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� Zusammenfassung

In dieser Arbeit untersuchen wir Riemannsche Lösungsverfahren für hochdimensionale
Optimierungsprobleme mit Niedrigrangstruktur. Der Begriff der Hochdimensionalität
bezieht sich hierbei auf den Suchraum, während die Zielfunktion skalarwertig ist. Pro-
bleme solcher Art treten zum Beispiel bei der Rekonstruktion von hochdimensionalen
Datensets oder der Lösung von parameterabhängigen partiellen Differentialgleichun-
gen auf.

Da die Anzahl der Freiheitsgrade exponentiell mit der Anzahl der Dimensionen an-
steigt, der sogenannte Fluch der Dimension, ist der Rechenaufwand für eine direkte
Lösung des Optimierungsproblems nur für niedrigdimensionale Probleme handhab-
bar. Durch die Annahme von Niedrigrangstruktur in der Lösung erhalten wir ein
Optimierungsproblem mit Nebenbedingung, welches deutlich weniger Freiheitsgrade
aufweist.

Dieses Optimierungsproblem mit Nebenbedingung kann als Optimierung auf einer
Mannigfaltigkeit interpretiert werden. Hierbei betrachten wir die Niedrigrangdar-
stellungen im sogenannten Tucker- oder Tensor-Train-Format, welche eine glatte,
eingebettete Untermannigfaltigkeitsstruktur besitzen. Die glatte Struktur erlaubt es
uns, effiziente gradientenbasierte Optimierungsverfahren herzuleiten.

Im Speziellen entwickeln wir ein Riemannsches Verfahren der konjugierten Gra-
dienten, um das Tensor-Completion-Problem zu lösen. Hierbei versuchen wir, ein
hochdimensionales Datenset zu rekonstruieren, bei dem der Grossteil der Einträge
unbekannt ist.

Für die Lösung von linearen Gleichungssystemen zeigen wir Wege auf, um den
Riemannschen Gradienten vorzukonditionieren und Informationen zweiter Ordnung
im Rahmen eines approximativen Newtonverfahrens einfliessen zu lassen.

Zu guter Letzt beschreiben wir ein vorkonditioniertes alternierendes Optimierungs-
verfahren mit Unterraumkorrektur zur Lösung hochdimensionaler Eigenwertproble-
me.

Schlagwörter. Fluch der Dimensionen, Riemannsche Optimierung, Niedrigrankstruk-
tur, Tucker-Format, Tensor-Train-Format, Vorkonditionierung
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� Abstract

In this thesis, we present a Riemannian framework for the solution of high-dimensional
optimization problems with an underlying low-rank tensor structure. Here, the high-
dimensionality refers to the size of the search space, while the cost function is
scalar-valued. Such problems arise, for example, in the reconstruction of high-
dimensional data sets and in the solution of parameter dependent partial differential
equations.

As the degrees of freedom grow exponentially with the number of dimensions, the
so-called curse of dimensionality, directly solving the optimization problem is compu-
tationally unfeasible even for moderately high-dimensional problems. We constrain
the optimization problem by assuming a low-rank tensor structure of the solution;
drastically reducing the degrees of freedom.

We reformulate this constrained optimization as an optimization problem on a
manifold using the smooth embedded Riemannian manifold structure of the low-rank
representations of the Tucker and tensor train formats. Exploiting this smooth
structure, we derive efficient gradient-based optimization algorithms.

In particular, we propose Riemannian conjugate gradient schemes for the solution
of the tensor completion problem, where we aim to reconstruct a high-dimensional
data set for which the vast majority of entries is unknown.

For the solution of linear systems, we show how we can precondition the Rieman-
nian gradient and leverage second-order information in an approximate Newton
scheme.

Finally, we describe a preconditioned alternating optimization scheme with subspace
correction for the solution of high-dimensional symmetric eigenvalue problems.

Keywords. Curse of dimensionality, Riemannian optimization, low-rank structure,
Tucker format, Tensor Train, preconditioning
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Chapter 1
� Introduction

High-dimensional mathematical models frequently appear in science and engineering
and are a source of very challenging computational problems. These problems are
often formulated as optimization problems. For example, a chemist may ask: “How
does this molecule look like, that is, what molecular structure minimizes its energy?”
Answering this question requires an optimization procedure combined with the
solution of the Schrödinger equation, a partial differential equation, for this molecular
system. Even for rather small molecules, the involved degrees of freedom quickly
become computationally infeasible.

Formally speaking, we want to solve an optimization problem

argmin
x∈RN

f(x), (1.1)

where f : RN → R is a cost function and the size of x is exceedingly large, say,
N = nd = 1042. To still be able to solve these problems, the underlying structure
of the problem has to be identified and exploited. Depending on the source of the
problem, assuming a low-rank structure of x is a sensible choice. For example, let us
assume x is represented as the rank-1 product

x = xd ⊗ xd−1 ⊗ · · · ⊗ x1, xi ∈ Rn, i = 1, . . . , d. (1.2)

Then, the vector x is described by only nd = 10 · 42 = 420 degrees of freedom
instead of nd = 1042. This product structure also allows us to view the vector x as
a 42-dimensional tensor X ∈ R10×10×···×10. Based on the simple product structure
(1.2), much more sophisticated types of low-rank tensor formats have been developed,
with different generalizations of the well-known matrix rank to the tensor case.

In this thesis, we focus on the Tucker and tensor train (TT) formats for dealing with
low-rank structure in low and high dimensional tensors, respectively. The Tucker
format dates back to the 1960s [Tuc66] and was introduced as a way to perform
so-called multiway factor analysis for psychometric studies. Since then, it has seen
various applications. Most often, the Tucker format is used in the three-dimensional
case. For higher dimensions, its storage scales exponentially with the rank, which
limits its practicality. The TT format remedies this exponential scaling and is
thus better suited for high-dimensional problems. In the numerical linear algebra
community, this ansatz was developed by Oseledets and Tyrtyshnikov [OT09, Ose11c]
but was already used earlier under the name matrix product states (MPS) in the
physics community to represent quantum states of 1D spin chains [AKLT87, AKLT88,
HWSH13, FNW92, OR95, Sch11, Vid03, Whi92]. We mention a third and slightly
more general format, the tree-structured hierarchical Tucker (HT) representation
[Gra10, HK09], but will not discuss it in this thesis.
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One important feature that all tensor formats have in common is their multilin-
earity, which allows us to extend powerful tools from linear algebra to the tensor
setting.

Assuming such a low-rank structure of x when viewed as a tensor X yields the
constrained optimization problem

argmin
X∈Rn×···×n

f(X),

rank(X) = r,
(1.3)

where the notion of the rank of a tensor X is defined by the specific tensor format
and the cost function f is now seen as a function f : Rn×n×···×n → R.

Note that the constrained optimization problem (1.3) is non-convex even if the cost
function f is a convex function. In these cases, the unconstrained problem (1.1) has
a unique minimum, but the rank constraint leads to a highly non-linear constrained
problem (1.3) with multiple local minima.

1.1. High-dimensional problems

As instances of high-dimensional problems exhibiting a low-rank tensor structure, we
consider the following settings in this thesis.

Tensor completion. In tensor completion, we aim to reconstruct a d-dimensional
data set A ∈ Rn1×···×nd of which the vast majority of entries is missing. In this case,
the cost function is given by

f(X) =
1
2
‖PΩ X− PΩ A‖2, (1.4)

where the squared norm ‖·‖2 is the sum of the squared entries of the tensor. We denote
by PΩ the projection onto the sampling set Ω ⊂ {1, 2, . . . , n1} × · · · × {1, 2, . . . , nd}
corresponding to the indices of the known entries of A,

PΩ X :=

⎧⎨⎩X(i1, i2, . . . , id) if (i1, i2, . . . , id) ∈ Ω,

0 otherwise.

The tensor completion problem (1.4) and variants thereof have been discussed a
number of times in the literature. Most of this work builds upon existing work
for the special case d = 2, also known as matrix completion, see [MWG+] for a
comprehensive overview.

Algorithms developed for the Tucker format range from alternating minimization
[LMWY09, LS13] and convex optimization, using various generalizations of the
nuclear norm [LMWY09, LS13, GRY11, SLS10, STL+14, SPM+11], to Riemannian
optimization techniques [KM15].

In the TT format, Grasedyck et al. [GKK13] presented an alternating direction
method. For the HT format, Da Silva and Herrmann [DSH15] have derived HTOpt,
a Riemannian approach closely related to the work presented in this thesis.
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Linear systems. An example of a tensor-structured linear system is obtained from
a finite difference discretization of a high-dimensional PDE such as the Poisson
equation on a uniform tensor grid with n1n2 · · ·nd grid points. This results in a
linear system

Ax = f, A = Ld ⊗ I ⊗ · · · ⊗ I + · · ·+ I ⊗ · · · ⊗ I ⊗ L1,

with Lμ ∈ Rnμ×nμ , μ = 1, . . . , d, being the one-dimensional finite difference matrices.
The solution x ∈ Rn1n2···nd has a natural interpretation as a d-dimensional tensor
X ∈ Rn1×···×nd corresponding to the tensor grid. Thus, we can also write the linear
system as AX = F, where A : Rn1×···×nd → Rn1×···×nd is a symmetric linear operator.
Finding the solution of such a linear system is equivalent to minimizing the cost
function

f(X) =
1
2
〈X,AX〉 − 〈X, F〉, (1.5)

where the inner product 〈·, ·〉 of two tensor is the sum of their elementwise product.
In contrast to the tensor completion problem, the Hessian of f at the solution is
usually ill-conditioned, which severely slows down the convergence of gradient-based
optimization algorithms. Thus, deriving efficient preconditioning schemes is a crucial
ingredient when trying to create efficient solution algorithms.

Existing methods to approach high-dimensional linear systems include extensions
of standard iterative solvers to the tensor case, such as the Richardson iteration or
Krylov subspace methods [BG13, Dol13, KO10b, KS11, KT11a]. The multilinearity
of the tensor formats lends itself well to a second class of methods based on the
alternating optimization of each factor. Examples are the alternating linear scheme
(ALS) [HRS12a], density matrix renormalization group (DMRG) [DO12, Ose11a] and
alternating minimal energy (AMEn) [DS14] algorithms.

Eigenvalue problems. Eigenvalue problems are often obtained in a similar setting
as linear systems and most prominently appear in the calculation of energy states
of physical systems. We want to find eigenvalues λ ∈ R and eigenvectors X such
that

AX = λX.

When A is a symmetric linear operator, the eigenvector X corresponding to the
smallest eigenvalue is obtained from the minimizer of the Rayleigh quotient,

f(X) =
〈X,AX〉
〈X, X〉 .

Again, preconditioning is necessary to obtain fast convergence in the optimization
algorithms.

If we want to compute p eigenvalues instead of only one, we can replace the Rayleigh
quotient with the trace minimization formulation. In the matrix representation A of
the operator A, the corresponding optimization problem can be written as

min
{

trace(UTAU)
∣∣ U ∈ Rn1···nd×p, UTU = Ip

}
. (1.6)
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The minimum is attained if U is an orthonormal basis for the span of the first
p eigenvectors. To represent U in a tensor format, we will use the block TT for-
mat [DKOS13].

Similar to linear systems, existing algorithms for eigenvalue computations with
low-rank tensor structure fall into two categories: extensions of classic eigenvalue
solvers such as Lanczos and LOBPCG to the tensor case [HKST12, HW12, KO10b,
KT11b, Leb11] or alternating optimization techniques such as ALS and DMRG
[Sch11, DKOS13, KO10a, KT11b].

1.2. Riemannian optimization

Riemannian optimization is a generalization of standard Euclidean optimization
methods to smooth manifolds, see [AMS08] for an overview. The fundamental idea is
to formulate the optimization problem on the curved manifold instead of the standard
Euclidean space. As a result, a suitably reformulated unconstrained optimization
procedure will only use feasible points by construction.

Riemannian optimization provides an elegant way to approach the rank constraint
in (1.3) by using the fact that the set of matrices of fixed rank,

M =
{
X ∈ Rn1×n2

∣∣ rank(X) = r
}
,

forms a smooth embedded submanifold of Rn1×n2 , see e.g. [Lee03]. Analogous
results are available for the Tucker, TT and HT tensor formats [HRS12b, Usc13,
UV13].

Thus, we reformulate the constrained optimization problem (1.3) as an unconstrained
optimization problem on M,

argmin
X∈M

f(X).

We can then exploit the smooth manifold structure to derive efficient gradient-based
algorithms. The usual notions of derivatives and line-searches now have to be replaced
by their differential geometric counterparts, such as tangent vectors and curves along
the manifold.

1.3. Contributions of this thesis

Chapter 2. We review the basic principles of Riemannian optimization and collect
the most important results needed to perform Riemannian optimization techniques
on embedded submanifolds.

Chapter 3. We discuss the Tucker format and efficient ways to perform operations
on it. As we are dealing with large, high-dimensional objects, these operations
have to be handled with great care such that their low-rank factorization is kept
intact. In Section 3.4 we provide a new proof of the manifold structure of the set of
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Tucker tensors of fixed multilinear rank and provide a framework for Riemannian
optimization on the manifold of Tucker tensors. In particular, we show in Section 3.6
that the higher-order SVD fulfills the properties of a retraction map, which is needed
to calculate the next iterate in a Riemannian gradient scheme.

Chapter 4. We show how we can derive similar results as in Chapter 3 but for the
tensor train (TT) format, which allows us to tackle higher-dimensional problems due
to its better scaling behaviour with respect to the number of dimensions. We discuss
the manifold properties and all necessary ingredients for Riemannian optimization
algorithms on the manifold of tensors of fixed TT rank r. We show in Section 4.4.3
that elements of the tangent space can be conveniently represented as TT tensors
but with TT rank 2r.

Chapter 5. We derive a Riemannian conjugate gradient scheme to solve the tensor
completion problem (1.4). The content of this chapter is based on two papers
discussing the Tucker [KSV14] and TT [Ste15] variants called geomCG and RTTC,
respectively.

For the Tucker format, we illustrate the use of the developed algorithm for the recovery
of multidimensional images and for the approximation of multivariate functions.
Furthermore, we demonstrate competitive performance when compared to other
non-Riemannian approaches to tensor completion both on synthetic datasets and
applications. Exploiting the manifold structure of Tucker tensors of fixed multilinear
rank, we are able to obtain an algorithm with computational complexity

O(|Ω|rd)

per iteration step, where |Ω| denotes the number of samples. The size of the sampling
set has to exceed the dimension of the manifold, dimM = rd + dnr− dr2. Hence, for
reasonable sampling sets, the computational complexity is O(r2d +dnrd+1). Thus, the
algorithm scales linearly in the tensor size n, but still exponentially in the number of
dimensions d. Consequently, this allows for the treatment of moderately dimensional,
but very large data sets. As this scaling corresponds to the degrees of freedom of the
Tucker manifold, it is necessary to use a different tensor representation to improve
upon this complexity. Motivated by this, we extend this work to the tensor train
(TT) format, where we obtain a scaling behaviour of

O(d|Ω|r2),

and hence avoid the exponential dependence on the number of dimensions. Numerical
experiments and comparison to existing methods show the effectiveness of our
approach. Furthermore, we demonstrate that our algorithm can obtain competitive
reconstructions from uniform random sampling of few entries compared to adaptive
sampling techniques such as cross-approximation.

In addition to the work presented in the two papers [KSV14, Ste15], we explore
new rank adaptation schemes for the Tucker format in Section 5.3.4 and show their
influence on the ability to reconstruct tensors with very few entries.
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Chapter 6. We derive Riemannian optimization schemes for the solution of linear
systems with tensor product structure using the cost function (1.5). The content of
this chapter is based on the report [KSV15].

We propose two preconditioned gradient methods on the manifold of tensors of fixed
rank: A Riemannian version of the preconditioned Richardson approach as well as an
approximate Newton scheme based on the Riemannian Hessian. Special care is taken
to the efficient solution of the resulting Newton equation. In numerical experiments,
we compare the efficiency of our Riemannian algorithms with other established
tensor-based approaches such as the preconditioned Richardson method and ALS.
The results demonstrate that the approximate Newton scheme is significantly faster
in cases where the application of the linear operator is expensive.

Chapter 7. We develop a low-rank tensor method with subspace correction for
eigenvalue problems, called eigenvalue AMEn (EVAMEn), to solve the trace mini-
mization problem (1.6). In our method we combine an ALS approach in the Block-TT
format with a local subspace correction based on preconditioned residual information.
Numerical experiments demonstrate the benefits obtained from incorporating the
residual information and the importance of using local preconditioners.

The content of this chapter is based on the paper [KSU14] with an additional
discussion of the convergence in Section 7.3.3.
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Chapter 2
� Riemannian Optimization

In this chapter, we introduce the concepts needed to formulate optimization algo-
rithms for cost functions defined on a manifold. As a first step, we will need to
review some basic concepts such as smooth maps, embedded submanifolds of Rn and
their tangent spaces, which can be found in the first chapters of most textbooks on
differential geometry. In this thesis, we only consider manifolds that are a subset of
Rn, namely matrices and tensors with a certain structure. This is possible because
we can naturally identify every matrix A ∈ Rn1×n2 with an element of Rn1n2 . Only
considering subsets M ⊂ Rn simplifies the presentation considerably and avoids
certain topological pitfalls.

Our presentation will mostly follow the lecture notes on differential geometry of
Robbin/Salamon [RS13] for the foundations of smooth manifolds and the book by
Absil, Mahony, and Sepulchre [AMS08] for optimization algorithms on manifolds.
We illustrate the concepts on a simple example, the 2-sphere as a smooth embedded
submanifold of R3, before we tackle the more complicated low-rank tensor manifolds
in the next chapters.

2.1. Smooth manifolds

Before we start to define what a smooth manifold is, we first have to explain what we
mean when we say smooth. Let U ⊂ Rn and V ⊂ Rm be open. A map f : U → V is
C∞ or smooth if it is infinitely times differentiable, that is, all its partial derivatives
∂k1+···+kn/∂x

k1
1 ···∂xkn

n f exist and are continuous. If f is not a map between two open
sets, we can resort to local open neighborhoods: A map f : X → Y, with X ⊂ Rn,
Y ⊂ Rm, is called smooth if for every x ∈ X there exist an open neighborhood
U ⊂ Rn around x and a smooth function g : U → Rm such that g|U∩X = f .

A (C∞-)diffeomorphism is a bijection f : X → Y where both f itself and its inverse
f−1 are smooth. The existence of such a function f makes the two sets X and Y
diffeomorphic to each other.

Let us think of an m-dimensional set M ⊂ Rn as a (complicated) surface in Rn.
Our goal is to locally identify patches of M with the Euclidean space Rm. Then
we can create local coordinate representations, charts, which will allow us to reduce
calculus on M to standard calculus on Rm. We illustrate this concept in Figure 2.1
and formally define it as follows.
Definition 2.1 (Smooth Manifold, [RS13, Def. 1.3]). A subset M ⊂ Rn is an m-
dimensional smooth (embedded) submanifold of Rn if each x ∈ M has an open
neighborhood U ∈ Rn such that U ∩M is diffeomorphic to an open subset V ∈ Rm. A
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U ∩M
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Rm

φ

φ−1

M

Rn

Figure 2.1: Illustration of a smooth m-dimensional submanifold of Rn. A chart φ maps a
neighborhood U ∩M of a point x ∈M to an open subset V ∈ Rm.

diffeomorphism φ : U ∩M→ V is called a coordinate chart of M, while its inverse
φ−1 : V → U ∩M is called a parametrization of U ∩M.

For simple manifolds, we can directly construct coordinate charts, as shown in the
following example.
Example 2.2 (2-Sphere). We want to show that the unit sphere

S2 = {x ∈ R3 | x2
1 + x2

2 + x2
3 = 1}

is a smooth embedded submanifold of R3 of dimension 2. With the open sets U =
{x ∈ R3 | x3 > 0} and V = {x ∈ R2 | x2

1 + x2
2 < 1}, the diffeomorphism

φ−1 : V → U ∩M, (x1, x2) 
→
(

x1, x2,
√

1− x2
1 − x2

2

)
parametrizes the north hemisphere U ∩M. Likewise, φ(x1, x2, x3) = (x1, x2) is a
coordinate chart of S2. To cover the whole sphere S2, we need in total six parametriza-
tions for each of the hemispheres. The remaining ones can be obtained in an analogous
way by intersecting with the open subsets determined by x3 < 0, x2 > 0, x2 < 0,
x1 > 0, x1 < 0. Note that this choice of coordinate charts is not unique. For example,
stereographic projection allows us to describe S2 by just two charts.

In general, directly constructing suitable charts is complicated. As we will see later on,
there are other, easier ways to show that a certain set M is an embedded submanifold
of Rn.

2.2. Tangent space and derivatives

For embedded submanifolds of Rn, the notion of a tangent space coincides with the
intuitive concept of a plane that lies tangent to the surface described by the manifold.
Formally, we can define it via the derivative of curves in M.
Definition 2.3 ([RS13, Def. 1.21]). Let M⊂ Rn be a smooth m-dimensional subman-
ifold. A vector ξ ∈ Rn is called a tangent vector of M at a point x ∈M if there is a
smooth curve γ : R→M such that

γ(0) = x, γ′(0) = lim
t→0

γ(t)− γ(0)
t

= ξ.
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γ1(t)
γ2(t)

x

γ′
1(0)

γ′
2(0)

TxM

M

Figure 2.2: Illustration of the tangent space TxM of an embedded submanifold M⊂ Rn at a
point x ∈M. We see two different tangent vectors γ′

1(0) and γ′
2(0) realized by the two curves

γ1 and γ2 in the manifold.

The set of tangent vectors of M at x,

TxM := {γ′(0) | γ : R→M smooth , γ(0) = x},

is called the tangent space of M at x. The set of all tangent vectors to a manifold
M is called the tangent bundle

TM =
⋃

x∈M
TxM.

A graphical depiction of this definition is shown in Figure 2.2. It can be shown that
the tangent space has the structure of a vector space of the same dimension as the
manifold itself.
Proposition 2.4 ([RS13, Thm. 1.23]). TxM is an m-dimensional linear subspace of
Rn.

With the tangent space at hand, we can now define the derivative of a scalar-valued
smooth map living on a manifold.
Definition 2.5 ([RS13, Def. 1.31]). Let M⊂ Rn be a smooth m-dimensional subman-
ifold and f : M→ Rk be a smooth map. The derivative of f at a point x ∈M is the
map

Df(x) : TxM→ Rk

defined as follows. Given a tangent vector ξ ∈ TxM, choose a smooth curve γ : R→
M satisfying γ(0) = x and γ′(0) = ξ. We define the vector Df(x)[ξ] ∈ Rk by

Df(x)[ξ] :=
d

dt

∣∣∣∣
t=0

f(γ(t)) = lim
h→0

f(γ(h))− f(x)
h

.

One can show that this definition does not depend on the choice of γ. More
generally, if f : M → N , where N is a smooth k-dimensional submanifold, then
Df(x) : TxM→ Tf(x)N .

The following two properties of smooth maps between manifolds are particularly
useful.
Definition 2.6. Let M⊂ Rn be a smooth m-dimensional manifold and N ⊂ Rk be a
smooth l-dimensional manifold. A smooth map f : M→N is called
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• an immersion if its differential Df(x) : TxM → Tf(x)N is injective for all
x ∈M.

• a submersion if its differential Df(x) : TxM → Tf(x)N is surjective for all
x ∈M.

Based on the inverse function theorem, we can state a much more useful way to
check if a certain set is a submanifold of Rn. We also obtain an explicit expression
of its tangent space.
Theorem 2.7 ([RS13, c.f. Thm. 1.10, Thm 1.23]). Let M⊂ Rn be a set. Let U ∈ Rn

be an open neighborhood of x ∈ M and f : U → Rn−m be a smooth map. Then, if
the differential Df(y) : Rn → Rn−m is surjective for every y ∈ U ∩M and

U ∩M = f−1(0) = {z ∈ U | f(z) = 0},
then M is a smooth submanifold of Rn of dimension m. Furthermore, the tangent
space of M is given by

TxM = ker Df(x).

As an application of this theorem, we revisit Example 2.2 and obtain a much more
concise proof of the manifold structure of the sphere S2 without the need to explicitly
construct charts.
Example 2.8 (2-Sphere). The unit sphere is given by S2 = {x ∈ R3 | ‖x‖ = 1}.
Thus, we are led to consider the map f : R3 → R, x 
→ xTx − 1 for which we have
f−1(0) = S2. This map is smooth and its differential

Df(x) : R3 → R, ξ 
→ 2xTξ

is surjective at all points x ∈ R3 except for the origin – which is not on the sphere
and thus not an element of U ∩ S2. Hence, the sphere S2 is a smooth submanifold of
R3 of dimension 3− 1 = 2. Its tangent space consists of all vectors ξ ∈ R3 which lie
in the orthogonal complement of the vector x:

TxS
2 = ker Df(x) = {ξ ∈ R3 | xTξ = 0}.

2.3. Submanifolds as subsets of manifolds

Note that up to now, we have only considered submanifolds as subsets of Rn. The
following simple definition describes submanifolds as subsets of other manifolds.
Definition 2.9 ([RS13, Def. 1.37]). Let M ⊂ Rn be an m-dimensional embedded
submanifold of Rn. A subset N ⊂M is called a k-dimensional embedded submanifold
of M, if N itself is a k-dimensional embedded submanifold of Rn.

We can also extend the level set description of Theorem 2.7 to this setting to
characterize submanifolds.
Proposition 2.10 ([Lee03, Prop. 8.12]). Let N be a subset of a smooth manifold M
of dimension m. Then N is an embedded submanifold of M of dimension k if and
only if every point p in N has a neighborhood U ⊂M such that U ∩ N is a level set
of a submersion f : U → Rm−k.
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2.4. Riemannian manifolds

According to Proposition 2.4, the tangent space TxM has a vector space structure.
Equipping it with an inner product gx : TxM× TxM → R allows us to measure
distances and angles. In general, we can choose a different inner product for each
point x ∈M.

A vector field on M is a smooth map ξ : M → Rn that assigns a tangent vector
ξ(x) ∈ TxM to every point x ∈M. If the map

M→ R, x 
→ gx(ξ(x), η(x))

is smooth for every pair of vector fields ξ, η on M, then we call gx a Riemannian
metric. Note that the name is confusing, as it is an inner product on the tangent
space. It does induce a metric in the usual sense, the Riemannian distance, see
Section 2.5. A manifold equipped with a Riemannian metric is called a Riemannian
manifold.

Note that if M ⊂ Rn is a smooth embedded submanifold, then it is particularly
simple to obtain a suitable Riemannian metric, as we can restrict the standard inner
product of Rn to TxM× TxM,

gx : TxM× TxM, gx(ξ, η) = 〈ξ, η〉.

The inner product defined by the Riemannian metric induces a norm on TxM,

‖ξ‖ =
√

gx(ξ, ξ). (2.1)

As TxM is a subspace of Rn, we can define the normal space as its orthogonal
complement in Rn,

NxM = (TxM)⊥ := {ξ ∈ Rn | 〈η, ξ〉 = 0 ∀η ∈ TxM}.

Let us also define the orthogonal projections

PTxM : Rn → TxM, PNxM : Rn → NxM,

into the tangent space and normal space, respectively. Then, we can uniquely
decompose every ξ ∈ Rn into

ξ = PTxM ξ + PNxM ξ.

Example 2.11 (2-Sphere). Using the standard inner product from R3 and restricting
it to TxS

2, we obtain

TxS
2 = {ξ ∈ R3 | xTξ = 0}, NxS

2 = {αx | α ∈ R}

and the corresponding orthogonal projectors

PTxM ξ = (I3 − xxT)ξ, PNxM ξ = xxTξ.
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With an inner product for the tangent space at hand, we can define the Riemannian
gradient.
Definition 2.12. Let M be a Riemannian submanifold of Rn and let f : M→ R be a
smooth function. Its Riemannian gradient at x ∈M is defined as the unique vector
grad f(x) ∈ TxM such that

gx
(

grad f(x), ξ
)

= Df(x)[ξ] ∀ξ ∈ TxM.

If f is the restriction of a smooth function f̃ : Rn → R defined on the whole Rn and
gx(·, ·) is the standard Euclidean inner product, then the Riemannian gradient takes
the simple form

grad f(x) = PTxM Grad f̃(x),

where Grad denotes the standard Euclidean gradient. The Euclidean gradient points
into the direction of steepest ascent of f̃ . Similarly, the Riemannian gradient points
into the direction in the tangent space which produces the steepest ascent of f ,

grad f(x)
‖ grad f(x)‖ = argmax

ξ∈TxM,
‖ξ‖=1

Df(x)[ξ]. (2.2)

This property allows us to define a steepest-descent-type optimization algorithm,
where (2.2) is used to determine the search direction.

2.5. Distances onmanifolds and geodesics

The induced norm (2.1) on TxM allows us to measure the length of a smooth curve
γ : [0, 1] → M within the manifold by applying the usual definition of the arc
length,

L(γ) =
∫ 1

0
‖γ′(t)‖ dt.

This allows us to define the distance of two points x, y ∈M as follows. Let Γ denote
the set of all possible smooth curves γ : [0, 1] → M between x and y. Then, the
Riemannian distance is the minimal arc length over all possible curves,

dist(x, y) : M×M→ R, dist(x, y) = inf
γ∈Γ

L(γ).

This Riemannian distance defines a metric in the usual sense.

In Euclidean space, the shortest path between two points is the straight line, that is,
a curve γ(t) which has zero acceleration, γ′′(t) = 0. We will now extend this concept
of straight lines to the Riemannian setting.

Let I ⊂ R be an open interval. A vector field along the curve γ is a smooth map
ξ : I → Rn that assigns to each point γ(t) ∈M a tangent vector ξ(t) ∈ Tγ(t)M. The
set of all such vector fields along γ is a vector space and is denoted by

Vect(γ) := {ξ : I → Rn | ξ smooth, ξ(t) ∈ Tγ(t)M ∀ t ∈ I}.
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The derivative ξ′(t) (in the usual sense) is not necessarily part of the tangent space
Tγ(t)M. The so-called covariant derivative of ξ(t) at t ∈ I is defined as its tangent
component

∇ : Vect(γ) → Vect(γ), ∇ξ(t) := PTγ(t)M ξ′(t).

As γ′(t) itself is an element of Vect(γ), we can compute its covariant derivative as
the projection of the second derivative of γ into the tangent space,

∇γ′(t) = PTγ(t)M γ′′(t),

which allows us to define “straight lines” on M precisely as curves whose acceleration
at time t has no components within Tγ(t)M and only bends the curve so that it
follows the surface. These curves are called geodesics.
Definition 2.13 ([RS13, Def. 2.18]). Let M ∈ Rn be a smooth Riemannian sub-
manifold and I ⊂ R an interval. A smooth curve γ : I → M is called a geodesic
if

∇γ′(t) = PTγ(t)M ξ′′(t) = 0 ∀ t ∈ I.

2.6. The exponential map and retractions

By the Picard-Lindelöf theorem, we can show that for every ξ ∈ TxM there exists a
maximal interval Ix,ξ ⊂ R around 0 and a unique geodesic γ : Ix,ξ →M satisfying
γ(0) = x and γ′(0) = ξ. We can then always choose ξ small enough such that 1 ∈ Ix,ξ.
This allows us to define the exponential map on the subset Ux := {ξ ∈ TxM | 1 ∈
Ix,ξ} ⊂ TxM by

Expx : Ux →M, ξ 
→ Expx(ξ) = γ(1).

The following proposition is a direct consequence.
Proposition 2.14 ([RS13, Cor. 2.37]). The map Expx is smooth and has the following
properties:

Expx(0) = x, D Expx(0) = idTxM .

For some manifolds, we can derive an analytic expression for the geodesics and the
corresponding exponential map.
Example 2.15 (2-Sphere). On the sphere S2, the geodesics correspond to the great
circles and can be described in terms of the initial values γ(0) ∈ M and γ′(0) ∈
Tγ(0)M as

γ(t) = cos(‖γ′(0)‖t)γ(0) +
sin(‖γ′(0)‖t)
‖γ′(0)‖ γ′(0), (2.3)

where the norm ‖ · ‖ is the standard Euclidean norm of R3 restricted to TxS
2. The

exponential map on S2 is then given by

Expx(ξ) = cos(‖ξ‖)x +
sin(‖ξ‖)
‖ξ‖ ξ,

for which we can check the properties of Proposition 2.14:

Expx(0) = lim
t→0

Expx(tξ) = lim
t→0

cos(‖tξ‖)x +
sin(‖tξ‖)
‖tξ‖ tξ = x,
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and

D Expx(0)ξ =
d

dt

∣∣∣∣
t=0

Expx(tξ) =
(− sin(‖tξ‖)‖ξ‖x + cos(‖tξ‖)ξ)∣∣∣

t=0
= ξ.

To see that (2.3) is indeed a geodesic according to Definition 2.13, we calculate

∇γ′(t) = PTγ(t)M γ′′(t) = (I − γ(t)γ(t)T)γ′′(t)

= (I − γ(t)γ(t)T)γ(t)‖γ′(t)‖2 = 0.

The exponential map can be interpreted as way to “add” a tangent vector ξ to a
point x on the manifold: Starting from a point x ∈M, we move a distance of ‖ξ‖
into the direction of ξ along the corresponding geodesic. This is a crucial ingredient
when deriving optimization algorithms on manifolds, as it allows us move from the
current iterate xk ∈M in the direction of some search direction ξ ∈ Txk

M to obtain
a new iterate “xk + ξ” by simply setting

xk+1 = Expxk
(ξ).

Unfortunately, for most Riemannian submanifolds M, there is no analytic form of
the Exponential map available. In particular, this is the case for the low-rank tensor
manifolds examined in this thesis. To derive an expression for the geodesic γ, we
have to solve the second order ordinary differential equation (ODE) of Definition 2.13
for the initial values γ(0) = x and γ′(0) = ξ. In principle, we could solve this ODE
by numerical integration, e.g., by a Runge-Kutta scheme, but this quickly becomes
computationally infeasible.

The prohibitive computational cost of evaluating the exponential map for a general
Riemannian submanifold M led to the development of cheaper alternatives which
still possess those properties which are important in an optimization framework, see
e.g. [EAS99, Man02, MMH94, Smi94].

The concept of a retraction as such an alternative goes back to Shub [Shu86]. It is
based on the idea that for optimization algorithms, a first-order approximation of
the exponential map is good enough. In particular, we ensure that the retraction is a
smooth map that still fulfills the zeroth and first order conditions of Proposition 2.14,
but drop the requirement that the underlying curve γ is geodesic. As a consequence,
the distance travelled along γ does not necessarily equal ‖ξ‖ anymore.
Definition 2.16 (Retraction, [AM12, Def. 1]). Let M be a smooth submanifold of Rn.
Let 0x denote the zero element of TxM. A mapping R from the tangent bundle TM
into M is said to be a retraction on M around x ∈M if there exists a neighborhood
U of (x, 0x) in TM such that the following properties hold:

(a) We have U ⊆ dom(R) and the restriction R : U →M is smooth.

(b) R(y, 0y) = y for all (y, 0y) ∈ U .

(c) With the canonical identification T0xTxM� TxM, R satisfies the local rigidity
condition:

DR(x, ·)(0x) = idTxM for all (x, 0x) ∈ U ,

where idTxM denotes the identity mapping on TxM.
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Figure 2.3: Illustration of the concept of a retraction for a smooth submanifold of Rn.

Note that even though R may be defined on the whole tangent bundle TM, its
smoothness is only required locally in a neighborhood U of (x, 0x).

In Figure 2.3, we see an illustration of the concept of a retraction map. It follows
directly from the definition of the exponential map and Proposition 2.14 that the
exponential map itself is a possible retraction on M.

If M is an embedded submanifold then it was shown [AM12, Prop. 5] that the
metric projection

PM(x + ξ) = argmin
y∈M

‖x + ξ − y‖ (2.4)

induces – if ξ is small enough – the so-called projective retraction

R : U →M, (x, ξ) 
→ PM(x + ξ),

which satisfies the properties of Definition 2.16.
Example 2.17 (2-Sphere). The orthogonal projection onto S2,

R : U → S2, (x, ξ) 
→ x + ξ

‖x + ξ‖ ,

defines a retraction on S2 according to (2.4). Checking the requirements of Definition
2.16, we see that R is a smooth map for all ξ ∈ TxM which fulfill ‖ξ‖ < ‖x‖ = 1.
Furthermore, we have that

R(y, 0y) =
y

‖y‖ = y,

as y lies on the sphere and

DR(x, ξ)(0x) =
d

dt

∣∣∣∣
t=0

R(x, tξ) =
ξ‖x + tξ‖2 − (x + tξ)(x + tξ)Tξ

‖x + tξ‖3

∣∣∣∣
t=0

= ξ − xxTξ = PTxS2 ξ = ξ.

Thus, R indeed defines a retraction on S2.

2.7. Parallel and vector transport

Moving along a curve γ in the manifold, one may ask how to compare two tangent
vectors ξ, η which are elements of two different tangent spaces ξ ∈ Tγ(t0)M and
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η ∈ Tγ(t)M, respectively. In this section, we will see how we can transport the
tangent vector ξ along γ in a meaningful way.
Definition 2.18 ([RS13, Def. 3.1]). Let I ⊂ R be an interval and γ : I →M a smooth
curve in M. A vector field ξ(t) along γ is called parallel if ∇ξ(t) = 0 for all t ∈ I.

One can show that for every given tangent vector ξ0 ∈ Tγ(t0)M, there is a unique
parallel vector field ξ(t) ∈ Vect(γ) such that ξ(t0) = ξ0. Using this vector field ξ(t),
we can define the parallel transport along γ as the collection of maps Φt0→t

γ for any
t0, t ∈ I with

Φt0→t
γ : Tγ(t0)M→ Tγ(t)M, ξ0 
→ Φt0→t

γ (ξ0) := ξ(t).

Thus, to obtain an expression for parallel transport and its corresponding parallel
vector field ξ(t), we have to solve the ODE ∇ξ(t) := PTγ(t)M ξ′(t) = 0 with initial
condition ξ(0) = ξ0. Similar to the geodesics and the exponential map discussed in
the previous section, this can be computationally demanding. A possible substitute
is given by the so-called vector transport introduced by Absil et al. [AMS08, Sec.
8.1].

Figure 2.4: Illustration of the concept of vector transport for a smooth submanifold of Rn.

Definition 2.19 (Vector transport, cf. [AMS08, Def. 8.1.1]). A smooth mapping

τ : {(η, ξ) | η, ξ ∈ TxM, x ∈M} → TM,

(η, ξ) 
→ τη(ξ)

constitutes a vector transport if the following properties hold for all x ∈M:

1. There exists a retraction R associated with τ such that τη(ξ) ∈ TR(x,η)M,

2. τ0x(ξ) = ξ, ∀ξ ∈ TxM,

3. ∀η ∈ TxM, the mapping τη : TxM→ TR(x,η), ξ 
→ τη(ξ) is linear.

In particular, it can be shown [AMS08, Prop. 8.1.2] that the parallel transport Φ0→1
γ

along the curve γ : t 
→ R(x, tη) constitutes a vector transport,

τη(ξ) = Φ0→1
γ (ξ)

For embedded submanifolds of Rn, a simple vector transport is given by the orthogonal
projection into the tangent space.
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Proposition 2.20 (c.f [AMS08, Sec. 8.1.3.]). Let M∈ Rn be an embedded submanifold
equipped with a retraction R. Then, a vector transport is obtained from

τη(ξ) := PTR(x,η)M ξ

In optimization algorithms, it will be more natural to think of the vector transport
as a way to transport the tangent vector ξ ∈ TxM from the tangent space at x ∈M
to the tangent space at a new point y ∈M. This new point is given by y = R(x, ζ),
where we have moved in the direction ζ ∈ TxM starting from x.

This allows us to introduce the shorthand notation

τx→y : TxM→ TyM, τx→y(ξ) := τζ(ξ).

An illustration of the concept of the vector transport τx→y is shown in Figure 2.4.

2.8. Line-search algorithms onmanifolds

We have now introduced all necessary tools to create gradient-based line-search
algorithms on an m-dimensional Riemannian submanifold M⊂ Rn to solve problems
of the form

argmin
x∈M

f(x),

where the cost function f : M→ R is a scalar-valued function defined on the manifold
M.
Remark 2.21. For the rest of this thesis, we will assume that the cost function
f : M → R can always be seen as a restriction of a smooth function f̃ : Rn → R

defined on the whole Euclidean space Rn, with f = f̃ |M. To simplify the notation,
we will from now on always write f and implicitly refer to its extension f̃ where
necessary.

A line-search algorithm on M for f creates a sequence of iterates (xk)k∈N =
{x0, x1, . . .} with xk ∈M which (hopefully) converges to a (local) minimizer x∗ of f .
Such an algorithm can be constructed from the following main ingredients:

1. A new search direction ηk ∈ Txk
M at the current iterate xk ∈M:

To construct a search direction, we can make use of Def. 2.12, the negative
Riemannian gradient ηk = − grad f(xk), which points into direction of steepest
descent within the tangent space, see (2.2).

2. A way to move from xk in the direction of ηk:

This can be accomplished by a retraction map R(xk, ηk), see Def. 2.16.

3. A way to determine how far we need to go in this direction:

An appropriate step size αk can either be obtained from exact line-search, or,
if this is not feasible, from cheaper alternatives such as Armijo backtracking or
linearized line-search, see Sec. 2.8.1.
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With these ingredients, the iteration is given by

xk+1 = R(xk, αkηk).

Two particular instances of this iteration will be discussed in Section 2.8.2 (Rieman-
nian steepest descent) and Section 2.8.3 (Riemannian conjugate gradient).

For now, we introduce two characterizations on the search direction ηk and the step
size αk which will be helpful in the convergence discussion.
Definition 2.22 (Gradient-related sequence, [AMS08, Def. 4.2.1]). A sequence (ηn)n∈N

of search directions, ηn ∈ TxnM, is called gradient-related if, for any subsequence
(xnk

)k∈N that converges to a non-critical point of f , the corresponding subsequence
(ηnk

)k∈N is bounded and satisfies

lim sup
k→∞

gx
(

grad f(xnk
), ηnk

)
< 0.

Definition 2.23 (Armijo condition, c.f. [AMS08, Def. 4.2.2]). Let x ∈ M be the
current iterate and η ∈ TxM be the search direction. Furthermore, let β, c ∈ ]0, 1[ be
fixed parameters and α0 > 0 an initial step size. The Armijo step size is given by
α := βmα0, where m ∈ N is the smallest integer such that

f(x)− f(R(x, αη)) ≥ −c gx
(

grad f(x), αη
)
. (2.5)

Definition 2.23 is a straight-forward generalization of the classic Armijo rule in
Euclidean space, see e.g. [NW06], to the Riemannian setting. Note that when f is
continuously differentiable and the search direction is gradient-related, we can always
find an ᾱ > 0 such that all step sizes α ∈ ]0, ᾱ] fulfill the Armijo condition (2.5), see
e.g. [RW12, SU15].

Algorithm 2.1 Gradient-related optimization on M with Armijo line-search
Input: Initial guess x0 ∈M.
Output: Sequence of iterates (xk).

for k = 1, 2, . . . do
Choose search direction ηk ∈ Txk

M s.t. (ηk) is gradient-related.
Choose step size αk which fulfills the Armijo condition (2.5).
xk+1 ← R(xk, αkηk)

end for

2.8.1. Approximate line-search

Determining a good step size αk is crucial to ensure fast convergence of the optimiza-
tion algorithm. The locally optimal choice would be the minimizer of the objective
function along the curve γ : t 
→ Rxk

(tηk) determined by the current search direction
ηk:

αk = argmin
α

f(R(xk, αηk)). (2.6)

28



It is easy to check that choosing αk in this way fulfills the Armijo condition (2.5) of
Def. 2.23. Let us denote the Armijo step size with ᾱ. If αk ≤ ᾱ, then αk is also a
valid step size. If αk > ᾱ, then we obtain

f(x)− f(R(x, αkη)) ≥ f(x)− f(R(x, ᾱη)) ≥ −c〈grad f(x), ᾱη〉
= −cᾱ

αk
αk〈grad f(x), η〉.

And thus αk also fulfills the Armijo condition but for a different constant c̃ := cᾱ
αk
∈

]0, 1[.

Unfortunately, computing this minimizer can be a hard nonlinear optimization
problem itself. A possible cheaper alternative is a classic backtracking approach,
where an initial step size α0 is chosen and then reduced as αk = βmα0, where
β ∈ ]0, 1[ and m is chosen according to the Armijo rule, see Def. 2.23. Usual choices
are α0 = 1, β = 1

2 , c = 10−4, see [NW06].

As described in [Van13], the nonlinear optimization problem (2.6) can also be
linearized by dropping the retraction R and thereby only minimizing within the
tangent space,

αk ≈ argmin
α

f(xk + αηk), (2.7)

where we now view both xk and ηk as elements in the vector space TxM to make
sense of the linear combination and f is suitably extended, see Remark 2.21. In the
context of this thesis, we only consider cost functions f which are quadratic. This
special case allows us to solve (2.7) very efficiently, as we have an explicit solution
available. The accuracy of this approximate line-search depends on the curvature
of the manifold at the current iterate, but in all our experiments, we have never
observed a situation where this estimate was not good enough. To make sure that
the iterates fulfill the Armijo condition, a simple backtracking scheme can be added,
where we choose the approximate αk as the starting guess α.

2.8.2. Riemannian steepest descent

The simplest choice of search direction is the negative Riemannian gradient,

ηk = − grad f(xk).

According to (2.2), ηk then points into direction of steepest descent within the tangent
space, yielding a direct Riemannian analogue to the classic steepest descent algorithm
in Euclidean space.

The resulting optimization scheme is shown in Algorithm 2.2, where we use a
linearized line search together with a backtracking scheme.

2.8.3. Riemannian conjugate gradients

In the nonlinear conjugate gradient scheme, the new search direction ηk is computed
as a linear combination of the current gradient ξk ∈ Txk

M and the previous direction
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Algorithm 2.2 Riemannian steepest descent
Input: Initial guess x0 ∈M, backtracking parameter c ∈ ]0, 1[.
Output: Sequence of iterates (xk).

for k = 1, 2, . . . do
ηk ← − grad f(xk) % direction is negative Riem. gradient
αk ← argminα f(xk + αηk) % step size by linearized line search
Find smallest m ≥ 0 such that % Armijo backtracking for sufficient dec.

f(xk)− f(R(xk, 2−mαkηk)) ≥ −c gxk

(
ξk, 2−mαkηk

)
xk+1 ← R(xk, 2−mαkηk) % obtain next iterate by retraction

end for

ηk−1 ∈ Txk−1M, scaled by a factor βk. To perform this combination, we first have to
transport ηk−1 to the current tangent space Txk

M using a vector transport τxk−1→xk
,

see Section 2.7. Thus, the new search direction is given by

ηk = −ξk + βkτxk−1→xk
ηk−1.

As we only consider embedded submanifolds of Rn, the orthogonal projection onto
the tangent space PTxk

M yields a vector transport, see Prop. 2.20, and the equation
can be written as

ηk = −ξk + βk PTxk
M ηk−1.

Many options exist for the choice of βk within the framework of nonlinear conjugate
gradient. Here, we choose either the Fletcher-Reeves update,

βk =
‖ξk‖
‖ξk−1‖ , (2.8)

or the Polak-Ribière+ update adapted to Riemannian optimization, see [AMS08,
NW06]:

βk = max
{

0,
gxk

(
grad f(xk), grad f(xk)− τxk−1→xk

(grad f(xk−1))
)

‖ grad f(xk−1)‖2

}
. (2.9)

The resulting Riemannian nonlinear CG scheme is shown in Algorithm 2.3.

2.8.4. Convergence of line-search algorithms

The following two theorems discuss the global convergence of Algorithm 2.1 to a
critical point.
Theorem 2.24 ([AMS08, Thm. 4.3.1]). Let (xk) be an infinite sequence of iterates
generated by Algorithm 2.1. Then every accumulation point x∗ ∈ M of (xk) is a
critical point of the cost function f and hence satisfies grad f(x∗) = 0.

Unfortunately, if the manifold M is not closed, then the accumulation point x∗ does
not need to be an element of M. Under the assumption that all iterates stay inside
a compact set, we can provide a stronger result. In particular, this assumption is
valid if M itself is a compact manifold.

30



Algorithm 2.3 Riemannian nonlinear CG
Input: Initial guess x0 ∈M, backtracking parameter c ∈ ]0, 1[.
Output: Sequence of iterates (xk).

ξ0 ← grad f(x0) % compute Riemannian gradient
η0 ← −ξ0 % first step is steepest descent
α0 ← argminα f(x0 + αη0) % step size by linearized line-search
x1 ← R(x0, α0η0) % obtain next iterate by retraction

for k = 1, 2, . . . do
ξk ← grad f(xk) % compute Riemannian gradient
ηk ← −ξk + βkτxk−1→xk

(ηk−1) % conjugate direction by update rule
αk ← argminα f(xk + αηk) % step size by linearized line search
Find smallest m ≥ 0 such that % Armijo backtracking for sufficient dec.

f(xk)− f(R(xk, 2−mαkηk)) ≥ −c gxk

(
ξk, 2−mαkηk

)
xk+1 ← R(xk, 2−mαkηk) % obtain next iterate by retraction

end for

Corollary 2.25 ([AMS08, Cor. 4.3.2]). Let (xk) be an infinite sequence of iterates
generated by Algorithm 2.1. Assume that the iterates stay inside the compact level
set L = {x ∈M | f(x) ≤ f(x0)}. Then limk→∞ ‖ grad f(xk)‖ = 0.

When choosing the search direction to be the steepest descent direction, ηk =
− grad f(xk), then we can prove linear convergence to a critical point of f , where the
asymptotic convergence rate depends on the eigenvalues of the Riemannian Hessian
of f at the critical point.
Definition 2.26 ([AMS08, Prop. 5.5.6]). Let R be a retraction and x∗ be a critical
point of a real-valued function f , that is, grad f(x∗) = 0. Then, the Riemannian
Hessian Hx∗ of f at x∗ is given by

Hx∗ = Hess(f ◦R(x∗, ·))(0x∗),

where Hess denotes the Euclidean Hessian.
Theorem 2.27 ([AMS08, Thm. 4.5.6]). Let (xk) be an infinite sequence of iterates
generated by Algorithm 2.1 with ηk = − grad f(xk), converging to a critical point x∗.
Let λmin and λmax be the smallest and largest eigenvalues of the Riemannian Hessian
of f at x∗. Assume that λmin > 0 (x∗ is a local minimizer). Then, given C in the
interval ]C∗, 1[ with

C∗ = 1−min
(

2c αk λmin, 4c (1− c)β
λmin

λmax

)
,

there exists an integer K ≥ 0 such that

f(xk+1)− f(x∗) ≤ C(f(xk)− f(x∗)) ∀k ≥ K.

For nonlinear CG, deriving similar results is difficult already in the Euclidean case,
see e.g. [NW06] for a discussion. The conjugate search direction update is not
guaranteed to yield a gradient-related sequence. To enforce this, a safeguard can be
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added that sets the update parameter βk to zero as soon as the new search direction
is not sufficiently gradient-related. By doing this, the results of Theorem 2.24 and
Corollary 2.25 are also applicable to the nonlinear CG. Although we cannot prove
superlinear convergence, numerical experiments show that the Riemannian nonlinear
CG given by Algorithm 2.3 performs significantly better than steepest descent.
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Chapter 3
� Tensors of Fixed Multilinear Rank

In this chapter, we will first introduce basic properties of tensors, their representation
in the Tucker format and the corresponding notion of multilinear rank. Alongside, we
discuss basic operations such as addition, inner products and rank truncation. Then,
we discuss the manifold properties of the set of tensors of fixed multilinear rank and
derive corresponding explicit expressions for the differential geometric quantities that
are needed to construct Riemannian optimization algorithms.

3.1. Tensors: Notation and basic properties

A tensor X ∈ Rn1×n2×···×nd is a multidimensional array of dimension or order d and
tensor size nμ along each mode μ = 1, . . . , d. In the case d = 1 a tensor is just a
vector, for d = 2 a matrix. We can extend the usual column-major ordering of a
matrix such that for a third-order tensor X, the element X(i1, i2, i3) corresponds to
the element in the i1th row and i2th column with depth i3.

Fixing one index while varying all others yields a slice of X, a subarray of dimension
(d−1). In Figure 3.1, we illustrate the possible slices X(i1, :, :), X(:, i2, :), X(:, :, i3) for
d = 3, where we use Matlab’s colon notation to designate a range of indices.

(a) X(i1, :, :) (b) X(:, i2, :) (c) X(:, :, i3)

Figure 3.1: Possible slices of a third order tensor X.

3.1.1. Reshaping operations

Vectorization. The isomorphism Rn1×n2×···×nd � Rn1n2···nd directly defines the
vectorization operation, which fills the elements of X one after the other into a long
vector. If X ∈ Rn1×n2 is a matrix, this amounts to stacking the columns of X:

vec(X) =

⎡⎢⎢⎢⎢⎣
X(:, 1)
X(:, 2)

...
X(:, n2)

⎤⎥⎥⎥⎥⎦ .
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Formally, we can define it by the index map ι : {1, . . . , n1} × · · · × {1, . . . , nd} →
{1, 2, . . . ,

∏d
μ=1 nμ}, which is given by

ι(i1, i2, . . . , id) = 1 +
d∑

μ=1
(iμ − 1)

μ−1∏
ν=1

nν . (3.1)

Thus, if x = vec(X), then x(ι(i1, . . . , id)) = X(i1, . . . , id), a colexicographic ordering
of the entries.

Matricization. The elements of a tensor can also be arranged as a matrix. In the μth
matricization, the tensor X is reshaped into a matrix X(μ) ∈ Rnμ×n1···nμ−1nμ+1···nd .
Again, we can formally define a corresponding index map

ιμ : {1, . . . , n1} × · · · × {1, . . . , nd} → {1, . . . , nμ} × {1, 2, . . . ,
d∏

ν=1
ν 
=μ

nμ},

ιμ(i1, i2, . . . , id) = (iμ, i
=μ), with i 
=μ = 1 +
d∑

ν=1
ν 
=μ

(iμ − 1)
ν−1∏
τ=1
τ 
=μ

nτ .

To illustrate this formula, we show an example for the first matricization of a third-
order tensor in Figure 3.2. The colexicographic ordering of the column index i
=μ

is compatible with the vectorization (3.1). We note that this is just one way of
systematically reshaping a tensor into matrices. A different way of matricization,
called unfolding, will be discussed in Chapter 4 for the tensor train format.

X = � X(1) =

Figure 3.2: First matricization X(1) of a third-order tensor X.

3.1.2. Operations on tensors

Elementwise operations of matrices such as addition and multiplication by a scalar
generalize naturally to the tensor case.

Inner product and norm. To define an inner product of two tensors X and Y, we
use the sum of the element-wise product which we can relate to the vector and matrix
case by the reshaping operations defined in Subsection 3.1.1:

〈X, Y〉 = 〈vec(X), vec(Y)〉 = trace
(
XT

(μ)Y(μ)
)
, μ = 1, . . . , d.

This induces the norm
‖X‖ =

√
〈X, X〉.

In the matrix case d = 2, these definitions reduce to the trace inner product and the
Frobenius norm, respectively.
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Multiplication with a matrix. The μth-mode product defines the multiplication of a
tensor X ∈ Rn1×n2×···×nd by a matrix Aμ ∈ Rm×nμ along the μth mode,

Y = X×μ Aμ ⇔ Y(μ) = AμX(μ). (3.2)

The resulting tensor Y is then of size n1×· · ·×nμ−1×m×nμ+1×· · ·×nd. A useful
property connects the μth-mode product with the Kronecker product:

Y = X×1 A1 × · · · ×d Ad ⇔ Y(μ) = AμX(μ)(Ad ⊗ · · · ⊗Aμ+1 ⊗Aμ−1 ⊗ · · · ⊗A1)T.

Tensor Kronecker product. The Kronecker product of two matrices can also be
generalized to the tensor setting, see [KT14, Sec. 7]. Let X ∈ Rn1×···×nd , Y ∈
Rm1×···×md be two d-dimensional tensors. Then, the tensor Kronecker product
Z = X⊗Y yields a tensor of size n1m1 × · · · × ndmd, defined by

Z(k1, . . . , kd) := X(i1, . . . , id)Y(j1, . . . , jd), kμ = (iμ − 1)mμ + jμ, (3.3)

with iμ = 1, . . . , nμ and jμ = 1, . . . , mμ for every mode μ = 1, . . . , d.

3.2. Multilinear rank and the Tucker format

Any rank-r matrix X ∈ Rn1×n2 can be decomposed into X = USV T, where U ∈
Rn1×r, V ∈ Rn2×r are matrices with orthonormal columns and S ∈ Rr×r. Such
a decomposition may be obtained by the SVD, but we do not require S to be a
diagonal matrix with nonnegative entries. The Tucker format, introduced in the
1960s by L. Tucker [Tuc66], is a direct generalization of this decomposition to higher
dimensions. It has been successfully employed in various applications such as chemo-
[Hen94] and psychometrics [KVM01] under the name three-way component analysis
as a generalization of the principal component analysis (PCA) based on the standard
matrix SVD. Other applications include signal [DL97] and image processing [VT02].
Representing a d-dimensional tensor X ∈ Rn×···×n in a factored form, we aim to
drastically reduce the storage requirement of nd, at the expense of direct access to
individual entries of the tensor. To this end, the Tucker format generalizes the notion
of a low-rank format from the matrix to the tensor case, using the definition of the
multilinear rank.
Definition 3.1 (Multilinear rank). The multilinear rank of a tensor X ∈ Rn1×n2×···×nd

is defined as the d-tuple

rankML(X) = (r1, r2, . . . , rd) =
(
rank(X(1)), rank(X(2)), . . . , rank(X(d))

)
.

The Tucker format represents a tensor X of multilinear rank r = (r1, r2, . . . , rd)
as

X(i1, . . . , id) =
r1∑

j1=1
· · ·

rd∑
jd=1

S(j1, j2, . . . , jd)U1(i1, j1)U2(i2, j2) · · ·Ud(id, jd), (3.4)
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for some core tensor S ∈ Rr1×···×rd and factor matrices Uμ ∈ Rnμ×rμ , μ = 1, . . . , d.
In the following, we always choose the factor matrices to have orthonormal columns,
UT

μ Uμ = Irμ .

We denote by Mr the set of tensors of fixed multilinear rank,

Mr :=
{
X ∈ Rn1×···×nd

∣∣ rankML(X) = r
}
.

Later on, we will see that this set exhibits a smooth submanifold structure which
forms the basis for Riemannian optimization algorithms involving tensors of fixed
multilinear rank.

Using the μth-mode product (3.2), one can write (3.4) more compactly as

X = S×1 U1 ×2 U2 · · · ×d Ud = S
d×

μ=1
Uμ. (3.5)

We note that in the matrix case d = 2, this formula reduces to

X = U1SUT
2 ,

which is an SVD-like decomposition but with a general, not necessarily diagonal core
matrix S. Each additional dimension adds another factor matrix to the representation,
see Figure 3.3 for an illustration for d = 3.

When viewed as an element of Rn1n2···nd using the vectorization operation, a Tucker
tensor X exhibits a Kronecker product structure,

vec(X) = (Ud ⊗ Ud−1 ⊗ · · · ⊗ U1) vec(S) =

⎛⎝ d⊗
μ=1

Uμ

⎞⎠ vec(S). (3.6)

This relation will be useful when deriving explicit expressions for some operations
involving Tucker tensors.

X =
U1

U3

U
2

S

Figure 3.3: Illustration of the Tucker format for d = 3.

Remark 3.2 (Uniqueness). Note that the representation of a tensor X ∈ Mr in
the Tucker format 3.5 is not unique: By introducing arbitrary orthogonal matrices
Qμ ∈ Rrμ×rμ we can also represent X as

X = S̃×1 U1Q1 ×2 U2Q2 · · · ×d UdQd,

with the modified core tensor

S̃ = S×1 QT
1 ×2 QT

2 · · · ×QT
d .
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Remark 3.3. As the unfoldings X(μ) are not independent of each other, it is not
possible to choose the multilinear rank arbitrarily. In particular, it has to hold

rμ ≤
d∏

ν=1
ν 
=μ

rν . (3.7)

This can be seen from the Tucker format (3.5), as S(μ), a matrix of size rμ×∏ν 
=μ rν ,
is required to have full rank rμ. This is only possible if (3.7) holds.

From now on, we will always assume that (3.7) is fulfilled for any rank tuple r.

3.3. Operations on Tucker tensors

In this section, we compute some operations such as the addition or inner product
of two Tucker tensors based solely on the factorized form (3.5). This is a crucial
ingredient for algorithms working with Tucker tensors, as forming the full tensor in
Rn1×···×nd is not computationally feasible for all but the smallest examples.

When stating the computational complexity of the operations, we assume for simplic-
ity that both the tensor size and rank are approximately equally distributed along
each mode and we set

n := max
μ∈{1,...,d}

nμ, r := max
μ∈{1,...,d}

rμ.

3.3.1. Reorthogonalization

In this thesis, we always assume that the factor matrices Uμ of a Tucker tensor
X = S ×1 U1 · · · ×d Ud have orthonormal columns. If this is not the case, we can
reorthogonalize the Uμ without changing the tensor X itself. This is possible due
to the non-uniqueness of the Tucker format, see Remark 3.2. After performing a
QR-decomposition of each factor matrix,

[Ũμ, Rμ] = qr(Uμ),

we transfer the non-orthogonal parts Rμ to the core tensor S:

S̃ = S×1 R1 ×2 R2 · · · ×d Rd.

Then, S̃×1Ũ1 · · ·×dŨd is a Tucker decomposition of X, where each Ũμ has orthonormal
columns.

3.3.2. Addition

Consider the two tensors X ∈Mr, Y ∈Mr̃ represented in the Tucker format as

X = S×1 U1 ×2 U2 · · · ×d Ud, Y = S̃×1 Ũ1 ×2 Ũ2 · · · ×d Ũd. (3.8)
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Then the addition Z = X + Y can be directly formulated in the Tucker format,
where Z = R ×1 V1 ×2 V2 · · · ×d Vd is a Tucker tensor of multilinear rank at most
r + r̃ with

Vμ =
[
Uμ Ũμ

]
∈ Rnμ×(rμ+r̃μ), μ = 1, . . . , d

and a block-superdiagonal core tensor R ∈ R(r1+r̃1)×···×(rd+r̃d), shown in Figure 3.4
for the case d = 3. This procedure should be followed by a reorthogonalization step
for the newly obtained Vμ.

S
S̃R =

Figure 3.4: Block-superdiagonal structure of the core tensor R resulting from an addition of
two Tucker tensors with cores S and S̃, illustrated for the case d = 3.

3.3.3. Inner product and norm

The inner product of two Tucker tensors X and Y of the form (3.8) can be reduced
to the inner product of two smaller tensors, using the Kronecker product structure
of the vectorization, see (3.6):

〈X, Y〉 = vec(X)T vec(Y) = vec(S)T

⎛⎝ d⊗
μ=1

UT
μ

⎞⎠⎛⎝ d⊗
μ=1

Ũμ

⎞⎠ vec(S̃)

= vec(S)T

⎛⎝ d⊗
μ=1

UT
μ Ũμ

⎞⎠ vec(S̃) = vec
(

S
d×

μ=1
ŨT

μ Uμ

)T
vec(S̃)

=
〈
S

d×
μ=1

ŨT
μ Uμ, S̃

〉
. (3.9)

Thus, we first calculate the d products ŨT
μ Uμ for μ = 1, . . . , d using O(drr̃n) flops.

Then, we explicitly form the small tensor S×1 ŨT
1 U1 · · · ×d ŨT

d Ud of size r̃1× · · ·× r̃d.
If we assume r ≥ r̃, then this requires O(dr̃rd) operations. It remains to calculate the
inner product of two small tensors of size r̃1×· · ·× r̃d using O(r̃d) multiplications and
additions. If we furthermore assume that r ≈ r̃, we end up with a total computational
complexity of

O(dr2n + drd+1 + rd).

Computation of the norm is particularly simple, as we assume that the factor matrices
have orthonormal columns and thus the product UT

μ Uμ is the identity,

‖X‖ = 〈X, X〉 = vec
(

S
d×

μ=1
UT

μ Uμ

)T
vec(S) = vec(S)T vec(S) = ‖S‖.

Thus, the calculation of the norm can be performed in O(rd) operations.
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3.3.4. Hadamard product

The Hadamard or elementwise product Z := X � Y of two Tucker tensors X and Y
of the form (3.8) is defined as

Z(i1, . . . , id) = X(i1, . . . , id)Y(i1, . . . , id), iμ = 1, . . . , nμ.

Although direct access to the elements of X and Y is not available in the Tucker
format, this elementwise operation can still be performed efficiently without con-
structing the full tensor. The result Z = R ×1 V1 ×2 V2 · · · ×d Vd is a Tucker tensor
of multilinear rank (r1r̃1, . . . , rdr̃d) with core tensor

R = S⊗ S̃,

obtained by a tensor Kronecker product (3.3), and factor matrices

Vμ = Uμ �T Ũμ, μ = 1, . . . , d.

Here, �T denotes the transposed Khatri-Rao product, see [KT14], a row-wise Kro-
necker product defined for two matrices A ∈ Rn×m and B ∈ Rn×k as

A�T B :=

⎡⎢⎢⎣
A(1, :)⊗B(1, :)

...
A(n, :)⊗B(n, :)

⎤⎥⎥⎦ ∈ Rn×mk.

3.3.5. Rank truncation and higher-order SVD

To obtain a multilinear rank-r approximation X̃ of a tensor X, we can make use
of a generalization of the singular value decomposition (SVD), the higher-order
SVD (HOSVD). The truncated HOSVD procedure, shown in Algorithm 3.1, can be
described by the successive application of best rank-rμ approximations Pμ

rμ
in each

mode μ = 1, . . . , d:

PHO
r : Rn1×···×nd →Mr, X 
→ Pd

rd
◦ · · · ◦ P1

r1 X.

The application of a single projector Pμ
rμ

is given explicitly as (Pμ
rμ

X)(μ) = QQTX(μ),
where Q ∈ Rnμ×rμ contains the first rμ left singular vectors of X(μ).

While the truncated HOSVD does not yield the best rank-r approximation like the
truncated SVD, it fulfills a quasi-best approximation property [LMV00, Hac12].
Theorem 3.4.

‖X− PHO
r X‖ ≤

√
d‖X− Pr X‖,

where Pr X is the projection yielding any best rank-r approximation of X in the norm
‖ · ‖.
Note that such a best rank-r approximation Pr X is guaranteed to exist, see [Usc13,
Cor. 7.2].

The HOSVD inherits the smoothness of low-rank matrix approximations.
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Algorithm 3.1 Truncated HOSVD: Successive higher-order SVD
Input: Tensor X ∈ Rn1×···×nd , target rank r.
Output: Multilinear rank-r approximation X̃ of X in the Tucker format,

X̃ = S× U1 × U2 × · · · × Ud.

S ← X
for μ = 1, . . . , d do

[U, Σ, V ] ← svd(S(μ))
Uμ ← U(:, 1 : rμ)
S(μ) ← Σ(1 : rμ, 1 : rμ)V (:, 1 : rμ)T

end for

Proposition 3.5 (Smoothness of truncated HOSVD). Let X ∈Mr. Then there exists
a neighborhood U ⊂ Rn1×···×nd of X such that PHO

r : U →Mr is smooth.

Proof. Let Uμ denote the open set of tensors whose μth matricization has a nonzero
gap between the rμth and the (rμ +1)th singular values. It was shown in [BGBMN91,
CD00] that in some neighborhood, the factors of an SVD decomposition depend
smoothly on the original matrix if we additionally allow for negative singular values
and a change in the order of the singular values. Therefore, we can assume that the
matrix Q containing the first rμ left singular vectors of a rank-rμ matrix X(μ) depends
smoothly on X(μ). Hence the projector (Pμ

rμ
X)(μ) = QQTX(μ) is also smooth and

well-defined on Uμ. Clearly, X ∈Mr is contained in all Uμ and is a fixpoint of every
Pμ

rμ
:

Pμ
rμ

X = X ∀μ = 1, . . . , d ⇒ Pμ
rμ
◦ · · · ◦ P1

r1 X = X.

Thus, it is possible to construct an open neighborhood U ∈ Rn1×···×nd of X such that
Pμ

rμ
◦ · · · ◦ P1

r1 U ⊆ Uμ for all μ. Hence, the chain rule yields the smoothness of the
operator PHO

r on U .

The HOSVD is a main ingredient of most of the algorithms presented in this thesis.
If X is a general, unstructured d-dimensional tensor, the computation of the HOSVD
can become very expensive as the tensor sizes increase, since we have to form the
singular value decomposition of each matricization. In practical algorithms which
exploit the low-rank Tucker structure, we can often assume that the tensor is already
in the Tucker format, but its rank r is higher than the desired target rank r̃. In this
setting, we can use Algorithm 3.2, which implements a low-rank recompression. Note
that it is crucial for this algorithm that the factor matrices Uμ of the input tensor
X have orthonormal columns. If this is not the case, they can be orthonormalized
beforehand by a QR-procedure, see Section 3.3.1.
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Algorithm 3.2 Low-rank recompression using the HOSVD
Input: Rank-r Tucker tensor X ∈ Rn1×···×nd represented by X = S×U1×U2×· · ·×Ud.

Desired target rank r̃ with r̃μ ≤ rμ, μ = 1, . . . , d.
Output: Multilinear rank-r̃ approximation X̃ of X in the Tucker format,

X̃ = S̃× Ũ1 × Ũ2 × · · · × Ũd.

[S̃, V1, . . . , Vd] ← hosvd(S, r̃)
for μ = 1, . . . , d do

Ũμ ← UμVμ

end for

3.4. Manifold structure

Let us assume that we have a high-dimensional optimization problem where the
solution X has low multilinear rank and can therefore be represented efficiently in
the Tucker format. To apply the Riemannian optimization techniques introduced in
Chapter 2 to this problem, we first have to investigate in a suitable manifold structure.
The following theorem yields that the set of Tucker tensors of fixed multilinear rank is
indeed a smooth embedded submanifold of Euclidean space. This result was already
used in [KL10, Hac12], with a formal proof presented in [Usc13] for the more general
case of Hilbert spaces. There, the proof is based on identifying the non-uniqueness of
the Tucker format and defining a corresponding Lie group action whose orbits yield
equivalence classes. Here, we present a constructive approach which explicitly uses
the characterization of an embedded submanifold as the level set of a submersion
and thus uses only basic differential geometric concepts.
Theorem 3.6. The set of Tucker tensors of fixed multilinear rank,

Mr :=
{
X ∈ Rn1×···×nd

∣∣ rankML(X) = r
}
,

forms a smooth embedded submanifold of Rn1×···×nd of dimension

dimMr =
d∏

μ=1
rμ +

d∑
μ=1

(rμnμ − r2
μ).

Proof. We first note again that the multilinear rank r cannot be chosen arbitrarily
and has to fulfill the condition of Remark 3.3.

The proof proceeds inductively by fitting the rank in each matricization to reach the
target rank r. First, we will show that the set

M1
r1 =

{
X ∈ Rn1×···×nd

∣∣ rank(X(1)) = r1
}
.

forms a smooth embedded submanifold of Rn1×···×nd of dimension⎛⎝n1 +
d∏

μ=2
nμ

⎞⎠ r1 − r2
1.
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Then, we show that the recursively defined set, μ > 1,

M1,...,μ
r1,...,rμ

=
{
X ∈M1,...,μ−1

r1,...,rμ−1

∣∣ rank(X(μ)) = rμ
}
,

forms a smooth embedded submanifold of M1,...,μ−1
r1,...,rμ−1 of dimension( μ∏

ν=1
rν

)⎛⎝ d∏
ν=μ+1

nν

⎞⎠+
μ∑

ν=1
(rνnν − r2

ν).

From this we obtain for μ = d the set M1,...,d
r1,...,rd

, which is identical to Mr. Hence,
Mr is also a smooth embedded submanifold of Rn1×···×nd of the same dimension as
M1,...,d

r1,...,rd
, which will prove the theorem.

Base case, μ = 1. We show that the set

M1
r1 =

{
X ∈ Rn1×···×nd

∣∣ rank(X(1)) = r1
}

forms a smooth embedded submanifold of Rn1×···×nd .

For this base case, we follow the proof that the set of fixed-rank matrices forms
a smooth embedded submanifold [Lee03, Example 8.14] and apply it to the first
matricization. Using row- and column permutations Pr,1 and Pc,1, we can partition
X(1) into blocks

X(1) = Pr,1

[
A1 B1
C1 D1

]
Pc,1, (3.10)

where A1 ∈ Rr1×r1 is non-singular and D1 ∈ R(n1−r1)×(n2···nd−r1). We define a subset
S1 containing X by

S1 =
{

X ∈ Rn1×···×nd

∣∣∣ X(1) = Pr,1

[
A1 B1
C1 D1

]
Pc,1, det(A1) �= 0

}
.

As the row- and column permutations are linear isomorphisms and the determinant
function is continuous, S1 is an open subset of Rn1×···×nd .

Using this block structure, we will now show that a tensor X ∈ S1 fulfills rank(X(1)) =
r1 if and only if the Schur complement is a matrix of all zeros,

D1 − C1A−1
1 B1 = 0.

For this, we consider the invertible matrix R ∈ Rn2···nd×n2···nd given by

R = P −1
c,1

[
A−1

1 −A−1
1 B1

0 In2···nd−r1

]
.

As R and the permutations are invertible, we have rank(X(1)) = rank(P −1
r,1 X(1)R)

and hence

P −1
r,1 X(1)R = P −1

r,1 Pr,1

[
A1 B1
C1 D1

]
Pc,1P −1

c,1

[
A−1

1 −A−1
1 B1

0 In2···nd−r1

]

=
[

Ir1 0
C1A−1

1 D1 − C1A−1
1 B1

]
,
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from which we can see that P −1
r,1 X(1)R has rank r1 if and only if its lower right part

D1 − C1A−1
1 B1 is zero.

Therefore, we can describe all tensors in S1 ∩M1
r1 by the level set of the function

Φ1 : S1 → R(n1−r1)×(n2···nd−r1), Φ1(X) = D1 − C1A−1
1 B1.

This function is smooth, as it only involves the inversion of a non-singular matrix
and basic matrix operations. To see that Φ1 is a submersion, see Def. 2.6, we show
that DΦ1(X) : TXS1 � Rn1×···×nd → R(n1−r1)×(n2···nd−r1) is surjective at any X ∈ S1.
Consider the path

γ : R→ S1, γ(t)(1) = Pr,1

[
A1 B1
C1 D1 + tE1

]
Pc,1

with an arbitrary matrix E1 ∈ R(n1−r1)×(n2···nd−r1). Then, we have

DΦ1(X)[γ′(0)] = (Φ1 ◦ γ)′(t)
∣∣∣
t=0

=
d

dt

∣∣∣
t=0

(D1 + tE1 − C1A−1
1 B1) = E1

Thus, every point X ∈M1
r1 has a neighborhood S1 ⊂ Rn1×···×nd such that S1∩M1

r1 is
the level set of a submersion Φ1 and, thus, by Proposition 2.10, M1

r1 is an embedded
submanifold of Rn1×···×nd with dimension

dimM1
r1 = dim ker Φ1 = dim(Rn1×···×nd)− dim(R(n1−r1)×(n2···nd−r1))

=

⎛⎝ d∏
μ=1

nμ

⎞⎠− (n1 − r1)

⎛⎝ d∏
μ=2

nμ − r1

⎞⎠ =

⎛⎝n1 +
d∏

μ=2
nμ

⎞⎠ r1 − r2
1.

Inductive step, μ − 1 → μ. Assume that M1,...,μ−1
r1,...,rμ−1 is a smooth embedded sub-

manifold of M1,...,μ−2
r1,...,rμ−2 . Then we want to show that M1,...,μ

r1,...,rμ
is a smooth embedded

submanifold of M1,...,μ−1
r1,...,rμ−1 .

We will proceed in a similar way as for the base case. We can represent every
X ∈M1,...,μ−1

r1,...,rμ−1 as

X(μ−1) = Uμ−1S(μ−1)(Inμ···nd
⊗ UT

μ−2 ⊗ · · · ⊗ UT
1 )

⇔ X = S×1 U1 ×2 U2 · · · ×μ−1 Uμ−1.

where the factor matrices Uν ∈ Rn1×r1 are matrices with full column rank and
S ∈ Rr1×···×rμ−1×nμ×···×nd . Such a representation of the (μ− 1)th matricization can
be obtained by, e.g., a QR-like-decomposition of X(μ−1). As shown in Corollary A.2,
the factors of such a decomposition depend smoothly on the original matrix X(μ−1).
In the μth matricization, X is then given by

X(μ) = S(μ)(Inμ+1···nd
⊗ UT

μ−1 ⊗ · · · ⊗ UT
1 ).

As Inμ+1···nd
⊗ UT

μ−1 ⊗ · · · ⊗ UT
1 has full row rank (

∏μ−1
ν=1 rν)(

∏d
ν=μ+1 nν) ≥ rμ, it

suffices to look at the rank of S(μ). Analogous to the base case, we can introduce
row- and column permutations Pr,μ and Pc,μ to reveal the block structure of S(μ),

X(μ) = Pr,μ

[
Aμ Bμ

Cμ Dμ

]
Pc,μ(Inμ+1···nd

⊗ UT
μ−1 ⊗ · · · ⊗ UT

1 ). (3.11)
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where Aμ ∈ Rrμ×rμ is a non-singular matrix and Dμ ∈ R(nμ−rμ)×(r1···rμ−1nμ+1···nd−rμ).
Thus, let us consider the relatively open set

Sμ =
{

X ∈M1,...,μ−1
r1,...,rμ−1

∣∣∣
X(μ) = Pr,μ

[
Aμ Bμ

Cμ Dμ

]
Pc,μ(Inμ+1···nd

⊗ UT
μ−1 ⊗ · · · ⊗ UT

1 ), det(Aμ) �= 0
}

.

Using the block structure of S(μ), we will now show that a tensor X ∈ Sμ fulfills
rank(X(μ)) = rank(S(μ)) = rμ if and only if the Schur complement is a matrix of all
zeros,

Dμ − CμA−1
μ Bμ = 0.

To this end, we consider the invertible matrix R ∈ Rm×m, m = r1 · · · rμ−1nμ+1 · · ·nd,
given by

R = P −1
c,μ

[
A−1

μ −A−1
μ Bμ

0 Im−rμ

]
.

As R and the permutations are invertible, we have rank(S(μ)) = rank(P −1
r,μ S(μ)R)

and hence

P −1
r,μ S(μ)R = P −1

r,μ Pr,μ

[
Aμ Bμ

Cμ Dμ

]
Pc,μP −1

c,μ

[
A−1

μ −A−1
μ Bμ

0 Im−rμ

]

=
[

Irμ 0
CμA−1

μ Dμ − CμA−1
μ Bμ

]
,

from which we can see that P −1
r,μ S(μ)R has rank rμ if and only if its lower right part

Dμ − CμA−1
μ Bμ is zero.

Thus, we can describe all tensors in Sμ ∩M1,...,μ
r1,...,rμ

by the level set of

Φμ : Sμ → R(nμ−rμ)×(r1···rμ−1nμ+1···nd−rμ), Φμ(X) = Dμ − CμA−1
μ Bμ.

Again, we can check its submersion property by considering the path

γ : R→ Sμ, γ(t)(μ) = Pr,μ

[
Aμ Bμ

Cμ Dμ + tEμ

]
Pc,μ(Inμ+1···nd

⊗ UT
μ−1 ⊗ · · · ⊗ UT

1 )

with arbitrary matrix Eμ ∈ R(nμ−rμ)×(r1···rμ−1nμ+1···nd−rμ) and hence

DΦμ(X)[γ′(0)] = (Φμ ◦ γ)′(t)
∣∣∣
t=0

=
d

dt

∣∣∣
t=0

(Dμ + tEμ − CμA−1
μ Bμ) = Eμ.

Using that Sμ is a relatively open subset ofM1,...,μ−1
r1,...,rμ−1 and thus dim(Sμ) = dim(M1,...,μ−1

r1,...,rμ−1)
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we obtain that M1,...,μ
r1,...,rμ

is an embedded submanifold of M1,...,μ−1
r1,...,rμ−1 of dimension

dimM1,...,μ
r1,...,rμ

= dim ker Φμ

= dim(Sμ)− dim(R(nμ−rμ)×(r1···rμ−1nμ+1···nd−rμ))

=

⎛⎝μ−1∏
ν=1

rν

⎞⎠( d∏
ν=μ

nν

)
+

μ−1∑
ν=1

rνnν − r2
ν .

−
⎛⎝μ−1∏

ν=1
rν

⎞⎠( d∏
ν=μ

nν

)
+
( μ∏

ν=1
rν

)⎛⎝ d∏
ν=μ+1

nν

⎞⎠+ nμrμ − r2
μ

=
( μ∏

ν=1
rν

)⎛⎝ d∏
ν=μ+1

nν

⎞⎠+
μ∑

ν=1
(rνnν − r2

ν).

As M1,...,μ
r1,...,rμ

is identical to Mr, we obtain that Mr is an embedded submanifold of
M1,...,μ−1

r1,...,rμ−1 and thus also of Rn1×···×nd of the same dimension

d∏
μ=1

rμ +
d∑

μ=1
(nμrμ − r2

μ).

Note that the embedded submanifold property does not follow directly from the
intersection of the d rank-rμ matrix manifolds Mμ

rμ
corresponding to the matriciza-

tions X(μ), μ = 1, . . . , d. This follows from that fact that they do not intersect
transversally, as the dimension of the intersection of their tangent spaces TXMμ

rμ

is smaller than the dimension of the full space Rn1×···×nd . Indeed, the μth tangent
space has dimensionality

dim(TXMμ
rμ

) = rμ(nμ +
d∏

ν=1
ν 
=μ

nν)− r2
μ,

from which we can conclude that

dim(TXMμ
rμ
∩ · · ·∩TXMμ

rμ
) ≤

d∑
μ=1

rμ(nμ +
d∏

ν=1
ν 
=μ

nν)− r2
μ <

d∏
μ=1

nμ = dim(Rn1×···×nd),

if we assume that rμ < nμ.

Furthermore, we note that Mr can also be seen as a quotient manifold. Let St(n, r)
denote the Stiefel manifold of n × r matrices with orthonormal columns. We set
Mr = Nr

/ ∼ with the total space Nr given as the product

Nr = Rr1×···×rd × St(n1, r1)× · · · × St(nd, rd),

and ∼ represents the equivalence relation due to the non-uniqueness of the Tucker
decomposition, see Remark 3.2. This viewpoint was investigated recently by Kasai
and Mishra [KM15].
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3.5. The tangent space TXMr

To find a suitable parametrization of the tangent space TXMr, we choose an arbitrary
smooth curve γ in the manifold passing through X = S×1 U1 · · ·×d Ud. As γ(t) ∈Mr,
we can describe it by smoothly varying components S(t) and Uμ(t) in the Tucker
format,

γ : R→Mr, γ(t) = S(t)×1 U1(t)×2 U2(t) · · · ×d Ud(t),
γ(0) = X.

The tangent vector realized by this curve is then obtained by the product rule,

γ′(0) = S′(0)×1 U1(0)×2 U2(0) · · · ×d Ud(0)
+ S(0)×1 U ′

1(0)×2 U2(0) · · · ×d Ud(0)
+ · · ·+ S(0)×1 U1(0)×2 U2(0) · · · ×d U ′

d(0)
= S′(0)×1 U1 ×2 U2 · · · ×d Ud

+ S×1 U ′
1(0)×2 U2 · · · ×d Ud

+ · · ·+ S×1 U1 ×2 U2 · · · ×d U ′
d(0),

where we have used that S(0) = S and Uμ(0) = Uμ due to the initial condition
γ(0) = X. Thus, any tangent vector ξ ∈ TXMr can be written as

ξ = S×1 δU1 ×2 U2 · · · ×d Ud + S×1 U1 ×2 δU2 · · · ×d Ud + · · ·
+ S×1 U1 ×2 U2 · · · ×d δUd + δS×1 U1 ×2 U2 · · · ×d Ud

=
d∑

μ=1
S×μ δUμ

d×
ν=1
ν 
=μ

Uν + δS
d×

ν=1
Uν ,

(3.12)

with arbitrary first-order variations δUμ ∈ Rnμ×rμ and δS ∈ Rr1×···×rd . From
Proposition 2.4, we know that TXMr is a vector space of the same dimension as Mr.
By counting dimensions, we see that the representation (3.12) has

d∏
μ=1

rμ +
d∑

μ=1
nμrμ > dim(Mr)

degrees of freedom. Introducing additional orthogonality constraints, the so-called
gauge conditions,

δUT
μ Uμ = 0 ∀μ = 1, . . . , d

introduces r2
μ constraints per factor matrix Uμ, such that the number of degrees of

freedom matches dim(Mr). Indeed, this representation of tangent vectors allows us
to decompose the tangent space into orthogonal subspaces, as the next proposition
shows.
Proposition 3.7. The tangent space TXMr can be orthogonally decomposed as

TXM = V1 ⊕ V2 ⊕ · · · ⊕ Vd ⊕ Vd+1, with Vμ ⊥ Vν ∀μ �= ν, (3.13)
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where the subspaces Vμ are given by

Vμ =
{

S×μ δUμ

d×
ν=1
ν 
=μ

Uν

∣∣∣∣ δUμ ∈ Rnμ×rμ , δUT
μ Uμ = 0

}
, μ = 1, . . . , d, (3.14)

and

Vd+1 =
{

δS
d×

ν=1
Uν

∣∣∣∣ δS ∈ Rr1×···×rd

}
.

Proof. To prove the orthogonal decomposition, we have to show for any pair Vμ, Vν

with μ, ν ∈ {1, . . . , d}, μ �= ν, it has to hold that 〈X, Y〉 = 0 for all X ∈ Vμ, Y ∈ Vν .
Thus we calculate

〈X, Y〉 =
〈

S×μ δUμ

d×
κ=1
κ
=μ

Uκ, S×ν δUν

d×
τ=1
τ 
=ν

Uτ

〉

=
〈

S×μ UT
μ δUμ ×ν δUT

ν Uν

d×
κ=1
κ
=μ
κ
=ν

UT
κ Uκ, S

〉

=
〈

S×μ UT
μ δUμ ×ν δUT

ν Uν , S
〉

= 0,

where we used the rules for the inner product, see Section 3.3.3 and the orthogonality
conditions of the factor matrices. Analogously, we obtain for X ∈ Vμ, Y ∈ Vd+1

〈X, Y〉 =
〈

S×μ δUμ

d×
κ=1
κ
=μ

Uκ, δS
d×

ν=1
Uν

〉

=
〈

S×μ UT
μ δUμ, δS

〉
= 0,

from which we obtain that also Vμ ⊥ Vd+1 for all μ = 1, . . . , d, which proves the
proposition.

In particular, this orthogonal decomposition shows that, given the core tensor S and
factor matrices Uμ of X, the tangent vector ξ is uniquely represented in terms of
δS and the gauged δUμ, in contrast to the non-unique representation in the Tucker
format.

3.5.1. Projection onto the tangent space

An explicit expression for the projection onto the tangent space TXMr at a point
X ∈ Mr was derived by Koch and Lubich, [KL10, Eq.(2.7)] and is shown in the
following proposition.
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Proposition 3.8. For an arbitrary Z ∈ Rn1×···×nd , the orthogonal projection onto the
tangent space at X ∈Mr,X = S×1 U1 · · · ×d Ud, with UT

μ Uμ = Irμ, is given by

PTXMr : Rn1×···×nd → TXMr, Z 
→
d∑

μ=1
S×μ δUμ

d×
ν=1
ν 
=μ

Uν + δS
d×

ν=1
Uν ,

where the components δUμ and δS are determined by

δS = Z
d×

μ=1
UT

μ ,

δUμ = (Inμ − UμUT
μ )
[
Z

d×
ν=1
ν 
=μ

UT
ν

]
(μ)

S†
(μ),

where S†
(μ) = ST

(μ)
(
S(μ)ST

(μ)
)−1 is the Moore–Penrose pseudo-inverse of S(μ).

Proof. The orthogonal projection operator has to fulfill

〈PTXMr Z, ξ〉 = 〈Z, ξ〉, ∀ξ ∈ TXMr.

To simplify this expression, we make use of the orthogonal decomposition of the
tangent space into the subspaces Vμ, see Prop. 3.7 to consider each projection PVμ ,
μ = 1, . . . , d + 1 individually:

〈PVμ Z, ξμ〉 = 〈Z, ξμ〉, ∀ξμ ∈ Vμ.

Let us first consider the easiest case, μ = d + 1, the projection onto Vd+1. We can
write any ξd+1 ∈ Vd+1 as ξd+1 = R ×1 U1 · · · ×d Ud with arbitrary R ∈ Rr1×···×rd .
Thus, it has to hold

〈PVd+1 Z, ξd+1〉 = 〈Z, ξd+1〉

⇔
〈

δS
d×

μ=1
Uμ, R

d×
μ=1

Uμ

〉
=
〈

Z, R
d×

μ=1
Uμ

〉

⇔
〈

δS
d×

μ=1
UT

μ Uμ, R
〉

=
〈

Z
d×

μ=1
UT

μ , R
〉

⇔ 〈
δS, R

〉
=
〈

Z
d×

μ=1
UT

μ , R
〉

for all R, from which we conclude that δS = Z×d

μ=1 UT
μ . For the remaining

subspaces Vμ with μ = 1, . . . , d we test with

ξμ = S×μ P⊥
Uμ

V
d×

ν=1
ν 
=μ

Uν ∈ Vμ,

where we have added a projection P⊥
Uμ

:= Inμ−UμUT
μ into the orthogonal complement

of Uμ, such that the gauge condition of the μth factor matrix is automatically fulfilled
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for arbitrary choices of V ∈ Rnμ×rμ . With this ansatz, we want to determine δUμ

such that

〈PVμ Z, ξμ〉 = 〈Z, ξμ〉

⇔
〈

S×μ δUμ

d×
ν=1
ν 
=μ

Uν , S×μ P⊥
Uμ

V
d×

ν=1
ν 
=μ

Uν

〉
=
〈

Z, S×μ P⊥
Uμ

V
d×

ν=1
ν 
=μ

Uν

〉

⇔ 〈
S×μ δUμ, S×μ V

〉
=
〈

Z×μ P⊥
Uμ

d×
ν=1
ν 
=μ

UT
ν , S×μ V

〉

holds for all V ∈ Rnμ×rμ To get rid of the core tensor S, we look at the μth
matricization (observing that 〈X, Y〉 = 〈X(μ), Y(μ)〉 = trace(XT

(μ)Y(μ)) holds for the
Euclidean inner product),〈

δUμS(μ), V S(μ)

〉
=
〈

P⊥
Uμ

[
Z

d×
ν=1
ν 
=μ

UT
ν

]
(μ)

, V S(μ)

〉

⇔
〈

δUμS(μ)ST
(μ), V

〉
=
〈

P⊥
Uμ

[
Z

d×
ν=1
ν 
=μ

UT
ν

]
(μ)

ST
(μ), V

〉

from which we conclude that

δUμS(μ)ST
(μ) = P⊥

Uμ

[
Z

d×
ν=1
ν 
=μ

UT
ν

]
(μ)

ST
(μ).

Multiplying from the right with (S(μ)ST
(μ))

−1 and using that ST
(μ)(S(μ)ST

(μ))
−1 = S†

(μ),
we obtain

δUμ = P⊥
Uμ

[
Z

d×
ν=1
ν 
=μ

UT
ν

]
(μ)

S†
(μ) = (I − UμUT

μ )
[
Z

d×
ν=1
ν 
=μ

UT
ν

]
(μ)

S†
(μ),

which proves the proposition.

The projection of a Tucker tensor of multilinear rank r̃ onto TXMr can be performed
in O(dnr̃rd−1 + r̃dr) operations, where we assume r̃ ≥ r.

3.5.2. Tucker representation of tangent vectors

Every tangent vector ξ ∈ TXMr

ξ = δS
d×

μ=1
Uμ +

d∑
μ=1

S×μ δUμ

d×
ν=1
ν 
=μ

Uν ,

can also be represented as a Tucker tensor

ξ = R ×1 V1 · · · ×d Vd (3.15)
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of rank at most 2r, whose (non-orthogonalized) factor matrices are given by

Vμ =
[
Uμ δUμ

]
∈ Rnμ×2rμ

and the core tensor R ∈ R2r1×···×2rd is composed of S and δS with a special block
structure illustrated in Figure 3.5 for the case d = 3. This rank-2r representation of
tangent vectors will be used when calculating the retraction and is also convenient for
implementation purposes, as it allows us to reuse the implementation of operations
acting on Tucker tensors.

S

S

SδS
R =

Figure 3.5: Block structure of the core tensor R in the compact representation (3.15) of a
tangent tensor ξ ∈ TXMr for the case d = 3.

3.5.3. Inner product of two tangent vectors

Let X ∈Mr with X = S×1 U1 · · · ×d Ud. The inner product of two tangent tensors
ξ, ν in TXMr,

ξ = δS
d×

μ=1
Uμ +

d∑
μ=1

S×μ δUμ×
ν 
=μ

Uν ,

η = δ̃S
d×

μ=1
Uμ +

d∑
μ=1

S×μ δ̃Uμ×
ν 
=μ

Uν ,

can be evaluated efficiently by using the orthogonal decomposition, Prop. 3.7, to
split the inner product into (d + 1) parts corresponding to the subspaces Vμ,

〈ξ, η〉 =
〈

δS
d×

μ=1
Uμ, δ̃S

d×
μ=1

Uμ

〉
+

d∑
μ=1

〈
S×μ δUμ×

ν 
=μ

Uν , S×μ δ̃Uμ×
ν 
=μ

Uν

〉

= 〈δS, δ̃S〉+
d∑

μ=1

〈
S×μ δ̃UT

μδUμ, S
〉
.

Thus, after evaluating the products δ̃UT
μδUμ and multiplying the result along the μth

mode of S, μ = 1, . . . , d, we only have to compute (d + 1) small inner products of size
r1r2 · · · rd, for a total cost of O(dr2n+rd+1+(d+1)rd) floating point operations.

3.6. Retraction

In the matrix case, the metric projection (2.4) can be easily computed from the
truncated SVD. However, according to Theorem 3.4, the HOSVD is only quasi-optimal
and thus cannot be used to compute the orthogonal projection.
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Nevertheless, it still possesses all necessary properties of a retraction in the sense of
Definition 2.16.
Proposition 3.9. The map

R : TMr →Mr, (X, ξ) 
→ PHO
r (X + ξ) (3.16)

is a retraction on Mr around X.

Proof. The map R defined in (3.16) can be written as the composition

R : TMr →Mr, (X, ξ) 
→ PHO
r ◦F (X, ξ),

where the smooth map F : TMr → Rn1×···×nd is defined as F (X, ξ) := X + ξ. By
Proposition 3.5, PHO

r is smooth on the image on F as long as ξ is sufficiently small.
Hence, R defines a locally smooth map in a neighborhood U ⊂ TMr around (X, 0X).

Definition 2.16 (b) follows from the fact that the application of the HOSVD to
elements in Mr leaves them unchanged.

It remains to check Definition 2.16 (c), the local rigidity condition. Because the
tangent space TXMr is a first order approximation of Mr around ξ, we have that
‖(X + tξ)− PMr(X + tξ)‖ = O(t2) for t → 0. Thus, using Theorem 3.4:

‖(X + tξ)−R(X, tξ)‖ ≤
√

d‖(X + tξ)− PMr(X + tξ)‖ = O(t2).

Let us now write R in terms of the best approximation PMr , see (2.4), from which
we know that it constitutes a retraction:

R(X, tξ) = PMr(X + tξ) + E(X + tξ),

where E is the error term due to the non-optimality of the HOSVD, with

‖E(X + tξ)‖ = ‖PMr(X + tξ)−R(X, tξ)‖
= ‖(PMr(X + tξ)−X + tξ) + (X + tξ −R(X, tξ))‖
≤ ‖PMr(X + tξ)−X + tξ‖+ ‖X + tξ −R(X, tξ)‖
= O(t2).

Hence, the derivative fulfills

d

dt
R(X, tξ)

∣∣∣
t=0

=
d

dt
PMr(X + tξ)

∣∣∣
t=0

+
d

dt
E(X + tξ)

∣∣∣
t=0

= ξ + 0 = ξ,

and therefore DR(X, ·)(0X) = idTXMr , which completes the proof.

To calculate the retraction, we make use of the rank-2r Tucker representation of a
tangent vector ξ ∈ TXMr discussed in Section 3.5.2. Let α ∈ R be the step size in
one iteration of an optimization algorithm. The sum Z = X + αξ, interpreted as the
usual sum in Euclidean space, can again be written in a compact way as a Tucker
tensor with representation

Z = R ×1 V1 ×2 V2 · · · ×d Vd
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of rank at most 2r, whose (non-orthogonalized) factor matrices are given by

Vμ =
[
Uμ δUμ

]
∈ Rnμ×2rμ

and the core tensor R ∈ R2r1×···×2rd is composed of S and δS with the block structure
illustrated in Figure 3.6 for the case d = 3. After orthogonalizing Z such that its factor
matrices have orthonormal columns, we can calculate the retraction by truncating
the rank of this compact representation from rank at most 2r to r using the HOSVD
procedure described in Algorithm 3.2. In total, performing the retraction R(X, αξ)
can be done in O(dr2n + rd+1) operations.

Alternative retractions. In [AO14], Absil and Oseledets have investigated different
retractions for the matrix case, i.e. the manifold of matrices of fixed rank. There,
the orthogonal projection computed from the truncated SVD procedure is compared
to other approaches, such as calculating the exponential map (using a Runge-Kutta
scheme) or an orthographic projection, where we choose R(X, ξ) to be the point
from

X + ξ + NXMr ∩Mr

closest to X + ξ, see also [AM12]. This can be solved explicitly in the matrix
case to obtain a retraction which does not require the calculation of the SVD but
a matrix inversion instead. Obtaining a similar explicit expression in the tensor
case is not straight-forward, as the structure of the normal space NXMr is more
complicated. A different approach formulates the retraction map as a dynamic
low-rank approximation problem, given as

d

dt
Xk+1 = Xk + tξ, Xk+1 ∈Mr ∀t ∈ [0, 1].

An efficient way to solve such an ODE is given by the KSL projector-splitting
scheme [LO14], which has also been extended to the Tucker [Lub15] and TT
case [LOV15]. As the comparison in [AO14] showed, the SVD-based retraction
yields very good results and is thus our method of choice. Nevertheless, it would be
interesting to search for a retraction which yields similar performance while removing
the need for expensive HOSVDs.

αS

αS

αSS+αδS

R =

Figure 3.6: Block structure of the core tensor R obtained from the addition X + αξ (seen as
addition in Euclidean space) with X ∈Mr and ξ ∈ TXMr for the case d = 3.
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3.7. Vector transport

For the conjugate gradient algorithm, we need to compare the current gradient ξi

with the previous search direction ηi−1, living in two different tangent spaces. As
described in Section 2.7, we can transport a tangent vector ξ ∈ TXMr to TYMr by
means of the vector transport

τX→Y : TXMr → TYMr, ξ 
→ PTYMr ξ .

Hence, we have to apply the projection operator PTYMr to a tangent vector ξ ∈ TXMr.
Again, we can make use of the compact Tucker representation of ξ, see Section 3.5.2,
and apply the projection operator to this Tucker tensor of multilinear rank r̃ ≤ 2r to
obtain the transported tangent vector τX→Yξ. The total cost of this procedure is
O(dnrd + rd+1) operations.

3.8. Linear operators acting on Tucker tensors

Many applications, such as the solution of linear systems, see Chapter 6, require the
action of a linear operator A on a tensor X. If X is given in a low-rank format, a
natural question is: in which cases can we preserve the low-rank structure of X after
application of A?

A common case are linear operators A : Rn1×···×nd → Rn1×···×nd which possess a
Kronecker-structured matrix representation A ∈ Rn1n2···nd×n1n2···nd ,

Y = AX ⇔ vec(Y) = A vec(X),

A =
R∑

i=1
Ad,i ⊗Ad−1,i ⊗ · · · ⊗A1,i, (3.17)

where each Aμ,i is a matrix of size nμ × nμ for i = 1, . . . , R. The application of such
a Kronecker structured operator A to a rank-r Tucker tensor X = S×1 U1 · · · ×d Ud

is straightforward,

Y =
R∑

i=1
S×1 A1,iU1 ×2 A2,iU2 · · · ×d Ad,iUi.

As it is a sum of R rank-r tensors, the multilinear rank of Y is at most Rr.

S

S
S

S̃ =

Figure 3.7: Block structure of the core tensor S̃ of Y = AX, where A is the Laplace operator
(3.18), for the case d = 3.
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As an example, the d-dimensional Laplace operator discretized on a uniform tensor
grid of mesh width h exhibits the form (3.17):

A =
d∑

μ=1
Ind

⊗ · · · ⊗ Inμ+1 ⊗ Lμ ⊗ Inμ−1 ⊗ · · · ⊗ In1 , (3.18)

where Lμ = 1
h2 tridiag(−1, 2,−1) is the one-dimensional finite difference matrix.

Making use of its special structure, we can show that applying the Laplace operator
does not yield a tensor of rank Rr but of rank 2r, independent of the number of
dimensions: The factor matrices Ũμ of Y are determined by

Ũμ =
[
Uμ LμUμ

]
and the resulting core tensor S̃ of Y has a block structure, shown in Figure 3.7 for
the case d = 3.

More complicated examples of such linear operators with Kronecker product structure
will be discussed in the numerical experiments of Chapter 6.
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Chapter 4
� Tensors of Fixed Tensor Train Rank

In many cases, the number of dimensions d of the solution tensor X ∈ Rnd can
become quite large. Indeed, when studying linear systems or eigenvalue problems
stemming from spin systems in quantum physics, d corresponds to the number of
particles, so we can easily reach cases of d > 100. As we have seen in the previous
Chapter 3, the dimensionality of the manifold of Tucker tensors of fixed multilinear
rank r = (r, . . . , r) scales like

O
(
rd + d(nr2 − r2)

)
.

While this is clearly a big improvement over the nd degrees of freedom of the full tensor
if r � n, we still have an exponential dependence on d: The term rd quickly becomes
too large to handle even for very small ranks r. Thus, the usefulness of the Tucker
format is limited to only moderately high-dimensional cases with, lets say, d < 5. In
this chapter, we will see a different notion of the tensor rank leading to the Tensor
Train (TT) format as introduced by Oseledets and Tyrtyshnikov [OT09, Ose11c].
In the physics community, this format was already used earlier under the name
Matrix Product States (MPS) [AKLT87, AKLT88, HWSH13, FNW92, OR95, Sch11,
Whi92].

We proceed in a similar way as in the previous Chapter 3: We first introduce the TT
format and basic operations on tensors in this representation. Then, we discuss the
manifold property of the set of tensors of fixed TT rank, derive the corresponding
tangent space and construct expressions for a retraction map and vector transport
needed for Riemannian optimization.

4.1. Tensor train rank and format

In Section 3.1.1, we have seen the μth-mode matricization as a way to reshape a tensor
X ∈ Rn1×···×nd into a matrix. Of course, this is not the only way to matricize a tensor.
In this chapter, we introduce another approach which we call the μ-mode unfolding
to distinguish it from the μth-mode matricization. Note that in the literature, it is
often also called μth matricization and the correct reshaping has to be deduced from
the context.
Definition 4.1. The μth unfolding of X ∈ Rn1×n2×···×nd is obtained by arranging the
entries in a matrix

X<μ> ∈ R(n1n2···nμ)×(nμ+1···nd)
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where the corresponding index map is given by

ι : Rn1×···×nd → Rn1···nμ × Rnμ+1···nd , ι(i1, . . . , id) = (irow, icol),

irow = 1 +
μ∑

ν=1
(iν − 1)

ν−1∏
τ=1

nτ , icol = 1 +
d∑

ν=μ+1
(iν − 1)

ν−1∏
τ=μ+1

nτ .

The new indices irow and icol form a colexicographic ordering of Rn1···nμ and Rnμ+1···nd ,
respectively.

We note that the μth matricization and the μth unfolding of a tensor X are only
related for the first and last mode, μ = 1 and μ = d, as we have

X(1) = X<1>, X(d) = (X<d−1>)T.

Remark 4.2. The μth unfolding is compatible with the column-major storage order
usually used to represent matrices. If the tensor X is stored in memory as a long
vector vec(X) ∈ Rn1···nd, then unfolding the tensor into a matrix does not require
moving entries in memory. Indeed, we have

vec(X) = vec(X<μ>), μ = 1, . . . , d− 1.

which can be exploited in an efficient implementation. Note that for the μth matri-
cization, this is only true for the first mode, vec(X) = vec(X(1)).

The unfoldings allow us to define the tensor train rank.
Definition 4.3. The tensor train rank or TT rank of a tensor tensor X ∈ Rn1×···×nd

is defined as the following (d + 1)-tuple of ranks,

rankTT(X) = r = (r0, r1, . . . , rd) :=
(
1, rank(X<1>), . . . , rank(X<d−1>), 1

)
,

where we have set r0 = rd = 1.

Given these ranks (r0, . . . rd), it is possible to write every entry of the d-dimensional
tensor X ∈ Rn1×n2×···×nd as a product of d matrices,

X(i1, i2, . . . , id) = U1(i1)U2(i2) · · ·Ud(id), (4.1)

where each Uμ(iμ) is a matrix of size rμ−1× rμ for iμ = 1, 2, . . . , nμ. We can view the
matrices Uμ(iμ) as slices of a third order tensor Uμ ∈ Rrμ−1×nμ×rμ along the second
dimension,

Uμ(:, iμ, :) = Uμ(iμ), iμ = 1, 2, . . . , nμ.

The Uμ are called the cores of the TT format. In terms of these core tensors, equation
(4.1) can also be written as

X(i1, . . . , id) =
r1∑

k1=1
· · ·

rd−1∑
kd−1=1

U1(1, i1, k1)U2(k1, i2, k2) · · ·Ud(kd−1, id, 1).

To be able to exploit the product structure of (4.1), we now focus on ways to operate
on parts of the cores and in particular, access and manipulate individual cores. We
define the left and the right unfoldings,

UL
μ ∈ Rrμ−1nμ×rμ , and UR

μ ∈ Rrμ−1×nμrμ ,
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X≤3 X≥5n1

U1

n2

U2

n3

U3

n4

U4

n5

U5

n6

U6
r1 r2 r3 r4 r5

Figure 4.1: Tensor network diagram representation of a TT tensor of order d = 6. As
r0 = rd = 1, they are usually omitted. The two interface matrices X≤3 and X≥5 are shown.

by reshaping Uμ ∈ Rrμ−1×nμ×rμ into matrices of size rμ−1nμ × rμ and rμ−1 × nμrμ,
respectively. To rigorously define the index mapping, we can express the left and
right unfoldings in terms of the matricization operations,

UL
μ = (Uμ)T

(3) = U<2>
μ , UR

μ = (Uμ)(1) = U<1>
μ .

Additionally, we can split the tensor X into left and right parts, the interface
matrices

X≤μ(i1, . . . , iμ) = U1(i1)U2(i2) · · ·Uμ(iμ), X≤μ ∈ Rn1n2···nμ×rμ ,

X≥μ(iμ, . . . , id) = [Uμ(iμ)Uμ+1(iμ+1) · · ·Ud(id)]T , X≥μ ∈ Rnμnμ+1···nd×rμ−1 .

Note that here, we slightly abuse the notation, as X≤μ(i1, . . . , iμ) results in a row
vector of length rμ and not a single element of X≤μ. Analogously, X≥μ(iμ, . . . , id)
yields a row vector of length rμ−1. Figure 4.1 depicts a TT tensor of order 6 as a
tensor network diagram, where we have marked the interface matrices X≤3 and X≥5.
The interface matrices can be constructed recursively:

X≤μ = (Inμ ⊗X≤μ−1)UL
μ, and XT

≥μ = UR
μ(XT

≥μ+1 ⊗ Inμ), (4.2)

where we define X≤0 = X≥d+1 = 1 such that for the first and last interface matrix it
holds

X≤1 = UL
1, X≥d = (UR

μ)T.

The following formula connects the μth unfolding of a tensor with its interface
matrices:

X<μ> = X≤μXT
≥μ+1.

Inserting (4.2) and vectorizing, we can isolate the μth core:

vec(X) = vec(X<μ−1>) = vec(X≤μ−1XT
≥μ)

= vec
(
X≤μ−1UR

μ(XT
≥μ+1 ⊗ Inμ)

)
= vec

(
X≤μ−1(Uμ)(1)(XT

≥μ+1 ⊗ Inμ)
)

= vec(Uμ ×1 X≤μ−1 ×3 X≥μ+1)
= (X≥μ+1 ⊗ Inμ ⊗X≤μ−1) vec(Uμ).

Finally, introducing the shorthand notation

X
=μ = X≥μ+1 ⊗ Inμ ⊗X≤μ−1 ∈ Rn1n2···nd×rμ−1nμrμ , (4.3)

we obtain the handy expression

vec(X) = X 
=μ vec(Uμ). (4.4)
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4.2. Operations on TT tensors

4.2.1. Orthogonalization

We call X μ-orthogonal if

(UL
ν)TUL

ν = Irν , and hence XT
≤νX≤ν = Irν for all ν = 1, . . . , μ− 1,

UR
ν (UR

ν )T = Irν−1 , and hence X≥νXT
≥ν = Irν−1 , for all ν = μ + 1, . . . , d.

The tensor X is called left-orthogonal if μ = d and right-orthogonal if μ = 1.
Orthogonalizing a given TT tensor can be done efficiently using recursive QR
decompositions, as we have for the left-orthogonal part:

X≤μ = Q≤μRμ, with Q≤μ = (Inμ ⊗Q≤μ−1)QL
μ and Q≤0 = 1.

Thus, starting from the left, we compute a QR decomposition of the first core,
UL

1 = QL
1R1. The orthogonal factor is kept as the new, left-orthogonal first core and

the non-orthogonal part is shifted to the second core. Then, a QR decomposition of
this updated second core is performed, and so on and so forth. A similar relation
holds for the right-orthogonal part. The resulting scheme is shown in Algorithm 4.1.
Moving from a μ-orthogonal tensor to a (μ + 1)-orthogonal one only requires a QR
decomposition of UL

μ. An important consequence that we will use in Section 4.4 is
that changing the orthogonalization of a tensor only affects its internal representation
and does not change the tensor itself. The computation of such an orthogonalized
representation from an arbitrary rank-r TT tensor X can be performed in O(dnr3)
operations.

Algorithm 4.1 μ-orthogonalization of a TT tensor
Input: Index μ ∈ {1, 2, . . . , d}, TT Tensor X ∈ Rn1×···×nd represented as

X(i1, . . . , id) = U1(i1)U2(i2) · · ·Ud(id),
Output: μ-orthogonal X.

for ν = 1, 2, . . . , μ− 1 do
[Q, R] ← qr(UL

ν) % Left-orthogonalize up to μ− 1
UL

ν ← Q

Uν+1 ← Uν+1 ×1 R

end for
for ν = d, d− 1, . . . , μ + 1 do

[Q, R] ← qr((UR
ν )T) % Right-orthogonalize down to μ + 1

UR
ν ← QT

Uν−1 ← Uν−1 ×3 R

end for
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4.2.2. Addition

Consider the two tensors X, Y, with rankTT(X) = r, rankTT(Y) = r̃ represented in
the TT format as

X(i1, i2, . . . , id) = U1(i1)U2(i2) · · ·Ud(id),

Y(i1, i2, . . . , id) = Ũ1(i1)Ũ2(i2) · · · Ũd(id).
(4.5)

Then, Z = X + Y can be represented as a TT tensor of rank r + r̃,

Z(i1, i2, . . . , id) = V1(i1)V2(i2) · · ·Vd(id),

with cores given for μ = 2 . . . d− 1 by

V1(i1) =
[
U1(i1) Ũ1(i1)

]
, Vμ(iμ) =

[
Uμ(iμ) 0

0 Ũμ(iμ)

]
, Vd(id) =

[
Ud(id)
Ũd(id)

]
.

This identity can be easily verified by multiplying out the matrix product:

Z(i1, i2, . . . , id) = V1(i1)V2(i2) · · ·Vd(id)

=
[
U1(i1) Ũ1(i1)

] [U2(i2) 0
0 Ũ2(i2)

]
· · ·
[
Ud−1(id−1) 0

0 Ũd−1(id−1)

] [
Ud(id)
Ũd(id)

]
= U1(i1)U2(i2) · · ·Ud(id) + Ũ1(i1)Ũ2(i2) · · · Ũd(id)
= X(i1, i2, . . . , id) + Y(i1, i2, . . . , id).

Thus, adding two TT tensors does not require any arithmetic operations, but increases
the rank.

4.2.3. Inner product and norm

As an inner product of two TT tensors we take the standard Euclidean inner product
of the vectorizations vec(X), vec(Y) ∈ Rn1n2···nd :

〈X, Y〉 = 〈vec(X), vec(Y)〉. (4.6)

To compute the inner product efficiently, we first note the identity

vec(X) = X
=1 vec(U1) = (X≥2 ⊗ In1 ⊗X≤0) vec(U1)
= (X≥2 ⊗ In1) vec(U1) = vec(U1 ×3 X≥2).

Then, we can reformulate the inner product as

〈vec(X), vec(Y)〉 = vec(U2)TXT

=2Y 
=2 vec(V2)

= vec(U2)T(XT
≥3 ⊗ In2 ⊗ Ir1

)(
Y≥3 ⊗ In2 ⊗XT

≤1Y≤1
)

vec(V2)

= vec
(
U2 ×3 X≥3

)T vec
(
V2 ×1 XT

≤1Y≤1 ×3 Y≥3
)

= vec
(
X̃
)T vec

(
Ỹ
)

= 〈X̃, Ỹ〉,
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where X̃ and Ỹ are the (d− 1) dimensional tensors obtained by removing the first
core of X and Y (with modified second core):

X̃(i2, . . . , id) = U2(i2)U3(i3) · · ·Ud(id) = X≥2(i2, . . . , id)T,

Ỹ(i2, . . . , id) = Ṽ2(i2)V3(i3) · · ·Vd(id), Ṽ2 = V2 ×1 XT
≤1Y≤1 = V2 ×1 (UL

1)TVL
1.

Thus, we can calculate the inner product by moving from the left to right, μ = 1, . . . , d,
calculating the small rμ× r̃μ matrices (UL

μ)TVL
μ and multiplying the result to the next

core Vμ+1, see Algorithm 4.2. In total, the computation of the inner product requires
O(d(r2r̃n + rr̃2n)) operations. Note that one can analogously derive a right-to-left
procedure involving the matrices UR

μ(VR
μ)T for μ = d, d− 1, . . . , 1.

Algorithm 4.2 Inner product of two TT tensors (left-to-right procedure)
Input: Tensors X ∈ Mr, Y ∈ Mr̃ with X(i1, . . . , id) = U1(i1)U2(i2) · · ·Ud(id),

Y(i1, . . . , id) = V1(i1)V2(i2) · · ·Vd(id)
Output: Inner product p = 〈X, Y〉.

p ← (UL
1)TVL

1
for μ = 2, . . . , d do

Vμ ← Vμ ×1 p

p ← (UL
μ)TVL

μ

end for

Remark 4.4. Due to this iterative process of “reducing” the number of dimensions,
this process is also known as a tensor contraction, especially when only performed
partially, that is, only for certain modes instead of all μ = 1, . . . , d.

The norm of a TT tensor is induced by the inner product. If X is μ-orthogonal, then
XT


=μX 
=μ = Irμ−1nμrμ and we obtain

‖X‖ =
√
〈X, X〉 =

√
vec(Uμ)TXT


=μX 
=μ vec(Uμ)

=
√

vec(Uμ)T vec(Uμ) = ‖Uμ‖,
so we only have to compute the norm of the μth core.

4.2.4. Hadamard product

As shown in [Ose11c], the Hadamard or element-wise product Z := X � Y of two
TT tensors X and Y of the form (4.5) can also be performed in an efficient way by
exploiting the structure of the TT format. We have

Z(i1, . . . , id) = X(i1, . . . , id)Y(i1, . . . , id)
= X(i1, . . . , id)⊗Y(i1, . . . , id)

=
(
U1(i1)U2(i2) · · ·Ud(id)

)⊗ (Ũ1(i1)Ũ2(i2) · · · Ũd(id)
)

=
(
U1(i1)⊗ Ũ1(i1)

) (
U2(i2)⊗ Ũ2(i2)

)
· · ·
(
Ud(id)⊗ Ũd(id)

)
,

where we first used that the Kronecker product is just the normal multiplication when
applied to the scalar quantities X(i1, . . . , id) and Y(i1, . . . , id) and then distributed
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the Kronecker product to each factor of the TT representation. Hence, Z is a TT
tensor with ranks at most rμr̃μ, μ = 1, . . . , d− 1, and cores

Vμ(iμ) = Uμ(iμ)⊗ Ũμ(iμ), μ = 1, . . . , d.

As a result, the Hadamard product of X and Y can be computed in O(dn(rr̃)2)
operations.

4.2.5. Rank truncation and TT-SVD

The TT-SVD [Ose11c] uses successive rank-rμ truncations, μ = 1, . . . , d − 1, of a
given tensor X ∈ Rn1×···×nd to obtain a TT representation of X. This is similar to
the HOSVD procedure 3.3.5, but instead of performing truncated SVDs in the μth
matricization, we apply them to the μth unfoldings of X. This yields

PTT
r : Rn1×···×nd →Mr, X 
→ P̃

d−1
rd−1 ◦ · · · ◦ P̃

1
r1 ,

where each projector P̃
μ
rμ

yields the best rank-rμ approximation and is given by
(P̃

μ
rμ

X)<μ> = QQTX<μ>, where Q ∈ Rnμ×rμ consists of the first rμ left singular
vectors of X<μ>. Again, just as the HOSVD, the TT-SVD yields a quasi-optimal
approximation but with a different constant.
Theorem 4.5 (c.f. [Ose11c, Cor. 2.4]). The truncated PTT

r X fulfills a quasi-best
approximation property,

‖X− PTT
r X‖ ≤ √d− 1‖X− PMr(X)‖, (4.7)

where Pr(X) is the projection yielding any best approximation to X within the set of
rank-r TT tensors.

The existence of a best rank-r approximation Pr X is guaranteed, see [Usc13, Cor.
7.2].

The TT-SVD inherits the smoothness of low-rank matrix approximations.
Proposition 4.6 (Smoothness of truncated TT-SVD). Let X ∈Mr. Then there exists
a neighborhood U ⊂ Rn1×···×nd of X such that PTT

r : U →Mr is smooth.

Proof. The proof is analogous to the HOSVD case, see Proposition 3.5, but with the
projectors P̃rμ instead of Prμ .

If X is given in the TT-format with rankTT(X) = r, then the TT-SVD truncation
to a prescribed target rank r can be performed efficiently using the recursive relation
(4.2). Let X be d-orthogonal. By taking the SVD of UR

d = QSV T and splitting the
product to the adjacent cores:

UR
d ← V T, UL

d−1 ← UL
d−1QS,

the tensor is now (d−1)-orthogonalized. By keeping only r̃d−1 singular values, the rank
rd−1 between Ud−1 and Ud is reduced to r̃d−1. Note that due to the orthogonality of
the other cores, the truncated SVD of UR

d corresponds to a truncated SVD of X<d>.
Repeating this procedure till core U1 allows us to truncate the rank r of X to any
prescribed value r̃, with r̃μ ≤ rμ for all μ = 1, . . . , d.
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4.3. Manifold of TT tensors of fixed rank

In Section 3.4 we investigated the smooth manifold structure of the set of Tucker
tensors of fixed multilinear rank. An analogous result for the TT case is avail-
able [HRS12b, UV13]. As the proof is rather technical, it will be omitted here.
Theorem 4.7. The set of TT tensors of fixed TT rank,

Mr =
{
X ∈ Rn1×···×nd

∣∣ rankTT(X) = r
}

forms a smooth embedded submanifold of Rn1×···×nd of dimension

dimMr =
d∑

μ=1
rμ−1nμrμ −

d−1∑
μ=1

r2
μ. (4.8)

The inner product of Section 4.2.3 induces an Euclidean metric on the embedding
space Rn1×···×nd . When equipped with this metric, Mr is a Riemannian manifold.
A similar result is also available for the more general hierarchical Tucker format
[UV13].

4.4. The tangent space

As we have seen in Subsection 4.2.1, the internal representation of a TT tensor is not
unique. Thus, we can assume that X ∈ Rn1×···×nd is represented as a d-orthogonal
TT tensor

X(i1, . . . , id) = U1(i1)U2(i2) · · ·Ud(id),

that is, with left-orthogonal cores Uμ,
(
UL

μ

)T
UL

μ = Irμ , for all μ = 1, . . . , d− 1. To
parametrize the tangent space TXMr at this point X ∈ Mr, we take an arbitrary
curve γ in Mr through X,

γ : R→Mr, γ(t)(i1, i2, . . . , id) = U1(t)(i1)U2(t)(i2) · · ·Ud(t)(id),
γ(0)(i1, i2, . . . , id) = X.

By the product rule, this curve realizes the tangent vector

γ′(0)(i1, i2, . . . , id) = δU1(t)(i1)U2(i2)U3(i3) · · ·Ud(id)
+ U1(i1)δU2(t)(i2)U3(i3) · · ·Ud(id)
+ · · ·+ U1(i1)U2(i2)U3(i3) · · · δUd(t)(id),

where we have used that Uμ(0) = Uμ for all μ = 1, . . . , d due to the initial condition
γ(0) = X. Hence, any element of the tangent space ξ ∈ TXMr can be represented
as

ξ(i1, i2, . . . , id) = δU1(i1)U2(i2)U3(i3) · · ·Ud(id)
+ U1(i1)δU2(i2)U3(i3) · · ·Ud(id)
+ · · ·+ U1(i1)U2(i2)U3(i3) · · · δUd(id),

⇔ vec(ξ) =
d∑

μ=1
X 
=μ vec(δUμ),

(4.9)
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where the first-order variations δUμ are arbitrary tensors of size rμ×nμ×rμ. Counting
dimensions, notice that this representation has

d∑
μ=1

rμ−1nμrμ > dim(Mr)

degrees of freedom. Thus, analogous to the Tucker case, we introduce a gauge
condition to remove this overparametrization. In particular, the orthogonality
constraints

(UL
μ)TδUL

μ = 0 ∀μ = 1, . . . , d− 1

enforce r2
μ equations that have to hold for each core Uμ. The following proposition

uses this structure to orthogonally decompose TXMr from which we can follow that
any tangent vector ξ is uniquely represented in terms of the gauged cores δUμ.
Proposition 4.8. The tangent space TXMr can be orthogonally decomposed as

TXMr = V1 ⊕ V2 ⊕ · · · ⊕ Vd, with Vμ ⊥ Vν ∀μ �= ν, (4.10)

where the subspaces Vμ are given for d-orthogonal X by

Vμ =
{

ξμ

∣∣∣ vec(ξμ) = X 
=μ vec(δUμ), δUμ ∈ Rrμ−1×nμ×rμ ,
(
UL

μ

)T
δUL

μ = 0
}

,

Vd =
{

ξd

∣∣∣ vec(ξd) = X 
=d vec(δUd), δUd ∈ Rrd−1×nd×rd

}
.

(4.11)

Proof. Choose μ, ν ∈ {1, . . . , d}, μ < ν and arbitrary ξμ ∈ Vμ, ξν ∈ Vν , given in TT
representation by

ξμ = U1(i1) · · ·Uμ−1(iμ−1)δUμ(iμ)Uμ+1(iμ+1) · · ·Ud(id),
ξν = U1(i1) · · ·Uν−1(iν−1)δUν(iν)Uν+1(iν+1) · · ·Ud(id).

Then, the orthogonality of the spaces Vμ and Vν is equivalent to 〈ξμ, ξν〉 = 0. The
calculation of the inner product as explained in Section 4.2.3 consecutively computes
the product of the left unfolding of the cores, (UL

τ )TUL
τ = Irτ−1nτ for τ = 1, . . . , μ−1.

As the μth core is reached, we calculate (δUL
μ)TUL

μ = 0 due to the gauge condition.
Thus, the inner product between ξμ and ξν is zero for all μ �= ν.

To summarize, we can write any tangent vector ξ ∈ TXMr in the convenient
form

vec(ξ) =
d∑

μ=1
X 
=μ vec(δUμ) ∈ Rn1×···×nd s.t. (UL

μ)TδUL
μ = 0, ∀μ �= d. (4.12)

4.4.1. Projection onto the tangent space

For the orthogonal projection PTXMr : Rn1×···×nd → TXMr of an arbitrary tensor
Z ∈ Rn1×···×nd , Lubich et al. [LOV15, p. 924] derived an explicit expression for the
first order variations δUμ.
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Proposition 4.9. For an arbitrary Z ∈ Rn1×···×nd , the orthogonal projection onto the
tangent space at X ∈Mr, where X(i1, . . . , id) = U1(i1) · · ·Ud(id) is d-orthogonal, is
given by

PTXMr : Rn1×···×nd → TXMr, vec(PTXMr Z) =
d∑

μ=1
X 
=μ vec(δUμ).

For μ = 1, . . . , d− 1, the components δUμ in this expression are given by

δUL
μ =

(
Inμrμ−1 −UL

μ(UL
μ)T)(Inμ ⊗XT

≤μ−1
)
Z<μ>X≥μ+1

(
XT

≥μ+1X≥μ+1
)−1

. (4.13)

For μ = d, we have
δUL

d =
(
Ind

⊗XT
≤d−1

)
Z<d>. (4.14)

Note that the explicit expressions are stated for the left unfolding δUL
μ. From this,

δUμ can be directly obtained by reshaping.

Proof. The orthogonal projection operator has to fulfill

〈PTXMr Z, ξ〉 = 〈Z, ξ〉, ∀ξ ∈ TXMr.

To simplify this equation, the orthogonal projection PTXMr onto the tangent space
TXMr can be decomposed in accordance with (4.10):

PTXMr = PV1 + PV2 + · · ·+ PVd
,

where PVμ are orthogonal projections onto Vμ. Then the projection can be written as

PTXMr(Z) =
d∑

μ=1
PVμ(Z) where vec

(
PVμ(Z)

)
= X
=μ vec(δUμ). (4.15)

Thus, we obtain d conditions

〈PVμ Z, ξμ〉 = 〈Z, ξμ〉, ∀ξμ ∈ Vμ.

Let us first consider the easiest case, μ = d, the projection onto Vd. We can write
any ξd ∈ Vd as vec(ξd) = X 
=d vec(V) with arbitrary V ∈ Rrd−1×nd×rd . Thus, it has
to hold

〈vec(PVd
Z), vec(ξd)〉 = 〈vec(Z), vec(ξd)〉

⇔
〈
X 
=d vec(δUd), X 
=d vec(V)

〉
=
〈

vec(Z), X 
=d vec(V)
〉

⇔
〈
XT


=dX 
=d vec(δUd), vec(V)
〉

=
〈
XT


=d vec(Z), vec(V)
〉

⇔
〈

vec(δUd), vec(V)
〉

=
〈
(Ind

⊗XT
≤d−1) vec(Z), vec(V)

〉
.

From which we obtain vec(δUd) = (Ind
⊗XT

≤d−1) vec(Z) which is equivalent to

δUL
d = (Ind

⊗XT
≤d−1)Z<d>,

as Z<d> = vec(Z) and δUL
d = vec(δUd) due to rd = 1.
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For μ = 1, . . . , d− 1 we test with

vec(ξμ) = X 
=μ vec(P⊥
μ,L VL) ∈ Vμ,

where we added the projection P⊥
μ,L := Inμrμ−1 − UL

μ(UL
μ)T onto the orthogonal

complement of UL
μ, such that the gauge condition of the μth core tensor Uμ is

automatically fulfilled for arbitrary choices of V ∈ Rrμ−1×nμ×rμ . We determine δUμ

such that〈
X 
=μ vec(δUμ), X 
=μ vec(P⊥

μ,L VL)
〉

=
〈

vec(Z), X 
=μ vec(P⊥
μ,L VL)

〉
⇔
〈
(XT

≥μ+1X≥μ+1 ⊗ Inμ ⊗ Irμ−1) vec(δUμ), vec(P⊥
μ,L VL)

〉
=
〈
(XT

≥μ+1 ⊗ Inμ ⊗XT
≤μ−1) vec(Z), vec(P⊥

μ,L VL)
〉

⇔
〈
δUL

μ(XT
≥μ+1X≥μ+1), P⊥

μ,L VL
〉

=
〈
(Inμ ⊗XT

≤μ−1)Z<μ>X≥μ+1, P⊥
μ,L VL

〉
.

As X ∈Mr, XT
≥μ+1X≥μ+1 ∈ Rrμ×rμ is non-singular, we can introduce the construc-

tive identity (XT
≥μ+1X≥μ+1)−1XT

≥μ+1X≥μ+1 and shift using the cyclic invariance of
the trace inner product,〈

δUL
μ, P⊥

μ,L VL(XT
≥μ+1X≥μ+1)

〉
=
〈
(Inμ ⊗XT

≤μ−1)Z<μ>X≥μ+1(XT
≥μ+1X≥μ+1)−1, P⊥

μ,L VL(XT
≥μ+1X≥μ+1)

〉
.

Defining ṼL := VL(XT
≥μ+1X≥μ+1) and moving P⊥

μ,L we obtain

⇔
〈
δUL

μ, ṼL
〉

=
〈

P⊥
μ,L(Inμ ⊗XT

≤μ−1)Z<μ>X≥μ+1(XT
≥μ+1X≥μ+1)−1, ṼL

〉
.

As this equality has to hold for all V ∈ Rrμ−1×nμ×rμ and thus for all ṼL ∈ Rrμ−1nμ×rμ ,
we obtain that

δUL
μ =

(
Irμnμ −UL

μ(UL
μ)
)T(Inμ ⊗XT

≤μ−1)Z<μ>X≥μ+1(XT
≥μ+1X≥μ+1)−1,

which proves the statement.

Expression (4.13) is relatively straight-forward to implement using tensor contractions
along the modes 1, . . . , μ− 1, μ + 1, . . . , d. The projection of a tensor of TT rank r̃
into TXMr can be performed in O(dnrr̃2) operations, where we assume r̃ ≥ r.

4.4.2. A different parametrization of the tangent space TXMr

Note that the inverse (XT
≥μ+1X≥μ+1)−1 appearing in (4.13) potentially leads to

numerical instabilities or may not even be well-defined: For example, XT
≥μ+1X≥μ+1

is singular in case the right unfoldings UR
μ+1, . . . , UR

d do not have full rank. To
circumvent this ill-conditioning, we will work with a different parametrization of the
tangent space first proposed in [KOS12]: Observe that in the representation (4.9),
each individual summand is a TT tensor which can be orthogonalized individually
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without changing the overall tangent tensor. Hence, to obtain the μth summand, we
can μ-orthogonalize X,

X = U1(i1) · · ·Uμ−1(iμ−1)Ũμ(iμ)Vμ+1(iμ+1) · · ·Vd(id)

where the cores denoted by the letter U are left-orthogonal, V are right-orthogonal
and Ũ are neither left- nor right-orthogonal. Then, the resulting first-order variation
is given by

U1(i1) · · ·Uμ−1(iμ−1)δŨμ(iμ)Vμ+1(iμ+1) · · ·Vd(id). (4.16)

The first order variations δŨμ still fulfill the gauge condition (UL
μ)TδŨL

μ = 0, μ =
1, . . . , d − 1, as we can write δUL

μ = δŨL
μR, where R ∈ Rrμ×rμ is the matrix corre-

sponding to the non-orthogonal part left over from the reorthogonalization of X≥μ+1.
As Xμ+1 is now right-orthogonal, the expression (4.13) for δUμ simplifies to

δŨL
μ =

(
Irμ−1nμ −UL

μ(UL
μ)T
) (

Inμ ⊗X≤μ−1
)T Z<μ>X≥μ+1, (4.17)

as (XT
≥μ+1X≥μ+1)−1 is now the identity matrix. Hence, we are able to circumvent

the explicit inverse. Due to the individual orthogonalizations of the summands, a
tangent tensor can then be written in the form

Y(i1, . . . , id) = δŨ1(i1)V2(i2) · · ·Vd(id)

+ U1(i1)δŨ2(i2) · · ·Vd(id) (4.18)
+ · · ·
+ U1(i1)U2(i2) · · · δŨd(id).

Thus, to compute the projection PTXMr in this modified parametrization, we first
d-orthogonalize X to obtain the left-orthogonal cores U1, . . . , Ud−1. Then we 1-
orthogonalize X to obtain the right-orthogonal cores V2, . . . , Vd. Finally, we use
(4.17) to obtain the modified first-order variations δŨμ, μ = 1, . . . , d− 1 and (4.14)
to obtain δŨd. In algorithms, it is often possible to store both a 1- and d-orthogonal
version of X, such that this parametrization of the tangent space does not involve
any extra costs. In the worst case, it requires an additional orthogonalization of X,
which can be performed in O(dnr3) operations.

4.4.3. TT representation of tangent vectors

Making use of the structure of the sum (4.18), we observe that a tangent vector in
TXMr can also be represented as a TT tensor:
Remark 4.10. Let Y ∈ TXMr be given in the representation (4.18). Then, it can be
identified with a TT tensor of TT-rank at most (1, 2r1, 2r2, . . . , 2rd−1, 1):

Y(i1, . . . , id) = W1(i1)W2(i2) · · ·Wd(id), (4.19)

with cores given for μ = 2 . . . d− 1 by

W1(i1) =
[
δŨ1(i1) U1(i1)

]
, Wμ(iμ) =

[
Vμ(iμ) 0

δŨμ(iμ) Uμ(iμ)

]
, Wd(id) =

[
Vd(id)

δŨd(id)

]
.

This identity can be easily verified by multiplying out the matrix product. The resulting
cores Wμ are of size 2rμ−1 × nμ × 2rμ for μ = 2, . . . , d− 1.
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This result allows us to efficiently handle elements of the tangent space in the
same way as elements in the manifold, being able to directly reuse all implemented
operations.

4.4.4. Inner product of two tangent vectors

Due to the orthogonality of the Vμ spaces, see Proposition 4.8, the inner product
of two tangent tensors ξ, η ∈ TXMr decomposes into d inner products. Let ξ be
represented by first-order variations δUμ and η by δVμ, respectively. Then,

〈ξ, η〉 =
〈 d∑

μ=1
X 
=μ vec(δUμ),

d∑
ν=1

X 
=ν vec(δVν)
〉

=
d∑

μ=1

〈
X 
=μ vec(δUμ), X 
=μ vec(δVμ)

〉
.

Let ξ and η now be in the μ-orthogonalized parametrization introduced in Section 4.4.2
with first order variations δŨμ and δṼμ. Then these d inner products are particularly
simple, as we have

XT

=μX 
=μ = (XT

≥μ+1X≥μ+1 ⊗ Inμ ⊗XT
≥μ+1X≥μ+1) = Irμ−1nμrμ

and thus

〈ξ, η〉 =
d∑

μ=1
〈δŨμ, δṼμ〉.

which can be performed in O(dnr2) operations.

If ξ and η are not in the μ-orthogonalized parametrization, then they can be either
reorthogonalized to move to this representation, or alternatively written as TT tensors
of TT-rank 2r, see Section 4.4.3. The latter case is followed by the application of the
inner product to TT tensors, see Section 4.2.3, with a total cost of O(dnr3).

4.5. Retraction

For Mr, a retraction maps the new point X + ξ ∈ Rn1×···×nd to a tensor of TT-
rank r. A computationally efficient method is given by the TT-SVD procedure,
see Section 4.2.5 which satisfies the quasi-best approximation property (4.7). The
proof of the following proposition is very similar to the Tucker case discussed in
Section 3.6, where we showed that the HOSVD (which possesses an analogous quasi-
best approximation property, Thm. 3.4) fulfills indeed all necessary properties of a
retraction map.
Proposition 4.11. Let PTT

r : Rn1×···×nd → Mr denote the projection operator per-
forming rank truncation using the TT-SVD. Then,

R : TMr →Mr, (X, ξ) 
→ PTT
r (X + ξ) (4.20)

defines a retraction on Mr around X according to Def. 2.16.
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Proof. We check the conditions (a),(b),(c) of Def. 2.16 which have to hold for a
retraction.
(a) From Prop. 4.6, we obtain a small neighborhood of U ⊂ Rn1×···nd of X ∈ Mr
such that the TT-SVD truncation operator PTT

r : U → Mr is smooth. Thus,
the retraction (4.20) is locally smooth around (X, 0X), since it can be written as
R(X, ξ) = PTT

r ◦ p(X, ξ) with the smooth function p : TMr → Rn1×···×nd , p(X, ξ) =
X + ξ.
(b) We have the obvious identity PTT

r (X) = X for all X ∈Mr.
(c) We use the quasi-optimality (4.7). We have that ‖(X+tξ)−PMr(X+tξ)‖ = O(t2)
for t → 0, as TXMr is a first-order approximation of Mr around ξ. Hence,

‖(X + tξ)−R(X, tξ)‖ ≤ √d− 1‖(X + tξ)− PMr(X + tξ)‖ = O(t2).

Therefore, R(X, tξ) = (X + tξ) + O(t2) and d
dtR(X, tξ)

∣∣∣
t=0

= ξ, which is equivalent
to DR(X, ·)(0X) = idTXMr .

To efficiently apply the TT-SVD procedure to X + ξ, we exploit the representation
(4.18) and notice that the new point, obtained by a step Y ∈ TXMr of length α

from the point X ∈Mr, can be written as

X(i1, . . . , id) + αY(i1, . . . , id) =
[
αδŨ1(i1) U1(i1)

] [ V2(i2) 0
αδŨ2(i2) U2(i2)

]
· · ·

· · ·
[

Vd−1(id−1) 0
αδŨd−1(id−1) Ud−1(id−1)

] [
Vd(id)

Ud(id) + αδŨd(id)

]
.

Hence, retracting back to the rank-r manifoldM is equivalent to truncating a rank-2r
TT tensor to rank r, for a total cost of approximately O(dnr3). Furthermore, the
orthogonality relations between Uμ and δVμ can be used to save some work when
reorthogonalizing.

4.6. Vector transport

To compute the vector transport τX→YZ = PTYMr Z of a certain tangent tensor
Z ∈ TXMr into TYMr, we make use of the identity (4.19) to represent Z in the TT
format,

Z(i1, . . . , id) = W1(i1)W2(i2) · · ·Wd(id).

Thus, calculation of the vector transport is reduced to the projection of a TT tensor
of rank 2r onto TYMr. We have to compute the first order variations δ̃U of PTYMr

according to (4.17), where Uμ denote the left- and Vμ the right-orthogonal cores of
Y as in Section 4.4.2:

δ̃UL
μ =

(
Inμrμ−1 −UL

μ(UL
μ)T
) (

Inμ ⊗Y≤μ−1
)T Z〈μ〉Y≥μ+1

=
(
Inμrμ−1 −UL

μ(UL
μ)T
) (

Inμ ⊗Y≤μ−1
)T Z≤μZT

≥μ+1Y≥μ+1,
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which can be efficiently evaluated as a tensor contraction along dimensions 1, . . . d

except mode μ. This can be checked using the recursive relations (4.2),

ZT
≥μ+1Y≥μ+1 = WR

μ+1(ZT
≥μ+2 ⊗ Inμ+1)(Y≥μ+2 ⊗ Inμ+1)(VR

μ+1)T

= WR
μ+1(ZT

≥μ+2Y≥μ+2 ⊗ Inμ+1)(VR
μ+1)T

and ZT
≥dY≥d = WR

d (VR
d )T. An analogous relation holds for YT

≤μ−1Z≤μ−1.

As these quantities are shared between all δVμ, we first precompute YT
≥μX≥μ for all

μ = 2, . . . , d and XT
≤μY≤μ for μ = 1, . . . , d−1, using O(dr3n) operations. Combining

this with the orthogonal projection
(
Inμrμ−1 −UL

μ(UL
μ)T
)

yields a total amount of
O(dr3n) flops.

4.7. Linear operators acting on TT tensors

In the solution of linear systems, see Chapter 6, and eigenvalue problems, see
Chapter 7, a linear operator A : Rn1×···×nd → Rm1×···×md is applied to a tensor X in
the tensor train format.

In Section 3.8, we have seen the efficient application of Kronecker-structured linear
operators to tensors in the Tucker format, preserving the low-rank structure. In
the tensor train case, the so-called operator TT format or TT-matrix introduced in
[Ose11b] allows for a convenient TT-like representation of linear operators.

As in (3.17), let A denote the matrix representation of A, that is,

Y = AX ⇔ vec(Y) = A vec(X).

Analogous to the TT format, we then represent each entry of A ∈ Rm1m2···md×n1n2···nd

as
A(ι(i1, . . . , id), ι(j1, . . . , jd)) = A1(i1, j1)A2(i2, j2) · · ·Ad(id, jd),

where ι maps the multiindex (i1, . . . , id) to a single index according to the standard
vectorization index ordering, see (3.1). Each Aμ(iμ, jμ) is a matrix of size Rμ−1×Rμ,
where the Rμ denote the rank of the TT operator. Alternatively, we can also view
the Aμ(iμ, jμ) as the slices of the 4-dimensional operator cores,

Aμ(:, iμ, jμ, :) = Aμ(iμ, jμ), Aμ ∈ RRμ−1×mμ×nμ×Rμ .

As a tensor network diagram, the linear operator A can be represented as a tensor
train with an additional “leg” at each node, see Figure 4.2.

In principle, any sum of Kronecker products

A =
R∑

i=1
L

(i)
d ⊗ · · · ⊗ L

(i)
2 ⊗ L

(i)
1
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Figure 4.2: Representation of a TT operator of order d = 6. As R0 = Rd = 1, they are
usually omitted.

can be represented in the operator TT format with ranks at most R1 = · · · = Rd−1 =
R by setting

A1(i1, j1) =
[
L

(1)
1 (i1, j1) L

(2)
1 (i1, j1) . . . L

(R)
1 (i1, j1)

]
, Ad(id, jd) =

⎡⎢⎢⎢⎢⎢⎣
L

(1)
d (id, jd)

L
(2)
d (id, jd)

...
L

(R)
d (id, jd)

⎤⎥⎥⎥⎥⎥⎦ ,

and

Aμ(iμ, jμ) =

⎡⎢⎢⎣
L

(1)
μ (iμ, jμ)

. . .
L

(R)
μ (iμ, jμ)

⎤⎥⎥⎦ , μ = 2, . . . , d− 1.

In particular, if A = Ld ⊗ · · · ⊗ L2 ⊗ L1, the cores are given by the coefficients Lμ

themselves and the operator TT ranks are all equal to one.

Application to a TT tensor. The tensor Y resulting from a “matrix-vector product”
Y = AX, with X in TT format and A in operator TT format, is again in TT format.
Each element Y(i1, . . . , id) is given by [Ose11c]

Y(i1, . . . , id) =
n1∑

j1=1
· · ·

nd∑
jd=1

A(i1, . . . , id, j1, . . . , jd)X(j1, . . . , jd)

=
n1∑

j1=1
· · ·

nd∑
jd=1

A1(i1, j1)A2(i2, j2) · · ·Ad(id, jd)U1(j1)U2(j2) · · ·Ud(jd)

=
n1∑

j1=1
· · ·

nd∑
jd=1

(
A1(i1, j1)⊗ U1(j1)

)
· · ·
(
Ad(id, jd)⊗ Ud(jd)

)
.

Thus, the cores Vμ of Y can be computed entry-wise by

Vμ(iμ) =
nμ∑

jμ=1
Aμ(iμ, jμ)⊗ Uμ(jμ).

For an efficient implementation, we do not form this Kronecker product for each
entry of Vμ. Instead, we perform the summation over jk = 1, . . . , nμ by a matrix
product of suitable matricizations,

Zμ = (Aμ)T
(3)(Uμ)(2), where (Aμ)T

(3) ∈ RRμ−1mμRμ×nμ , (Uμ)(2) ∈ Rnμ×rμ−1rμ .
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The core Vμ of Y is then obtained by reordering the Rμ−1mμRμ× rμ−1rμ matrix Zμ

into a tensor of size Rμ−1rμ−1 ×mμ ×Rμrμ. Thus, the TT ranks of Y are bounded
by Rμrμ, μ = 1, . . . , d− 1.
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Chapter 5
� Application 1: Tensor Completion

In the previous chapters, we have introduced all necessary ingredients to apply
Riemannian techniques to optimization problems with low-rank tensor structure. As a
first application, we consider the completion of a d-dimensional tensor A ∈ Rn1×···×nd

in which the vast majority of entries are unknown. Depending on the source of the
data set represented by A, assuming an underlying low-rank structure is a sensible
choice. In particular, this is the case for discretizations of functions that are well-
approximated by a short sum of separable functions. Low-rank models have been
shown to be effective for various applications, such as electronic structure calculations
and approximate solutions of stochastic and parametric PDEs, see [GKT13] for an
overview. With this assumption, the tensor completion problem can be cast into the
optimization problem

min
X

f(X) :=
1
2
‖PΩ X− PΩ A‖2 (5.1)

subject to X ∈Mr :=
{
X ∈ Rn1×n2×···×nd

∣∣ rank(X) = r
}
,

where the definition of rank(X) depends on the employed tensor format, such as
the multilinear (Tucker) rank introduced in Chapter 3 or the tensor train rank,
see Chapter 4. We denote with PΩ the projection onto the sampling set Ω ⊂
{1, 2, . . . , n1} × · · · × {1, 2, . . . , nd} corresponding to the indices of the known entries
of A,

PΩ X :=

⎧⎨⎩X(i1, i2, . . . , id) if (i1, i2, . . . , id) ∈ Ω,

0 otherwise.
(5.2)

In the two-dimensional case d = 2, tensor completion (5.1) reduces to the extensively
studied matrix completion for which convergence theory and efficient algorithms
have been derived in the last years, see [MWG+] for an overview. The number
of entries in the optimization variable X ∈ Rn1×n2×···×nd scales exponentially with
d, the so-called curse of dimensionality. Hence, the naive approach of reshaping
the given data A into a large matrix and applying existing algorithms for matrix
completion is computationally infeasible for all but very small problem sizes.

Assuming low-rank structure in the different tensor formats along with their notion
of tensor rank allows us to reduce the degrees of freedom significantly. The most
popular choice, the Tucker tensor format, reduces the storage complexity from
O(nd) to O(dnr + rd) and thus yields good results for not too high-dimensional
problems, say d ≤ 5. Algorithms developed for the Tucker format range from
alternating minimization [LMWY09, LS13] and convex optimization, using various
generalizations of the nuclear norm [LMWY09, LS13, GRY11, SLS10, STL+14,
SPM+11] to Riemannian optimization techniques [KM15]. As an instance of the last
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category, we present a tensor completion algorithm called GeomCG [KSV14] based
on the manifold structure introduced in Section 3.4. In Section 5.2, we discuss the
implementation details for the Tucker case and show the effectiveness of the proposed
algorithm, for the three-dimensional case.

If higher dimensional problems are considered, the Tucker format can be replaced by
the hierarchical Tucker (HT) or the TT format. In the TT format, the number of
unknowns in a tensor with fixed rank r is scaling like O(dnr2 − dr2), see Section 4.3,
which potentially allows for the efficient treatment of problems with a much higher
number of dimensions d than the Tucker format.

To tackle these higher dimensional problems, we extend our Riemannian optimization
scheme to the TT case in Section 5.4. We obtain an algorithm called RTTC [Ste15]
scaling linearly in the number of dimensions d, in the tensor size n and in the size of
the sampling set |Ω| and scaling polynomially in the tensor train rank r.

For the HT format, Da Silva and Herrmann [DSH13, DSH15] have derived HTOpt, a
closely related Riemannian approach. By exploiting the simpler structure of the TT
format, RTTC exhibits a better computational complexity of O(d|Ω|r2) per iteration
instead of O(d|Ω|r3) for HTOpt. Furthermore, our implementation is specifically
tuned for very small sampling set sizes. In the TT format Grasedyck et al. [GKK13]
presented an alternating direction method with similar computational complexity of
O(d|Ω|r2). We will compare these two methods to our algorithm RTTC and to a
simple alternating least squares approach.

Note that for tensor completion, the index set Ω of given entries is fixed. If we
relax this constraint and instead try to reconstruct the original tensor A from as few
entries as possible, black-box approximation techniques such as cross-approximation
are viable alternatives. In the matrix case, cross approximation was first developed
for the approximation of integral operators [Beb00, BR03, BG05] and as the so-called
Skeleton decomposition [GTZ97, Tyr00]. Extensions to high dimensional tensors
were developed by Oseledets et al. [OT10, SO11] for the TT format and by Ballani
et al. [BGK13, BG14] for the HT format. In these techniques, the sampling points
are chosen adaptively during the runtime of the algorithm. In Section 5.5.5 we
will compare them to our proposed tensor completion algorithm and show that
choosing randomly distributed sampling points beforehand is competitive in certain
applications.

The algorithms presented in this chapter are generalizations of the Riemannian
matrix completion approach of Vandereycken [Van13] to a higher-dimensional setting
using the Tucker and TT format. The content of this chapter is based on two reports
for the Tucker [KSV14] and the TT format [Ste15], respectively. Additional material
on rank adaptation schemes is provided in Section 5.3.4.

5.1. A Riemannian tensor completion algorithm

We apply a Riemannian nonlinear CG scheme, see Algorithm 2.3 in Section 2.8.3,
to solve the tensor completion problem (5.1). This results in Algorithm 5.1 which
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either assumes a fixed multilinear (GeomCG) or tensor train rank (RTTC) of the
underlying data. In this section, we discuss basic ingredients of the Riemannian
tensor completion algorithms that are common to both the Tucker and TT case and
discuss their general convergence properties.

Algorithm 5.1 Riemannian Nonlinear CG for Tensor Completion:
GeomCG (Tucker case) and Rttc (Tensor Train case)
Input: PΩ A, PΩC

A, initial guess X0 ∈M, tolerance δ.
Output: Sequence of iterates (Xk).

G0 ← PΩ A− PΩ X0 % compute Euclidean gradient
ξ0 ← grad f(X0) = PTX0 Mr G0 % compute Riemannian gradient
η0 ← −ξ0 % first step is steepest descent
α0 ← −〈PΩ η0, G0〉/‖PΩ η0‖2 % step size by linearized line-search
x1 ← R(x0, α0η0) % obtain next iterate by retraction

for k = 1, 2, . . . maxiter do
Gk ← PΩ A− PΩ Xk % compute Euclidean gradient
ξ0 ← grad f(Xk) = PTXk

Mr Gk % compute Riemannian gradient
ηk ← −ξk + βkτxk−1→xk

(ηk−1) % conjugate direction by update rule
αk ← −〈PΩ ηk, Gk〉/‖PΩ ηk‖2 % step size by linearized line-search
xk+1 ← R(xk, αkηk) % obtain next iterate by retraction
if εΩ < δ or εΩC

< δ then
Converged. Return.

end if
if Stagnation criteria (5.7) are fulfilled then

Not converged. Return.
end if

end for

To obtain the descent direction in our optimization scheme, we need the Riemannian
gradient of the objective function f(X) = 1

2‖PΩX− PΩA‖2. According to Section
2.4, the Riemannian gradient is obtained by projecting the Euclidean gradient

Grad f(X) = PΩ X− PΩ A

into the tangent space:

grad f(X) = PTXMr(PΩX− PΩA). (5.3)

As the Euclidean gradient Z = PΩ X− PΩ A ∈ Rn1×···×nd is a very large but sparse
tensor, the projection into the tangent space has to be handled with care. The
efficient implementation is specific to the employed tensor format and is discussed in
Sections 5.2.1 and 5.4.1, respectively.
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5.1.1. Linearized line search

We can derive a linearized line-search for the cost function f as described in Section
2.8.1. According to (2.7), the linearized step length αk is obtained by

αk = argmin
α

f(Xk + αηk),

which, due to the simple quadratic form of the cost function, can be calculated
analytically by finding the root of the first derivative,

d

dα

1
2
‖PΩ(X + αηk)− PΩ A‖2 != 0,

from which we obtain

αk =
〈PΩ ηk, PΩ(A−Xk)〉

‖PΩ ηk‖2 = −〈PΩ ηk, Grad f(Xk)〉
‖PΩ ηk‖2 . (5.4)

If needed, a standard Armijo backtracking scheme can be added to control the step
sizes, using the result of this linearized line search procedure as an initial guess.
Nevertheless, in all numerical experiments, the linearized line search performed so
well that a backtracking step was never necessary and we propose to omit it to save
some computational cost.

5.1.2. Stopping criteria

During the course of the optimization procedure, we monitor the current relative
error on the sampling set,

εΩ(Xk) =
‖PΩ Xk − PΩ A‖

‖PΩ A‖ . (5.5)

This requires almost no extra computations, as the Euclidean gradient ∇f = PΩ Xk−
PΩ A is already calculated in each step.

When the sampling rate is very low or the estimated rank r is chosen larger than the
true rank of the underlying data, one can often observe overfitting. In these cases,
the residual error does converge to zero as expected, but the obtained reconstruction
is a bad approximation of the original data. This is to be expected as the degrees
of freedom in the model exceed the available information. While this intrinsic
problem cannot be completely avoided, it is helpful to be able to detect these cases
of overfitting. Then, we can act accordingly and reduce the degrees of freedom of the
model (by choosing a lower estimated rank r) or increase the number of sampling
points, if possible. Hence, we also measure the relative error on a control set ΩC ,
ΩC ∩ Ω = ∅:

εΩC
(Xk) =

‖PΩC
Xk − PΩC

A‖
‖PΩC

A‖ . (5.6)

This control set is either given or can be obtained by random subsampling of the
given data. Numerical experiments show that it usually suffices to choose only few
control samples, say, |ΩC | = 100. Algorithm 5.1 is run until either the prescribed
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tolerance is attained for εΩ(Xk) and εΩC
(Xk) or the maximum number of iterations

is reached. Furthermore, to detect stagnation in the optimization procedure, we
check if the relative change in εΩ and εΩC

between two iterates is below a certain
threshold δ:

|εΩ(Xk)− εΩ(Xk+1)|
|εΩ(Xk)| < δ,

|εΩC
(Xk)− εΩC

(Xk+1)|
|εΩC

(Xk)| < δ. (5.7)

In practice, we choose δ ≈ 10−4, but adjustments can be necessary depending on the
underlying data.

5.1.3. Convergence analysis

The convergence analysis of Algorithm 5.1 follows the same steps as the analysis
employed in the matrix case [Van13]. First, to fulfill the assumptions of standard
convergence results for Riemannian line search methods, we have to safeguard the
heuristic linearized line search with an Armijo-type backtracking scheme. Let us
assume that Mr is either the manifold of tensors of fixed multilinear or TT rank.
Then, we can apply Theorem 2.24 to obtain
Proposition 5.1. Let (Xk)k∈N be an infinite sequence of iterates generated by Algo-
rithm 5.1 with backtracking line search. Then, every accumulation point X∗ ∈Mr
of (Xk) is a critical point of the cost function f and hence satisfies grad f(Xk) = 0,
that is, PTX∗ Mr(PΩ X∗) = PTX∗ Mr(PΩ A).

This result shows us that in the tangent space, reconstruction is achieved for all
limit points of Algorithm 5.1. Unfortunately, as the set Mr is not closed, X∗ is not
necessarily an element of Mr anymore — and hence not a valid solution of problem
(5.1). To enforce that X∗ ∈Mr, we regularize the cost function in such a way that
the iterates Xk stay inside a compact subset of Mr so that we can apply Corollary
2.25. We define the modified cost function g with regularization parameter λ as

g : Mr → R, X 
→ f(X) + λ2
d∑

μ=1

(
‖X(μ)‖2

F + ‖(X(μ))†‖2
F

)
, λ > 0, (5.8)

if Mr is the manifold of fixed multilinear rank and

g : Mr → R, X 
→ f(X) + λ2
d−1∑
μ=1

(
‖X<μ>‖2

F + ‖(X<μ>)†‖2
F

)
, λ > 0, (5.9)

if Mr is the manifold of fixed TT rank. With this modification, i.e. regularizing
the singular values of the matricizations or unfoldings of X, we obtain the following
result:
Proposition 5.2. Let (Xk)k∈N be an infinite sequence of iterates generated by Al-
gorithm 5.1 but with the modified cost function g defined in (5.8) or (5.9). Then
limk→∞ ‖ grad g(Xk)‖ = 0.

Proof. Let us first assume that Mr is the manifold of fixed TT rank. The cost
function is guaranteed to decrease due to the line search, g(Xk) ≤ g(X0) =: C2

0 ,
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which yields λ2∑d
μ=1 ‖X<μ>

k ‖2
F ≤ C2

0 and λ2∑d
μ=1 ‖(X<μ>

k )†‖2
F ≤ C2

0 . From this,
we can deduce upper and lower bounds for the largest and smallest singular values
of the matricizations,

σmax(X<μ>
k ) ≤ ‖X<μ>

k ‖ ≤ C0λ−1, σ−1
min(X<μ>

k ) ≤ ‖(X<μ>
k )†‖ ≤ C0λ−1.

Therefore, all iterates are guaranteed to stay inside the compact set

B :=
{

X ∈Mr
∣∣∣σmax(X<μ>) ≤ C0λ−1, σmin(X<μ>) ≥ C−1

0 λ, μ = 1, . . . , d
}

.

Now suppose, conversely to the statement of the proposition, that ‖ grad g(Xk)‖ does
not converge to zero. Then there is a δ > 0 and a subsequence of {Xk} such that
‖ grad g(Xk)‖ > δ for all elements of the subsequence. Since Xk ∈ B, it follows that
this subsequence has an accumulation point X∗ for which also ‖ grad g(X∗)‖ > δ.
However, this contradicts Proposition 5.1 which states that every accumulation point
is a critical point of g.

If Mr is the manifold of fixed multilinear rank, then the proof is analogous, only
replacing the unfolding X<μ> with the matricizations X(μ).

Note that the regularization parameter λ can be chosen arbitrarily small. If the core
unfoldings are always of full rank during the optimization procedure (even when
λ → 0), then the accumulation points X∗ are guaranteed to stay inside Mr and
grad f(X∗) = PTX∗ Mr(PΩ X∗ − PΩ A) → 0 as λ → 0. In this case, optimizing the
modified cost function (5.8) or (5.9) is equivalent to the original cost function.

Asymptotic convergence rates are, unfortunately, not available for Riemannian
conjugate gradient schemes. For steepest descent, linear convergence can be shown,
with a constant depending on the eigenvalues of the Riemannian Hessian at the
critical point, see Theorem 2.27.

A very different approach which avoids the need for regularization has been discussed
in a recent work by Schneider and Uschmajew [SU15], extending Riemannian opti-
mization techniques to the algebraic variety M≤r := {X ∈ Rn×n| rank(X) ≤ r}, the
closure of Mr. Convergence results for the therein proposed gradient scheme follow
from Łojasiewicz inequality. Extension of this work to the tensor case remains an
open question.

Rauhut, Schneider and Stojanac [RSS13, RSS15] discuss ways to extend hard thresh-
olding techniques from matrix completion to the tensor case and obtain a local
convergence result under the assumption of a tensor restricted isometry property
(RIP). Unfortunately, this RIP is not fulfilled for the entry sampling operator of
tensor completion, but only for gaussian measurements.

5.2. Tucker case

In the following sections, we will provide algorithmic details on the individual steps
of Algorithm 5.1 in the Tucker case and discuss their computational complexity. The
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resulting algorithm is called GeomCG and was published in [KSV14]. To simplify
the expressions for the computational complexity, we assume that n := n1 = . . . = nd

and r := r1 = . . . = rd.

5.2.1. Evaluation of the cost function and the gradient

Cost function. The calculation of the cost function and its Riemannian gradient
(5.3) requires the explicit computation of |Ω| individual entries of a tensor X from
its Tucker decomposition:

X(i1, i2, . . . , id) =
r1∑

j1=1

r2∑
j2=1

· · ·
rd∑

jd=1
S(j1, j2, . . . , jd)U1(i1, j1)U2(i2, j2) · · ·Ud(id, jd).

In total, this requires |Ω|(d + 1)rd operations for computing PΩ X.

Gradient. The projection of G := Grad f(Xk) = PΩ Xk − PΩ A onto the tangent
space gives the Riemannian gradient ξk := grad f(Xk), which will be stored in
factorized form as

ξk = δS
d×

μ=1
Uμ +

d∑
μ=1

S×μ δUμ

d×
ν=1
ν 
=μ

Uν ,

where

δS := G
d×

μ=1
UT

μ , δUμ := (Inμ − UμUT
μ )
[
G×

ν 
=μ

UT
ν

]
(μ)

S†
(μ),

see Proposition 3.8. By exploiting the sparsity of G, the computation of δS and Uμ,
μ = 1, . . . , d, requires O

(
drd(|Ω|+ n) + rd+1

)
operations. This makes the calculation

of the gradient the most time-consuming part of our optimization scheme.

5.2.2. Calculation of the new iterate

Search direction. To calculate the new search direction, we use the Polak-Ribière+
update formula (2.9), where the iterates are now tensors.

βk = max
{

0,
〈 ξk, ξk − τXk−1→Xk

(grad f(Xk−1)) 〉
‖ grad f(Xk−1)‖2

}
.

The calculation of βk requires the evaluation of the vector transport described in
Section 3.7 together with inner products of tangent tensors, Section 3.5.3.

Once βk has been determined, the new conjugate direction is computed by

ηk = −ξk + βkτXk−1→Xk
ηk−1.

where ηk−1 ∈ TXk−1Mr is the previous conjugate direction. The vector transport is
performed exactly in the same way as above. Due to linearity, the addition of two
tensors in the same tangent space is performed by simply adding their first-order
variations. Thus, the computation of the new search direction ηk can be performed
in O(dnrd + rd+1) operations.
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Line search. After computing the new search direction, the linearized line-search
is computed according to (5.4). Note that due to the projection operator PΩ, all
involved quantities are sparse. Thus, each of the inner products requires only O(|Ω|)
operations. The costly part is due to the term PΩ ηk, which requires the computation
of |Ω| entries of ηk for a total of O(|Ω|(d + 1)rd) operations.

Retraction. With the line-search parameter αk at hand, the next iterate is given by
Xk+1 = R(Xk, αkηk), computed by means of the HOSVD procedure, see Section 3.6,
in O(dr2n + rd+1) operations.

5.2.3. Computational complexity

By exploiting the low-multilinear-rank structures of the iterates, we arrive at a total
cost of

O
(
drd(n + |Ω|)) (5.10)

operations per iteration step. In particular, the proposed algorithm GeomCG scales
linearly with n, when keeping r fixed. This makes the algorithm suitable for large
sizes n and moderate values of d, say d = 3, 4.

5.3. Numerical experiments for the Tucker case

Algorithm 5.1, geomCG, was implemented in Matlab version 2012a, using the Tensor
Toolbox version 2.5 [BK+12] for handling some of the tensor operations. However,
to attain reasonable performance, it was important to implement operations with
sparse tensors in C and call them via Mex interfaces. In particular, this was done for
the evaluation of the objective function, the computation of the Euclidean gradient
and its projection onto the tangent space, as well as for the linearized line search,
see 5.2.1. For simplicity, we restricted the implementation to the case d = 3. The
source code is freely available under a BSD license and can be downloaded from
http://anchp.epfl.ch/geomCG.

To measure the convergence during the iteration, Algorithm 5.1 computes the relative
residuals εΩ and εΩC

, see (5.5) and (5.6). However, to investigate the reconstruction
quality of the algorithm, measuring the relative residual on the sampling set Ω is not
sufficient. For this purpose, we also measure the relative error ‖PΓ X−PΓ A‖/‖PΓ A‖
on a random test set Γ of the same cardinality as Ω. In contrast to Ω and ΩC , Γ is
only used for the evaluation of the algorithm and is not available to the algorithm as
additional information for the completion problem.

The initial guess is always taken a random rank-r Tucker tensor, that is, with all
entries of S and Uμ sampled from a uniform random distribution on [0, 1] followed
by an orthogonalization of the factor matrices Uμ.

Unless stated otherwise, we assume that the tensor has equal size in all modes,
n := n1 = n2 = n3 and similarly for the ranks, r := r1 = r2 = r3. All tests were
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performed on a quad-core Intel Xeon E31225, 3.10GHz, with 8GB of RAM running
64-Bit Debian 7.0 Linux. Stated calculation times are wall-clock times, excluding
the set-up time of the problem.

5.3.1. Scaling of the algorithm

A synthetic data tensor A of exact multilinear rank r is created by choosing the
entries of the core tensor S and the basis matrices U1, U2, U3 as pseudo-random
numbers from a uniform distribution on [0, 1].

As a first test, we check that the implementation of Algorithm 5.1 exhibits the same
scaling behaviour per iteration as predicted by (5.10). To measure the scaling with
regard to the tensor size n, we fix the multilinear rank to r = (10, 10, 10) and scale
the size of the sampling set linearly with the tensor size, |Ω| = 10n. We perform 10
iterations of our algorithm and repeat the process 10 times for different randomly
chosen datasets. Analogously, we measure the dependence on the tensor rank by
setting the tensor size to n = 300 and fixing the sampling set to 0.1% of the full
tensor.

The results are shown in Figure 5.1. We observe that our algorithm scales indeed
linearly in the tensor size over a large interval n ∈ [100, 3000]. Even for such large
tensors, the time per iteration step is very low. Plotting the results for the scaling
with regard to the tensor rank, we observe an O(r3)-dependence, in agreement with
(5.10).
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Figure 5.1: Time needed per iteration step for various problem sizes. Left: Runtime with
fixed rank r = (10, 10, 10) and varying tensor size n = n1 = n2 = n3 ∈ {100, 150, . . . , 3000}.
The size of the sampling set scales linearly with n, |Ω| = 10n. Right: Runtime with fixed
tensor size n = (300, 300, 300) and varying tensor rank r = r1 = r2 = r3 ∈ {20, 25, . . . , 100}.
Size of sampling set: 0.1% of the full tensor. The red dashed line shows a scaling behaviour
O(r3).
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5.3.2. Reconstruction of synthetic data sets

We compare the reconstruction performance of our algorithm with the so-called
hard completion algorithm by Signoretto et al. [STL+14, Alg. 3], based on the
so called inexact splitting method applied to the convex non-smooth optimization
problem

min
X

3∑
μ=1

λμ‖X(μ)‖∗ subject to PΩ X = PΩ A,

where ‖A‖∗ denotes the nuclear norm of a matrix A, the sum of its singular values.
The algorithm depends on certain parameters discussed in [STL+14]. We choose the
proximity parameter τ = 10 and the nuclear norm weights λ1 = λ2 = λ3 = 1, which
corresponds to the settings used in the supplied test routine.

In Figure 5.2 we present the convergence behaviour of the algorithms for varying
sizes of the sampling set, in terms of the error on the test set Γ. The sampling set
sizes are denoted by a percentage p of the full tensor, |Ω| = pN3. We use a relative
residual of 10−12 and a maximum number of 300 iterations as stopping criterions.
Both algorithms need more iterations when the number of missing entries increases,
but the effect is more strongly pronounced for hard completion. Our algorithm
performs better both when measuring the performance with respect to time or the
number of iterations.
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Figure 5.2: Convergence curves for different sampling set sizes as functions of iterations and
time for our proposed algorithm (geomCG) and the hard completion algorithm by Signoretto et
al. [STL+14]. Tensor size and multilinear rank fixed to n = 100 and r = (5, 5, 5), respectively.

Reconstruction of noisy data. In this part, we investigate the convergence properties
of Algorithm 5.1 in the presence of noise. The known entries of A are perturbed
by rescaled Gaussian noise E, such that ‖PΩ E‖ = ε0‖PΩ A‖ for a prescribed noise
level ε0. Ideally, Algorithm 5.1 should return an approximation X∗ at the level of ε0,
that is,

‖PΩ X∗ − PΩ(A + E)‖
‖PΩ A‖ ≈ ‖PΩ A− PΩ(A + E)‖

‖PΩ A‖ = ε0.
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To test that the noise does not lead to a misidentification of the rank of the underlying
problem, we compare the case where we take the initial guess on the correct manifold
to an uninformed rank-(1, 1, 1) guess. There, we employ a heuristic rank adaptation
strategy discussed in Section 5.3.3. We show in Figure 5.3 that in both cases we can
indeed recover the original data up to the given noise level.
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Figure 5.3: Tensor completion from noisy measurements with n = 100, r = (6, 6, 6). The
relative size of the sampling set was fixed to 10%. The black line corresponds to the noise-free
case. The different colors correspond to the noise levels ε0 ∈ {10−4, 10−6, . . . , 10−12}. Left:
Results when the underlying rank r is known. Right: Results for the case of unknown rank of
the underlying problem. Due to the rank adaptation procedure, more iterations are necessary.

Size of the sampling set. It is well known that in the matrix case, the number of
random samples needed to exactly recover the original matrix is at least O(nr log n)
under standard assumptions; see e.g. [CT09, KMO10]. Up to this date, these results
could not be extended to the tensor case, see e.g. [RSS15] for a discussion. A straight-
forward solution of the tensor completion problem by applying matrix completion to
one matricization, e.g. X(1) ∈ Rn×n2 , therefore needs at least O(n2r log n) entries.
This approach neglects the existing structure between the modes. Hence one can
expect an algorithm that is specially designed for the tensor case to perform better
than this bound by exploiting its inherent structure. A slightly improved result was
obtained in [MHWG14], where it was proven that O(r� d

2 �n� d
2 �) samples suffice.

In the left plot of Figure 5.4, we present numerical experiments suggesting that a
similar scaling as in the matrix case may also hold for the three-dimensional tensor
case. The algorithm is declared converged (and hence yields perfect reconstruction)
if the relative residual drops below 10−6 within 100 iterations.

The right plot of Figure 5.4 displays a phase transition of the measured convergence
speed of Algorithm 5.1, computed from

ρ =
(
‖PΓ Xkend − PΓ A‖
‖PΓ Xkend−10 − PΓ A‖

) 1
10

∈ [0, 1], (5.11)

where kend is the final iteration.
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Figure 5.4: Scaling of the sampling set size needed to reconstruct the original tensor of fixed
multilinear rank (10, 10, 10). Left: Minimum size of sampling set needed to attain convergence
vs. tensor size n = n1 = n2 = n3. Right: Phase transition of the convergence speed (5.11).
White means fast convergence, black means no convergence. The red line corresponds to
O(n log(n)).

5.3.3. Applications

In contrast to synthetic data sets, tensors from applications usually do not posses a
clear, well-defined multilinear rank. Often, they exhibit a rather smooth decay of
the singular values in each matricization. In such a setting, Algorithm 5.1 requires a
good initial guess, as directly applying it with a (large) fixed rank r usually results
in severe overfitting. We propose the following heuristic to address this problem:
Starting from a multilinear rank-(1, 1, 1)-approximation, we iteratively increase the
multilinear rank in each mode and rerun our algorithm with the previous result as
initial guess. This procedure is repeated until the prescribed final multilinear rank r
is reached. We increase the multilinear rank every time the current relative change
in the square root of the cost function is smaller than a tolerance δ:

∣∣∣∣√f(Xk−1)−
√

f(Xk)
∣∣∣∣ < δ

√
f(Xk). (5.12)

Initially, we use a large value for δ, say δ = 1. We observed this approach to be
effective at steering the algorithm into the direction of the optimal solution. Once
we arrive at the final rank r, we can also use (5.12) as a stopping criterion with a
much smaller value for δ, say δ = 0.001. In case of convergence problems, the initial
value for δ should be chosen smaller, at the cost of additional iterations. In the
following numerical experiments, we always include this initialization procedure in
the reported computation times. For a more detailed look at different rank increasing
strategies, we refer to Section 5.3.4, where the process employed in the following
applications is denoted by random per-mode cyclic.
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Hyperspectral image. As a first application of our algorithm to real-world data, we
consider the hyperspectral image “Ribeira” [FNA04] discussed in [SPM+11]. This
results in a tensor of size 1017×1340×33, where each slice corresponds to an image of
the same scene measured at a different wavelength. To provide a faithful comparison,
we proceed in the same way as in [SPM+11] and resize the tensor to 203× 268× 33
by bilinear interpolation before applying our algorithm. The results are shown in
Table 5.1. The reconstruction quality is assessed in terms of the normalized root
mean squared error :

NRMSE(X, A) :=
‖PΩc A− PΩc X‖

(max(PΩc A)−min(PΩc A))
√|Ωc| ,

where Ωc is the complement of the sampling set, that is, the unknown entries. We
compare with the results reported in [SPM+11] for the tensor completion algorithm
tensor, the frame-wise matrix completion approach frame, and matrix completion
applied to the mode-3 matricization only. This approach uses the fact that the
variation between the frames in the spectral mode is very low. As shown in Figure 5.5,
the singular values of the matricizations decay at a different rate. We take this into
account in our algorithm, by choosing the final mode-1 and mode-2 ranks of the
approximation significantly larger than the mode-3 rank. It can be observed that our
algorithm (geomCG) yields very competitive results, especially in the case where the
sampling set is small. There is one case of overfitting for geomCG(55, 55, 5), marked
by a star.

Reconstruction of function data. To investigate the applicability of our algorithm
to compress tensors related to functions with singularities, we consider

f : [−1, 1]3 → R, x 
→ e−‖x‖2 (5.13)

discretized on a uniform tensor grid with mesh width h = 1/100. The function
values are collected in a tensor A ∈ R201×201×201. In this setting, we assume that
the location of the singularity is known a priori. As f has a cusp at the origin, the
information in A is strongly localized at this point and tensor completion applied
naively to A would not lead to reasonable compression. To avoid this effect, we
therefore cut out a small hypercube [−0.1, 0.1]3, corresponding to the 21× 21× 21
central part of the discretized tensor. The idea is to not include this region in the
sampling set Ω. The entries corresponding to this region are stored separately and
reconstructed exactly after performing low-rank tensor completion on the remaining
region. We therefore do also not include the central part in the test set Γ when
verifying the accuracy of the completed tensor. The obtained results are shown in
Figure 5.6. Already sampling 5% of the entries gives an accuracy of 10−5. This would
yield a compression ratio of 5.1% if we stored the involved entries. However, storing
the rank-(5, 5, 5) approximation along with the central part yields the significantly
lower compression ratio of 0.15%.
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Full Ribeira data set — sampling percentage
10% 30% 50%

NRMSE time [103 s] NRMSE time [103 s] NRMSE time [103 s]

frame [SPM+11] 0.092 3.78 0.061 3.72 0.046 2.30
mode-3 [SPM+11] 0.068 0.27 0.018 0.31 0.012 0.33
tensor [SPM+11] 0.072 26.3 0.031 25.8 0.020 42.0

geomCG(15, 15, 6) 0.047 0.06 0.046 0.11 0.046 0.19
geomCG(65, 65, 7) 0.025 1.67 0.017 4.33 0.017 6.86

First 5 frames of Ribeira data set — sampling percentage
10% 30% 50%

NRMSE time [103 s] NRMSE time [103 s] NRMSE time [103 s]

frame [SPM+11] 0.071 0.15 0.046 0.14 0.034 0.14
mode-3 [SPM+11] 0.191 0.02 0.119 0.02 0.070 0.02
tensor [SPM+11] 0.067 3.14 0.034 4.48 0.023 4.06

geomCG(15, 15, 5) 0.058 0.01 0.033 0.02 0.032 0.03
geomCG(55, 55, 5) 0.075* 0.15 0.026 0.36 0.016 0.42

Table 5.1: Reconstruction results for “Ribeira” hyperspectral image. The results for frame,
mode-3 and tensor are taken from [SPM+11]. geomCG(r1, r2, r3) denotes the result of
Algorithm 5.1 using a prescribed final multilinear rank (r1, r2, r3).
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tensor PΩ A with 10% known entries. Unknown entries are marked in black. Bottom left:
GeomCG with rank increase up to a final rank of r = (15, 15, 6). Bottom right: GeomCG
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Figure 5.6: Convergence of the algorithm for the discretization of a function with cusp (5.13).
The final rank of the approximation is r = (10, 10, 10). The part corresponding to [−0.1, 0.1]3
is excluded from the sampling set Ω and the test set Γ.

Stochastic elliptic PDE with L2 basis expansion. Finally, we consider an elliptic
PDE with stochastic coefficients:

−∇ (a(x, y)∇u(x, y)) = f(x), (x, y) ∈ D ×Θ,

u(x, y) = 0 (x, y) ∈ ∂D ×Θ.

where y ∈ Θ is a random variable and D = [−1, 1] is the computational domain. We
assume that we can expand the stochastic coefficient a(x, α) into

a(x, α) = a0 +
∞∑

μ=1

√
λμaμ(x)αμ,

where aμ(x), μ = 1, 2, . . . are normalized L2(D)-functions and the basis coefficients
λμ ≥ 0 decrease monotonically. We truncate this expansion after μ = 3 and employ a
standard piecewise linear finite element (FE) discretization. This yields a parameter-
dependent linear system of equations,

(A0 + α1A1 + α2A2 + α3A3)x = f, (5.14)

where each Aμ ∈ Rm×m is the FE stiffness matrix corresponding to the coefficient aμ.
We refer to, e.g., [SG11] for a detailed discussion of this procedure. In our examples,
we choose

a0(x) = 1, aμ(x) = sin(μx).

The parameters α are then sampled uniformly on a tensor grid on [−1, 1]× [−1, 1]×
[−1, 1] of size n× n× n. Assuming that we are only interested in the spatial mean
of the solution for a specific set of parameters, this results in a solution tensor
X ∈ Rn×n×n. Each entry of this tensor corresponds to the spatial mean for a certain
combination of the discretized (α1, α2, α3) and requires the solution of a discretized
PDE. Hence, evaluating the full tensor is fairly expensive. Using tensor completion,
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Figure 5.7: Convergence for the solution tensor of size n = 100 of a parametrized linear
system obtained from a discretized stochastic PDE. Left: Result for

√
λμ = 5 exp(−2μ).

Right: Result for
√

λμ = (1 + μ)−2. The final rank of the solution is r = (4, 4, 4).

we sample X at (few) randomly chosen points and try to approximate the missing
entries.

In Figure 5.7 we show the results of this approach for m = 50, n = 100, and
two different choices of λμ. We used the basis coefficients

√
λμ = 5 exp(−2μ) and√

λμ = (1 + μ)−2, respectively. As the second choice results in slower singular value
decays, our algorithm requires more iterations to attain the same accuracy. Using 5%
of the tensor as a sampling set is in both cases sufficient to recover the original tensor
to good precision. As the sampling set gets smaller, overfitting of the sampling data
is more likely to occur, especially for the second choice of λμ.

5.3.4. Comparison of rank adaptation strategies

As already briefly mentioned in Section 5.3.3, there is an obvious disadvantage in
the way the tensor completion problem (5.1) is defined: The rank of the underlying
problem has to be known a priori. Instead, we can require that the solution should
have rank smaller or equal than a certain prescribed maximal rank. This maximal
rank rmax is determined by the computational resources available and not necessarily
by the underlying data. Thus, we perform a rank adaptation procedure to reach
rmax.

First, we run geomCG with r1 = (1, 1, . . . , 1) to obtain a result X1. Then, we add a
rank-1 correction term R and then run geomCG again with starting guess X1 + R
and r2 = rank(X1 + R) to obtain X2. An optimal rank correction would be given
by the minimizer of

min
R∈Rn1×···×nd

rank(R)=(1,...,1)

f(X1 + R), (5.15)

which is not computationally feasible to compute exactly. Instead, we can choose R
to be a rank-1 approximation of the negative Euclidean gradient −Grad f(X1), so
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that we perform one step of steepest descent to obtain X2, see [UV15] for a discussion
of such greedy rank-1 updates in the context of matrix completion. A much simpler
choice is a random rank-1 tensor R of small norm as a correction. Furthermore, we
can either increase all ranks simultaneously by 1 or cycle through the individual
modes μ = 1, . . . , d.

In the following, we compare the performance of different rank increasing strategies
for the three-dimensional case d = 3.

• Random increase: To all basis matrices Uμ, we add a random correction vector
Rμ ∈ Rnμ , with i.i.d. normally distributed entries, Rμ(iμ) ∼ N (0, 1) for
iμ = 1, . . . , nμ.

Uμ ←
[
Uμ, Rμ

]
∈ Rnμ×rμ+1,

where we also orthogonalize the last column Rμ of Uμ such that UT
μ Uμ = Iμ

still holds. The core tensor is extended to size (r + 1)3 by adding slices with
entries of magnitude 10−15 in each mode.

• Random per-mode cyclic: Analogous to random increase, but only one mode
is enlarged at once, with a cyclic change of the modes:

(r1, r2, r3) → (r1 + 1, r2, r3) → (r1 + 1, r2 + 1, r3) → (r1 + 1, r2 + 1, r3 + 1) . . .

• Pursuit: Following the Riemannian pursuit scheme of [TTW+14], we choose
R to be the rank-1 approximation of the residual, i.e. the Euclidean gradient
Grad f(Xi). As Grad f(Xi) is a sparse tensor, we obtain its rank-1 approxima-
tion R using a sparse SVD. The enrichment R is then added to the current
iterate with a certain step length α,

Xi+1 = Xi + αR,

such that the cost function is minimized. Here, α is chosen using the formula
for the linearized line search (5.4), which, for this case, is an exact line search.

• Subspace: Here, we increase the basis matrices as in the random increase
strategy, but the updated core tensor S ∈ Rr1+1×···×rd+1 is chosen optimal in
the sense

S = argmin
C∈Rr1+1×···×r3+1

‖PΩ(C×1 U1 ×2 U2 ×3 U3)− PΩA‖2.

This amounts to solving the optimal rank correction problem (5.15) on a much
smaller subspace. It is a linear least squares problem with a system matrix
of size |Ω| × (r + 1)d, which can be solved exactly using O(|Ω|r2d) operations.
Hence, this approach is limited to very low-dimensional problems.

To compare the approaches, we run a fixed number of iterations of geomCG for each
rank; 30 iterations when the rank is increased in all three modes simultaneously and
10 iterations in random per-mode cyclic. Figure 5.8 shows the resulting convergence
for the Karhunen-Loève experiment of Section 5.3.3 with

√
λμ = 5 exp(−2μ). For

all strategies we plot the relative error on the sampling set Ω (dashed line) and on
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Figure 5.8: Convergence for the solution tensor of size n = 100 of a discretized stochastic
PDE when using different rank adaptation strategies. Dashed lines show relative residual
on Ω whereas solid lines refer to the relative error on Γ. Left: 1% sampling. Right: 5%
sampling.

the testing set Γ (solid line). The vertical dashed lines correspond to the number of
iterations after which a full rank update (r1, r2, r3) → (r1 +1, r2 +1, r3 +1) has taken
place: 30 iterations for the global rank increase strategies and 3 · 10 = 30 iterations
for random per-mode cyclic. We observe that using the residual instead of a random
enlargement performs similar (5%) or even worse for low sampling (1%). In all cases,
subspace and random per-mode cyclic perform best. For a very small sampling set,
where only 1% of the entries are given, none of the rank adaptation strategies is able
to achieve a relative error on the test set Γ smaller than 10−8.

As a second example, we assess the performance of the different strategies on a tensor
obtained by discretizing the function

f(x, y, z) =
1

1 + x2 + y2 + z2

on the cube [−1, 1]3 using a uniform tensor grid with 101 grid points in all directions.
The results for the reconstruction of the resulting tensor A ∈ R101×101×101 are shown
in Figure 5.9. For 5% sampling, the problem seems to be very easy and all strategies
perform equally well. In contrast to this, for 1% sampling, all strategies fail except
subspace.

Due to the good performance of both the per-mode cyclic and the subspace strategy,
we are led to consider yet another approach,

• Subspace per-mode cyclic: Analogous to subspace, but only one mode is en-
larged at once in a cyclic way as in random per-mode cyclic.

The result is shown in Figure 5.10 for 1% sampling, the same setup as before in
Figure 5.9. We see that the cyclic approach improves quite a bit over subspace. It is
remarkable that even in this apparently very difficult case (remember that all other
approaches completely failed), we are able to complete the tensor up to a relative
error on Γ of 10−6.
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Figure 5.9: Convergence for the reconstruction of a function discretized on a uniform grid of
size 101× 101× 101 when using different rank adaptation strategies. Dashed lines show the
relative residual on Ω whereas solid lines refer to the relative error on Γ. Left: 1% sampling.
The solid red and blue lines are covered by the solid yellow line. Right: 5% sampling.

We can conclude that the subspace optimization approaches allow for much better
reconstruction results at very low sampling rates, but require a very expensive
solution of a least-squares problem at each rank increasing step. Hence, they do
not scale well with the number of dimensions d and are limited to smaller problems.
For higher sampling rates, a random rank increasing strategy works just as well, for
almost no extra cost. In contrast to the matrix case reported in [TTW+14], the
introduction of gradient information does not improve the reconstruction quality and
can even yield worse results than a random choice.
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Figure 5.10: Comparison of the two rank increasing strategies subspace and subspace per-
mode cyclic for the discretized function tensor with 1% sampling.
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5.4. Tensor train case

If higher dimensional problems are considered, the tensor train format as introduced
in Chapter 4 is preferred.

5.4.1. Evaluation of the cost function and the gradient

Cost function. In the tensor completion problem (5.1), the cost function is given
by f(X) = ‖PΩX − PΩA‖2/2. As the data samples PΩ A are supplied as input,
evaluating the cost function reduces to evaluating the entries of the sparse tensor
PΩ X. We compute the application of the sampling operator PΩ to a TT tensor X
by direct evaluation of the matrix product for each sampling point:

X(i1, i2, . . . , in) = U1(i1)U2(i2) · · ·Ud(id).

Thus, for each sampling point, we need to compute d− 1 matrix-vector multiplica-
tions. Hence, evaluating the tensor at |Ω| sampling points involves O(|Ω|(d− 1)r2)
operations.

Gradient. According to Section 5.3, the Riemannian gradient is obtained by pro-
jecting the Euclidean gradient onto the tangent space.

As the Euclidean gradient G := Grad f(X) = PΩ X − PΩ A ∈ Rn1×···×nd is a very
large but sparse tensor, its projection onto the tangent space has to be handled with
care. When successively calculating the projection (4.17), the intermediate results
are, in general, dense already after the first step. For example, the intermediate result
G<μ>X≥μ+1 is a huge dense matrix of size Rn1n2···nμ×rμ whereas the resulting δŨL

μ

is only of size Rrμnμ×rμ+1 . Let us restate the equations of the first order variations
δŨμ:

δŨL
μ = (Irμnμ −UL

μ(UL
μ)T)(Inμ ⊗X≤μ−1)TG<μ>X≥μ+1 , for μ = 1, . . . , d− 1

δŨL
d = (Ind

⊗X≤d−1)TG<d>.

The projection (Irμnμ−UL
μ(UL

μ)T) is a straight-forward matrix multiplication and can
be done separately at the end. Instead, we focus on CL

μ := (Iμ⊗X≤μ−1)TG<μ>X≥μ+1.
Let Θiμ ⊂ Ω be the set of sampling points (j1, . . . , jd) where the μth index jμ coincides
with iμ:

Θiμ = {(j1, . . . jd) ∈ Ω | jμ = iμ} ⊂ Ω. (5.16)

The iμth slice of Cμ is given by a sum over Θiμ , as the other entries do not
contribute:

C(iμ) =
∑

(j1,...jd)∈Θiμ

X≤μ−1(j1, . . . , jμ−1)TG(j1, . . . , jd)X≥μ+1(jμ+1, . . . , jd),

which can be reformulated as

C(iμ) =
∑

(j1,...jd)∈Θiμ

G(j1, . . . , jd)
[
U1(j1) · · ·Uμ−1(jμ−1)

]T[
Vμ+1(jμ+1) · · ·Vd(jd)

]
.
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Algorithm 5.2 Computing the Riemannian gradient
Input: Left-orth. cores Uμ and right-orth. cores Vμ of X ∈Mr, Euclid. gradient Z
Output: First order variations δŨμ for μ = 1, . . . , d.

{% Initialize cores}
for μ = 1, . . . , d do

Cμ ← zeros(rμ, nμ, rμ+1)
end for

for (j1, j2, . . . , jd) ∈ Ω do

{% Precompute left matrix product}
UL{1} ← U1(j1)
for μ = 2, . . . , d− 1 do

UL{μ} ← UL{μ− 1}U2(j2)
end for

VR ← Vd(jd)

{% Calculate the cores beginning from the right}
Cd(jd) ← Cd(jd) + G(j1, j2, . . . , jd) ·UL{d− 1}T

for μ = d− 1, . . . , 2 do
Cμ(jμ) ← Cμ(jμ) + G(j1, j2, . . . , jd) ·UL{μ− 1}TVT

R

VR ← Vμ(jμ)VT
R

end for
C1(j1) ← C1(j1) + G(j1, j2, . . . , jd) ·VT

R

end for
δŨd ← Cd

{% Project cores 1, . . . , d− 1 onto orth. complement of the range of UL
μ}

for μ = 1, . . . , d− 1 do
δŨL

μ ← CL
μ −UL

μ(UL
μ)TCL

μ

end for

The algorithmic implementation for all first order variations δŨμ for μ = 1, . . . , d is
shown in Algorithm 5.2, with reuse of intermediate matrix products. For each entry,
we have to perform d− 1 small matrix-vector products for a total cost of O(d|Ω|r2).
The projection onto the orthogonal complement at the end adds another O(dnr3)
operations.

5.4.2. Calculation of the new iterate

Search direction. Many options exist for the search direction update within the
framework of nonlinear conjugate gradient. Here, we choose the Fletcher-Reeves
update (2.8),

βk =
‖ξk‖
‖ξk−1‖ ,

as it needs only about 2dnr2 operations when computing the norm as the square
root of the inner product, see Section 4.4.4. In our experiments, we observed that
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choosing a different scheme, such as Polak-Ribière+, (2.9), has almost no influence
on the convergence of Algorithm 5.1 (RTTC).

Line search. The line search is computed using the linearized line search (5.4). Due
to the term PΩ ηk, this requires the sampling of |Ω| entries of the search direction
ηk ∈ TXk

Mr. Using the result of Section 4.4.3, we write ηk as a TT tensor of rank
2r and reuse the sampling routine for TT tensors with an acceptable amount of extra
cost — the rank is doubled, hence the number of operations is quadrupled. In total,
the approximate line search can be calculated in O(|Ω|(d− 1)r2) operations.

Retraction. The new iterate Xk+1 = R(Xk, αkηk) is computed using the TT-
SVD procedure described in Section 4.5 for a total cost of approximately O(dnr3)
operations.

5.4.3. Computational complexity

If we sum up the computational complexity needed for one iteration of RTTC, we
arrive at a total cost of

O(dnr3 + d|Ω|r2) (5.17)

operations. Note that for reconstruction, the number of samples |Ω| should be
O(dnr2), as it needs to be at least as large as the dimension of the manifold (4.8).
Therefore, in realistic cases, the algorithm will have a complexity of O(d2nr4).

5.4.4. Adaptive rank adjustment

As discussed in 5.3.4, a rank adaptation scheme is necessary, as the rank tuple
r = (r0, r1, . . . , rd) of the underlying data might be unknown. This is even more
severe for the high-dimensional TT setting, where the ranks rμ can be very different
from each other, see e.g. [Ose11c, Table 3.2] for a common distribution of the
ranks. Thus, we define a maximal rank rmax determined by the computational
resources available and not necessarily by the underlying data. As the rank has a
strong influence on the complexity of the algorithm, see Section 5.4.3, this motivates
the following rank-adaptive procedure analogous to the Tucker case. First, we
run RTTC with r1 = (1, 1, . . . , 1) to obtain a result X1. Then, we add a rank-1
correction term R and then run RTTC again with starting guess X1 + R and
r2 = rank(X1 +R) to obtain X2. We were not able to extend the successful subspace
optimization scheme as described in Section 5.3.4 to the TT case in a convincing
way and the high-dimensionality makes a global update very costly. An ALS-like
single core optimization scheme is computationally feasible, but did not improve on
the reconstruction quality.

Instead, we perform a simple local update to only increase one rank-index at a time,
cycling through each rμ, μ = 1, . . . , d− 1. To modify the rank rμ, we set
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Algorithm 5.3 Adaptive rank adjustment
Input: Sampled data PΩ A, PΩC

A, maximal rank rmax, acceptance parameter ρ

Output: Completed tensor X with rankTT(X) ≤ rmax
X random tensor, r := rankTT(X) = (1, 1, . . . , 1)T

X ← Result of RTTC using X as starting guess.
for k = 2, . . . , rmax do

for μ = 1, . . . , d− 1 do
if rμ ≥ rmax,μ then

μth rank is maximal. Skip.
else

Xnew ← Increase μth rank of X to (1, r1, . . . , rμ + 1, . . . rd−1, 1) using (5.18)
Xnew ← Result of Algorithm 5.1 using Xnew as starting guess.

if (εΩC
(Xnew)− εΩC

(X)) > ρ εΩC
(X) then

Revert step.
else

X ← Xnew % accept step.
end if

end if
end for

end for

UL
μ ←

[
UL

μ Rμ

]
, UR

μ+1 ←
[
UR

μ+1
Rμ+1

]
. (5.18)

When we choose Rμ ∈ Rrμ−1nμ×1 and Rμ+1 ∈ R1×nμ+1rμ+1 from a local projection of
the approximated gradient, we obtain an AMEn-like procedure [DS14]. While very
successful in the case of linear systems and eigenvalue problems, see Chapter 7, we
have found that choosing Rμ and Rμ+1 as random vectors with small magnitude, say,
10−8, performs just as well, similar to the Tucker case in Section 5.3.4. The resulting
rank-adaptive algorithm is shown in Algorithm 5.3. This procedure is repeated until
either the prescribed residual tolerance is fulfilled or r = rmax is reached.

As the main goal of the first steps is to steer the iterates into the right direction,
only few steps of RTTC are required at each level. We make use of the stagnation
criterion (5.7) with a crude tolerance of, say, δ = 0.01. With this choice, RTTC
usually needs less than 10-15 iteration steps at each level. At the final rank, a finer
tolerance is used to allow for more iterations.

In the worst-case scenario, this leads to (d− 1)rmax executions of RTTC. To limit
the occurrences of unnecessary rank increases, it can be helpful to revert the rank
in the current mode if the increase did not improve on εΩC

. To detect such cases,
we measure the relative change from εΩC

(X) to εΩC
(Xnew). If it did improve, we

always accept the step; additionally, the parameter ρ ≥ 0 allows for slight increases
of the error in one rank-increasing step, with the hope that it will decrease in later
steps. In the numerical experiments, we chose ρ = 1.

As a side remark, we mention that a very different approach to introduce rank-
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adaptivity could try to replace the retraction step by a rounding procedure, which
does not truncate to a fixed rank, but adjusts the rank according to some prescribed
accuracy. As the step Xk + αηk has up to rank 2r, see Remark 4.10, this would
allow to possibly double the rank in each step. We have performed a few tests in
this direction, but could not achieve good performance.

5.5. Numerical experiments for the TT case

In the following section we investigate the performance of RTTC, Algorithm 5.1, and
compare it to existing methods, namely HTOpt [DSH13, DSH15], ADF [GKK13]
and a simple alternating optimization scheme, see Section 5.5.2.

To quantify the reconstruction quality of the algorithms, we measure the relative
error on a test set Γ different from Ω and ΩC . All sampling sets are created by
randomly sampling each index iμ from a uniform distribution on {1, . . . , nμ}. We
sample more entries than necessary, such that after removing duplicates we end up
with a sampling set of the desired size.

As mentioned in the introduction, cross approximation techniques can be used if the
sampling set Ω is not prescribed, but can be chosen freely. This is often the case
when dealing with the approximation of high-dimensional functions and solutions of
parameter-dependent PDEs. To show the effectiveness of tensor completion in these
applications, we compare RTTC to state-of-the-art cross-approximation algorithms
based on the TT [DS14] and HT format [BG14].

We have implemented RTTC in Matlab based on the TTeMPS toolbox, see http:

//anchp.epfl.ch/TTeMPS. As shown in Section 5.4, the calculation of the cost function,
the gradient and the linearized line search involve operations on sparse tensors. To
obtain an efficient algorithm we have implemented these crucial steps in C using the
Mex-function capabilities of Matlab with direct calls to BLAS routines wherever
possible. For example, when evaluating the cost function, see Section 5.4.1, permuting
the storage of the cores of size rμ × nμ × rμ+1 to arrays of size rμ × rμ+1 × nμ before
starting the sampling procedure allows us to continuously align the matrix blocks in
memory for fast calls to the BLAS routine DGEMV.

While the computational complexity, Section 5.4.3, suggests that most parts of
the algorithm are equally expensive, the majority of the wall-time is spent on the
calculation of the gradient, see Section 5.4.1, as it involves |Ω| operations on single
indices. Inevitably, this leads to unaligned memory accesses which are a bottleneck
on today’s computers. This can be partly avoided by an embarrassingly parallel
distribution of the loop over all indices in the sampling set Ω, but is out of the scope
of this chapter.

All timings have been conducted on an Intel Xeon E31225, 3.10GHz quad-core
processor with 8 GB of memory, running Matlab version 2012b.
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5.5.1. Scaling of the algorithm

As a first experiment, we check the computational complexity per iteration of RTTC
as derived in Section 5.4.3. In Figure 5.11, we show three plots corresponding to the
scaling with respect to (left) the tensor size n, (middle) the number of dimensions
d and (right) the tensor rank r. In all cases, the original data is a TT tensor of
known rank r whose cores consist of entries uniformly, randomly chosen from [0, 1].
In the first case (left), we have chosen d = 10, r = (1, 10, . . . , 10, 1), and mode
size n ∈ {20, 40, . . . , 200}. In (middle), we have set the mode size to n = 100,
r = (1, 10, . . . , 10, 1), and dimensions ranging from d = 3 to d = 20. Finally, for
(right) we set d = 10, n = 100 and r = (1, r, . . . , r, 1) with r ∈ {2, . . . , 25}. For each
configuration, we run 10 steps of RTTC with 5 repetitions. The sampling set size |Ω|
is chosen such that it scales like O(nr2). The lines are linear fits for n and d and a
quartic fit for tensor rank r. We observe that RTTC indeed scales linearly with n and
d and to fourth order in r (due to the scaling of Ω), in accordance with (5.17).
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Figure 5.11: Scaling of RTTC with respect to tensor size n, number of dimensions d and
tensor rank r. In the rightmost figure, in log-log scale, the line corresponds to a fourth order
dependence on the tensor rank. See Section 5.5.1 for details.

5.5.2. Comparison to an alternating linear scheme

To evaluate the performance of our proposed algorithm, we have implemented a
simple alternating linear scheme (ALS) algorithm to approach the tensor completion
problem (5.1). This approach was suggested by Grasedyck, Kluge and Krämer
[GKK15]. In the TT format, algorithms based on ALS-type optimization are a
simple but surprisingly effective way to solve an optimization scheme. In each step,
all cores but one are kept fixed and the optimization problem is reduced to a small
optimization problem of a single core. The core is replaced by its locally optimal
solution and fixed, while the optimization scheme moves to the neighboring core.
This approach has been successfully used to solve linear systems and eigenvalue
problems in the TT format, see e.g. [DO12, HRS12a, RU13].

For the tensor completion problem (5.1), one single core optimization step of the
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Figure 5.12: Comparison between the convergence of RTTC and ALS. The underlying tensor
is a random TT tensor of size n = 50, d = 10 and known rank r ∈ {4, 8, 12}. Left: Rel. error
with respect to number of iterations. One iteration of ALS corresponds to one half-sweep.
Right: Rel. error with respect to time.

ALS scheme is given by

Ũμ = argmin
V

1
2
∑
i∈Ω

[
A(i1, . . . , id)− U1(i1) · · ·Uμ−1(iμ−1)V (iμ)Uμ+1(iμ+1) · · ·Ud(id)

]2
= argmin

V

1
2
∑
i∈Ω

[
A(i1, . . . , id)−X≤μ−1(i1, . . . iμ−1)V (iμ)X≥μ+1(iμ+1, . . . , id)

]2
.

Cycling through all cores Uμ for μ = 1, . . . , d multiple times until convergence yields
the full ALS completion scheme. To solve one core optimization step efficiently, we
look at the iμth slice of the new core Ũμ, making use of notation (5.16):

Ũμ(iμ) = argmin
V

1
2
∑

j∈Θiμ

[
A(j1, . . . , jd)

−X≤μ−1(j1, . . . jμ−1)V (jμ)X≥μ+1(iμ+1, . . . , id)
]2

= argmin
V

1
2
∑

j∈Θjμ

[
A(j1, . . . , jd)

− (X≥μ+1(jμ+1, . . . , jd)T ⊗X≤μ−1(j1, . . . jμ−1)
)

vec (V (jμ))
]2

which is a linear least squares problem for vec(V (iμ)) with a system matrix of size
|Θiμ | × rμ−1rμ. As

∑nμ

iμ=1 |Θiμ | = |Ω|, solving the least squares problems to obtain
the new core Ũμ can be performed in O(|Ω|r4) operations. Updating each core
μ = 1, . . . , d once (one so-called half-sweep of the ALS procedure) then results in a
total cost of O(d|Ω|r4) operations. Compared to the complexity of RTTC, this ALS
procedure involves the fourth power of the rank instead of the square. In Figure
5.12, we compare the convergence of the two approaches as a function of iterations
and time when reconstructing a random TT tensor of size n = 50, d = 10 and known
rank r chosen from {4, 8, 12}. While the iteration count is similar, the ALS approach
takes around an order magnitude more time to converge, slowing down considerably
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as the rank of the underlying data increases. To make sure that the implementation
is similarly optimized as RTTC, the setup of the least squares system matrices is
performed in optimized Mex-functions, written in C.

5.5.3. Reconstruction of synthetic data sets

In Figure 5.13 phase plots are depicted, showing the ability of RTTC and the ALS
procedure to recover a tensor as a function of the number of known values of the
original tensor. The results are shown for two different numbers of dimensions, d = 5
and d = 10. We run both algorithms 5 times for each combination of tensor size n

and sampling set size |Ω|. The brightness represents how many times the iteration
converged, where white means 5 out of 5 converged and black corresponds to no
convergence. We call the iteration convergent if the relative error on the test set Γ is
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(a) Phase plot for d = 5. Left: RTTC. Right: ALS.
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(b) Phase plot for d = 10. Left: RTTC. Right: ALS.

Figure 5.13: Phase plots for RTTC and ALS for (a) d = 5 and (b) d = 10, showing the ability
to recover the original data as a function of the mode size n and the size of the sampling set
Ω. The underlying tensor is a random TT tensor of known rank r = (1, 3, . . . , 3, 1). White
means convergent in all 5 runs, black means convergent in no runs. The white dashed curve
corresponds to 20n log(n) for d = 5 and 80n log(n) for d = 10.

smaller than 10−4 after at most 250 iterations. Note that in almost all convergent
cases, the algorithms have reached this prescribed accuracy within less than 100
steps.
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The original data A is constructed as a TT tensor of rank r = (1, 3, . . . , 3, 1) with
the entries of each core being uniform random samples from [0, 1]. The question of
how many samples are required to recover the underlying data has been a very active
topic in the last years, see Subsection 5.3.2 for a discussion. In the Tucker case,
the numerical experiments suggested a scaling behaviour similar to the O(nr log(n))
samples needed in the matrix case. In Figure 5.13 we have included a white dashed
curve corresponding to 20n log(n) for d = 5 and 80n log(n) for d = 10.

5.5.4. Interpolation of high-dimensional functions

In the next section, we will investigate the application of tensor completion to
discretizations of high dimensional functions. The random tensors considered in
the previous Section 5.5.3 are constructed to be of a certain well-defined rank. For
discretizations of function data, we can, in general, only hope for a sufficiently fast
decay of the singular values in each matricization, resulting in good approximability
by a low-rank tensor. As the rank is not known a priori, we will employ the
rank-increasing strategy presented in Section 5.4.4, Algorithm 5.3, for all following
experiments, both for RTTC and ALS.

Comparison to ADF

We compare the accuracy and timings of RTTC and the ALS procedure to an
alternating direction fitting by Grasedyck et al. [GKK13] for different values of the
maximum rank. We reconstruct the setup in [GKK13, Section 4.2] for RTTC and
the ALS scheme to compare against the therein stated results. The original data
tensor of dimension d = 8 and mode sizes n = 20 is constructed by

A(i1, i2, . . . , id) =
1√∑n
μ=1 i2

μ

.

The results are shown in Table 5.2 for different values of the maximal rank r :=
maxμ rμ. Both sampling set Ω and test set Γ are chosen to be of size |Ω| = |Γ| =
10dnr2.

The results are shown in Table 5.2 for different values of the maximal rank r :=
maxμ rμ. We can see that the reconstruction quality is similar for all algorithms,
but the ADF scheme, also implemented in Matlab, suffers from exceedingly long
computation times. A large part of these timing differences may be attributed to the
fact that it does not use optimized Mex routines for the sampling. Therefore, we
focus mostly on the achieved reconstruction error and only include the timings as a
reference.

For the ALS procedure, the quartic instead of quadratic scaling of the complexity
with respect to the rank r becomes noticeable.
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ADF RTTC ALS
r εΓ(Xend) time εΓ(Xend) time εΓ(Xend) time

2 1.94 · 10−2 14 s 6.42 · 10−3 11.1 s 7.55 · 10−3 5.90 s
3 2.05 · 10−3 1.3 min 5.60 · 10−3 25.4 s 5.63 · 10−3 19.1 s
4 1.72 · 10−3 24 min 1.73 · 10−3 45.7 s 1.50 · 10−3 46.5 s
5 1.49 · 10−3 39 min 1.53 · 10−3 1.3 min 9.49 · 10−4 1.7 min
6 2.25 · 10−3 1.7 h 7.95 · 10−4 2.1 min 1.09 · 10−3 3.3 min
7 8.53 · 10−4 2.6 h 3.49 · 10−4 3.3 min 3.92 · 10−4 6.4 min

Table 5.2: Comparison of the reconstruction accuracy of RTTC to an ADF completion
algorithm [GKK13] for different values of the maximal rank. The underlying data is a
discretized function resulting in a tensor of dimension d = 8 and mode size n = 20, see
Section 5.5.4. The results and timings for ADF are taken from [GKK13].

Comparison to HTOpt

We now compare the reconstruction performance to a Riemannian optimization
scheme on the manifold of tensors in the Hierarchical Tucker format, HTOpt [DSH13,
DSH15].

HTOpt ADF RTTC ALS
|Ω|/nd εΓ(Xend) time εΓ(Xend) time εΓ(Xend) time εΓ(Xend) time

0.001 1.15 · 100 28.4 s 6.74 · 10−2 53.0 s 9.17 · 10−2 4.99 s — —
0.005 1.67 · 100 28.8 s 6.07 · 10−3 3.2 m 6.79 · 10−3 5.11 s 2.19 · 10−2 3.87 s
0.01 1.99 · 100 29.7 s 3.08 · 10−2 6.4 m 1.19 · 10−3 5.72 s 1.59 · 10−2 4.69 s
0.05 3.68 · 10−3 29.6 s 1.95 · 10−5 18 m 2.13 · 10−4 6.42 s 5.64 · 10−4 6.94 s
0.1 1.99 · 10−3 29.3 s 6.50 · 10−5 27 m 2.29 · 10−5 7.58 s 2.09 · 10−5 9.95 s

Table 5.3: Comparison of the reconstruction accuracy of RTTC to ALS, ADF and a Rieman-
nian optimization scheme using the Hierarchical Tucker format (HTOpt) for different sizes
of the sampling set. The underlying data is a discretized function resulting in a tensor of
dimension d = 4 and mode size n = 20, see Section 5.5.4.

This algorithm is conceptually very similar to RTTC and GeomCG, but uses a
different tensor format and a Gauss-Newton instead of a conjugate gradient scheme.
We use the most recent HTOpt version 1.1 which is available from the authors. This
implementation is optimized for very high sampling rates, where up to 50% of the
original data is given. Motivated by this setting, the involved matrices and tensors
cannot be considered sparse anymore and are treated by dense linear algebra. On the
other hand, this approach limits the applicability of the algorithm to relatively low-
dimensional tensors, say d = 4, 5. To make a fair comparison, we have adapted the
example synthetic.m in HTOpt, which also aims to reconstruct a tensor originating
from the discretization of a high-dimensional function, with the parameters left at
their default value.

As this code works with a different tensor format, prescribed tensor ranks are in
general not directly comparable. To circumvent this, we have chosen d = 4, as in
this case, the TT-rank r = (1, r1, r2, r3, 1) directly corresponds to a HT dimension
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tree with internal rank r2 and leaf ranks r1 and r3. We discretize the function

f : [0, 1]4 → R, f(x) = exp(−‖x‖)

using n = 20 equally spaced discretization points on [0, 1] in each mode. The
maximum rank is set to r = (1, 5, 5, 5, 1).

In Table 5.3 we present the results for different sizes of the sampling set |Ω| and the
corresponding relative error on the test set Γ, |Γ| = 100. Sampling and test sets are
chosen identically for all algorithms. Since this example is not covered in [GKK13],
we now use the reference implementation of ADF provided by the authors. We
observe that the proposed RTTC is the fastest and yields better reconstruction than
HTOpt. For sampling ratios 0.001, 0.005, 0.01, HTOpt fails to recover the original
data within the specified number of maximum iterations, 250. For the smallest
sampling ratio 0.001, the ALS procedure does not have enough samples available to
solve the least squares problems. Altogether, RTTC, ALS and ADF perform very
similar when comparing the reconstruction quality. We assume that the reason for
the worse performance of HTOpt is due to the missing rank-adaptivity. For high
sampling ratios, the use of a rank adaptation scheme such as the one described in
Section 5.4.4 is less important, as overfitting is very unlikely to occur.

5.5.5. Parameter-dependent PDE: Comparison to cross approximation

As an example of a parameter-dependent PDE, we investigate the cookie problem
[Tob12, BG14]: Consider the heat equation on the unit square D = [0, 1]2 with
d = m2 disks Ds,t of radius ρ = 1

4m+2 and midpoints (ρ(4s − 1), ρ(4t − 1)) for
s, t = 1, . . . , m. A graphical depiction of this setup is shown in Figure 5.14 for the
cases m = 3 and m = 4. The heat conductivities of the different disks Ds,t are
described by the coefficient vector p = (p1, . . . , pd), yielding the piecewise constant
diffusion coefficient

a(x, p) :=

⎧⎨⎩pμ, if x ∈ Ds,t, μ = m(t− 1) + s,

1, otherwise.

with each pμ ∈ [1
2 , 2]. The temperature u(x, p) at position x ∈ D for a certain choice

of parameters p ∈ [1
2 , 2]d is then described by the diffusion equation

−div(a(x, p)∇u(x, p)) = 1, x ∈ D,

u(x, p) = 0, x ∈ ∂D.
(5.19)

Assume now that we are interested in the average temperature u(p) : [1
2 , 2]d → R

over the domain D,
u(p) :=

∫
[0,1]2

u(x, p) dx.

Following the setup of [BG14], we discretize the parameter space [1
2 , 2]d by spectral

collocation using n = 10 Chebyshev points for each mode μ = 1, . . . d. Hence,
calculating the spatial average of the solution of (5.19) for each collocation point
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(a) 9 cookies (m = 3)
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(b) 16 cookies (m = 4)

Figure 5.14: Graphical depiction of the cookie problem for values m = 3 and m = 4 resulting
in 9 and 16 cookies, respectively.

in the parameter space would result in a solution tensor A of size 10d. As this
represents an infeasible amount of work, we instead try to approximate the solution
tensor by a low-rank approximation X.

A common tool to tackle such problems are cross-approximation techniques. In
Table 5.4 we compare the results obtained by a recent algorithm in the hierarchical
Tucker format [BG14], denoted by HT-Cross, to the most recent cross-approximation
technique in the TT format [SO11, DS14], denoted by TT-Cross, implemented in
the routine amen_cross of the TT-Toolbox [ODSK14]. The results for HT-Cross are
taken from the corresponding paper [BG14], in which the authors also compare their
algorithm to a sparse grid approach. The specified tolerance is shown along with the
relative reconstruction error on a test set Γ of size 100 and the number of sampling
points. Both algorithms are able to construct a low-rank approximation X up to
the prescribed accuracy, while TT-Cross needs about 10 times more sampling points.
This could be due to an additional search along the modes of the solution tensor
A, as we have a mode size of n = 10 in our example. At each sampling point, the
PDE (5.19) is solved for the corresponding parameter set p = (p1, . . . , pd) using the
FEniCS [LMW12] finite element package, version 1.4.0.

To compare the performance of these two cross-approximation algorithms to our
tensor completion approach, we now try to complete A by using the same amount of
sampling points as the HT-Cross algorithm, but using randomly sampled entries of
the solution tensor. The test set Γ is the same as for TT-Cross. RTTC is able to
recover A with similar accuracy.

We observe that for the cookie problem, an adaptive choice of sampling points does not
seem to perform better than a random sampling approach using tensor completion.
The tensor completion approach has the additional advantage that all sampling
points are determined a priori. Thus, the expensive evaluation of the sampling points
can be easily distributed to multiple computers in an embarrassingly parallel way
before starting the completion procedure. In the adaptive cross-approximation, the
necessary sampling points are only determined at run-time, preventing an effective
parallelization.
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TT-Cross HT-Cross (from [BG14])
Tol. εΓ(X) Eval. εΓ(X) Eval.

10−3 8.35 · 10−4 11681 3.27 · 10−4 1548
10−4 2.21 · 10−5 14631 1.03 · 10−4 2784
10−5 1.05 · 10−5 36291 1.48 · 10−5 3224
10−6 1.00 · 10−6 42561 2.74 · 10−6 5338
10−7 1.31 · 10−7 77731 1.88 · 10−7 9475

RTTC
εΓ(X) |Ω|

9.93 · 10−5 1548
8.30 · 10−6 2784
6.26 · 10−6 3224
6.50 · 10−7 5338
1.64 · 10−7 9475

(a) 9 cookies (m = 3)

TT-Cross HT-Cross (from [BG14])
Tol. εΓ(X) Eval. εΓ(X) Eval.

10−3 8.17 · 10−4 22951 3.98 · 10−4 2959
10−4 3.93 · 10−5 68121 2.81 · 10−4 5261
10−5 9.97 · 10−6 79961 1.27 · 10−5 8320
10−6 1.89 · 10−6 216391 3.75 · 10−6 12736
10−7 — — 3.12 · 10−7 26010

RTTC
εΓ(X) |Ω|

2.84 · 10−4 2959
2.10 · 10−5 5261
1.07 · 10−5 8320
1.89 · 10−6 12736
7.12 · 10−7 26010

(b) 16 cookies (m = 4)

Table 5.4: Reconstruction results for the cookie problem using cross-approximation and tensor
completion. The last entry in Table (b) for TT-Cross has been omitted due to an exceedingly
high amount of function evaluations. The results for HT-Cross have been taken from the
corresponding paper [BG14].

5.6. Conclusion

We have shown that the framework of Riemannian optimization yields a very effective
nonlinear CG method for performing tensor completion. More specifically, we have
derived algorithms based on the manifold of fixed multilinear rank (GeomCG) and of
fixed tensor train rank (RTTC). One of the main contributions consists of a careful
discussion of the algorithmic and implementation details, showing that the method
scales well for large data sets and is competitive to existing methods for tensor
completion.

For applications, a rank increasing scheme was shown to be essential to be able to
recover the original data from very few samples. We have investigated several different
strategies for the Tucker case and present a computationally feasible scheme for the TT
case. In the numerical experiments, we have shown applicability of tensor completion
to the reconstruction of data sets such as hyperspectral images and function-related
tensors. Furthermore, tensor completion with randomly chosen samples was shown
to yield similar reconstruction errors as an adaptive cross-approximation approach
with the same number of samples.

Theoretical lower bounds for the recoverability of low-rank tensors from few samples
remain a challenging open question.
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Chapter 6
� Application 2:
Linear Systems

This chapter is concerned with the approximate solution of large-scale linear systems
Ax = f with A ∈ RN×N . In certain applications, such as the structured discretization
of d-dimensional partial differential equations (PDEs), the size of the linear system
naturally decomposes as N = n1n2 · · ·nd with nμ ∈ N for μ = 1, . . . , d. This allows
us to view Ax = f as a tensor equation

AX = F, (6.1)

where F, X ∈ Rn1×n2×···×nd are tensors of order d and A is a linear operator on
Rn1×n2×···×nd .

The tensor equations considered in this chapter admit a decomposition of the
form

A = L+ V, (6.2)

where L is a Laplace-like operator with the matrix representation

L = Ind
⊗· · ·⊗In2⊗L1 +Ind

⊗· · ·⊗In3⊗L2⊗In1 + · · ·+Ld⊗Ind−1⊗· · ·⊗I1, (6.3)

with matrices Lμ ∈ Rnμ×nμ and identity matrices Inμ . The term V is dominated
by L in the sense that L is assumed to be a good preconditioner for A. Equations
of this form arise, for example, from the discretization of the Schrödinger Hamilto-
nian [Lub08], for which L and V correspond to the discretization of the kinetic and
the potential energy terms, respectively. In this application, A (and thus also Lμ)
is symmetric positive definite. In the following, we restrict ourselves to this case,
although some of the developments can, in principle, be generalized to indefinite and
nonsymmetric matrices.

Assuming A to be symmetric positive definite allows us to reformulate (6.1) as an
optimization problem

min
X∈Rn1×···×nd

1
2
〈X,AX〉 − 〈X, F〉. (6.4)

It is well-known that the above problem is equivalent to minimizing the A-induced
norm of the error ‖X−A−1F‖A. Neither (6.1) nor (6.4) are computationally tractable
for larger values of d. During the last decade, low-rank tensor techniques have been
developed that aim at dealing with this curse of dimensionality by approximating F
and X in a compressed format; see [GKT13, Hac12] for overviews. One approach
consists of restricting (6.4) to a subset M⊂ Rn1×n2×···×nd of low-rank tensors:

min
X∈M

f(X) :=
1
2
〈X,AX〉 − 〈X, F〉. (6.5)
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In this chapter, we focus on the cases where M is either the set of tensors of fixed
multilinear or tensor train rank as introduced in Chapters 3 and 4, respectively.
We will then use Riemannian optimization techniques, see Chapter 2, to address
(6.5).

Similar to Euclidean optimization, the condition number of the Riemannian Hessian
of the objective function is instrumental in predicting the performance of first-
order optimization algorithms on manifolds; see Theorem 2.27. As will be evident
from (6.14) in Section 6.2.1, an ill-conditioned operator A can be expected to yield
an ill-conditioned Riemannian Hessian. As this is the case for the applications we
consider, any naive first-order method will be prohibitively slow and noncompetitive
with existing methods. This is a fundamental difference to the tensor completion
problem which we considered in the previous Chapter 5, which is intrinsically well-
conditioned.

For Euclidean optimization, it is well known that preconditioning or, equivalently,
adapting the underlying metric can be used to address the slow convergence of such
first-order methods. Combining steepest descent with the Hessian as a (variable) pre-
conditioner yields the Newton method with (local) second order convergence [Nes04,
Sec. 1.3.1]. To overcome the high computational cost associated with Newton’s
method, several approximate Newton methods exist that use cheaper second-order
models. For example, Gauss–Newton is a particularly popular approximation when
solving non-linear least-squares problems. For Riemannian optimization, the con-
nection between preconditioning and adapting the metric is less immediate and we
explore both directions to speed up first-order methods. On the one hand, we will
consider a rather ad hoc way to precondition the Riemannian gradient direction.
On the other hand, we will consider an approximate Newton method that can be
interpreted as a constrained Gauss–Newton method. This requires setting up and
solving linear systems with the Riemannian Hessian or an approximation thereof.
In [VV10], it was shown that neglecting curvature terms in the Riemannian Hessian
leads to an efficient low-rank solver for Lyapunov matrix equations. We will extend
these developments to more general equations with tensors approximated in the
Tucker and the TT formats.

Riemannian optimization is by no means the only sensible approach to finding
low-rank tensor approximations to the solution of the linear system (6.1). For
linear operators only involving the Laplace-like operator (6.3), exponential sum
approximations [Gra04, HK06] and tensorized Krylov subspace methods [KT10] are
effective and allow for a thorough convergence analysis. For more general equations,
a straightforward approach is to apply standard iterative methods, such as the
Richardson iteration or the CG method, to (6.1) and represent all iterates in the
low-rank tensor format; see [BG13, Dol13, KO10b, KS11, KT11a] for examples. One
critical issue in this approach is to strike a balance between maintaining convergence
and avoiding excessive intermediate rank growth of the iterates. Only recently, this has
been analyzed in more detail [BD15]. A very different approach consists of applying
alternating optimization techniques to the constrained optimization problem (6.5).
Such methods have originated in quantum physics, most notably the so called
DMRG method to address eigenvalue problems in the context of strongly correlated
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quantum lattice systems, see [Sch11] for an overview. The ideas of DMRG and related
methods have been extended to linear systems in the numerical analysis community
in [DO12, DS14, HRS12a, Ose11a] and are generally referred to as alternating linear
schemes (ALS). While such methods often exhibit fast convergence, especially for
operators of the form (6.2), their global convergence properties are poorly understood.
Even the existing local convergence results for ALS [RU13, UV13] offer little intuition
on the convergence rate. The efficient implementation of ALS for low-rank tensor
formats can be a challenge. In the presence of larger ranks, the (dense) subproblems
that need to be solved in every step of ALS are large and tend to be ill-conditioned.
In [KT11b] and Chapter 7, this issue is addressed by combining an iterative solver
with a preconditioner tailored to the subproblem. The design of such a preconditioner
is by no means simple, even the knowledge of an effective preconditioner for the
full-space problem (6.1) is generally not sufficient. So far, the only known effective
preconditioners are based on exponential sum approximations for operators with
Laplace-like structure (6.3), which is inherited by the subproblems.

Compared to existing approaches, the preconditioned low-rank Riemannian opti-
mization methods proposed in this paper have a number of advantages. Due to
imposing the manifold constraint, the issue of rank growth is completely avoided.
Our methods have a global nature, all components of the low-rank tensor format are
improved at once and hence the stagnation typically observed during ALS sweeps
is avoided. Moreover, we completely avoid the need for solving subproblems very
accurately. One of our methods can make use of preconditioners for the full-space
problem (6.1), while for the other methods preconditioners are implicitly obtained
from approximating the Riemannian Hessian. A disadvantage shared with existing
methods, our method strongly relies on the decomposition (6.2) of the operator to
construct effective preconditioners.

In passing, we mention that there is another notion of preconditioning for Riemannian
optimization on a low-rank matrix manifold, see, e.g., [MS14a, MS14b, NS12]. These
techniques address the ill-conditioning of the manifold parametrization, an aspect
that is not related and relevant to our developments, as we do not directly work with
the parametrization.

This chapter is based on the technical report [KSV15].

6.1. First-order Riemannian optimization andpreconditioning

In this section, we discuss ways to incorporate preconditioners into simple first-order
Riemannian optimization methods. Throughout this section, Mr denotes either the
manifold of tensors of fixed multilinear or TT rank, unless otherwise specified.
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6.1.1. Riemannian gradient descent

For the cost function (6.5) associated with linear systems, the Euclidean gradient is
given by

Grad f(X) = AX− F
and the Riemannian gradient is obtained by projection,

grad f(X) = PTXMr(AX− F).

Together with the retraction R of Section 3.6 and Section 4.5, this yields the basic
Riemannian gradient descent algorithm:

Xk+1 = R
(
Xk + αkξk

)
, with ξk = −PTXk

M Grad f(Xk). (6.6)

To highlight the similarities of the iterate-and-truncate and Riemannian optimization
schemes, we slightly abuse the notation of the retraction R by defining its domain of
definition to be the full space Rn1×···×nd instead of the tangent bundle TM. This
only makes sense for this particular choice of SVD-based retractions, PHO

r (Xk +αkξk)
and PTT

r (Xk + αkξk) for the Tucker and TT format, respectively.

The linearized line search procedure according to Section 2.8.1 is given for the cost
function (6.5) by

argmin
α

f(Xk + αξk) = −〈ξk, Grad f(Xk)〉
〈ξ,Aξ〉 . (6.7)

6.1.2. Truncated preconditioned Richardson iteration

Truncated Richardson iteration. The Riemannian gradient descent defined by (6.6)
closely resembles a truncated Richardson iteration for solving linear systems:

Xk+1 = R
(
Xk + αkξk

)
, with ξk = −Grad f(Xk) = F−AXk, (6.8)

which was proposed for the CP tensor format in [KS11]. For the hierarchical Tucker
format, a variant of the TT format, the iteration (6.8) has been analyzed in [BD15].
In contrast to manifold optimization, the rank does not need to be fixed but can be
adjusted to strike a balance between low rank and convergence speed.

Without the rank truncation, the Richardson iteration is a classic Euclidean steepest
descent algorithm for the cost function (6.4). In this case, the linearized line search
2.8.1 is exact and convergence results are well-known. For example, one can show
using Kantorovich’s inequality that the energy norm of the distance to the exact
solution X∗ fulfills [NW06, Thm. 3.3]

‖Xk+1 −X∗‖A ≤ κ(A)− 1
κ(A) + 1

‖Xk −X∗‖A,

where κ(A) is the condition number of the matrix representation A of A. Thus,
the convergence of the Richardson iteration depends crucially on the conditioning
of the linear system. For the rank-truncated Richardson it also has been observed,
for example in [KPT14], that it greatly benefits from preconditioners, not only to
attain an acceptable convergence speed but also to avoid excessive rank growth of
the intermediate iterates.
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Preconditioned Richardson iteration. For the standard Richardson iteration Xk+1 =
Xk − αkξk a symmetric positive definite preconditioner P for A can be incorporated
as follows:

Xk+1 = Xk + αkP−1ξk with ξk = F−AXk. (6.9)

Using the Cholesky factorization P = CCT, this iteration turns out to be equivalent
to applying the Richardson iteration to the transformed symmetric positive definite
linear system

C−1AC−TY = C−1F
after changing coordinates by CTXk. At the same time, (6.9) can be viewed as
applying gradient descent in the inner product induced by P.

Truncated preconditioned Richardson iteration. The most natural way of combin-
ing truncation with preconditioning leads to the truncated preconditioned Richardson
iteration

Xk+1 = R
(
Xk + αkP−1ξk

)
, with ξk = F−AXk, (6.10)

see also [KS11]. In view of Riemannian gradient descent (6.6), it appears natural
to project the search direction to the tangent space, leading to the “geometric”
variant

Xk+1 = R
(
Xk + αk PTXk

Mr P−1ξk

)
, with ξk = F−AXk. (6.11)

In terms of convergence, we have observed that the scheme (6.11) behaves similar
to (6.10); see §6.3.3. However, it can be considerably cheaper per iteration: Since only
tangent vectors need to be retracted in (6.11), the computation of the HOSVD/TT-
SVD in R involves only tensors of bounded rank, regardless of the rank of P−1ξk.
In particular, with r the multilinear or TT rank of Xk, the corresponding rank of
Xk + αk PTXk

Mr P−1ξk is at most 2r; see Section 3.6 and Section 4.5, respectively.
On the other hand, in (6.10) the rank of Xk + αkP−1ξk is determined primarily by
the quality of the preconditioner P and can possibly be very large.

Another advantage occurs for the special but important case when P−1 =
∑s

α=1 Pα,
where each term Pα is relatively cheap to apply. For example, when P−1 is an
exponential sum preconditioner [BH05] then Pα is a Kronecker product of small
matrices. By the linearity of PTXk

Mr , we have

PTXk
Mr P−1ξk =

s∑
α=1

PTXk
Mr Pαξk, (6.12)

which makes it often cheaper to evaluate this expression in the iteration (6.11).
To see this, for example, for the TT format, suppose that Pαξ has TT ranks rp.
Then the preconditioned direction P−1ξk can be expected to have TT ranks srp.
Hence, the straightforward application of PTXk

Mr to P−1ξk requires O(dn(srp)2r)
operations. Using the expression on the right-hand side of (6.12) instead reduces the
cost to O(dnsr2

pr) operations, since the summation of tangent vectors amounts to
simply adding their parametrizations. In contrast, since the retraction is a non-linear
operation, trying to achieve similar cost savings in (6.10) by simply truncating the
cumulated sum subsequently may lead to severe cancellation [KT14, Sec. 6.3].
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6.2. Riemannian optimization using a quadratic model

As we will see in the numerical experiments in Section 6.3, the convergence of the
first-order methods presented above crucially depends on the availability of a good
preconditioner for the full problem. In this section, we present Riemannian optimiza-
tion methods based on a quadratic model. In these methods, the preconditioners are
derived from an approximation of the Riemannian Hessian.

6.2.1. Approximate Newtonmethod

The Riemannian Newton method [AMS08] applied to (6.5) determines the search
direction ξk from the equation

HXk
ξk = −PTXMr Grad f(Xk), (6.13)

where the symmetric linear operator HXk
: TXk

Mr → TXk
Mr is the Riemannian

Hessian of (6.5). Using [AMT13], we have

HXk
= PTXk

Mr

[
Hess f(Xk) + JXk

Grad f(Xk)
]
PTXk

Mr

= PTXk
Mr

[A+ JXk
(AXk − F)

]
PTXk

Mr (6.14)

with the Euclidean Hessian Hess f(Xk) and the Fréchet derivative1 JXk
of PTXk

Mr

at Xk.

As usual, the Newton equation is only well-defined near a strict local minimizer and
solving it exactly is prohibitively expensive in a large-scale setting. We therefore
approximate the linear system (6.13) in two steps: First, we drop the term containing
JXk

and second, we replace A = L + V by L. The first approximation can be
interpreted as neglecting the curvature of Mr, or equivalently, as linearizing the
manifold at Xk. Indeed, this term is void if Mr would be a (flat) linear subspace.
This approximation is also known as constrained Gauss–Newton (see, e.g, [Boc87])
since it replaces the constraint X ∈ Mr with its linearization X ∈ TXMr and
neglects the constraints in the Lagrangian. The second approximation is natural
given the assumption of L being a good preconditioner for A = L+ V. In addition,
our derivations and numerical implementation will rely extensively on the fact that
the Laplacian L acts on each tensor dimension separately.

The result is an approximate Newton method where the search direction ξk is deter-
mined from

PTXk
Mr LPTXk

Mr ξk = PTXMr(F−AXk). (6.15)

Since L is positive definite, this equation is always well-defined for any Xk. In
addition, ξk is also gradient-related and hence the iteration

Xk+1 = R
(
Xk + αkξk

)
1JXk is an operator from Rn×n×···×n to the space of self-adjoint linear operators TXk Mr →

TXk Mr.
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is guaranteed to converge globally to a stationary point of the cost function if αk is
determined from Armijo backtracking, see Theorem 2.24.

Despite all the simplifications, the numerical solution of (6.15) turns out to be a
nontrivial task. In the following section, we explain an efficient algorithm for solving
(6.15) exactly when Mr is the Tucker manifold. For the TT manifold, this approach
is no longer feasible and we therefore present an effective preconditioner that can be
used for solving (6.15) with the preconditioned CG method.

6.2.2. The approximate Riemannian Hessian in the Tucker case

The solution of the linear system (6.15) was addressed for the matrix case (d = 2)
in [VV10, Sec. 7.2]. In the following, we extend this approach to tensors in the
Tucker format. To keep the presentation concise, we restrict ourselves to d = 3; the
extension to d > 3 is straightforward.

For tensors of order three in the Tucker format, we write (6.15) as follows:

PTXMr LPTXMr ξ = η, (6.16)

where

• X ∈ Mr is parametrized by factor matrices U1, U2, U3 having orthonormal
columns and the core tensor S;

• the right-hand side η ∈ TXMr is given in terms of its gauged parametrization
δUη

1 , δUη
2 , δUη

3 and δSη, as in (3.12) and (3.14);

• the unknown ξ ∈ TXMr is to be determined in terms of its gauged parametriza-
tion δU1, δU2, δU3 and δS, again as in (3.12) and (3.14).

To derive equations for δUμ with μ = 1, 2, 3 and δS we exploit that TXMr decomposes
orthogonally into V1⊕· · ·⊕V4; see (3.13). This allows us to split (6.16) into a system
of four coupled equations by projecting onto Vμ for μ = 1, . . . , 4.

In particular, since ξ ∈ TXMr by assumption, we can insert Z := LPTXMr ξ = Lξ

into the equations of Prop. 3.8. By exploiting the structure of L (see (6.3)) and the
orthogonality of the gauged representation of tangent vectors (see (3.14)), we can
simplify the expressions considerably and arrive at the equations

δUη
1 = P⊥

U1

(
L1U1δS(1) + L1δU1S(1) + δU1S(1)

[
Ir3 ⊗ UT

2 L2U2 + UT
3 L3U3 ⊗ Ir2

])
S†

(1)

δUη
2 = P⊥

U2

(
L2U2δS(2) + L2δU2S(2) + δU2S(2)

[
Ir3 ⊗ UT

1 L1U1 + UT
3 L3U3 ⊗ Ir1

])
S†

(2)

δUη
3 = P⊥

U3

(
L3U3δS(3) + L3δU3S(3) + δU3S(3)

[
Ir2 ⊗ UT

1 L1U1 + UT
2 L2U2 ⊗ Ir1

])
S†

(3)

δSη =
[
UT

1 L1U1δS(1) + UT
1 L1δU1S(1)

](1) +
[
UT

2 L2U2δS(2) + UT
2 L2δU2S(2)

](2)

+
[
UT

3 L3U3δS(3) + UT
3 L3δU3S(3)

](3)
.

(6.17)
Additionally, the gauge conditions need to be satisfied:

UT
1 δU1 = UT

2 δU2 = UT
3 δU3 = 0. (6.18)
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In order to solve these equations, we will use the first three equations of (6.17),
together with (6.18), to substitute δUμ in the last equation of (6.17) and determine a
decoupled equation for δS. Rearranging the first equation of (6.17), we obtain

P⊥
U1

(
L1δU1 + δU1S(1)

[
Ir3 ⊗ UT

2 L2U2 + UT
3 L3U3 ⊗ Ir2

]
S†

(1)

)
= δUη

1 − P⊥
U1 L1U1δS(1)S

†
(1).

Vectorization and adhering to (6.18) yields the saddle point system[
G Ir1 ⊗ U1

Ir1 ⊗ UT
1 0

] [
vec(δU1)

y1

]
=
[
b1
0

]
, (6.19)

where

G = Ir1 ⊗ L1 + (S†
(1))

T(Ir3 ⊗ UT
2 L2U2 + UT

3 L3U3 ⊗ Ir2

)
ST

(1) ⊗ In1 ,

b1 = vec(δUη
1 )− ((S†

(1))
T ⊗ P⊥

U1 L1U1
)

vec(δS(1)),

and y1 ∈ Rr2
1 is the dual variable. The positive definiteness of L1 and the full rank

conditions on U1 and S imply that the above system is nonsingular; see, e.g., [BGL05].
Using the Schur complement GS = −(Ir1⊗U1)TG−1(Ir1⊗U1), we obtain the explicit
expression

vec(δU1) =
(
In1r1 +G−1(Ir1⊗U1)G−1

S (Ir1⊗UT
1 )
)
G−1b1 = w1−F1 vec(δS(1)), (6.20)

with

w1 :=
(
In1r1 + G−1(Ir1 ⊗ U1)G−1

S (Ir1 ⊗ UT
1 )
)
G−1 vec(δUη

1 ),

F1 :=
(
In1r1 + G−1(Ir1 ⊗ U1)G−1

S (Ir1 ⊗ UT
1 )
)
G−1

(
(S†

(1))
T ⊗ P⊥

U1 L1U1
)
.

Expressions analogous to (6.20) can be derived for the other two factor matrices:

vec(δU2) = w2 − F2 vec(δS(2)),
vec(δU3) = w3 − F3 vec(δS(3)),

with suitable analogs for w2, w3, F2, and F3. These expressions are now inserted into
the last equation of (6.17) for δSη. To this end, define permutation matrices Πi→j

that map the vectorization of the ith matricization to the vectorization of the jth
matricization:

Πi→j vec(δS(i)) = vec(δS(j)),

By definition, vec(δS(1)) = vec(δS), and we finally obtain the following linear system
for vec(δS):

F vec(δS) = vec(δSη)− (ST
(1) ⊗ UT

1 L1)w1 −Π2→1(ST
(2) ⊗ UT

2 L2)w2

−Π3→1(ST
(3) ⊗ UT

3 L3)w3,
(6.21)
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with the r1r2r3 × r1r2r3 matrix

F := Ir2r3 ⊗ UT
1 L1U1 − (ST

(1) ⊗ UT
1 L1)F1

+ Π2→1
[
Ir1r3 ⊗ UT

2 L2U2 − (ST
(2) ⊗ UT

2 L2)F2
]
Π1→2

+ Π3→1
[
Ir1r2 ⊗ UT

3 L3U3 − (ST
(3) ⊗ UT

3 L3)F3
]
Π1→3.

For small ranks, the linear system (6.21) is solved by forming the matrix F explicitly
and using a direct solver. Since this requires O(r3

1r3
2r3

3) operations, it is advisable to
use an iterative solver for larger ranks, in which the Kronecker product structure
can be exploited when applying F ; see also [VV10]. Once we have obtained δS, we
can easily obtain δU1, δU2, δU3 using (6.20).
Remark 6.1. The application of G−1 needed in (6.20) as well as in the construction
of GS can be implemented efficiently by noting that G is the matrix representation of
the Sylvester operator V 
→ L1V + V ΓT

1 , with the matrix

Γ1 := (S†
(1))

T(Ir3 ⊗ UT
2 L2U2 + UT

3 L3U3 ⊗ Ir2

)
ST

(1).

The r1 × r1 matrix Γ1 is non-symmetric but it can be diagonalized by first computing
a QR decomposition ST

(1) = QSRS such that QT
S QS = Ir1 and then computing the

spectral decomposition of the symmetric matrix

QT
S

(
Ir3 ⊗ UT

2 L2U2 + UT
3 L3U3 ⊗ Ir2

)
QS .

After diagonalization of Γ1, the application of G−1 requires the solution of r1 linear
systems with the matrices L1 + λI, where λ is an eigenvalue of Γ1; see also [Sim13].
The Schur complement GS ∈ Rr2

1×r2
1 is constructed explicitly by applying G−1 to the

r2
1 columns of Ir1 ⊗ U1.

Analogous techniques apply to the computation of w2, F2, and w3, F3.

Assuming, for example, that each Lμ is a tri-diagonal matrix, the solution of a
linear system with the shifted matrix Lμ + λI can be performed in O(n) operations.
Therefore, using Remark 6.1, the construction of the Schur complement GS requires
O(nr3) operations. Hence, the approximate Newton equation (6.16) can be solved
in O(dnr3 + r9) operations. This cost dominates the complexity of the Riemannian
gradient calculation and the retraction step.

6.2.3. The approximate Riemannian Hessian in the TT case

When using the TT format, it seems to be much harder to solve the approximate
Newton equation (6.15) directly and we therefore resort to the preconditioned
conjugate gradient (PCG) method for solving the linear system iteratively. We use
the following commonly used stopping criterion [NW06, Ch. 7.1] for accepting the
approximation ξ̃ produced by PCG:

‖PTXk
Mr [Lξ̃ −∇f(Xk)]‖ ≤ min

(
0.5,

√
‖PTXk

Mr ∇f(Xk)‖
)
· ‖PTXk

Mr ∇f(Xk)‖.
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To derive an effective preconditioner for PCG, we first examine the approximate
Newton equation (6.15) more closely. For d-dimensional tensors in the TT format, it
takes the form

PTXMr LPTXMr ξ = η, (6.22)

where

• X ∈Mr is parametrized by its cores U1, U2, . . . , Ud and is d-orthogonal;

• the right-hand side η ∈ TXMr is represented in terms of its gauged parametriza-
tion δUη

1, δUη
2, . . ., δUη

d, as in (4.12);

• the unknown ξ ∈ TXMr needs to be determined in terms of its gauged
parametrization δU1, δU2, . . . , δUd, again as in (4.12).

When PCG is applied to (6.22) with a preconditioner B : TXMr → TXMr, we need
to evaluate an expression of the form ξ = Bη for a given, arbitrary vector η ∈ TXMr.
Again, ξ and η are represented using the gauged parametrization above.

We will present two block Jacobi preconditioners for (6.22); both are variants of
parallel subspace correction (PSC) methods [Xu92]. They mainly differ in the way
the tangent space TXMr is split into subspaces.

A block diagonal Jacobi preconditioner

The most immediate choice for splitting TXMr is to simply take the direct sum (4.10).
The PSC method is then defined in terms of the local operators

Lμ : Vμ → Vμ, Lμ = PVμ LPVμ

∣∣
Vμ

, μ = 1, . . . , d,

where PVμ is the orthogonal projector onto Vμ; see Prop. 4.9. The operators Lμ

are symmetric and positive definite, and hence invertible, on Vμ. This allows us to
express the resulting preconditioner as [Xu01, Sec. 3.2]

B =
d∑

μ=1
L−1

μ PVμ =
d∑

μ=1

(
PVμ LPVμ

∣∣
Vμ

)−1
PVμ .

The action of the preconditioner ξ = Bη can thus be computed as ξ =
∑d

μ=1 ξμ

with
ξμ =

(
PVμ LPVμ

∣∣
Vμ

)−1
PVμ η, μ = 1, . . . , d.

Local problems. The local equations determining ξμ,

PVμ LPVμ ξμ = PVμ η, ξμ ∈ Vμ, μ = 1, . . . , d, (6.23)

can be solved for all ξμ ∈ Vμ in parallel. To simplify the calculation, we consider the
vectorized form of the equation, such that L is replaced by its matrix representation
L ∈ Rn1···nd×n1···nd and the projections PVμ are also now acting on the vectorized
space Rn1···nd :

PVμ L PVμ vec(ξμ) = PVμ vec(η) ξμ ∈ Vμ, μ = 1, . . . , d,
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By (4.11), we have vec(ξμ) = X 
=μ vec(δUμ) for some gauged δUμ. Since η =∑d
μ=1 X 
=μ vec(δUη

μ), the right hand side PVμ η reduces to X 
=μ vec(δUη
μ) and we

obtain

PVμ LX 
=μ vec(δUμ) = X 
=μ vec(δUη
μ), μ = 1, . . . , d,

under the additional constraint (δUL
μ)TUL

μ = 0 when μ �= d. Now we use the explicit
expression (4.13) for the first order variation δUη

μ, μ �= d, into which we insert
LX 
=μ vec(δUμ):

P⊥
μ,L
(
Inμ ⊗XT

≤μ−1
)[

LX 
=μ vec(δUμ)
]<μ>

X≥μ+1
(
XT

≥μ+1X≥μ+1
)−1 = (δUη

μ)L,

(6.24)
where we used the shorthand notation P⊥

μ,L := Inμrμ−1 −UL
μ(UL

μ)T. For μ = d, the
explicit expression (4.14) the first order variation δUη

d leads to(
Ind

⊗XT
≤d−1

)[
LX 
=d vec(δUd)

]<d>
= (δUη

d)L. (6.25)

The application of the Laplace-like operator L to X 
=μ can be decomposed into three
parts,

LX 
=μ = L̃≥μ+1⊗Inμ⊗X≤μ−1+X≥μ+1⊗Lμ⊗X≤μ−1+X≥μ+1⊗Inμ⊗L̃≤μ−1 (6.26)

with the reduced leading and trailing terms

L̃≤μ−1 =

⎛⎝μ−1∑
ν=1

Inμ−1 ⊗ · · · ⊗ Lν ⊗ · · · ⊗ In1

⎞⎠X≤μ−1,

L̃≥μ+1 =

⎛⎝ d∑
ν=μ+1

Ind
⊗ · · · ⊗ Lν ⊗ . . . Inμ+1

⎞⎠X≥μ+1.

Using the recursive relation (4.2), we see that the μth unfolding of any TT tensor
X can be expressed as X<μ> = (Inμ ⊗X≤μ−1)UL

μXT
≥μ+1. Applying this identity to

[LX
=μ vec(δUμ)]<μ> we obtain[
LX
=μ vec(δUμ)

]<μ> =
(
Inμ ⊗X≤μ−1

)
δUL

μL̃T
≥μ+1

+
(
Lμ ⊗X≤μ−1 + Inμ ⊗ L̃≤μ−1

)
δUL

μXT
≥μ+1.

Inserting this expression into (6.24) yields for μ �= d

P⊥
μ,L
[
δUL

μL̃T
≥μ+1X≥μ+1

(
XT

≥μ+1X≥μ+1
)−1

+ (Lμ ⊗ Irμ−1 + Inμ ⊗XT
≤μ−1L̃≤μ−1) δUL

μ

]
= (δUη

μ)L.

After defining the (symmetric positive definite) matrices L≤μ−1 = XT
≤μ−1L̃≤μ−1 and

L≥μ+1 = XT
≥μ+1L̃≥μ+1, we finally obtain

P⊥
μ,L

[
δUL

μL≥μ+1
(
XT

≥μ+1X≥μ+1
)−1 + (Lμ ⊗ Irμ−1 + Inμ ⊗ L≤μ−1)δUL

μ

]
= (δUη

μ)L,

(6.27)
with the gauge condition (δUL

μ)TUL
μ = 0. For μ = d, there is no gauge condition

and (6.25) becomes

δUL
d + (Ld ⊗ Ird

+ Ind
⊗ L≤d−1) δUL

d = (δUη
d)L. (6.28)
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Efficient solution of local problems. The derivations above have led us to the linear
systems (6.27) and (6.28) for determining the local component ξμ. While (6.28)
is a Sylvester equation and can be solved with standard techniques, more work is
needed to address (6.27) efficiently. Since L≥μ+1 and XT

≥μ+1X≥μ+1 are symmetric
positive definite, they admit a generalized eigenvalue decomposition: There is an
invertible matrix Q such that L≥μ+1Q = (XT

≥μ+1X≥μ+1)QΛ with Λ diagonal and
QT(XT

≥μ+1X≥μ+1)Q = Irμ . This transforms (6.27) into

P⊥
μ,L
[
δUL

μQTΛ +
(
Lμ ⊗ Irμ + Inμ ⊗ L≤μ−1

)
δUL

μQT] = (δUη
μ)LQT.

Setting δ̃UL
μ = δUL

μQT and (δ̃Uη
μ)L = (δUη

μ)LQT, we can formulate these equations
column-wise:

P⊥
μ,L
[
λiIrμnμ + Lμ ⊗ Irμ + Inμ ⊗ L≤μ−1

]
δ̃UL

μ(:, i) = (δ̃Uη
μ)L(:, i), (6.29)

where λi = Λ(i, i) > 0. Because Q is invertible, the gauge-conditions on δUL
μ are

equivalent to (δ̃UL
μ)TUL

μ = 0. Combined with (6.29), we obtain – similar to (6.19) –
the saddle point systems[

Gμ,i UL
μ

(UL
μ)T 0

] [
δ̃UL

μ(:, i)
y

]
=
[
(δ̃Uη

μ)L(:, i)
0

]
(6.30)

with the symmetric positive definite matrix

Gμ,i = λiInμ ⊗ Irμ + Lμ ⊗ Irμ + Inμ ⊗ L≤μ−1 (6.31)

and the dual variable y ∈ Rrμ . The system (6.30) is solved for each column of
δ̃UL

μ:

δ̃UL
μ(:, i) =

(
Inμrμ + G−1

μ,i UL
μ G−1

S (UL
μ)T
)
G−1

μ,i (δ̃Uη
μ)L(:, i),

using the Schur complement GS := −(UL
μ)TG−1

μ,iUL
μ. Transforming back then yields

δUL
μ = δ̃UL

μQ−T.
Remark 6.2. Analogous to Remark 6.1, the application of G−1

μ,i benefits from the fact
that the matrix Gμ,i defined in (6.31) represents the Sylvester operator

V 
→ (Lμ + λiInμ)V + V L≤μ−1.

After diagonalization of L≤μ−1, the application of G−1
μ,i requires the solution of rμ

linear systems with the matrices Lμ + (λi + β)Inμ , where β is an eigenvalue of L≤μ−1.
The Schur complements GS ∈ Rrμ×rμ are constructed explicitly by applying G−1

μ,i to
the rμ columns of UL

μ.

Assuming again that solving with the shifted matrices Lμ + (λi + β)Inμ can be
performed in O(nμ) operations, the construction of the Schur complement GS

needs O(nμr2
μ) operations. Repeating this for all rμ columns of δ̃UL

μ and all cores
μ = 1, . . . , d− 1 yields a total computational complexity of O(dnr3) for applying the
block-Jacobi preconditioner.
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An overlapping block-Jacobi preconditioner

The block diagonal preconditioner discussed above is computationally expensive due
to the need for solving the saddle point systems (6.30). To avoid them, we will
construct a PSC preconditioner for the subspaces

V̂μ :=
{

ξμ

∣∣∣ vec(ξμ) = X 
=μ vec(δUμ), δUμ ∈ Rrμ−1×nμ×rμ

}
= span X 
=μ

for μ = 1, . . . , d. Observe that Vμ � V̂μ for μ �= d. Hence, the decomposition
TXMr = ∪d

μ=1V̂μ is no longer a direct sum as in (4.10). The advantage of V̂μ over
Vμ, however, is that the orthogonal projector PV̂μ

onto V̂μ is considerably easier. In
particular, since X is d-orthogonal, we obtain

PV̂μ
= X
=μ(XT


=μX 
=μ)−1XT

=μ = X
=μ

[
(XT

≥μ+1X≥μ+1)−1 ⊗ Inμ ⊗ Irμ−1

]
XT


=μ.

(6.32)

The PSC preconditioner corresponding to the subspaces V̂μ is given by

B̂ =
d∑

μ=1

(
PV̂μ

LPV̂μ

∣∣∣
V̂μ

)−1
PV̂μ

.

The action of the preconditioner ξ = B̂η can thus be computed as ξ =
∑d

μ=1 ξμ

with
PV̂μ

LPV̂μ
ξμ = PV̂μ

η, ξμ ∈ V̂μ, μ = 1, . . . , d. (6.33)

Local problems. To solve the local equations (6.33), we proceed as in the previous
section, but the resulting equations will be considerably simpler. Again, we consider
the vectorized form of the equation, such that L is replaced by its matrix representa-
tion L ∈ Rn1···nd×n1···nd and the projections PV̂μ

are also now acting on the vectorized
space Rn1···nd . Let

PV̂μ
vec(η) = X 
=μ vec(δ̂Uη

μ)

for some δ̂Uη
μ, which will generally differ from the gauged δUη

μ parametrization of η.
Writing vec(ξμ) = X 
=μ vec(δUμ), we obtain the linear systems

PV̂μ
LX
=μ vec(δUμ) = X 
=μ vec(δ̂Uη

μ)

for μ = 1, . . . , d. Plugging in (6.32) yields[
(XT

≥μ+1X≥μ+1)−1 ⊗ Inμ ⊗ Irμ−1

]
XT


=μLX 
=μ vec(δUμ) = vec(δ̂Uη
μ). (6.34)

Analogous to (6.26), we can write

XT

=μLX 
=μ = L≥μ+1 ⊗ Inμ ⊗ Irμ−1 + XT

≥μ+1X≥μ+1 ⊗ Lμ ⊗ Irμ−1 (6.35)

+ XT
≥μ+1X≥μ+1 ⊗ Inμ ⊗ L≤μ−1 (6.36)
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with the left and right parts

L≤μ−1 = XT
≤μ−1

⎛⎝μ−1∑
ν=1

Inμ−1 ⊗ · · · ⊗ Lν ⊗ · · · ⊗ In1

⎞⎠X≤μ−1,

L≥μ+1 = XT
≥μ+1

⎛⎝ d∑
ν=μ+1

Ind
⊗ · · · ⊗ Lν ⊗ . . . Inμ+1

⎞⎠X≥μ+1.

In the left unfolding, we obtain(
XT


=μLX 
=μ vec(δUμ)
)L = δUL

μL≥μ+1

+
(
Lμ ⊗ Irμ−1 + Inμ ⊗ L≤μ−1

)
δUL

μXT
≥μ+1X≥μ+1.

Finally, (6.34) can be written in the left unfolding as

δUL
μL≥μ+1

(
XT

≥μ+1X≥μ+1
)−1 + (Lμ ⊗ Irμ−1 + Inμ ⊗ L≤μ−1)δUL

μ = (δ̂Uη
μ)L. (6.37)

Efficient solution of local problems. The above equations can be directly solved as
follows: Using the generalized eigendecomposition of L≥μ+1Q = (XT

≥μ+1X≥μ+1)QΛ,
we can write (6.37) column-wise as

Gμ,i δ̃UL
μ(:, i) = (˜̂δUη

μ)L(:, i)

with the system matrix

Gμ,i = λiInμ ⊗ Irμ + Lμ ⊗ Irμ + Inμ ⊗ L≤μ−1, λi = Λ(i, i),

and the transformed variables δ̃UL
μ := δUL

μQT and (˜̂δUη
μ)L := (δ̂Uη

μ)LQT. Solving
with Gμ,i can again be achieved by efficient solvers for Sylvester equations, see
Remark 6.2. After forming δUL

μ = δ̃UL
μQ−T for all μ, we have obtained the solution

as an ungauged parametrization:

vec(ξ) = vec(B̂η) =
d∑

μ=1
X 
=μ vec(δUμ).

To obtain the gauged parametrization of ξ satisfying (4.12), we can simply apply (4.13)
to compute PTXMr(ξ) and exploit that ξ is a TT tensor (with doubled TT ranks
compared to X).

Assuming again that solving with Lμ can be performed in O(nμ) operations, we end
up with a total computational complexity of O(dnr3) for applying the overlapping
block-Jacobi preconditioner. Although this is the same asymptotic complexity as
the non-overlapping scheme, the constant and computational time can be expected
to be significantly lower thanks to not having to solve saddle point systems in each
step.
Remark 6.3. When the different parametrization of the tangent space described in
Section 4.4.2 is used, the Gram matrix XT

≥μ+1X≥μ+1 in (6.27) and (6.37) becomes
the identity matrix. This leads to a more stable calculation of the corresponding
unknown δUμ. We make use of this transformation in our implementation but omit
it here for readability.

118



6.2.4. Connection to ALS

The overlapping block-Jacobi preconditioner B̂ is closely related to the alternating lin-
ear scheme (ALS) applied to (6.1). There are, however, crucial differences explaining
why B̂ is significantly cheaper per iteration than ALS.

Using vec(X) = X 
=μ vec(Uμ), one so-called micro-step of ALS fixes X 
=μ and replaces
Uμ by the minimizer of (see, e.g., [HRS12a, Alg. 1])

min
Uμ

1
2
〈X
=μ vec(Uμ), AX 
=μ vec(Uμ)〉 − 〈X 
=μ vec(Uμ), vec(F)〉.

After Uμ has been updated, ALS proceeds to the next core until all cores have
eventually been updated in a particular order, for example, U1, U2, . . . , Ud. The
solution to the above minimization problem is obtained from solving the ALS
subproblem

XT

=μAX 
=μ vec(Uμ) = XT


=μ vec(F).

It is well-known that ALS can be seen as a block version of non-linear Gauss–Seidel.
The subproblem typically needs to be computed iteratively since the system matrix
XT


=μAX 
=μ is often unmanageably large.

We refer to a more in-depth discussion of alternating schemes in the context of
eigenvalue problems in Chapter 7.

When X is μ-orthogonal, XT
≥μ+1X≥μ+1 = Irμ and the ALS subproblem has the same

form as the subproblem (6.34) in the overlapping block-Jacobi preconditioner B̂.
However, there are crucial differences:

• ALS directly optimizes for the cores and as such uses A in the optimization
problem. The approximate Newton method, on the other hand, updates (all)
the cores using a search direction obtained from minimizing the quadratic
model (6.15). It can therefore use any positive definite approximation of A to
construct this model, which we choose as L. Since (6.34) is the preconditioner
for this quadratic model, it uses L as well.

• ALS updates each core immediately and it is a block version of non-linear Gauss–
Seidel for (6.1), whereas B̂ updates all the cores simultaneously resembling a
block version of linear Jacobi.

• Even in the large-scale setting of nμ � 103, the subproblems (6.34) can
be solved efficiently in closed form as long as Lμ + λInμ allows for efficient
system solves, e.g., for tridiagonal Lμ. This is not possible in ALS where the
subproblems have to be formulated with A and typically need to be solved
iteratively using PCG.

Remark 6.4. Instead of PSC, we experimented with a symmetrized version of a
successive subspace correction (SSC) preconditioner, also known as a back and forth
ALS sweep. However, the higher computational cost per iteration of SSC was not
offset by a possibly improved convergence behavior.
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6.3. Numerical experiments

In this section, we compare the performance of the different preconditioned optimiza-
tion techniques discussed in this paper for two representative test cases.

We have implemented all algorithms in Matlab. For the TT format, we have
made use of the TTeMPS toolbox, see http://anchp.epfl.ch/TTeMPS. All numerical
experiments and timings are performed on a 12 core Intel Xeon X5675, 3.07 GHz,
192 GiB RAM using Matlab 2014a, running on Linux kernel 3.2.0-0.

To simplify the discussion, we assume throughout this section that the tensor size
and ranks are equal along all modes and therefore state them as scalar values:
n = maxμ nμ and r = maxμ rμ.

6.3.1. Test case 1: Newton potential

As a standard example leading to a linear system of the form (6.2), we consider the
partial differential equation

−Δu(x) + V (x) = f(x), x ∈ Ω = ]− 10, 10[ d,

u(x) = 0, x ∈ ∂Ω.

with the Laplace operator Δ, the Newton potential V (x) = ‖x‖−1, and the source
function f : Rd → R. Equations of this type are used to describe the energy of a
charged particle in an electrostatic potential.

We discretize the domain Ω by a uniform tensor grid with nd grid points and corre-
sponding mesh width h. Then, by finite difference approximation on this tensor grid,
we obtain a tensor equation of the type (6.1), where the linear operator A is the sum
of the d-dimensional Laplace operator as in (6.3) with Lμ = 1

h2 tridiag(−1, 2,−1) ∈
Rn×n, and the discretized Newton potential V. To create a low-rank representation of
the Newton potential, V (x) is approximated by a rank 10 tensor V using exponential
sums [Hac10]. The application of A to a tensor X is given by

AX = LX + V � X,

where � denotes the Hadamard product defined in Section 3.3.4 and Section 4.2.4.
The application of this operator increases the ranks significantly: If X has rank r

then AX has rank (2 + 10)r = 12r.

6.3.2. Test case 2: Anisotropic diffusion equation

As a second example, we consider the anisotropic diffusion equation

−div(D∇u(x)) = f(x), x ∈ Ω = ]− 10, 10[ d,

u(x) = 0, x ∈ ∂Ω,
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with a tridiagonal diffusion matrix D = tridiag(α, 1, α) ∈ Rd×d. The discretization on
a uniform tensor grid with nd grid points and mesh width h yields a linear equation
with system matrix A = L + V consisting of the potential term

V = In ⊗ · · · ⊗ In ⊗B2 ⊗ 2αB1 + In ⊗ · · · ⊗ In ⊗B3 ⊗ 2αB2 ⊗ In

+ · · · + Bd ⊗ 2αBd−1 ⊗ In ⊗ · · · ⊗ In,

and the Laplace part L defined as in the previous example. The matrix Bμ =
1

2h tridiag(−1, 0, 1) ∈ Rn×n represents the one-dimensional central finite difference
matrix for the first derivative.

As described in Section 4.7, the corresponding linear operator A acting on X ∈
Rn1×···×nd can be represented as a TT operator of rank 3, with the cores given
by

A1(i1, j1) =
[
L1(i1, j1) 2αB1(i1, j1) In1(i1, j1)

]
, Ad(id, jd) =

⎡⎢⎣Ind
(id, jd)

Bd(id, jd)
Ld(id, jd)

⎤⎥⎦ ,

and

Aμ(iμ, jμ) =

⎡⎢⎣Inμ(iμ, jμ) 0 0
Bμ(iμ, jμ) 0 0
Lμ(iμ, jμ) 2αBμ(iμ, jμ) Inμ(iμ, jμ)

⎤⎥⎦ , μ = 2, . . . , d− 1.

In the Tucker format, this operator is also of rank 3. Given a tensor X in the
representation (3.4), the result Y = AX is explicitly given by Y = G×1V1×2 · · ·×dVd

with
Vμ =

[
LμUμ Uμ BμUμ

]
∈ Rn×3rμ

and core tensor G ∈ R3r1×···×3rd which has a block structure shown in Figure 6.1 for
the case d = 3.

SS S

S

S
G =

Figure 6.1: Structure of the core tensor G for the case d = 3 resulting from an application of
the anisotropic diffusion operator.

The rank of A increases linearly with the band width of the diffusion matrix D.
For example, a pentadiagonal structure would yield an operator of rank 4. See
also [KRS13] for more general bounds in terms of certain properties of D.

6.3.3. Results for the Tucker format

For tensors represented in the Tucker format we want to investigate the convergence
of the truncated preconditioned Richardson (6.10) and its Riemannian variant (6.11),
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Figure 6.2: Newton potential with d = 3. Comparison of truncated preconditioned Richardson,
truncated Riemannian preconditioned Richardson, and the approximate Newton scheme
when applied to the Newton potential in the Tucker format. For the Richardson iterations,
exponential sum approximations with k ∈ {5, 7, 10} terms are compared. Left: Relative
residual as a function of iterations. Right: Relative residual as a function of time

and compare them to the approximate Newton scheme discussed in Section 6.2.2.
Figure 6.2 displays the obtained results for the first test case, the Newton potential,
where we set d = 3, n = 100, and used multilinear ranks r = 15. Figure 6.3 displays
the results for the second test case, the anisotropic diffusion operator with α = 1

4 ,
using the same settings. In both cases, the right hand side is given by a random rank-1
Tucker tensor. To create a full space preconditioner for both Richardson approaches,
we approximate the inverse Laplacian by an exponential sum of k ∈ {5, 7, 10} terms.
It can be clearly seen that the quality of the preconditioner has a strong influence
on the convergence. For k = 5, convergence is extremely slow. Increasing k yields a
drastic improvement on the convergence.

With an accurate preconditioner, the truncated Richardson scheme converges fast
with regard to the number of iterations, but suffers from very long computation times
due to the exceedingly high intermediate ranks. In comparison, the Riemannian
Richardson scheme yields similar convergence speed, but with significantly reduced
computation time due to the additional projection into the tangent space. The
biggest saving in computational effort comes from relation (6.12) which allows us to
avoid having to form the preconditioned residual P−1(F−AXk) explicitly, a quantity
with very high rank. Note that for both Richardson approaches, it is necessary to
round the Euclidean gradient to lower rank using a tolerance of, say, 10−5 before
applying the preconditioner to avoid excessive intermediate ranks.

The approximate Newton scheme converges equally well as the best Richardson
approaches with regard to the number of iterations and does not require setting up a
preconditioner. For the first test case, it only needs about half of the time as the
best Richardson approach.
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Figure 6.3: Anisotropic diffusion with d = 3. Comparison of truncated Preconditioned
Richardson, truncated Riemannian preconditioned Richardson, and the approximate Newton
scheme when applied to the Newton potential in the Tucker format. For the Richardson
iterations, exponential sum approximations with k ∈ {5, 7, 10} terms are compared. Left:
Relative residual as a function of iterations. Right: Relative residual as a function of time

For the second test case, it is significantly slower than Riemannian preconditioned
Richardson. Since this operator is of lower rank than the Newton potential, the
additional complexity of constructing the approximate Hessian does not pay off in
this case.

Quadratic convergence. In Figure 6.4 we investigate the convergence of the approx-
imate Newton scheme when applied to a pure Laplace operator, A = L, and to the
anisotropic diffusion operator A = L + V . In order to have an exact solution of
known rank r = 4, we construct the right hand side by applying A to a random
rank 4 tensor. For the dimension and tensor size we have chosen d = 3 and n = 200,
respectively. By construction, the exact solution lies on the manifold. Hence, if the
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Figure 6.4: Convergence of the approximate Newton method for the zero-residual case when
applied to a pure Laplace operator L and to the anisotropic diffusion operator L + V .
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approximate Newton method converges to this solution, we have zero residual and
our Gauss–Newton approximation of (6.14) is an exact second-order model despite
only containing the projection of the Euclidean Hessian A. In other words, we expect
quadratic convergence when A = L but only linear when A = L + V since our
approximate Newton method (6.15) only solves with L. This is indeed confirmed in
Figure 6.4.

6.3.4. Results for the TT format

In the TT format, we compare the convergence of our approximate Newton scheme
(with the overlapping block-Jacobi preconditioner B̂) to a standard approach, the
alternating linear scheme (ALS). We have chosen d = 60, n = 100, and a random
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Figure 6.5: Newton potential with d = 60. Convergence of ALS compared to preconditioned
steepest descent with overlapping block-Jacobi as preconditioner and the approximate Newton
scheme. Left: Relative residual as function of iterations. Right: Relative residual as function
of time.

rank-one right hand sides of norm one. In the first test case, the Newton potential,
we have chosen TT ranks r = 10 for the approximate solution. The corresponding
convergence curves are shown in Figure 6.5. We observe that the approximate
Newton scheme needs significantly less time to converge than the ALS scheme. As a
reference, we have also included a steepest descent method using the overlapping
block-Jacobi scheme directly as a preconditioner for every gradient step instead of
using it to solve the approximate Newton equation (6.22). The additional effort of
solving the Newton equation approximately clearly pays off.

In Figure 6.6, we show results for the anisotropic diffusion case. To obtain a good
accuracy of the solution, we have to choose a relatively high rank of r = 25 in this
case. Here, the approximate Newton scheme is still faster, especially at the beginning
of the iteration, but the final time needed to reach a residual of 10−4 is similar to
ALS.

Note that in Figures 6.5 and 6.6 the plots with regard to the number of iterations
are to be read with care due to the different natures of the algorithms. One ALS
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Figure 6.6: Anisotropic diffusion with d = 60. Convergence of ALS compared to preconditioned
steepest descent with overlapping block-Jacobi as preconditioner and the approximate Newton
scheme. Left: Relative residual as function of iterations. Right: Relative residual as function
of time.

iteration corresponds to the optimization of one core. In the plots, the beginning of
each half-sweep of ALS is denoted by a circle. To assessment the performance of both
schemes as fairly as possible, we have taken considerable care to provide the same
level of optimization to the implementations of both the ALS and the approximate
Newton scheme.

Mesh-dependence of the preconditioner. To investigate how the performance of the
preconditioner depends on the mesh width of the discretization, we look again at
the anisotropic diffusion operator and measure the convergence as the mesh width h

and therefore the tensor size n ∈ {60, 120, 180, 240, 360, 420, 480, 540, 600} changes
by one order of magnitude. As in the test for quadratic convergence, we construct
the right hand side by applying A to a random rank 3 tensor. For the dimension
and tensor size we have chosen d = 3 and n = 200, respectively.

To measure the convergence, we take the number of iterations needed to converge to
a relative residual of 10−6. For each tensor size, we perform 30 runs with random
starting guesses of rank r = 3. The result is shown in Figure 6.7, where circles are
drawn for each combination of size n and number of iterations needed. The radius of
each circle denotes how many runs have achieved a residual of 10−6 for this number
of iterations.

On the left plot of Figure 6.7 we see the results of dimension d = 10, whereas on
the right plot we have d = 30. We see that the number of iterations needed to
converge changes only mildly as the mesh width varies over one order of magnitude.
In addition, the dependence on d is also not very large.
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Figure 6.7: Number of iterations that the proposed approximate Newton scheme needs to reach
a relative residual of 10−6 for different mesh widths h = 1/n. The solution has dimension
d = 10 and rank r = 3. We perform 30 runs for each size. The radii of the circles corresponds
to the number of runs achieving this number of iterations. Left: Dimension d = 10. Right:
Dimension d = 30.

6.3.5. Rank-adaptivity

Note that in many applications, rank-adaptivity of the algorithm is a desired property.
For the Richardson approach, this would result in replacing the fixed-rank truncation
with a tolerance-based rounding procedure. In the alternating optimization, this
would lead to the DMRG or AMEn algorithms. In the framework of Riemannian
optimization, rank-adaptivity can be introduced by successive runs of increasing rank,
using the previous solution as a warm start for the next rank. For a recent discussion
of this approach, see [UV15]. A basic example of introducing rank-adaptivity to the
approximate Newton scheme is shown in Figure 6.8. Starting from ranks r(0) = 1,
we run the approximate Newton scheme for 10 iterations and use this result to
warm start the algorithm with ranks r(i) = r(i−1) + 5. At each rank, we perform
10 iterations of the approximate Newton scheme. The result is compared to the
convergence of approximate Newton when starting directly with the target rank r(i).
We see that the obtained relative residuals match for each of the ranks r(i). Although
the adaptive rank scheme is slower for a desired target rank due to the additional
intermediate steps, it offers more flexibility when we want to instead prescribe a
desired accuracy. For a relative residual of 10−3, the adaptive scheme needs about
half the time than using the (too large) rank r = 36.

In the case of tensor completion, we have seen in Chapter 5 that rank adaptivity
is a crucial ingredient to avoid overfitting and to steer the algorithm into the right
direction, see also [Van13, TTW+14, UV15]. For difficult completion problems,
careful core-by-core rank increases become necessary. Here, for linear systems, such a
core-by-core strategy does not seem to be necessary, as the algorithms will converge
even if we directly optimize using rank r = 36.
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Figure 6.8: Rank-adaptivity for approximate Newton applied to the anisotropic diffusion
equation with n = 100, d = 10. Starting from rank 1, the rank is increased by 5 after 10
iterations per rank. Each rank increase is denoted by a black circle. The other curves show
the convergence when running approximate Newton directly with the target rank.

6.4. Conclusion

We have investigated different ways of introducing preconditioning into Riemannian
gradient descent. As a simple but effective approach, we have seen the Riemannian
truncated preconditioned Richardson scheme. Another approach used second-order
information by means of approximating the Riemannian Hessian. In the Tucker case,
the resulting approximate Newton equation could be solved efficiently in closed form,
whereas in the TT case, we have shown that this equation can be solved iteratively in a
very efficient way using PCG with an overlapping block-Jacobi preconditioner.

The numerical experiments demonstrate favorable performance of the proposed algo-
rithms when compared to standard non-Riemannian approaches, such as truncated
preconditioned Richardson and ALS. The advantages of the approximate Newton
scheme become especially pronounced in cases when the linear operator is expensive
to apply, e.g., the Newton potential.
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Chapter 7
� Application 3: Eigenvalue Problems

The computation of the p smallest eigenvalues λ1, λ2, . . . , λp for a symmetric matrix
A ∈ RN×N can be posed as the minimization problem

min
{

trace(XTAX)
∣∣ X ∈ RN×p, XTX = Ip

}
. (7.1)

The minimum is given by λ1 +λ2 + · · ·+λp, with a minimizer X∗ forming an orthonor-
mal basis for the span of the first p eigenvectors x∗

1, . . . , x∗
p ∈ RN . This formulation

has been the basis of several established eigenvalue solvers, see [AMSVD02, EAS99,
ST00, SW82] for examples.

The required computational cost of traditional methods for solving an N × N

eigenvalue problem scales at least linearly with N , which makes them unfeasible for
treating very large values of N . The common approach is to exploit an underlying
tensor product structure

RN ∼= Rn1×n2×···×nd ,

just as in Chapter 6. Here, we assume that the matrix X∗ containing the eigenvectors
can be well approximated in the TT format, to which we restrict the admissible set
of the optimization problem (7.1). The resulting (highly nonlinear) optimization can
be addressed by alternating block optimization techniques. This approach has been
successfully used in the context of DMRG for simulating strongly correlated spin
systems, see, e.g., the survey [Sch11] and the references therein. In the numerical
analysis community, related ideas have been considered in [DKOS13, KO10a, KT11b].
We mention in passing that another tensor-based approach to eigenvalue computation
consists of combining a standard iterative solver (such as the Lanczos or LOBPCG
methods) with repeated low-rank compression [HKST12, HW12, KO10b, KT11b,
Leb11]; see [GKT13, Sec. 3.1] for further references. Low-rank matrix and tensor
techniques have also been used successfully for performing large-scale electronic
structure calculations in computational quantum chemistry, see [CEM12, HFY+04,
KKF11, Kho14] for examples.

In this work, we propose a novel low-rank tensor method that allows for the compu-
tation of several smallest eigenvalues, offers rank adaptivity, and the possibility to
incorporate preconditioners. For this purpose, we combine and extend several existing
techniques. First, the block TT format proposed by Dolgov et al. [DKOS13], which
has previously been considered in the context of Wilson’s numerical renormalization
group [PV2012, WVS+09], is used for representing an orthonormal basis of p vectors.
The approach for solving (7.1) considered in [DKOS13, PV2012] consists of cyclically
optimizing each core of the block TT format, after shifting and merging the index
enumerating the eigenvalues to this core. This makes the method different from alter-
nating block optimization approaches, such as ALS [HRS12a, KT11b], and allows for
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rank adaptivity if p > 1. Second, we combine this idea with locally enriching each core
based on projected gradient information. Such an enrichment was initially proposed
by White [Whi05] for eigenvalue problems, and extended to symmetric as well as
nonsymmetric linear systems by Dolgov and Savostyanov [DS13a, DS13b, DS14].
Enrichment allows for rank adaptivity even in the case p = 1. Preconditioners, which
arise naturally in the context of PDE eigenvalue problems, can be easily incorporated
by using the preconditioned gradient instead of the gradient.

The content presented in this chapter is based on the published article [KSU14].

7.1. Extraction of two neighboring cores

As we have seen in (4.4), the vectorization vec(X) of a TT tensor X allows us to
isolate its μth core,

vec(X) = X 
=μ vec(Uμ).

In this chapter we extend this to extract two neighboring cores. Using the recursive
relation (4.2) for X≥μ+1 we get for every μ = 1, . . . , d− 1

vec(X) = X
=μ,μ+1 · vec(UL
μUR

μ+1), (7.2)

with
X
=μ,μ+1 = X≥μ+2 ⊗ Inμ+1 ⊗ Inμ ⊗X≤μ−1. (7.3)

In terms of tensor spaces, this means

x ∈ range(X 
=μ,μ+1) = range(X≥μ+2)⊗ Rnμ+1 ⊗ Rnμ ⊗ range(X≤μ−1). (7.4)

For later reference we note that

X
=μ,μ+1(Irμ+1nμ+1 ⊗UL
μ) = X 
=μ+1. (7.5)

In this chapter, we usually assume that X is μ-orthogonal when focusing on the μth
core.

7.2. The block TT format for a collection of vectors

When computing p > 1 eigenvectors, we need to work with p vectors x1, x2, . . . , xp ∈
Rn1n2···nd simultaneously. Instead of representing each vector individually in the TT
format, we will represent them jointly in a block TT format, following [DKOS13].
For this purpose, we fix an arbitrary position μ and use the representation

xα(i1, i2, . . . , id) = U1(i1) · · ·Uμ−1(iμ−1)Uμ,α(iμ)Uμ+1(iμ+1) · · ·Ud(id),
1 ≤ α ≤ p.

(7.6)

To highlight the position of the index α, we call this format the block-μ TT format,
see Fig. 7.1 for an illustration. It coincides with the usual TT format except for
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Figure 7.1: Graphical representation of a block-4 TT tensor of order 6.

the core Uμ,α, which is different for every α. None of the other cores depends on α,
which is the crucial difference between the block-μ TT format and a collection of p

TT formats.

Writing Uμ(α, iμ) instead of Uμ,α(iμ) in (7.6), it becomes clear that the block-μ
TT format can be obtained by applying the TT format to the vectorization of the
matrix

X =
[
x1 x2 . . . xp

]
∈ Rn1n2···nd×p

into a vector of length n1 · · ·nμ−1(pnμ)nμ+1 · · ·nd, where we treat the double index
(α, iμ) at position μ as a single index jμ running from 1 to nμp in appropriate order.
In terms of tensor spaces, (7.6) states that

range(X) = span{x1, x2, . . . , xp}
⊆ range(X
=μ) = range(X≤μ−1)⊗ Rnμ ⊗ range(X≥μ+1).

(7.7)

The position of the index α can be moved by separating it from the core Uμ and
attaching it to the (μ + 1)th core, see Algorithm 7.1 for details. The minimal-
rank decomposition (7.8) needed in Algorithm 7.1 can be performed by, e.g., a QR
decomposition with column pivoting or an SVD. In either case, the updated left
unfolding UL

μ ← Q has orthonormal columns and thus the resulting block-(μ + 1)
tensor X is now (μ + 1)-orthogonalized.

Algorithm 7.1 Conversion from block-μ TT format to block-(μ + 1) TT format
Input: X in block-μ TT format, μ < d.
Output: New cores Uμ and Uμ+1,α representing X in block-(μ + 1) TT format.

1: Perform a minimal-rank decomposition[
UL

μ,1 UL
μ,2 . . . UL

μ,p

]
= Q

[
P1 P2 . . . Pp

]
,

Q ∈ Rrμ−1nμ×s, Pα ∈ Rs×rμ .
(7.8)

2: Update cores:

UL
μ ← Q, UR

μ+1,α ← PαUR
μ+1, α = 1, 2, . . . , p.

3: Update rank: rμ ← s.
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Algorithm 7.2 Conversion from block-μ format to block-(μ− 1) format
Input: X in block-μ TT format, μ > 1.
Output: New cores Uμ and Uμ−1,α representing X in block-(μ− 1) TT format.

1: Perform a minimal-rank decomposition⎡⎢⎢⎢⎢⎣
UR

μ,1
UR

μ,2
...

UR
μ,p

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Q1
Q2
...

Qp

⎤⎥⎥⎥⎥⎦P, Qα ∈ Rrμ−1×s, P ∈ Rs×nμrμ .

2: Update cores:

UR
μ = P, UL

μ−1,α = UL
μ−1Qα, α = 1, 2, . . . , p.

3: Update rank: rμ−1 ← s.

7.3. Trace minimization in the block TT format

We return to the trace minimization problem (7.1), with the additional constraint
that X = [x1, x2, . . . , xp] is represented in the block-1 TT format.

7.3.1. Alternating optimization

Our starting point is the recently proposed alternating algorithm of Pižorn and
Verstraete [PV2012], called variational numerical renormalization group, for excited
states calculations in quantum many-body systems. In the numerical analysis commu-
nity, a variant of this algorithm has been proposed by Dolgov et al. [DKOS13].

The algorithm proceeds by alternatingly optimizing each core of the block TT
format, similar to block coordinate descent methods in optimization. Given a μ-
orthogonalized tensor X in the block-μ TT format, let us consider the optimization
of its μth core. We have

X = X 
=μV

with the matrix

V =
[
vec(Uμ,1) vec(Uμ,2) . . . vec(Uμ,p)

]
∈ Rrμ−1nμrμ×p. (7.9)

Since X 
=μ has orthonormal columns, the matrix X has orthonormal columns if and
only if V TV = Ip. Therefore, optimizing (7.1) with respect to the μth core becomes
the trace minimization problem

min{trace(V TAμV ) | V ∈ Rrμ−1nμrμ×p, V TV = Ip}, (7.10)

with the reduced matrix
Aμ = XT


=μAX 
=μ. (7.11)
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Algorithm 7.3 One sweep of ALS for solving the trace minimization problem (7.1)
Input: Starting guess: right-orthogonal X in block-1 TT format

1: for μ = 1, 2, . . . , d− 1 do
2: Replace core Uμ,α by the reshaped solution V of (7.10).
3: Apply Algorithm 7.1 to move position of index α to μ + 1, such that the

updated core UL
μ is left-orthonormal.

4: end for
5: for μ = d, d− 1, . . . , 2 do
6: Replace core Uμ,α by the reshaped solution V of (7.10).
7: Apply Algorithm 7.2 to move position of index α to μ − 1, such that the

updated core UR
μ is right-orthonormal.

8: end for

In terms of tensor spaces, it follows from (4.3) and (7.7) that this problem is equivalent
to

min
{

trace(XTAX)
∣∣ range(X) ⊆ range(X
=μ), XTX = Ip

}
. (7.12)

After the core Uμ,α has been replaced by the reshaped solution V of (7.10), the
index α is moved to the right using Algorithm 7.1. In this manner one proceeds from
left to right until μ = d. The described procedure constitutes one half sweep of ALS.
When the dth core is reached, one continues by a half sweep from right to left in an
analogous manner. Two subsequent half sweeps are called a full sweep.

Algorithm 7.3 describes one sweep of ALS. The solution of the reduced problem (7.10)
can be done using LOBPCG [Kny01], which benefits from the use of a preconditioner
for the reduced matrix Aμ. This will be discussed in Section 7.3.4.

7.3.2. Core enrichment based on gradient information

The convergence of ALS can be improved by enriching the cores with information that
aims to improve the quality of the current approximation. Such a core enrichment
has been proposed by White [Whi05] in the context of one-site DMRG algorithms,
to overcome the unfavorable scaling of exact two-site DMRG algorithms. Dolgov
and Savostyanov [DS13a, DS13b] have significantly extended this idea to ALS-type
algorithms for solving symmetric and nonsymmetric linear systems (see also [DS15]
for a discussion of the similarities and differences of both approaches). In this section,
we show how core enrichment can be combined with Algorithm 7.3. For this purpose,
it is convenient to first discuss a variant that enriches all cores simultaneously.
Although such a global correction is conceptually simple, it bears the disadvantage of
enlarging all TT ranks at the same time, which makes all subsequent operations of
ALS significantly more expensive. We therefore develop a second variant, which only
enriches the cores that are next to the core currently optimized in a step of ALS.
Such a local correction not only decreases the computational effort, but it also allows
to adjust the correction during an ALS sweep.
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Global correction

This approach was termed ALS(t+z) in [DS13a, DS13b] and later ALS(SD) in [DS14].
Assume that X is our current approximation in block-1 TT format and suppose we
add an error correction R, also in block-1 TT format. Then X̃ = X + R can again
be represented in block-1 TT format using the TT addition procedure, see Section
4.2.2, where the resulting TT rank is the sum of the TT ranks of X and R.

The ALS(SD) algorithm now proceeds by applying a sweep of ALS (Algorithm 7.3)
to X̃. According to (7.12), the first step of ALS determines the best p-dimensional
subspace for the trace minimization problem constrained to the range of X̃ 
=1. The
following proposition implies that this constraint includes all linear combinations
from the ranges of X and R.
Proposition 7.1. Consider a matrix X̃ = X + R in block-1 TT format with matrix
representations X and R, respectively. Then the matrix X̃ 
=1 = X̃≥2 ⊗ In1 satisfies
range(X̃ 
=1) ⊇ range(X) + range(R), i.e.,

range(X̃ 
=1) ⊇ {XS + RT | S, T ∈ Rp×p}.

Proof. Because of the structure of the TT cores of X̃, we have X̃≥2 =
[
X≥2 R≥2

]
.

Hence,

range(X) + range(R) ⊆ range(X
=1) + range(R
=1)
= (range(X≥2)⊗ Rn1) + (range(R≥2)⊗ Rn1)
= (range(X≥2) + range(R≥2))⊗ Rn1

= range(X̃≥2)⊗ Rn1 = range(X̃ 
=1),

where the first inclusion is due to (7.7).

Proposition 7.1 implies that the result from the first step of ALS applied to X̃ is at
least as good as selecting the best p linear combinations from range(X) and range(R).
This point of view allows us to interpret R as a subspace correction. In particular,
it is important to emphasize that the particular linear combination X + R is only
used to setup the cores; it does not correspond to the correction of X that is actually
used.

Similar statements can be made when X and R are represented in the block-μ TT
format for μ �= 1. In particular, this gives the possibility to inject an additional
subspace acceleration before every step of Algorithm 7.3. However, the incurred
growth of the TT ranks makes such an approach little attractive. In the ALS(SD)
algorithm a subspace correction is therefore only added before every left-to-right and
before every right-to-left half-sweep.

It remains to discuss the choice of R. A natural candidate is the negative block
residual, R = −(AX − XΛ) with Λ = XTAX. This choice can be motivated
as follows. As A is symmetric, the gradient of 1

2 trace(XTAX) as a function of
X is given by AX. The optimization task (7.1) is posed on the Stiefel manifold
{X ∈ RN×p | XTX = Ip}. Therefore, as we have seen in (2.2), the direction of
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steepest descent is given by the Riemannian gradient. For the case of the Stiefel
manifold, we obtain [AMS08, Ex. 3.6.2]

(I −XXT)(−AX) + X skew(XT(−AX)) = −(AX −XΛ), (7.13)

where have used that skew(−Λ), the skew-symmetric part of −Λ, is zero.

The convergence of gradient methods for solving eigenvalue problems critically de-
pends on certain eigenvalue gaps relative to the width of the spectrum of A and
it deteriorates when these gaps approach zero. The method of steepest descent
applied to (7.1) is no exception [Ney02]. For discretized PDE eigenvalue problems,
the unboundedness of the underlying operator implies that the width of the spec-
trum becomes wider (therefore, the relative eigenvalue gaps become smaller) as
the discretization gets refined. This effect hampers convergence, but it can be
avoided by using preconditioned gradients instead. In the case of (7.1), the negative
preconditioned gradient is given by the negative1 preconditioned block residual

R = −B−1(AX −XΛ) (7.14)

for a preconditioner B of A; see also [BPK96]. If B is spectrally equivalent to A

then the convergence rate of the resulting preconditioned gradient method does not
deteriorate as the discretization gets refined [Ney02]. To make use of (7.14) in the
context of low-rank tensor methods, B−1 needs to be represented in the operator
TT format. As usual, both the computation of R (and thus of R) and its addition
to X will only be performed approximately, that is, low-rank truncation is applied
to limit the rank growth.

Local corrections

As discussed above, the simultaneous increase of all TT ranks renders a global
correction too expensive to be applied before every step of ALS. To address this issue,
an approach based on local corrections has been proposed for linear systems in [DS14].
In the following, we will extend this approach to eigenvalue problems.

Let us consider the μth step of a left-to-right ALS sweep and suppose that the μth
core has been optimized, but the position of the index α has not yet been moved to
μ + 1. We then augment the neighboring cores with the corresponding cores of a
correction R:

ŨL
μ,α =

[
UL

μ,α RL
μ,α

]
, ŨR

μ+1 =
[
UR

μ+1
RR

μ+1

]
. (7.15)

In particular, only the rank rμ is changed. Similarly we proceed in a right-to-left
sweep, see Algorithm 7.4 for a complete description and Figure 7.2 for an illustration.
Since the analogous algorithm for linear systems was coined AMEn (Alternating
Minimal Energy method) [DS14], we will call our algorithm EVAMEn (EigenValue
AMEn).

1The sign and norm of the R are irrelevant for the subsequent optimization steps. We use
negative residuals in the presentation, as it allows for the interpretation of the enrichment as a
correction step in the direction of steepest descent.
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Algorithm 7.4 One full sweep of EVAMEn for solving the trace minimization prob-
lem (7.1)
Input: Starting guess: right-orthogonal X in block-1 TT format

1: for μ = 1, 2, . . . , d− 1 do
2: Replace core Uμ,α by the reshaped solution V of (7.10).
3: Augment cores Uμ,α and Uμ+1 with cores Rμ,α and Rμ+1 of compatible size,

according to (7.15).
4: Apply Algorithm 7.1 to move position of index α to μ + 1, such that the

updated core UL
μ is left-orthonormal.

5: end for
6: for μ = d, d− 1, . . . , 2 do
7: Replace core Uμ,α by the reshaped solution V of (7.10).
8: Augment cores Uμ−1 and Uμ,α with cores Rμ−1 and Rμ,α of compatible size,

according to (7.15).
9: Apply Algorithm 7.1 to move position of index α to μ − 1, such that the

updated core UR
μ is right-orthonormal.

10: end for

We now turn to an important interpretation of Algorithm 7.4 as an alternating local
subspace correction method for the famous two-site DMRG algorithm [Whi92], which
we therefore shortly recall.

DMRG for trace minimization Assume that X is either in block-μ or in block-
(μ + 1) TT format. One step of the DMRG algorithm applied to (7.1) begins with
merging two neighboring cores, at positions μ and μ+1, and then solves the resulting
optimization problem for the merged supercore W of size rμ−1 × nμ × nμ+1 × rμ+1
and its matrix representation W ∈ Rrμ−1nμnμ+1rμ+1×p:

min{trace(W TAμ,μ+1W ) | W ∈ Rrμ−1nμnμ+1rμ+1×p, W TW = Ip} (7.16)

where
Aμ,μ+1 = XT


=μ,μ+1AX 
=μ,μ+1,

and the matrix X 
=μ,μ+1 defined in (7.3) is assumed to have orthonormal columns.
By (7.4), the DMRG subproblem (7.16) is equivalent to minimizing the trace of
XTAX under the constraints XTX = Ip and

range(X) ⊆ range(X≥μ+2)⊗ Rnμ+1 ⊗ Rnμ ⊗ range(X≤μ−1) = range(X 
=μ,μ+1).

Once (7.16) is solved, a minimal subspace range(X≤μ) ⊆ Rnμ ⊗ range(X≤μ−1)
is determined such that range(X) ⊆ range(X≥μ+2) ⊗ Rnμ+1 ⊗ range(X≤μ) holds.
Computationally, this means that the solution W of (7.16) is reshaped into an
(rμ−1nμ)× (nμ+1rμ+1p) matrix W and a minimal-rank decomposition is applied to
yield new cores Uμ, Uμ+1,α such that

W =
[
vec(UL

μUR
μ+1,1) vec(UL

μUR
μ+1,2) . . . vec(UL

μUR
μ+1,p)

]
.
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Optimize

U1 U2 U3 U4 U5 U6

U4,5U4,4U4,3U4,2U4,1

Augment with (preconditioned) projected residual

U1 U2 U3 U4

SVD

U5

R5

U5 U6

U4,5

R4,5

U4,5U4,4

R4,4

U4,4U4,3

R4,3

U4,3U4,2

R4,2

U4,2U4,1

R4,1

U4,1

Shift index α

U1 U2 U3 U4 U5 U6

U5,5U5,4U5,3U5,2U5,1

Figure 7.2: One microiteration in a left to right sweep of the EVAMEn algorithm (lines 2–4
of Algorithm 7.4).

Since this decomposition automatically chooses a new, currently optimal rank rμ,
the DMRG is rank adaptive, even for p = 1. Note that the above decomposition of
W also moves the index α to the next position. In practice, the decomposition is
only performed approximately, using a truncated SVD, to avoid that the updated
rank rμ becomes too large.

One full sweep of DMRG consists of processing all possible supercores in the manner
described above, first from left-to-right and second from right-to-left. The global
and local convergence properties of the DMRG algorithm are not well understood.
However, there are cases for which DMRG needs very few sweeps to converge to
high accuracy, see, e.g., [KT11b]. It is, however, quite costly, since the local two-core
problem matrix Aμ,μ+1 is of size rμ−1nμnμ+1rμ × rμ−1nμnμ+1rμ.

Relation of Algorithm 7.4 to DMRG Following [DS14], we now explain how Al-
gorithm 7.4, which only operates on individual cores, can be viewed as producing
approximate solutions to the DMRG subproblem (7.16). For this purpose, we consider
the μth step of Algorithm 7.4 and interpret the supercore

W 0 =
[
vec(UL

μ,1UR
μ+1) vec(UL

μ,2UR
μ+1) . . . vec(UL

μ,pUR
μ+1)

]
, (7.17)
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where Uμ,α and Uμ+1 are the cores just before the augmentation in line 3, as an initial
guess for (7.16). Given the cores Rμ,α and Rμ+1 of the correction, we define2

Rμ,μ+1 =
[
vec(RL

μ,1RR
μ+1) vec(RL

μ,2RR
μ+1) . . . vec(RL

μ,pRR
μ+1)

]
. (7.18)

Then the augmented cores Ũα,μ and Ũμ+1, which have been formed according
to (7.15), satisfy

W̃ 1 :=
[
vec(ŨL

μ,1ŨR
μ+1) vec(ŨL

μ,2ŨR
μ+1) . . . vec(ŨL

μ,pŨR
μ+1)

]
= W 0 + Rμ,μ+1.

Moving the index α in line 4 of Algorithm 7.4 does not affect this equality, so
that

W̃ 1 =
[
vec(UL

μŨR
μ+1,1) vec(UL

μŨR
μ+1,2) . . . vec(UL

μŨR
μ+1,p)

]
= W 0 + Rμ,μ+1.

(7.19)

also holds for the updated cores Uμ and Ũμ+1,α. The next step of Algorithm 7.4
begins with replacing Ũμ+1,α by the optimized cores Uμ+1,α. After this optimization,
we can regard

W 1 =
[
vec(UL

μUR
μ+1,1) vec(UL

μUR
μ+1,2) . . . vec(UL

μUR
μ+1,p)

]
(7.20)

as an improved approximation to the true DMRG solution.

To get a better understanding of the improvement attained by W1, we now relate this
matrix to the trace minimization (7.16) solved in DMRG. By (7.5), the problem

min
{

trace(V TA 
=μ+1V )
∣∣ V TV = Ip

}
,

which is solved for determining W 1, is equivalent to the problem

min
{

trace(W TA 
=μ,μ+1W )
∣∣ W ∈ range(Irμ+1nμ+1 ⊗UL

μ), W TW = Ip
}
. (7.21)

The following proposition shows that the constraint includes all linear combinations
from range(W 0) and range(Rμ,μ+1).
Proposition 7.2. Consider the matrices W 0 and Rμ,μ+1 defined above. Then the core
tensor Uμ, obtained after moving the index α, satisfies

range(Irμ+1nμ+1 ⊗UL
μ) ⊇ range(W 0) + range(Rμ,μ+1)

= {W 0S + Rμ,μ+1T | S, T ∈ Rp×p}. (7.22)

Proof. By (7.8), moving the index α leads to[
UL

μ,α RL
μ,α

]
= ŨL

μ,α = UL
μPα,

for some full rank matrix Pα, where Uμ,α and Uμ refer to the cores before and
after moving the index α. This shows that all columns of W 0 and Rμ,μ+1 are in
Rrμ+1nμ+1 ⊗ range(UL

μ), implying the assertion.
2In practice, we first choose Rμ,μ+1 ∈ Rrμ−1nμnμ+1rμ+1×p and then decompose it into the

form (7.18) by an (approximate) minimal-rank decomposition.
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Combined with (7.21), Proposition 7.2 allows us to conclude that the improved
approximation W 1 is at least as good as the one obtained by W 0S + Rμ,μ+1T with
optimal choices for S, T ∈ Rp×p. While this implies choosing an optimal p-dimensional
subspace in the (generically) 2p-dimensional subspace range(W 0) + range(Rμ,μ+1),
we should emphasize however, that the actual optimization (7.21) (or, equivalently,
the optimization of the Uμ+1,α) is over a much larger space of (generic) dimension
rμnμ+1rμ+1. Similar considerations can be made for the right-to-left sweep. Thus,
Algorithm 7.4 can be viewed as an enhanced local subspace correction method for
solving the DMRG subproblems (7.16) approximately.

Choice of Rμ,μ+1 The insights gained from the relation of Algorithm 7.4 to DMRG
can be used to guide the choice of the local corrections Rμ,μ+1. A natural choice,
that can also be efficiently implemented, is given by

Rμ,μ+1 = −(Aμ,μ+1W 0 −W 0Λ) (7.23)

with Λ = (W 0)TAμ,μ+1W 0. This is the orthogonal projection of the negative gradient
of the local DMRG problem (7.16) on the Stiefel manifold. Thus the addition of
Rμ,μ+1 to W 0 as implicitly performed in the augmentation step 3 of Algorithm 7.4
can be seen as a steepest descent step for the DMRG problem.

Furthermore, due to the μ-orthogonality, XT

=μ,μ+1X 
=μ,μ+1 it holds

Aμ,μ+1W 0 −W 0Λ = XT

=μ,μ+1(AX −XΛ),

and also Λ = XTAX. Thus, the choice (7.23) can at the same time be interpreted
as the projection of the global negative residual onto the local subspace of the local
DMRG problem. In this sense, global residual information is injected to the local
problem.

Our experiments, see Section 7.4, demonstrate that it is beneficial to use a precondi-
tioned DMRG residual

Rμ,μ+1 = −B−1
μ,μ+1(Aμ,μ+1W 0 −W 0Λ) (7.24)

instead of (7.23). The derivation of such a local preconditioner B−1
μ,μ+1 for Aμ,μ+1

will be discussed in Section 7.3.4. An alternative to (7.24) would be to use Rμ,μ+1 =
−XT

μ,μ+1B−1(AX −XΛ), where B−1 is a preconditioner for A. This corresponds to
injecting information on the preconditioned global residual into the local DMRG
problem. Although this choice is better than using no preconditioner information,
our numerical experiments indicate that it is inferior to the preconditioned local
DMRG residual (7.24).

Incorporating the residual increases the TT rank to rμ ← rμ + sμ, where sμ is the
rank of Rμ,μ+1. The exact computation of Rμ,μ+1 by (7.24) will typically lead to an
unacceptably large value of sμ. To avoid this, we use repeated low-rank truncation
to limit this additional rank to sμ ≤ 2. Such a truncation can be justified by the fact
that the addition of Rμ,μ+1 to W 0 only serves as a very rough subspace correction,
with the fine tuning performed by ALS.
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7.3.3. Convergence analysis

For alternating optimization schemes, only local convergence results are avail-
able [EHK15, RU13, Usc12]. To still be able to prove convergence of the AMEn
algorithm for linear systems, Dolgov et al. [DS14] use the following reasoning:

• The enrichment step can be seen as a modified steepest descent step with
guaranteed global convergence.

• The local core optimization steps do not worsen the current iterate.

They obtain global convergence but with a convergence rate that deteriorates expo-
nentially fast with d. This result is very pessimistic, as it does not take into account
the progress due to the local core optimization steps, which, in practice, contribute
the most. Furthermore, the residual is assumed to be exact or well-approximated. In
practice, the residual is heavily truncated to avoid excessive rank growth.

For the (block) eigenvalue case we face the added difficulty that the trace minimization
problem is not a convex cost function. Thus, the iteration may converge to a subspace
X spanned by p eigenvectors which are not necessarily the smallest.

Let X = X 
=μ,μ+1W 0 with W 0 as in (7.17) be our current iterate at the μth core in
Algorithm 7.4. Adding the local DMRG-residual Rμ,μ+1 as in (7.23) results in an
enriched iterate X̃,

X̃ = X − αXμ,μ+1XT
μ,μ+1(AX −XΛ),

where α ∈ R is a parameter controlling the strength of the enrichment. Alternatively,
for the preconditioned DMRG residual (7.24), we obtain the enriched iterate

X̃ = X − αXμ,μ+1B−1
μ,μ+1XT

μ,μ+1(AX −XΛ).

This bears close resemblance to a steepest descent scheme with a modified search
direction ξ = −Xμ,μ+1B−1

μ,μ+1XT
μ,μ+1(AX −XΛ). Indeed, we can check that ξ is a

descent direction. The Riemannian gradient at X for f(X) = trace(XTAX) is given
by

grad f(X) = AX −XΛ,

see (7.13). Thus, we compute

〈 grad f(X), ξ〉 =
〈

grad f(X), −Xμ,μ+1B−1
μ,μ+1XT

μ,μ+1(AX −XΛ)
〉

= −〈XT
μ,μ+1(AX −XΛ), B−1

μ,μ+1XT
μ,μ+1(AX −XΛ)

〉
As the local preconditioner B−1

μ,μ+1 is symmetric positive definite, we can perform a
Cholesky decomposition B−1

μ,μ+1 = CTC and to obtain

−〈CXT
μ,μ+1(AX −XΛ), CXT

μ,μ+1(AX −XΛ)
〉

= −‖CXT
μ,μ+1(AX −XΛ)‖2 ≤ 0.

Note that we cannot guarantee that this choice of ξ also defines a gradient-related
sequence in the sense of Def. 2.22: Even if AX −XΛ is guaranteed to be non-zero at
a non-critical point, it can be an element of the kernel of XT

μ,μ+1. We can assume
that ‖C‖ is bounded by choosing the local preconditioner B−1

μ,μ+1 accordingly.
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If we could guarantee the gradient-relatedness we would obtain global convergence
to critical points of f , see Thm. 2.24 when choosing the parameter α according to
the Armijo rule, Def. 2.23, We note that the step size α is formally not present
in Algorithm 7.4. Instead, it is implicitly included in the local core optimization
step (7.21), which performs an optimization over a subspace including all linear
combinations from range(W 0) + range(Rμ,μ+1), see Prop. 7.2.

7.3.4. Construction of local preconditioners

In our algorithms, preconditioning is important at two points:

• The reduced eigenvalue problems (7.10) are solved by LOBPCG [Kny01]. The
convergence, and hence the time needed, by LOBPCG crucially depends on the
availability of a good preconditioner for the reduced matrix Aμ = XT


=μAX 
=μ.

• The preconditioned DMRG residual (7.24) for the augmentation steps in
EVAMEn requires a preconditioner for Aμ,μ+1 = XT


=μ,μ+1AX 
=μ,μ+1.

Both problems consist of finding a preconditioner for a reduced matrix Y TAY where
Y has orthonormal columns. As explained in [KT11b], a preconditioner B−1 for A

leads to an at least equally good preconditioner

B−1 ≈ (Y TBY )−1 (7.25)

for Y TAY . It is a nontrivial task to efficiently construct and apply (Y TBY )−1.

A special case are Laplace-like operators of the form (6.3), which we have already
examined in Chapter 6. In this case, we have seen in (6.35) that A 
=μ and A 
=μ,μ+1
themselves can be written as Laplace-like operators:

A 
=μ = L≥μ+1⊗ Irμ⊗ In1···nμ−1 + Inμ+1···nd
⊗Lμ⊗ In1···nμ−1 + Inμ+1···nd

⊗ Irμ⊗L≤μ−1.

Both L≤μ−1 and L≥μ+1 are assembled efficiently using low-dimensional contractions.
As a consequence of this short Laplace-like representation, A−1


=μ and A−1

=μ,μ+1 can be

well approximated by a sum of Kronecker products of exponentials [Gra04]:

A−1

=μ ≈

R∑
k=1

ωk

λmin
exp

(
− αk

λmin
L≥μ+1

)
⊗ exp

(
− αk

λmin
Lμ

)
⊗ exp

(
− αk

λmin
L≤μ−1

)
The approximation error in the spectral norm is governed by the maximal error of
the approximation

1
x
≈

R∑
k=1

ωke−αkx

on the interval [1, λmax/λmin], where λmin and λmax denote the smallest and largest
eigenvalue of A 
=μ, see [Hac12, Sec. 9.7.2]. Usually, rather small values for R are
sufficient to attain an acceptable error. Almost optimal values for R, ωk, and αk to
achieve a specific accuracy have been reported in [Hac10].

In the examples considered in our numerical experiments, A is always composed of
a Laplace-like operator and a potential. Our preconditioner is then based on the
Laplace-like part alone.

141



7.4. Numerical experiments

To assess the performance of Algorithm 7.4 (EVAMEn), we calculate the p smallest
eigenvalues of the PDE eigenvalue problem

−Δu(x) + V (x)u(x) = λu(x) for x ∈ Ω =]a, b[d,
u(x) = 0 for x ∈ ∂Ω,

(7.26)

where Δ is the d-dimensional Laplace operator, and V is a potential. The finite
difference discretization using a regular grid with n grid points in every dimension
yields an nd-dimensional matrix eigenvalue problem

Ax = λx, A ∈ Rnd×nd
,

where A = L + V is composed of the discretized Laplace operator

L =
d∑

μ=1
In ⊗ · · · ⊗ Lμ ⊗ · · · ⊗ In

and the discretized potential V . Finding the p smallest eigenvalues of A then
corresponds to the solution of the trace minimization problem (7.1).

Both algorithms, ALS and EVAMEn, have been implemented in Matlab version
2013b. To solve the reduced eigenvalue problems (7.10), we use Knyazev’s implemen-
tation of LOBPCG3 with the stopping tolerance

max
{

10−6, min{ 10−2, 10−2‖Rμ,μ+1‖}
}
.

The preconditioner for LOBPCG is a rank-three approximation of (XT

=μLX 
=μ)−1 by

exponential sums, see Section 7.3.4). Similarly, the preconditioner for Aμ,μ+1 needed
in EVAMEn, see (7.24), is a rank-three approximation of (XT


=μ,μ+1LX 
=μ,μ+1)−1 by
exponential sums.

In our numerical implementation, we use repeatedly truncated singular value decom-
positions to prevent excessive rank growth. In particular, this concerns the following
two points:

• The residual Rμ,μ+1, see (7.23), needed for EVAMEn is truncated to rank two
before and after the preconditioner B−1

μ,μ+1 is applied. This is only done when
more than one eigenvalue is sought (p > 1).

• When shifting the index α (Algorithms 7.1 and 7.2) we discard, as suggested
in [DKOS13, PV2012], all singular values below a threshold tolsv. We choose
a relative tolerance 10−8, but do not allow the ranks to grow larger than 40 in
both ALS and EVAMEn.

All computations and timings were performed on a 12-core Intel Xeon CPU X5675,
3.07GHz with 192 GB RAM running 64-Bit Linux version 2.6.32.

3Available at http://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m.
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Figure 7.3: Comparison of ALS (blue lines) to EVAMEn without preconditioning (red lines)
and with preconditioning (black lines) for calculating the smallest eigenvalue of (7.26) using
the Newton potential, Ω = ] − 1, 1[ 10, and n = 128 grid points in every dimension. Each
marker indicates the completion of a half-sweep.

7.4.1. Setting 1: One eigenvalue for the Newton potential

First, consider again the Newton potential, see also Section 6.3.1, defined by V (x) =
1

‖x‖ . We use an exponential sum with ten terms [Hac10, Hac12] to construct a rank-10
TT approximation of the discretized potential V, with an accuracy of 3.6 · 10−5.
This approximate potential is applied to vectors in TT format using the Hadamard
product, see Section 4.2.4. We use d = 10, Ω = ]− 1, 1[ d and n = 128 grid points in
every dimension, yielding a discretized eigenvalue problem of size 12810.

As a first experiment we calculate only the smallest eigenvalue, that is, p = 1. In this
case, no shifting of the index α is performed and therefore ALS is unable to adapt
the ranks. We initialize ALS with a random block-1 TT tensor having all ranks equal
to rμ = 8, corresponding to the ranks obtained by EVAMEn, which is initialized
with a random block-1 TT tensor. Figure 7.3 shows the obtained convergence in
terms of the eigenvalue error (dashed lines) and the residual (solid lines), both with
respect to the number of iterations and with respect to execution time.

Surprisingly, the preconditioned version (7.24) of EVAMEn makes almost identical
progress per iteration as ALS, but the first few half-sweeps take significantly less
time. The latter is explained by the fact that EVAMEn operates with smaller TT
ranks for the first few half-sweeps.

It can be clearly observed that preconditioning the residual Rμ,μ+1 is important, as
the convergence of the unpreconditioned version (7.23) is significantly worse. The
errors even start growing for later iterations, due to convergence failures of LOBPCG.
This experiment allows us to conclude that the choice of the core augmentation in
EVAMEn matters, and should not be taken randomly, which would already allow for
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rank adaptivity. Therefore, we only consider the preconditioned version of EVAMEn
in the following experiments.

7.4.2. Setting 2: Multiple eigenvalues for the Newton potential

This setting is identical to Setting 1, except that we now seek for the p > 1 smallest
eigenvalues. In this case, shifting the index α provides a mechanism for rank adaption
in both ALS and EVAMEn. Therefore, ALS is now also initialized with a random
rank-1 block-1 TT tensor.

We compare ALS with EVAMEn for p = 3 and p = 11 in Figures 7.4 and 7.5,
respectively. Solid lines correspond to the scaled Frobenius norm of the residual,
p−1/2‖AX−XΛ‖F , while dashed lines correspond to the trace error, | trace(XTAX )−
trace(XT

finalAXfinal)|, where Xfinal is a reference solution computed by the ALS
procedure with high accuracy.

Since d = 10, the second largest eigenvalue of the discrete Laplace operator has
multiplicity 10 and therefore the eigenvalues λ2, . . . , λ11 of A form a cluster. This
cluster is broken when using p = 3, resulting in very slow convergence of the LOBPCG
iterations when no local preconditioner is used.

In both cases, EVAMEn outperforms ALS in terms of both required number of
iterations and computational time. The final TT ranks in the block format of the
solutions are bounded by 26 for p = 3, and attain the allowed limit of 40 for p = 11.
Consequently, the obtained final accuracy for p = 11 is less than for p = 3.
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Figure 7.4: Comparison of block ALS (blue lines) and preconditioned EVAMEn (black
lines) for calculating the three smallest eigenvalues of (7.26) using the Newton potential,
Ω = ]− 1, 1[ 10, and n = 128 grid points in every dimension.

144



0 20 40 6010−12

10−9

10−6

10−3

100

103

106

Microiterations

R
es

id
ua

la
nd

ei
ge

nv
al

ue
er

ro
r

1000 3000 5000 7000 9000 1100010−12

10−9

10−6

10−3

100

103

106

Time [s]

R
es

id
ua

la
nd

ei
ge

nv
al

ue
er

ro
r

Res. err., Block-ALS
Res. err. EVAMEn, prec.
EV. err., Block-ALS
EV. err. EVAMEn, prec.

Figure 7.5: Comparison of block ALS (blue lines) and preconditioned EVAMEn (black
lines) for calculating the eleven smallest eigenvalues of (7.26) using the Newton potential,
Ω = ]− 1, 1[ 10, and n = 128 grid points in every dimension.

7.4.3. Setting 3: Henon-Heiles potential

As a second test case, we take the modified Henon-Heiles potential [FGL09, MMC90,
RM00]

V (x) =
1
2

d∑
μ=1

x2
μ +

d−1∑
μ=1

(
σ∗
(

xμx2
μ+1 −

1
3

x3
μ

)
+

σ2∗
16

(
x2

μ + x2
μ+1

)2
)

,

modelling a coupled oscillator. This potential is usually defined on the entire real
space. As in [DKOS13], we apply spectral collocation, using a tensor product grid
based on the zeros ξ1, . . . , ξn of the nth Hermite polynomial. The corresponding
discrete one-dimensional Laplace operator is given by [BH86]

(LH)ij =

⎧⎨⎩
1
6(4n− 1− 2ξ2

i ) , i = j,

(−1)(i−j)
(

1
(ξi−ξj)2 − 1

2

)
, i �= j.

The discretized operator A then takes the matrix representation
d∑

μ=1
In ⊗ . . . In ⊗ Lμ ⊗ In ⊗ · · · ⊗ In +

d−1∑
μ=1

In ⊗ · · · ⊗ Cμ+1 ⊗Bμ ⊗ · · · ⊗ In, (7.27)

with Bμ = σ∗D + σ2∗
8 D2, Cμ+1 = D2, and

Lμ =

⎧⎪⎪⎨⎪⎪⎩
LH + 1

2D2 − σ∗
3 D3 + σ2∗

16 D4 for μ = 1,
LH + 1

2D2 − σ∗
3 D3 + σ2∗

8 D4 for 1 < μ < d,
LH + 1

2D2 + σ2∗
16 D4 for μ = d,

where D = diag(ξ1, ξ2, . . . , ξn) contains the grid points for one dimension. Hence A
allows for an operator TT representation with all ranks equal to 3 using the cores
described in Section 4.7.
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Figure 7.6: Comparison of block ALS (blue lines) and EVAMEn (black lines) for calculating
the three smallest eigenvalues of (7.26) using the Henon-Heiles potential with d = 10 and
n = 28 collocation points in every dimension.
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Figure 7.7: Comparison of block ALS (blue lines) and EVAMEn (black lines) for calculating
the eleven smallest eigenvalues of (7.26) using the Henon-Heiles potential with d = 10 and
n = 28 collocation points in every dimension.
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The first term in (7.27), which is composed of the discrete Laplacian L and the
non-interacting parts of the potential, is taken as an approximation B of A for the
local preconditioner.

In our experiments we choose σ∗ = 0.11, and consider (7.26) with d = 10 and n = 28
collocation points in every dimension. Thus, the discretized eigenvalue problem is of
dimension 2810.

Figure 7.6 shows the obtained results when calculating p = 3 eigenvalues. Similarly
to the Newton potential, EVAMEn performs better than ALS in terms of the number
of iterations. Since this is offset by the higher cost per iteration, both algorithms
perform equally well with respect to time. For p = 11, EVAMEn converges only
slightly better and the obtained timings are similar for both algorithms, see Figure 7.7.
Possibly, the local nature of the potential benefits ALS to an extent that it can
hardly be improved by injecting residual information.

7.5. Conclusion

We have developed a new algorithm called EVAMEn, which allows to incorporate
preconditioned residual information into the ALS procedure for computing one
or several eigenvectors in the (block) TT format. For the Newton potential, the
numerical experiments clearly demonstrate the benefits obtained from incorporating
this information and the importance of using local preconditioners. We expect that
using such preconditioners would also be beneficial in the AMEn algorithm for solving
linear systems.

The use of the TT format makes it expensive to work with large mode sizes nμ,
as nμ enters directly into the size of the TT cores Xμ ∈ Rrμ−1×nμ×rμ . Unless the
ranks are very small, this imposes computational restrictions on nμ and hence on
the discretization. A simple way to avoid this is to use low-dimensional subspaces
of Rnμ in every mode. This has been considered for the TT format in [Ose11c]
and it is commonplace for the hierarchical Tucker (HT) format [HK09, Gra10].
Concerning the latter, it is certainly possible to extend the block TT format to the
HT format, but the derivations and the resulting algorithms can be expected to
become significantly more technical. We refer to [KT11b] for a discussion on the ALS
and DMRG algorithms for computing a single eigenvector in the HT format.
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Chapter A
� Appendix: Smooth decompositions of
matrices

In this chapter, we derive a short corollary which deals with the question of how the
factors of a decomposition of a matrix A ∈ Rm×n change when A varies in a smooth
way. This result is used in the proof of the manifold structure of the set of tensors
with fixed multilinear rank, see Section 3.4.
Theorem A.1 (Chern/Dieci, [CD00, Thm. 2.4]). Let A(t) ∈ Ck(R,Rm×n), m ≥ n

and k ≥ 0, have constant rank: rank(A(t)) = r for all t, 1 ≤ r ≤ n fixed. Then there
exist orthogonal U(t) ∈ Ck(R,Rm×m) and V (t) ∈ Ck(R,Rn×n) such that

UT(t)A(t)V (t) =
[
S+(t) 0

0 0

]

where S+(t) ∈ Ck(R,Rm×m) is symmetric positive definite.

From which we can deduct the following corollary for fat matrices with many more
columns than rows.
Corollary A.2. Consider the smooth (C∞) matrix A(t) ∈ Rm×n, n ≥ m with constant
rank rank(A(t)) = r for all t. Then there exists a smooth QR-like-decomposition

A(t) = Q(t)R(t)

with smooth matrices Q(t) ∈ Rm×r having orthonormal columns and R(t) ∈ Rr×n.
The columns of Q(t) are the first r left singular vectors of A(t).

Proof. We look at the transpose AT(t), a skinny matrix, and apply Theorem A.1 to
it to obtain

AT(t) = U(t)
[
S+(t) 0

0 0

]
V T(t).

Transposing this result yields

A(t) = V T(t)
[
S+(t) 0

0 0

]
U(t) = Q(t)

[
S+(t) 0

]
U(t) = Q(t)R(t),

where Q(t) consists of the first r columns of V T(t) and R(t) :=
[
S+(t) 0

]
U(t).
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