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Abstract
The Cloud trend is an attempt to leverage economics of scale in the domain of computing

resources. Unfortunately, this often means losing control of the lower levels of a computer

system, and exposing users to new threat vectors. These threats may be significant enough to

forbid the use of clouds, and force giving up on their economical advantages.

Chapter 1 introduces some issues with current cloud storage systems, that should be fixed

before a cloud storage system can be considered as safe as a self-managed system. Among

these, we will focus on censorship resistance. We also explain the not immediately obvious

way in which they relate to issues discussed in the last two chapters.

Chapter 2 formally defines censorship-resistance and describes the STEP-archive, an abstract

model for a generic class of censorship-resistant storage systems. Within this model, we

expose an asymmetry in hardness between attack algorithms (trying to perform censorship)

and defense algorithms (trying to repair censored files). We discuss ideal choices for the many

parameters and derive useful mathematical bounds when possible. We also simulate the

behaviour of an ideal storage system to obtain experimental evidence of the effect of these

parameter choices. We show that this model exhibits several counter-intuitive properties.

Chapter 3 deals with the issue of incorrect key generation. Cryptography being an essential

component of our proposed secure storage system, we discuss common pitfalls in implemen-

tations of popular asymmetric cryptographic algorithms, and evidence of their presence in

real-world implementations.

Chapter 4 discusses an operational aspect of storage systems, the choice of a block storage

unit, and the consequences of lack thereof. In particular, it shows how the size of a ciphertext

can act as a side channel and leak information about encrypted contents to an attacker, within

the context of large media files distributed through public file sharing systems.

Key words: censorship, cloud, coding, cryptography, storage.
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Résumé
Le Cloud est une tentative d’exploiter l’économie d’échelle dans le contexte des ressources de

calcul. Malheureusement, cela signifie souvent renoncer au contrôle des couches inférieures

du système informatique et exposer ses utilisateurs à de nouvelles opportunités d’attaques.

Ces nouvelles menaces peuvent constituer des risques conséquents, assez pour renoncer aux

avantages des services de cloud.

Le Chapitre 1 est une introduction aux limitations des systèmes de stockage en cloud actuels,

lesquelles doivent impérativement être dépassées pour qu’un système de stockage en cloud

puisse offrir un modèle de sécurité équivalent à un système auto-hébergé. Parmi celles-ci,

nous nous intéresserons plus particulièrement à la résistance à la censure. Nous expliquerons

aussi les liens non évidents entre ces limitations et les sujets abordés dans les deux derniers

chapitres.

Le Chapitre 2 donne une définition formelle de la résistance à la censure et décrit l’archive

STEP, un modèle abstrait représentant un système de stockage généraliste et résistant à la

censure. Dans le cadre de ce modèle, nous montrons d’intéressantes asymétries entre la diffi-

culté des algorithmes d’attaques (exécutant une opération de censure) et de défense (réparant

les données perdues par la censure). Nous discutons du choix optimal des nombreux para-

mètres du modèle et établissons quelques bornes mathématiques. Nous étudions également

son comportement par des simulations et validons expérimentalement certains choix de

paramètres. Nous montrons certains aspects par lesquels ce modèle se comporte de manière

contre-intuitive.

Le Chapitre 3 traite du problème de la génération incorrecte de clefs cryptographiques. La

cryptographie étant la pierre angulaire de tout système de stockage sécurisé, nous y abordons

les pièges courants dans l’implémentation des algorithmes asymétriques les plus populaires,

et montrons des preuves de leur existence dans le monde réel.

Le Chapitre 4 traite d’un aspect opérationnel des systèmes de stockage, à savoir le choix d’une

taille de bloc, et de ses conséquences. En particulier, nous déterminons si et comment la

taille d’un message chiffré peut constituer un canal auxiliaire et révéler de l’information à un

attaquant passif, dans le contexte de la distribution publique de grands fichiers multimédia.

Mots clefs : censure, cloud, codage, cryptographie, stockage
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1 Current Issues with Cloud Storage

Cloud computing is a trend full of promises. Offering a free market for computing resources,

we can greatly increase hardware utilization; we also save on power, cooling, and commu-

nication costs through the use of shared systems, concentrated into tight physical locations.

Concentration allows saving on power and cooling (large-scale electrical transformers and

cooling systems are more efficient), and on networking (much higher bandwidth can be

achieved over short distances).

Yet, by doing so, we open Security Pandora’s box, for information now flows and is processed

by systems owned and controlled by third parties, possibly located in other countries with

different legislation.

Ideally, a perfect cloud-based service should present the same threat model as a system owned

and managed directly by the customer. This should be true even if the customer does not fully

trust the cloud provider.

Secure remote general-purpose computation is a difficult problem. Key progress was made

by [G+09], and numerous optimizations have been further developed, but they still impose

several orders of magnitudes of computational overhead, and are thus impractical in all but

the most extremely unbalanced scenarios (where the computing power of a cloud service

dwarfs the power available to the end-user).

Instead of tackling this difficult general problem, this work is restricted to the much simpler

scenario of trusted storage on third-party systems. The untrusted third-party system is not

required to perform arbitrary computations, but just to store and retrieve opaque data.

1.1 Cloud Requirements and Trust Model

Well-understood cryptographic techniques, properly used on the client side, can already

protect data confidentiality, integrity, and authenticity. However, there are other desirable

properties relating to more exotic issues:

1



Chapter 1. Current Issues with Cloud Storage

• Ensuring reliability from a third-party storage provider is harder than ensuring it on a

privately-owned system. While in the latter case one only has to guard against accidental

failures, in the former the storage provider may have an economic incentive to lie about

its actual reliability. This issue can be addressed with proof-of-storage protocols. A

trivial proof-of-storage protocol is to periodically perform a full retrieval of the contents;

more advanced protocols, like [ZX12, JKJ07], can give a good probabilistic assurance

that the contents are retrievable, at a much lower bandwidth cost.

• For content that is meant to be distributed to a wide audience, centralization creates

opportunities of arbitrary censorship by the storage provider. Even if the provider is not

itself willing to censor content, it may be coerced into it by a legal authority, or become

the target of blackmail by other powerful attackers. These censoring threats may occur

at unpredictable times and under great pressure. Defending against them is harder than

in the previous case, where it is sufficient to ensure that the provider has, on average, an

economic incentive to behave correctly. Chapter 2 investigates a possible direction for

censorship-resistant storage systems.

• Beyond censorship, anonymity may be an important requirement. A cloud storage

provider, if it is in position of knowing the identities of all the content publishers using

its service, may become a prime target for various surveillance-oriented attackers. Usage

of cloud storage resources implies usage of network resources. Systems like Tor [DMS04]

partially help, but there are still side-channel threats to anonymity when large amounts

of data move around.

• Anonymity of the content author is one thing when volunteers agree to provide free

storage space. When storage space must be paid, however, one must be careful to ensure

anonymity of the payment trail as well.

1.1.1 Comparison with peer-to-peer systems

Distributed peer-to-peer storage systems exhibit good robustness properties against an at-

tacker trying to perform censorship, assuming the attacker cannot control the majority, or

even a significant fraction, of the participating peers. This assumption may no longer hold

when a majority of peers run or store data on cloud systems under control of a small number

of large service providers. Therefore, it is not sufficient to simply run a peer-to-peer system

on top of cloud resources, however tempting it may be. We wish to design a system with

different guarantees, that can resist censorship without precluding the use of centralized cloud

resources.

1.1.2 Mutability

Mutability refers to the way a storage system handles data getting modified over time. A

mutable system offers an interface to store and read data objects, but also to modify all or part
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of it at a given point in time. It means the system must also handle some form of locking or

conflict resolution, should modification requests occur concurrently.

By contrast, an immutable system only supports creation of new data objects, optionally

deletion, and reads. Modification can be emulated by creating a new, separate, version of the

object, then dropping the old one. For many use cases, this may be much less efficient than

a mutable interface; a small modification to a large object will wastefully recreate an almost

identical copy of the object. However, an immutable model is also safer and friendlier: neither

locking nor conflict resolution are required, it suits concurrent operation better, and it makes

it easier to implement cryptographic integrity checks.

Chapters 2 and 4 both consider a system operating on top of cloud services offering an

immutable storage interface.

1.1.3 Deduplication

Deduplication is the practice of recognizing redundant data blocks in a storage system, and

save space by storing only a single copy. This may be done at different granularities: at the

file level, with fixed data blocks, or with more complicated schemes like rolling hashes to split

data into variable-sized slices.

For a large storage provider, deduplication may be an integral part of the business model: the

data is stored once, but customers may be billed multiple times. This is especially worthwhile

for large contents that get shared without any modifications, for instance multimedia files.

Deduplicating mutable storage is more expensive; a copy-on-write mechanism must be used

to distinguish previously identical copies when one of them is getting modified. No such issue

exists with an immutable interface.

• File-level deduplication is easy to implement in an immutable system. If every file

is indexed by a cryptographically secure hash, it is natural to use this index both for

retrieval and deduplication.

• Block-level deduplication operates on blocks of fixed size. It is typically much more

expensive than file-level, if only because the number of objects to consider is much

higher. It is however more interesting in some specific scenarios, typically with big files

containing common substructures with predictable alignment. This is notably the case

for filesystem images, used to distribute or store virtual machines, and optical media

images (for instance rips of DVDs).

• Variable-block-level (sometimes inaccurately called Byte-level) uses techniques to slice

a file into pieces of variable sizes, ideally with piece sizes following a geometrical distri-

bution, in a way that makes the pieces locations depend only on the piece contents, and

possibly the close surroundings of the piece. This makes it possible to share common
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contents even if they appear at unaligned offsets in different files.

Rolling hashes

One early technique to find local split points is the Lyndon factorization, which splits a

sequence of symbols (bytes, words, or bigger blocks) into a list of the largest possible sub-

sequences, such as every sub-sequence has the property of being, of all its cyclic rotations, the

one that comes first in lexicographic order. Such a factorization is unique and the split points

can be computed in linear time.

Another technique is to decide on the split points with a rolling hash. Contrary to what the

name suggests, a rolling hash is not a cryptographically secure hash, but rather a fast digest

that can be efficiently computed from an old version when bytes are appended at one end of

the data, and removed at the other.

This way, it is possible to efficiently compute the value of a fixed-size chunk of data within a

file at every possible location, with low memory usage. Every location that exhibits a rolling

hash of a special form will become a distinguished point over which the file can be sliced.

With this technique, if different files share a large part of identical data, even at unpredictable

and unaligned offsets, the distinguished points are guaranteed to be identical everywhere

but on the two borders of the identical parts, within two windows of the size of the rolling

hash window. All the slices between the two furthest distinguished points will be considered

identical and deduplicated.

1.2 The case of Tahoe

Tahoe is an example of a secure cloud filesystem with good security properties. It uses an

immutable storage model for data, and optionally mutable metadata. Encryption is done

client-side, and data is always authenticated. Data is stored redundantly across several nodes,

using Reed-Solomon coding over stripes within a file. The stripes themselves have arbitrary

length, and are encrypted with a stream-like CTR mode.

Tahoe provides neither a censorship-resistance mechanism, nor a proof-of-storage mecha-

nism. Access control is done by capabilities, so in a basic setup there is no need for identity

management. However, in such a basic setup, storage space is a shared resource between

participants, and freeloaders can use more space than what they contribute.

1.2.1 Extending to Censorship Resistance

Chapter 2 describes the STEP-archive, an abstract model for a generic censorship-resistant

storage system, that extends and covers the behaviour of some early censorship-resistant

systems like Tangler [Wal01] and Dagster [SW01]. It provides both censorship resistance and
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redundancy as two integrated properties.

Inspiration for these early systems came from an interesting practical realization: in many

parts of the world, some data may be illegal to possess. To the layman, it is not obvious whether

a storage provider should be liable for allowing customers to store illegal data. However, it

makes no sense to criminalize possession of random data.

Suppose a customer encrypts illegal data using a one-time pad, and stores both the key and

the ciphertext on two different storage providers. If the key has correctly been chosen truly

randomly, it is impossible1 to distinguish the ciphertext from the key. Thus, even if one

considers possession of encrypted data to be reprehensible, it is impossible to put the blame

on one or the other provider. Furthermore, the key may also have been already present in

the system for other reasons, instead of having been generated for the occasion. Unless one

can prove that one side of the storage (the key) predated the other (the ciphertext), then one

must consider that at least one provider may not even have been willing to cooperate with the

law-breaking customer.

This property is not unique to one-time pad encryption. It also applies, for instance, to the

non-systematic error correction codes we use in Chapter 2.

1.2.2 Key proliferation by Mutability

For mutable metadata, updates are authenticated by binding an RSA public key to the mutable

metadata identifier, and signing all new (immutable) versions of the data with the correspond-

ing private key. This leads to a proliferation of RSA keypairs. Chapter 3 discusses the possible

pitfalls of incorrect key generation, and in particular pitfalls exacerbated when keypairs are

being massively generated.

1.2.3 Storage incentives and Anonymity

An obvious way to defend against freeloaders is to account for space usage by all the partici-

pants in a Tahoe grid. Such accounting defeats anonymity.

We have considered an anonymous payment protocol based on Chaum’s Blind Signatures.

Blind Signatures are introduced in [Cha82] as a building block for an anonymous, offline,

electronic cash payment system.

Offline electronic payment systems need a way to prevent double spending. In [Cha82],

double spending is detected a posteriori by a complicated probabilistic protocol that lifts

the anonymity of cheaters with high probability. However, in the case of immutable storage

systems, a very interesting improvement can be made: since an immutable block of data can

already be identified by a secure hash, we can use this hash instead of a random nonce when

1In the information-theoretic sense.
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generating the blinded cash coin. This makes double spending irrelevant: a user may try

to cheat by paying several times with the same coin to store the same data block, but if the

storage system performs deduplication, it allocates resources only once, and no value is lost2.

Unfortunately, in practice our naive attempts at such a protocol suffered from side-channel

attacks. Because the blinded coin cannot be generated before the data hash is known, it is

not possible to pay for storage in advance. Thus there would be strong time correlations

between the space payment transactions and the data uploads, defeating the purpose of

anonymous payments. However, because the payment messages are small compared to the

actual data, and because a storage provider could certainly tolerate a non-realtime operation

of the payment protocol, alternatives like [CGF10] may work better than Tor in this scenario.

Still, such a payment protocol would cause another proliferation of RSA keypairs, and another

reason to look at the issues presented in Chapter 3

1.2.4 Variable block sizes

Tahoe uses variable-length stripes to store data. For efficiency, the encrypted file is split

into fixed-size segments, and the segments are then striped across several primary shares, of

identical length (up to the segment size), with the sum of the primary share sizes being roughly

equal to the size of the encrypted file. An error-correcting code is then applied to compute

a number of secondary shares, having the same size as the primary shares. Authentication

and integrity checking range over the entire share; it is not possible to address a segment

individually (although segments may be integrity-checked individually through a Merkle tree).

For the purpose of the STEP model considered in Chapter 2, it is easier to consider only storage

of fixed-size blocks, and consider that the underlying storage system addresses blocks, not

entire stripes.

While it may seem trivial to impose a fixed block size, by adding a block layer on top of the

system, such a change is not benign in terms of security. Chapter 4 deals with the implications,

including a possible subsequent leak of confidentiality.

1.3 Conclusion

This concludes our overview of current issues. We hope that the STEP construction constitutes

a sound basis for bringing censorship resistance properties to cloud storage. Success in

implementing these properties could lift some of the current barriers to adoption of cloud

platforms, and allow users to benefit from power and bandwidth savings even for security-

sensitive applications.

2This only works if the storage provider gives up on the practice of gouging users by making them pay an
individual price for a shared resource.
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2 STEP-archival: A Storage Model for
Censorship-Resistance

2.1 Introduction

The way we store and archive data is being transformed by the emergence of information and

communication technologies. These new tools open worlds of new opportunities but at the

same they time pose significant challenges. Among these technologies, distributed file storage,

sharing and synchronization systems on the cloud are becoming ubiquitous, and all major

information technology players are offering some flavor of it: Dropbox, iCloud, Google Drive,

OneDrive, Amazon S3, ... They provide easy access to data from multiple devices and locations

as well as protection against data loss from hardware failures. However, recent developments

in the wake of the expansive and sometimes unauthorized government access to private and

sensitive data raise major privacy and security concerns about data located in the cloud,

especially when data is physically located or must transit outside the legal jurisdiction of its

rightful owner.

In this chapter, we consider long-term digital data storage and permanent archiving. A first

major challenge is data integrity. The objective is to provide verifiable guarantees to users

that their data is properly, securely, and reliably archived. For instance, if a storage provider

guarantees that the equivalent of three copies of each piece of data is archived on three

continents, how can users verify that this claim is more than a marketing slogan? In practice,

it appears difficult to prove this claim in a simple and convincing way. Users rely mostly in

the good faith they have in their providers (and in the catastrophic consequences for their

providers’ bottom line should they lose the data). Another question is how can a user be

sure that his data will not stop being taken care of after a system update or a maintenance

budget cut, or that its data will be as securely and reliably stored as data from very large paying

customers using the same service? These problems are especially relevant with old archives,

some of which might not need to be accessed for decades.

A second challenge of digital storage and permanent archiving is tamper resistance. This

is closely related to protection against censorship. Research and scientific data as well as

medical, legal and financial records can include very sensitive information that can be viewed
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as threatening or compromising by potential censors. A good archival system must thus make

it very difficult for a powerful censor to irrecoverably destroy or tamper with archived data,

especially in an undetectable way. This is a different issue from the traditional definition

of data integrity and authenticity, for which there already exist plenty of solutions from the

client perspective using client-side cryptography. For compliance and legal reasons, such

sensitive data may be stored using a “write-once, read-many” (WORM) technology. WORM

storage is a niche market of secure data storage solutions that has been historically fulfilled

using hardware approaches. Physical implementations offer more constrained data access

than logical approaches and are more dependent on hardware robustness against failures and

destruction. The implementation of software approaches for anti-tampering is an active topic

of investigation and no satisfying solution is available in practice.

Censorship effectiveness is highly dependent on the communication technologies used to

spread the censored information. In our modern world of electronic communications, infor-

mation flows in such volume that human-based censorship has become impossible. Infor-

mation processing systems can, however, be used for automated censorship. The emergence

of ubiquitous, interoperable communication networks makes it easier to implement global

automated censorship.

The extreme impracticality of censoring mouth-to-ear communication ultimately makes

censorship a lost cause: Determination to transmit a message is the only requirement for

eventually finding a way. However, large-scale automated censorship can still have damaging

consequences. Fear of censorship or surveillance may hinder the adoption of otherwise

promising communication technologies.

This issue is prevalent in the context of cloud storage, where a storage service provider could

be pressured into removing specific contents, against the will of their customers. Beyond legal

pressure, employees could also be bribed or coerced into damaging customer data. Fear of

data losses may drive customers away from cloud storage and its cost-saving benefits.

There is currently no archival system providing strong anti-tampering and data integrity.

Designing such a system is a surprisingly difficult endeavor, both in theory and in practice.

This is the main objective of our work.

2.1.1 State of the art

Data integrity, protection against tampering and anti-censorship have been studied in var-

ious forms and for a large number of settings and applications. Work on these topics in-

clude the Eternity Service [And96], Publius [WRC00], Freenet [CSWH01], Free Haven [DFM01],

Dagster [SW01], Tangler [Wal01], SiRiUS [jGSMB03], Tahoe [WOW08], Clouds [BHL+08] and

POTSHARDS [SGMV09].

Randomized encryption can be used to prevent a malicious storage system from extracting

information about its users by observing with whom they share files. It can also be used to
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prevent the system from preemptively censor documents corresponding to known content.

This has been implemented with success in practice, notably by the Tahoe [WOW08] filesys-

tem under the name of Convergent Encryption. Encryption keys are semi-deterministically

derived from the hash of a cleartext block so that efficient deduplication can still be performed

on encrypted blocks to reduce storage space. However, a third party could publish the en-

cryption key for a particular block, and prove that some block decrypts to censorable content,

prompting an authority to individually censor particular blocks.

Data integrity and resistance against tampering are not easy to define, especially when consid-

ering how to provide these features in a practical way. For instance, in [WRC00], the authors

informally write “Our system should make it extremely difficult for a third party to make

changes to or force the deletion of published materials”. This was also observed in [PRW05],

which provided a more formal definition of censorship resistance in the context of selective

filtering. A definition of data integrity was made in [AFYZ07], but in such a strong way that it

cannot be achieved in practical systems.

Other interesting related work includes plausibly-deniable search [17912] and proofs of storage

and retrievability [ZX12, JKJ07]. In [JKJ07] the authors describe an efficient proof of retrievabil-

ity mechanism that allows a client to verify the existence of a piece of data in a storage system.

The authors correctly note, however, that such a mechanism cannot guarantee that the system

will agree to disclose the actual data when prompted to do so.

In [AFYZ07], the authors studied data integrity and developed a theory of data entanglement.

One of their contributions is the introduction of all-or-nothing integrity: intuitively, either

all the documents are recoverable with high probability, or no document is. They show

that all-or-nothing integrity is possible with some restrictions on the power of the attacker.

[ADDV15] extended the work by providing a stronger definition of all-or-nothing integrity

and a simulation-based security analysis. The protocols provided in both articles [AFYZ07,

ADDV15] remain far from real-life implementations: they require to read the entire data store

to retrieve a document, and require to process the entire data store to add a new document,

which is not scalable. Furthermore, no document is recoverable if the storage provider corrupts

or fails to maintain a small part of the data.

Providing anti-censorship using data entanglement was first proposed by Dagster [SW01]

and Tangler [Wal01], which both can be seen as special cases of the approach we propose in

this chapter. In Dagster, documents and blocks have the same size. To add a new document

in the system, c blocks already stored are chosen at random, and a new block consisting

of the exclusive-or of the new document with the c blocks is stored. A censor wanting to

delete a document can erase one of its c +1 blocks, and on average over all documents this

will destroy on average O(c) other documents, the older documents being more protected

than newer ones. In Tangler, two old blocks chosen randomly and a new document to be

archived are used to generate two new blocks using (3,4) Shamir secret sharing [Sha79]. The

two new blocks are then stored. The original document can be recovered with any three of the
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four blocks using Lagrange interpolation. In [AFYZ07], it was shown that erasing two blocks

from a random Tangler document erases on average O( logn
n ) other documents. However, the

number of documents erased irrecoverably is much smaller, since some partly corrupted

documents can be decoded to recover erased blocks. No analysis of the system resistance

against tampering is presented.

Finally, WORM storage has a long history predating CD-R disks and was commercialized in

several forms for protection against tampering: tape cartridges, secure digital flash memory

cards, SD cards, ... Recent solutions include WORM HDDs, where the protection against data

rewrite is embedded at the physical disk level [wor].

2.1.2 Our contributions

In this chapter, we introduce STEP-archives. Using data entanglement and erasure-correcting

codes, we study and develop a data storage architecture where a stored document can only

be deleted or modified by compromising the integrity of other documents in the system.

There are two main objectives behind this work. The first objective is data integrity. We

want to provide guarantees to users that their data cannot be deleted or corrupted without

compromising other data stored by themselves or other users. The second objective is to

provide censorship resistance by forcing a censor who wants to tamper with data to do so

noisily, and corrupt a large number of other documents in the system. An ancillary result

deriving from the two objectives is increased redundancy and protection against failures,

which can be seen as attacks from random or failure-specific censors.

Attacker - defender asymmetry

An attacker who wants to tamper with a document must try to destroy it irrecoverably by

recursively eliminating all cascading dependencies in other documents. One of the interesting

aspects of our approach is its asymmetry. On the one hand, it is easy to repair the system if the

damage done by an attacker is recoverable. On the other hand, we prove that irrecoverably

destroying a target document while minimizing collateral damage is NP-hard. Finding an

irrecoverable attack whose collateral damage is less than optimal but within a reasonable ratio

from the optimal solution is also NP-hard.

System robustness

In [AFYZ07, ADDV15], it is impossible to recover anything if the storage provider corrupts or

fails to maintain a small part of the data. Although this feature is a strong incentive for the

storage provider to behave responsibly, it has the perverse effect that a malicious attacker,

having compromised an honest provider, can deny the access to all the data by denying access

to a small part of the system, and irrecoverably destroy the entire data by corrupting a small

amount of it. We take the dual approach to achieve the same objective: when a document
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has been archived long enough, it can only be lost by destroying a large number of other

documents. However, for an archive to reach the state where old documents are irrecoverably

destroyed, the storage provider must be very sloppy, or the attacker must be very powerful

and willing to do a lot of work.

Entanglement strategies and suboptimal attacks

After introducing and describing our architecture, we present different entanglement strategies

and suboptimal attacks within this model, and study how their interactions affect the system

resilience. We show that entangling data in a sliding window limited to the recent past bounds

the collateral damage required to irrecoverably destroy a document. We also provide evidence

that entanglement chosen uniformly at random forces an attacker who wants to irrecoverably

destroy a document archived long enough to destroy a constant fraction of all documents

archived after it.

Practical considerations

We emphasize that our objective is to achieve both data integrity and censorship resistance in

a way implementable in practical systems. Thus, we use practical constraints that keep an

actual implementation realistic (for instance avoiding reads and writes in ω(1) of the total

system size) while being simple enough to allow analysis. All our underlying assumptions and

design choices are implementable using state-of-the-art coding and storage techniques.

2.1.3 Outline

The rest of this chapter is organized as follows. In section 2.2, we present generic assumptions

and constraints. The storage architecture is formally described in Section 2.3, and the recovery

algorithm in Section 2.4. We analyze the optimal attack in Section 2.5, and describe suboptimal

attacks in Section 2.6. Two entanglement strategies, proximity entanglement, and uniformly

random entanglement, are respectively studied in Sections 2.7 and 2.8. In Section 2.9, we

discuss extensions and general security considerations. Finally, we conclude the paper in

Section 2.10.

2.2 Model assumptions and architecture constraints

In this section we describe the main assumptions and constraints used throughout this chapter.

They are simple and realistic for a first contribution on this topic. However, it should be clear

that they can be relaxed and extended in various ways, as discussed in Section 2.9.
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2.2.1 Censorship resistance

Our goal is to offer a storage system providing some level of censorship resistance (CR) imple-

mentable both with centralized and decentralized architectures, in the sense that security

guarantees still hold when most hardware resources are under the control of a single entity.

A censorship resistant system makes it difficult, even for the entity in control of the system, to

silently and selectively refuse to answer particular requests without denying service for other

unrelated requests. We precisely define three levels of censorship resistance.

• Perfect CR: Either all the read requests can be fulfilled, or none can. This is similar to

all-or-nothing integrity as defined in [AFYZ07].

• Strong CR: If the system is unable to fulfill a read request, then a constant fraction of

possible read requests cannot be fulfilled (collateral damage).

• Weak (resource driven) CR: The system must spend an amount of hardware resources

proportional to the size of the system to censor a read request.

In ultimate recourse, the service provider can always be forced to shut down entirely. Our

definition of Perfect CR follows from this observation: in a perfect system, there is no better way

to censor data. The difference between Strong CR and Weak CR is that the former guarantees

that a censorship attempt will have an impact on the system clients and cannot go unnoticed,

whereas with the latter case an attacker could coerce the system to perform censorship,

coercion invisible to other users.

We emphasize that we tackle data integrity, tamper resistance and censorship resistance at

the same time, and thus use all terms interchangeably. For instance, with Perfect CR, every

document in the archive is as reliably archived as every other document, thus the integrity of

every document is the same. We formally discuss the equivalence of data integrity, tamper

resistance and censorship resistance in Section 2.3.

2.2.2 Storage interface

We will achieve data integrity and protection against tampering with a coding scheme for

which unrelated pieces of data will become mutually dependent. Since we are looking for

efficient and practical implementations, our first constraint is that we only consider solutions

that can archive a new document using only a small constant amount of data already archived.

Our second constraint is the use of an immutable data store as the underlying storage structure.

In this setting, updates effectively become new documents. This is a reasonable assumption

for a large class of applications. The two constraints work in tandem in the sense that any

system that allows to rewrite existing data easily has weak integrity and little protection against

tampering.
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Our third constraint is that the metadata is readable by a malicious attacker, who knows which

data blocks belong to each document. The attacker also knows the creation date of each data

block and can therefore order them chronologically. Our fourth constraint is that the system

operates on fixed-size data blocks.

Finally, our fifth constraint is that the communication protocol provides self-integrity, that is,

when fetching the key of a stored block B , the system must either return the same block B or

an error; it cannot return another data block B ′ �= B . In practice, this is achieved by having the

key computed as a cryptographically secure hash function of B , and have the client recompute

the hash from the data and check the matching key after every read operation. A malicious

server must be able to break the hash function in order to break this self-integrity. A related

assumption is that the attacker can tamper with data blocks, but not with metadata. Thus,

after an attack or failure, the system knows from the metadata which data blocks have been

corrupted or tampered with, i.e., the errors are erasures. We examine the consequences of

relaxing these assumptions in Sections 2.9 and 2.10 .

2.2.3 Snapshotting

If the state of the system can be cheaply snapshot, then tampering can be implemented

by reverting the system to an earlier state not containing the tampered data. Thus, with

immutable data structures, the best system will at most guarantee that data can only be

tampered by destroying all data stored after it. Perfect censorship-resistance is unattainable

in this context. Although this can be seen as an undesirable property, we argue that we cannot

achieve perfect CR without violating our first constraint. Moreover, digital storage capacity

and usage have increased at an exponential rate for the last 40 years and might do so for the

foreseeable future. This allows the possibility to provide comprehensive anti-tampering and

integrity quickly on a time scale.

2.3 Entanglement architecture using erasures codes

Definition 1. A (s, t ,e, p)-archive is a storage system where each archived document consists of

a code word with s source blocks, t tangled blocks, p parity blocks and that can correct e � p − s

block erasures.

When a document is archived, it is split into s ≥ 1 source blocks. Using the s source blocks

with t distinct old blocks already archived, a systematic maximum distance separable (MDS)

code [LC04] is used to create p ≥ s parity blocks which are then archived on the system. The

process is drawn in figure 2.1.

The code rate is s+t
s+t+p , but since only the parity blocks are archived, the storage rate on the

physical medium is s
p . An archived document can be recovered from s+ t or more of its blocks.

The code can correct p block erasures per document codeword, but since the source blocks
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Figure 2.1 – Encoding of a single document in STEP-archival

are not archived and are considered as erased, at most e � p − s block erasures per document

on the storage medium can be corrected.1 Note that increasing t does not increase storage

overhead or error-correcting capability, but does increase coding and decoding complexity.

An attacker can censor a document dk by erasing more than e blocks from it. However, by

entangling new documents with documents already archived, it might be possible for the

system to recover the deleted blocks by decoding other documents that use them. As an

example, consider the (1,3,2,3)-archive presented in Figure 2.2. Each document codeword

consists of one source block, three pointers to old blocks, and three parity blocks. Only the

parity blocks are stored when a new document is archived; the source block is not stored and

the pointer blocks were previously stored as parity blocks of older documents. Block 0 is a

known anchor that cannot be corrupted. If an MDS code is used, any four of the six stored

blocks belonging to a document are sufficient to recover it (i.e., e = 2). In Figure 2.2a, an

attacker wants to censor document d5 by erasing its blocks {2,7,11,13,14,15} from the archive.

However, although d5 cannot be recovered directly, all the blocks are recoverable: Block 2 can

be recovered by decoding d1 or d2, Block 7 can be recovered by decoding d3, d4 or d8, Block

11 can be recovered by decoding d4, Block 14 can be recovered by decoding d7, Block 15 can

be recovered by decoding d8, and in the last step Block 13 can be recovered by decoding d5.

Having been unable to erase d5, the attacker continues his attack more cleverly and further

erases Blocks 20, 21, 22 and 24, as illustrated in Figure 2.2b. Document d5 is now destroyed

irrecoverably, as are also d7 and d8 (the irrecoverable blocks and documents are shown in red).

Blocks 2, 7 and 11 are still recoverable, which means that the attacker could have irrecoverably

destroyed d5 without destroying them.

1It is also possible to use a code which is systematic for the old entangled blocks but not for the source blocks.
This allows us to puncture the code without decreasing its error-correcting capability since the source blocks must
no longer be erased.
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2.3. Entanglement architecture using erasures codes

(a) Blocks {2,7,11,13,14,15} are erased.
(b) Blocks {2,7,11,13,14,15,20,21,22,24} are
erased.

Figure 2.2 – (1,3,2,3)-archive. 4 out of 6 blocks are required to recover a document.
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Definition 2. A set of documents form an integrity set I if and only if, for all the documents in

I , at least e +1 blocks do not appear in any document of the complementary set I . We write

I (dk ) to express that a document dk belongs to I .

If an attacker wants to irrecoverably censor a document dk , he must partition the set of

documents in two: an integrity set I (dk ) of corrupted documents including dk , each with

at least e +1 erased blocks2, and the complementary set I (dk ) of uncorrupted documents

without any erased block.

Definition 3. Let A be the set of all (s, t ,e, p)-archives with K ≥ k archived documents and fixed

s, t ,e, and p3. We write Imin(dk ) to denote the size of the smallest integrity set of document dk

for a fixed archive a ∈A , Imin(dk )� min
1≤ j≤k

(Imin(d j )) for the size of the smallest of the integrity

sets of the first k documents for a fixed archive a ∈A , and maxImin(dk ) � max
a∈A

(Imin(dk )) for

the largest Imin(dk ) over all possible archives a ∈A . We write Imin and maxImin when K � k.

Note that Imin(dk ), maxImin(dk ), Imin and maxImin are nondecreasing functions of k. The

dependency between documents is not symmetric: if the smallest integrity set containing

document dk also contains document dl , the smallest integrity set containing dl does not

necessarily contain dk , and Imin(dl ) ≤ Imin(dk ).

Our goal is to ensure that the smallest integrity set is as large as possible for every document.

If the smallest integrity set is large, we guarantee data integrity, tamper resistance and censor

resistance at the same time: every document dk is as securely and reliably archived as the

smallest integrity set containing it. A large Imin with K � k guarantees that all old enough

documents have good integrity.

Another relevant parameter is the size of the integrity window required to irrecoverably delete

a document. The integrity window of an integrity set I = {di ,di1 ,di2 , . . . ,d j } where i < i1 < i2 <
·· · < j is W � {di ,di+1,di+2, . . . ,d j }, and its size is j − i +1. It is the number of documents,

including documents that are not deleted, from the oldest to the most recent document of a

given integrity set.

Definition 4. Let A be the set of all (s, t ,e, p)-archives with K ≥ k archived documents and fixed

s, t ,e, and p4. We write Wmin(dk ) to denote the size of smallest integrity window of document dk

for a fixed archive a ∈A , Wmin(dk )� min
1≤ j≤k

(Wmin(d j )) for the size of the smallest of the integrity

windows of the first k documents for a fixed archive a ∈A , and maxWmin(dk )�max
a∈A

(Wmin(dk ))

for the largest Wmin(dk ) over all possible archives a ∈ A . We write Wmin and maxWmin when

K � k.

2From our definition of integrity set, it is possible to delete e +1 blocks for every document in I without causing
damage outside I .

3What distinguishes the archives in A is which tangled blocks are selected for each document.
4See Footnote 3.
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From Figure 2.2b, we can see that the attack in red is optimal, thus Imin(d5) = 3 and Wmin(d5) =
4. In fact, it is not hard to show that irrecoverably destroying any of the first 5 documents of

the archive requires the deletion of blocks from at least three documents in a window of size at

least 4, thus Imin(d5) = 3 and Wmin(d5) = 4. Imin(d6) = 2 since d6 can be destroyed by deleting

the blocks {16,17,18,26} in documents d6 and d9.

The challenging part of our approach is thus to choose the pointers to entangled blocks in a

practicable way that provides good anti-tampering and data integrity. With a non-constant

number of pointers per document, maximum forward data integrity and anti-tampering is

possible: on an archive with s = 1 and e ≥ 1, one can use k −1 entangled blocks for document

dk , more precisely a pointer to the first parity block of each of the k −1 documents already

archived. If a censor wants to delete a document dk irrecoverably, it must corrupt all the

documents archived after dk . Of course, the number of pointers to tangled blocks in this

example grows linearly with the number of documents, which makes encoding and decoding

too complex to be of any practical value. Since we target practically implementable data

integrity and anti-tampering, we thus focus on archives with t constant and small.

2.4 Reconstruction algorithm

One of the interesting aspects of our approach is its asymmetry: while impossible for an at-

tacker to find the optimal strategy to irrecoverably tamper a target document dk in polynomial

time (unless P = NP), repairing the system if the damage done is recoverable is easy and doable

in linear time, as shown in Algorithm 1. The idea is first to scan the archive and build the set C

of corrupted documents with at most e erased blocks. We can then take any document d in C ,

remove it from C , decode it, recover its erased blocks, and update C by adding the corrupted

documents, if any, that previously had strictly more than e erased blocks but that now have

at most e. The algorithm stops when C is empty, at which point either all the erased blocks

are recovered or all the remaining corrupted documents have more than e erased blocks. The

following lemma is straightforward.

Lemma 5. Let B be the set of erased blocks, and C the corresponding set of corrupted documents.

The set of documents R irrecoverable by the reconstruction algorithm is the largest integrity set

I ⊆C whose set of erased blocks is a subset of B.

Proof. By design of the reconstruction algorithm, R is an integrity set whose set of erased

blocks is a subset of B . It is clear that R ⊇ I because the reconstruction will never be able to

recover any document in I . It is also clear that R ⊆ I , otherwise R ∪ I , which is an integrity set

whose set of erased blocks is a subset of B , would be larger than I .

In Figure 2.2a, the reconstruction algorithm can recover all the erased blocks, whereas in

Figure 2.2b it can recover the yellow blocks {2,7,11} but is incapable to recover the red blocks
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Algorithm 1: Reconstruction algorithm
input : e ← erasure decoding capability of the code

C ← set of corrupted documents in the archive

1 while C �= 
 do
2 pick an element d ∈C
3 decode d and recover its set of erased blocks B
4 forall the archived documents d ′ with at least one block in B do
5 if d ′ is corrupted and has at most e erased blocks then
6 C ←C ∪ {d ′}

7 C ←C \ {d}

Figure 2.3 – (1,2,1,2)-archive with dependency cycle.

{13,14,15,20,21,22,24}. The algorithm is highly parallelizable: in Figure 2.2a, it can recover

blocks {2,7,11,14,15} in parallel, after which it recovers Block 13 in a second step.

In certain cases, it is possible to recover the documents in an integrity set with more than

e erased blocks per document. Consider the small section of a (1,2,1,2)-archive shown in

Figure 2.3. If an attacker erases Blocks {1,2,4}, none of the three documents can be decoded

and recovered by itself. However, we can easily find a code (linear or nonlinear) such that

there is only one solution for the three erased blocks that results in three valid codewords. This

occurred because Blocks {1,2,4} form a dependency cycle between the three documents and

the attacker only erased blocks belonging to that cycle. However, even if there is only one solu-

tion for each erased block, the reconstruction algorithm will fail and reconstruction codeword

per codeword in not possible. Furthermore, a single erased block that is not constrained by

other documents is sufficient to ensure multiple solutions. In Figure 2.3, the attacker could

also have erased Block 3, which breaks the dependency cycle by adding a degree of freedom.

2.5 Optimal attack

The most natural way to represent a (s, t ,e, p)-archive is as a (t + p)-uniform hypergraph

H∗ = (V ∗,E∗), where the set of vertices V ∗ is the set of all archived blocks, and each document

dk corresponds to an hyperedge in E∗. However, the dual (t+p)-regular hypergraph H = (V ,E )
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is more conducive to analysis, thus it is the model used in this section. In this setting, the set

of vertices V is the set of all archived documents, and each archived block corresponds to an

hyperedge in E . Finding the best attack to censor a document dk irrecoverably corresponds to

finding the minimum subhypergraph V ′ of minimum degree at least e +1 containing dk . This

subhypergraph V ′ corresponds to the smallest integrity set Imin(dk ).

For simple undirected graphs, the problem of finding the minimum subgraph of minimum

degree ≥ d (MSMDd ), also called d-girth, has a long history starting from the work of Erdős

et al. [EFRS90] and Bollobás and Brightwell [BB89]. More recently, [APP+12] proved that for

d ≥ 3, MSMDd is NP-hard and cannot be approximated within a constant factor in polyno-

mial time if P �= NP. This was improved in [PSS13], where the authors showed that for d ≥ 3

and ε> 0 there is no polynomial-time algorithm with approximation ratio 2O (log1−ε n) unless

NP ⊆ DTIME
(
2O (log1−ε n)

)
, even with graphs with degree d or d +1. The authors also presented

a polynomial-time randomized approximation algorithm with ratio O
(

n
logn

)
, and a brute-force

polynomial-time deterministic approximation algorithm of ratio O
(

n logn
loglogn

)
for low-degree

graphs. The parametrized complexity of the d-girth problem was studied in [ASS12], where

the authors proved that the problem is W[1]-hard5 for general graphs, but fixed-parameter

tractable when graphs have bounded local tree width. From the discussion in [PSS13], opti-

mization of the d-girth problem for d ≥ 3 appears very hard, in the vein of other very hard

problems to approximate like maximum clique, chromatic number and longest path. However,

we note that for d = 2, the problem is the standard girth of a graph and corresponds to the

length of its shortest cycle, which is solvable efficiently by dynamic programming.

In this section, we consider a target document dk archived long enough, i.e., with K � k

documents archived after it. We mention that for general hypergraphs, contrary to graphs,

the 2-girth problem seems difficult as well, however we show that under certain conditions,

there exists a polynomial-time algorithm for the optimal attack on (s, t ,e, p)-archives with

e = 1. To prove this result, we present a polynomial-time algorithm to calculate the 2-girth of

multigraphs with loops, which appears to be new. We then show, using a reduction to the e+1-

girth problem, that for e ≥ 2 and t ≥ e +2, finding the optimal attack targeting document dk is

NP-hard, impossible to approximate within a constant factor in polynomial time if P �= NP,

and impossible to approximate with ratio 2O (log1−ε n) unless NP ⊆ DTIME
(
2O (log1−ε n)

)
.

Lemma 6. There exists a polynomial-time algorithm to calculate the 2-girth of a multigraph

with loops.

Proof. Let G = (V ,E) be a multigraph with loops. We consider the size g2 of the minimum

subgraph of minimum degree at least two that includes a target vertex dk . We can find the

2-girth over the multigraph by repeating the algorithm for all vertices. Furthermore, although

we omit the details, the vertices of the smallest subgraph can be found by keeping track of the

vertices in optimal paths during the execution of the algorithm.

5Consult [FG06] for a formal definition.

19



Chapter 2. STEP-archival: A Storage Model for Censorship-Resistance

(a) 2 loops at dk .

(b) Parallel edges from dk .

(c) dk part of a cycle.

(d) dk in the middle of a simple path ending at both sides with a
cycle, a loop or parallel edges.

(e) dk with a loop on one side of a simple path ending at the other
side with a cycle, a loop or parallel edges.

Figure 2.4 – Types of minimum subgraphs of minimum degree at least 2 in a multigraph with
loops.
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The five types of minimum subgraphs of minimum degree at least 2 in a multigraph with loops

are shown in Figure 2.4. If the multigraph has two loops at dk (Fig. 2.4a), then g2 = 1. If the

multigraph has less than two loops at dk but parallel edges from dk (Fig. 2.4b), then g2 = 2. If

none of the first two cases applies, then g2 = min(g c
2 , g d

2 , g e
2 ), where g c

2 is the smallest cycle

including dk (Fig. 2.4c), which can be found in polynomial time using dynamic programming,

g d
2 is the smallest simple path including dk in the middle and ending at both sides with a cycle,

a loop, or parallel edges (Fig. 2.4d), and g e
2 is the smallest path such that dk has a loop on one

side of a simple path ending at the other side with a cycle, a loop or parallel edges (Fig. 2.4e).

We now present Algorithm 2, a polynomial-time algorithm to calculate min(g d
2 , g e

2 ) when some

vertices can be traversed more than once. The algorithm calculates the smallest path starting

Algorithm 2: MSMD2 with repeated vertices (Types 2.4d and 2.4e)
input :Vi (dk ) ← the set of incident vertices to target vertex dk // dk ∉Vi (dk ) even if dk has a loop

output :min(g d
2 , g e

2 )

1 forall the vi ∈Vi (dk ) do
2 forall the v ∈V \ {dk ∪ vi } do
3 p(vi , v) ← length of shortest path from vi to v

4 p(vi , vi ) ← 0

5 forall the v ∈V \ {dk } do
6 c(v) ← length of shortest cycle including v

// The shortest cycle can be a loop or parallel edges if present

7 if there is no loop at dk then
8 return min

vi1
,vi2

∈Vi
vi1

�=vi2
v1,v2∈V \{dk }

(p(vi1 , v1)+c(v1)+p(vi2 , v2)+c(v2)+1)

9 else
10 return min

vi1
∈Vi

v1∈V \{dk }

(p(vi1 , v1)+c(v1)+1)

from each vertex incident to dk that ends with a cycle, a loop, or parallel edges, and does not

pass through dk . It returns the length of the smallest such path if dk has a loop (Type 2.4e),

and the sum of the two smallest such paths if dk is in the middle of the path (Type 2.4d). For

Type 2.4d, the algorithm does not verify that the two smallest paths are disjoint. However, if

they are not disjoint, it implies that dk is part of a cycle smaller than g e
2 , a case that is accounted

for when calculating the smallest cycle including dk (Type 2.4c). We conclude the proof by

pointing out that all the steps of Algorithm 2 are executed in polynomial time.

Corollary 7. If each block of a (s, t ,1, p)-archive belongs to at most two documents, then there

is a polynomial-time algorithm to find the smallest integrity set containing document dk .

Proof. If each block belongs to at most two documents, then each hyperedge has one or two

vertices, thus the hypergraph is a multigraph with loops. Since e = 1, the smallest integrity set

of this multigraph is its 2-girth which from Lemma 6 can be found in polynomial time.
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Figure 2.5 – Polynomial reduction from Imin(dk ) to the e +1-girth problem: incidence matrix
for the top of the archive.

Theorem 8. Let ε > 0, and consider a (s, t ,e, p)-archive with e ≥ 2, t ≥ e + 2, and K � k

documents archived after a target document dk . Finding Imin(dk ) is NP-hard. Furthermore,

approximating Imin(dk ) within constant factor in polynomial time is impossible if P �= NP, and

approximating Imin(dk ) with approximation ratio 2O (log1−ε k) in polynomial time is impossible

unless NP ⊆ DTIME
(
2O (log1−ε k)

)
.

Proof. Let G = (V ,E) be a graph with n vertices all of degree e +1 or e +2, and whose e +1-

girth is δ. We prove the theorem by reducing the smallest integrity set problem to finding

the (e + 1)-girth of G , which is NP−hard and hard to approximate in polynomial time if

e ≥ 2 [APP+12, PSS13]. To be precise, we reduce our problem to the (e +1)-girth problem that

includes a vertex v1 ∈V . This problem is as hard as the original e +1-girth, otherwise we could

solve it n times for the n vertices and solve the original problem. From the constraints of the

graph, we can bound the e +1-girth by e +2 ≤ δ≤ n. This graph has at most n(e+2)
2 ≤ ne edges.

We represent G using an incidence matrix Mn×ne , where each row identifies with a vertex,

each column with an edge, and mi j = 1 if vertex vi and edge e j are incident, and 0 otherwise.

Each row of M has either e +1 or e +2 ones.

We construct a (s, t ,e, p)−archive A from M , represented as the incidence matrix of its un-

derlying hypergraph. Figure 2.5 shows the incidence matrix of the top of the archive. Each

row represents a document (vertex), and each column a block (hyperedge). Element ai j = 1

if block b j belongs to document di , and 0 otherwise. The archive has p archived blocks per

document, and t bootstrap anchor blocks. The top of the archive has n(e +1) documents. For

each of the first ne documents, the t entangled blocks point to the t anchors (the big green

block 1ne×t at the top-left of the figure). For documents dne+1 to dn(e+1), we split the matrix

M in columns m1,m2, . . . ,mne , and use mi as part of the hyperedge of the first parity block

of di for i ∈ {1,2, . . . ,ne} (blue vertical rectangles in Figure 2.5). Since we need t pointers per

document, we add t −e−2 pointers to the first t −e−2 anchors for documents dne+1 to dn(e+1),

which explains our assumption that t ≥ e +2 (the green block 1ne×(t−e−2) at the bottom-left

of the figure). Since the degree of the vertices of G is e +1 or e +2, we add a pointer to the

last anchor block for document dne+i if vi ∈V has degree e +1 (pink block in the figure). This

ensures that each document has exactly t pointers.
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Figure 2.6 – Polynomial reduction from Imin(dk ) to the e +1-girth problem: incidence matrix
for the entire archive.

Figure 2.6 shows the incidence matrix of the entire archive, which we extend by adding �np
t �+1

blocks 1n(e+1)×t of pointers and a sufficient number of documents to cover all such blocks. The

first such block points to the t anchor blocks, and we cascade the other �np
t � blocks under the

parity blocks of documents dne+1 to dn(e+1). The number of archived documents is therefore

n(e +1) ·
(⌈np

t

⌉
+2

)
∈O (n2). (2.1)

We now explain the motivation behind all these gadgets. We want to find Imin(dk ) where

dk � dne+1. We can erase all the parity blocks from documents d1 to dne . This corresponds

to the integrity region inside the thick border in Figure 2.6. It is clear that we erased at least

e +1 blocks per document from d1 to dn(e+1), and no block in the other documents. Hence,

Imin(dk ) ≤ n(e +1). By construction, all the blocks outside the integrity region are used in

at least n(e +1)+1 documents, thus none of them can be part of the smallest integrity set

containing dk . We can therefore limit our search for the smallest integrity set inside the

integrity region.

We now reduce Imin(dk ) to the (e +1)-girth of G . Assume without loss of generality that there

is exactly one smallest subgraph H , of size δ, of minimum degree at least e +1 in G . This

minimum subgraph H has at most δ·(e+2)
2 edges. By construction of the archive, it follows that

we can form an integrity set by erasing the blocks corresponding to edges in the minimum

subgraph. This erases one document per vertex in H (dne+i is erased if and only vi is in H),

and also erases one document per edge in H (di is erased if and only ei is in H). Thus,

Imin(dk ) ≤ δ+ δ · (e +2)

2

≤ δ

(
1+ e +2

2

)
.

(2.2)

It is not possible for an integrity set of dk to contain less than δ documents between dne+1

and dn(e+1), because it would imply that the (e +1)-girth of G is smaller than δ. The smallest
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subgraph H has at least δ(e+1)
2 edges. By construction, it means that the smallest integrity set

must include at least δ(e+1)
2 blocks in δ+ δ(e+1)

2 documents (one erased document for each

edge and vertex in H), thus

Imin(dk ) ≥ δ+ δ · (e +1)

2

= δ

(
1+ e +1

2

)
.

(2.3)

Putting (2.2) and (2.3) together and solving for δ, we obtain

Imin(dk )

1+ e+2
2

≤ δ≤ Imin(dk )

1+ e+1
2

. (2.4)

Hence, if we could calculate Imin(dk ) in polynomial time, we could also approximate δ within a

constant factor in polynomial time, which is not possible if P �= NP. Thus, calculating Imin(dk )

is NP-hard. Furthermore, if we could approximate Imin(dk ) in polynomial time, we could also

approximate δ in polynomial time. The approximation hardness results from [APP+12, PSS13]

therefore also apply to our problem.

We complete the proof by mentioning that finding Imin(dk ) for 1 ≤ k < ne +1 is also hard. The

proof uses the same construction, but reduces Imin(dk ) to the d-girth problem such that the

smallest subgraph must contain a specific edge. This forces the erasure of the parity block of

dk that contains the edge. Without this condition, if the edge incident to dk is not in H , then

Imin(dk ) = 1.

We mention to conclude this section that verifying that a set of documents is an integrity set is

in P from the reconstruction algorithm, hence finding Imin(dk ) is NP-complete.

2.6 Suboptimal attacks

Because we do not know any good polynomial-time algorithms to optimally solve the girth

problem relevant to attacking our system (or even to find a good approximative solution), we

turn to more specific techniques, taking the special structure of our archive into account. In

this section we consider several linear-time heuristics, and use them in later sections to study

entanglement strategies.

All the heuristics formulate the attack as a search problem on a tree of partial solutions. A

partial solution consists of a set of target documents we are currently committed to destroy,

and a set of erased blocks. A solution is complete if the set of erased blocks is sufficient to

make the target document set irrecoverable, more precisely an integrity set with at least e +1

erased blocks per document. A partial solution must be completed by deleting some blocks
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referenced by recoverable documents. To make sure the target document set is not recoverable,

no destroyed blocks must be referenced by documents outside of the target set; every time we

choose to destroy a new block, we must commit to destroy all documents referencing it.

From a partial solution, every possible choice of new blocks to erase gives a new partial (or

possibly complete) solution, forming a tree of solutions. For the initial solution, we take the

set of documents to censor, along with a (yet) empty set of erased blocks.

Observe that, except at the start of the algorithm, the target set can be unambiguously com-

puted from the set of erased blocks. Thus, the tree is finite (and is, in fact, a lattice rather than

a tree, as two different paths may lead to the same partial solution, differing only in order of

processing). This lattice is finite, having at its other extremity the worst case where the entire

system has been erased.

2.6.1 Greedy Attacks

The simplest way to explore this lattice is with a greedy algorithm. We iteratively walk down the

lattice of solutions along a single path, eventually reaching a complete solution. The greedy

attack framework is described in Algorithm 3. For convenience, we maintain the set C of all

corrupted targets and the set R of corrupted but decodable targets. The attack is complete

when R becomes empty, at which point all the documents in C are irrecoverable. Until then,

we iterate over R in chronological order, and for each document in it, we erase the minimal6

number of blocks required to make the processed document impossible to directly decode. As

there will most of the time be more candidate blocks for deletion than the minimum required,

we use one of four simple heuristics to choose the blocks to delete. This leads to four variants

of a greedy attack: minimum attack, leaping attack, creeping attack, and tailored attack.

Minimum Attack

The minimum attack, described in Function 4, minimizes the set C of corrupted target docu-

ments, by always prefering blocks that are referenced by the least amount of documents not

already in the target set.

Leaping Attack

The leaping attack, described in Function 5, is based on the intuition that it is easier to

attack recent documents than older ones. We show in Section 2.8 that the leaping attack is

especially suitable to damage a system built using an uniform random selection of pointers.

The score of each block is the timestamp of the oldest document in C to reference it, with

higher timestamps more desirable. Intuitively, we try to leap over documents by moving

min(R) forward in time as fast as possible toward the end of the archive. When all documents

6as dictated by the code parameters, and the number of blocks already erased in earlier steps
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Algorithm 3: Greedy Attack Framework
input :k ← the index of the target document

e ← erasure decoding capability of the code

output :B // set of erased blocks making dk irrecoverable

note :documents(b) is the set of documents with b as a block

1 R ← {k} // Corrupted but decodable targets

2 C ← {k} // All corrupted targets

3 B ←
 // Erased blocks

4 while R �= 
 do
5 r ← min(R)
6 while dr has less than e +1 erased blocks do
7 scor e ←

8 forall the blocks b not erased in dr do
9 score[b] ← heuristic(C ,B ,b)

// Available heuristics:

// MinimumAttack, LeapingAttack,

// CreepingAttack, TailoredAttack

10 b ← argmin
b

score[b]

11 B ← B ∪ {b}
12 R ← R ∪ (documents(b) \C )
13 C ←C ∪documents(b)

14 R ← R\{r }

15 return B

Function 4: MinimumAttack(C ,B ,b)
1 return |C ∪documents(b)|

referencing a block are already in C , the block score is the minimum of an empty set of

integers, which we take as infinity. In this case, the block is free and can thus be erased without

propagation to uncorrupted documents. Thus, free blocks are always erased in priority (free

blocks are implicitly deleted in priority for the minimum attack as well).

Observe that a document can always be made undecodable by deleting all its parity blocks,

without having to delete any pointers. This is because, as defined in Section 2.3, the amount

of parity blocks p is strictly greater than the number of correctible errors e, unless in the

degenerate case s = 0 where the system would not be able to store any new information.

Also, the oldest document referencing a block is always the primary document of this block. It

follows that with the leaping heuristic, parity blocks are always favored over pointers unless all

the older documents using a pointed block are already in C .

Function 5: LeapingAttack(C ,B ,b)
1 N ← document s(b) \C
2 if N =
 then
3 return −∞ ; // free block

4 else
5 Return 0−min(N )
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Creeping Attack

The creeping attack, described in Function 6, intuitively tries to keep the set of corrupted

documents C as compact as possible in time. We will see in Section 2.7 that the creeping attack

is effective against window-based entanglement strategies. The creeping attack is similar in

essence to the dual of the leaping attack. However, simply mirroring the min-max behavior

of the leaping attack does not give a useful algorithm, as it can cause C to grow fast and far

in the past. We could explicitly forbid the algorithm from targeting documents older than

the initial target (this constraint is implicit in the leaping attack), but instead we address

this shortcoming by minimizing the range of C . Although this is not explicitly written in

the algorithm, when two blocks have the same cost, the algorithm erases the block with the

smallest |C ′|. Thus, as for the leaping attack, the free blocks that do not propagate to other

documents are erased in priority.

Function 6: CreepingAttack(C ,B ,b)
1 C ′ ←C ∪documents(b)
2 return max(C ′)−min(C ′)

Tailored Attack

Although we study pointers selected uniformly at random in Section 2.8, here we briefly

mention that we can calculate the expected number of times a parity block is used as a

pointer by younger documents (Lemma 14). This allows us to estimate, when we erase a

block, the propagation of the attack to all the documents used by that block. This attack,

tailored to uniformly random entanglement, is described in Function 7 and further discussed

in Section 2.8.

Function 7: TailoredAttack(C ,B ,b)
input : t ; // Number of pointers per document

input :K ; // Number of archived documents

note :documents(b) is the set of documents with b as a block
blocks(c) is the set of blocks of document dc

1 cost ← 0
2 B ′ = B ∪b
3 C ′ =C ∪documents(b)
4 forall the c ∈C ′ do
5 yettoerase = max(0,e +1−|B ′ ∩blocks(c)|)
6 cost ← cost+1+yettoerase · ln

(
1+ K−c

c

)t

7 return cost

2.6.2 Depth-first search

The greedy algorithms are fast since their complexity is linear in the number of archived

documents. We implemented a recursive depth-first search over the tree of partial solutions

using our four heuristics. The first complete solution produced always matches the output of
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Figure 2.7 – Trace of the depth-first search leaping attacks for twelve (1,3,2,3)−archives with
104 documents, target document d103 and pointers chosen uniformly at random. The algo-
rithm traversed the entire tree in ≈ 104 seconds in the worst case.

the greedy attack. The tree is then backtracked, looking for smaller integrity sets. Since the

cost function |C | is nondecreasing as we go down the tree, we can perform branch pruning as

soon as the partial cost exceeds the cost of the currently best known solution.

This algorithm thus offers a tradeoff between time and solution quality, at the expense of

increased memory usage. Figure 2.7 shows the progression of solution quality over time for

twelve randomly selected archives. Unfortunately, as shown in this sample run, even with

pruning depth-first search is expensive and does not always progress to the optimal solution

quickly. Solution quality7 is not proportional to the time spent attacking. Instead, the solution

improves in unpredictible large steps. Intuitively, this can be explained by the fact that more

recent documents are less protected, and much easier to attack. By searching depth-first, we

spend a lot of effort trying to optimize the later stages of the attack, which may already be

close to optimal, whereas the decisions with the most impact on the overall cost are the ones

taken at the beginning of the attack.

7as the inverse of the size of the integrity set.
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2.6.3 Bounded breadth-first search

The inefficiency of depth-first search motivates the investigation of bounded breadth-first

search algorithm. For large systems, it is impossible to traverse the entire solution tree,

and bounded breadth-first search algorithms converge much faster than depth-first search

protocols. We thus keep a collection of partial attack states, ranked according to some of our

heuristics, and expand the most promising partial solutions first. We expand all the partial

solutions into their child states at once, then only retain the best ones, up to the selected

buffer size. We thus deal with a series of sets of solutions, for which all solutions in the same

set are located at the same depth in the tree. This simplifies the analysis of the behavior: we

can enforce a constant maximum width, for all depths, on the subtree we are exploring. We

cannot apply the same pruning strategy as in the depth-first search, because no complete

solution is known before the end of a run, but we can control how much time we spend in the

most critical part of the search tree.

2.6.4 Performance evaluation

In order to measure the effectiveness of our attacks and reconstruction algorithm, we simu-

lated a storage system. The simulation keeps track of the dependencies between hypothetical

blocks and documents, and the state (healthy or erased) of the data blocks. Recovery is per-

formed according to Algorithm 1 by assuming an MDS code of given parameters; no actual

data storage or decoding is performed.

2.7 Proximity entanglement

When a document is not being pointed to, it can always be tampered with, without propagation.

Thus, it makes sense to ensure that a new document will be quickly pointed to. A potential

solution is to choose the entangled blocks using a sliding window bounding the pointers to

documents in the recent past. We show in this section that this approach has the drawback that

an attacker can irrecoverably tamper documents, with an efficient attack to do so, concentrated

over the close vicinity of the target document.

Definition 9. We define the entangled and parity blocks of document dk for a (s, t ,e, p)-archive

as

dk � (t 1
k , t 2

k , . . . t t
k ,b1

k ,b2
k , . . . ,bp

k ). (2.5)

Consider a (s, t ,e, p)-archive with a sliding window of size w . In other words, the pointers

in document dk do not point to documents older than dk−w . The first thing to consider is

the number of pointers per document. If t < p, in other words if the number of pointers per

document is smaller than the number of archived blocks per document, then with a sliding
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window some blocks will never be pointed to. These unprotected blocks can thus be deleted

without propagation to blocks from other documents. If t = 1, for instance, then maxImin = 2

and maxWmin = w+1. This can be achieved, for instance, by taking the single entangled block of

document dk from the parity blocks of document dk−w . Using this structure, an attacker who

wants to delete dk irrecoverably can do so by deleting the parity blocks dk and the unprotected

parity blocks of dk+w . It is possible to obtain a larger minimum integrity set and/or a larger

minimum integrity window for some documents, but in this case other documents will remain

completely unprotected.

We now increase the number of pointers per document to t = p and organize the pointers so

that every block is pointed to at most once. We show with the next lemma that the size of the

best integrity windows increase but remains bounded.

Lemma 10. Consider a (s, t ,e, p)-archive with p ≥ 3, t = p, a sliding window of size w > p, and

such that every block in the archive is pointed to at most once. Then,

2w −p +1 ≤ maxWmin ≤ 2w.

Proof. We first prove the upper bound. If there are less than 2w −1 documents archived after

dk , then the parity blocks from dk and the documents that follow can be erased. If there are

more than 2w −1 documents archived after dk , then we erase the parity blocks in documents

dk to dk+w−1 and erase the tangled blocks (pointers) in documents dk+w to dk+2w−1. There

are at least p > e erased blocks per document, and the code can only correct e block erasures

per codeword. From the sliding window, none of the erased blocks from the first w documents

are pointed by a document newer than dk+2w−1, and none of the erased pointers from the

last w documents points to documents older than dk . To complete the proof, we observe that

some of the pointers from the last w documents might also point to parity blocks from other

documents among the last w , but these parity blocks cannot be at the same time pointed

to by documents newer than dk+2w−1 because we assumed that every block in the archive is

pointed to at most once. Hence, maxImin ≤ maxWmin ≤ 2w

For the lower bound, we construct (s, t ,e, p)-archives with s = 1. Let b1
k ,b2

k , . . . ,bp
k be the parity

blocks of document dk . For every k, the entangled blocks of dk are set to t i
k = bi

k−w+i−1 for

i ∈ {1,2, . . . , p − 1} and t p
k = bp

k−1. We set bi
j � ba when j < 1, thus for the first w archived

documents, some of the entangled blocks point to an anchor block ba . It should be clear that

every parity block of dk will eventually be pointed to exactly once after w additional blocks

have been archived.

Since the entanglement structure is the same for every document dk , we can without loss

of generality attack dk by tampering with documents archived after dk . Thus, to erase

dk , its p parity blocks must be erased. These parity blocks are used in blocks dk+1 and

dk+w−p+2,dk+w−p+3, . . . ,dk+w−1,dk+w , which must be destroyed.

Consider now block dk+w−p+1; we show that we achieve the lower bound whether we erase it
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or not.

If dk+w−p+1 is erased, then the entangled block to document dk+w−p can be erased, but the

other entangled blocks come from documents older than dk and must be kept. That leaves

p −1 parity blocks that must be deleted. The parity blocks of document dk+w−p+1 are pointed

to by blocks in documents dk+w−p+2 and

dk+w−p+2+w−p+1,dk+w−p+2+w−p+2, . . . ,

dk+w−p+2+w−2,dk+w−p+2+w−1.

By taking the first p − 1 such blocks, the smallest integrity window for dk must contain a

document at least as recent as dk+w−p+2+w−2 = dk+2w−p .

If dk+w−p+1 is not erased, then the pointer from document dk+w−p+2 to document dk+w−p+1

cannot be erased, but since dk+w−p+2 is erased, p of its other blocks must be erased. Its pointer

to dk is already erased, but its other entangled blocks come from documents older than dk

and must be kept. We must thus erase p −1 of its parity blocks, thus a document as least as

new as dk+w−p+2+w−1 = dk+2w−p+1 must be erased.

Hence,

Wmin(dk ) ≥ min(2w −p +1,2w −p +2) = 2w −p +1. (2.6)

Since the integrity is the same for every old enough document, we conclude that

maxWmin ≥Wmin(dk ) ≥ 2w −p +1. (2.7)

Surprisingly, having more than p entangled blocks per document does not appear to provide

more integrity, and even becomes harmful as t increases, as shown next.

Lemma 11. Consider a (s, t ,e, p)-archive with a sliding window of size w and t = p·w entangled

blocks per document. Then,

maxImin = maxWmin = w +1.

Proof. Since t = p ·w , the entangled blocks of every document must point to every parity block

of every document in its sliding window. For the first w archived documents, the entangled

blocks that should be pointing to documents that do not exist do instead point to an anchor

block. Since the entanglement structure is the same for every document dk , we can without

loss of generality attack dk by tampering with documents archived after dk . Thus, to erase dk ,

e +1 of its p parity blocks must be erased. Since every block in dk in used as an entanglement

block in documents dk+1, . . . ,dk+w , this is sufficient to erase dk irrecoverably.
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If w is small, a malicious customer is capable of censoring a newly archived document dk at

anytime in the future by archiving 2w −1 junk documents immediately after dk . Allowing

several pointers to point to the same parity block does not appear make this attack more

difficult: if the pointers are bounded to w documents in the past, then the anti-tampering

protection is also bounded.

2.7.1 Random entanglement within a sliding window

With a small sliding window, we can explore the search tree exhaustively. To illustrate the

previous results, Figure 2.8 shows the result of the optimal attack over (1, t ,2,3)-archives with

105 documents, t ∈ {1,2, . . . ,30} and entangled blocks chosen at random in a sliding window of

size w = 10. The attack targets document d1000. For each value of t , the figures show a box-

and-whisker8 plot for 1000 simulations. Figure 2.8a shows how the integrity sets vary, whereas

Figure 2.8b focuses on the integrity windows. The green squares in Figure 2.8a represent

the best regular entanglement within the window (see Section 2.7.2). The figures illustrate

Lemmas 10 and 11: the median integrity size (integrity window) first increases quickly and

then decreases to Wmin(d1000) = Imin(d1000) = w +1 = 11 as the number of pointers increases.

The large maximal integrity windows for small t do not contradict the lemmas, because our

optimal algorithm minimizes the size of the integrity set without considering the integrity

window.

Figure 2.9 shows the result of min
990≤k≤1010

Imin(dk ) with the same simulation parameters. The

attack sequentially targets di for 990 ≤ i ≤ 1010, and shows the size of the smallest integrity set

among the targeted documents. Compared to Figure 2.8, we can see that with few pointers,

the probability that one of the documents in the interval is weakly protected is high. As the

number of pointers increases, the protection from document to document becomes more

uniform, and Figures 2.8 and 2.9 have the same behavior.

Figures 2.10 and 2.11 respectively show the result of the creeping and leaping attacks for

the same system parameters, respectively. It shows the general efficiency of the creeping

attack, and the inefficiency of the leaping attack when t is small. With large t , however, the

randomness in pointer selection disappears and both greedy attacks behave like the optimal

attack.

2.7.2 Regular entanglement within a sliding window

Instead of choosing the pointers randomly within the sliding window, we can use the same

entanglement structure for each document. We call this strategy regular entanglement. For

8Showing the minimum, first quartile, median (in blue), third quartile, interquartile range (in orange) and
maximum across all simulation runs.
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(a) Size of the smallest integrity set Imin(d1000). The green squares represent the size of the smallest
integrity sets for the best regular entanglement within the window (see Section 2.7.2).
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(b) Size of the integrity windows for the integrity sets found in Figure 2.8a.

Figure 2.8 – Optimal attack for 1000 (1, t ,2,3)-archives with a sliding window of size w = 10
and t ∈ {1,2, . . . ,30}. The archive contains 105 documents, and the attack targets d1000. The
box-and-whisker plots show the minimum, first quartile, median (in blue), third quartile,
interquartile range (in orange) and maximum across all simulation runs.
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(a) Distribution of min
990≤k≤1010

Imin(dk ). The green squares represent the size of the smallest integrity sets

for the best regular entanglement within the window (see Section 2.7.2).
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(b) Size distribution of the sliding windows for the integrity sets found in Figure 2.9a.

Figure 2.9 – Optimal attack for 1000 (1, t ,2,3)-archives with a sliding window of size w = 10
and t ∈ {1,2, . . . ,30}. The archive contains 105 documents.34
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(a) Size of the smallest integrity set Imin(d1000).
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(b) Size of the integrity windows W (d1000) for the integrity sets found in Figure 2.10a.

Figure 2.10 – Creeping attack for 1000 (1, t ,2,3)-archives with a sliding window of size w = 10
and t ∈ {1,2, . . . ,30}. The archive contains 105 documents, and the attack targets d1000.
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(a) Size of the smallest integrity set Imin(d1000).
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(b) Size of the integrity windows W (d1000) for the integrity sets found in Figure 2.11a.

Figure 2.11 – Leaping attack for 1000 (1, t ,2,3)-archives with a sliding window of size w = 10
and t ∈ {1,2, . . . ,30}. The archive contains 105 documents, and the attack targets d1000.
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instance, with t = 3 pointers and a sliding window of size w = 10, the regular structure

(t 1
k � b1

k−1, t 2
k � b2

k−3, t 3
k � b3

k−10) (2.8)

gives maxImin = 8, i.e., the smallest integrity set of any document archived long enough has

size eight. This is the best regular structure for (1,3,2,3)-archives and w = 10, although it is

not unique. The green squares in Figures 2.8a and 2.9a show the size of the smallest integrity

sets for the best regular entanglement structures for (1,3,2,3)-archives as the number of

pointers per document increases from 1 to 30. The light green squares are lower bounds since

we did not explore all the possible regular structures for the corresponding values of t . In

this example, regular entanglement is more robust than random entanglement with a small

number of pointers, but with a lot of pointers both strategies are equivalent. We mention to

conclude this section that the creeping attack always works well for regular entanglement

within a sliding window. The leaping attack, however, performs poorly and will generally

propagate from the target document to the end of the archive.

2.8 Random entanglement

In this section, we study the impact of uniformly random entanglement. In practice, choosing

entangled blocks uniformly at random offers two important advantages over highly structured

entanglement. First, a structure with randomness prevents the attacker from planning the

attack in advance, for instance by using amortized cost expensive pre-computations tied to

the system structure. Second, a deterministic structure is harder to implement and maintain

in real-time in a large-scale distributed setting. Conversely, uniformly random entanglement

has two drawbacks. The first is that it takes an increasingly longer time to protect young

documents as the archive increases. The second drawback, as illustrated in the previous

section, is that structured entanglement within a sliding window is much more robust than

random entanglement.

Uniformly random entanglement is well-suited for mathematical analysis. We first show a

phase transition for the leaping attack as the number of pointers reaches a threshold. Passed

that threshold, an attacker who wants to erase a document must corrupt a constant fraction of

all documents archived after it. We then provide numerical evidence and conjecture that this

phase transition exists for the optimal attack, although the proof has eluded us so far.

Suppose that we want to censor document dk on a (s, t ,e, p)-archive by deleting parity blocks

from it. Let Li > k be defined such that dLi is the i -th document having a pointer to any of the

parity blocks of dk for i ≥ 1. If the pointers to entangled blocks are assigned randomly among

all the blocks already archived, then the following result can be established.
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Lemma 12. If the pointers for a (s, t ,e, p)-archive are chosen uniformly at random, then

E [Li ] =∞ if t = 1;

E [Li ] ∼ k
(
1+ 1

t−1

)i
if t > 1 and i ∈ o(k).

(2.9)

Proof.

Case i = 1. We consider the random variable L′ ≥ 1 defined as

L′ � L1 −k. (2.10)

Since dk+L′ is the first document pointing to any of the parity blocks of dk , all the pointers

from documents dk+1 to dk+L′−1 cannot point to dk . It follows that

Pr[L′ = l ] =
(

k −1

k

)t

·
(

k

k +1

)t

· . . . ·
(

k + l −3

k + l −2

)t

·
(
1−

(
k + l −2

k + l −1

)t )

=
(

k −1

k + l −2

)t (
1−

(
k + l −2

k + l −1

)t )

= (k −1)t ·
(

1

(k + l −2)t −
1

(k + l −1)t

)
(2.11)

The expectation of this random variable is

E [L′] =
∞∑

l=1
l ·Pr[L′ = l ]

= (k −1)t
∞∑

l=1

(
l

(k + l −2)t −
l

(k + l −1)t

)

= (k −1)t
∞∑

l=k−1
l−t .

(2.12)

The series diverges with t = 1, whereas when t > 1 we can bound E [L′] by

(k −1)t
∫∞

k−1
l−t dl ≤ E [L′]

≤ (k −1)t
∫∞

k−1
(l −1)−t dl

−(k −1)t · (k −1)−t+1

−t +1
≤ E [L′] ≤−(k −1)t · (k −2)−t+1

−t +1
k −1

t −1
≤ E [L′] ≤ k −1

t −1
·
(

k −1

k −2

)t−1

.

(2.13)
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Using (2.13), we obtain

E [L′] ∼ k

t −1
(2.14)

and from (2.10) we can conclude that

E [L1] ∼ k

(
1+ 1

t −1

)
. (2.15)

Case i > 1. Since E [L1] =∞ when t = 1, it is clear that E [Li ] =∞ when t = 1 and i > 1 . For

t > 1, we prove the result by strong induction on i . Since the basis step was done for the case

i = 1, we can assume that the property is true for i = 1,2, . . . ,n and prove the property for n +1.

Using the iterated expectation, we can write

E [Ln+1] = E [E [Ln+1 | L1]]

= ∑
l1≥k+1

Pr[L1 = l1] ·E [Ln+1 | L1 = l1]. (2.16)

The quantity E [Ln+1 | L1 = l1] corresponds to the expected position of the (n+1)-th document

pointing to dk given that dl1 is the first document pointing to it. Since the pointers are

chosen randomly, this is equivalent to the expected position of the n-th document pointing to

document dl1 . Since the property is true for i = n from the induction hypothesis, it follows

that

E [Ln+1] = ∑
l1≥k+1

Pr[L1 = l1] ·
[

l1 ·
(
1+ 1

t −1

)n

+o(k)

]
. (2.17)

As done in (2.10) for the case i = 1, we use the random variable L′ = L1−k and rewrite (2.17) as

E [Ln+1] = ∑
l≥1

Pr[L′ = l ] ·
[

(l +k) ·
(
1+ 1

t −1

)n

+o(k)

]

=
(
1+ 1

t −1

)n

E [L′]

+
[

k

(
1+ 1

t −1

)n

+o(k)

] ∑
l≥1

Pr[L′ = l ].

(2.18)

where Pr[L′ = l ] is defined as in (2.11).

From (2.14), the first term of (2.18) can be written as

(
1+ 1

t −1

)n

E [L′] =
(
1+ 1

t −1

)n k

t −1
+o(k) (2.19)
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whereas from (2.11) the second term of (2.18) can be written as

[
k

(
1+ 1

t −1

)n

+o(k)

] ∑
l≥1

Pr[L′ = l ]

=
[

k

(
1+ 1

t −1

)n

+o(k)

]
(k −1)t

·
∞∑

l=1

(
1

(k + l −2)t −
1

(k + l −1)t

)

= k

(
1+ 1

t −1

)n

+o(k).

(2.20)

Putting (2.19) and (2.20) together, we can conclude that

E [Ln+1] =
(
1+ 1

t −1

)n k

t −1
+k

(
1+ 1

t −1

)n

+o(k)

= k

(
1+ 1

t −1

)n (
1

t −1
+1

)
+o(k)

= k

(
1+ 1

t −1

)n+1

+o(k)

∼ k

(
1+ 1

t −1

)n+1

.

(2.21)

Suppose now that we want to erase a chosen parity block b in document dk , and let us define

Mi > k such that dMi is the i -th document having a pointer to block b for i ≥ 1. With pointers

chosen uniformly at random, we obtain the following result.

Lemma 13. If the pointers for an (s, t ,e, p)-archive are chosen uniformly at random, then

E [Mi ] =∞ if t ≤ p;

E [Mi ] ∼ k
(
1+ p

t−p

)i
if t > p and i ∈ o(k).

(2.22)

Proof. The lemma can be proved directly in a similar fashion as Lemma 12, although this

results in a rather cumbersome proof.

Instead, we prove the lemma when t is a multiple of p. For large enough k, the pointer

behavior of an archive with p parity blocks and t pointers per document, if t is a multiple of

p, is similar to the pointer behavior of an archive with 1 parity block and t ′ = t
p pointers per
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document. Hence, from Lemma 12 we obtain

E [M1] ∼ k

(
1+ 1

t ′ −1

)i

∼ k

(
1+ 1

t
p −1

)i

∼ k

(
1+ p

t −p

)i

.

(2.23)

Let Nl , l > 0, be the number of documents having a pointer to a parity block of document dk

once document dk+l is reached. The following result can be established.

Lemma 14. Consider a (s, t ,e, p)-archive with the pointers chosen uniformly at random. If

l ∈O(k), then

E [Nl ] ∼ ln

(
1+ l

k

)t

. (2.24)

Proof. The probability that at least one block of document dk+m points to one of the parity

blocks of dk for m > 0 is

1−
(

m +k −2

m +k −1

)t

, (2.25)

thus

E [Nl ] =
l∑

m=1

(
1−

(
m +k −2

m +k −1

)t )

= l −
l∑

m=1

(
m +k −2

m +k −1

)t

= l −
l∑

m=1

t∑
j=0

(
t

j

)
· (−1) j

(m +k −1) j

= l −
l∑

m=1

(
1− t

m +k −1
+o(k−1)

)
.

(2.26)

Since by assumption l ∈O(k), it follows that

E [Nl ] = l − l + t
l∑

m=1

1

m +k −1
+o(k)

= t (Hl+k−1 −Hk )

(2.27)

where Hn is the n-th partial sum of the harmonic series, which can be bounded by Hn =
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lnn +o(n) [GKP94]. We can therefore conclude that

E [Nl ] = t (ln(l +k −1)− ln(k))+o(k)

∼ t ln

(
1+ l

k

)
.

(2.28)

Corollary 15. Let i be a positive integer. The expected number of documents in the archive

required before the parity blocks of document dk are pointed to i times is

Di ∼ k ·
(
e

1
t

)i
. (2.29)

Proof. Using Nl = i in Lemma 14 leads to

l ∼ k(e
i
t −1), (2.30)

thus

Di = k + l

∼ k +k(e
i
t −1)

= k
(
e

1
t

)i
.

(2.31)

To illustrate the previous lemmas, consider a (1,4,2,3)-archive with 10 million documents. At

that point, when a new document is archived, from Lemma 12 we can expect that its parity

blocks will be pointed to for the first time when the archive reaches 15 million documents, and

for the second time when it reaches 22.5 million documents. From Lemma 14, the expected

number of archived documents required until there is one pointer to its parity blocks is 13.96

million, and 19.48 million documents until there are two pointers to its parity blocks. The

difference from the results of Lemmas 12 and 14 is due to the skewness of the probability

distribution. From Lemma 13, the expected number of archived documents required before

a chosen parity block of that file is pointed to the first time is 40 million. As the archive gets

bigger, it takes an increasingly long time before a document is pointed to, and during that time

it can be tampered without propagation to any other document in the archive.

The increasing intervals before documents get pointed to suggest a strategy for an attacker

who wants to destroy a document: the leaping attack. When executing the leaping attack,

the attacker moves away from dk towards the most recent documents in chronological order,

making increasingly larger leaps until it reaches documents that have not been pointed to yet.

Using the results presented so far in this section, we prove that when the number of pointers
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per codeword is small enough, the leaping attack can erase a file permanently by deleting a

sublinear number of other files in the archive.

Theorem 16. Suppose that an attacker wants to erase document dk from a (s, t ,e, p)-archive

with uniformly random pointers, and that the number of documents archived after dk is K � k.

If the number of pointers per document is chosen such that t < 1
lnr , where r is the largest real

root of the polynomial xp+1 −xp −xe +1− 1
p , then E [Imin(dk )] ∈ o(K ).

Proof. We split the leaping attack into levels 1,2,3, ... and count, for level n, the number of

documents that need to be corrupted between documents dkn−1 and dkn , where

kn = k
(
e

1
t

)n
. (2.32)

We choose this specific kn because from Lemma 14 and Corollary 15, we can expect that one of

the parity blocks from a document in level l will be pointed to once in each subsequent level.

Since the number of documents at each level increases by a factor of e
1
t , the essence of the

proof is that the maximum number of documents that need to be corrupted by an attacker at

each level grows at a slower rate than e
1
t if the number of pointers per document is too small.

Let d be an intermediate document to be erased at level n of the leaping attack. This means

that at least one of the pointer blocks of d was already erased when an older document was

erased earlier in the attack. Thus, at most e additional block must be further erased from d . It

is expected that one document per level greater than n will point to a parity block of d , but

since the attacker can choose to erase any e of the p parity blocks, it can skip the first p − e

times that a block of d is pointed to, and will propagate the attack to e documents, one in each

level from n+p −e +1 to n+p. Once a block is erased, the probability that it is pointed to by a

document at each subsequent level is 1
p . Let xn be the expected number of documents that

need to be erased at level n. From the previous discussion, xn can be upper bounded by the

recurrence relation

xn = xn−p+e−1 +·· ·+xn−p + 1

p

n−p−1∑
i=1

xi . (2.33)

To solve this recurrence relation, we can write

xn−1 = xn−p+e−2 +·· ·+xn−p−1 + 1

p

n−p−2∑
i=1

xi , (2.34)

and by subtracting (2.34) from (2.33) it follows that

xn −xn−1 = xn−p+e−1 + 1

p
xn−p−1 −xn−p−1

xn = xn−1 +xn−p+e−1 +
(

1

p
−1

)
xn−p−1.

(2.35)
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The solution of the recurrence relation is

xn =C1r n
1 +C2r n

2 +·· ·+Cp+1r n
p+1 (2.36)

where the Ci are constants and the ri are the roots of the characteristic polynomial9

f (x) = xp+1 −xp −xe +1− 1

p
. (2.37)

The rate of growth of xn when n is large is

lim
n→∞

xn+1

xn
=

C1r n+1
1 +C2r n+1

2 +·· ·+Cp+1r n+1
p+1

C1r n
1 +C2r n

2 +·· ·+Cp+1r n
p+1

= r

(2.38)

where r is the largest real root of f (x).

If r < e
1
t , equivalently if t < 1

lnr , it follows that the number of documents at each level increases

faster than the number of documents that need to be tampered with at each level during the

leaping attack, thus E [Imin(dk )] ∈ o(K ).

It should be mentioned that the recurrence relation (2.33) is not optimal for three reasons.

Firstly, it assumes that there are no collisions, i.e., that all the documents at level n are different.

Pointers that collide are advantageous for the attacker because the involved documents can

be destroyed by deleting less than e blocks from them (they have more than one erased

tangled pointer block). Secondly, it assumes that an attacker always targets parity blocks

when completing the deletion of a file. If the attacker is lucky, it is possible that a pointer

block can be erased because all the older documents that use it have already been erased.

Thirdly, it assumes that the first few pointers to d point to different parity blocks. This becomes

increasingly improbable as p increases and e remains fixed, i.e., if we increase the rate of

the code. If the first few pointers to parity blocks of d point to the same block b, then the

attacker will not erase it and will be able to propagate the attack further toward the most recent

archived documents by targeting the other parity blocks of d . To illustrate this, we improve on

Theorem 16 by calculating the expected time required until the most advantageous blocks for

the attacker are pointed to for archives with s = 1.

Lemma 17. Suppose that an attacker wants to erase document dk from a (1, t ,1, p)-archive with

random pointers and that the number of documents archived after dk is K � k. If the number of

pointers per document is chosen such that t < 1
lnr , where r = 1+

√
5− 4

p

2 , then E [Imin(dk )] ∈ o(K ).

Proof. Let M be the random variable defined such that M = m, for m ≥ 1, means that the first

m pointers to parity blocks of document d point to the same block, and the m +1-th pointer

9Without loss of generality, we assume that the roots have multiplicity one. The analysis that follows remains
valid if the roots are not all distinct.
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points to a different block. It should be clear that an attacker working on the leaping attack

will not choose the first document pointed to and that

Pr[M = m] =
(

p −1

p

)m

. (2.39)

We use a reasoning similar to the one in the proof of Theorem 16. The recurrence relation for

M = m is given by

xn(m) = xn−m−1 + 1

p

n−m−2∑
i=1

xi . (2.40)

The asymptotic recurrence relation for the leaping attack is therefore

xn =
∞∑

m=1
Pr[M = m] · xn(m)

= p −1

p

n−2∑
n=1

xi .

(2.41)

To solve this recurrence relation, we can write

xn−1 = p −1

p

n−3∑
n=1

xi (2.42)

and by subtracting (2.42) from (2.41) it follows that

xn = xn−1 + p −1

p
xn−2. (2.43)

The solution of the recurrence relation is

xn = c1

⎛
⎜⎝1+

√
5− 4

p

2

⎞
⎟⎠

n

+c2

⎛
⎜⎝1−

√
5− 4

p

2

⎞
⎟⎠

n

(2.44)

and rate of growth of xn when n is large is

r � lim
n→∞

xn+1

xn
=

1+
√

5− 4
p

2
. (2.45)

Hence, if t < 1
lnr , then the number of documents at each level increases faster than the number

of documents that need to be tampered with at each level during the leaping attack and we

can conclude that E [Imin(dk )] ∈ o(K ).

Table 2.1 contains the lower bound for the number of pointers from Theorem 16 and Lemma 17

for different code rates s
p . The only difference is for s

p = 1
2 , for which Theorem 16 gives tmi n ≥ 3

and Lemma 17 gives tmi n ≥ 4. To compare the theoretical bounds, we simulated the damage
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p
2 3 4 5 6 7 8 9 10

s

1 4 3 3 3 3 3 3 3 3
2 4 4 4 3 3 3 3 3
3 6 5 4 4 4 4 4
4 7 6 5 5 5 4
5 8 7 6 6 5
6 9 8 7 6
7 11 9 8
8 12 10
9 13

Table 2.1 – Lower bound for the number of pointers from Theorem 16 and Lemma 17 for
different code rates s

p .

caused by the leaping attack on (1, t ,2,3)-archives with 106 documents and t ∈ {1,2,3,4,5,10}

pointers per document chosen uniformly at random. The results are shown in Figure 2.12. On

each graph, the curves represent target documents {d1,d5,d10,d50,d100,d500,d1000}, averaged

over 100 simulations. The phase transition as the number of pointers increases is obvious

from the graphs. When reaching the threshold, the asymptotic cost of the leaping attack no

longer depends on the target document: an attacker who wants to irrecoverably destroy a

document must destroy a constant fraction of all documents archived after it. For s
p = 1

3 , the

bound given by Theorem 16 and Lemma 17 is t = 3, which appears tight when observing

Figure 2.12. Increasing t further accelerates the convergence and increases the fraction of

documents that must be destroyed.

2.8.1 Optimal attack and random entanglement

We conjecture, with entanglement chosen uniformly at random, that there is a constant

number of pointers threshold after which even the optimal attack will require the erasure of a

constant fraction of all documents archived after an old enough target. Since simulating the

optimal attack is computationally intractable and we do not have good enough theoretical

lower bounds, to support this conjecture we simulate the bounded breadth-first search attack

described in Section 2.6.3. By bounding the size of the buffer, we can control the number of

nodes traversed at each level of the solution tree.

We use the bounded breadth-first search algorithm with two heuristics: the minimum (Sec-

tion 15) and tailored (Section 2) heuristics. The tailored heuristic is based on Lemma 14: when

we decide whether or not to include a new document in the attacked set, we estimate the

beginning of its propagation to other documents with Lemma 14 times the number of blocks

to erase in the document. This is more accurate than selecting the document that propagates
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(e) t = 5 pointers.
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(f) t = 10 pointers.

Figure 2.12 – Damage caused by the leaping attack on (1, t ,2,3)-archives of size 106 with
pointers chosen uniformly at random and t ∈ {1,2,3,4,5,10}. On each graph, the curves
represent target document {d1,d5,d10,d50,d100,d500,d1000}, respectively. Each curve is the
average over 100 simulations.
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to the smallest number of documents (minimum heuristic), or selecting the document leaping

as far as possible towards the end of the archive (leaping heuristic).

Figure 2.13 shows the damage caused by the tailored bounded breadth-first search attack on

(1,5,2,3)-archives of size 104 with pointers chosen uniformly at random and target document

di for i ∈ {1,5,10,50,100}. Each curve represents a different tree width (buffer size). The

leaping attack is also shown for comparison. Each curve is the average over 100 simulations.

Figure 2.14 shows the damage caused by the minimum bounded breadth-first attack with

the same simulation parameters. The figures provide numerical evidence supporting our

conjecture and show the efficiency of the greedy leaping attack

2.9 Extensions and Discussion

In this section, we discuss in greater details the assumptions made and constraints self-

imposed in this chapter. We also extend and relax them in various ways, and examine the

consequences.

2.9.1 To store or not to store source blocks ?

In the presented architecture, we use codes in semi-systematic form and do store the source

blocks. This comes at a non-negligible performance cost: accessing a document requires

decoding of its corresponding codeword, and thus fetching the required threshold of valid

blocks. Even with a fast decoding algorithm, we still incur the bandwidth overhead of fetching

s + t blocks to retrieve s effective blocks of data.

It is tempting to remove this overhead by including the source blocks in the systematic form

of the code, and allow the clients to directly fetch the source blocks. However, from the

censorship-resistance perspective, a systematic code would invalidate all our previous rea-

soning. We can no longer equate recoverability of a codeword and recoverability of the

corresponding document, as the source blocks may still be recoverable even though the code-

word is below the decoding threshold. In an extreme case, the adversary can censor all the

stored parity blocks, losing all the redundancy in the storage system, without degradation of

service. Targeted source blocks can then be destroyed at will, making their corresponding

codewords undecodable; all more recent codewords having pointers to these source blocks

immediately become undecodable if they weren’t already so, and the attack does not need

to propagate further. A system with stored and readily available source blocks can thus only

provide weak censorship-resistance, as this attack, even at a high material cost, does not affect

data availability.
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(d) Target document d50.
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(e) Target document d100.

Figure 2.13 – Damage caused by the tailored bounded breadth-first search attack on (1,5,2,3)-
archives of size 104 with pointers chosen uniformly at random and target document di for
i ∈ {1,5,10,50,100}. Each curve represents a different tree width (buffer size). The leaping
attack is also shown for comparison. Each curve is the average over 100 simulations.

49



Chapter 2. STEP-archival: A Storage Model for Censorship-Resistance

Leaping attack
bbl inob - r
bbl inob - d
bbl inob - r ,
bbl inob - d,
bbl inob - r , ,

r , r , , r , , , r , 4
r , -2

, 1r

r

30c. iAeh hvcul entmin c. 0vnvsvgicasv0he0

D
em
t0v
ye
h
hv
cu
l
en
tm

(a) Target document d1.

Leaping attack
bbl inob - r
bbl inob - d
bbl inob - r ,
bbl inob - d,
bbl inob - r , ,

r , r , , r , , , r , 4
r , -2

, 1r

r

30c. iAeh hvcul entmin c. 0vnvsvgicasv0he0

D
em
t0v
ye
h
hv
cu
l
en
tm

(b) Target document d5.

Leaping attack
bbl inob - r
bbl inob - d
bbl inob - r ,
bbl inob - d,
bbl inob - r , ,

r , r , , r , , , r , 4
r , -2

, 1r

r

30c. iAeh hvcul entmin c. 0vnvsvgicasv0he0

D
em
t0v
ye
h
hv
cu
l
en
tm

(c) Target document d10.

Leaping attack
bbl inob - r
bbl inob - d
bbl inob - r ,
bbl inob - d,
bbl inob - r , ,

r , r , , r , , , r , 4
r , -2

, 1r

r

30c. iAeh hvcul entmin c. 0vnvsvgicasv0he0

D
em
t0v
ye
h
hv
cu
l
en
tm

(d) Target document d50.

Figure 2.14 – Damage caused by the minimum bounded breadth-first search attack on
(1,5,2,3)-archives of size 104 with pointers chosen uniformly at random and target docu-
ment di for i ∈ {1,5,10,50}. Each curve represents a different tree width (buffer size). The
leaping attack is also shown for comparison. Each curve is the average over 100 simulations.

50



2.9. Extensions and Discussion

This material cost can further be reduced. An adversary could tweak his attack algorithm to

always spare the source blocks (except for the original target). This results in a system that

has lost redundancy for some documents but is still able to directly serve all non-censored

source blocks. Recall that for all documents but the initial target, the attacker needs to destroy

at most e blocks (the code requires e +1 errors to fail, but at least one block is already missing,

otherwise the document would not have entered the target set). We have e ≤ p − s (with

equality reached for MDS codes), so it is always possible to exclude the source blocks from the

attack, and choose among the p − s remaining blocks. This offers complexity tradeoff in terms

of computational effort versus number of blocks to make the attack irrecoverable.

One can wonder whether we can prevent this by hiding which of the p parity blocks are actual

source blocks. This could be achieved by storing the identity of the source block separately

from the rest of the metadata. Users with access to the public metadata could still repair the

system, without needing to know the identity of the source blocks. This is akin to the Repair

Capabilities mechanism of Tahoe [WOW08]. However, if clients use this fast path to access

documents, a passive adversary monitoring access to the system could very quickly deduce

which blocks are the source blocks. To counter this, clients could request all the blocks and

avoid decoding, but this does not appear a worthwhile tradeoff considering the bandwidth

overhead.

2.9.2 Hiding metadata

We assumed so far that the metadata, providing the associations between blocks and doc-

uments (and required for decoding) would be made public. Our attacks have relied on this

metadata being public, but so do our repair algorithms. One can wonder whether hiding the

metadata from the public results in a net gain or loss of censorship resistance for the users.

In our model, a block can be in only two states, directly recoverable (meaning the system is

able to provide an uncorrupted version of the block when queried for it), or lost. The block

could be considered lost for several reasons, including that the actual storage has been silently

corrupted, that the data is missing, or even that the data is intact and present, but that the

system has been coerced into ignoring requests for such a block. The latter scenario is relevant

in a censorship context, where it might be easier for a censor to impose a blacklist of forbidden

content than to endlessly hunt and remove blocks as they pop up on various systems.

Consider a system where the metadata is kept privately. In such a context, the adversary has

no a priori information about the relationships between blocks, but has been made aware of

the existence of a document to censor by revelation of the corresponding metadata. In such a

model, if enough blocks are lost to make a document irrecoverable, users must wait for a third

party to access an entangled document. The said third party must then notice that not all

blocks are healthy, and after decoding the document, proceed to reupload the missing blocks

at its own expense. Some techniques, like the mechanism of repair caps in Tahoe [WOW08],

can delegate repairs to incentivized third parties, however to do so they must be trustworthy
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enough to receive a copy of the secret metadata. Furthermore, a system with private metadata

is in position of censoring repair attempts simply by refusing to serve the forbidden blocks, no

matter how many third parties try to reupload them. By contrast, if the metadata is public,

users can perform their own repairs as long as the attack is not irrecoverable, and for this they

do not need an additional incentive. Reuploading the missing content is still at their own cost,

but the system has a direct incentive to accept it: every missing block costs the system up to

s + t fetches of other blocks. In fact, it saves bandwidth for the system to perform the repair

itself.

2.9.3 Hiding timing information

The proposed basic attacks all heuristically rely on the attacker being able to infer a strict

ordering of documents in time. On the other hand, the reconstruction algorithm does not

need such information. This leads to two important questions: is it possible to hide this timing

information from an attacker, and is it useful?

Suppose the metadata has been stripped of any explicit timestamps. Can the attacker still

compute an ordering of the documents? With the exception of anchor blocks, every block in

the system must be included as a parity block in exactly one document, and may appear any

number of times as a pointer block in older documents. Furthermore, the former document

must be older than all the latter. This property is sufficient to define a partial order on the

documents.

An adversary can use a topological sort algorithm to generate a compatible total order in

linear time [Tar76]. Because block relationships are the only thing that matter to our attack

algorithms, such a total order would be suitable to run the attack. Therefore, if we want to gain

something by hiding the document order, we have to ensure that the adversary cannot deduce

the role (stored or pointer) of blocks in a particular codeword.

2.9.4 Hiding block roles

So far, all our representations of the system used a code which had a fixed mapping from

code slots to roles. We can randomize this mapping without loss of generality. In a typical

setting, our initial, systematic, (n,k) MDS code, the encoding process is used to generate code

words ck+1, . . . ,cn from the k source words c1, . . . ,ck , whereas the decoding process can find a

unique solution for all the ci , from any k-subset of them. As such, encoding is a special case of

decoding (possibly with better performance, depending on the code).

Therefore, when generating a new document, it is not mandatory to have a fixed mapping

between roles and slots. The client can randomly allocate the pointer blocks to slots, then

compute the missing entries. Then, the adversary can no longer locally distinguish between

pointers and parity blocks of a document.
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Unfortunately, even if the system stores the metadata in such a way that the block roles are

locally obscured, an attacker with a global view of the metadata can always recover such

roles with the following algorithm. The adversary can look for blocks that appear exactly

once in the whole system, and will know that such occurrences are necessarily parity blocks.

Because the set of documents is finite and not empty, and our block role property is transitive

(a requirement for a partial order), there must be at least one maximal document, for which

no parity blocks are ever pointed. For these maximal documents, the adversary will be able

to infer the role of all the parity blocks. If we assume that the amount of parity and pointer

blocks per document is a global constant, the attacker knows he has successfully identified all

the parity occurrences of these maximal documents. All other occurrences of blocks can be

identified as pointers. The attacker can then remove these maximal documents (which will sit

at the top of the total order), and repeat the process recursively while ignoring occurrences of

blocks in the removed documents. Eventually, the set of documents ends up empty with all

the occurrence roles known.

2.9.5 Metadata write access and recoding attack

We assumed that an attacker can read, but cannot alter the archive metadata. The underlying

assumption is that metadata are small enough to be mass replicated or stored locally by the

clients interested in a document; or, at the very least, that clients can store a cryptographically

secure fingerprint of the relevant metadata. Recall that destroying all copies of the metadata

would make a document impossible to access, but that this is not worse than losing the keys

of the upper encryption layer.

Definition 18. Consider a (s, t ,e, p)-archive. An extended integrity set E(dk ) is a set of doc-

uments containing dk such that it is possible to erase at least e + s +1 blocks per document

in E(dk ) \ {dk }, at least e + 1 blocks in document dk , and no block in any document in the

complementary set E(dk ). We write Emin(dk ) to denote the size of the smallest extended integrity

set of document dk .

If an attacker can write metadata, it can, instead of destroying files, decode and recode

documents without destroying them, and rewrite metadata accordingly. When doing such a

recoding attack, the attacker first decodes the document dk to censor, erases e +1 blocks from

the document codeword, censors the document by replacing its content with something else,

and recodes the censored document back in the archive. Changing the target codeword will

also affect documents pointing to its erased blocks, thus the attacker must recursively recode

the documents pointing to the censored document and erase enough blocks in the original

codewords. The difference between integrity sets and extended integrity sets is that the source

blocks of a recoded document dk are recoverable, thus to make the original codeword of dk

irrecoverable, the attacker must erase at least e + s +1 = p +1 of its blocks instead of e +1.

Theorem 19. The size |S| of the smallest irrecoverable recoding attack of a target document dk

is equal to Emin(dk ).
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Proof. We first prove that |S| ≤ Emin(dk ). From the smallest extended integrity set Emin(dk ),

an attacker can decode all the documents in it, erase all the blocks required to realize the

extended integrity set, recode a censored version of dk , and recode all the other documents

di ∈ Emin(dk ) \ {dk }. The original codewords of documents di ∈ Emin(dk ) \ {dk } are missing at

least e + s +1 blocks, thus even by decoding the new codewords and recovering the source

blocks, the old codewords will miss at least e +1 blocks, thus none of them is recoverable. This

recoding attack requires Emin(dk ) recodings, thus |S| ≤ Emin(dk ).

We now show that |S| ≥ Emin(dk ). Let S be the smallest recoding attack. The original codeword

of dk has at least e + 1 erased blocks, otherwise dk could be recovered. Next, consider a

document di ∈ S such that di �= dk . We argue that the original codeword of dk before recoding

has at least e + s +1 erased blocks. Suppose that it is false. Using the source blocks of the

recoded documents, we run the reconstruction algorithm and recover a nonempty set O of

original codewords including the original codeword of di . If C includes the original codeword

of dk , then dk can be recoded, which is a contradiction, whereas if C does not include it, it

follows that all the codewords in C did not have to be recoded, which contradicts the fact that

S is the smallest recoding attack. Hence, S is an extended integrity set and Emin(dk ) ≤ |S|.

The size difference between the optimal recoding attack and the optimal attack can be ar-

bitrarily large. Consider a (1,1,2,3)-archive where the pointer block from document di is

entangled with one of the parity blocks of di−1 for all i . We can easily show that Imin(dk ) = 2

and Emin(dk ) = N +1 where N > 0 is the number of documents archived after dk . Thus, an

attacker can tamper with dk irrecoverably by also erasing dk+1, but if it does not want to

destroy other documents, even with complete control over the data and metadata, it must

recode the N documents archived after dk .

2.9.6 STEP-archival versus WORM storage

There have been proposals for immutable storage systems with hardware enforcement. In such

a system, the storage controller (or the medium itself) will refuse or fail to honor write requests

that would overwrite existing data. It is assumed that a hostile party (a rogue administrator, or

an outside attacker) may be able to compromise the operating system, but not the firmware of

the storage controller (or the laws of physics, in the case of write-once media.).

These techniques are applicable to fundamentally different scenario than the ones we are

considering. The storage controller can only guarantee that, as long as the storage device

is operating properly, all data ever written is available for reading by the main system. A

malicious administrator could still practice censorship by having the main system refuse to

perform read requests for censored data. In such a system, it would still be possible to restore

access to the censored data by taking back control of the main system.

When facing censorship from a legal authority, however, it may not be possible to legally “take

back control” and restore the original intended system behavior. Again, with our approach, it
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does not matter if censorship is implemented by physically destroying blocks or by making

them unavailable for reading through other means. As long as decoding and metadata man-

agement is performed on the client, the storage system would need to either guess the intent

of the client, and selectively prevent access (and only achieve probabilistic censorship), or

prevent access without regard for the decoding intent (and cause collateral damage).

2.9.7 Space reclaiming

A very serious restriction of our model is the apparent inability to delete past files. Imple-

menting a deletion mechanism is not trivial, as it should prevent attackers from using it to

perform censorship. In the setting of immutable storage, data has no canonical owner, and it

is not always possible to distinguish a “legitimate owner” from an attacker, assuming a reliable

definition of legitimate owner is even possible.

With random entanglement, protection increases over time. Such a system cannot reclaim

space from old unwanted files, and is entirely dependant on the storage system being able

to grow as fast as its users require, while retaining everything forever. Clearly, this is not

sustainable.

In the case of proximity entanglement, as we have shown, it is possible to destroy the tail of the

archive without losing current data. To solve the problem of space reclaiming, an intermediary

solution would involve a STEP-archive rolling in time, with parity blocks being garbage-

collected in order at a predictible time. This system would require clients to periodically

refresh their data, by recreating new versions (with different metadata) of their files at fixed

intervals. Obsolete files would naturally disappear after a while, if no user took responsibility

for refreshing them. Randomized convergent encryption would be required to prevent a

censor for recognizing the new blocks immediately, and blocking their insertion into the

system.

2.10 Conclusion and Open Problems

In this chapter, we introduced and studied STEP-archives with the objective of providing

strong tampering and censorship resistance for long-term data storage and permanent archiv-

ing in a practically implementable manner. Our long-term goals are a proof of concept and

a large-scale implementation, and to do so there are theoretical and practical questions to

explore.

2.10.1 Variable block size

Imposing a fixed block size at the system level is rigid and inefficient. An unnecessary large

block size wastes storage space, decoding time and bandwidth, but a too small block size

bloats metadata and increases the number of IO operations. Because we need to be able to
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choose pointers to other blocks, allowing arbitrary block sizes would considerably complicate

the pointer selection process. A reasonable compromise is to allow a limited selection of

regular block sizes, for instance powers of a power of 2. Furthermore, one could split bigger

blocks or concatenate smaller blocks when choosing pointers. This, however, considerably

complicates the analysis of the system behaviour under attack as one must also consider

partially erased blocks. It also potentially introduces additional overhead, since not all storage

APIs allow to fetch partial blocks.

2.10.2 Data expiration

We currently have no procedure to delete obsolete data and reclaim storage space. While

the impossibility to delete old data is paramount to obtain strong censorship resistance, and

while storage technologies have shown exponential improvements ever since the advent of

computing, we still wish to explore ways to relax this constraint. One might try to extend our

framework to only allow the owner to delete data, but this is problematic in many ways. First,

in a deduplicated system, there might be more than one rightful owner. Allowing a single

owner to trigger the deletion would effectively let him censor the other owners. Therefore, we

would need a consensus mechanism to ensure all owners effectively wish to delete. Second,

allowing the owner(s) to drive deletion would make them designated targets for a determined

censor. We can avoid that simply by not giving the owner, or original creator, any special

privileges regarding preservation of data.

Still, it might be desirable for a system to be able to reclaim storage from old, stale data.

Unbounded pointer distributions, like the uniform distribution we used in section 2.8, do not

allow this. But in principle, if bounded distributions like the sliding windows used in section

2.7 are used, it would be possible for a system to remove old data progressively, providing a

bound on the age of data recoverable by the clients.

In such a system, uploaded content would have an expiration date, and clients would be

responsible for periodically re-inserting the data they do not want to see disappear when

they expire. Because this re-insertion step would require coding against a different set of

blocks, clients would no longer be able to rely on the metadata hash to authenticate a file10.

The system would require a more sophisticated mechanism for the users to authenticate

the new versions of the metadata blocks. Two possible approaches for this could be either

some kind of reputation system vetting on the authenticity of the new metadata, or a proof of

storage [ZX12, JKJ07] mechanism allowing a client to interactively query the storage system,

to ensure with high probability the legitimacy of a new metadata block.

10Even if a client had the hashes of the relevant source blocks, he would be forced to pay the t bandwidth cost
and proceed with the decoding before being able to check it.
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2.10.3 Entanglement and coding

The main theoretical open problem is to derive non-trivial lower bounds on the cost of the

optimal irrecoverable attack. Intuitively, the leaping attack is a good approach against uniform

random entanglement, and we conjecture that the optimal attack will not fare better when the

number of pointers passes a threshold since no amount of backtracking will compensate for

the exponential propagation of the dependencies in the archive.

Another challenge to overcome is to provide quick tamper resistance after archiving new

data while providing strong censorship-resistance in the long term. Essentially, we want the

benefits of regular entanglement in a sliding window and the benefits of uniformly random

entanglement. Solutions in this direction will probably involve a mix of partly structured

pointers to the recent past and pointers arbitrarily far in the past. Another path worth exploring

is to use STEP-archival in parallel with regular replication for new documents and to get rid of

the replicas as they age.

Finally, while we focused on MDS codes in this chapter, the model can be used with any

code allowing encoding of the entangled blocks in systematic form, we want to study how to

provide strong censorship-resistance using modern and efficient erasure codes for distributed

storage. Furthermore, considering that the bandwidth overhead is proportional to the number

of entangled blocks per document, we are especially interested in adapting locally repairable

codes to deal with hardware failures.
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3.1 Introduction

We performed a sanity check of public keys collected on the web and found that the vast

majority works as intended. Our main goal was to test the validity of the assumption that

different random choices are made each time keys are generated. We found that this is not

always the case, resulting in public keys that offer no security. Our conclusion is that generating

secure public keys in the real world is challenging. We did not study usage of public keys.

Various studies have been conducted to assess the state of the current public key infrastructure,

with a focus on X.509 certificates (cf. [CSF+08]). Key generation standards for RSA (cf. [RSA78])

have been analysed and found to be satisfactory in [LN11]. In [HBKC11] and [VFBH11] (and

the references therein) several problems have been identified that are mostly related to the

way certificates are used. In this chapter we complement previous studies by concentrating

on computational and randomness properties of actual public keys, issues that are usually

taken for granted.

Compared to the collection of certificates considered in [HBKC11], where shared public keys

are “not very frequent”, we found a much higher fraction of duplicates. We also found public

keys that are not related to the Debian OpenSSL vulnerability but that offer no security at all.

The existence of such keys may be crypto-folklore, but it was new to us (but see [Joh99]). This

is not a disappearing trend, as may be seen by comparing the results in this chapter to those

reported in [LHA+12b]. Vulnerabilities of this sort could affect the expectation of security that

the public key infrastructure is intended to achieve. We limited our study to collections of

public keys and did not consider issues arising while using them.

We summarize our findings, referring to later sections for details. We collected as many openly

accessible public keys as possible from the web, while avoiding activities that our system

administrators may have frowned upon. In particular we did not capture or analyse any

encrypted traffic of digitally signed documents. The set of 11.7 million public keys that we col-

lected contains 6.4 million distinct RSA moduli. The remainder is almost evenly split between
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ElGamal keys (cf. [ElG85]) and DSA keys (cf. [U.S09]), plus a single ECDSA key (cf. [U.S09]).

The frequency of keys blacklisted due to the Debian OpenSSL vulnerability (cf. [YRS+09])

is comparable to [HBKC11]; the findings presented below are not related to this vulnerabil-

ity. All keys were checked for consistency such as compositeness, primality, and (sub)group

membership tests. As the sheer number of keys and their provenance precluded extensive

cryptanalysis and the sensibility thereof, per key a modest search for obvious weaknesses was

carried out as well. These efforts resulted in a small number of inconsistent or weak keys.

A tacit and crucial assumption underlying the security of the public key infrastructure is that

during key setup previous random choices are not repeated. In [HBKC11, LN11] public key

properties are considered but this issue is not addressed, with [LN11] nevertheless concluding

that

The entropy of the output distribution [of standardized RSA key generation] is

always almost maximal, ... and the outputs are hard to factor if factoring in general

is hard.

We do not question the validity of this conclusion, but found that it can only be valid if each

output is considered in isolation. When combining outputs the above assumption sometimes

fails. Among all types of public keys collected (except ECDSA), we found duplicates with

unrelated owners. This is a concern because, if these owners find out, they may breach

each other’s security. Duplication of keys is more frequent in our collection than in the one

from [HBKC11].

We also stumbled upon RSA moduli, not affected by the Debian OpenSSL vulnerability, that

offer no security. Their secret keys are accessible to anyone who redoes our work. Assuming

access to the public key collection, this is straightforward compared to more traditional ways

to retrieve RSA secret keys (cf. [Cop93, LL93]).

Figure 3.1 depicts a simplified sketch of the situation and how it may evolve.

An existing collection of seven (black) keys is extended with six (red) new keys, where capital

letters play the role of (matching) large primes. Initially, keys AB, CD, EF, GH, and JK on the left

are secure and keys LM and LN on the right are openly insecure in the same keyring due to

the common factor L. New key PQ is secure and appended to the secure list on the left. New

key AB duplicates key AB on the left, making both insecure to each other but not to anyone

else. New key LM duplicates a key already known to be in the openly insecure group, while

key LR results in a new openly insecure modulus on that keyring. Key ES removes known

good key EF from the secure keys on the left, resulting in a new openly insecure group on the

right consisting of keys EF and ES. Even if the owner of ES now knows that he is insecure and

destroys the key, this information can be used by any owners involved to determine the factors

of key EF. Key GJ removes two known good keys, GH and JK, from the list of secure keys on the

left to form an insecure double keyring on the right (cf. Figure 3.5 in Section 3.3). All example
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Figure 3.1 – Illustration of attack scenarios

keyrings, and many more, occur in the real world. Note that a key that has been dragged from

left to right will never be able to return.

Our findings, of which we do not and will not publicly present any evidence, are confirmed

by independent similar work (cf. [Hen12]). As shown in Section 3.3 we used a computational

method different from the one used in [Hen12].

Section 3.2 presents our data collection efforts. Sections 3.3 and 3.4 describe the counts and

calculations performed for the RSA-related data and for the ElGamal, DSA, and ECDSA data,

respectively. Section 3.5 summarizes our findings.

3.2 Data collection

Before the data from [Ele10] was generally available, we started collecting public keys from a

wide variety of sources, assisted by colleagues and students. We collected only public keys, no

encrypted data or digitally signed documents (other than digital certificates). This resulted

in almost 5.5 million PGP keys and fewer than 0.1 million X.509 certificates. The latter got a

boost with [Ele10] and, to a smaller extent, the data from [HBKC11]. We did not engage in web

crawling, extensive ssh-session monitoring, or other data collection activities that may be

perceived as intrusive, aggressive, or unethical. Thus, far more data can be collected than we

did (see also [LHA+12b]).
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Skipping a description of our attempts to agree on a sufficiently uniform and accessible

representation of the data, by November 2011 the counts had settled as follows: 6 185 372

distinct X.509 certificates (most from the EFF SSL repository, 43 from other sources), and

5 481 332 PGP keys, for a total of at most 11 666 704 public keys. Of the X.509 certificates

6 185 230 are labeled to contain an RSA (modulus, exponent) pair with 141 DSA public keys

and a single ECDSA point on the NIST standardized curve secp384r1 (cf. [Cer00, Section

2.8], [U.S09]). Of the certificates 47.6% have an expiration date later than 2011. About 77.7%

of the certifying signatures use SHA1 or better (5287×SHA256, 24×SHA384, 525×SHA512),

22.3% use MD5 (with 122×MD2, 30×GOST, 14×MD4, and 9×RIPEMD160). Both requirements,

expiration later than 2011 and usage of SHA1-or-2, are met by 33.4% of the certificates.

Of the PGP keys 2 546 752 (46.5%) are labeled as ElGamal public keys, 2 536 959 (46.3%) as DSA

public keys, the other 397 621 (7.3%) as RSA public keys. PGP keys have no expiration dates or

hashes. All public keys were further analysed as described below.

3.3 RSA

In this section we present the results of various counts and tests that we conducted on the data

labeled as RSA public keys. An RSA public key is a pair (n,e) of a supposedly hard to factor

RSA modulus n and a public exponent e. The corresponding secret key is the integer d such

that de ≡ 1 mod ϕ(n) or, equivalently, the factorization of n.

Public exponents. Table 3.1 lists the ten most frequent public exponents along with their

percentage of occurrence for the RSA keys in the X.509 certificates, the PGP keys, and when

combined. Except for eight times e = 1 and two even e-values among the PGP RSA keys, there

is no reason to suspect that the e-values are not functional. Two e-values were found that, due

to their size and random appearance, may correspond to a short secret exponent (we have not

investigated this). The public exponents are not further regarded below.

Debian moduli. Two of the n-values, a 1024 and a 2048-bit one each occurring once, were

discarded because they could be fully factored using the data from [Moo08] (cf. Debian

OpenSSL vulnerability in [YRS+09]). A further 30097 n-values (0.48%, with 21459 distinct ones)

were found to be blacklisted (cf. [T+]), but as their factors were not easily available they were

kept.

Shared moduli. We partition the set of 6 185 228 X.509 certificates into clusters, where certifi-

cates in the same cluster contain the same RSA modulus. There is a considerable number of

clusters containing two or more certificates, each of which could be a security issue; clusters

consisting of one certificate, on the other hand, are the good cases. As depicted in Figure 3.2,

there is one cluster with 16489 certificates (the blue circle on the x-axis), followed by clusters

of sizes 8366, 6351, 5055, 3586, 3538, 2645, for a total of 14 clusters with more than a thou-

sand certificates (the red and blue circles on the x-axis; the 5055 share a blacklisted modulus,
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Table 3.1 – Most frequently occurring RSA public exponents.

X.509 PGP Combined
e % e % e %

65537 98.4921 65537 48.8501 65537 95.4933
17 0.7633 17 39.5027 17 3.1035

3 0.3772 41 7.5727 41 0.4574
35 0.1410 19 2.4774 3 0.3578

5 0.1176 257 0.3872 19 0.1506
7 0.0631 23 0.2212 35 0.1339

11 0.0220 11 0.1755 5 0.1111
47 0.0101 3 0.0565 7 0.0596
13 0.0042 21 0.0512 11 0.0313

65535 0.0011 2127 +3 0.0248 257 0.0241
other 0.0083 other 0.6807 other 0.0774

with no other blacklisted modulus occurring more than seven times). On the other side of

the scale the number of good cases is 5 918 499 (the single green circle on the y-axis), with

58913 and 7108 clusters consisting of two and three certificates, respectively. It follows that

6185228−5918499 = 266729 X.509 certificates (4.3%) contain an RSA modulus that is shared

with another X.509 certificate. With 71024 clusters containing two or more certificates it

follows that there are 5918499+71024 = 5989523 different n-values.

Looking at the owners with shared n-values among the relevant set of 266 729 X.509 certificates,

many of the duplications are re-certifications or other types of unsuspicious recycling of the

same key material by its supposedly legal owner. It also becomes clear that any single owner

may come in many different guises. On the other hand, there are also many instances where

an n-value is shared among seemingly unrelated owners. Distinguishing intentionally shared

keys from other duplications (which are prone to fraud) is not straightforward, and is not

facilitated by the volume of data we are dealing with (as 266 729 cases have to be considered).

We leave it as a subject for further investigation into this “fuzzy” recognition problem to come

up with good insights, useful information, and reliable counts.

The 397 621 PGP RSA keys share their moduli to a much smaller extent: one n-value occurs

five times and 27 occur twice. Overall, 28 n-values occur more than once, for a total of 59

occurrences. The n-value that occurs in five PGP keys also occurs twice among the X.509

certificates, and all seven occurrences refer to the same owner. For some of the other 27

multiple occurrences of n-values unique ownership of the RSA keys was harder to assess.

Distinct moduli. As seen above, we extracted 5 989 523 different n-values from the X.509

certificates. Similarly, 397621−59+28 = 397590 of the PGP n-values are unique. Joining the

two sets resulted in 6 386 984 distinct values, with the 129 n-values contained in both sets

occurring in 204 X.509 certificates and in 137 PGP keys: as mentioned, some PGP keys are

X.509-certified as well (though we have not tried to establish unique or conflicting ownerships,
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Figure 3.2 – Number of certificate clusters as a function of the cluster-size.

as this already proved to be infeasible for keys shared just among X.509 certificates). In order

not to make it easier to re-derive our results, most information below refers to the joined set of

unique values, not distinguishing between X.509 and PGP ones.

Modulus sizes. The cumulative sizes of the moduli in the set of 6 386 984 n-values are depicted

in Figure 3.3. Although 512-bit and 768-bit RSA moduli were factored in 1999 (cf. [CDL+00])

and 2009 (cf. [KAF+10]), respectively, 1.6% of the n-values have 512 bits (with 0.01% of size 384

and smallest size 374 occurring once) and 0.8% of size 768. Those moduli are weak, but still

offer marginal security. A large number of the 512-bit ones were certified after the year 2000

and even until a few years ago. With 73.9% the most common size is 1024 bits, followed by 2048

bits with 21.7%. Sizes 3072, 4096, and 8192 contribute 0.04%, 1.5%, and 0.01%, respectively.

The largest size is 16384 bits, of which there are 181 (0.003%).

Primality, small factors, and other tests. Two of the unique n-values are prime, 171 have a

factor < 224 (with 68 even n-values) after removal of which six cofactors are prime. About 25%

of the remaining 165 composites were fully factored after a modest search for small factors

using the implementation from [Zim12] of the elliptic curve method (ECM, cf. [Len87]), some

of the others may indeed be hard to factor and could, in principle, serve as RSA modulus.

Nevertheless, these 173 n-values do not comply with the standards for the generation of

RSA moduli (cf. [LN11]) and they were discarded. Nine cases are probably due to copy-and-

paste errors, as eight proper moduli were found that differed from the wrong ones in a few

hexadecimal positions (two distinct wrong moduli match up with the same correct one).

Fermat’s factorization method, which works well if two factors are close together, did not
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Figure 3.3 – Cumulative number of modulus sizes for RSA.

produce any factors. In particular we found no moduli as reported by Mike Wiener [Wie92]

(n = pq with p prime and q the least prime greater than p, and thus with p the largest prime

≤ [
�

n]). Neither were there any non-trivial powers.

Moduli with shared factors. Moduli that share one prime factor result in complete loss of

security for all moduli involved. We discuss the results based on the graphs spawned by

the moduli and shared factors. If different users make different choices during key setup,

the graph associated to c distinct n-values (cf. Introduction) would consist of c connected

components1, each consisting of a single edge connecting two unidentified – and supposedly

unidentifiable – primes. This turned out not to be the case: it took a matter of hours on a single

core to find 1995 connected components that each consist of at least two edges. Much larger

datasets can be handled without trouble. Our calculation uses a simple-minded binary tree,

forming a parent node lcm(a,b) for leaves a, b while taking appropriate action if gcd(a,b) > 1

and using the subquadratic multiplication and greatest common divisor implementations

from [Fre11]. It scales well and is marginally slower than the more contrived gcd-calculation

described in [Hen12] but uses less memory. On a 1.8GHz i7 processor the straightforward

approach would require about ten core-years and would not scale well. Inclusion of the p

and q-values from Section 3.4 and the primes from [Moo08] related to the Debian OpenSSL

vulnerability [YRS+09] did not produce additional results.

Of the 1995 connected components, 1988 are depth one trees2. Of those 1200 have two leaves

(i.e., 1200 pairs of n-values, each with a distinct prime factor in common), 345 three leaves,

etc., up to a single one with 4627 leaves (i.e., 4627 n-values all with the same prime factor in

common). It is not uncommon for an n-value corresponding to an edge of these depth one

1Two distinct vertices are in the same connected component if and only if they are connected by a path
consisting of edges in the graph.

2A depth one tree has no cycles and contains one root vertex with edges leading to all other vertices, as in
Figure 3.4.
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Table 3.2 – The s-column indicates the number of depth one trees with � leaves for which all
edge multiplicities are equal to one, the m-column the number of trees for which at least one
edge occurs at least twice, and T = s +m the total. The bold entry corresponds to the depth
one tree depicted in Figure 3.4.

� s m T � s m T � s m T � s m T
2 1009 191 1200 13 3 3 6 24 1 1 2 59 0 1 1
3 259 86 345 14 2 3 5 26 0 1 1 61 0 1 1
4 95 44 139 15 1 4 5 27 0 1 1 63 1 2 3
5 43 32 75 16 2 1 3 32 0 1 1 65 0 1 1
6 23 29 52 17 1 2 3 33 0 1 1 92 0 1 1
7 20 19 39 18 1 1 2 35 0 2 2 121 0 1 1
8 13 17 30 19 1 2 3 36 1 1 2 151 0 1 1
9 4 11 15 20 1 2 3 37 0 1 1 348 0 1 1

10 3 8 11 21 0 3 3 42 0 1 1 379 0 1 1
11 3 9 12 22 1 2 3 44 0 2 2 4627 0 1 1
12 3 3 6 23 0 1 1 46 0 1 1

trees to occur more than once as an RSA modulus: 497 of the 1988 depth one trees have at least

one edge that corresponds to an RSA modulus that occurs in at least two X.509 certificates

or PGP keys. In the other 1491 depth one trees all edge multiplicities are one. Table 3.2 lists

for each number of leaves � how often each type occurs, with the s-column the number of

trees for which all n-values occur once as RSA modulus in an X.509 certificate or PGP key, the

m-column the number of trees for which at least one n-value occurs as RSA modulus in at

least two X.509 certificates or PGP keys, and the total T = s +m. For smaller tree-sizes s is

larger, for larger trees multiple occurrence of moduli is more common.

Six of the other seven connected components contain four vertices and three edges, but are

not depth one trees. Each of these six components thus consists of a “central” n-value that

has a factor in common with each of two other, co-prime n-values. The remaining connected

component is the most intriguing – or suspicious – as it is a complete graph on nine vertices

(K9): nine primes, each of whose
(9

2

)= 36 pairwise products occurs as n-value.

Denoting the primes identified with the vertices of the graph by p1, p2, . . . (using an ordering

naturally implied by our representation), Figures 3.4, 3.5, and 3.6 depict the largest depth one

tree, the six four-vertex components, and the K9, respectively, with the edge labels indicating

the number of X.509 certificates and PGP keys containing the corresponding n-value as RSA

modulus. Note that all moduli in the K9 occur quite frequently.

Any two n-values associated to edges in the same depth one tree can be factored. Two n-values

associated to other edges can be factored if the edges are adjacent (i.e., share a vertex), or one

finds a path connecting them. For non-adjacent edges in the same connected component

from Figure 3.5 that is the unique central edge, for edges in the K9 many paths are possible. All

required edges are in our set of n-values.
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10110. . .783812683135232597

866

51 26 25 21 11

5321 X.509 certificates, 4627 RSA moduli

Figure 3.4 – The largest depth one tree found, on 4628 vertices, with the 512-bit prime p866

as root and leaves p2597, p13523, . . ., p10. The edges correspond to 4627 distinct 1024-bit
RSA moduli, with labels indicating the number of distinct X.509 certificates and PGP keys
containing the RSA modulus corresponding to the edge, for a total of 5321 certificates. All
certificates have expired and use SHA1 as hash function.

123861302275083876665914814408714816 1 6 11 7 1

1114112968366887419434672511559710 1 1 11 2 1

1173971202042141747912397101914770 1 1 11 1 1

Figure 3.5 – Six connected components consisting of four vertices, with labels as in Figure 3.4.
The eight primes in the top two components are 512 bits long, the other 16 are 256-bit primes).
The red edges correspond to RSA moduli contained in certificates that will not expire anytime
soon and that use SHA1 as hash function. The blue ones will expire soon and use MD5.

Affected RSA moduli and certificates. The 1995 components contain 14901 vertices and

12934 edges: 14901 distinct primes fully factoring 12934 distinct n-values (0.2% of the total),

11699 of which each occurs as RSA modulus in a single X.509 certificate or PGP key, and

1235 occurring more than once in, in total, 9720 certificates and keys. Thus, 11699+9720 =
21419 X.509 certificates and PGP keys are affected. Note that affected moduli are much more

frequently shared than non-affected ones. None of the affected moduli are blacklisted.

Of the primes, 14592 are 512 bits long, 307 are 256-bit, and the remaining two have 257 bits.

Of the n-values, 214 are 512 bits long, and there are 12720 of 1024 bits. Of the 512-bit n-values

thus factored, 47 occur as RSA moduli in 188 X.509 certificates that have not expired and

use SHA1. Of the factored 1024-bit n-values, 3201 occur as RSA moduli in 5250 certificates

that have not expired and that use SHA1, of which 617 are regular non-self-signed end-user

certificates with “CA=false” (with 390 distinct RSA moduli). The majority (4633, with 2811

moduli) has “CA=true” and is self-signed, of which 727 (304 moduli) have been used to certify
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Figure 3.6 – Connected component consisting of nine vertices, corresponding to primes p376,
p1144, . . ., p14762 (all 512-bit). With labels as in Figure 3.4, in total 687 X.509 certificates are
involved. Six of those certificates have not expired yet, use SHA1 as hash function (as opposed
to MD5), and have “CA=false”; the red edges correspond to the RSA moduli contained in
those six certificates.

other RSA moduli (none among our collection of affected moduli). These 727 certificates

share their “issuer”-field and the 304 RSA moduli occur in depth one trees not containing

moduli owned by others. So, this security issue is reasonably contained. But 4445 of the 5250

certificates (and 537 of the 617 end-user ones) have no relation to that issuer and have a

wide variety of “issuer” and “subject”-fields. This could be a security concern. We do not

and will not reveal what types of users or devices are affected. We note, however, that our data

give us more reason for concern than reported elsewhere (cf. [Hen12]) and that affected “flesh

and blood” users that we talked to were not pleased3.

Discussion. Generation of a regular RSA modulus consists of finding two random prime

numbers. This must be done in such a way that these primes were not selected by anyone else

before. The probability not to regenerate a prime is commensurate with the security level if

NIST’s recommendation [U.S09, page 53] is followed to use a random seed of bit-length twice

the intended security level. Clearly, this recommendation is not always followed.

Irrespective of the way primes are selected (additive/sieving methods or methods using fresh

random bits for each attempted prime selection), a variety of obvious scenarios is conceivable

where poor initial seeding may lead to mishaps, with duplicate keys a consequence if no “fresh”

3“Donnerwetter!”
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local entropy is used at all. If the latter is used, the outcome may be worse: for instance, a

not-properly-random first choice may be prime right away (the probability that this happens

is inversely proportional to the length of the prime, and thus non-negligible) and miss its

chance to profit from local entropy to become unique. But local entropy may lead to a second

prime that is unique, and thus a vulnerable modulus.

The above may, to some extent, explain the occurrence of duplicate RSA moduli and depth

one trees. But we cannot explain the relative frequencies and appearance of these mishaps.

Neither do we understand how connected components in Figures 3.5 and 3.6 may be expected

to appear other than by very poor seeding or intentional malfeasance. Also, the great variation

of issuers and subjects of the affected X.509 certificates (including the K9) is disconcerting. No

correlation between certification time and vulnerability of keys was detected. Vague, hand-

waving arguments suggest that some of the devices involved may have used about 32 bits of

entropy.

Avoiding two random choices during RSA modulus generation is straightforward (cf. [Len98]).

But the resulting moduli may have other, as yet unpublished weaknesses (we are not aware of

serious ones). It is better to make sure that cryptographic keys are generated only after proper

initialization of the source of randomness.

3.4 ElGamal, DSA, and ECDSA

In this section we present the results of various counts and tests that we conducted on the

data labeled as ElGamal, DSA, or ECDSA public keys. In neither collection did we find any of

the numbers from [Moo08] (cf. Debian OpenSSL vulnerability [YRS+09]).

3.4.1 ElGamal

An ElGamal public key consists of a triple (p, g , y) where p is prime, g is a generator of the

multiplicative group (Z/pZ)∗ or a subgroup thereof of small index, and y is an element of 〈g 〉.
The secret key is an integer x ∈ {0,1, . . . , p −2} with g x = y .

Correct ElGamal keys. Among the PGP keys, 2 546 752 are labeled as ElGamal public keys.

Three are incomplete and were discarded. Of the remaining triples 82 contain a composite

p-value, resulting in 2 546 667 triples with correct p-values. Almost half (38) of the wrong

p-values share a pattern with 65.6% of the p-values in the correct ElGamal keys, cf. below.

Restricting to the triples (p, g , y) with prime p-values, a triple is a correct ElGamal public key

if y ∈ 〈g 〉. To verify this the order of g , and thus the factorization of p −1, is needed. This is

easy for safe primes (i.e., primes p for which (p −1)/2 is prime), but may be hard otherwise.

The order of g could be established for 70.8% of the triples (65.6% with safe primes, 5.2%

with primes p for which (p −1)/(2m) is prime and m > 1 has only small factors) and could
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Figure 3.7 – Cumulative numbers of p and q-sizes in ElGamal and DSA public keys, indicated
by “ElGamal 1”, “DSA p”, and “DSA q”; cumulative sizes of the distinct ElGamal p-values is
indicated by “ElGamal 2”.

reasonably be guessed for the other 29.2% (almost all with primes p for which (p −1)/2 is

composite but has no small factors). For at least 16.4% of the ElGamal keys the g -values do not

generate (Z/pZ)∗. This led to 33 failed membership tests y ∈ 〈g 〉, i.e., an insignificant 0.001%

of the triples. Note that if y ∈ 〈g 〉 a secret key exists; it does not follow that the owner knows it.

A handful of triples were identified with peculiar y-values for which it is doubtful if a secret

key is known to anyone.

Shared ElGamal keys. Six of the ElGamal keys occur twice: two keys with two unrelated

owners each, and four keys occurring twice but with the same owner.

ElGamal key sizes. Figure 3.7 depicts the cumulative p-sizes in the set of 2 546 628 correct

ElGamal keys. There are 1437 different p-sizes, ranging from thrice 256 bits to nine times

16384 and once 20000. Most frequent are 2048 bits (69.3%), 1024 (11.2%), 4096 (10.8%) and

3072 (5.8%) followed by 1536 (1.3%), 1792 (0.7%), 768 (0.4%), and 1025 (0.04%).

Shared primes, generators. Primes and generators may be shared. Among the 2 546 628

distinct ElGamal keys 876 202 distinct p-values (and distinct (p, g )-pairs) occur. Despite this

high duplication rate, only 93 distinct p-values occur more than once. The four most frequent

p-values are “similar”. Let p(x,L) denote the least safe prime ≥ x mod 2L . There is an integer v

such that p(v,L) for L-values 2048, 4096, 3072, 1536 occurs as p-value in 52.4%, 6.5%, 5.6%,

and 1% of the ElGamal keys, respectively (p(v,1024) occurs twice, p(v +2510,512) once, and as

noted above parts of v also occur in incorrect ElGamal keys). We suspect that these p-values,

of different sizes, were generated using similar software and identical random seeding (if any),

and from the least significant bit up to the most significant one.

All p(.,L)-values use g = 2, which for L = 2048 generates (Z/pZ)∗, but for the others an index
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two subgroup thereof. Overall, g = 2 occurs most frequently (70.8%), followed by g = 5 (19.5%),

6 (4.7%), 7 (1.9%), 11 (1.3%), and 13 (0.9%), with a total of 76 distinct g -values. No g -values

were found that do not have a large order, but for at least 9.6% of the distinct (p, g )-pairs the g -

values do not generate (Z/pZ)∗. We can only give a lower bound because, as pointed out above,

we failed to find any prime factor of 29.2% of the (p −1)/2-values in the ElGamal keys (which

turns out to be 87.7% of the distinct (p −1)/2-values in the set of distinct p-values). Thus, we

cannot be certain that the corresponding generators were properly chosen; consistent failure

of all ECM factoring attempts of these numbers suggests, however, that they were well chosen.

Among the distinct ElGamal keys, all y-values are distinct, which is as expected because

distinct (p, g )-pairs have negligible probability to lead to the same y-value (and identical

(p, g )-pairs with identical y-values have already been identified and removed). The secret

keys, however, may still be the same. But as there is no way to tell if that is the case (for distinct

(p, g )-pairs) there is no serious security risk even if they are.

3.4.2 DSA

A DSA public key is a four-tuple (p, q, g , y) where p and q are primes with q dividing p −1,

the element g generates an order q subgroup of the multiplicative group (Z/pZ)∗, and y is an

element of 〈g 〉. The secret key is the integer x ∈ {0,1, . . . , q −1} with g x = y .

Correct DSA keys. Among the PGP keys and X.509 certificates, 2 536 959 and 141 four-tuples,

respectively, are labeled as DSA keys. All four-tuples were first checked for correctness, casting

them aside at the first test they failed. The tests were conducted in the following order: T1:

primality of p; T2: primality of q ; T3: divisibility of p −1 by q ; T4: order of g equals q ; and

T5: order of y equals q . An insignificant 0.002% (66) of the PGP four-tuples are incorrect

with failures 12×T1, 2×T2, 10×T4, and 42×T5 (where T2 failed twice for the same q-value, as

it occurred twice). The X.509 DSA four-tuples passed all tests. Some of the failures may be

due to transcription errors, as they occur in four-tuples that differ from correct ones in a few

hexadecimal positions.

Shared DSA keys. The remaining 2 536 893 PGP DSA keys contain very few duplicates: one

key occurs thrice (with possibly double ownership) and two keys occur twice each (each with

single ownership), resulting in a total of 2 536 889 distinct PGP DSA keys. Although all 141

X.509 DSA keys are distinct, 95 of them are also among the PGP DSA keys, resulting in a total

of 2536889+141−95 = 2536935 DSA keys. We have not checked ownerships of these 95

duplicate DSA keys.

DSA key sizes. The cumulative p and q-sizes in the set of 2 536 935 DSA keys are depicted

in Figure 3.7. There are nine different q-sizes: all except 0.2% (5012) are 160, with 256, 224,

and 232 the most frequent exceptions occurring 4016, 702, and 249 times, respectively. The

smallest and largest q-sizes are 160 and 512, the latter with seven occurrences. With 78
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different sizes the variation among p-sizes is larger, though nowhere close to the variation

among ElGamal p-sizes. All except 0.6% (15457) of the p-sizes are 1024, with 768, 2048, 3072

and 512 the most frequent exceptions with 9733, 3529, 1468 and 519 occurrences, respectively.

The smallest and largest p-sizes are 512 and 16384, the latter with a single occurrence.

Shared primes, generators. Distinct DSA keys may contain identical p, q , or g values. In total

2 535 074 distinct p-values occur, with 2 535 037 distinct primes occurring once, 22 occurring

twice, five occurring thrice, etc., up to a prime occurring 969 times (note the difference with

ElGamal). Not surprisingly (but not necessarily, as the same q-value may give rise to many

different p-values), the overall counts and numbers of occurrences are the same for the

distinct q-values and the distinct (p, q)-pairs. Although the generator also allows considerable

variation, the number of distinct (p, q, g )-triples is the same too. For all except 265 of the

unique (p, q, g )-triples, the generator g equals 2(p−1)/q . We have not been able to determine

how the other 265 generators were chosen.

The y-values are all distinct among the distinct DSA keys – given that shared keys were already

removed, identical y-values would have been odd indeed. The same remark as above applies

concerning identical secret keys.

3.4.3 ECDSA

The only interesting fact we can report about ECDSA is the surprisingly small number of

certificates encountered that contain an ECDSA key (namely, just one), and the small number

of certificates signed by ECDSA (one self-signed and a handful of RSA keys). As long as one

subscribes to the notion of a standardized curve over a finite field of prime cardinality of a

special form, as opposed to a randomly but properly chosen curve over a non-special prime

field (cf. [LM10]), there is nothing wrong with the curve parameters secp384r1. It offers (in

“theory”) about 192 bits of security which makes it, security-wise, comparable to 8000-bit RSA

moduli (n) and ElGamal or DSA finite field sizes (p), and 384-bit DSA subgroup sizes (q).

3.4.4 ElGamal and (EC)DSA.

Not surprisingly, the intersection of the sets of p-values for ElGamal and for DSA is empty. We

have not tried hard to retrieve any of the secret exponents, i.e., (for ElGamal and DSA) x-values

such that g x = y , but have checked that none is less than 212 in absolute value.

Random nonces in ElGamal and (EC)DSA. Unlike RSA, during signature generation ElGamal

and (EC)DSA require a random nonce that should be entirely unpredictable (cf. [ElG85, NS02,

NS03]). We are not aware of any studies that verify whether or not the nonces are properly

chosen (with the notable exception of [Dar11]). Collecting data for such a study requires a

much more intrusive type of data collection and may be considered unethical. Note, however,

that a mishap in the form of a poorly chosen nonce affects only the party that makes the poor
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choice, but does not affect any other party. In particular the choice of two identical nonces for

distinct ElGamal or DSA parameters does not affect anyone but the two users involved.

Discussion. Both for ElGamal and DSA a small number of keys were identified that are shared

among unrelated parties. This may be a security concern. Furthermore, there were some

ill-formatted keys that cannot be expected to work and that should be of insignificant security

concern. From the point of view of this work, the main security concern for ElGamal and

(EC)DSA is the generation of the random nonce; this is a key usage but not a key generation

issue and therefore beyond the scope of this work.

3.5 Conclusion

We checked the computational properties of millions of public keys that we collected on the

web. The majority does not seem to suffer from obvious weaknesses and can be expected to

provide the expected level of security. We found that on the order of 0.003% of public keys is

incorrect, which does not seem to be unacceptable. We were surprised, however, by the extent

to which public keys are shared among unrelated parties. For ElGamal and DSA sharing is

rare, but for RSA the frequency of sharing may be a cause for concern. What surprised us most

is that many thousands of 1024-bit RSA moduli, including thousands that are contained in

still-valid X.509 certificates, offer no security at all. This may indicate that proper seeding of

random number generators is still a problematic issue.

The lack of sophistication of our methods and findings make it hard for us to believe that

what we have presented is new, in particular to agencies and parties that are known for their

curiosity in such matters. It may shed new light on NIST’s 1991 decision to adopt DSA as digital

signature standard as opposed to RSA, back then a “public controversy” (cf. [DLL+93]); but

note the well-known nonce-randomness concerns for ElGamal and (EC)DSA (cf. Section 3.4.4)

and what happens if the nonce is not properly used (cf. [Dar11]).

Factoring one 1024-bit RSA modulus would be historic. Factoring 12720 such moduli is a

statistic. The former is still out of reach for the academic community (but anticipated). The

latter comes as an unwelcome warning that underscores the difficulty of key generation in the

real world.
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4 Privacy Leaks through File Sizes

4.1 Motivation

Encryption of stored data is an unavoidable security requirement when one wishes to out-

source storage infrastructure to a third party. Low overhead from the cryptographic layer is

obviously a desirable property.

Stream ciphers produce ciphertexts the same size as their corresponding cleartexts, down to

the single bit if needed. This can also be achieved with block ciphers by using the appropriate

modes:

• Counter (CTR) mode produces a cryptographically secure pseudorandom stream by

concatenating the ciphertexts produced by encrypting an increasing counter initialized

at a secure IV.

• Output Feedback (OFB) mode likewise produces a stream by iterating the encryption

function over a secure IV, and concatenating the ciphertexts of each iterated step.

• Cipher Feedback (CFB) mode produces a stream by encrypting the stream ciphertext

itself, usually with a fixed offset of one block. It is thus not identifiable to a stream cipher,

but still maintains the property that the ciphertext can be cut down to the exact size of

the plaintext without losing information.

If we suppose that the keys and initialization vectors are stored elsewhere, as part of the

metadata, such setups have no storage overhead. While it may seem desirable in terms of

space efficiency, it also allows a passive attacker to observe the exact size of the cleartext. It

is also still the case if the system has a fixed or predictable overhead, such as when it is just

storing a single initialization vector per object.

While this information leak may be less of a concern in a context where message size conveys

little information, one can wonder if this is still the case for immutable systems archiving large
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files. In this chapter, we will try to assess the potential security consequences of this property

on realistic systems.

For the following discussion, we will follow the IEC standard [IEC08]: Classical SI prefixes used

with bytes (kB, MB, GB. . . ) refer to their habitual powers of 1000, while binary prefixes (kiB,

MiB, GiB. . . ) refer to powers of 1024.

We can compute a coarse estimate of the probability of a file to have a unique size. Let us take

movies as an example. At the time of this writing, IMDB statistics [IMD] advertise knowledge

of 340k movies. As the worst case, consider that all of them are available in storage, with

inefficient duplication of content for all the possible audio languages, subtitle languages, and

codec choices; a conservative estimation is 104 for an upper bound on the average number of

variants per movie (100 audio languages, 10 subtitle language choices for each audio variant,

and 10 different codecs). Let us further assume that file sizes are uniformly distributed in a

range of the order of 2×109 bytes (between 1 and 3 GiB).

Assume we have k distinct files being randomly mapped over a range of n possible distinct file

sizes. We are interested to compute the probability P that some observed file size is unique.

Let P0 be the probability that a file size is mapped by no files, P1 be the probability that a size

is mapped by exactly one file, and P2+ the probability that a size is mapped by two files or

more. Deriving P0 and P1 from a binomial law, we have:

P0 =
(

n −1

n

)k

P1 = k

n

(
n −1

n

)k−1

P2+ = 1−P0 −P1

P = P1

P1 +P2+
= P1

1−P0

For the chosen n = 2×109 and k = 340×107, we compute a probability P ≈ 0.38 of being

mapped to a unique file. While this is a very coarse estimation, it shows that we cannot

simply dismiss the possibility that the exact size of a large multimedia file conveys significant

information about its contents.

In systems like Tahoe [WOW08], the problem is exacerbated by the use of convergent encryp-

tion, a mechanism which allows deduplication of encrypted data. A convergent encryption

scheme ensures that the same contents, encrypted by two different users, will produce the

same ciphertext (hence the ciphertexts are said to converge). One can build a convergent en-

cryption scheme by requiring that keys and initialization vectors are deterministically derived

from the actual file contents, for instance by a cryptographically secure hash function.
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Convergent encryption has the drawback that anyone can probe the storage system and tell

if some content already exists. In extreme cases such as very small files with mostly known

content, it might even be possible to guess the full contents through brute force, as seen

in [HPSP10].

To avert these attacks, the convergent key derivation process might be salted by a convergence

secret. Only users sharing the same convergence secret will benefit from mutual deduplication

of their storage space, at the cost of potentially exposing themselves to these side-channel

leaks. A user who does not care for such attacks may use a publicly agreed-on value, to benefit

from maximal deduplication, while a paranoid user may use a random secret value, and get

no deduplication at all.

In order for the convergent scheme to work, all participating users must obviously agree on

ciphers, and key derivation algorithms. In the case of Tahoe, for instance, using AES in CTR

mode is part of the agreement.

4.2 Typical Block Sizes

For practical reasons, when operating close to the hardware layer, storage systems will typically

operate on blocks for efficiency reasons. The optimal block size poses a trade-off between

wasted space, and compactness and efficiency in the metadata management. In fact, the

ubiquitous use of the byte as the smallest storage unit is already a choice of block size, albeit

a tiny one. The native size for block storage on Unix is 512 bytes. Ext4, the current default

filesystem for Linux, uses blocks between 1 and 64kB, the default being 4kB. AES operates on

blocks of 16 bytes. BitTorrent uses two levels of granularity: pieces, offering granularity for

the integrity checks (of variable size, typically of a power of 2, between 218 and 224 bytes), and

blocks, offering granularity for the network transfers, for which the de facto universal standard

is 16kB [Coh08].

4.3 Data Collection

We chose to study the set of files publicly shared over BitTorrent. In addition to being a

well alive and popular technology [PGES05], file names and sizes can be extracted from the

metainfo blocks of .torrent files. Data is cryptographically authenticated, and .torrent

files can in turn be obtained from community-vetted sources. The file names extracted from

these are presumably more reliable than with other P2P filesharing technologies, where the

cost of registering and disseminating a bogus entry can be very low.

What we discovered empirically deviates from models used to represent file size distribution

in typical computer systems [Mit04]. Nevertheless, while not representative of the files a single

user might store on a home computer, content sampled from P2P networks is arguably more

representative of typical content which would be most likely to be found in cloud-based public
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storage, and benefit the most from deduplication.

We scraped public repositories such as The Pirate Bay [SNS], as well as various other, private,

sources. We acquired around 7M .torrent files, containing metadata for a total of 12.4M

downloadable files. The downloadable data represents a total volume of 437.8TB (398.2 TiB).

4.3.1 Architecture of BitTorrent

The unit of sharing in BitTorrent is not the file, but the torrent. A torrent is an immutable set of

related files (possibly a singleton set), cryptographically authenticated. The metadata for the

torrent are contained in a small .torrent file. These files initially needed to be distributed

through an external channel.

Most datastructures in BitTorrent uses Bencoding [Coh08], a serialization format supporting

the usual dynamic datastructure paradigm (integers, strings, lists, and associative lists). A

.torrent file is itself a Bencoding representation of a metainfo datastructure. The largest part

of the metainfo structure is usually the info datastructure, which contains the unchanging

information pertaining to the downloadable file set, such as the file names, file sizes, and

the chosen piece size. In short, the info structure contains information about what to down-

load, and the rest of the metainfo structure contains information about how to download it.

Thus, information outside the info structure may change at any time without breaking the

authentication of the data.

To perform the cryptographical integrity check, the client considers the concatenation of all

the files in the torrent, arranged by lexicographic order of their respective file names, and

slices this stream in pieces of regular size1. The SHA-1 of every piece is computed and stored

in the info structure. BitTorrent clients may negotiate transfer of multiple pieces in parallel,

and use the hashes to verify the integrity of the downloaded data while the download is in

progress. They may safely start uploading verified pieces, and can legitimately punish2 peers

who transmit incorrect data, without losing efficiency.

Because Bencoding imposes a canonical ordering when serializing associative arrays, the info

structure has a deterministic, consistent serialization, that can then itself be authenticated by

its SHA-13 hash, which is called the infohash value.

1The block size is uniform across a single torrent, but can otherwise be freely chosen by the torrent publisher. It
offers a trade-off between the metadata size and the integrity check granularity. The last piece may be smaller than
the chosen piece size.

2Typically by uploading to faulty peers at a reduced rate, or refusing to upload anything at all.
3There are no plans to upgrade to a more secure hash function. However in this case, collisions are not much of

a problem; second preimage attacks would be.
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4.3.2 Trackerless operation

The original operation mode of BitTorrent relies on a tracker service, a compromise between a

fully centralized index service (like the original Napster design, which proved very fragile under

pressure of censorship) and completely distributed search mechanisms like Gnutella (based

on broadcasting, slow and wasteful) or Kademlia [MM02] (a Distributed Hash Table based on

the XOR metric, reasonably efficient, but less suitable for operation on private networks, and

without accounting support). The tracker service acts as an index of all the peers interested

in downloading or sharing the data; peers announce themselves periodically4, and receive

a list of other active peers. Peers can contact each other at any time and negotiate a data

transfer. However, instead of having a single global tracker service, each torrent can run on

a separate tracker (the address of the tracker(s) is part of the .torrent data. This allows

BitTorrent to operate as a data distribution protocol on private networks, and not only for

public filesharing.)

In this original design, the tracker service is a target of choice for censorship. If a tracker is

only responsible for a small set of torrents, disabling it will cripple distribution of this torrent

set, and nothing else.

As a consequence of the cat-and-mouse game between filesharers and censorship attempts,

various improvements have been developed to make the protocol more robust against censor-

ship. The three more important mechanisms are:

• A Distributed Hash Table complements or replaces the original tracker mechanism. The

DHT service stores arbitrary key-value pairs in a fully distributed fashion, and cannot

be easily shut down. Peers register themselves by adding their own addresses under the

key for the infohash they are interested in, and query the same key to find out about

other peers.

• The Peer Exchange Extension allows peers to exchange contacts directly, making the

role of the tracker less critical. In addition, cautious peers may choose not to announce

themselves to a tracker, and only query the DHT without registering in it, to become less

visible to outsiders (they will only reveal themselves, through peer exchange, to peers

actively engaging in the download, or at least faking it up to a certain point; they cannot

be spotted just by hitting the tracker or querying the DHT)

• The Metadata Extension allows peers to request and exchange the full content of the

metadata structure for the torrent.

It should be noted that these extensions were developed in response to rather arbitrary ju-

risprudence. Initially, large sites like The Pirate Bay [SNS], hosting torrents containing legally

4Typically every 5 minutes.
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dubious contents, did hide behind the fact that they were only hosting metadata, and not ac-

tual contents. When this position became unreasonably hard to maintain, they removed the ac-

tual .torrent files, instead offering only an index of interesting infohash values, in the form of

Magnet Uniform Resource Identifiers. Magnet URIs are but one form of URIs [Cha01, CSF+08]

that contain nothing but a cryptographic hash of the target data (in our case, the infohash). For

some reason, metadata are considered less problematic when passed through a cryptographic

hash function, and reduced from a few kilobytes to a hundred of bytes, even when the cryp-

tographic hash function can be easily inverted thanks to the availability of the peer-to-peer

network.

When the three extensions above are implemented, the infohash is the only piece of infor-

mation required to acquire the torrent contents in an authenticated way. The process is as

follows:

• If necessary, bootstrap the connection to the DHT, through the use of well-known

nodes.5

• Query the DHT with the known infohash as the key, obtain a list of peer addresses.

• Contact some peers, announce the infohash value, and identify peers supporting the

Metadata Extension.

• Make a metadata request, obtain the full info structure.

• Use the Peer Exchange Extension to obtain more peer addresses from the existing ones.

• Proceed normally.

4.3.3 Fast Resolution of Magnet URIs

Because we did not want to exclude sites offering only magnet links for our study, we had to

acquire a way of retrieving the .torrent files associated to a particular magnet link. At the

time of this investigation, no easy publicly available, scriptable tool existed to perform this

task, short of running a full BitTorrent client and actually running the download.

The probable reason is that performing this operation already requires implementing the

most complex components of a full BitTorrent client: a DHT client, a Bencoding serializer and

deserializer (because messages for the metadata request use it), and network code to contact

the peers. Once a tool reaches this stage of development, there is little work remaining to turn

it into a complete BitTorrent client.

We used code from Etorrent [And], a BitTorrent client written in Erlang, and adapted it to

perform the minimal steps required to resolve a magnet link. In particular, the program joins

5This only needs to be done once per client, and only on the first run or after a long period of inactivity.
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the DHT, and is able to query it, but never registers itself under any infohash value. It does

connect to peers, and makes a metadata transfer request, then disconnects immediately. All

operations are cheap to do asynchronously thanks to Erlang, allowing us to resolve our large

collection of magnet links much faster than a naive implementation.

Unfortunately, because we have to disclose the infohash value we are interested in, we cannot

ensure that the peer will not associate our address with the infohash and propagate it further,

at least temporarily, through the Peer Exchange extension. Testing this may become the

subject of future work.

While performing this process, we observed that a very significant fraction (more than 25%)

of the peers registered in the DHT refused to answer our connection requests. This could be

related to network filtering issues6, but another possible explanation is the parasitic use of

the DHT to run amplified Distributed Denial-of-Service attacks. This kind of behaviour has

already been investigated in [EDGM07].

4.3.4 Performance

We found operating on a collection of millions of very small files to be quite taxing for the

default Linux filesystem we used (ext3). When random access to a specific torrent is not

required, it is at least an order of magnitude faster to store the collection packed in a single

tar file, and to unpack it on-the-fly and stream the torrent files to the analysis process. The

sample code we used to do so is available on Github7.

4.4 Analysis and Results

Because fetching actual data would be unreasonably costly in terms of bandwidth and storage,

we restrict ourselves to analysing the metadata only. Unfortunately, the hashes stored in the

metainfo correspond to blocks not necessarily aligned with file boundaries.8. Therefore it is

not in general possible to tell if two files of identical size are likely to be identical in content,

unless the two torrents happen to use the same block size, and the respective offsets in the

two torrent streams differ by exactly a multiple of this block size.

We thus restrict ourselves to using file names as identifiers for the content. A file name is

not always a reliable predictor for content: typically, in the case of uncompressed ebooks,

it is common for files to be named after the number of the page, without additional hints

identifying the ebook itself. It is also relatively common for some archive formats to split a

large archive across several fixed-size files, and give these files a name derived from a common

regular pattern. Nevertheless, the relationship between file sizes and names can still be

6Operation behind Network Address Translation (NAT) gateways is widely known to be problematic.
7https://github.com/maugier/tortar
8Some clients address this problem by adding special zero-filled padding files, exactly of the size required to

make the beginning of the next real file align with a block boundary, but this practice is not generalized.
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Size (GiB) Name
222.9 LIBRARY .zip

166.4 DJANDYW.TK ULTIMATE SAMPLES COLLETION.zip

120.9 Harry Potter.mpeg

116.6 Hetero.rar

86.6 AGI.rar

82.9 Ponibooru-All-Safe.zip

68.0 Robert.Gustafsson.Ultimate.Collection.SWEDiSH.BOX.PAL.DVDr.rar

63.7 Desktop.rar

56.4 Music, Pictures, and Meth.zip

55.6 Крепкий орешек.mkv

Table 4.1 – Largest files observed

objectively measured and used to predict file names.

We observed 6.35M distinct filename-filesize pairs (6.33M after removal of special empty

padding files.) About 4k files had a size of zero. Of these empty files, 1.2k seemed to follow

a systematic naming convention containing movie or TV show metadata (name, year and

episode). It is thus an ad-hoc method for storing relevant metadata in the downloaded data

itself, in a reliable cross-platform way.

The rest of the empty files have benign names. They are most likely the result of human

error, the respective torrents having been created while the download from the original (non

BitTorrent) source was not yet complete.

As an indication, the 10 largest files observed in the collection are in Table 4.19. Interpretation

of the file names is left to the reader.

4.4.1 File types

Table 4.2 shows the 20 most frequent file extensions, as announced by the metadata. In

principle, we cannot check the accuracy of the extensions against the actual content, as we do

not have access to it. However, as said before, the torrents and magnet links were obtained

from sources which perform a community vetting process on them, so we expect the majority

of them to at least not be deliberate fraud attempts.

The predominance of image files was somewhat surprising to us, but can be partially explained

by the way ebooks are sometimes packaged (as uncompressed directories of one image per

page, typically.)

Table 4.3 shows the 20 file extensions representing the largest data volume in the collection.

Without surprise, video files are by far the largest space consumer.

9Errors in the file names are authentic.
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Extension Filenames Extension Filenames
.jpg 2701999 .wav 53350
.mp3 1239286 .txt 51929
.avi 229170 .cbr 43171
.flac 146078 .zip 40609
.png 134382 .srt 37573
.mp4 121384 .vob 34489
.mkv 106705 .wmv 30351
.pdf 105190 .exe 29437
.rar 92016 .flv 26996
.nfo 55560 .m4a 25976

Table 4.2 – Distinct file names for most frequent extensions

Extension Volume (TB) Extension Volume (TB)
.mkv 117.752 .zip 4.762
.avi 109.163 .bin 4.599
.mp4 44.829 .mpg 3.098
.iso 41.902 .m4v 2.899
.rar 16.977 .ts 2.723
.m2ts 13.360 .exe 2.554
.mp3 11.387 .flv 1.906
.wmv 10.899 .jpg 1.630
.vob 8.743 .mov 1.395
.flac 5.492 .pdf 1.351

Table 4.3 – Data volume by advertised extension

To get a finer analysis, we group these extensions by media type, according to Table 4.4, and

look at them as distinct collections.

Figure 4.1 shows the overall histogram of the number of different file names observed for

some given size. Points at the bottom (y = 1) denote unique file sizes for which it is possible

to unambiguously guess the filename (assuming prior knowledge that the file is part of this

torrent collection). One can see that the first unique file sizes appear around 8kiB (below this

bound, no accurate guesses can be made) and the last non-unique file sizes cluster around

17GiB (above this bound, file sizes are always unique).

Interestingly, if one presupposes knowledge of the media type (audio, video, . . . ), the respective

histograms offer very different shapes, as seen in Figure 4.2:

• For audio, one expects the sizes to cluster around the approximate sizes, for typical

encoding parameters, of a song of typical size.

• For images, the same clustering can be observed around typical wallpaper resolutions

and their sub-multiples.
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Media type Extension Notes
archive .zip Common under Windows

.rar For historical reasons, popular among the filesharing crowd

.r[0-9][0-9] RAR uses numbered extensions (.r00, .r01, . . . ) for split archives
audio .flac Free Lossless Audio Codec, popular among audiophiles

.mp3 Historical de facto standard of filesharers

.m4a Container for Advanced Audio Coding (AAC)

.ogg Open multimedia container, but audio most of the time

.wav Historical PCM container

.wma Windows Media Audio
image .bmp Windows bitmap format

.gif Graphics Interchange Format

.jpg JPEG

.png Portable Network Graphics
video .avi Audio Video Interleave, historical Microsoft multimedia container

.flv Flash Video (Macromedia/Adobe)

.mkv Matroska, an open multimedia container

.mp4 MPEG-4

.m2ts Native container format for BluRay discs

.ts MPEG Transport Stream, possibly from digital TV or satellite broadcasts

.vob Video Object, native format for DVD discs

.wmv Windows Media Video
iso .iso ISO 9660 format, “mirror images” of optical media (CD, DVD, BluRay. . . )

Table 4.4 – Media type by extension

Figure 4.1 – Distinct file names for each possible file size, all types together
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• For videos, we observe much tighter clusters around 367MiB, 576Mib, and 1.07GiB. We

are not certain of the origin of the first. The second corresponds to the space available to

the user on a 700MiB CD-R after it has been formatted with Microsoft’s Live File System,

their native packet writing format for Windows. The third corresponds to a limitation in

the UDF disk format, which uses a 30-bit integer to store file sizes.

• For ISOs the strongest cluster occurs around 4.7GB, as expected for single-layer DVD

images, the second strongest around 8.7GB (double-layer single-sided DVDs).

• Finally, compared to other categories, Archives have the largest amount of identical

sizes. This is due in great part to split archives, historical formats consisting of several

identically-sized blocks. While the original use for such splits was to easily split large

datasets across removable media, it is still popular in some filesharing circles, as a

low-tech alternative that allows parallel downloading across multiple endpoints (and

races between uploaders) on top of old protocols, like FTP, that were not designed to

support multihomed transfers at the file level.

Figure 4.3 shows, for each media type, the rank of every observed distinct pair of file name

and size, when sorted by descending file size. Vertical drops are large sets of files sharing the

same size. The flat segments at the start of each curve are rare, abnormally small files, that

may indicate incomplete transfers.

Figure 4.4 shows the cumulative probability distribution of uncertainty over the file name,

given a fixed file size randomly chosen uniformly among all the possible observable file sizes.

The curve gives, for a given entropy value (the logarithm base 2 of the number of possible file

names), the amount of different file sizes having less than the specified uncertainty.

4.4.2 Entropy losses

To quantify the privacy loss caused by the disclosure of a file size, a good metric would be

the average difference of entropy in the distributions of file names with and without some

knowledge of the size. This knowledge may be of the exact byte-wise file size, or it may be

block-wise for various typical block sizes.

For the rest of this section, we consider a random uniform choice over all possible distinct file

entries. Entries are distinct if they differ by size, or by filename (without the base path), or

both.

Disregarding the file size information, the effective entropy of the file name distribution is

21.918 bits. It would have reached 22.594 bits if all 6.33M entries had distinct file names,

but there is an ample supply of files with different sizes and identical names. The worst

offenders are movie cover images (cover.jpg, front.jpg, back.jpg), VOB files ripped with

their original internal-use-only names, executable installers (setup.exe), and files named
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(a) Audio (b) Images

(c) Video (d) ISOs

(e) Archives (f) Other

Figure 4.2 – Distinct file names for each possible file size, arranged by media type
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Figure 4.3 – Ranking by size of distinct files

Figure 4.4 – Ranks of file name entropy, file size known up to the byte
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Figure 4.5 – Distinguishable file sizes, for given uncertainty over file name, with different block
rounding

after just a single number (unpacked ebooks with one file per page, named 001.jpg, 002.jpg,

. . . , and music CDs with Track 1.mp3, Track 2.mp3, . . . .)

Figure 4.5 shows the distribution of entropy over the file name, given a randomly picked file

size, when the sizes have been rounded up to some typical block size values. As expected,

the curves are mostly decreasing, reflecting the increasingly lower probability to collide with

another file size by chance. We do not know how to explain the irregularities in the curves, in

particular the spike exhibited by 16-bytes blocks.

We then compute information leaked, on average, by observing the file size rounded up to a

chosen block size. To do so, we take our collection of known file sizes, perform the rounding,

then compute the entropy of the resulting distribution. Figure 4.6 shows the information

leaked, on average, when block sizes are powers of 4, starting from 16 to 416.

We can see the privacy increases almost linearly with the block size, for a domain of realistic

values ranging up to 1MB. After that, the benefits decrease, and the curve is of course expected

to hit exactly zero when the block size becomes larger than the largest file in the collection.

Figure 4.7 shows the trade-off between information leaked, and total wasted space. The total

wasted space is the sum, for every known file, of the difference between their actual size and

their rounded-up size.

The remarkable similarity between the two figures is explained by the fact that wasted space

increases almost linearly with block size.

Figure 4.7 also shows the trade-off for an adaptive padding scheme where file sizes are rounded
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Figure 4.6 – Information in truncated file sizes, per block size

up the nearest larger power of respectively
�

2, 2, 4, and 8. Larger bases are more wasteful,

and leak less information. Much to our disappointment, this scheme seems to offer a worse

trade-off than a simple fixed block size. This may be explained by the fact that adaptive

padding, as we tested it, is very wasteful for the largest files, but leaks less information about

these large files, which are on average less common than the small ones.

4.5 Conclusion

Information leakage through file sizes, be they exact byte-wise size or up to rounding to a small

block size, appears to be a legitimate concern in the case of media files, according to what we

could measure from publicly available information. The obvious solution to this problem is to

use an appropriate padding mechanism to make relatively close file sizes indistinguishable,

enough for the uncertainty to go back to acceptable levels.

Padding will be wasteful, unless the padding scheme chosen makes the storage system aware

of the padding. We can distinguish between two scenarios: padding the data transfers only,

which will protect against a passive attacker listening on the communication channel, and will

cost bandwidth, but not storage space; and padding the data, on top of the encryption layer (of

which the storage system must not be aware), which protects against an honest-but-curious

storage system, but costs storage space.

There will be a trade-off between wasted resources and privacy loss. In order to find the

optimal one, one must first assign a cost to privacy loss, in order to compare it to storage

costs. However, no matter which trade-off is chosen, if one assumes that privacy should be

equivalent for most files, no matter their sizes, the size distribution shows that the padded
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Figure 4.7 – Information in truncated file sizes, per wasted space

block size should be roughly proportional to the file size. Unfortunately, a naive padding

scheme, for instance to the next power of two, or to the next fractional power of two (in effect,

the next power of some integer root of two) seems to be strictly worse than a fixed block size.

Variable-length blocks delimited by rolling hashes, as described in Section 1.1.3, may offer

best results. Unfortunately, testing this hypothesis would require access to the actual data, not

just the metadata we currently have.
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