
approximation properties with respect to P2 and F̄ , but it also yields a qualitatively
incorrect behavior.

In Figure 4.11 we compare the results obtained by simulating the initialization phase of
the benchmark problem using the viscoelastic and the hyperelastic material models. To
better highlight the viscoelasticity effects we use parameter Set 2 from Table 4.2, which
has a much shorter relaxation time compared to the one of Table 4.2. In Figure 4.11, the
expected behavior can be observed: when we impose the same pressure (left) as for the
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Figure 4.11: Comparison of the hyperelastic and the viscoelastic material models using
the P2 discretization, the cosine ramp and parameter Set 2 (for the viscoelastic material)
from Table 4.2 on Mesh #1. Outflow average pressure (left), outflow lumen cross sectional
area (right).

hyperelastic material model, the displacement is lower in the beginning and converges
to the displacement of the hyperelastic material model over time and this is due by the
creep behavior introduced in fiber direction.

Differently than P2 discretization, the use of P1 leads to a qualitatively wrong behavior,
as can be observed in Figure 4.12: for a constant pressure (left), the displacement
(right) decreases using the P1 discretization, while the use of F̄ yields the same (correct
) results as P2. Moreover, we notice that the P2 discretization yields the expected
asymptotic behavior of the viscoelastic material model; conversely, using P1, such
expected asymptotic behavior is not observed.
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Figure 4.12: On the left we show the outflow pressure obtained using the viscoelastic
material model on Mesh #1 for different space discretizations. On the right, comparison
of the hyperelastic and the viscoelastic material model using P1 and P2 discretizations.
We use parameter Set 2 from Table 4.2 for the viscoelastic material.

It is noteworthy that P1 discretization leads to a much smaller displacement than P2
or F̄ elements for the same mesh. This can be seen for the hyperelastic and also the
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viscoelastic material model, see Figure 4.12 (right). We understand this behavior as the
property of P1 discretization which tends to feature locking effects and to be mechanically
stiffer compared to P2 and F̄ .

These observations, in combination with the discussion addressed in Section 4.2.2 about
the perturbations which arise in the beginning of the ramp phase for the P1 discretization,
are convincing arguments that P1 discretization is not sufficient to describe accurately
the structural behavior. However, it may be sufficient to use P1 elements for the structure
if one consider hyperelastic material models and provided that a very fine mesh is used.

4.2.6 Further investigations on the oscillations

In this Section we investigate whether the oscillations which occur after Tramp may be
due to the geometry considered: in particular, if they are due to the length of the straight
part of the pipe. Therefore, here we consider a modified geometry which features a longer
straight part, namely we consider L = 4 cm, see Figure 4.13. The details of the mesh
generated are reported in Tables 4.8 and 4.9. For the numerical simulation we use a
cosine ramp with TR = 0.05 s.

Figure 4.13: Geometry of the problem with a longer straight part, L = 4 cm.

#Elements #Elements #DoF #DoF #DoF
fluid mesh structure mesh P1 P2 F̄

2’404 12’348 64’999 391’693 391’693

Table 4.8: Number of elements of the meshes generated for the new geometry and total
number of degrees of freedomm for the P1, P2 and F̄ discretizations.

Discretization Fluid DoF Structure DoF Coupling DoF Geometry DoF Total
P1 14’188 32’232 7’938 10’641 64’999
P2 69’292 224’784 31’872 65’745 391’693
F̄ 69’292 224’784 31’872 65’745 391’693

Table 4.9: Number of degrees of freedom associated to the P1, P2 and F̄ discretizations.

In Figure 4.14, the outflow flow rate (left), inflow average pressure (middle), and outflow
lumen cross sectional area (right) are shown for the P1 and P2 discretizations, comparing
the geometry described in Figure 4.1 with the new one with a longer straight part. As
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Figure 4.14: Comparison of the numerical results obtained with P1 and P2 discretizations
using the new geometry (denoted in the legend as “long tube”) and the one shown in
Figure 4.1.

expected, the outflow flow rate of the long tube has a delay compared to the standard
geometry, because it takes longer for the fluid wave to reach the outflow of the tube. The
oscillations arising in the inflow pressure and the outflow cross sectional lumen area show
a much larger amplitude and also a frequency which is roughly smaller by a factor of
1/4. Thus, the oscillations may depend on the length of the geometry. In Figure 4.15 we
finally report the structure displacement at different time instances of the simulation
using the new geometry.

t = 0 s t = 0.17 s

t = 0.31 s t = 0.41 s

Figure 4.15: Structure displacement of the new geometry.
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Based on the analyses carried out so far, we may conclude that the best setting to be
adopted for the numerical simulation of the intialization phase consists in using:

• cosine ramp with Tramp = 0.1 s and Tsteady = 0.3 s for the inflow flow rate;

• P2 and F̄ space discretizations;

• L = 1 cm as lenght for the straight part of the geometry.

Once the initiliazation phase is completed, in Section 4.3 we focus on the set up and
numerical simulation of several heart beats.

4.3 Part 2: simulation of several heart beats

In this Section we present the settings and discuss the results of part 2 of the benchmark
problem proposed: it consists in the numerical simulation of several heart beats. In
the former initialization phase, the artery has been prestretched up to a physiological
pressure of 80 mmHg and the flow rate has been raised up to a physiological value of
3 cm3/s by using a cosine ramp of steepness Tramp = 0.1 s. As already mentioned in the
previous sections, after Tramp we continue the simulation of part 1 of the benchmark
until the system reaches a steady state at time Tsteady. After the system has reached the
steady state, we perform the simulation of several heart beats.

4.3.1 Boundary conditions

During the heart beats phase, at the fluid inflow we prescribe the flow rate profile over
time Qin(t) shown in Figure 4.16. A typical pressure profile in coronaries is provided
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Figure 4.16: Inflow flow rate for the heart beat phase.

by [hem, 2014]. However, imposing a pressure or, better, a normal stress at inflow, can
lead to instabilities (see [Nobile., 2001], Section 3.2), which we indeed observed using
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4.3. Part 2: simulation of several heart beats

fine meshes. These instabilities did not occur when using Mesh #1. Therefore, from a
full heartbeat simulation performed using Mesh #1, the resulting inflow flow rate over
time was then approximated by means of a Fourier series of order 20, and thus a periodic
function Qin was obtained.

We remark that, in this way, the inflow flow rate results in a pressure (which mainly
influences the stress distribution through the arterial wall) which follows a typical profile
for a coronary. The reason why the pressure and flow rate profiles used in our simulations
are not significantly different is due to the fact that, in our model, we do not take into
account the forces exerted by the heart muscle on the coronary vessels. Nevertheless, the
flow rate reported in Figure 4.16 is in rough accordance to the one of a right coronary
artery, for which the systolic heart compression through the right ventricular myocardium
has much smaller effect on the flow, compared to the influence which the left ventricular
myocardium has on the left coronary [Mohrman and Heller, 2013, Chandramouli, 2010].

The function Qh describes the inflow flow rate over time during each heartbeat, see Fig-
ure 4.16. Analogously to the inflow flow rate profile used in the initialization phase, here
Qin(t) is prescribed as a Dirichlet boundary condition at the inflow section of the fluid
domain.

At the fluid outflow, during the heart beats phase, we use a standard absorbing boundary
condition [Nobile and Vergara, 2008]. For the structure, we use the same boundary
conditions adopted for the initialization phase.

4.3.2 Numerical results

During the simulation of the heart beats, we use a time step Δt = 10−3 s that is
larger with respect to the one used for the initialization phase. In Figure 4.17, the
average inflow pressure (left) and outflow cross sectional lumen area (right) for P2 and
F̄ discretizations are presented. Similarly to what we observed during the initialization
phase, also during all three heartbeats we notice a very similar behavior for both the
discretizations considered.

In Figure 4.18 and 4.19, the deformation and flow rate profile over time is depicted. The
largest structural deformations are observed at the inner part of the curvature towards
the inlet section. Here, we notice that the structure undergoes large deformations mostly
because it is close to the inflow section of the fluid domain.

Mesh convergence study

In analogy to studies carried out in Section 4.2.2, here we address a mesh convergence
study for the heart beats phase of the benchmark problem. In Figure 4.20, mesh
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Figure 4.17: Simulation of 3 heart beats using Mesh #1 and the hyperelastic material
model: inflow pressure (left), and outflow cross sectional lumen area (right).
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Figure 4.18: Evolution of the structure displacement at times 0.0s (top left), 0.05 s (top
middle), 0.1 s (top right), 0.3 s (bottom left), 0.635 s (bottom middle), and 1.0 s (bottom
right). Simulation performed using Mesh #3 and the F̄ discretization. Displacement is
magnified by a factor 2.0.

convergence plots for P1 (left), P2 (middle), and F̄ (right) elements are shown. We
considered Meshes #1 to #7 for P1 and Mesh #0 to #4 for P2 and F̄ discretizations,
respectively. When using the P1 discretization, we notice that the outflow area does
not feature mesh convergence; conversely, for both P2 and F̄ discretizations this is the
case. In terms of inflow pressure (top row of Figure 4.20), for all the discretizations
considered, there are only mild differences in the results obtained using the different
discretizations. However, we notice that the pressure of the coarsest mesh obtained using
the P1 discretization is significantly higher than the maximal pressure of the coarsest P2
or F̄ mesh. We conclude that for P1 elements, we are still far away from asymptotics,
while for P2 and F̄ elements, we have indication of mesh convergence: indeed, the graphs
for Mesh #3 and Mesh #4 completely overlap for all quantities.
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Figure 4.19: Evolution of the fluid velocity at different cross sections of the fluid domain.
Simulation performed using Mesh #7 and the P1 discretization.

Analysis of Stresses

In this section, the transmural stress distribution inside the arterial wall is investigated.
Therefore, a simulation including a cosine ramp with Tramp = 0.1 s followed by a
heartbeat starting at time t = 0.3 s is considered. For the structural response our
polyconvex, anisotropic hyperelastic material model is used. To analyze the quality of
the approximated stress quantities, all different discretizations, i.e. P1, P2 and F̄ , are
considered and compared one to each other. This comparative analysis is carried out
using Mesh #7 for the P1 discretization, whereas for the P2 and F̄ simulations Mesh #3
is considered: indeed, following the findings reported in Section 4.3.2 these meshes are
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Figure 4.20: Mesh convergence of the inflow pressure (top) and outflow cross sectional
lumen area (bottom) during the heartbeat phase: P1 (left), P2 (middle) and F̄ (right)
discretizations.

Figure 4.21: Fluid velocity and first principal Cauchy stress at t = 0.3s (left) and at
t = 0.635s (right).

considered to yield sufficiently accurate solutions in the sense of mesh convergence. The
stress quantities are evaluated at two different times during the simulation, i.e., t = 0.3
s and t = 0.635 s. These correlate with the steady state right before the beginning of
the heart beat representing a diastolic blood pressure of 80mmHg, and with the peak
value of the inflow flow rate for the heartbeat phase, where a systolic blood pressure of
approximately 120mmHg is reached. An illustration of the evaluation points and the
associated fluid velocity and transmural distribution of the first principal Cauchy stresses,
at different slices of the geometry, is shown in Figure 4.21.
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Figure 4.22: Comparison of the first principal Cauchy stress for P1, P2 and F̄ discretiza-
tions at the inner surface and over the wall thickness: P1 at t = 0.3 s (top left), P1 at
t = 0.635 s (top right), P2 at t = 0.3 s (middle left), P2 at t = 0.635 s (middle right), F̄
at t = 0.3 s (bottom left), F̄ at t = 0.635 s (bottom right).
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Figure 4.23: The principal Cauchy shear stress using the F̄ discretization at t = 0.3 s
(left) and t = 0.635 s (right).

In Figure 4.21 the results obtained from a simulation with the P2 discretization are
shown. Even though the given geometry in the reference configuration is rotationally
symmetric with respect to the axis orthogonal to the respective cross section, the
evaluation of circumferential, axial and radial stresses in the current configuration may
not be straightforward due to the deformation induced by the blood flow. However,
the first, second, and third principal normal stresses coincide almost perfectly with the
normal stresses in circumferential, axial and radial direction, respectively. Figure 4.22
shows the first principal Cauchy stresses, where the geometry has been clipped in the x-z
plane such that the inner surface as well as the stress distribution over the wall thickness,
at three representative cross-sections denoted by (a), (b) and (c), is displayed. The P1
discretization shows clearly higher stress values, which strongly oscillate on the inner
surface of the tube. This observation highlights the stiffness of P1 finite elements and
their sensitivity with respect to locking effects.

On the other hand the F̄ and P2 discretizations show a smoother stress distribution.
This significant difference in the stresses and also the heavy checker-boarding of P1
emphasizes to not use linear elements but at least quadratic ones. The non-symmetric
flow profiles visible in Figure 4.19 are however hardly reflected by the principal stress
distributions. This is most probably due to a pressure-dominated response reflected by
these stresses. Figure 4.23 presents the maximal shear stresses in the fluid-solid interface
plane, which are obtained by rotating the local principle stress directions by 45◦ around
the radial axis. As can be seen, these shear stresses are higher at the inner curve and
represent therefore a non-rotationally symmetric stress distribution. These observations
correspond well with common hypotheses stating that the plaque evolves where low flow
rates and high shear stresses are found in domains close to the endothelial cells, which is
mostly at the inner curves of vessel walls.
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5 A new interpolation-based
method for the numerical so-
lution of PDEs on subdomains
featuring nonconforming inter-
faces

In Chapters 3 and 4 we have focused on efficient discretizations and parallel algorithms
for the numerical solution of fluid-structure interaction problems assuming conforming
fluid-structure discretizations at their interface. Here, we extend the algorithms presented
so far to the nonconforming case: the nonconformity may be due to different meshes
and/or different polynomial degrees used from the two sides of the interface, or even
to a geometrical mismatch. Indeed, in fluid-structure interaction problems the different
resolution requirements in the fluid and structure physical domains, as well as the presence
of complex interface geometries make the use of matching fluid and structure meshes
problematic. In such situations, it might be natural to deal with discretizations that are
nonconforming at the interface, provided however that the matching conditions at the
interface are properly fulfilled.

Part 2 of this thesis focuses on the case in which the fluid and structure domains are
discretized arbitrarily and may not necessarily agree on the interface. To deal with
nonconforming fluid-structure discretizations we use a new method called INTERNODES
(INTERpolation for NOnconforming DEcompositionS) that was recently introduced
in [Deparis et al., 2015a]. INTERNODES is a general strategy that allows for the
approximation of partial differential equations on domains decomposed into two (or
several) subdomains featuring nonconforming interfaces.

In this Chapter we entirely report the submitted paper [Deparis et al., 2015a].
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Chapter 5. A new interpolation-based method for the numerical solution
of PDEs on subdomains featuring nonconforming interfaces

5.1 Preliminaries

In this Chapter we are interested in the approximation of partial differential equations
on domains decomposed into two (or several) subdomains featuring “nonconforming
interfaces”. By this we mean that either a priori independent grids and/or local polynomial
degrees are used to discretize each subdomain. More in particular, we refer to these
two cases as “grid nonconformity” and “polynomial nonconformity”, respectively. A
third possible case of nonconforming interfaces that our approach can cover is that of
subdomains that face each other through two interfaces that geometrically do not fully
agree one another, meaning that the two subdomains may either slightly overlap and/or
featuring tiny holes between them (see Figure 5.2). We name this latter situation of
geometrical mismatch as “geometric nonconformity”. It may arise when using CAD to
generate the geometries of the subdomains, e.g. in fluid-structure interaction problems in
hydrodynamics or aerodynamics [Parolini and Quarteroni, 2005, Lombardi et al., 2012],
or else when generating the computational geometries of lumen and vessel walls from
DYCOM images for arterial blood flow dynamics [Formaggia et al., 2009, Reymond et al.,
2013].

To deal with nonconforming discretizations, in this Chapter we describe INTERNODES,
formerly proposed in [Deparis et al., 2015a]. Across each interface, one subdomain
is identified as master and the other as slave. We consider Galerkin methods for the
discretization (such as finite element or spectral element methods) that make use of two
interpolants for transferring information across the interface: one from master to slave
and another one from slave to master. The former is used to ensure continuity of the
primal variable (the problem solution), while the latter the continuity of the dual variable
(the normal flux). In particular, since the dual variable is expressed in weak form, we
first compute a strong representation of the dual variable from the slave side, interpolate
it, transform the interpolated quantity back into weak form and assign it to the master
side. In case of slightly nonmatching geometries, we use a Rescaled Localized-Radial
Basis Function (RL-RBF) interpolation [Deparis et al., 2014a] instead of the Lagrange
interpolant.

The INTERNODES method, being based on interpolation rather than on L2 projection
at interfaces, is in general simpler to implement than the mortar method: it only requires
separate mass matrices and not the cross mass matrix that connects interface basis
functions from both sides. It does not require any ad hoc numerical quadrature, neither
special treatment of cross-points where more than two subdomains meet. These issues
will be further elaborated in Sect. 5.6. INTERNODES with RBF interpolants is also
very well suited to address geometric nonconformity [Deparis et al., 2014a].

This Chapter is organized as follows. After introducing the elliptic boundary value
problem in Section 5.2, we formulate in Section 5.3 its Galerkin discretization based
on either the Finite Element Method (FEM) or the Spectral Element Method (SEM),
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using nonconforming interfaces. In Section 5.4 we build the slave-to-master and master-
to-slave interface intergrid operators (either Lagrangian or RBF based). In Section
5.5 we formulate the INTERNODES method: we first state it in algebraic terms,
then we provide a variational interpretation as a non conforming generalized Galerkin
approximation to the original elliptic boundary-value problem. Section 5.6 is devoted
to an analysis of similarities and differences between INTERNODES and the mortar
method (both theoretical properties and algorithmic aspects). In Section 5.7 we perform
a systematic comparison of the numerical results that are obtained for FEM-FEM,
FEM-SEM and SEM-SEM couplings, when approximating the Dirichlet problem in a
2D domain. The same problem is addressed in Section 5.8 for the case of geometric
nonconformity. A more realistic application is considered in Section 5.9 where we treat a
severe mesh nonconformity for the simulation of the external flow in three dimensions.
In particular, the latter simulation concerns the incompressible Navier-Stokes equations:
the INTERNODES method has been easily extended to this case by simply replacing
normal fluxes with normal Cauchy stresses in the new context.

5.2 Problem setting

Let Ω ⊂ Rd, with d = 2, 3, be an open domain with Lipschitz boundary ∂Ω. ∂ΩN and
∂ΩD are suitable disjoint subsets of ∂Ω such that ∂ΩD ∪ ∂ΩN = ∂Ω . Given f ∈ L2(Ω),
gD ∈ H1/2(∂ΩD), gN ∈ H−1/2(∂ΩN ), μ, α ∈ L∞(Ω) such that ∃μ0 > 0, μ ≥ μ0, α ≥ 0,
and b ∈ W 1,∞(Ω) s.t. α − 1

2∇ · b ≥ 0 we look for the solution u of the second order
elliptic equation

⎧⎪⎪⎨⎪⎪⎩
Lu ≡ −∇ · (μ∇u) + b · ∇u + αu = f in Ω,

u = gD on ∂ΩD,

μ
∂u

∂n
= gN on ∂ΩN ,

(5.1)

being n the outward unit normal vector to ∂Ω.

By setting V = H1
∂ΩD

(Ω) = {v ∈ H1(Ω) : v|∂ΩD
= 0}, the weak form of problem (5.1)

reads: find u ∈ H1(Ω), with u = gD on ∂ΩD, such that

a(u, v) = (f, v)Ω+〈gN , v〉∂ΩN
∀v ∈ V, (5.2)

where

a(u, v) =
∫

Ω
(μ∇u · ∇v + (b · ∇u)v + αuv)dΩ, (5.3)

while (·, ·)Ω and 〈·, ·〉∂ΩN
denote the inner product in L2(Ω) and the duality pairing

between H1/2(∂ΩN ) and H−1/2(∂ΩN ), respectively.
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Th,1Th,1

Th,2Th,2

Γ1 = Γ2 = ΓΓ1 = Γ2 = Γ

Figure 5.1: Conforming (at left) and nonconforming (at right) grids at the interface when
d = 2.

For the sake of exposition we partition Ω into two non-overlapping subdomains Ω1 and
Ω2 such that Ω = Ω1 ∪ Ω2; we call one master (say Ω1) and the other slave (say Ω2),
and we set ∂ΩD,k = ∂ΩD ∩ ∂Ωk and ∂ΩN,k = ∂ΩN ∩ ∂Ωk, for k = 1, 2.

5.3 Discretization

A-priori independent discretizations of either finite element type (FEM) or spectral
element type (SEM) are designed in Ω1 and Ω2 [Quarteroni and Valli, 1994, Canuto
et al., 2007]. SEM will be equivalently named hp−FEM (see [Sherwin and Karniadakis,
1995]).

We denote by Th,k (for k = 1, 2) the meshes induced by the discretization in Ωk and we
assume that they satisfy standard regularity requirements (see [Quarteroni and Valli,
1994]). In both Ωk (k = 1, 2) we introduce the finite elements approximation spaces

Xpk
hk

= {v ∈ C0(Ωk) : v|T ∈ Qpk
, ∀T ∈ Th,k}, (5.4)

where Qpk
= Ppk

in the simplicial case and Qpk
= Qpk

◦ F−1
T for quads, being FT the

C1 diffeomorphism that maps the reference element T̂ into the generic element T ∈ Th,k

([Quarteroni and Valli, 1994]). For any T ∈ Th,k, we assume that ∂T ∩ ∂Ω fully belongs
to either ∂ΩD or ∂ΩN .

For k = 1, 2, we introduce the finite dimensional subspaces Vk,δ of Vk = H1
∂ΩD,k

(Ωk),
where δ stands for discretization, more precisely

Vk,δ = Xpk
hk

∩ Vk, V 0
k,δ = {v ∈ Vk,δ, v|Γ = 0}. (5.5)

On the interface Γ , we allow the meshes Th,1 and Th,2 to induce either conforming
grids (like in Figure 5.1, left) or nonconforming grids (as in Figure 5.1, right). More
precisely, the meshes are conforming if their restrictions to Γ coincide; otherwise they
are nonconforming.
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Γ

Γ1

Γ2

Th,1

Th,2

Figure 5.2: A situation with nonmatching interfaces Γ1 and Γ2 in the case d = 2.

Another situation we would like to address is the one when different polynomial degrees
are used on the two subdomains (called polynomial nonconformity), or again the case in
which FEM on simplicials from one side is coupled with SEM on quads from the other
side, with different polynomial degrees. For example, we reference to Figure 5.1, left,
using FEM in Ω1 and SEM in Ω2.

Finally, in some situations, while discretizing Γ , we could even end up with two non-
matching interfaces, that is Γ1 �= Γ2. We refer to this last situation as nonmatching
interfaces or geometrically nonconforming partitions. A possible instance is when Γ is a
curved line that is discretized by piecewise straight segments, see Figure 5.2. Another
instance may occur when using isogeometric analysis (see, e.g., [Cottrell et al., 2009]).

In order to unify our theory for both the cases of matching and nonmatching interfaces,
from now on we will refer to Γ1 and Γ2 separately, understanding that Γ1 = Γ2 = Γ in
the geometrically conforming case.

Generally speaking, we call nonconforming a situation where one (or several) of the
previous cases (nonconforming grids, polynomial nonconformity, nonmatching interfaces)
arises.

5.4 Intergrid operators

For k = 1, 2, let us introduce the discrete trace functional spaces

Λk,δ = {ϕ = v|Γk
, v ∈ Xpk

hk
}, nk = dim(Λk,δ), (5.6)

Λ0
k,δ = {ϕ ∈ Λk,δ : ϕ|∂Γ = 0} ⊆ Λk,δ, n0

k = dim(Λ0
k,δ), (5.7)

and denote by {λ
(k)
j }nk

j=1 the Lagrange basis of Λk,δ associated with the nodes x(Γk)
i ∈ Γk

(for i = 1, . . . , nk) induced by the mesh Th,k. Notice that Λ0
k,δ = Λk,δ when dist(Γ, ∂ΩD) >

0. As a matter of fact, Λ0
k,δ does not include the Lagrange basis functions of Λk,δ associated

with the nodes of Γk ∩ ∂ΩD.
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For ease of notation, we suppose that the n0
k basis functions of Λ0

k,δ coincide with the
first n0

k basis functions of Λk,δ, thus the functions λ
(k)
i , for i = n0

k + 1, . . . , nk, are those
associated with the nodes of Γk ∩ ∂ΩD.

To define our method we need to introduce intergrid transfer operators, extension
operators, and an interface space.

We introduce two linear operators

Π12 : Λ2,δ → Λ1,δ, Π21 : Λ1,δ → Λ2,δ (5.8)

that realize the intergrid transfer. We consider two different instances:

1. Lagrange interpolation,

2. Radial Basis Function (RBF) interpolation [Buhmann, 2003, Wendland, 1995], in
particular RL-RBF [Deparis et al., 2014a].

For readers’ convenience, we define here the interpolation operators. The Lagrange
interpolation operator Π21 is characterized as follows. Let us consider a function η1,δ ∈
Λ1,δ, then Π21η1,δ can be written w.r.t. the basis {λ

(2)
i } of Λ2,δ as

(Π21η1,δ)(x) =
n2∑
i=1

(Π21η1,δ)(x(Γ2)
i )λ(2)

i (x), ∀x ∈ Γ2. (5.9)

By expanding η1,δ with respect to the basis functions λ
(1)
j of Λ1,δ we have

η1,δ(x) =
n1∑

j=1
η1,δ(x(Γ1)

j )λ(1)
j (x) ∀x ∈ Γ1,

and then, for any x ∈ Γ2,

(Π21η1,δ)(x) =
n2∑
i=1

⎛⎝ n1∑
j=1

η1,δ(x(Γ1)
j )(Π21λ

(1)
j )(x(Γ2)

i )

⎞⎠λ
(2)
i (x).

Finally, denoting by η1 the array in Rn1 whose components are the nodal values η1,δ(x(Γ1)
i ),

for i = 1, . . . , n1, and by

(R21)ij = (Π21λ
(1)
j )(x(Γ2)

i ), i = 1, . . . , n2, j = 1, . . . , n1, (5.10)

the entries of the matrix associated with the operator Π21, we can write

(Π21η1,δ)(x(Γ2)
i ) = (R21η1)i, i = 1, . . . , n2.
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5.4. Intergrid operators

By proceeding in a similar way for Π12, we denote the entries of the matrix associated
with the operator Π12 by

(R12)ij = (Π12λ
(2)
j )(x(Γ1)

i ), i = 1, . . . , n1, j = 1, . . . , n2, (5.11)

so that

(Π12η2,δ)(x(Γ1)
i ) = (R12η2,δ)i, i = 1, . . . , n1.

The RL-RBF interpolation operators are defined as in [Deparis et al., 2014a] and they
read

(Π21η1,δ)(x) =
∑n1

i=1 γ
η1,δ

i φ(‖x − x(Γ1)
i ‖, ri)∑n1

i=1 γ1
i φ(‖x − x(Γ1)

i ‖, ri)
, (5.12)

(Π12η2,δ)(x) =
∑n2

i=1 γ
η2,δ

i φ(‖x − x(Γ2)
i ‖, ri)∑n2

i=1 γ1
i φ(‖x − x(Γ2)

i ‖, ri)
, (5.13)

where

φ(z, r) =
(

1 − z

r

)4

+

(
1 − 4

z

r

)
(5.14)

is the locally supported Wendland C2 radial basis function [Wendland, 1995], ri ∈ R is
the local support of the basis function, and γf

i are the weights of the interpolant of the
function f (f ≡ 1 denotes the constant function f(x) = 1) and they are determined by
imposing the interpolation constraints at either the nodes x(Γ2)

i (i = 1, . . . , n2) for Π21,
or at x(Γ1)

i (i = 1, . . . , n1) for Π12.

Then, for k = 1, 2 we define two linear and continuous extension operators

Ek : Λk,δ → Xpk
hk

, s.t. (Ekλ(k))|Γk
= λ(k), (5.15)

that extend any λ(k) ∈ Λk,δ by setting to zero the values of Ekλ(k) at all nodes of Th,k

not belonging to Γk. In particular, for any Lagrange basis function λ
(k)
j of Λk,δ, Ekλ

(k)
j

is the Lagrange basis function of Xpk
hk

(associated with the nodes of the mesh Th,k)
whose restriction on Γk coincides with λ

(k)
j . It follows that Ekλ

(k)
j ∈ Vk,δ (i.e., it satisfies

homogeneous Dirichlet boundary conditions) only if λ
(k)
j ∈ Λ0

k,δ, or equivalently, when
j = 1, . . . , n0

k.
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The interface space is a space of functions defined in the whole Ω as follows

VΓ1 = {ϕ ∈ L2(Ω) : ∃λ1 ∈ Λ0
1,δ : ϕ|Ω1 = E1λ1, ϕ|Ω2 = E2(Π21λ1)}. (5.16)

Note that its definition depends on the choice of the master Ω1 and slave Ω2 domain. We
denote a basis of VΓ1 as {λe

j}n0
1

j=1, where “e” stands for “extension”. There is a one-to-one
map between λ

(1)
j (the jth basis function of Λ0

1,δ) and λe
j (i.e., λe

j |Γ1 = λ
(1)
j ), and λe

j

satisfies λe
j |Ω1 = E1λ

(1)
j and λe

j |Ω2 = E2(Π21λ
(1)
j ).

Then, we define the subspaces of V

Ṽk,δ = {v ∈ V : v|Ωk
∈ V 0

k,δ and v|Ω\Ωk
= 0}, N0

k = dim(Ṽk,δ) (5.17)

and we indicate their Lagrange basis as {Φ
(k)
i } for i = 1, . . . , N0

k and for k = 1, 2.

Thus we set

Vδ = Ṽ1,δ ⊕ Ṽ2,δ ⊕ VΓ1 . (5.18)

Notice that Vδ �⊂ V in general.

5.5 Formulation of the nonconforming problem

We define the bilinear forms ak : H1(Ωk) × H1(Ωk) → R :

a1(u, v) =
∫

Ω1
(μ∇u · ∇v + (b · ∇u)v + αuv)dΩ ,

a2(u, v) =
∫

Ω2
(μ∇u · ∇v + (b · ∇u)v + αuv)dΩ −

∫
∂ΩD,2

μ
∂u

∂n
v d∂Ω ;

(5.19)

The presence of the boundary integral in a2 will be justified later, see Remark 5.5.2. If
we assume that gD ∈ C0(∂ΩD), its liftings RkgD ∈ Xpk

hk
are

R1gD(x) =
ND

1∑
i=1

g(x(1)
i,D)Φ(1)

i,D(x) +
n1∑

i=n0
1+1

g(x(Γ1)
i )E1λ

(1)
i (x), ∀x ∈ Ω1 ,

R2gD(x) =
ND

2∑
i=1

g(x(2)
i,D)Φ(2)

i,D(x) +
n1∑

i=n0
1+1

g(x(Γ1)
i )E2(Π21λ

(1)
i (x)), ∀x ∈ Ω2 ,

(5.20)
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where Φ
(k)
i,D ∈ Xpk

hk
(for i = 1, . . . , ND

k ) denote the Lagrange basis functions associated
with the nodes x(k)

i,D ∈ Th,k ∩ (∂ΩD,k \ Γk), while λ
(1)
1 for i = n0

1 + 1, . . . , n1 are the
Lagrange basis functions associated with the nodes in Th,1 ∩ (Γ1 ∩ ∂ΩD,1). Finally we
define the linear functionals as follows

Fk(v) = (f, v)Ωk
+ 〈gN , v〉∂ΩN,k

− ak(RkgD, v), ∀v ∈ H1(Ωk) . (5.21)

Then, we set the matrices

(Akk)ij = ak(Φ(k)
j , Φ

(k)
i ), i, j = 1, . . . , N0

k ,

(Ak,Γk
)ij = ak(Ekλ

(k)
j , Φ

(k)
i ), i = 1, . . . , N0

k , j = 1, . . . , nk,

A0
k,Γk

= [Ak,Γk
]i=1,...,N0

k
, j=1,...,n0

k

(AΓk,k)ij = ak(Φ(k)
j , Ekλ

(k)
i ), i = 1, . . . , nk, j = 1, . . . , N0

k ,

A0
Γk,k = [AΓk,k]i=1,...,n0

k
, j=1,...,N0

k

(AΓk,Γk
)ij = ak(Ekλ

(k)
j , Ekλ

(k)
i ), i, j = 1, . . . , nk,

A0
Γk,Γk

= [AΓk,Γk
]i,j=1,...,n0

k

(5.22)

and the vectors

f0
k = Fk(Φ(k)

i ), i = 1, . . . , N0
k ,

fΓk
= Fk(Ekλ

(k)
i ), i = 1, . . . , nk,

f0
Γk

= [fΓk
]i=1,...,n0

k
.

(5.23)

In the special case of fully conforming discretizations (that is both grid and polynomial
conformity, with Γ1 = Γ2 = Γ and n1 = n2), by defining

RδgD =
{

R1gD in Ω1
R2gD in Ω2,

(5.24)

We recall that the classical Galerkin approximation is defined as follows: find uδ ∈ H1(Ω),
such that (uδ − RδgD) ∈ Vδ ⊂ V , solution of the conforming Galerkin problem

a(uδ, vδ) = (f, vδ)Ω+〈gN , vδ〉∂ΩN
∀ vδ ∈ Vδ. (5.25)

The well-known algebraic domain decomposition form of (5.25) reads ([Quarteroni and
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Valli, 1999])

⎛⎜⎝ A1,1 0 A0
1,Γ1

0 A2,2 A0
2,Γ2

A0
Γ1,1 A0

Γ2,2 A0
Γ1,Γ1 + A0

Γ2,Γ2

⎞⎟⎠
⎛⎜⎝ u0

1
u0

2
u0

Γ1

⎞⎟⎠ =

⎛⎜⎝ f0
1

f0
2

f0
Γ1 + f0

Γ2

⎞⎟⎠ . (5.26)

5.5.1 Algebraic formulation of the INTERNODES method

For k = 1, 2, let

u0
k = [uk,δ(x(k)

j )]N
0
k

j=1 (k = 1, 2), and u0
Γ1 = [u1,δ(x(Γ1)

j )]n
0
1

j=1, (5.27)

be the array of the nodal values of uk,δ = uδ|Ωk
at the nodes of Ωk \ (Γk ∪ ∂ΩD,k), and

the array of the nodal values of uδ|Γ1 at the nodes of Γ1 \ ∂ΩD, respectively.

Denoting by gk and gΓk
the arrays of the nodal values gD(x(k)

i,D) for i = 1, . . . , ND
k and

gD(x(Γk)
i ) for i = n0

k + 1, . . . , nk, respectively, the solutions arrays including the Dirichlet
nodal values are

uk =
(

u0
k

gk

)
, uΓk

=
(

u0
Γk

gΓk

)
.

In the nonconforming case we need further matrices: the local mass matrices associated
with the interfaces, that is

(MΓk
)ij = (λ(k)

i , λ
(k)
j )L2(Γk), i, j = 1, . . . , nk, k = 1, 2 (5.28)

and the matrices R12 ∈ Rn1×n2 and R21 ∈ Rn2×n1 defined in (5.10) and (5.11), respectively.
Finally, by setting

Q21 = R21, Q12 = MΓ1R12M−1
Γ2

, (5.29)

and denoting by Q0
12 ∈ Rn0

1×n2 the submatrix of Q12 of its first n0
1 rows, and by Q0

21 ∈
Rn2×n0

1 the submatrix of Q21 of its first n0
1 columns, our nonconforming generalization

of (5.26) reads

⎛⎜⎝ A1,1 0 A0
1,Γ1

0 A2,2 A2,Γ2Q0
21

AΓ1,1 Q0
12AΓ2,2 A0

Γ1,Γ1 + Q0
12AΓ2,Γ2Q0

21

⎞⎟⎠
⎛⎜⎝ u0

1
u0

2
u0

Γ1

⎞⎟⎠ =

⎛⎜⎝ f0
1

f0
2

f0
Γ1 + Q0

12fΓ2 .

⎞⎟⎠ . (5.30)
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Notice that, in the fully conforming case, Q12 and Q21 coincide with the identity matrix
of size n1 = n2, thus A2,Γ2Q0

21 = A0
2,Γ2 , Q0

12AΓ2,2 = A0
Γ2,2, and Q0

12AΓ2,Γ2Q0
21 = A0

Γ2,Γ2

(and (5.30) returns (5.26)).

The sketch of the algorithm is reported for reader’s convenience in Algorithm 1.

Algorithm 1 INTERNODES algorithm
1: Build the local stiffness matrices Ak,k, Ak,Γk

, and AΓk,k (formula (5.22)),
2: Build the right hand sides fk and fΓk

for k = 1, 2 (formula (5.23)),
3: Build the local interface mass matrices MΓk

, for k = 1, 2, (formula (5.28)),
4: Build the interpolation matrices R21 and R12 (formulas (5.10) and (5.11)) and Q21

and Q12 (formula (5.29)) (only the nodes coordinates on the interfaces are needed in
this step),

5: Solve system (5.30)

5.5.2 Variational formulation of the INTERNODES method

System (5.30) represents the algebraic counterpart of the following variational problem:
find u1,δ ∈ Xp1

h1
: (u1,δ − R1gD) ∈ V1,δ and u2,δ ∈ Xp2

h2
: (u2,δ − R2gD) ∈ V2,δ such that

a1(u1,δ, v1,δ) = (f, v1,δ)Ω1+〈gN , v1,δ〉∂ΩN,1 ∀v1,δ ∈ Ṽ1,δ,

a2(u2,δ, v2,δ) = (f, v2,δ)Ω2+〈gN , v2,δ〉∂ΩN,2 ∀v2,δ ∈ Ṽ2,δ,

u2,δ|Γ2 = Π21(u1,δ|Γ1)

a1(u1,δ, wδ) + a2(u2,δ, w̃δ) = (f, wδ)Ω1 + (f, w̃δ)Ω2

+〈gN , wδ〉∂ΩN,1 + 〈gN , w̃δ〉∂ΩN,2

∀wδ ∈ VΓ1 , with w̃δ = E2(Π∗
12wδ|Γ1).

(5.31)

Here Π∗
12 : Λ1,δ → Λ2,δ is the adjoint operator of Π12 w.r.t. the L2 product, i.e., for any

η1,δ ∈ Λ1,δ and η2,δ ∈ Λ2,δ, it satisfies

(Π∗
12η1,δ, η2,δ)L2(Γ2) = (η1,δ, Π12η2,δ)L2(Γ1). (5.32)

Remark: Notice that, even if η1,δ ∈ Λ0
1,δ, in general (Π∗

12η1,δ)|∂Γ is not null and by
taking v = E2(Π∗

12η1,δ) in (5.19)2, it holds v|∂ΩD,2 �= 0 and the last integral in (5.19)2 is
non-zero.

Remark: in the conforming case, by setting Π12 = Π21 = I, Eq. (5.31) returns the well
known two-domain formulation associated with the Galerkin finite element method, see
[Quarteroni and Valli, 1999].
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We prove now the equivalence between (5.30) and (5.31). Equations (5.31)1,2 correspond
to the first two equations of the system (5.30); (5.31)3 follows directly by the definition of
the space VΓ1 and yields uΓ2 = Q21uΓ1 . Finally, (5.31)4 corresponds to the last equation
of system (5.30). To prove this statement, let us choose η2,δ = λ

(2)
j (for any j = 1, . . . , n2)

and η1,δ = λ
(1)
i (for any i = 1, . . . , n1) in (5.32), thus by (5.9) it holds

(Π12λ
(2)
j )(x) =

n1∑
�=1

(Π12λ
(2)
j )(x(Γ1)

� )λ(1)
� (x) ∀x ∈ Γ1,

and

(Π12λ
(2)
j , λ

(1)
i )L2(Γ1) =

∫
Γ1

n1∑
�=1

(Π12λ
(2)
j )(x(Γ1)

� )λ(1)
� (x)λ(1)

i (x)dΓ

=
n1∑

�=1
(Π12λ

(2)
j )(x(Γ1)

� )
∫

Γ1
λ

(1)
� (x)λ(1)

i (x)dΓ

=
n1∑

�=1
(R12)�j(MΓ1)i� = (MΓ1R12)ij .

At the same time, if we expand Π∗
12λ

(1)
i w.r.t. the basis function in Λ2,δ as

(Π∗
12λ

(1)
i )(x) =

n2∑
k=1

(Π∗
12λ

(1)
i )(x(2)

k )λ(Γ2)
k (x) ∀x ∈ Γ2, (5.33)

and we denote by P the associated matrix such that Pji = (Π∗
12λ

(1)
i )(x(Γ2)

j ), we have

(Π∗
12λ

(1)
i , λ

(2)
j )L2(Γ2) =

∫
Γ2

n2∑
k=1

(Π∗
12λ

(1)
i )(x(Γ2)

k )λ(2)
k (x)λ(2)

j (x)dΓ

=
n2∑

k=1
(Π∗

12λ
(1)
i )(x(Γ2)

k )
∫

Γ2
λ

(2)
k (x)λ(2)

j (x)dΓ

=
n2∑

k=1
Pki(MΓ2)jk = (MΓ2P )ji.

Then, the algebraic counterpart of (5.32) reads

(MΓ1R12)ij = (MΓ2P )ji = (P T MΓ2)ij ,
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for any i = 1, . . . , n1 and j = 1, . . . , n2, or equivalently

P T = MΓ1R12M−1
Γ2

(= Q12 by (5.29)).

This means that the matrix associated with Π∗
12 is P = QT

12.

Now, let us write

u1,δ(x) =
N0

1∑
j=1

u1,δ(x(1)
j )Φ(1)

j (x) +
n0

1∑
j=1

u1,δ(x(Γ1)
j )E1λ

(1)
j (x)

+R1gD(x) ∀x ∈ Ω1,

u2,δ(x) =
N0

2∑
j=1

u2,δ(x(2)
j )Φ(2)

j (x) +
n0

1∑
j=1

u1,δ(x(Γ1)
j )E2(Π21λ

(1)
j )(x)

+R2gD(x) ∀x ∈ Ω2,

and choose wδ = λe
i , (for i = 1, . . . , n0

1) in (5.31)4.

Recalling that λe
i |Γ1 = λ

(1)
i and by (5.20) and (5.27), (5.31)4 reads for i = 1, . . . , n0

1:

N0
1∑

j=1
u1ja1(Φ(1)

j , E1λ
(1)
i ) +

N0
2∑

j=1
u2j a2(Φ(2)

j , E2(Π∗
12λ

(1)
i ))

+
n0

1∑
j=1

uΓ1j [a1(E1λ
(1)
j , E1λ

(1)
i ) + a2(E2(Π21λ

(1)
j ), E2(Π∗

12λ
(1)
i ))

= F1(E1λ
(1)
i ) + F2(E2(Π∗

12λ
(1)
i )),

and thanks to both (5.22) and (5.33), it holds

a2(Φ(2)
j , E2(Π∗

12λ
(1)
i )) =

n2∑
k=1

(Π∗
12λ

(1)
i )(x(Γ2)

k ) a2(Φ(2)
j , E2λ

(2)
k )

=
n2∑

k=1
(QT

12)ki(AΓ2,2)kj = (Q12AΓ2,2)ij , i = 1, . . . , n0
1

j = 1, . . . , N0
2 ,
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a2(E2(Π21λ
(1)
j ), E2(Π∗

12λ
(1)
i )) =

=
n2∑

k=1
(Π∗

12λ
(1)
i )(x(Γ2)

k )
n2∑

�=1
(Π21λ

(1)
j )(x(Γ2)

� ) a2(E2λ
(2)
� , E2λ

(2)
k )

=
n2∑

k=1

n2∑
�=1

(QT
12)ki(AΓ2,Γ2)k�(Q21)�j = (Q12AΓ2,Γ2Q21)ij , i = 1, . . . , n0

1
j = 1, . . . , n0

1,

and
F2(E2(Π∗

12λ
(1)
i )) = (Q12fΓ2)i, i = 1, . . . , n0

1,

thus (5.30)3 is the algebraic counterpart of (5.31)4.

Equation (5.31)4 (or equivalently (5.30)3) expresses the balance of residuals in strong
form. Algebraically, this becomes more evident once we reformulate (5.30)3 as

−(Q12r2)i = −(MΓ1R12M−1
Γ2

r2)i = (r0
1)i, i = 1, . . . , n0

1 (5.34)

where

r0
1 = f0

Γ1 − A0
Γ1,1u0

1 − A0
Γ1,Γ1u0

Γ1 , r2 = fΓ2 − AΓ2,2u0
2 − AΓ2,Γ2Q0

21u0
Γ1 . (5.35)

In eq. (5.34), we notice that M−1
Γ2

r2 is an approximation of the strong form of the normal
stresses on Γ2; R12M−1

Γ2
r2 is an interpolation of the normal stresses on Γ1, still in strong

form, and MΓ1R12M−1
Γ2

r2 returns the weak form of the normal stresses but now on Γ1.
Note that the order of magnitude of the entries of r2 depend on the mesh size used to
discretize Ω2, that of the entries of r1 depend on the mesh size of Ω1, while the order of
magnitude of those of both M−1

Γ2
r2 and R12M−1

Γ2
r2 are independent of the mesh size.

Equation (5.31)4 is the weak realization of the property

μ
∂u1,δ

∂n1
= −Π12

(
μ

∂u2,δ

∂n2

)
on Γ1, (5.36)

that enforces the discrete continuity of the normal fluxes across Γ1.

5.5.3 Nonconforming Petrov-Galerkin formulation of the INTERN-
ODES method

By defining the spaces

V ∗
Γ1 = {ϕ∗ ∈ L2(Ω) : ∃λ1 ∈ Λ0

1,δ : ϕ∗|Ω1 = E1λ1,

ϕ∗|Ω2 = E2(Π∗
12λ1)}.

(5.37)
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and

V ∗
δ = Ṽ1,δ ⊕ Ṽ2,δ ⊕ V ∗

Γ1 , (5.38)

the variational statement (5.31) can be written in compact form as a nonconforming
Petrov-Galerkin problem: find uδ ∈ Xp1

h1
× Xp2

h2
with (uδ − RδgD) ∈ Vδ:

a1(uδ, v∗
δ ) + a2(uδ, v∗

δ ) =
2∑

k=1

[
(f, v∗

δ )Ωk
+ 〈gN , v∗

δ 〉∂ΩN,k

]
, ∀v∗

δ ∈ V ∗
δ . (5.39)

5.5.4 Nonconforming generalized Galerkin formulation of the INTERN-
ODES method

The finite element assembly of problem (5.39) would be rather involved as it requires to
generate a set of basis functions for V ∗

δ . For this reason we reformulate (5.39) as a more
convenient nonconforming generalized Galerkin problem. With this aim for any wδ ∈ Vδ

we define

a2,δ(wδ, vδ) =

⎧⎨⎩ a2(wδ, vδ), if vδ ∈ Ṽ1,δ ⊕ Ṽ2,δ

a2(wδ, E2(Π∗
12vδ|Γ1)), if vδ ∈ VΓ1

(f, vδ)2,δ =

⎧⎨⎩ (f, vδ)Ω2 , if vδ ∈ Ṽ1,δ ⊕ Ṽ2,δ

(f, E2(Π∗
12vδ|Γ1))Ω2 , if vδ ∈ VΓ1

〈gN , vδ〉2,δ =

⎧⎨⎩ 〈gN , vδ〉Ω2 , if vδ ∈ Ṽ1,δ ⊕ Ṽ2,δ

〈gN , E2(Π∗
12vδ|Γ1)〉Ω2 , if vδ ∈ VΓ1

(5.40)

We can therefore conclude that problem (5.31) can be equivalently reformulated as a
nonconforming generalized Galerkin problem:

Find uδ ∈ Xp1
h1

× Xp2
h2

, with (uδ − RδgD) ∈ Vδ:

a1(uδ, vδ) + a2,δ(uδ, vδ) = (f, vδ)Ω1 + (f, vδ)2,δ

+〈gN , vδ〉∂ΩN,1 + 〈gN , vδ〉2,δ, ∀vδ ∈ Vδ.
(5.41)
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5.6 On the mortar method and its relationship with
INTERNODES

As already pointed out in Section 5.1, the mortar method represents nowadays a well
established approach for the solution of PDEs using nonconforming discretizations. A big
deal of attention has been devoted to the theoretical analysis [Maday et al., 1988, Bernardi
et al., 1994, Wohlmuth, 2000, Belgacem, 1999, Lamichhane and Wohlmuth, 2004, Brivadis
et al., 2015, Bernardi et al., 2004] as well as to the algorithmic developments [Ben Belgacem
et al., 1999, Popp, 2012, Puso and Laursen, 2003, Puso and Laursen, 2004, Ben Belgacem
et al., 2003, Bernardi and Maday, 2000] of this method, in connection with a broad
variety of applications. Notable examples concern problems in structural mechanics [Puso,
2004, Puso and Laursen, 2004, Flemisch et al., 2005], fluid dynamics [Ehrl et al., 2014],
structural dynamics [Faucher and Combescure, 2003], electromagnetism [Ben Belgacem
et al., 2001, Rapetti et al., 2000, Buffa et al., 2001, Bouillault et al., 2003], contact
problems [Fischer and Wriggers, 2005, De Lorenzis et al., 2012, Popp et al., 2012, Popp
et al., 2009, Popp et al., 2010], multiphysics [Klöppel et al., 2011, Popp, 2012, Baaijens,
2001, Mayer et al., 2010], etc.

Although the mortar method is a projection (rather than an interpolation-based) method,
we can still represent it by the general algebraic form (5.30), provided we replace Q0

21
with the matrix associated with the mortar projection (named Ξ in [Quarteroni, 2013,
Sect. 11.4] or P in [Klöppel et al., 2011, eq. (46)]) and Q0

12 with ΞT . Similarly, the
variational formulation of the mortar method (see [Bernardi et al., 1994]) can be retrieved
from (5.41) by replacing Vδ with the mortar space

V M
δ = {vδ ∈ L2(Ω), vk,δ = vδ|Ωk

∈ Vk,δfor k = 1, 2 and
v2,δ = ΠM

21 v1,δon Γ},
(5.42)

where ΠM
21 is the L2−projection from master to slave on the interface, and by replacing

Π∗
12 with ΠM

21 in (5.40). Note in particular that the mortar method requires a single
intergrid operator, ΠM

21 , rather than two operators Π12 and Π21 in INTERNODES.

On the other hand, we warn the reader that INTERNODES, even though being interpola-
tory, does not coincide with the so-called pointwise matching method that was presented
in the seminal mortar paper [Bernardi et al., 1994, eqs. (3.5)-(3.7)]. The pointwise
matching is notoriously sub-optimal, as proven in [Bernardi et al., 1994, Sect. 3.2] and
numerically corroborated in [Bègue et al., 1989] for spectral elements discretizations.

The algorithmic and implementation aspects of both methods deserve some further
consideration. Most oftern mortar method is formulated as a saddle point problem by
introducing an extra field, the Lagrange multiplier. This yields an inf-sup compatibility
condition to be fulfilled in order to ensure well-posedness. Many algorithms exist aimed
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INTERNODES mortar
k K maxi |λi| mini |λi| K maxi |λi| mini |λi|
16 511.65 7.98 1.56e-2 518.63 7.98 1.54e-2
32 2081.39 7.99 3.84e-3 2093.80 7.99 3.82e-3
64 8386.54 7.99 9.54e-4 8410.09 7.99 9.51e-4

Table 5.1: Iterative condition number and extreme eigenvalues.

at condensing the system by eliminating the Lagrange multipliers, in particular the one
using dual spaces for Lagrange multipliers [Wohlmuth, 2000, Ehrl et al., 2014].

When mortar methods are formulated as a single field problem, the corresponding
algebraic system (5.30) (with Π12 and Π21 replaced by ΠM

21 as indicated above) is
symmetric, provided the original differential operator is self-adjoint. This property is not
fulfilled by INTERNODES due to the two a-priori different inter-grid operators.

The two stiffness matrices feature similar condition numbers. For example, on a piecewise
linear finite element approximation of the Dirichlet problem for the Laplacian in the
rectangle (0, 2) × (0, 1), we report in Figure 5.3 the spectra for both INTERNODES and
the mortar method relatively to structured triangulations of variable step size (precisely,
we are using Set D of Table 5.2 for k = {16, 32, 64}). The eigenvalues of the mortar
matrix are positive real whereas those of INTERNODES feature tiny imaginary parts
that vanish as the step size does. The iterative condition number K = maxi |λi|/ mini |λi|
behaves right the same way (and scales with h−2), as reported in Table 5.1.

Concerning more specifically the implementation issues, INTERNODES simply requires
local mass matrices at the interface and not the cross mass matrix connecting interface
basis functions from both sides as in the mortar method. Moreover, it does not require
numerical quadratures, neither a special treatment of cross-points where more than
two subdomains meet. An in-depth analysis of these and other subtle implementation
issues is carried out in [Ehrl et al., 2014, Maday et al., 2002, Popp, 2012, Wohlmuth,
2000, Flemisch et al., 2005, Puso and Laursen, 2003]. The implementation of mortar
method for geometric nonconforming interfaces is also far from trivial (INTERNODES
instead does not feature any additional difficulty with respect to the case of geometric
matching interfaces): as a matter of fact, it requires several steps such as projection,
intersection, local meshing and numerical quadrature to build up the mortar interface
coupling operator. These aspects are carefully addressed in [Popp, 2012] (see in particular
Algorithm 1, Section 3.2.3).
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Figure 5.3: The spectra of the Dirichlet stiffness matrix for INTERNODES (left) and
mortar (right), corresponding to three different structured triangulations (Set D of Table
5.2, k = 16 (top), 32 (middle), 64 (bottom)).
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Figure 5.4: Solution u(x, y) = arctan(4(y − 0.5)) cos(πx) of problem (5.43).

5.7 Numerical solution of an elliptic problem

In the first preliminary test, we consider the numerical solution of the Poisson problem

−Δu(x, y) = f(x, y) in Ω = (0, 2) × (0, 1), (5.43)
u(x, y) = gD(x, y) on ∂ΩD = ∂Ω,

and we show the orders of convergence of INTERNODES when nonconforming meshes
and/or nonconforming discretizations (based on the coupling of finite elements with
spectral elements) are used.

In (5.43) the functions f(x, y) and g(x, y) are chosen in such a way that u(x, y) =
arctan(4(y − 0.5)) cos(πx) (see Figure 5.4). We decompose the domain Ω in two
subdomains: Ω1 = (0, 1) × (0, 1) and Ω2 = (1, 2) × (0, 1).

5.7.1 Coupling of nonconforming FEM-FEM discretizations

In this Section we solve problem (5.43) by considering nonconforming finite elements
discretizations at the subdomains interface Γ . The nonconformity may come from the
use of different mesh-sizes and/or different polynomial degree of the finite elements basis
functions between the master and slave domains. In our numerical experiments we
considered P1,P2 and P3 finite elements, using structured grids that feature an aspect
ratio of 1 or 2 across the interface. The details of the meshes used in our simulations are
reported in Table 5.2, wherein k = {8, 16, 32, 64} denotes the number of grid points along
each coordinate of the master and slave domains. Furthermore, the method proposed is
tested using both the Lagrange and the RL-RBF interpolants as intergrid operator.

In Figure 5.5 we show the rate of convergence obtained by INTERNODES for some of
the simulations performed using the Lagrange interpolant and for set C (left column)
and set D (right column). The results reported are the H1-norms of the errors computed
in each individual subdomain, i.e., ‖u − u1,δ‖H1(Ω1) and ‖u − u2,δ‖H1(Ω2).
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Figure 5.5: FEM-FEM coupling: orders of convergence obtained using Lagrangian
interpolants and nonconforming meshes with aspect ratio 2. Left column using Set C,
right column using Set D (see Table 5.2).
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Master domain Slave domain Aspect ratio

Set A (k + 1) × (k + 1) (k − 1) × (k − 1) ≈ 1
Set B (k − 1) × (k − 1) (k + 1) × (k + 1) ≈ 1
Set C (2k + 1) × (2k + 1) (k − 1) × (k − 1) ≈ 2
Set D (k − 1) × (k − 1) (2k + 1) × (2k + 1) ≈ 2

Table 5.2: Details of the meshes used for the numerical simulations.

Master \ Slave P1 P2 P3

P1 1-1 1-1 1-2 1-2 1-1 1-1
1-1 1-1 1-2 1-2 1-1 1-1

P2 2-1 2-1 2-2 2-2 2-3 2-3
2-1 2-1 2-2 2-2 2-3 2-3

P3 2-1 2-1 3-2 3-2 3-3 3-3
2-1 2-1 3-2 3-2 3-3 3-3

Table 5.3: Orders of convergence in H1 norm obtained using nonconforming meshes and
the Lagrange interpolation. In the top row we report the results obtained using Set A
(left) and Set B (right) while in the bottom those with Set C (left) and Set D (right).

By comparing the left and right plots in the first and fourth rows of Figure 5.5 (obtained
with nonconforming meshes but same polynomial degree in the master and slave domains)
we observe that, as expected, the most accurate results are always obtained on the
subdomain triangulated with the finer mesh, independently whether this is a master or a
slave. When the master domain is discretized using a polynomial degree lower than the
one of the slave (compare the left and right plots of the second row in Figure 5.5) we
notice that it is better, in terms of accuracy, to use the finer mesh on the master domain.
In the opposite case, i.e. when the master domain is discretized using a polynomial degree
that is higher than the one of the slave (compare the left and right plots of the third row
in Figure 5.5) we observe that more precise results are obtained using the finer mesh on
the slave domain.

M \ S P1 P2 P3

Lagr. RL-RBF Lagr. RL-RBF Lagr. RL-RBF
P1 1-1 1-1 1-2 1-2 1-2 1-2

P2 2-1 2-1 2-2 2-2 2-3 2-3

P3 2-1 2-1 3-2 3-2 3-3 3-3

Table 5.4: Orders of convergence in H1 norm obtained in our numerical simulations using
conforming meshes but nonconforming polynomial degrees. In each cell of the table, on
the left column we report the results computed using the Lagrange interpolation, on the
right those by the RL-RBF interpolation. M stands for master while S for slave domain.
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In Table 5.3 we summarize the orders of convergence obtained by INTERNODES using
nonconforming meshes and the Lagrange interpolant, while in Table 5.4 those using
matching grids but nonconforming polynomial degrees. Let us denote by p1 and p2 the
polynomial degrees used in Ω1 and Ω2, respectively. As shown in Table 5.3, if |p1−p2| ≤ 1,
the use of the Lagrange interpolant yields rates of convergence that are optimal in each
individual subdomain, in fact they behave as hpi

i , independently of the choice of which
domain plays the role of the master or slave. In the case where p1 − p2 > 1, for instance
using P3-P1 finite elements, the rate of convergence behaves like hp1−1

1 in Ω1 and like
hp2

2 in Ω2 (or, if p2 − p1 > 1, as hp1
1 in Ω1 and as hp1+1

2 in Ω2).

These results can be summarized by the help of the following empirical formula, holding
for Lagrange interpolants: if both h1, h2 → 0,

‖u − ui,δ‖H1(Ωi) ≤ Ci(p1, p2)hmin(qi,si−1)
i ‖u‖Hsi (Ωi) for i = 1, 2, (5.44)

where

q1 = min(p1, p2 + 1),

q2 =
{

p2 if p2 ≤ p1 + 1
p1 if p2 > p1 + 1.

In (5.44), Ci are positive constants independent of hi, while si > 1 is the order of the
Sobolev regularity of the exact solution in Ωi.

Master \ Slave P1 P2 P3

P1 1-1 1-1 1-2 1-2 1-2 1-2
1-1 1-1 1-2 1-2 1-2 1-2

P2
2-1 2-1 2-2 2-2 2-3 2-3
2-1 2-1 2-2 2-2 2-3 2-3

P3 2-1 2-1 3-2 3-2 3-3 3-3
2-1 2-1 3-2 3-2 3-3 2-2

Table 5.5: Orders of convergence in H1 norm obtained using nonconforming meshes and
the RL-RBF interpolation. The cells are organized as in Table 5.3.

The results obtained on nonconforming meshes using the RL-RBF interpolant are reported
both in Tables 5.4 and 5.5. We notice that, if |p1 − p2| ≤ 1, the method leads to optimal
rates of convergence in all the numerical experiments performed, apart from the case of
the P3-P3 discretization with grids of Set D. This may be due to the fact that, as shown
in Eq. (5.12), the construction of the RL-RBF interpolant does not take into account
the polynomial degree of the trace of the finite element basis functions at the interface
since it only requires the nodal coordinates and corresponding nodal values at the two
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interfaces, separately.

However, this same feature makes RL-RBF a flexible interpolation tool to deal with
problems with geometrically nonconforming interfaces (as in the case of Figure 5.2). The
treatment of nonmatching interfaces in the mortar setting is instead more involved as it
requires, in particular, an ad-hoc projection to retrieve a yet another (virtual) common
interface, cf. [Dickopf and Krause, 2009, Klöppel et al., 2011].

In Figure 5.6 we report the PDE’s approximation errors in broken norm (see [Quarteroni,
2013, Sect. 11.3]) and the pure interpolation errors for both Lagrange and RL-RBF
interpolants versus the polynomial degree p when non-conforming meshes are used (Set
D, k = 64). We notice that the approximation error and the interpolation error feature
almost the same rate of decay with respect to p. In particular, for p = 1 the RL-RBF
interpolation leads to more accurate results w.r.t. the Lagrange one; for p = 2 both
interpolants yield the same accuracy while for p = 3 the Lagrange interpolation is more
accurate. This justifies the sub-optimal orders of the block P1 − P3 of Table 5.3 w.r.t.
the corresponding block of Table 5.5, as well as those of the P3 − P3 simulation with Set
D in Table 5.5.
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Lagrange interpolation error
broken norm RL-RBF
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Figure 5.6: Comparison between PDE approximation errors and interpolation errors for
Pp − Pp FEM, and non-conforming meshes (set D of Table 5.2 and k = 64).

5.7.2 Coupling of nonconforming SEM-SEM discretizations

In this Section we consider SEM discretization in both master and slave domains and we
compare the errors obtained by INTERNODES (using the Lagrange intergrid operator)
with those generated by the mortar approach. As in the previous subsection, we plot the
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errors in H1-norm, i.e., ‖u − u1,δ‖H1(Ω1) and ‖u − u2,δ‖H1(Ω2).

Pictures in the left column of Figure 5.7 refer to INTERNODES, while those in the right
column to the mortar approach.

Let p1 and p2 denote the polynomial degrees used in Ω1 and Ω2, respectively. The errors
displayed by the two methods are comparable; moreover, for i = 1, 2, they decay as hpi

i if
|p1 − p2| ≤ 1, while the order of convergence is downgraded when |p1 − p2| > 1, as we
can see in the last row of Figure 5.7, where p1 = 5 and p2 = 2. In fact, in the latter case,
the error in the master domain behaves like h3

1 for both the methods and not as h5
1.

More precisely, the plot in the first row refers to a test case with polynomial conformity
and mesh nonconformity; the one in the second row to a case with both polynomial and
mesh nonconformity, with and p1 = p2 + 1; that in the third row again to a case with
both polynomial and mesh nonconformity, with and p1 = p2 − 1; finally the last row to a
situation with p1 − p2 > 1.

In Tables 5.6 and 5.7 we show the rates of convergence with respect to h both for INTERN-
ODES and the mortar approach, respectively, when considering different nonconforming
situations, as those in Tables 5.3 and 5.5.

First of all we notice that INTERNODES is accurate as well as the mortar method.
Furthermore, the trend observed for the FEM discretization (and anticipated by the
convergence curves of Figure 5.7) holds also for SEM case.

M \ S Q2 Q3 Q4 Q5

Q2 2-2 2-2 2-3 2-3 2-2 2-3 2-2 2-3
2-2 2-2 2-3 2-3 2-2 2-3 2-2 2-3

Q3 3-2 3-2 3-3 3-3 3-4 3-4 3-3 3-4
3-2 3-2 3-3 3-3 3-4 3-4 3-4 3-4

Q4 4-2 3-2 4-3 4-3 4-4 4-4 4-5 4-5
3-2 3-2 4-3 4-3 4-4 4-4 4-5 4-5

Q5 4-2 3-2 5-3 4-3 5-4 5-4 5-5 5-5
3-2 3-2 5-3 5-3 5-4 5-4 5-5 5-5

Table 5.6: SEM-SEM coupling: orders of convergence with respect to the mesh sizes h1
and h2 of INTERNODES using nonconforming meshes. M stands for master domain
while S for slave domain. The cells are organized as in Table 5.3.

In Table 5.8 the orders of convergence in H1 norm versus the mesh size h are shown in
the case of conforming meshes and different (but also equal) polynomial degrees.

The convergence analysis w.r.t. the polynomial degrees pi is more involved and it is
currently under investigation. See however Figure 5.8 below where the error behavior
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Figure 5.7: Convergence history with respect to the mesh sizes h1 and h2 for INTERN-
ODES (left) and mortar (right) approaches. SEM discretization. Set C; second line: Set
D; third line: Set A.
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M \ S Q2 Q3 Q4 Q5

Q2 2-2 2-2 2-3 2-3 2-2 2-3 2-2 2-3
2-2 2-2 2-3 2-3 2-2 2-3 2-2 2-3

Q3 3-2 3-2 3-3 3-3 3-4 3-4 3-3 3-4
3-2 3-2 3-3 3-3 3-4 3-4 3-4 3-4

Q4 4-2 3-2 4-3 4-3 4-4 4-4 4-5 4-5
3-2 3-2 4-3 4-3 4-4 4-4 4-5 4-5

Q5 4-2 3-2 5-3 4-3 5-4 5-4 5-5 5-5
3-2 3-2 5-3 5-3 5-4 5-4 5-5 5-5

Table 5.7: SEM-SEM coupling: orders of convergence with respect to the mesh sizes
h1 and h2 of the mortar approach using nonconforming meshes. M stands for master
domain while S for slave domain. The cells are organized as in Table 5.3.

M \ S Q2 Q3 Q4 Q5
Q2 2-2 2-2 2-3 2-3 2-2 2-2 2-2 2-2

Q3 3-2 3-2 3-3 3-3 3-4 3-4 3-4 3-4

Q4 4-2 4-2 4-3 4-3 4-4 4-4 4-5 4-5

Q5 4-2 4-2 5-3 5-3 5-4 5-4 5-5 5-5

Table 5.8: SEM-SEM coupling: orders of convergence with respect to the mesh sizes h1
and h2, using conforming meshes. In each cell of the table, on the left and on the right
we report the results computed using INTERNODES and mortar approach, respectively.

of both INTERNODES and the mortar methods vs the polynomial degree p are shown.
The two curves are practically overlaid when using Lagrangian interpolation for IN-
TERNODES. In the same figure we also plot the pure interpolation errors: as it can
be appreciated, the approximation error and the interpolation error feature the same
rate of decay with respect to p. Also reported are the RBF interpolation errors: for
moderate polynomial degrees (p ≤ 5) the rate of decay is the same as for Lagrangian
interpolation, whereas (as expected) it flattens for larger values of p. Note that the better
accuracy displayed for the RBF interpolation errors with respect to that of Table 5.5 is
due to the fact that interpolation nodes now coincide with the (non-uniformly spaced)
Gauss-Lobatto-Legendre nodes [Canuto et al., 2006].

5.7.3 Coupling of FEM-SEM discretizations

We consider now the coupling of FEM-SEM discretizations. We set Ω1 = (0, 1) × (0, 1),
Ω2 = (1, 2) × (0, 1) and the function u(x, y) = arctan(4(y − 0.5)) cos(π(x − 0.1)) as exact
solution of the problem (5.43).

136



5.7. Numerical solution of an elliptic problem

p

100 101

10-10

10-5

100

RL-RBF interpolation error
Lagrange interpolation error
broken norm RL-RBF
broken norm Lagrange
broken norm mortar

Figure 5.8: Comparison between PDE approximation errors and interpolation errors.

Polynomial nonconformity. In Table 5.9 we show the convergence orders w.r.t. the
mesh size h when the master domain Ω1 is discretized by P1 finite elements and the
slave domain Ω2 by Qp spectral elements with p = 2, 3, 4 and vice versa. h denotes
the diameter of the structured and regular triangular mesh, that coincides with the
diameter of the spectral elements. In this first test case we consider mesh conformity and
interpolation by either Lagrange and RL-RBF. Finally we compare the results obtained
by INTERNODES with those generated by the mortar method.

The advantage of using RL-RBF instead of Lagrange interpolation is clear when the
master discrete space is the poorest one, i.e. when it is discretized by P1. More precisely,
when using Lagrange interpolation, the first order of convergence driven by P1 in Ω1
is observed in Ω2 as well, even if in Ω2 a higher degree, p ≥ 2, is used. Conversely,
when using RL-RBF, the order of convergence in the slave domain is equal to 2, thus
reflecting the more accurate discretization used. In any case, even when p > 2 the order
of convergence in Ω2 is still 2.

When the master domain is discretized more finely by Qp (p ≥ 2) and P1 are used in
the slave, the rates of convergence are 2 and 1 in the master and the slave domain,
respectively, for both the approaches.

Mesh nonconformity. We consider now nonconforming meshes and, as in the previous
sections, four different situations, characterized by a varying aspect ratio between the
mesh sizes h1 and h2, as well as by the refinements of the grids. In Tables 5.10 and 5.11
the convergence orders w.r.t. the mesh size h are shown. As for the mesh conforming case,
when the master domain is discretized by P1, the Lagrange interpolation downgrades
the higher approximation degree of the slave domain, while the RL-RBF interpolation
always provides convergence order 1 in the master domain and 2 in the slave one. On the
contrary, when the master domain is discretized by SEM, the convergence orders w.r.t. h
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Master - Slave Lagrange RL-RBF mortar
P1−Q2 1-1 1-2 1-1.6
P1−Q3 1-1 1-2 1-1.7
P1−Q4 1-1 1-2 1-1.7

Q2−P1 2-1 2-1 2-1
Q3−P1 2-1 2-1 2-1
Q4−P1 2-1 2-1 2-1

Table 5.9: FEM-SEM coupling: orders of convergence with respect to the mesh sizes h1
and h2 when using conforming meshes.

are 2 in the master domain and 1 in the slave one for all the considered approaches.

Master - Slave Lagrange RL-RBF mortar

P1−Q2 1-1.5 1-2 1-2 1-2 1-2 1-2
1-2 1-1.5 1-2 1-2 1-2 1-2

P1−Q3 1-1 1-2 1-2 1-2 1-1.5 1-2
1-1 1-1.5 1-2 1-2 1-2 1-2

P1−Q4 1-1 1-2 1-2 1-2 1-1.5 1-2
1-1 1-1 1-2 1-2 1-2 1-2

Table 5.10: FEM-SEM coupling: orders of convergence w.r.t. the mesh-sizes h1 in Ω1
and h2 in Ω2 when using nonconforming meshes. The cells are organized as in Table 5.3.

Master - Slave Lagrange RL-RBF mortar

Q2−P1 2-1 2-1 2-1 2-1 2-1 2-1
2-1 2-1 2-1 2-1 2-1 2-1

Q3−P1 2-1 2-1 2-1 2-1 2-1 2-1
2-1 2-1 2-1 2-1 2-1 2-1

Q4−P1 2-1 2-1 2-1 2-1 2-1 2-1
2-1 2-1 2-1 2-1 2-1 2-1

Table 5.11: SEM-FEM coupling: orders of convergence w.r.t. the respective mesh-sizes
h1 in Ω1 and h2 in Ω2 when using nonconforming meshes. The cells are organized as in
Table 5.3.

The higher accuracy of the SEM discretization is downgraded by that of the P1 FEM
approximation. To verify this statement, we fix now the discretization in Ω1 (master
domain) by using 6 × 6 quads Q4, while we refine the P1 mesh in Ω2 by choosing
h2 = 1/8, 1/16, 1/32, 1/64, 1/128. In Figure 5.9, the H1 norm of the errors with respect
to the exact solution are shown versus h2. The error in Ω1 decays as h2

2 until the accuracy
prescribed by global Q4 discretization is reached, while the error in Ω2 is O(h2).
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Figure 5.9: SEM-FEM coupling. H1 norm errors vs. h2 when Q4 are used in Ω1 (master)
with fix h1 = 1/6, and P1 are used in Ω2 (slave). The black line denotes the error
obtained by discretizing the global domain by conforming Q4 SEM.

5.8 Coupling of geometrically nonconforming subdomains

To assess the robustness of INTERNODES with respect to the geometrically nonconform-
ing case, we solve problem (5.43) with exact solution u(x, y) = sin((x−1.2)(y−1.2)2π)+1
in the domain Ω = (−0.5, 0.5) × (−0.5, 0.5), decomposed as shown in Figure 5.10. The
inner circle is centered at point (0, 0) and has radius R = 0.35.

Γ

Ω1

Ω2

∂ΩD

Figure 5.10: Domain decomposition considered for the example with geometrically
nonconforming interfaces.

In Figure 5.11 we show the results obtained using P1 finite elements in both the slave
and the master domains. Although many gaps and overlaps are present at the interface
between the subdomain grids (see bottom row in Figure 5.11), we observe that the quality
of the numerical solutions obtained does not worsen. In Figure 5.12 the results obtained
using first or second degree polynomials in the master and slave domains are reported.
From Figure 5.12(a) we observe that when using linear basis functions, INTERNODES
leads to first order rate of convergence in both the master and the slave subdomains.
Finally, as shown in Figure 5.12(b), we notice that quadratic convergence is obtained
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Figure 5.11: Solutions obtained by INTERNODES using P1-P1 finite elements for the
master and slave domains using meshes of increasing refinement that are geometrically
nonconforming. In the top row we show the numerical results on the whole domain while
in the bottom row a zoom of the solution close to the interface.
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(b) Master P2 (finer grid), slave P2.

Figure 5.12: Rates of convergence in H1 norm using geometrically nonconforming
interfaces.

with P2 finite elements only for sufficiently small mesh sizes for which the gaps and
overlaps between the master and slave subdomains tend to become imperceptible (see
bottom-right picture of Figure 5.11).
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5.9 Numerical solution of a fluid flow past a cylinder

In this Section we consider the numerical simulation of a fluid flow past a 3D cylindrical
obstacle at two different Reynolds numbers, that are Re = 20 and Re = 100, see [Schäfer
and S.Turek, 1996].

We model the flow dynamics by the Navier-Stokes equations for an incompressible fluid.
The equations are discretized in space by means of the Finite Element method and
in time by Finite Differences. More specifically, we use P1-P1 finite elements for the
spatial approximation of the fluid velocity and pressure variables (stabilized by SUPG),
respectively, while a second order backward differentiation formula is used for the time
discretization (see, e.g. [Quarteroni, 2013]). The nonlinear convective term in the fluid
momentum equation is linearized by means of a second order temporal extrapolation
[Forti and Dedè, 2015, Gervasio et al., 2006].

In order to compare the numerical results obtained by INTERNODES with those available
in the literature we compute the drag and lift coefficients of the cylinder. To this end,
we introduce a unit vector directed as the incoming flow v̂∞ =

v∞
‖V∞‖ , and a unit vector

n̂∞ orthogonal to v̂∞. The aerodynamic drag and lift coefficients for the cylinder read:

CD(uf , pf ) = − 1
q∞S

∮
S

(σf (uf , pf ) n̂) · v̂∞ dΓ, (5.45)

CL(uf , pf ) =
1

q∞S

∮
S

(σf (uf , pf ) n̂) · n̂∞ dΓ, (5.46)

where uf and pf are the velocity and pressure variables, σf is the Cauchy stress tensor
of the fluid, q∞ = 1

2ρf V 2∞ is the dynamic pressure, ρf is the density of the fluid and S is
the surface area of the cylinder.

For an accurate estimation of the aerodynamic coefficients, the use of a boundary layer
refinement of the computational mesh around the cylinder is mandatory (see, [Ghia et al.,
1982]). A possible strategy to generate such a refinement consists in gradually decreasing
the mesh element size in the domain while approaching the cylinder, as shown in Figure
5.13(a). An alternative strategy relies in splitting the computational fluid domain into
two sub-domains with independent (nonconforming) meshes, see Figure 5.13(b): the finer
mesh is used to represent the boundary layer around the cylinder while the coarse one for
the far field. In the latter case, after space and time discretization of the Navier-Stokes
equations, the algebraic form of the linear system to be solved assumes the form of Eq.
(5.30) (in which the matrices Ai,j and the right hand sides fi are those associated with
the fully-discretized Navier-Stokes equations).

The values of the physical parameters for the fluid as well as the boundary conditions
used in our simulations are those described in [Schäfer and S.Turek, 1996]. The essential
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(a) Boundary layer refinement obtained by pro-
gressive reduction of the mesh size (cross section).

(b) Independent meshes for the far field and the
boundary layer zones (cross section).

Figure 5.13: Two different strategies to realize boundary layers mesh refinements.

boundary condition on the fluid velocity at the cylinder surface is imposed in weak form
[Bazilevs and Hughes, 2007, Hsu et al., 2012]. In Table 5.12 we report the drag and lift
coefficients of the cylinder obtained using different fluid meshes in which the boundary
layer refinement was obtained as in Figure 5.13(a).

Mesh level DOF CD CL % error CD % error CL

1 149’004 6.39269 0.003331 3.35 64.56
2 250’400 6.26037 0.005431 1.21 42.22
3 531’992 6.20392 0.006838 0.31 27.26
4 1’209’060 6.17584 0.009412 0.15 0.11

Table 5.12: Numerical results obtained for the benchmark problem at Re = 20. The
reference drag and lift coefficients are CD = 6.18533 and CL = 0.009401, respectively.

When splitting the computational fluid domain into two sub-domains with nonconforming
meshes, the coarser mesh is used to represent the far field while the finer one around the
cylinder. In this example, the mesh-size used for the coarser mesh is the one of Mesh
Level 1 while the one of the finer mesh coincides with the mesh-size of Mesh level 4 (see
Table 5.12). Furthermore, the far field domain is considered as slave domain while the
one around the cylinder is the master. In this way the interface degrees of freedom of the
master (finer) domain are primal unknowns of the problem (see Eq. (5.30)). We used
373’068 degrees of freedom in the master domain and 103’768 in the slave. We remark
that the ratio between the mesh size of the far field and the one in the boundary layer is
approximately 6.

The numerical simulation performed using two nonconforming meshes yields a lift
coefficient CL = 0.009487 and a drag coefficient CD = 6.19713. The errors with respect
to reference values are 0.91% and 0.19% on the estimation of the lift and the drag
coefficients, respectively. To analyze the computational costs, we compare the average
time to complete a single time step and the number of linear solver iterations on
the simulations with Mesh level 4 of Table 5.12 and the one by INTERNODES with
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5.9. Numerical solution of a fluid flow past a cylinder

Figure 5.14: Zoom of the meshes and the velocity fields in the region close to the cylinder
on a cut plane at z = 0.205 m: in the first row we show the meshes used for the numerical
simulations. In the second row we plot the velocity fields obtained.

Figure 5.15: Horizontal view of the meshes used for the numerical example at Re = 100.

nonconforming meshes. The approach based on the use of nonconforming meshes leads
to a reduction of the 50% of the time to perform a time step (thanks to the fact that the
number of degrees with nonconforming meshes is roughly half of the one of Mesh level
4).

Finally, we report the results obtained for Re = 100. In Figure 5.15 we show the fluid
meshes considered for the region close to the obstacle and the far field. In this unsteady
case, the geometry in which we use a finer mesh is extended to embed also the wake
region behind the cylinder. We consider the far field domain as the slave domain, while
the one near the cylinder as master. The computational meshes yield 281’393 degrees of
freedom in the slave domain and 844’179 in the master. The aspect ratio between the
mesh sizes of the master and slave domains at their interface is approximately 3. The
same problem of fluid flow past a cylinder has also been investigated in [Ehrl et al., 2014]
by a dual mortar approach for nonconforming meshes tying a fine boundary layer grid in
the near field with a coarser grid in the far field.

In Table 5.13, we compare the aerodynamic coefficients of the cylinder computed numeri-
cally with those available in literature.
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Maximum CD Maximum CL Minimum CL

Computed 3.3017 0.0029 -0.011017

Reference 3.2978 0.0028 -0.010999

Table 5.13: Comparison of the aerodynamic coefficients computed with reference values
available in literature [Schäfer and S.Turek, 1996].

In Figure 5.16 we show the numerical results computed at different times on a cut plane
parallel to the z axis (located at at z = 0.205 m): we notice that both the velocity and
pressure solutions obtained in the master and slave domains are in very good agreement
at their interface. In addition, we notice that the velocity field computed at time t = 4 s
(shown in Figure 5.16) is in very good agreement w.r.t. the one reported in [Ehrl et al.,
2014], Figure 16. Finally, to better assess the behavior of the solution across the interface,
in Figure 5.17 we plot the fluid velocity along a vertical line passing through both the
master and slave sub-domains.

Figure 5.16: Visualization of the numerical solution obtained at times t = 2 s (top row),
t = 4 s (middle row) and t = 6 s (bottom row).

144



5.9. Numerical solution of a fluid flow past a cylinder

0 0.4 0.8 1.2 1.6 2 2.4 2.80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Velocity [m s−1]

Y
co
or
d
in
at
e
[m

]

(b) Time t = 2 s.
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Figure 5.17: Plot over line, between points P1 = (0.5,0,0.205) and P2 = (0.5,0.41,0.205),
of the flow velocity at different times.
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6 Numerical solution of FSI prob-
lems featuring nonconforming
interfaces

In this Chapter we address the numerical solution of fluid-structure interaction problems
when nonconforming grids and/or nonconforming finite elements discretizations are used
at the interface separating the computational domain of the fluid from the one of the
structure. In order to deal with nonconforming fluid-structure discretizations we use the
method INTERNODES presented in Chapter 5. After identifying a master domain (the
structural domain) and a slave domain (the fluid domain), we build the two inter-grid
operators based on Rescaled-Localized Radial Basis Functions (RL-RBF) interpolants:
one Πfs from solid to fluid, and the other Πsf from fluid to solid. Then, we enforce the
kinematic condition by equating the fluid velocity at the interface as the image through
Πfs of the temporal derivative of the structural displacement. On the other hand, the
dynamic interface condition is fulfilled via a variational method where the strong form of
the structural normal component of the Cauchy stress is obtained as the image through
Πsf of a strong representation of the normal component of the fluid stress. A numerical
verification of the numerical results obtained in the nonconforming case is carried out for
a straight cylinder and for a patient-specific arterial bypass geometry. Furthermore, we
study the scalability performance of the FaCSI preconditioner considered in Chapter 3
by solving large-scale FSI problems in which nonconforming discretizations are used.

The contents of Sections 6.2 and 6.3 of this Chapter have been already published in
[Deparis et al., 2015d].
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(a) Conforming meshes. (b) Non-conforming meshes.

Figure 6.1: Conforming (left) and non-conforming (right) fluid–structure meshes.

6.1 Preliminaries

Solution algorithms for fluid-structure interaction problems are generally derived assuming
conforming fluid-structure discretizations at their interface. In such cases, as in Chapter 3,
the enforcement of the coupling conditions is straightforward. However, due to the
different resolution requirements in the fluid and structure physical domains, as well as
the presence of complex interface geometries make the use of matching fluid and structure
meshes problematic. In such situations, it is much simpler to deal with discretizations
that are nonconforming, provided however that the matching conditions at the interface
are properly fulfilled.

The mortar element method is a well known technique commonly used to deal with non-
conforming discretizations. In this Chapter, to deal with nonconforming discretizations
at the discrete fluid-structure interface we use INTERNODES, that has been described
in Chapter 5. In our spatial simulation settings we allow the fluid computational grid
and/or the fluid finite element discretization to be nonconforming with the structural
one at the interface, see Figure 6.1. Even worse, the two interfaces could be geometri-
cally nonconforming, a situation that arises when the two subdomains are triangulated
independently.

For readers’ convenience, in Section 6.2, after briefly recalling the complete algebraic
formulation in the conforming case, we treat the nonconforming case. In Section 6.3
we describe the solution algorithm used to solve the fully-coupled nonconforming FSI
problems. In particular we extend FaCSI to the nonconforming case. Section 6.5 addresses
the numerical verification of our approach on an FSI problem for a straight flexible
cylinder. Finally, in Section 6.5.4, we address the case of a patient-specific geometry
of a femoropopliteal bypass and we compare the results obtained with those shown in
Section 3.7.2 with conforming discretizations.
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6.2 Nonconforming fluid-structure interaction problem

In this Section we focus on the nonconforming formulation of the fluid-structure interaction
problem obtained after spatial and temporal discretization. In order to compare the
conforming and nonconforming FSI formulations, we begin by recalling the conforming
case described in Chapter 3. We remark that the models adopted here for the fluid and
the structure are those described in Section 3.2. Furthermore, as in Chapter 3, the time
discretization for the fluid problem is carried out using a second order BDF scheme while
for the structure we use the Newmark method.

To begin with, we assume that at the (common) interface Γ the fluid and solid dis-
cretizations are conforming, see Figure 6.1(a). At each time step, the resulting nonlinear
fully-discrete FSI system to be solved reads:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S(d̂n+1
s ) + 0 + 0 − IT

Γ sλn+1

−IΓ sd̂n+1
s + G(d̂n+1

f ) + 0 + 0

0 + 0 + F (un+1
f , pn+1

f , d̂n+1
f ) + IT

Γ f λn+1

− γ
βΔt IΓ sd̂n+1

s + 0 + IΓ f un+1
f + 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bs

0

bf

bc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.1)

where in Eq. (6.1) we denoted by λn+1 the vector of normal stresses (in weak form) at
the fluid–structure interface. The matrices IΓ f and IΓ s are the restriction of fluid and
structure vectors to the interface and account for the continuity of velocities and the
geometry adherence on Γ , which are imposed strongly. Their transposes account for the
continuity of the normal stresses, which is imposed weakly.

We address now the nonconforming case using INTERNODES: we assume the interface
Γ discretized using two different meshes and/or finite element approximations depending
on the side which is considered, see Figure 6.1(b). As for the mortar element method, we
need to identify the so–called master and slave domains Ωslave and Ωmaster, respectively,
that will play a different role. In particular, we assume the structure domain to be the
master, Ω̂s ≡ Ωmaster, while the fluid one represents the slave, Ωf

t ≡ Ωslave. In FSI
problems, the normal component of the stresses in weak form at the interface are usually
computed as residuals of the fluid and structure equations. In (6.1) they are represented
by λ. When dealing with nonconforming discretizations at the interface, they may be
represented by two different vectors, λf on the fluid side and λs on the solid one.

Remark 6.1: as we have seen in Chapter 5, the choice of the master and slave domains
in INTERNODES is arbitrary. Here, our choice is driven by the computational efficiency
of the construction of the preconditioner FaCSI, as we will show in Section 6.4.

In the nonconforming case the interface coupling conditions become more involved with
respect to the conforming case since an interpolation or a projection procedure has to
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be performed to enable the transfer of physical information between two different grids.
In this Chapter this procedure is carried out using the Rescaled Localized Radial Basis
Functions (RL-RBF) interpolant proposed in [Deparis et al., 2014a]. We remark that
other interpolants can be used as well (see, e.g., Section 5.4); however we choose RL-RBF
since it allows to consider also slightly nonconforming geometries, i.e., those for which Γ f

and Γ s do not exactly coincide. We define the two matrices representing the interpolation
between the two sides of the interface and denote them by Rsf , from Γ f to Γ s, and Rfs,
from Γ s to Γ f .

To better understand the way Eq. (6.1) is generalized to the nonconforming case, we
reformulate it by introducing the redundant variables λf (the normal component of the
stresses in weak form from the fluid side) and λs (the normal component of stresses
in weak form from the structure side), and set λf = λs(= λ). Then, Eq. (6.1) can be
equivalently reformulated as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S(d̂n+1
s ) + 0 + 0 + 0 − IT

Γ sλn+1
s

−IΓ sd̂n+1
s + G(d̂n+1

f ) + 0 + 0 + 0

0 + 0 + 0 − IT
Γ f λn+1

f + IT
Γ sλn+1

s

0 + 0 + F (un+1
f , pn+1

f , d̂n+1
f ) + IT

Γ f λn+1
f + 0

− γ

βΔt
IΓ sd̂n+1

s + 0 + IΓ f un+1
f + 0 + 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bs

0

0

bf

bc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(6.2)

In the nonconforming case, the kinematic coupling condition at the fluid-structure
interface becomes:

uf ◦ At = Πfs
∂d̂s

∂t
on Γ f , (6.3)

which, after discretization, reads

un+1
f |Γ f = Rfs

(
γ

βΔt
d̂n+1

s |Γ s + bc|Γ s

)
, (6.4)

where Rfs is the matrix associated with operator Πfs. Eq. (6.4) represents the discrete
form of the kinematic coupling condition in the nonconforming case and it replaces row
5 in Eq. (6.2).

We focus now on the coupling condition of the normal component of the stresses at the
fluid-structure interface. Let us denote by λn+1

s the weak form of the normal component
of the Cauchy stress (or normal traction) on Γ s at time tn+1, and by MΓ s and MΓ f the
mass matrices associated to the structure and fluid sides of the interface, respectively.
Thanks to INTERNODES (see Eq. (5.29)) the discrete form of the dynamic coupling
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condition reads:

λs
n+1 = MΓ sRsf M−1

Γ f λf
n+1. (6.5)

This equation replaces the third row in Eq. (6.2). In Eq. (6.5), we notice that M−1
Γ f λn+1

f

is an approximation of the strong form of the normal component of the stresses on Γ f ;
Rsf (M−1

Γ f λn+1
f ) is an interpolation of the normal component of the stresses on the side

of Γ s, still in strong form, and MΓ s(Πsf M−1
Γ f λn+1

f ) is again in weak form but on Γ s.
Note that the order of magnitude of the entries of λn+1

f depend on the mesh size used to
discretize Ωf

t , that of the entries of MΓ s(Πsf M−1
Γ f λn+1

f ) depend on the mesh size of Ω̂s,
while the order of magnitude of those of M−1

Γ f λn+1
f and Πsf (M−1

Γ f λn+1
f ) are independent

of the mesh sizes.

To summarize, in the nonconforming case Eq. (6.2) has to be replaced by:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S(d̂n+1
s ) − IT

Γ sλn+1
s

−RfsIΓ sd̂n+1
s + G(d̂n+1

f )

−Rsf M−1
Γ f λn+1

f + M−1
Γ s λn+1

s

F (un+1
f , pn+1

f , d̂n+1
f ) + IT

Γ f λn+1
f

− γ

βΔt
RfsIΓ sd̂n+1

s + IΓ f un+1
f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bs

0

0

bf

Rfsbc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.6)

Upon eliminating λn+1
s using Eq. (6.5), we end up with the reduced nonlinear FSI system

⎛⎜⎜⎜⎜⎜⎝
S(d̂n+1

s ) + 0 + 0 − IT
Γ sMΓ sRsf M−1

Γ f λn+1
f

−Rsf IΓ s d̂n+1 + G(d̂n+1
f ) + 0 + 0

0 + 0 + F (un+1
f , pn+1

f , d̂n+1
f ) + IT

Γ f λn+1
f

− γ

βΔt
RfsIΓ s d̂n+1

s + 0 + IΓ f un+1
f + 0

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
bs

0
bf

Rfsbc

⎞⎟⎟⎟⎟⎠
(6.7)

which should be regarded as the generalization of Eq. (6.1) to the nonconforming case.

6.3 Numerical solution of the nonconforming FSI problem

We focus on solving Eq. (6.7) using the Newton method. The solution of (6.7) at time
tn = n Δt is denoted by Xn = (dn

s , dn
f , un

f , pn
f , λn

f )T . At each time step, we compute a
sequence of approximations Xn+1

1 , Xn+1
2 , etc. until the numerical solution converges up

to a prescribed tolerance. Starting from an approximation of Xn+1
k , the generic k + 1

iteration of the Newton method applied to (6.7) requires first to assemble the residual
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Rn+1
nc,k = (rn+1

ds,k, rn+1
df ,k, rn+1

uf ,k, rn+1
pf ,k , rn+1

λ,k )T (the pedex nc stands for nonconforming):

Rn+1
nc,k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bs

0

bf

Πfsbc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S(d̂n+1
s,k ) − IT

Γ sMΓ sRsf M−1
Γ f λn+1

f,k

−RfsIΓ sd̂n+1
s,k + G(d̂n+1

f,k )

F (un+1
f,k , pn+1

f,k , d̂n+1
f,k ) + IT

Γ f λn+1
f,k

− γ

βΔt
RfsIΓ sd̂n+1

s,k + IΓ f un+1
f,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.8)

Then, we compute the Newton correction vector δXn+1
k = (δdn+1

s,k , δdn+1
f,k , δun+1

f,k , δpn+1
k ,

δλn+1
k )T by solving

JncF SI δXn+1
k = −Rn+1

nc,k , (6.9)

being

JncF SI =

⎛⎜⎜⎜⎜⎜⎝
S 0 0 −IT

Γ sMΓ sRsf M−1
Γ f

−RfsIΓ s G 0 0
0 D F IT

Γ f

− γ

βΔt
RfsIΓ s 0 IΓ f 0

⎞⎟⎟⎟⎟⎟⎠ , (6.10)

where S, G and F represents the linearized structure, geometry and fluid problems,
respectively; D are the shape derivatives (for their exact computation see [Fernández
and Moubachir, 2003]). Linear system (6.9) is solved by the preconditioned GMRES
method. Finally, we update the solution, i.e. Xn+1

k+1 = Xn+1
k + δXn+1

k . We stop the
Newton iterations when ‖Rn+1

nc,k‖∞/‖Rn+1
nc,0 ‖∞ ≤ ε, being Rn+1

nc,0 the residual at the first
Newton iteration and ε a prescribed tolerance.

In the fully conforming case, Rfs and Rsf coincide with the identity matrix and Eqs.
(6.8) and (6.10) return Eqs. (3.15) and (3.17), respectively. We remark that, with respect
to the fully conforming case, at each Newton iteration the evaluation of the residual
is more computational expensive. Indeed, to compute the residual of the structure
subproblem, first we have to apply to λn+1

k the inverse of the fluid mass matrix at the
interface, then interpolate it from the fluid to structure side of the interface and eventually
multiply it by the interface mass matrix of the solid. The residual associated to the
geometry subproblem requires to interpolate d̂n+1

s,k from the structure to the fluid side of
the interface. The computation of rn+1

λ,k involves interpolation of d̂n+1
s,k and bc from the

structure to the fluid side of the interface.

Similarly, we notice that with respect to the conforming case, at each GMRES iteration
the application of the Jacobian matrix JncF SI to a given input vector becomes more
slightly computational expensive, too.
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6.4 FaCSI with nonconforming FSI discretizations

In this Section we describe how the preconditioner FaCSI applies to the linearized fluid-
structure interaction problem obtained after spatial and temporal discretizations in the
nonconforming case. When nonconforming fluid-structure discretizations are used at the
interface, the preconditioner FaCSI devised in Section 3.6.1 reads:

PF aCSI = P ap
S · P ap

G · P ap
F , (6.11)

where:

P ap
S =

⎛⎜⎜⎜⎜⎝
HS 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎟⎠ , P ap
G =

⎛⎜⎜⎜⎜⎝
I 0 0 0

−RfsIΓ s HG 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎟⎠ , (6.12)

and

P ap
F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

0 D

⎛⎜⎝I 0 0
0 IΓ 0
0 0 I

⎞⎟⎠
⎛⎜⎝0

0
0

⎞⎟⎠
− γ

βΔt RfsIΓ s 0
(
0 0 0

)
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

0 0

⎛⎜⎝I 0 0
0 0 0
0 0 I

⎞⎟⎠
⎛⎜⎝ 0

IΓ

0

⎞⎟⎠
0 0

(
0 IΓ 0

)
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

0 0

⎛⎜⎝HKii KiΓ 0
0 IΓ 0
Bi BΓ −H

S̃

⎞⎟⎠
⎛⎜⎝ 0

IΓ

0

⎞⎟⎠
0 0

(
0 0 0

)
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

0 0

⎛⎜⎝I 0 D−1BT
i

0 IΓ 0
0 0 I

⎞⎟⎠
⎛⎜⎝ 0

IΓ

0

⎞⎟⎠
0 0

(
0 0 0

)
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

0 0

⎛⎜⎝I 0 0
0 IΓ 0
0 0 I

⎞⎟⎠
⎛⎜⎝0

0
0

⎞⎟⎠
0 0

(
KΓ i KΓ Γ BT

Γ

)
I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.13)

In particular, we have dropped the off-diagonal block −IT
Γ sMΓ sRsf M−1

Γ f . As before we
condense the interface degrees of freedom related to the Lagrange multiplier in step
3 of the following algorithm. For the sake of clarity, we point out that, for a given
residual r = (rds , rdf

, ruf
, rpf

, rλ)T , the application of our preconditioner amounts to
solve PF aCSIw = r, therefore involving the following steps:
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1. Application of (P ap
S )−1: wds = H−1

S rds .

2. Application of (P ap
G )−1: wdf

= H−1
G (rdf

+ RfsIΓ swds).

3. Application of (P ap
F )−1: compute zF = rF − Dwdf

and zλ = rλ + γ
βΔt RfsIΓ swds .

Then, after denoting by wu and wp, zu and zp the velocity and pressure components
of wF and zF , respectively, thanks to (3.25c) we set zu,Γ = zλ. The application of
the SIMPLE preconditioner involves:

a) yu,i = H−1
Kii

(zu,i − KiΓ zu,Γ ),

b) wp = H−1
S̃

(Biyu,i − zp + BΓ zu,Γ ),

c) wu = (wu,i, wu,Γ )T = (yu,i − D−1BT
i wp, zu,Γ )T .

Finally, we compute wλ = IΓ
uf (zu − Kwu − BT wp).

We notice that, with respect to the conforming case, at each linear solver iteration the
application of the preconditioner FaCSI to a given residual involves one interpolation of
the vector wds from the structure to the fluid interface.

6.5 Numerical Examples

We test our FSI solver on two different test cases: the first is an FSI example in which
we study the fluid flow in a straight flexible tube, the second consists in the simulation
of the hemodynamics in a femoropopliteal bypass. In Section 6.5.1 we carry out a mesh
convergence study where we address both the case of nonconforming polynomial degrees
and nonconfrming meshes at the fluid-structure interface. In Section 6.5.2 we study the
weak and strong scalability properties of FaCSI in the nonconforming case and we quantify
how to deal with nonconforming discretizations increases the computational costs with
respect to the conforming case. In Section 6.5.3 we compare the performance of our solver
with those reported in [Klöppel et al., 2011], wherein a dual mortar approach for FSI was
used. Finally, we test our solver on a large-scale simulation of the hemodynamics in a
femoropopliteal bypass in which both nonconforming meshes and polynomial degrees are
used at the fluid-structure interface. We point out that all the settings for the numerical
examples solved in Sections 6.5.1 and 6.5.2 are the same of those described in Section
3.7.1 of Chapter 3. Similarly, the settings adopted for the simulation in Section 6.5.4 are
those already described in Section 3.7.2 of Chapter 3.

6.5.1 Mesh convergence study

In this Section we carry out a mesh convergence study of the solver implemented using
nonconforming discretizations at the fluid-structure interface. To this end, we consider
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five meshes of increasing refinement: in Table 6.1 we report the information of the fluid-
structure meshes used for the analysis. Two different types of nonconformity, idetified by
Set A and Set B, are taken into account in the mesh convergence study. In Set A, see

Fluid Structure
# Vertices # Tetrahedra # Vertices # Tetrahedra

Mesh # 1 2’337 11’040 2’460 9’600

Mesh # 2 13’603 72’000 8’052 31’680

Mesh # 3 64’943 362’400 23’028 91’200

Mesh # 4 183’300 1’045’800 60’912 272’160

Mesh # 5 285’912 1’641’180 84’816 379’440

Table 6.1: Details of the meshes used for the straight cylinder example.

Set A - nonconforming polynomial degree
Fluid DoF Structure DoF Coupling DoF Geometry DoF Total

9’348 48’600 2’340 7’011 67’299
54’412 159’720 7’788 40’809 262’729
259’772 458’280 22’572 194’829 935’453
733’200 1’274’616 45’036 549’900 2’602’752

1’143’648 1’775’928 58986 857’736 3’836’298

Table 6.2: Number of Degrees of Freedom for the nonconforming polynomial degree case.

Set B - nonconforming meshes
Fluid DoF Structure DoF Coupling DoF Geometry DoF Total

52’152 48’600 3’160 49’815 153’727
320’338 159’720 10’472 306’735 797’265

1’568’222 458’280 30’248 1’503’279 3’560’029
4’473’327 1’274’616 60’264 4’290’027 10’098’234
6’997’815 1’775’928 84’072 6’711’903 15’569’718

Table 6.3: Number of Degrees of Freedom (DoF) for the nonconforming meshes case.

Table 6.2, at the fluid-structure interface we use conforming meshes but nonconforming
polynomial degrees; in Set B, see Table 6.3, we address the case of nonconforming meshes.
In Set A we use P1-P1 finite elements (stabilized by SUPG-VMS) for the fluid velocity
and pressure, respectively, P2 for the the structure displacement and P1 for the ALE. In
Set B we discretize the fluid velocity and pressure by P2-P1 finite elements, respectively,
the structure displacement by P2 and the ALE by P2 as well. We point out that the
nonconforming meshes used in Set B have been generated by rotating the conforming
ones used in Set A such that the fluid and structure meshes overlap for roughly a third
of an element length.
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In Figure 6.2 we show a post-processing of the solutions obtained at time t = 0.005 s:
from left to rigth we report the results obtained with Set A-Mesh # 3, Set B-Mesh # 3
and conforming meshes. The results corresponding to the conforming case have been
generated using Mesh # 5 of Table 3.4 (using more than 15 millions DoFs in total). We
notice the results obtained using nonconforming discretizations match almost exactly
those obtained in the conforming case, even if in the conforming case we used a much
bigger number of degrees of freedom.

(a) Set A, Mesh # 3. (b) Set B, Mesh # 3. (c) Conforming case.

Figure 6.2: Post-processing of the results obtained at time t = 0.005 s. In the upper
row we show the fluid pressure, while in the bottom one the magnitude of the structure
displacement. The deformation of the fluid and structure domains is magnified by a
factor 10 for visualization purposes.

Finally, in Figure 6.3 we compare the solutions obtained for Set A and Set B by plotting
the values of the fluid velocity and pressure, and the radial component of the solid
displacements versus time at two specific locations shown in Figure 6.3(a). Furthermore,
in Figure 6.3, we also report the results obtained using conforming meshes (using Mesh
# 5 of Table 3.4). The left most plots of Figure 6.3 show the mesh convergence of the
structure displacements using Set A (top) and Set B (bottom). The use of quadratic
finite elements in both Set A and Set B yields a very similar convergence behavior
observed in both the cases. In the middle and right most plots of Figure 6.3 we report the
mesh convergence results for the magnitude of the fluid velocity and the fluid pressure,
respectively. In this regard, we notice the different convergence behavior between Set A
and Set B. Indeed, as a consequence of using P1-P1 elements for the fluid velocity and
pressure in Set A while P2-P1 in Set B, the curves associated to Set B converges much
faster than those of Set A.
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(a) Points of measure.
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Figure 6.3: On the top we show the locations where results are taken in the fluid (PF) and
the structure (PS). From left to right we report the evolution of the radial component
of the structure displacement at PS, the magnitude of the fluid velocity and the fluid
pressure at PF. In the mid row we report the results for Set A while in the bottom row
those generated with Set B.

6.5.2 Weak and strong scalability study of FaCSI in the nonconforming
case

In this Section we are interested in studying the weak and strong scalability performance
of FaCSI when nonconforming meshes are used at interface separating the fluid and
structure domains. In addition, we aim at comparing the performace obtained in the
nonconforming case with those reported in Section 3.7.1, where matching fluid- structure
grids were considered. As in Section 3.7.1, the strong and weak scalability performance
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of FaCSI are tested by solving the straight flexible tube example using the three sets
of fluid-structure meshes already adopted in Section 3.7.1. For readers’ convenience, in
Tables 6.4 and 6.5 we report the details of the meshes adopted and the corresponding
number of degrees of freedom of the discretized FSI problem. We point out that the
nonconforming meshes have obtained by rotating the conforming ones, see Figure 6.4.

Fluid Structure
# Vertices # Tetrahedra # Vertices # Tetrahedra

Mesh # 1 210’090 1’202’040 65’424 292’320

Mesh # 2 559’471 3’228’960 191’080 913’920

Mesh # 3 841’341 4’880’640 300’456 1’497’600

Table 6.4: Details of the meshes used for the straight cylinder example.

Fluid DoF Structure DoF Coupling DoF Geometry DoF Total
Mesh # 1 5’134’050 1’369’030 195’576 4’923’960 11’622’616

Mesh # 2 13’728’971 4’119’980 456’114 13’169’500 31’474’595

Mesh # 3 20’696’341 6’599’740 598’104 19’855’000 47’749’185

Table 6.5: Straight flexible tube test case: number of Degrees of Freedom (DoF).

(a) Mesh # 1, conforming
case.

(b) Mesh # 1, nonconform-
ing case.

Figure 6.4: Front view of the conforming (left) and nonconforming (right) fluid–structure
meshes used. With respect to the conforming case, in the nonconforming one we rotate
the fluid meshes such that the fluid and structure interfaces are non-conforming.

Based on the scalability results reported in Section 3.7.1, here we configure FaCSI using
SetC of Table 3.5. Specifically we make use of the AAS method for HS , HG , while the 3
level AMG method is used for HKii and H

S̃
. We remark that the exact local subdomain

solves for AAS as well as the exact coarse solve of the AMG preconditioner are carried
out by LU factorization using the library MUMPS [Amestoy et al., 2001, Amestoy et al.,
2006].

In Figure 6.5 and 6.6 we report the weak and strong scalability results obtained, respec-
tively (consisting in average values over the first 10 time steps simulated). For the sake of
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comparison, on the left column we report the weak scalability obtained in the conforming
case while in the right column those with nonconforming discretizations.
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Figure 6.5: Weak scalability results: left column with conforming discretizations, right
column using nonconforming discretizations.

By comparing the results with conforming and nonconforming fluid-structure interface
discretizions, we notice that the weak scalability properties of FaCSI obtained in the
nonconforming case are almost the same of those using conforming meshes. In particular,
the iteration count only mildly depends on both the mesh size (along each curve the
number of iterations vary from roughly 22 to 36 iterations) and the number of degrees
of freedom per core since the three curves almost overlap. In terms of average time to
complete a single time step, we notice that it is weakly scalable for a core workload of
50’000 Dofs while for 30’000 and 40’000 it increases with the cores count as the time
spent by communication is larger than the actual one associated to the relatively small
amount of computational work required on each individual core. We notice that dealing
with nonconforming meshes yields an increase in computation time of approximately
15%. This is completely due, as already explained in Sections 6.3 and 6.4, to the intergrid
interpolations which are carried out for both the application of the exact FSI jacobian
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Figure 6.6: Strong scalability results: left column with conforming discretizations, right
column using nonconforming discretizations.
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matrix and the FaCSI preconditioner at each linear solver iteration.

We focus now on the strong scalability results reported in Figure 6.6. As already observed
for the weak scalability study, the strong scalabity properties of FaCSI obtained with
conforming discretizations are preserved in the nonconforming case. In particular, we
notice that both the iterations count and the time to build the preconditioner are very
similar in the conforming and nonconforming case. In terms of time to solve the linear
system, we notice that dealing with nonconforming FSI discretizations increases the
computational costs of about 15%. Finally, we notice that the time to complete a single
time step increases of about the 15% too (as observed earlier in the weak scalability
study) with respect to the conforming case as a consequence of the more computational
expensive solution of the linear system.

6.5.3 Comparison with a dual mortar formulation for FSI with non-
conforming interface discretizations

In this Section we compare the performance of the FSI solver implemented based
on INTERNODES with those reported in [Klöppel et al., 2011], where the authors
propose a dual mortar approach for fluid-structure interaction with non-conforming
interface meshes. Specifically, they employ a dual mortar method [Wohlmuth, 2000, Puso,
2004, Lamichhane et al., 2005] with discrete Lagrange multipliers that are constructed
based on a biorthogonality relation with the primal shape functions at the fluid-structure
interface.

We compare the performance of our solver with the one used in [Klöppel et al., 2011]
by numerically solving a fluid-structure interaction problem in a flexible tube. All the
parameters used for setting-up the numerical example are those reported in [Klöppel
et al., 2011]. In particular, the geometry of the fluid domain consists in a cylinder of
length 10 cm and radius of 1cm. The fluid domain is sourrounded by a structure of
constant thickness of 0.1 cm. The structure is modeled with a Neo-Hookean material law
with Young’s modulus E = 106 dyne/cm2, Poisson’s ratio ν = 0.3 and density ρs = 1.2
g/cm3. The fluid is characterized by a dynamic viscosity μf = 0.03 g/(cm s) and density
ρf = 1.0 g/cm3. A normal stress of 10000 dyne/cm2 is applied at the fluid inflow for
t < 0.003 s.

To carry out the comparison with [Klöppel et al., 2011] (in which hexahedral elements
were used, whereas we use tetrahedra) we solve the FSI problem using computational fluid
and structure meshes which, after discretization, yield approximately the same number
of degrees of freedom reported in [Klöppel et al., 2011]. In Tables 6.6 and 6.7 we report
the number of degrees of freedom of the discretized FSI problem used in [Klöppel et al.,
2011] and in this work, respectively. We notice that, as in [Klöppel et al., 2011], the fluid
mesh is generated such that the fluid and structure meshes overlap for approximately a
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third of an element length. The stopping criterion for the Newton method, as well as the
one used for the GMRES linear solver, are the same of [Klöppel et al., 2011].

Mesh Fluid DoF Structure DoF Geometry DoF Total

1 9’612 2’400 7’209 19’221
2 71’444 14’688 53’583 139’715
3 189’916 44’352 142’437 376’705
4 540’956 96’960 405’717 1’043’633

Table 6.6: Degrees of freedom for different discretizations of the FSI problem, see
Table 1 in [Klöppel et al., 2011].

Mesh Fluid DoF Structure DoF Coupling DoF Geometry DoF Total

1 10’980 4’464 2’808 10’455 28’707
2 65’725 16’416 11’088 62’805 156’034
3 213’076 59’760 24’840 203’931 501’607
4 628’077 102’720 51’480 601’701 1’383’978

Table 6.7: Degrees of freedom for different discretizations of the FSI problem in our tests.

To compare the performance of INTERNODES with the ones reported in [Klöppel
et al., 2011], computations are performed in parallel on up to 12 processors. The
parallel performance are assessed by monitoring the average number of Newton iterations,
of GMRES iterations and the average computation time per time step. The results
obtained in [Klöppel et al., 2011] are reported in Table 6.8, while those generated using
INTERNODES are shown in Table 6.9

By comparing the results reported in Table 6.8 and 6.9 we notice that the approach
based on INTERNODES, for all the meshes used, leads to a number of linear solver
iterations that is lower with respect to the dual mortar approach. As in [Klöppel et al.,
2011], we point out that the preconditioner used here was simply carried over from the
conforming case (see Section 6.4). Although in [Klöppel et al., 2011] no information
are reported regarding the computing machines on which the simulations were run, we
observe that the average computational time spent to complete a single time step is
smaller using INTERNODES than the dual mortar technique by approximately a 15%
(here the simulations were run on a single node of the PizDora supercomputer at CSCS,
see Table 1.4).

Finally, for the sake of visualization, in Figure 6.7 we show the deformed configuration of
the flexible tube at time t = 0.01 s: we notice that is in very good agreement with the
result illustrated in Figure 8 of [Klöppel et al., 2011].
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Mesh # proc Newton GMRES Time

1 4 2.97 36.1 6.09
2 8 2.98 32.8 27.1
3 12 2.97 37.1 50.68
4 12 2.78 42.7 121.68

Table 6.8: Performance of the FSI solver used in [Klöppel et al., 2011], see Table 2 rows
marked with NC.

Mesh # proc Newton GMRES Time

1 4 2.86 20.7 4.55
2 8 2.86 20.8 17.62
3 12 2.88 20.9 43.43
4 12 2.91 23.3 101.85

Table 6.9: Performance of the FSI solver based on INTERNODES.

Figure 6.7: Deformed fluid-structure configuration at time t =0.01 s. Structure colored
by the magnitude of the solid displacement; arrows are used to visualize the fluid velocity
field.

6.5.4 FSI in a patient-specific femoropopliteal bypass

We consider a blood flow simulation in a patient–specific femoropopliteal bypass. To
estimate accurately the Wall Shear Stress (WSS) distribution [Marchandise et al., 2012]
in this example we consider a high-resolution fluid mesh which is much finer with respect
to the structure grid. As a consequence, the structure mesh is nonconforming with respect
to the one of the vessel wall, see Figure 6.8. The blood is characterized by a density
ρf = 1 g/cm3 and a dynamic viscosity μf = 0.0035 g/(cm s). The Young’s modulus
of the vessel wall is Es = 4 × 106 dyne/cm2 and the Poisson’s ratio is νs = 0.45. The
boundary conditions used for the simulation are the same described in Section 3.7.2,
where conforming fluid-structure meshes were used. Based on the finding reported in
Chapter 4, we discretize the solid displacement using P2 finite elements. For the fluid,
we use P1-P1 elements to approximated the velocity and pressure variables (stabilized by
SUPG-VMS); P1 elements are used for the ALE. Therefore, in this example we use both
nonconforming meshes and nonconforming FE discretizations. The time step considered
is Δt = 0.001 s. In Tables 6.10 and 6.11 we report the details of the meshes used and
the number of degrees of freedom, respectively.
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(a) Inlet (right) and occluded branch (left). (b) Outlet.

Figure 6.8: Meshes generated for the femoropopliteal bypass test case.

Fluid Structure
# Vertices # Tetrahedra # Vertices # Tetrahedra
2’768’791 17’247’246 113’380 508’374

Table 6.10: Details of meshes used for the femoropopliteal bypass example in the
nonconforming case.

Fluid DoF Structure DoF Coupling DoF Geometry DoF Total
11’075’164 9’481’350 943’170 8’306’373 29’806’057

Table 6.11: Number of degrees of freedom for femoropopliteal bypass test case in the
nonconforming case.

In Figures 6.9, 6.10 and 6.11 we show the streamlines of the fluid flow, the structural
displacement and the WSS distributions computed at three different time steps during
the third heart-beat simulated. The results computed in the nonconforming case are
also compared with those shown in Figure 3.12 generated using conforming interface
discretizations. We notice that, although nonconforming meshes and discretizations are
used here, both the WSS magnitude and distribution are in good agreement with the
results obtained in Chapter 3 where conforming fluid-structure meshes were adopted.
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Figure 6.9: Streamlines of the fluid flow at time t = 1.8 s (top), 1.9 s (middle) and 2.0 s
(bottom). In the left colums we report the results obtained in the conforming case (see
Figure 3.12), on the right those generated using nonconforming discretizations.
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Chapter 6. Numerical solution of nonconforming FSI problems

Figure 6.10: Magnitude of the structure displacement at time t = 1.8 s (top), 1.9 s
(middle) and 2.0 s (bottom). In the left colums we report the results obtained in the
conforming case (see Figure 3.12), on the right those generated using nonconforming
discretizations.
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6.5. Numerical Examples

Figure 6.11: Wall Shear Stress at time t = 1.8 s (top), 1.9 s (middle) and 2.0 s (bottom).
In the left colums we report the results obtained in the conforming case (see Figure 3.12),
on the right those generated using nonconforming discretizations.
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Chapter 6. Numerical solution of nonconforming FSI problems

Figure 6.12: Fluid pressure at time t = 1.8 s (top), 1.9 s (middle) and 2.0 s (bottom). In
the left colums we report the results obtained in the conforming case, on the right those
generated using nonconforming discretizations.
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7 Conclusions

In this thesis we addressed the development and implementation of efficient and parallel
algorithms for the numerical simulation of large-scale fluid-structure interaction problems
in hemodynamics. In the first Part we considered conforming fluid-structure discretiza-
tions at their common interface while in the second one we addressed the nonconforming
case. The result is the development of a scalable fluid-structure interaction solver which
can effectively be used to simulate complex problems in hemodynamics. This solver
is flexible and versatile since it allows the use of nonconforming fluid-structure meshes
with arbitrary discretizations. In addition, the algorithms devised allow for the parallel
solution of FSI problems discretized with more than a hundred of millions degrees of
freedom using thousands of cores on high performance computing machines. We report
hereafter the main methodological contributions of this thesis.

• We proposed an efficient semi-implicit time discretization of the Navier-Stokes
equations with Variational Multiscale-Large Eddy Simulation modeling. Thanks
to linearization by Newton-Gregory backward polynomials, our approach yields
only one linear system that has to be assembled and solved at each time step.
In addition, to lower the computational costs of the numerical simulation, we
developed a parallel solver based on the GMRES method preconditioned by an
algebraic multigrid preconditioner.

• INTERNODES : we devise a new interpolation based method called INTERNODES
for the numerical solution of partial differential equations on domains decomposed
into several subdomains featuring nonconforming interfaces. The nonconforming
problem was formulated in variational form as a generalized Galerkin problem
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Chapter 7. Conclusions

in which the intergrid operator for the data transfer across the nonconforming
subdomain interfaces is based on interpolation. Two interpolants are used for
transferring information across the interface: one from master to slave and another
one from slave to master. The former is used to ensure continuity of the primal
variable (the problem solution), while the latter for the dual variable (the normal
flux). We extensively investigated the convergence properties of INTERNODES
and we showed that the orders of convergence obtained by INTERNODES compare
successfully with those generated by mortar.

• FaCSI preconditioner : we proposed a novel block preconditioner for fluid-structure
interaction problems called FaCSI. It takes advantage of physics-specific ad-hoc
preconditioners available for each subproblem (structure, geometry and fluid). An
analysis of the strong and weak scalability properties of FaCSI was carried out
by customizing it using different preconditioners (algebraic additive Schwarz and
algebraic multigrid) for the structure, geometry and fluid problems. Our analysis
showed that the most efficient choice consists in using the 1 level algebraic additive
Schwarz preconditioners for the structure and geometry problems, together with
the 3 level algebraic multigrid method for the fluid. In addition, we showed that
the preconditioner FaCSI yields almost the same scalability performance regardless
the use of conforming or nonconforming discretizations between the fluid and the
structure at their interface.

High performance computing has maintained a central role in both the design and
implementation of all the aforementioned techniques. All these methods have been
instrumental to allow a very effective treatment of several benchmark cases and other
more complex problems relevant for a wide range of engineering and physical applications
in hemodynamics. In particular, the effectiveness of the solver implemented was demon-
strated by tackling complex problems spanning different scenarios like the simulation
of computational fluid dynamics at transitional and high Reynolds numbers in Chapter
1, and the simulation of fluid-structure interaction in patient-specific geometries using
conforming (Chapter 3) and nonconforming interface discretizations (Chapter 6). In all
these cases, our algorithms showed to be scalable up to thousands of cores utilized on
high performance computing machines.

Perspectives and future work

The robust and parallel FSI solver developed in this thesis opens the way for studying
more challenging hemodynamics problems in which more complex and detailed geometries
may be taken in account. We plan to move towards the integration of our parallel solver in
a geometrical multiscale framework, thus allowing the simulation of the arterial circulation
throughout the whole arterial tree. In this regard, high-resolution 3D models will be
used to numerically study the most critical zones while low dimensional models can be
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exploited for the parts of the circulatory system which are not of primary interest.

One ongoing work focuses on extending algorithms developed to model the vessel wall as
a composite multilayered structure. In [Bukac et al., 2016] we presented a monolithic
computational model of FSI where the structure consists of two layers: a thin layer in
direct contact with the fluid, and a thick layer sitting on top of the thin layer. The thin
layer is treated using the membrane model proposed in [Figueroa et al., 2006, Colciago
et al., 2014], while the thick layer is modeled using the equations of 3D linear elasticity.
In addition to the composite structure described above, in this work we also varied the
structure thickness and elasticity properties to capture the presence of atheroma, a fatty
plaque tissue, associated with atherosclerosis. Furthermore in [Bukac et al., 2016] we
addressed the numerical simulation of a diseased stented artery by allowing a change in
the elastic properties of the thin structural layer where the stent struts are located.

From a numerical standpoint, the parallel algorithms for fluid-structure interaction
devised in this thesis can be further extended, e.g., by exploiting adaptive time stepping
as in [Mayr et al., 2015] in order to further reduce the computational effort of the
simulations. Indeed, in this work the time discretization of the coupled FSI system was
carried out by choosing a constant time step Δt throughout the whole simulation. In
particular, the demanding high level of temporal accuracy forced the use of very small
time step sizes. As a consequence, when the use of such small time steps is not required
to maintain the desired level of accuracy throughout the entire simulation, this may lead
to significant increase in computational costs. Conversely, an adaptive choice of the time
step size may limit the overall computational time.
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