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Abstract
Industrial chemical processes may involve thermal risks as most of the reactions performed

are exothermic, the chemicals used are often thermally unstable, and the operating conditions

are set to induce high conversion and throughput. Besides the reactive steps, all operations

from mixing to storage and from processing to transport involving sensitive chemicals should

be conducted under strictly controlled conditions ensuring safe operations. Performing an

efficient risk assessment and implementing the proper risk mitigation measures are essential

to avoid, or at least reduce, accidents and their potentially disastrous consequences.

For optimal design and implementation of safety measures, it is important that these con-

siderations are taken into account at early stages of process development. The required data

should be made available at the appropriate time so it can be properly accounted for and

efficiently serve the design. Yet, at early design phases, some information may be unavailable

due to several reasons: the process design being still in development, some parameters can

be unknown; experimental analysis of chemicals could be hindered or impossible due to

products availability in required quantities; several alternatives are under investigation which

raises the necessary resources (time and material) for experimental tests.

Predictions would be the appropriate response to such scenario. The aim of this dissertation is

to develop predictive models for two hazardous behaviors of chemicals: explosive sensitivity

and thermal stability. For the models to be applicable at early development phases, it is

preferable to minimize the information feed requirements, and therefore, structure-based

approaches are applied. Two methods were identified: Quantitative Structure-Property Rela-

tionships (QSPR) and Group Contributions Method (GCM).

The hazardous behaviors are studied through characteristic measurements: the Minimal

Ignition Energy (MIE) to represent explosive sensitivity and Differential Scanning Calorimetry

(DSC) for thermal stability. These measurements are widely employed in safety studies and

deliver necessary information to identify potential hazards. Moreover, their specificities call

for predictive models: MIE tests require repetitive analysis and hence are time and mate-

rial consuming; regarding DSC experiments, experts have noted that they seem to exhibit

structurally dependent features, and so far no study has comprehensively investigated this

phenomenon.

This work presents in a first part the structure-based approaches that are applied and the

elements of Data Analysis necessary for developing predictive models and simulating ex-

perimental results. Secondly, both experimental analysis are detailed and the important

information our models should be able to represent will be exposed. Finally, the third and
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Abstract

last part is dedicated to the applications: the obtained predictive models are presented, evalu-

ated and discussed. Most of the initial objectives are met as efficient solutions are proposed,

nonetheless, some improvement strategies may also be considered.

Key words: Safety, Modeling, Molecular Simulation, Data Analysis, Machine Learning, Ther-

mal risks, Explosion risks.
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Résumé
Les procédés de l’industrie chimique présentent souvent des risques thermiques, notamment

dus aux faits que les réactions sont exothermiques, les réactifs instables et les conditions

favorables à des conversions et des rendements importants. Mises à part les étapes de réac-

tions, toute autre étape d’un procédé, que cela soit le stockage, le mélange ou le transport de

produits chimiques sensibles, doit se faire dans des conditions contrôlées et maitrisées afin

d’assurer la sécurité des opérations. Il est alors nécessaire d’évaluer les risques encourus et de

mettre en place des mesures de prévention et de protection afin d’éviter, ou tout du moins de

minimiser, les accidents et leurs conséquences potentiellement désastreuses.

Il est alors important que ces éléments soient pris en considération dès le début du dévelop-

pement d’un procédé afin d’optimiser la conception de mesures de sécurité adéquates et

leur intégration au procédé. Un grand nombre de données de sécurité sont alors nécéssaires.

Or, lors des premières étapes de développement de procédé, ces informations ne sont pas

toujours connues : le procédé dans son ensemble étant en cours de développement, certains

paramètres sont inconnus ; il se peut que des produits chimiques ne soit pas disponibles

en quantité suffisante pour être analysés expérimentalement ; finalement, si plusieurs pro-

duits représentent des alternatives à une même fonction, déterminer le meilleur candidat

expérimentalement représente un coût non négligeable (en termes de temps et de produits).

L’utilisation de modèles prédictifs pourrait apporter une réponse à ce type de problèmes. Cette

dissertation a pour but de développer des modèles prédictifs pour deux phénomènes dange-

reux : l’explosivité et la stabilité thermique. Afin de rendre accessibles ces modèles dès le début

du développement d’un procédé, ils ne devront nécessiter que des informations facilement

disponibles, telles que la structure chimique du composé étudié. Il existe principalement

deux types de modèles se basant sur la structure chimique : la méthode des incréments de

groupes et la méthode des modèles quantitatifs de relation structure-propriétés (en anglais,

Group Contributions Method (GCM) et Quantitative Structure-Property Relationships (QSPR),

respectivement).

Les deux phénomènes dangereux étudiés sont caractérisés par deux analyses expérimentales :

l’explosivité peut se mesurer par l’Energie Minimale d’Ignition (EMI), quant à la stabilité

thermique, elle est souvent évaluée par Calorimétrie Différentielle à Balayage (en anglais,

Differential Scanning Calorimetry ou DSC). Ces deux analyses sont très largement employées

lors des études de sécurité car elles permettent d’identifier les dangers liés aux produits

analysés. Cependant, la mesure d’une EMI requiert un grand nombre de répétitions d’un

même test, ainsi, le temps et les quantités de produits nécessaires pour une mesure pourraient
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Résumé

être réduits par l’emploi de modèles prédictifs. Quant à la DSC, les experts notent que les

résultats expérimentaux suggèrent une dépendance à la structure chimique. Or, il n’y pas eu

d’étude complète de ce phénomène pour révéler cette dépendance et proposer des modèles.

Dans une première partie, les types de modèles basés sur la structure chimique qui sont em-

ployés ici sont présentés, ainsi que quelques approches d’analyse de données qui permettent

de développer des modèles prédictifs. Dans une seconde partie, nous revenons sur les ana-

lyses expérimentales, leurs procédures et leurs résultats afin de déterminer les informations

importantes que les modèles doivent refléter. Enfin, la troisième partie comprend l’exposé

des résultats : les modèles prédictifs obtenus sont présentés, évalués et discutés. Les objectifs

initiaux sont pour la plupart atteints, toutefois, quelques améliorations envisageables sont à

discuter.

Mots clefs : Sécurité des Procédés, Modélisation, Simulation Moléculaire, Analyse de Données,

Apprentissage Automatique, Risques Thermiques, Risques d’Explosion.
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Zusammenfassung
Industrielle chemische Prozesse können thermische Risiken beinhalten, da die meisten Re-

aktionen von exothermischer Natur sind, die Chemikalien oft thermisch instabil und die

Reaktionsbedingungen wegen der hohen Kapazität oftmals kritisch sind. Abgesehen vom

eigentlichen chemischen Prozess verlangen aber auch alle anderen involvierten Prozesse, wie

Transport, Lagerung oder Vermischung nach einer streng kontrollierten Umgebung, welche

für einen sicheren Betrieb unabdingbar ist. Dafür ist die Durchführung einer wirkungsvollen

Risikobeurteilung und die Einführung von entsprechenden Massnahmen zur Risikominde-

rung zwingend notwendig um Umfälle und deren möglichweise katastrophalen Auswirkungen

zu verhindern oder zumindest zu vermeiden.

Um die Konzeption und Implementierung von Sicherheitsmassnahmen zu erleichtern, sollten

diese an einem möglichst frühen Zeitpunkt der Prozessentwicklung bedacht werden. Die

dazu benötigten Daten müssen rechtzeitig zur Verfügung stehen um entsprechend in die

Entwicklung einzufliessen, jedoch stehen diese Informationen gerade in frühen Phasen der

Entwicklung aus verschiedenen Gründen nicht zur Verfügung: der Prozess befindet sich

noch in Entwicklung, gewisse Parameter sind noch unbekannt, experimentelle Analysen

werden erschwert oder verhindert aufgrund mangelnder Verfügbarkeit von Rohprodukten

in ausreichender Menge, verschiedene Alternativen stehen zur Diskussion, was Ressourcen

bindet.

Vorhersagen sind eine mögliche Herangehensweise um den Mangel an Daten zu verringern.

Das Ziel dieser Dissertation ist deshalb die Entwicklung von Modellen zur Vorhersage zwei-

er gefährlicher Eigenschaften von Chemikalien: Explosionsempfindlichkeit und thermische

Stabilität. Damit diese Modelle in frühen Entwicklungsphasen anwendbar sind, werden die

Anforderungen an Messdaten geringgehalten und struktur-basierte Herangehensweisen ange-

wendet (Quantitative Struktur-Wirkungs-Beziehung und Gruppenbeitragsmethoden).

Die gefährlichen Eigenschaften werden durch charakteristische Messungen untersucht: Tests

der Mindestzündenergie um die Explosionsempfindlichkeit und die dynamische Differenz-

kalorimetrie um die thermische Stabilität zu bestimmen. Diese Methoden werden häufig in

Sicherheitsstudien angewendet und können wertvolle Informationen zur Identifikation von

möglichen Gefahren liefern. Zusätzlich eignen sich ihre Eigenschaften für Vorhersagemodelle:

zum einen sind zur Bestimmung der Mindestzündenergie Testreihen nötig und damit ist diese

Methode zeit- und materialintensiv. Zum anderen weist die dynamische Differenzkalorime-

trie auf mögliche strukturabhängige Eigenschaften hin, was jedoch noch in keiner Studie

vollständig analysiert wurde.
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Zusammenfassung

Diese Arbeit präsentiert in einem ersten Teil die strukturabhängigen Herangehensweisen und

die Elemente der Datenanalyse welche für die Entwicklung der Vorhersagemodelle verwendet

werden. In einem zweiten Teil werden die experimentellen Analysen beschrieben und die

durch Vorhersagen gewonnen Parameter beschrieben. Im dritten und letzten Teil werden

die Vorhersagemodelle angewendet: die Modelle werden vorgestellt, evaluiert und bespro-

chen. Die meisten Ziele dieser Arbeit werden dabei erfüllt und als wirksame Methoden für

verschiedene Anwendungen vorgeschlagen; die möglichen Strategien zur Verbesserung dieser

Methoden werden ebenfalls besprochen.

Stichwörter: Prozesssicherheit, Modellierung, Molekulare Modellierung, Datenanalyse, Ma-

schinelles Lernen, Thermische Risiken, Explosionsrisiken.
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Introduction

Context

For the chemical industry, risk management and hazard assessment represent a priority and a

necessity to ensure safety for the workers, the company, the society and the environment. In

the past decades, awareness rose among all involved stakeholders and the regulations and

legislation on chemicals and their use are continuously revised, harmonized, and tightened in

order to minimize the risks through increasing knowledge of chemical intrinsic properties and

behaviors. Besides the legal implications, it is also a moral obligation for chemical engineers

to take into account process safety and manage the faced hazards.

Yet, this did not come naturally. Most of the current legislation ensues from the responses to

major disasters.

In 1976, in Seveso, Italy, during a production of 2,4,5-trichlorophenol, an inappropriate heat-

ing system was employed and it caused an overheating of the reaction mass that could not be

cooled down before the plant was shut down for the week-end. The heat excess triggered an

exothermic decomposition reaction which lead to a consequent temperature rise, pressure

build-up and production of a toxic compound, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),

or dioxin. Eventually, the pressure accumulation triggered the emergency pressure relief sys-

tem and the reactor’s rupture disk broke open, releasing the poisonous gas in the atmosphere

[Kletz, 1999]. As the accident occurred over the week-end, no direct fatalities were caused

by the accident, nonetheless indirect damages were caused to the populations of the neigh-

boring cities and the environment: skin lesions, thousands of dead animals and elimination

of the remaining to avoid further contamination of the food chain, soil-contamination, etc

[Homberger et al., 1979]. Besides, long-term effects of the exposure to TCDD were evaluated

and have shown that cancer risks were significantly higher in the affected regions [Pesatori

et al., 2009].

Following this catastrophic event, the European Union passed a new law known as the Seveso

Directive in 1982 to improve safety on industrial sites managing hazardous substances pre-

senting major-accident risks. The Directive was revised in 1996 and 2012 (Seveso III [Council

of the European Union, 2012]).
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Less than ten years later than the Seveso accident, the Bhopal disaster occurred in 1984 in

India, at a Union Carbide Corporation (UCC) production plant. A runaway reaction generated

important temperature and pressure rise that eventually caused the vessel explosion and let

the leak of its content into the atmosphere. The exact composition of the poisonous gas cloud

is unclear, but comprised mainly methyl isocyanate (MIC). However, according to internal

and external reports, very few basic safety principles were in force that day: the synthesis

route employed was hazardous and the company had the possibility to conduct production

through another route that did not involve MIC; contrary to company policies in different sites

in Europe or North America, their Bhopal site stored large quantities of MIC for long periods;

the safety instruments were either absent or unavailable such as the Vent Gas Scrubber which

was of inappropriate dimensions and not in use, the cooling system was not in use either, the

monitoring system which was neither comprehensive nor automatized; finally the workers

were poorly trained and the overall site maintenance was practically nonexistent and multiple

signs of corrosion were showing on the equipment [Chouhan, 2005, Eckerman, 2005]. The

Bhopal disaster holds the highest death toll of major industrial accidents, claiming the lives of

thousands of people within hours following the exposure and causing permanent injuries to

hundreds of thousands. Estimations announce a total of 14000 deaths and 730000 injuries

[Eckerman, 2004].

More recently, major accidents with heavy consequences for people (fatalities) and the en-

vironment also occurred in Schweizerhalle in Switzerland, Enschede in the Netherlands,

Toulouse in France, and Buncefield in the United Kingdom. These events raised the aware-

ness of the hazards of handling chemicals at industrial scales with major consequences on

neighboring population and environment. International and national authorities of many

countries revised their regulations in order to prevent other major accidents of this extent.

The above-mentioned Seveso Directive obliges operators of hazardous chemicals to take

into their responsibilities to prevent the occurrence of major accidents by implementing all

the preventive measures and limit their consequences on human health and environment.

Safety reports shall be delivered to certify the application of the preventive policies and the

implementation of a safety management system. In cases of modification of an existing system,

the necessary adaptations and updates to the safety measures shall be taken into account and

reported. Emergency plans must be prepared and tested. The information to the public, its

consultation in decision-making and the measures to be taken following a major accident are

also covered by the Directive.

In Switzerland, the Ordinance on Protection against Major Accidents was adopted in 1991 and

revised several times since then, following the first Seveso Directive implementation by the

EU to align with regulations. The Ordinance stipulations are highly similar to the obligations

in force under the Seveso Directive [Swiss Confederation, 1991].

Besides the legislative framework and the moral obligations, industrial stakeholders are also

increasingly sensitive to the costs incurred and the damages to the brand image that arise
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from accidents, even minor ones. Therefore, Risk Assessment and Risk Mitigation methods are

more systematically implemented to ensure the operational and economical well-being of the

companies. This may be integrated within broader safety management framework together

with training and information of employees, characterization of materials, safer processes,

design of the plant and the buildings, safe organization and working environment.

Particularly in the context of process design for the chemical industries, risk assessment is

crucial and should be rigorously conducted to identify all hazards included to the process,

the damage they could induce, the targets they threat and the conditions under which they

could be eliminated. Moreover, where potential threats are identified, the safety measures to

prevent their fulfillment should be implemented, and their reliability verified.

For instance, when a process unit or operation may generate an explosive atmosphere, par-

ticular precautions should be put in place in order to avoid the ignition of the explosive

atmosphere. For this, information regarding the process, the chemicals, and the operating

conditions must be gathered and thoroughly analyzed to estimate the probability of formation

of the explosive cloud, its sensitivity or flammability, and the ability of the surrounding equip-

ment or operations to provide a sufficient energy input to ignite it. Mitigation measures shall

be taken to avoid all these elements: venting or diluting to impeach the explosive atmosphere

formation, use of particular equipment and organizational measures that will avoid contact

with ignition source, etc. These considerations fall under the EU ATEX Directive relating to

equipment and protective systems intended for use in potentially explosive atmospheres

[Council of the European Union, 1999].

In both Seveso or Bhopal accidents, runaway reactions occurred and were at the final stages

of the event unfoldings, preceding only the vessel bursting and the discharge of its content.

Thermal runaway reactions usually are highly exothermic reactions that produce higher

amounts of heat than the surrounding system can remove, resulting in a heat accumulation

and temperature rise, which intensifies the reaction rate which in turn leads to higher heat

production. Due to the temperature rise and the products generation, the pressure builds

up and can eventually lead to the explosion of the container. This depends on all elements

interacting here, the initial reactant, the decomposition products, that may decompose as

well, the potential energy release, and the reactor pressure and temperature management

systems, their capacity and availability.

Additionally, the most effective safety measures are planned on the earlier stage of process de-

velopment. Indeed, the early phases involve important decision-making, and the integration

of safety considerations at this level implies highly influential choices and cost effectiveness.

Ultimately, process safety in general should tend to propose inherently safer designs. Inherent

Safety concept has been formalized by Kletz [2003] and relies on four pillars :

• minimize the quantities of hazardous materials handled;

• substitute a hazardous compound with a less hazardous one;
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• moderate the potential effects of residual risks;

• simplify the system and avoid additional equipment or features.

These principles offer great potential for safety enhancement, and should be iteratively imple-

mented at various stages of process development. Their impact is optimal when influencing

initial choices regarding the selection and development of the process reactions and equip-

ment [CCPS, 2009]. Moreover, at early design stages, the flexibility is still high and the costs of

change low, whereas modifications brought later would incur higher financial costs.

During the risk analysis, very specific data are required to enable decision making regarding

the necessary safety measures to implement. This information may be gathered mainly from

three different sources: literature, knowledge and experimental analysis. Scientific works,

Material Safety Data Sheets, company own or public databases represent large collections

of the physico-chemical properties of chemicals and various characteristic data. When this

information does not meet the specific conditions of the particular process considered, one

could rely on its own knowledge and previous experience to evaluate the safety of integration

of a given chemical into a given process. Nevertheless, the most reliable information source

would be to experimentally investigate the properties to be determined by emulating the

process conditions at smaller scales.

However, the experimental evaluation could be practically impossible. Nowadays, simulations

are widely used for the process, product and production design. A classical product design

example is drug discovery, which relies on in silico modeling to target compounds with specific

structural features that indicate the compound could have corresponding biological activities.

Among several products with potential interest, only a few will pass all the simulations screen-

ing phase and be physically synthesized and made available for laboratory analysis. With the

extension of this approach to various fields, an increasing number of products are investigated

virtually before being produced. Hence, only their properties for which simulations exist could

be estimated.

Main Goal of the Project

The main intention throughout this project is to propose predictive models of process safety

related data, in particular explosive sensitivity to ignition and thermal stability, in order to

enable their early estimations, or their integration into the context of product design. Hence

a major requirement is that these models would rely on restricted information that could

be easily available. Therefore, the molecular structure of the chemicals is set as the primary

information input to the models.

The safety data investigated here are the Minimal Ignition Energy (MIE) and the Differential

Scanning Calorimetry (DSC) thermograms of chemicals. These two characteristics were

chosen for their relevance in Process Safety. Moreover, the MIE procedure is time extensive
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and could be unburdened through simulations. Regarding DSC thermograms, evidence of

correlation to the molecular structure has been established, but deserves to be extended

further.

Outline of the Project

This work is divided in three parts.

Part I: Predictive Modeling from Molecular Structure

Chapter 1: Molecular Structure Based Modeling details the two main methodologies to

apprehend the modeling of physico-chemical properties from the structure of chemicals,

namely, the Group Contribution Methods, and the Quantitative Structure-Property Relation-

ships. Their differences and similarities are exposed through examples of various applications.

The principles of each method are explained in order to assess how they could be the most

helpful to fulfill our objectives.

Chapter 2: Data Mining and Machine Learning presents the necessary mathematical and

statistical data manipulations that could be applied in Predictive Modeling. Indeed, there is

not a single protocol to develop correlations and many of these techniques are interchangeable

or can be used in combination. This theoretical review will support the proposition of the

most adapted protocol to the problem tackled here.

Part II: Experiments, Data Preprocessing and Extraction

Chapter 3: Minimum Ignition Energy defines this characteristic property and its applications.

Then, the experimental analysis through which MIE are measured is explained, and the

influential factors are reviewed. The data gathered for this present study were collected from

literature, thus we will see the collection and treatment process to build a readily practicable

dataset.

Chapter 4: Differential Scanning Calorimetry presents the basic principles and experimental

analysis of DSC. As there are two different functioning principles to DSC apparatus, both will

be detailed. However, both techniques lead to similar results, essentially the curve of the

heat-flow as a function of temperature, namely a thermogram. An example of analysis of

a typical thermogram is then performed to highlight the information that can be collected.

The thermogram is interpreted as a combination of few key characteristics. These extracted

properties are modeled separately, and this allows recovering the full DSC curve, limiting thus

the data loss.

Part III: Applications

Chapter 5: MIE Models presents the first results of this project, as the modeling techniques

and the experimental data come together and as the correlations are developed. Several
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models are proposed, as the studied set is varied. A global model is developed from the entire

dataset of collected MIE without distinctions in order to maximize the generalization. Then,

subsets are created based on the physical state and specific models are developed, referred to

as local models. Finally a sensitivity classification method is proposed as a simple decision

tree. An interpretation of the proposed models is discussed.

Chapter 6: DSC Models exposes the models developed in the case of the DSC study. As for the

MIE, a global model is proposed for all the available data. Then, local models are proposed

for the specific cases. Several criteria serve to divide the set into subsets: local subsets were

defined based on chemical families, analysis of their structural similarities, and finally analysis

of their DSC similarities. The most suitable protocol that comes out from these attempts is

a combination of global classification and local regression and results in the most accurate

predictions.
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1 Molecular Structure Based Modeling

There are two main methodologies to correlate physico-chemical properties of chemicals to

their molecular structures, namely, Group Contributions Methods and Quantitative Structure-

Property Relationships (herein referred to as GCM and QSPR respectively). The procedure to

develop relationships between physico-chemical features of compounds and their molecular

structure is simplified in Figure 1.1 and is common to both methods.

Unknown Molecule Structure

ModelKnown Molecules

Structures

Property

Input Modeling Output 

Modeling 

Figure 1.1 – Schematic Procedure for Development of Structure-Based Pre-
dictive Models

First of all, the set of "Known Molecules" to be studied is selected. This selection can either

be motivated by the interest in their similar - or different- macroscopic behavior or their

similar structural characteristics. The property of interest is then experimentally determined

or measured for all observations and gathered in the "Property" space. "Structures" refer to the

structural characteristics of the observed molecules that will be used to describe the "Property".

In this case, the structures will differ between GCM and QSPR, as GCM will rely on Groups to

describe molecules, while QSPR rely on numerical descriptors. The mathematical equations

between the "Property" and "Structures" spaces are named "Models". The typical model for
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GCM is a linear regression, while QSPR methods include all kinds of mathematical correlations.

Therefore the "Modeling" step degree of complexity may vary, and for simplification purposes,

it is here represented as an iterative loop.

Finally, the model is applied to the structures of molecules of unknown properties, the "Un-

known Molecules", and allows to predict them. When applied to the molecules of known

properties, it delivers estimate values that can be compared to the actual "Property" values to

evaluate the model. For each independent property investigated, another model is developed.

The efficiency of these estimations depends on all steps of the procedure. As the choice of

molecules and the experimental determination of the "Property" space are related to the

applications of the method, they are detailed later on in Parts II and III. On the other hand, the

various ways to represent the structures and develop predictive models are invariant tools and

will be the subject of this first part.

In this chapter, the two main methodologies to correlate structures of chemicals and physico-

chemical properties, GCM and QSPR, are introduced. The purpose is the same and the

applications are highly similar, yet the underlying principles differ and each offers certain

advantages or limits compared to the other. Therefore, they are here distinguished and the

following sections will present the historical evolution of these methods, their basic princi-

ples and some of their most encountered applications while highlighting their similarities,

differences and complementarity and thus to grasp the interest to apply both of them in this

work.

1.1 Group Contribution Methods

1.1.1 Background

Chemists have always been concerned by the hazardous behaviors of compounds and since

the 1950’s, they attempted to understand their relationship to chemical structure. One of the

earliest articles found reporting such work is this of Calcote et al. [1952] which analyzes the

effect of molecular structure on the minimum spark ignition energies for various fuels. They

highlighted the influence on ignition sensitivity of branching or unsaturation by comparing

homologous series of hydrocarbons, or the effects of closed and/or aromatic compounds.

Finally, the presence of hetero-atoms in various substituents (alcohol, nitro or thiol groups)

was also analyzed.

Later, thermal decompositions were the focuses of a similar study. Blake and colleagues

conducted thermal analysis of more than 100 organic compounds by measuring the vapor

pressure rise induced by thermal decompositions and release of volatile products [Blake et al.,

1961]. The results are presented in a parallel analysis between the collected thermal data,

such as the onset temperatures of the decomposition reactions, and the structural features

of the compounds or the influence of the different reaction paths on the thermal stability.
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Among the influential structural characteristics discussed are the number of substituents,

the steric crowding they cause and the aromaticity. They also divided the compounds into

several chemical categories, and present for each some possible decomposition pathways to

complement the qualitative discussion of their results.

These studies were the first to demonstrate that the molecular structure indeed influences

the macroscopic properties and behavior of compounds. The qualitative tendencies they

highlighted maybe serve as descriptive models. They note quantitative predictions were

attempted but appeared inaccurate. Despite the faulty estimations they obtained from their

models, several elements of their approaches are still in use nowadays.

In the meanwhile, quantitative approaches were emerging, and in particular, group additivity

methods were developed in the late 1950’s with Lydersen work on critical properties [Lydersen,

1955] and Benson and Buss’ on heat of formations [Benson and Buss, 1958]. These two

methods were ground laying for the development of numerous studies to estimate various

thermodynamic properties and they have been transformed and improved gradually to adapt

to novel applications.

1.1.2 Basic Principles

The group contribution methods are laid on the principle that each fragment of the molecular

structure, be it an atom, a functional group or a larger substructure, participates to the

molecular property and that this contribution is particular to the fragment. Then, for any

other molecule composed of fragments of known contributions, its property value will be the

sum of the groups’ contributions. In simple words, it can be considered as the chemists’ Lego1

and when the bricks are assembled, the obtained entity is the sum of its constitutional parts,

both on the structural aspects and on the physico-chemical features.

The principle of additivity of the groups’ contributions also determines that, by definition,

all GCM applications should give rise to linear models where all groups contributions are

multiplied by the group’s appearance and summed.

To illustrate the general rule of GCM, Table 1.1 reproduces an example from Benson and Buss’

study mentioned above [Benson and Buss, 1958]. From their analysis, the authors determined

that the incrementation of the structure by one CH2 group decreases the standard enthalpy of

formation by approximately 5 kcal/mol and their fitted values for ΔH f ° of several saturated

alkanes are rather accurate (given in kcal/mol in Table 1.1).

1Analogy made by Prof. P. Vogel, during Organic Functions and Reactions I lectures, EPFL, 2007.
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Table 1.1 – Standard Enthalpy Change of Formation Estimates by Group
Contribution [kcal/mol] from Benson and Buss [1958]

Molecule ΔH f ° ΔH f °(est ) Error

CH4 -17.9 -15.3 2.6

C2H6 -20 -20 0

C3H8 -24.8 -25.2 -0.4

nC8H18 -49.8 -49.8 0

nC11H24 -64.6 -64.6 0

The models proposed by Lydersen for critical temperature pressure and volume [Lydersen,

1955] are not simply additive as they include the group contributions sum into non-linear

equations: for instance, the critical pressure Pcrit presented below is dependent on the molec-

ular weight M, and the inverse of a constant parameter c and the group contributions Gi:

Pcr i t =
M

(c +∑
Gi )2 (1.1)

Despite the slight difference - either the property is related to the sum or to a function of the

sum of group contributions, the fundamental idea remains the same.

The major challenge beyond these simple principles is the definition of the groups and the

empirical determination of their respective contributions. In their work, Benson and Buss

already define their groups at three different levels: the zeroth-order groups are atoms; first-

order groups are partially substituted atoms and small molecular frameworks (e.g. CH2, NH

or CO) that don’t necessarily correspond to the common functional groups; finally, the second-

order groups comprise two substituted atoms or neighboring groups (e.g. −CH2CO− ). And

yet, they note that this framework is limited as several substructures cannot be represented

such as rings or double and triple bonded carbons. Hence, various frameworks were developed

in order to address this issue and to extend the application of group contributions to other

compounds and to other properties, and the next section will present few examples.

1.1.3 Frameworks and Groups

Following the pioneering methods in group contributions, several frameworks were developed

in the consecutive years. As an indicator of the extent of model multiplication, nowadays

software packages enabling thermochemical property estimations propose to select among

more than 60 group contribution methods [DDBSST, 2009]. The aim here is not to present a

comprehensive review of all the possibilities, but rather to understand the criteria that help

selecting among them.
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The variety of models developed targeted different features and thus relied on different sets of

experimental data, that determined in a way the definitions of the groups. Kolská et al. [2012]

make an extensive inventory of GCM applications noting that, besides critical properties and

enthalpy of formation, models were developed for parameters of state equations, activity

coefficients, vapor pressure, gas or liquid viscosity, etc.

Most of these models apply the previously explained principles and are additive as for instance

the method proposed by Joback and Reid [1987] which is an extension of Lydersen method

both in terms of number of defined groups and predicted properties. Methods derived from

UNIQUAC as UNIFAC [Fredenslund et al., 1975] took the method a step further and included

group interactions that are neglected by other methods [Hooper et al., 1988, Larsen et al.,

1987, Tiegs et al., 1987]. This results in more complex models as more parameters are to

be determined on top of the group contributions. At the same time, some methods tended

towards models simplification by only considering atoms and molecular weights as parameters

[Klincewicz and Reid, 1984],though, at the cost of accuracy.

The studied compound sets were determined depending on the property to estimate, hence

some of these models are generated from large sets of organic compounds while others are

constructed on narrow sets of chemicals or with particular physical features or specific func-

tional groups: highly branched hydrocarbons [Chickos et al., 1995], fluorinated compounds

[Brown et al., 2010] or ionic liquids [Lazzús, 2012]. So, some of the latter methods cannot apply

to polar compounds, heavily halogenated compounds or molecules of high molecular weights

[Joback, 2001].

In the present case, the purpose is not to estimate given properties with an existing model

nor to develop a novel framework, but to develop predictive models of thermal stability with

a large application range. Therefore the framework required needs to be broadly applicable

to various kinds of chemicals, and preferably applicable to thermodynamic properties. This

leaves several possibilities, among which the framework intentionally developed by Marrero

and Gani [2001] for this purpose.

Considering the available methods at the time [Joback and Reid, 1987, Klincewicz and Reid,

1984, Lydersen, 1955], Marrero and Gani report that several limitations were yet to be solved:

most methods are unable to distinguish between isomers, applicability is limited due to

over-simplified structural representations, and they considered some to be "of questionable

accuracy". Building from previous attempts to solve these issues [Constantinou et al., 1994,

Gani and Constantinou, 1996, Marrero-Morejón and Pardillo-Fontdevila, 1999], they devel-

oped a new framework that allows for more accurate estimations and that can describe a wider

range of compounds, including large and complex chemicals. Their method relies on three

levels of molecular description: the first level of simple groups, as for previous methods, that

can not distinguish isomers or neighboring effects; the groups of the second level are larger

fragments of the molecular structure, assemblies of first order groups, that allow for better

consideration of isomers or neighboring groups; the third order groups are able to describe
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compounds for which other methods usually fail, such as complex heterocyclic or large acyclic

but polyfunctional compounds. Later, the framework was enlarged even further with the

inclusion of connectivity indices that provide structural information on the "special cases",

that would be a molecule that can not be fully represented by any of the groups available

[Hukkerikar et al., 2012]. This combined approach is referred to as GC+ and is the one that

will be applied for this project.

To determine the groups and their frequencies within a molecule, they developed a software

package, ICAS [Gani, 1999], which includes a specific module, ProPred which allows drawing

the 2D molecular structures and automatically generates the corresponding GC+ groups.

To illustrate the groups identification within the GC+ framework, a molecule’s representation,

namely 6-hydroxy-2-methylbenzoxazole is detailed in Figure 1.2.

N

OOH

CH3

(a) First Order

N

OOH

CH3

(b) Second Order

N

OOH

CH3

(c) Third Order

Figure 1.2 – Representation Example in Marrero-Gani Framework

Table 1.2 – Marrero-Gani Groups for 6-hydroxy-2-methylbenzoxazole

1st Order Groups 2nd Order Groups

Times Group Times Group
1 CH3 1 (N=C)cyc-CH3

3 aCH
2 aC
1 aC-OH
1 C=N(cyc)
1 O(cyc)

3r d Order Groups Connectivity Indices (CI)

Times Group Value Index
1 aC-(N=CHn)cyc fused rings 3.9 0χ

1 aC-Ocyc fused rings 1.1 1χ

1 Aromatic fused rings [2]s2
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1.2. Quantitative Structure-Property Relationship

1.2 Quantitative Structure-Property Relationship

1.2.1 Background

As group contributions methods quantitatively correlate structures of chemicals and their

physico-chemical properties, they are thus often considered as part of QSPR methods. How-

ever the distinction made here is to mark the fact that QSPR methods rely on descriptors and

not on constitutional fragments of the molecule. Descriptors are defined by Todeschini and

Consonni [2012] as follows:

The molecular descriptor is the final result of a logic and mathematical procedure which

transforms chemical information encoded within a symbolic representation of a molecule into

a useful number or the result of some standardized experiment.

Descriptors can be classed according to their origin or their dimensions:

They either derive from the

• topological,

• geometrical,

• electronic,

• quantum-chemical,

• or thermodynamic properties of the molecule,

or may be classed as

• zero-dimensional descriptors (constitutional descriptors derived from chemical for-

mula, like the atom count for instance);

• 1D descriptors (constitutional descriptors for fragments and groups);

• 2D descriptors (topological descriptors derived from molecular graph);

• or 3D descriptors (geometrical features or quantum-chemical descriptors that require

non-trivial computation) [Dehmer et al., 2012].

From this perspective, GCM are special cases of QSPR that only employ 0D and 1D descriptors.

QSPR methods, or QSAR methods originally for Quantitative Structure-Activity Relationships,

have roots in studies even precedent to the Group Contributions discussed above and also
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started first by focusing on a hazardous behavior: toxicity. Cros has reported in 1863 that

toxicity of aliphatic alcohols is a function of their water solubility which is itself a function of

molecular structure [Liang et al., 2011].

Toxicity has been one of the main focus of QSPR modeling for decades especially following the

development by Hansch [Hansch et al., 1968] of an equation to quantitatively relate biological

activity -i.e. the minimal effective concentration at which a biological activity is observed-

and as structurally determined feature - i.e. a relative hydrophobicity measure through

partition coefficients in octanol/water system- [Albert, 2013]. QSAR found applications both

in environmental [Harder et al., 2003, Karcher and Devillers, 1990, McCarty et al., 1985, Nendza

and Russom, 1991] and medical studies [Gebauer et al., 2003, Hansch and Dunn, 1972, Palm

et al., 1998, Panthananickal et al., 1978].

Until the end of the 1960’s, the relationships developed to link molecular properties and molec-

ular structure were essentially Group contributions and based on 0D and 1D descriptors, with

simple molecules, homologous series with a common molecular skeleton, or with descriptors

developed for specific substituents according to Selassie et al. [Selassie et al., 2003].

’Whole-molecules’ approaches emerged in the 1970’s, with the application of graph theory

to represent chemical compounds which gave rise to the developments and applications of

topological descriptors. The mathematics were not only used to develop the relationships but

also the descriptors themselves. Among several studies, Randiç work on branching degree and

the development of what is later referred to as Randiç index, is based on a molecular represen-

tation in edges and vertices instead of atoms and bonds [Randić, 1997]. Explicit hydrogens are

removed and only the C−C connections remain at the center of the representation. Randiç

defines the branching index as the sum for all edges degrees as shown in Equation 1.2 :

χ =
∑

ed g es

1

(νi ·ν j )
1
2

(1.2)

where νi and νj are the valences of the vertices i and j at each end of each edge. The valency

is also meant in the context of graph theory i.e the number of connections. Randiç success-

fully correlated this branching index to boiling points, formation enthalpies and Antoine’s

constants for a set of C2 to C7 alkane isomers. At that time, several topological indices were

developed and were increasingly involved in QSAR modeling of various properties as reported

by Rohrbaugh and Jurs and later Selassie et al. [Rohrbaugh and Jurs, 1987, Selassie et al., 2003].

By the mid 1980’s, the geometrical structure of compounds was also engulfed into QSAR

techniques with the emergence of 3D descriptors that encode the surface, volume or charge

distribution. The geometrical, electronic and quantum mechanical descriptors are derived

from molecular orbital functions and therefore their broad application emerged when the

quantitative calculations of molecular orbital became possible. The resolution of Schrödinger
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equation for many-electron systems was enabled by the Born-Oppenheimer approximation

first, then by the Hartree-Fock method - or self-consistent field method (SCF)- already in

the late 1920’s; however, these methods were iterative and required enduring computation.

Cances et al. note that it was only when computational power could enable reasonable com-

puting time that molecular structures could be effectively determined. Besides the increase

of computational power, geometries and electronic structure calculations were significantly

simplified thanks to other approximations methods that allow to by-pass ab initio resolution of

Schrödinger equations through Hartree-Fock method [Dewar and Thiel, 1977, Pople and Segal,

1965, Stewart, 1989]. Despite their acknowledged inaccuracies, they reduced computational

time and resources to determine the molecular electronic structures and gave rise to several

numerical descriptors that served for a better understanding of 3D geometries and could be

included, among other applications, into QSPR studies [Karelson et al., 1996].

The QSPR models evolved with the increasing number of available descriptors, followed

trends and faced skepticism. Nonetheless, successful applications to a variety of fields, lead to

progressive establishment of QSPR methods. A wide spectrum of possibilities exists, in terms

of descriptors, models, studied properties, that contribute to their popularity and motivate

their use to novel investigations.

1.2.2 Principles

The basic principles of QSPR methods are rather simple, flexible and permissive. The models

are the equations that express the physico-chemical properties as function of the structure.

The aim being to correlate the property space and the descriptors space, all mathematical

techniques to identify and develop correlations are allowed: from mono-parametric linear

discrimination that gives rise to a 2-class classification based on 1 criteria, to artificial neural

networks resulting in complex non-linear weighted sums of multi-parametric nodal functions

models (i.e. a function of the function of a sum of functions)[Dehmer et al., 2012].

The typical procedure to follow is similar to what was previously described in Figure 1.1. The

few rules that apply to the model construction phase are presented here but further details are

given in chapter 2 as each step of the method can be performed through different possibilities.

Dataset creation: the dataset consists in the property space and the chemical (or structure)

space, i.e. the collection of the physico-chemical property to be studied and the descrip-

tors for all observed molecules. The dataset size and quality have a high impact on the

quality of models. Ideally, consistency in the experimental protocols and data collection

should be ensured and the dataset size should be large enough to contain information

representative of the potentially relationship existing between property and structure.

However, dataset standardization is sometimes traded off for size, as to ensure the

availability of a sufficient number of observations, data collection from several sources

is often necessary and decreases the strict standardization of experimental data. For a
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dataset to be considered of sufficient statistical relevance, it is preferable it comprises

at least 20 observations and up to several hundreds. Nonetheless, this is not possible

with all applications, especially those for which data availability might be scarce. It also

implies drawbacks as statistical correlation methods tend to give rise to complex models

when dealing with large data sets, that might end up to be uninterpretable. Moreover,

the excess of information is also unfruitful if it over expresses certain features to the

detriment of other. For instance, if a specific substructure appears once within a set, its

effect on the studied property will be better examined within a narrow set, rather than a

large set where this information could be lost within an high amount of information.

Hence, an ideal dataset should gather data representative of structural and property

spaces with well-balanced, continuous distributions. If not, particular attention should

be paid to treat gaps and less-represented classes within the property space.

Descriptors: As seen in the previous section, development of new models and new descrip-

tors have followed a fruitful cycle and nowadays, the number of available descriptors

exceeds thousands. The generation of the descriptors for the dataset creation is usually

performed with specialized software packages (several suggestions are found in [Milano

Chemometrics & QSAR Research Group, 2007]) in order to enable fast and accurate

calculations for a large number (≈ 1000) of descriptors and to process several molecules.

Training: The construction of a model is referred to as training. Indeed, most of the generally

used methods are iterative and necessitate several successive steps in order to improve

the model from the initial to the final step to determine the relationships, hence the

terminology. The search for the most appropriate descriptors among the available

pool can be rather challenging and selection should be drastic: for instance to select 5

descriptors among a base of 100 leads to more than 75 million possible combinations.

This selection is the aim of the training stage, nonetheless, it is advisable to control

training and to impose a ratio of 1:5 between descriptors and observations to generate

robust models.

The quality of the model will depend on the quality of the property and descriptors

data , however the choice of the modeling method, the descriptor selection and the

model evaluation are critical to the development of robust models. Algorithms are set

to vary descriptors parametrizations to minimize the error between the responses and

the targeted property values. For this, they tend to maximize information inclusion

by increasing the parametrization while it would be preferable to keep it to a lowest.

Thousands of descriptors are available, many are redundant or inter-correlated, while

models should only rely on a few independent descriptors; this results in a vast number

of possibly equivalent combinations of descriptors as models. Therefore, the training

stage can result in various outcomes depending on the sequence of decisions taken here.

These issues will be addressed more thoroughly in Chapter 2.

Validation: Validation requires dividing the available observations prior to training, to train

the model with a subset, the training set, and then apply the model to the remain-
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ing subset, the validation set, to ensure its ability not only to fit but also to predict

observations. The performance, validation and reliability of the models depend on

the training-validation proportions, the validation methods and statistical indicators

employed.

Overall, at each stage of the process several alternatives are possible, probably too many

alternatives, so that decisions have important impact on the final outcome. Nonetheless,

this high degree of freedom is both the benefit but also the drawback of QSPR methods: it

opens large horizons and enables to find underlying correlations, but the results may appear

impossible to interpret if they are too complex or cannot be repeated when the decision

sequence is altered.

Indeed, beyond validation, models are legitimized by physical interpretations, and model

complexity hinders interpretation as influence of the different parameters is silenced by the

excess of information. The central idea is to maintain balances: balance in the dataset size,

balance in chemical and property spaces representations, balance in descriptors selection

to maintain sufficient but reasonable information, balance in training and validation sets,

balance in model evaluation, etc. This is referred to as the "Tao of QSPR building" by Dehmer

et al. [2012].

Several statistical machine learning methods (i.e. statistical modeling algorithms) are exposed

in Chapter 2. They allow developing classification or regression models. The method of

choice is mainly determined by the objectives of the project, which also holds when GCM are

employed.

1.2.3 Descriptors

Several types of numerical descriptors exist and can be calculated from molecular structure,

and while 0D, 1D or 2D descriptors can be determined without requiring advanced compu-

tation, it is not the case of 3D descriptors. Therefore, software packages are made available

to draw 2D structures, optimize the 3D geometry and evaluate the descriptors. Some focus

on either one of these tasks, while others integrate all of these functions, and propose supple-

mentary options as data preparation, visualization, and even model building and evaluation.

Descriptors calculations should not vary with the choice of software employed, however,

descriptors included or methods can be slightly different and imply numerical differences, yet

tendencies are consistent. For instance, electronic partial charges can either be calculated

from Gasteiger-Marsili, Zefirov or Mulliken methods. Not all software packages propose to

calculate with these 3 methods, nor do the methods present the same results.

0D and 1D descriptors are mainly constitutional descriptors, e.g. total atom count, elements

atom counts, molecular weight, etc. These descriptors are straightforwardly determined

from the condensed molecular formula, and the use of software for this purpose is only for

convenience and rapid treatment of large sets of compounds.
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2D descriptors derive from the developed molecular formula. For this, software packages

offer to draw the structure if known, to convert it from the name or browse online databases.

The 2D descriptors types are the topological descriptors that reflect on the connectivity and

branching of the molecule and the information-content type which considers integration of

molecules subsets and how much "information" (atoms) they contain relatively to the entire

structure.

Finally, to obtain 3D descriptors, a pre-processing step of 3D geometry generation and opti-

mization from the 2D structure is necessary in order to describe the molecular conformations

and derive descriptors. 3D descriptors such as the molecular volume, the surface area, or

moments of inertia along three dimensions can be generated but also serve for the computing

of more complex features as the electronic structure or charges distribution. As QSPR were

first developed for applications in biology, and enzymatic activities in particular, descriptors

related to local surface properties of molecules are highly important and generated in great

number by the packages as they are crucial for the understanding of enzymes folding and

active sites characteristics.

Quantum chemical descriptors can also be used since their calculations have also been

significantly simplified and most QSPR software packages allow to estimate them. Even though

the ab initio methods result in better and more accurate calculations, they are computationally

expensive which motivated the development of several approximate but simpler methods

referred to as "semi-empirical" methods. Semi-empirical methods are also based on Hartree-

Fock approximation but neglect several parameters from the exact calculations and replace

them with empirically determined parameters. Karelson et al. [1996] cite several examples:

• Extended Hückel Theory (EHT): neglects electronic and nuclear repulsion, gives good

qualitative description but results in unrealistic charge distributions [Grüber and Buß,

1989]

• Complete Neglect of Differential Overlap (CNDO): neglects of both diatomic and single-

atom atomic orbital overlap [Pople and Segal, 1965, 1966, Pople et al., 1967].

• Modified Neglect of Di-Atomic Overlap (MNDO)[Dewar and Thiel, 1977], Austin Model

1 (AM1) [Dewar et al., 1985], and Parametric Model 3 (PM3) [Stewart, 1989]: neglect

diatomic differential overlap only but still take into account two-electron repulsion

integrals when electrons are on the same atom.

Another alternative to ab initio methods that also allows for saving in computational expense

when solving for electronic structures is the Density Functional theory (DFT) [Kohn and Sham,

1965].

The local, relative, or transformed descriptors give rise to a high enlargement of the descriptor

space. They represent the same features for a sub-part of the molecule, a particular atom or
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are the logarithm of a given descriptor. They are necessarily highly correlated to the original

descriptors from which they derive, but their physical meaning is not as explicit as they

mathematically combine several factors or focus on substructures.

The same example, 6-hydroxy-2-methylbenzoxazole, treated earlier in the Marrero-Gani frame-

work, is processed by a descriptors generating software package, Codessa Pro [Petrukhin et al.,

2001]. Codessa Pro package includes MOPAC software which enables 3D geometries optimiza-

tion from 2D molecular structures, then derives over a thousand numerical descriptors. A first

selection eliminates the descriptors with the lowest variances or with missing values resulting

in a working set of approximately 350 descriptors per structure. Table 1.3 shows few examples,

selected to represent the various types and dimensions.

In summary, descriptors encode for the molecular structure from various aspects and each

aspect is treated extensively by numerous descriptors. Unlike GCM, descriptors categories are

not exclusive and, unless it is a committed stance, there are no objections to develop models

including different types of descriptors. Moreover, whereas the GCM lies on the additivity

principle, the QSPR methodology does not bear similar constraints and therefore, the models

are not restricted to linear regressions, or sums of descriptors contributions.

All together they offer a broad space for QSPR to evolve and a tremendous number of possible

combinations. It is therefore important to select them with care and rigor when building the

models, otherwise they are able to fit anything and give meaningless results.

Table 1.3 – Examples of Structural Descriptors for 6-hydroxy-2-
methylbenzoxazole

Dimension Type Name Value

0D , 1D Constitutional Total number of atoms 18

Relative number of C atoms 0.444

2D Topological Wiener index 143

Randiç index (order 0) 7.84

3D Geometrical Moments of inertia A 0.109

Molecular volume 132

TMSA Total molecular surface area 353

Partially Charged SA PPSA1 Partial positive surface area 263

Molecular Orbitals HOMO energy -8.91

Quantum Total dipole of the molecule 0.431

Thermodynamic Total entropy (300K) 94
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1.3 Conclusion

After reviewing the historical paths that lead to the development of QSPR and GCM, the

basic principles were briefly described. Both methods rely on a relatively simple common

procedure and it was noticed that GCM are actually a special case of QSPR. With GCM, two

elements of the procedure are pre-determined: the structure representation is to be performed

within a particular framework of groups and the models usually involve the sum of the groups

contribution. On the other hand, QSPR refer to the general procedure in which all elements

are yet to be fixed, and thus offer high flexibility. Vast categories of numerical descriptors are

available, and no restrictions are made regarding the choice of possible models.

GCM give rise to explicit models: structural fragments contribute to the increase or decrease

of certain macroscopic features; whereas QSPR might imply more complex descriptors within

an intricate mathematical relation. This could result in models for which a straightforward

explanation cannot be drawn or complex models for which interpretation is hindered. Hence,

the GCM can be considered to have more accessible interpretation. Nonetheless, for complex

behaviors, additivity might not be appropriate and thus, the flexibility in modeling alternatives

proposed by QSPR could be profitable. It is important though, to note that GCM are not

immutably linear regressions, and nowadays, some studies tend to take GCM off beaten tracks

and propose non-linear models based on group contribution [Albahri, 2014].

Regarding the structural representations, the geometrical descriptors, especially those related

to the electronic or quantum properties of the molecules could be far more powerful than

constitutional descriptors to describe complex reactivity mechanisms and enclose information

that GCM can only skim over. Moreover, despite all efforts towards comprehensiveness of GCM,

frameworks still encounter limitations to define all molecular structures and if a compound

cannot be fully represented it cannot be studied, while numerical descriptors can describe

most structures considering the various aspects covered. The chosen framework for GCM

application, GC+ by Marrero-Gani, was developed to overcome this challenge, and this issue

should not be faced.

Finally, another element of comparison that has not been discussed so far is the necessity for

appropriate software tools for the generation of the structural representations adequate to each

method. With the appropriate software tools, structure space can be rapidly and accurately

generated. When the software tools are unavailable, however, only the groups, if the entire

framework is known, can be simply drawn from the molecular structure while the descriptors

that require computation will not be available. Even computation of topological descriptors

can be very fastidious, let alone the electronic distribution related descriptors. In the context

of model construction, the software availability could determine the method choice and will

be guaranteed in most cases. However, if one is to apply an existing model, to a compound of

unknown properties, one has to determine the representation of the considered compound

within the context in which the models have been developed. In this case, GCM would be

preferable to QSPR: visually, clearly defined groups can be identified, and their frequency
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1.3. Conclusion

Table 1.4 – Comparison of Molecular Structure Based Modeling Methods

GCM QSPR

Principle Additivity rule No specific rule
Structural Features Groups Descriptors
Generation Simple computation Advanced computation
Can describe all molecules Within framework Yes
Models Linear, sums All types

Simple Simple to complex
Interpretation Explicit Not always explicit

Main advantages Explicit Comprehensive
Simple Diverse application range
Visual identification of groups Flexibility

Main drawbacks Limited to defined framework Descriptors software necessary
Additivity rule Model Interpretation

assessed. Then, the calculation for the desired property of the considered compound is

recovered with a simple addition. If the model is developed in the QSPR context, the ease of

applicability will depend on the included descriptors, or the availability of means to compute

the complex descriptors, if needed.

Both cases have their own strengths and limits, and considering the discussions above, they

seem equally appropriate for our purpose to develop predictive models for the thermal sta-

bility and explosive properties of chemicals. The next chapter will present some supporting

mathematical techniques that help toward data analysis, allow to develop different versions of

models and evaluate robustness.
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2 Data Mining and Machine Learning:
Approaches and Good Practices

Data Mining and Machine Learning are fields of computational science that surround algo-

rithms development and application to statistically analyze (large) databases. Data Mining

focuses on the exploratory part of identifying potential patterns or tendencies within a given

dataset. Machine Learning methods are applied to "learn" from fed information, to observe

and characterize correlations within or between several spaces and extrapolate these ob-

servations to data outside the input sets and predict their features. Depending on the field

of application, data mining is usually pushed to the furthest, which often implies various

machine learning methods and hence, the distinction between data mining and machine

learning becomes thinner, even unnecessary.

Different approaches exist and correspond to different types of problems: ranking, feature

selection, clustering, classification or regression. In this chapter, a review of the current tech-

niques of data analysis is exposed. A selection of these tools will serve for the procedure which

will be applied for model construction. Thus, it is necessary to investigate their operating

modes and their possible outcomes.

Moreover, there are given manipulations that can generalize over the different techniques to

ensure optimal application of the learning algorithms, that will be discussed as well, in order

to ensure our procedure comes in adequacy with "best practices".

2.1 Definitions

The field of Machine Learning uses specific terminology for concepts [Mohri et al., 2012] and

to avoid any confusion some elements are explicitly defined here.

Observations: the observations, or examples, or samples are the elements of the dataset

whose characteristics are studied.

In this case: each studied molecule is an observation.

Features: Or attributes, are the describing characteristics of observations. They represent the
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major input required by any learning algorithm. To each observation correspond an

ensemble of attributes, usually collected as vectors to be fed to the algorithm.

In this case: the attributes of the molecules are the molecular structures representations.

When considering Group Contribution methods, the attributes of the molecule are the

frequencies of occurrence of the constitutional groups, and when considering QSPR,

the attributes are the numerical values of the descriptors.

Labels: Property value of the observations. They can be either numerical, categorical or

nominal. Labels should also be fed to the learning algorithms as input, but are not a

requirement in all cases (see supervised vs unsupervised learning).

In this case: Labels correspond to studied properties, thermal behavior and sensitivity

to ignition. Besides the real values which correspond to experimental measurements,

ranking categories (of the type "High - Medium - Low" ) are also employed.

Unsupervised Learning: Methods that analyze unlabeled features to highlight hidden pat-

terns. Features are the only input, and outputs are usually classes, discrimination factors

or ranking of features influence. As labels are either not fed or nonexistent, outcomes

cannot be quantitatively evaluated in the sense that there are no right answers. An

example of unsupervised learning is k-means clustering that will be developed later.

Supervised Learning: Methods that analyze labeled features. As features and corresponding

labels are fed to the algorithms, the outcomes are usually the relationships between the

features to recover the labels. As labels are available, the responses can be compared to

the real labels to evaluate the models. Regression problems are necessarily supervised

as the label values are required to train the models.

Training and validation: These have already been exposed in the previous chapter. The data

are split into 2 sets, the training and the validation sets. The first is fed to the algorithm

and serves for the learning process and the model construction, then the model is

applied to the latter to evaluate its performance.

2.2 Feature Selection and Dimension Reduction

For any type of modeling problem, the data set dimensions are a critical parameter. The

number of observations should be much higher than the number of features involved in the

model. As the learning algorithm usually browses the feature space to analyze hidden or latent

structures, the search depends on the number of combinations to test and thus on the number

of features. On the other hand, with complex systems and powerful tools to study them, the

feature space can be rather large while the available observations number may be limited.

Therefore, in most cases, a prior dimensionality reduction is often necessary. Obviously, the

dimension to be reduced is the number of features, whereas the number of observations

should be maximized. To limit the dimension of the feature space, several feature selection

methods are possible. This allows to hold only the most interesting features and discard the
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others, thus reducing the possible combinations, easing the learning process, and producing

better results more efficiently.

Feature selection is normally performed in an unsupervised manner, so that the feature space

is considered independently from the labels. Yet, ultimately, the selected features will be put

in relation with the labels. Therefore some supervised methods can be employed as well for

selection, as they take into account the possible correlations of features and labels. Some of

the most applied methods are presented here.

2.2.1 Filter

Filtering is an evaluation of the feature space alone [Witten et al., 2011]. It is an analysis

of all attributes based on a criteria and a threshold value, and all features that do not meet

the threshold can be discarded. Features can be treated separately (univariate) or in groups

(multivariate). For instance, the inter-correlations of features can be evaluated with their

covariance as shown in Figure 2.1.

If several features exhibit high correlations to each other as x1, x2 and y in Figure 2.1 (a) and

(b), they can be considered redundant, and only one of them is necessarily kept, for instance

y , while the others are removed. This is a multi-variate and unsupervised manner to simply

and rapidly eliminate features, however the correlation threshold is to be fixed wisely for this

elimination not to be too drastic which could cause a significant data loss.

Supervised filtering is also possible: instead of evaluating the features inter-correlations, their

correlations to the labels are evaluated individually (univariate) and those that are weakly

correlating the label are discarded. For instance, if on Figure 2.1 (c) x3 is a feature and y the

label, then x3 could be eliminated as it poorly correlates to the labels.

Inter-correlated features are often encountered with chemical structure describing features

as several information are inter-dependent, such as the number of atoms and the molecular

weight, or the occurrence of a given structural group and its composing atoms, let alone

surface or volume normalized parameters that are by definitions the combinations of several

other features. The choice of which of them to keep or discard is then quite challenging, and

modeling is here needed.

2.2.2 Wrapper

Wrapper methods select the features through the construction of a model [Witten et al., 2011].

The set of features that give rise to the best performing models are thus considered the most

relevant ones and withheld, whereas the others are discarded. This technique is widely applied,

especially when the ultimate regressions are developed with non-linear methods, a prior linear

regression can be performed for feature selection. Nevertheless, it can also be performed with

the learner that is used for the model construction. The learner is run twice: once to select the
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Figure 2.1 – Examples of Feature Selection by Filtering

features and once to adjust the coefficients for the reduced space. An example of this method

could be seen as in Figure 2.1 (a) and (b), if we let now y as the labels. Then x1 and x2 both

correlate well to y they can be selected for modeling; however when the model is adjusted,

perhaps only one feature is necessary either x1 or x2.

2.2.3 Principal Component Analysis

As the feature elimination induces data loss, other methods provide dimension reduction while

preserving as much information as possible. Principal Component Analysis (PCA) consists in

projecting the feature space onto a new space of lower dimension [Witten et al., 2011]. PCA

algorithm normalizes the feature space, analyzes covariances, and computes eigenvectors

and eigenvalues. The projection space is defined by the eigenvectors of the original space.

Once again, a threshold is to be set as there are as many eigenvectors than original features,

therefore only those with the highest eigenvalues are retained. For instance, the 3D space in

Figure 2.2 (a) would be projected through PCA on the 1D vector −→w in red.

PCA is an efficient dimension reduction system, nonetheless, the projection space being de-

fined by vectors that are linear combinations of the original space has a major drawback. In the

transformed space, the dimensions do not bear the physical meaning of the original attributes.

If the model is to be explained with the original features, the back-transformation would

recover the original space, with risks of over-complex models. If the back-transformation is

not performed, the models could simply have no possible interpretation as the eigenvectors

do not have a meaning in the sense of the original information.

In order to benefit from PCA, without working in a space of meaningless vectors, a hybrid

method may be performed. After evaluating and selecting the eigenvectors with the highest

eigenvalues, the inter-correlation of the original space to the new space is computed. This

highlights which features of the original space contribute to the principal components, and

these features are selected for further investigation. In the example shown on Figure 2.2, the

new space −→w is highly correlated to the original space dimension x1 and x2, hence the final

result would be the 2D space presented in Figure 2.2 (b) as a compromise between the original
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Figure 2.2 – Example of Principal Component Analysis

3D space and the 1D space lacking physical meaning.

Several other feature selection methods exist, however they are not covered nor applied here.

The above-mentioned techniques can be applied in sequence to efficiently reduce the feature

space dimension. It is important though to retain sufficient information for the learner to

build the most adequate models.

2.3 Classification

Classification problems are the cases in which the labels and the expected responses are

categorical or nominal. For instance, a model to determine the structural features that make

an observation exhibit "high", "medium" or "low" sensitivity to ignition is developed in

Chapter 5.

2.3.1 Cluster Analysis

Clustering is not actually a classification method, it is the unsupervised version of the same

type of problems, i.e. grouping observations into categories. Clustering is used on a set

of features of unknown class repartition in order to determine if there are identifiable sub-

groups within the dataset. Hence, clustering plays an important role for the development of

systematic grouping of unlabeled data. Among the various cluster analysis methods are the

hierarchical clustering, K-means, Self-organizing Maps (SOM) or Gaussian Mixture Models

(GMM).

The common goal to all these methods can be schematized as in Figure 2.3. For a set of obser-

vations, the learner divides the dataset according to their features and proceeds iteratively in

order to identify the optimal groups.
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Figure 2.3 – Schematic Representation of Clustering

Hierarchical Clustering

Hierarchical clustering can be performed in two manners: either top-down - the whole dataset

is considered as one group (top group) and divided progressively in 2 groups along an attribute

dimension until each observation is in a separate cluster (bottom of the hierarchy), or bottom-

up - starting from individual observations, the learner progressively merges them into groups

based on their similar attributes until all data are gathered into the top group [Stramaglia et al.,

2004].

The hierarchical clustering offers several advantages, therefore it is one of the most widely

used cluster analysis. First of all, it does not require any a priori knowledge or guess on the

real number of clusters. Second of all, it will point out at the most influential features, thus if

feature selection was not performed until this point, it can be deduced from the hierarchical

tree. The tree, or dendogram, is the output of hierarchical clustering algorithms and is the last

but not least advantage of this method. It visually represents all clustering possibilities from

the top group (including all observations) to the bottom groups (individual observation per

cluster). The user can then visually analyze the clustering and decide at which level to stop

the clustering, depending on the considered criteria (number of clusters, separation of the

groups or data distribution).

Figure 2.4 shows an example of a dendogram corresponding to the clustering shown in Figure

2.3. The clustering procedure is completed, however, user can decide to retain the construction

of an intermediate number of clusters if it is more adequate. The levels shown here with the

construction of 2 or 4 clusters correspond to the cases presented in Figure 2.3. Each branching

of the tree corresponds to a dataset division in two sub-groups depending on a threshold value

and leafs or nodes correspond to clusters containing certain observations. If the procedure

is taken to completion, the bottom clusters construction obtained would suggest as many

clusters as there are observations.
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Figure 2.4 – Example of Dendogram obtained from Hierarchical Clustering

K-means Clustering

Another popular clustering method is the K-means technique. K-means creates k groups

defined by their mean position in the feature space, called centroid. Initially, the centroids are

randomly generated. Then, euclidean distances between each observation and all centroids

are computed, and observations are assigned to the group with the closest centroid. As an

observation is added to a given group, its centroid position is recalculated and the process

continues with the modified centroid position. As the centroids positions are updated, the

distances are recomputed and the observations are reassigned, if they become closer to

another cluster, and so on until the centroids positions stabilize and all observations are

assigned to one of the k clusters [Bishop, 2006].

This technique requires k, the number of clusters, as input. It is thus necessary either to know

or have a good guess concerning k. Otherwise, an analysis in order to determine the most

adequate number of clusters must be performed.

The most efficient way to determine k, is to vary it, perform the k-mean clustering and compare

the results based on silhouette plots. Silhouette plots are the representation of the observed

data grouped in the clusters they have been assigned to, and their relative distance to data in

other clusters. This reveals how the data are distributed among the clusters. Thus, if a cluster

contains few observations it can be considered unnecessary and those observations would

be assigned to a different cluster. On the opposite, if a cluster seems larger than the others, it

could imply that additional clusters would be beneficial and this cluster would be split further

into sub-groups. Silhouette plots also provide information concerning the cluster separation.

So, if a cluster contains data that could equally be assigned to another cluster, it reveals that

these two clusters are neighboring and could perhaps either be merged, or that a third cluster

would be more appropriate to assign data that "overlap" between the two first ones.
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Figure 2.5 – Representation of K-means Clustering

Various Clustering Methods

Other methods are also available and widely used especially in the image recognition field,

visualization or for mapping purposes. For instance, Self-Organizing Maps or Kohonen self-

organizing maps (SOM) is an artificial neural network based method that is very useful to

visualize high-dimensional data into a low-dimension space [Millán and Chavarriaga, 2013].

SOM analyze the distance and the topology of the data in the original d-dimensional feature

space and develop a network of nodes in 2D or 3D. The nodes position in the low-dimensional

space are not defined with values coordinates but with vectors of weights of the original

space, hence the dimension reduction while maintaining the information concerning the

neighboring observations. The weights are randomly initialized, and iteratively adjusted to

resemble more closely to the sample until a stable map is obtained.

2.3.2 Decision Trees

Decision trees are simple and intuitive supervised classification tools. The principle is to

analyze the feature space and determine the most discriminant features and threshold values

to split the data into sub-groups that correspond to the labeled classes [Dehmer et al., 2012].

The simplest trees are univariate and binary, that is to say that each node corresponds to one

feature criterion and separates the input data into 2 groups. At each node, the decisive criterion

must be answered by "yes/no" or "true/false" types of answers. The sequence of queries or

decisions is determined by the learner by identifying the feature and the corresponding

threshold value that maximizes class separation. Between iterations, the learner evaluates if

supplementary splits are required or if a class can be assigned to leaves. For this, the error rate

of classification is evaluated. Supplementary splitting rules are added if they improve the tree

estimations, if not, the tree construction is terminated and classes are assigned to leaves .

Figure 2.6 presents an example of classification using a decision tree. In the level 0, all data

are gathered into one group, and as there are three known classes, the data are to be split

36



2.3. Classification

x
4
<ex

3
<d

x
1
>a

x
3
<c x

2
>b

level 0

level 3

level 2

level 1

Figure 2.6 – Example of Classification by Decision Tree.
Diamonds: decision nodes; colored circles: classes

successively in order to recover the repartition into classes. The learner selects feature x1 and

threshold a as the first decision node. This criteria is the most discriminant as the blue and

red classes are completely separated. Regarding the green class, several criteria are necessary

to manage good separation between green and blue on one hand and green and red on the

other hand.

Various constraints can be imposed to control the decision tree construction. The usual

optimization criterion for a tree construction is the error rate or node purity. The algorithm

selects the query in order to maximize node purity. Without a stopping criterion, the splitting

is carried on until all terminal leaves are pure. A stopping criterion can be set as a limit on

the branching degree, or on the terminal or parent leaves populations. If these criteria are

not set, the tree could be over-branched with pure nodes that only contain one or a few

observations. This would resemble the bottom level of a hierarchical tree, and would not bring

much information regarding the data classification.

It is also possible to prune an over-branched tree by merging leaves that have a common

parent node in order to decrease the branching degree. For instance in Figure 2.6, if the

population of the green leaves is very small, it could be judicious to prune one or both of the

pairs of leaves on level 3 and stop the tree construction at level 2. This decreases the branching

and the nodes of the tree, at the cost of increased impurity of the new leaves. In this case,

it would completely erase the green class, which would not be appropriate, nonetheless in

complex cases it could be highly beneficial if the induced error increase is limited.

Overall, decision trees are rather simple yet efficient tools to class data. It clearly hierarchies

the influential features as it selects the most discriminant ones for queries. The visual rep-

resentation is also helpful to understand the structure of the feature space and to identify

neighboring data as they follow similar paths along the branches. Finally, it is easily under-

standable and applicable which is valuable in exploratory studies and could serve as a good

initial step prior to more complex methods.
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2.3.3 Linear Classifiers

Linear classifiers are combinations of several weighted features to separate the data into their

labeled classes. They define hyperplanes in the feature space that represent the boundaries

between the different classes.

Bayesian methods analyze data distribution to determine the probability densities of the

classes on the feature space. Then, any new observation is assigned a probability of mem-

bership into a class rather than an actual assignment. Non-probabilistic methods proceed

differently: the data distribution serves to determine the most discriminant dimensions and

observations are assigned to classes such as the error rate is minimized.

Figure 2.7 (a) presents a case where the features are insufficient to assign data to their labels

if taken separately, whereas a combination of several features can successively differentiate

classes. To determine the optimal classifier, several methods were developed.

Fisher Linear Discriminant (LD) for instance proceeds as shown in Figure 2.7 (b) [Bishop, 2006].

Data are projected onto a 1D vector −→w that maximizes inter-class scatter while minimizing the

intra-class scatter. Then, a threshold value on −→w is fixed as the limit between classes. Fisher

linear discrimination assumes that classes have a normal distribution and equal covariances

[Dehmer et al., 2012].

Otherwise, it is also possible to search for the optimal classifier −→w with an iterative loop in

which −→w is progressively adjusted in order to minimizes classification errors. An initial random
−→w is set, then an evaluation of data dispersion around the hyperplane allows to compute

errors and −→w parameters are updated. The iterations are conducted until the error is lower

than an acceptable level. This is schematically represented in Figure 2.7 (c).

x1

x2

(a) Example

x1

x2

(b) Fisher LD

x1

x2

i1

i2

i3

i4

(c) Iterative algorithm

Figure 2.7 – Examples of Linear Classifiers
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2.4 Regression Models

Regression problems are the cases where the targeted properties or labels are real numerical

values. In those cases, the aim is not only to distinguish the data from each other as for

classification problems, but the model responses should correspond as closely as possible to

the real target values.

2.4.1 Multiple Linear Regression

Multiple Linear Regression (MLR) are the most fundamental and probably the most widely

applied solution to regression problems. The main initial postulate of MLR is that the property

y of observation i is approximated by ŷ as a linear combination of the k attributes X of the

considered observation [Dehmer et al., 2012]. This is formalized in the equation below where

β0 is the model constant.

ŷ = α1 · xi 1 +α2 · xi 2 +·· ·+αk · xi k +β0 (2.1)

ŷ =
∑

j
α j · xi j +β0 (2.2)

Estimators are used to determine the coefficients α. The most commonly applied is the

Ordinary Least Squares (OLS) which minimizes the sum of squared residuals to determine

the coefficients. Other methods, noted robust regressions, are capable of discarding outliers

before estimating errors and adjust the coefficients consequently. Stepwise regression allows

to optimize the model choice simultaneously with its construction.

Variations of the MLR exist and apply for particular cases where the labels are vectors instead

of values (General linear model), or limited values that are all positive or span over a given

range (Generalized linear model).

MLR is a very popular technique that is simple to develop and to interpret. The features appear

as the models parameters. Their contribution (positive, negative, large, limited or null) to the

property is directly reflected by their respective coefficient in the final equation.

2.4.2 Stepwise Regression

As mentioned in the previous part, stepwise regression is a particular method to build Multiple

Linear Regressions that does not rely on OLS. MLR is a very efficient method, nonetheless

when the feature space is rather large and the studied behavior complex, the learner tends
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to over-parametrize the model by including numerous features in order to reduce the errors.

Stepwise regression proceeds differently and allows for a feature selection simultaneous to the

coefficient estimation. This procedure is schematically represented in Figure 2.8.

1. The stepwise procedure starts initially with a constant value.

2. Then,

(a) For each parameter not included in the model (i.e. all of them at the first iteration),

it tests the null hypothesis that this parameter, if included to the model, would

have a null coefficient. It computes the p-values corresponding to these F-tests and

analyzes the results. If the probability of the null hypothesis being true is higher

than a previously set threshold (noted p-enter), the corresponding parameter is

not included. Otherwise, it is included to the model and its coefficient is adjusted;

(b) For a parameter already in the model, the tested hypothesis is that its coefficient

should be zero. If the probability of this hypothesis being true is higher than

another fixed threshold (p-remove), the parameter should be removed from the

model.

3. The model is updated with the new parameters, and the process is repeated.

4. The algorithm iterates until no parameter should be included nor removed from the

model [Wang and Jain, 2003]. This model is then evaluated and selected for further

validation.

For stepwise regression to include fewer parameters than ordinary MLR, it should be closely

controlled through the inclusion and removal thresholds p-enter and p-remove. Otherwise,

the model would include numerous parameters and over-fit the training data.

2.4.3 Neural Networks

Non-linear regressions find a link function between labels and features that is a non-linear

combination. As this opens the scope of possibilities, it is preferable to have a priori defined

or determined the form or the type of the relationship in order to estimate the parameters.

However, the application of neural networks can allow to find a non-linear relationship of

unknown type between the targeted property y and the feature space X .

An artificial neural network consists in a system of connected nodes, or neurons, organized

in different layers. The input of the network are the independent variables X and its output

an approximation of the targeted property ŷ after several transformations of the input [Rojas,

1996]. As shown in Figure 2.9, the features xi are fed to the network. Each node is fed with the

outcomes of the previous layer (feed-forward). At each node j , the ANN creates two functions:
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Figure 2.8 – Simplified Stepwise Regression Procedure

an activation function A j and an output function O j which depends on A j and can take

various forms, such as the identity function or most often a sigmoidal function.

A j (x, w) =
∑

i
xi ·wi j (2.3)

O j (x, w) =
1

1+exp A j (x, w)
(2.4)

The final output function f is a combination of the output functions from the previous layer,

which in turn are combinations of the outputs from the previous hidden layer, and so on.

The approximate network response is improved through iterations in which an error function

comparing the produced response is compared to the actual target, and fed back to the network

in order to readjust the weights (back-propagation). Considering the targeted property, the

back-propagation algorithm computes the error function E j depending on the features, the
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Figure 2.9 – Example of Artificial Neural Network

weights, and the desired output at each neuron j .

E j (x, w,d) =
∑

j
(O j (x, w)−d j )2 (2.5)

2.5 Good Practices

For all techniques presented above, the challenges faced in model construction are highly

similar.

Firstly, large feature spaces carry high information content and though this is favorable in

the context of unknown relationships- as one would like to maximize the chances of finding

the adequate feature to describe the property- it causes the model computing to be time-

consuming. Moreover, it might give rise to several equally probable models if the information

is dispersed through the feature space or if several features are collinear.

Secondly, regression models aim at describing the studied dataset to the best by iteratively

increasing the model’s fit and decreasing the error. This procedure often produces over-fitting

models. These models are highly tailored for the studied set and consequently fail to generalize

to out-of-the-set data. These mechanisms are noted as "memorization" of the training set

and "generalization" to external observations [Mohri et al., 2012]. To avoid over-fitting issues,

there are few good practices that can be applied to ensure the model does not only perform

well for the studied set but will also generalize better for new observations.

Application of Ockham’s razor states that

"entia non sunt multiplicanda praeter necessitatem"

entities must not be multiplied beyond necessity
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According to this principle, the simpler the theory to explain a certain phenomena, the

better it is. Of course, the simplest theories are preferred if they give comprehensive

explanation to the problem. An established translation of this principle in model con-

struction states that among several models that fit the observations with equal or similar

accuracies, it is preferable to opt for the simplest model, i.e. with fewer parameters, or

with lesser intricate relationship.

E
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o
r

Number of parameters

A B

Figure 2.10 – Error Dependance to Number of Parameters Included in a
Model. Reproduced from [Bishop, 2006]

To illustrate this discussion, Figure 2.10 shows the typical tendency followed by the

model’s error when the number of parameters is varied: the error decreases with the

inclusion of more parameters to the model as the approximate response of the model

is improved. Yet, at some point the inclusion of more parameters does not bring a

significant improvement to the model and the error stabilizes. Eventually, with the

inclusion of a great number of parameters, the approximate response can be further

improved. Here, one can see that between the two potential models, A and B, the

number of parameters roughly doubled while the error was only slightly decreased.

Following Ockham’s razor principle one would favor model A over model B, as they give

equal (or highly similar) description of the considered data, and A is simpler than B

[Bishop, 2006, Witten et al., 2011].

Feature Selection is helpful for the search of the parameters and decreases the necessary

time. Moreover it can also be an efficient preliminary step to ensure that during model

construction, the learner does not have to select among equally probable features i.e.

features of the same statistical significance to the properties. This allows clear selection

of the principal descriptors to include /discard from the model.

To better describe the problem potentially faced here, let’s consider 2 datasets, an ideal

and an imperfect one. These data sets are simulated only for the illustrative purpose

here and are represented in blue and red, respectively ideal and non-ideal, in Figure

2.11. We will consider here that if all the features of the dataset were included in two

macro-models, these models would be 100% correlated to the studied property.

The idea in model construction is to recover the maximum of the information contained
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Figure 2.11 – Information Content Relative to Number of Parameters In-
cluded a Model

in the full dataset with only part of the features. An ideal set would present an informa-

tion distribution respecting the Pareto rule [Pareto, 1971]: 20% of all features would hold

80% of the information [Berman, 2013]. The information that can be recovered from the

different subsets of feature space is schematically represented by the histograms. For

the ideal case in blue, the 10% most informative features contain about 60% of the infor-

mation to correlate the property, and the next 10% contain about 20%. Together they

allow recovering 80% of the whole information content. The accumulated information

is represented by the curves.

For the less ideal case, represented in red, more than half the feature space is necessary

to collect 80% of total information. Even the least significant features still hold important

information without which the correlation does not reach the maximum.

In the ideal case, proper feature selection would be helpful to speed the model construc-

tion. The information held by the features is significantly different that learner should be

able to appreciate this difference and properly identify the features that highly correlate

the property and discard the others. In the other case, the differences in information

content between the different features is not as well marked. Therefore, the learner

could be limited to properly select the features to include or exclude from the model

construction. Therefore, feature selection will serve here to determine among feature of

similar influence which to feed to the learner in order to ensure a solution can be found.

Validation is the best way to evaluate the models ability to generalize. Some of the observa-

tions should be kept aside from the model training procedure, and after the construction

gives one or several satisfactory models, validation serves to verify how they perform

on out-of-the-set data. If the validation data serves to select among several possible

models, it is considered that they played a role in the model construction. Therefore an

additional external validation can be required to evaluate the selected model. This is

detailed in Section 2.5.1
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Model Evaluation may be performed through several indicators. The error between the

model response and targeted property can be quantified through the evaluation of

the goodness-of-fit, the Root Means Square Error (RMSE) or relative deviations. Some

indicators are presented in Section 2.5.2.

Data Evaluation is necessary as, depending on the data acquisition method, there could be

several sources for errors that will lead to uncertainty over the input of the modeling.

This should be evaluated and its influence on the models considered. The statistical

procedure for this evaluation is presented in Section 2.5.3.

2.5.1 Partitioning Training-Validation

As mentioned above, most Machine Learning methods face the risk of producing over-fitting

models due to the strong potential of learning and memorization of the training set, which

leads to poorly generalizable models.

To prevent this problem, it is important to control and limit the model construction; the use of

a validation set is the most efficient manner.

The validation set is an ensemble of observations removed from the entire dataset prior to

model training. Once a model is determined, it is applied to the validation, to evaluate its

ability not only to fit but also to predict observations. The training and validation set should

be as representative of the overall dataset as possible.

Figure 2.12 presents two models, A and B, similar to the examples taken when discussing

Ockham’s razor principle. Figure 2.12 (a) shows that between the two models, model B in

green fits better to the training data than the model A in blue. Yet, the validation data in red,

have a slightly different behavior compared to the training set. Here, model B fails to describe

these observations and their properties while the model A performs better. This is reflected in

Figure 2.12 (b).
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Figure 2.12 – Model Selection
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In this context, the validation set is used to compare two models and select the best one. As

these data were actively used in the model selection, it is not considered as ’validation’ but

rather as ’testing’. It is necessary to perform an additional validation, or external validation, of

model A with data unseen by the learner at this point.

The performance, validation and reliability of the models depend on the training-validation

proportions, the validation methods and statistical indicators employed. It is recommended

to split the set in a 80% -20% between the training and validation sets [Witten et al., 2011].

On the other hand, it is also advised that the training set size should not be lower than 20

observations for the model to be statistically meaningful. Therefore, in some cases where the

amount of data is insufficient to proceed to this division, it is possible to apply cross-validation

rather than simple validation as the withdrawal of 20% of a narrow set would not leave enough

data for proper training.

Cross-validation consists in splitting the dataset in k equally populated subsets, named folds,

to train the model on k −1 parts, and to validate it with the kth set. Then, the validation set

is rotated at least k times, so that all the data would have participated in the training and

the validation [Witten et al., 2011]. Figure 2.13 schematizes this procedure: the dataset is

split in 5 equal parts; at the first run, the 4 first parts serve to train the model while the fifth

(blue shaded square) remains for the validation. At the following iterations, the training is

performed using 4 different parts and the validation on the remaining set. Performing at

least five iterations ensures that all data have been involved in both training and validation.

10-fold cross-validation and 5-fold cross-validation are commonly used, however 5-fold cross-

validation is preferable as it respects the 80-20% proportions.

i1
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Figure 2.13 – Schematic Representation of Cross-Validation

The results of the k iterations are then averaged to output the final model. The principal

issue of this procedure is the sensitivity of the training method to the training set. Indeed, the

training set variations - even though 75% of the training set remains unchanged between 2

iterations- can strongly affect the model construction. Therefore, it is recommended to repeat
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several times the k-fold cross validation to minimize the influence of the training set. This does

not guarantee to obtain a model that would efficiently generalize to data outside the studied

set but favors it. However, if a k-fold cross-validation is to be repeated m times, it means that

the whole model search has to be repeated k −by −m times and could be computationally

expensive.

Other validation methods include Leave-one-out validation and bootstrapping [Witten et al.,

2011].

Leave-one-out, as the name indicates, leaves one observation from the dataset out for vali-

dation and trains the model with the remaining observations. It is a particular case of k-fold

cross-validation where k = n, the number of observations. The process is iterated until all n

observations have been excluded once. Depending on the dataset size, this might require

even more iterations than the k −by −m recommended for k-fold cross validations. Moreover,

this method will lead to high error for the observations that differ strongly from the rest of

the observations. Hence, this represents an efficient way to identify outliers, but the main

advantages are the maximal training set size, and that it does not rely on a random data

repartition between training and validation sets.

Another manner to face limited amount of data issue is to apply bootstrap validation. This

sampling technique holds out a subset of the original dataset for validation, but instead of

training the model on a reduced number of observations, it re-samples observations from

the training set in order to compensate for the holdout data. This is illustrated in Figure 2.14.

The procedure is carried out several times and the results averaged. The main advantage of

re-sampling is to consider a training set of the size of the validation set. Besides, the iterations

should prevent the effects of over-weighted data (as they are represented more than in the

original space). Nonetheless, bootstrapping tends to underestimate real errors.
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2.5.2 Model Evaluation Criteria

So far, the methods to develop models and to ensure their valid application were reviewed.

Nevertheless, the evaluation of the models has not been discussed yet. Independently of

the model construction, there are several indicators that can reveal the performance of the

models and that will serve to control the training but also to assess their validity. Some of

these indicators are presented below [Beal, 2005, Guerard, 2013].

The most basic measure of the model response quality is the evaluation of the residuals, i.e. the

absolute errors ei between the targeted property value y for observation i and its estimation

by the model ŷi :

ei = yi − ŷi (2.6)

For the analysis of the performance of the models over all the observed set, the residuals are

not the most appropriate indicator. For this purpose, the errors are, first of all, squared - in

order to obtain positive figures that enlarge large errors and alleviate small ones- and summed.

This is the Sum of Squared Errors noted SSE :

SSE =
∑

i
(yi − ŷi )2 (2.7)

In order to recover an error evaluation in the same dimension than y , the square root of the

normalized SSE by the number of observations n is computed:

RMSE =

√
SSE

n
(2.8)

The RMSE is a measure of the model response accuracy. However, the RMSE depends on the

values taken by the observed property and the model responses, it cannot be easily interpreted

as a stand-alone value. Comparing two models and their respective RMSE directly shows

which of the two is more accurate to describe the given data. Therefore, it is often included in

the Machine Learning algorithms as the control criteria of the modeling procedure: the goal is

to minimize the RMSE and at each iteration it is evaluated to assess if the learning process

improved the model of the previous iteration, and if not, it would stop the model building

process.

Another criteria often found in complement with the RMSE is the determination coefficient
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R2. The determination coefficient serves to evaluate to what extent the model properly fits the

observations, hence the term ’goodness-of-fit’ often used to refer to R2.

To compute R2, the Total Sum of Squares (SST ) is needed:

SST = SSE +SSR =
∑

i
(yi − ȳi )2 (2.9)

where SSR is the Sum of Squares of the Regression

SSR =
∑

i
(ŷi − ȳ)2 (2.10)

and ȳ is the estimate of the mean of yi

ȳ =
1

n
·∑

i
yi (2.11)

Finally

R2 = 1− SSE

SST
(2.12)

It is noteworthy that R2 is the square of the correlation coefficient. The determination co-

efficient indicates how correlated two data sets are, i.e the observed data and the model’s

responses. Unlike the RSME , the R2 is straightforward to interpret: as its values range between

0 for no correlation and 1 for total correlation, it can reveal the performance of the model for

itself and not relatively to another model. A combination of RMSE and R2 is more informative

on the model’s performance than RMSE alone.

It is also important to note that R2 increases with, and thus favors, the inclusion of parameters

to the model. Therefore, if used alone, it tends to drive over-fitting issues in learning methods

that are prone to over-fitting.

To avoid this phenomena, the RMSE and R2 can be adjusted by taking into account the

residual degree of freedom.

RMSEad j =

√
SSE

n −p
(2.13)

and

R2
ad j = 1−R2 · n −1

n −p −1
(2.14)
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where p is the number of parameters included in the model.

It is also possible to modify the error function with a penalty term that virtually increases the

error with the increase of included parameters. The error function could then be the SSE with

an additional term corresponding to the sum of squared coefficients [Bishop, 2006].

Moreover, other measurements, such as the Akaike Information Criterion (AIC ) [Akaike,

1974] or the Bayesian Information Criterion B IC [Schwarz, 1978], provide indication on the

goodness-of-fit while taking into account the number of parameters p in the model:

AIC = n · ln

(
SSE

n

)
+2p (2.15)

and

B IC = n · l n

(
SSE

n

)
+ l n(n) ·p (2.16)

For small data sets, the AIC may also be corrected and becomes

AICc = n · l n

(
SSE

n

)
+2p + 2p(p +1)

n −p −1
(2.17)

The AIC , AICc or B IC may help selecting the model among several possibilities that is most

likely to be the "true" model. These criteria are relative and the model with the smallest

information criterion would be selected.

For summarizing the errors over all observed data in a figure that is more readable than the

residuals, it is often helpful to compute the Average Relative Deviation ARD expressed in

percentage [%]:

ARD =
100

n
·∑

i

‖yi − ŷi‖
yi

(2.18)

To illustrate this procedure, randomly simulated data served to create a variable y , and three

nested linear regression models A, B and C were built and evaluated. Three models are

proposed in order to discuss the evaluation criteria exposed here as many are comparative

values and do not inform of the absolute quality of the model.

The nested models are based on similar parameters, and incremented with new ones: model

A comprises 3 parameters, model B has 7 and model C has 8. All parameters of model A are in
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B and C, and all parameters of model B are in C. The true model used to simulate y is actually

build with 10 parameters.

The results are shown in Figure 2.15 which shows the graphical representation of the models’

responses ŷi for models A, B and C vs the targeted values yi . The evaluations of the three

models based on all the criteria presented above are gathered in Table 2.1.

ŷa

y

(a) Model A

ŷb

y

(b) Model B

ŷc

y

Model Responses

Ideal Fit

(c) Model C

Figure 2.15 – Examples of Regression Models

Table 2.1 – Comparative Evaluation of Regression Models

Target Variable y
n 20
ȳ 20.3
SST 387.4

Models A B C

p 3 7 8
SSE 44.0 18.8 3.1
SSR 343.4 368.7 384.4
SSE +SSR 387.4 387.4 387.4
R2 0.89 0.95 0.99
R2

ad j 0.87 0.92 0.99

RMSE 1.48 0.97 0.39
RMSEad j 1.66 1.25 0.53

AIC 21.8 12.7 -21.4
AICc 23.5 31.4 14.6
B IC 24.8 19.7 -13.5
ARD 6.0 3.8 1.7

The summary in Table 2.1 shows several elements discussed above:

• RMSE , AIC , or B IC when taken individually are insufficient to evaluate a model;

• when comparing models, RMSE , AIC , and B IC all point at model C as the most appro-

priate model;
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• R2 and ARD also allow to select model C as the most appropriate model;

• All these criteria favor model C over model B, and model B over model A; yet, when

using the "small dataset" correction AICc , it appears that model A becomes favorable

to model B, as it comprises less parameters. However model C is still the best model as

it allows very highly accurate results;

• visual inspection of the graphics in Figure 2.15 confirms this discussion, as the responses

of model C are very closely dispersed around the ideal fitting line, whereas model A and

B, despite showing good results are not as accurate as model C.

Nonetheless, the ARD of the three models are lower than 10%, and would therefore all be

acceptable. The indicators seen above can be used to evaluate the errors between the observed

values and the model responses for the training set. This determines whether the model

construction leads to a satisfactory result from a descriptive point of view.

Ultimately, the validation set should be considered, and the model’s predictive power, or its

generalization evaluated. The model that will be most appropriate to apply to out-of-the-

sample data will be selected.

In general, the indicators will be marked XTr or XV al for training and validation respectively.

2.5.3 Statistics for Experimental Data Analysis

So far, focus has been put on the data treatment and the modeling procedure. The data itself

has not been discussed yet. However, as it is the starting material of data mining studies, it is

appropriate to consider its influence over the outcome.

In this project, two hazardous properties of chemicals, thermal stability and explosive prop-

erties, are studied by the two types of modeling methods, QSPR and GCM. The input data is

hence comprised of the chemicals’ properties and structures.

For GCM applications, groups and their frequency are directly derived from the molecular

structures and are not subject to variations that would result in errors. Similarly, the structural

descriptors destined for QSPR applications are based on theoretical calculations using a

software specially designed for this purpose, and the fluctuations may only arise from the

existence of several methods of calculations as mentioned in Sections 1.2.2 and 1.2.3 of the

previous chapter. Therefore, the group contributions and the structural descriptors will be

considered as true values free from disturbances.

On the other hand, the properties values are mainly experimentally measured values. Hence,

the measurement of a "true value" is subject to disturbances that are caused by random and

systematic errors. These errors need to be quantified in order to ensure the reliability of the

measurements.
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Random errors influence the measurement in various ways so that they cannot be explained

straightforwardly. They may be the combination of several factors as the noise of an electronic

apparatus, or the imprecision of the operator’s manipulations, or an accidental fluctuation

that has not been taken into account. They can lead to over and underestimations of the true

value. Eventually, if the measurements are repeated a sufficient number of times, the random

errors should average out, and the mean value correspond to the true value. If it is not the case,

it implies that the errors are not purely random and could be due to a phenomena occurring

repeatedly through several measurements.

Systematic errors could be due to an imperfect measuring instrument or unavoidable influ-

ences of the surroundings. For instance, the influence of the temperature over several types

of instruments and experiences is known to be a typical systematic error. Systematic errors

cannot be eliminated, however, they can be estimated and the measurements corrected to

take these elements into account. This can be done by performing calibration experience.

The total uncertainty corresponds to the added effects of random errors and systematic errors.

Even though systematic errors may be corrected, the corrective measures may be imperfect

and thus reduce the error without removing it completely.

The value and uncertainty of a measurement are determined through the conduct of a series of

observations respecting the conditions of repeatability. That is that a series of experiences are

conducted following the same procedure, by the same operator, on the same instrument, under

the same conditions at the same location and over a short period of time [Joint Committee

for Guides in Metrology (JCGM), 2008]. Under these conditions, the measurements are

comparable and hence allow for the statistical treatment to determine the value and the

errors.

In the case of a statistical determination of the value y of a measure, where the experience is

repeated n times, and the true value of y is estimated by the average value ȳ of all observations:

ȳ =
1

n
·∑

i
yi (2.19)

The random variations influence the value of y and give rise to a dispersion around ȳ that is

estimated with the experimental standard deviation σ2 expressed as:

σ2
y =

1

n −1
·∑

i
(yi − ȳ)2 (2.20)

The variance of the mean gives an estimate of the accuracy of the measurement and can be
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determined from the experimental standard deviation as:

σ2
ȳ =

σ2
y

n
(2.21)

The uncertainty over the measurement is the square root of the variance of the mean:

σȳ =
√
σ2

ȳ (2.22)

The final result should be given the form of

y = ȳ ±σȳ (2.23)

and the value of ȳ should be given with as many significant digits as significant relative to σȳ .

Moreover, here, y has been treated as property that is directly measured and whose uncertainty

depends on its measurements. In the cases where y depends on other variables a, b and c for

instance as in the following equation

y = f (a,b,c) (2.24)

and that a, b and c are measured to determine y , then the uncertainties over a, b and c must

be determined and propagated to y .

a = ā ±σā

b = b̄ ±σb̄

c = c̄ ±σc̄ (2.25)

The "best" estimate value of y becomes yB

yB = f (ā, b̄, c̄, ) (2.26)
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and the variance of yB is estimated as

σyB =

√[(
∂y

∂a

)
B
·σā

]2

+
[(

∂y

∂b

)
B
·σb̄

]2

+
[(

∂y

∂c

)
B
·σc̄

]2

(2.27)

This procedure of statistical determination of the true value and uncertainty of measurement

is referred to as "Type A" evaluation of standard uncertainty. However, it is neither mandatory

nor always practically feasible. In many cases, for practical reasons, the uncertainty is not

determined from series of observations but rather from previous measurements, from cali-

brations or tests over standard materials, or knowledge and experience [Joint Committee for

Guides in Metrology (JCGM), 2008]. This is referred to as "Type B" evaluation of uncertainty.

Besides, when the calibration experiments are performed, it may be that the errors are small

relative to the required accuracy of the measurement and are thus negligible. Theoretically,

this implies that if not reported, the uncertainty is significantly smaller than the accuracy of

the measurement.

Finally, the "true value" of the measured quantity y is "true" under the experimental conditions

set for the repeated procedure. In order to test the value under different conditions, repro-

ducibility tests may be performed. When evaluating the reproducibility of a measurement,

all conditions may be varied: the principle of measurement, the instrument, the procedure,

the standard, the operator, or the location and time. Usually, these parameters can be varied

unilaterally in order to evaluate their individual influences; nonetheless in practice, when the

principle of measurement is changed, it often requires a different device, or if the experimen-

tal conditions are varied, it would be necessary to use a standard that is destined for these

particular working conditions.

2.6 Conclusion

This chapter presents a far from exhaustive review of Machine Learning techniques and tools.

The most popular techniques and those that will be used in this work, were detailed here.

Some definitions were given to avoid any confusion with the not-so-intuitive terminology.

Then, the most efficient manners to reduce dimension and to select among features, filtering,

wrapping and Principal Component Analysis (PCA), were covered. The dimensionality prob-

lem is very often faced: narrow sets of observations with large number of attributes create

a dataset that is extensive to search to find the best model. Moreover, the search can also

be hindered by the possible presence of equivalent combinations. Therefore, this feature

selection is often a crucial preliminary step to optimize the model construction phase.

Depending on the problem to solve, there are two types of model that can be developed:
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classification or regression models. For classification problems, we have seen some rather

simple yet efficient procedures such as the decision tree, or k-means clustering. K-means

clustering is an unsupervised learning method, and thus it can be applied to determine

unknown hidden classes of a dataset. Hierarchical clustering and decision trees require that

the classes are known and fed to the algorithm, but on the other hand, they deliver graphical

representation of the dataset classification by its features that can be highly valuable.

Regarding regression problems, the simplest solution is the Multiple Linear Regression (MLR).

MLR owes its popularity to its relatively simple development and application. Indeed, the lin-

ear combination of attributes are accessible and clearly highlight the influence of parameters.

Besides, to predict a new value is performed through simple computation of a weighted sum.

Artificial Neural Nets can be applied to develop more complex relationships if the correlation

between the property and the features requires it.

In the last part, we have discussed some rules and ’good practices’ such as the parsimony prin-

ciple. Several ways to divide the dataset into a training and validation part were discussed. The

method of choice will be determined depending on the considered set size. In all cases there

should always be a proper validation of the developed models. Then, evaluation indicators of

the model quality were defined. They assess the model quality, its goodness-of-fit and predic-

tive power, and we have seen that several measures of the model errors are complementary.

Finally, the methods to evaluate the input data reliability were reviewed.

In the light of this discussion, the procedure introduced in Figure 1.1, Chapter 1, is now up-

dated and elaborated in Figure 2.16. Following the creation of the dataset from the "Structures"

and "Property" spaces, it is then split into the training and the validation set.

The training set will serve to train the model. For regression models, the stepwise procedure

will be applied. When clustering is necessary, k-means is applied, and when classification is

necessary, decision or hierarchical trees will be favored. These methods are selected for their

relative simplicity, availability and flexibility. Indeed, these elements are available on Matlab

software [MathWorks, 2014], which allows parametric manipulations and avoids the "black

box routines" offered in other software packages.

The models are then applied to the validation set and evaluated. Cross-validation is employed

whenever the dataset size is limited. If available, external validation is also applied to evaluate

the models produced.

The evaluation criteria employed are those presented above, however, the reports will only

present the "stand alone" terms (for instance RMSE is only shown if comparing various

models).
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Figure 2.16 – Updated Procedure for Development of Structure-Based Pre-
dictive Models
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3 Minimum Ignition Energies

Minimum Ignition Energy (MIE) is a vulnerability evaluation of flammable and explosive

compounds, and will be studied for development of predictive models. This chapter serves to

introduce this variable and the experimental procedure of determination. But first, the context

in which it applies is exposed in order to better understand the interest and motivations of

investigation.

3.1 Definition and Use

If a given process involves a combustible compound, the fire hazards incurred are considerable

and should be treated in order to avoid ignition. Moreover, if the combustible is in the form

of a fine powder that may be dispersed to form a dust cloud, the ignition is made even easier

and the combustion propagation increases with the increase of contact surface area between

combustible and oxidant. The same holds with gases and mists being more sensitive and

burning more violently than flammable liquids [Carson and Mumford, 2002].

In confined spaces, or under specific concentration conditions of dusts clouds or deposits,

the violence of the combustion reaction is such that the burning phenomena is no longer

a fire but an explosion: the heat and byproducts released from a fire produce a sudden and

important pressure rise. That is the definition of a chemical explosion, as given by Eckhoff

[2003] :

"An exothermic chemical process that, when occurring at constant volume, gives rise to a

sudden and significant pressure rise"

It is important to note here that only the chemical explosions are considered and the physical

causes of explosions, overpressure, overheat, or Boiling Liquid Expanding Vapor Explosions

(BLEVE) will be disregarded.

Explosions are the results of the simultaneous fulfillment of six elements:
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• presence of a combustible,

• formation of an explosive vapor or dust cloud,

• mixture concentration is within the explosive limits,

• presence of an oxidant, usually oxygen contained in air,

• an efficient ignition source

• and perhaps confinement - which may be considered as an aggravating factor rather

than a requirement.

Confinement would accentuate the pressure accumulation during the explosion, and would

lead to an increased severity of the explosion. Moreover, projectiles may be added to the

chemicals and flame front propagation. However, open air explosions are possible, only the

pressure wave will propagate more easily at the initiation of the reaction and thus the pressure

differences are reduced compared to the confined setting.

To tackle the fire and explosion risks, preventive measures are directed at avoiding the en-

counter of all these elements. Preferred preventive strategies would favor organizational

measures to eliminate the explosions hazards, and in the cases where the risk remains, techni-

cal measures should be implemented to reduce it.

To eliminate the risk, either one of the elements listed above should be removed:

• substitution of the combustible by another compound

• maintain mixture concentration outside the explosive limits,

• prevent the formation combustible cloud,

• remove oxidant,

• in last resort, remove ignition sources.

Considering that the hazardous combustible is necessary and could not be substituted, the

other preventive measures are investigated. In order to practically implement these strategies,

several physical characteristics are needed.

For a flammable mixture to ignite, concentration should be comprised within flammability

or explosive limits, i.e. Lower and Upper Explosive Limits (LEL/UEL), and if the mixture is

sufficiently dilute, the probability the mixture would ignite is eliminated. Then, with gaseous

or vaporous compounds, working under inert gas or ventilation could be sufficient to maintain

concentrations outside the explosive ranges.
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It is also possible to control the working temperature to ensure safe conditions. The flash

point temperature corresponds to the lowest temperature at which the vapor pressure of

flammable liquid is such that a vapor/air mixture could reach flammable concentrations and

would ignite if exposed to an ignition source. Thus, it could serve to establish a safe working

temperature range below which the liquid is unlikely to form a flammable vapor. This may be

sufficient to assess the probability of ignition of flammable liquids and hence, the flash point

is a very widely used criteria. Yet, it is important to note that the flash point is measured under

atmospheric pressure, and working under lower pressures would favor the vaporization.

When handling dusts, working under an inert atmosphere would remove the presence of the

oxidant and remove the explosions risks. However, for practical and economical reasons, this

strategy is rarely feasible. Low concentrations outside the LEL/UEL range may be ensured by

introducing non-combustible compounds into the mixture. It is also possible to prevent dusts

to form flammable clouds by modifying the particle size: besides the contact surface area

argument mentioned previously, the higher the particle size, the lower the dust dispersion,

and shorter the suspension time as the particle settle faster [Eckhoff, 2003]. Moreover, coal

dust particles ignite at higher concentrations when the particle size increases[Man and Harris,

2014]. However, that does not alter the flammable nature of the substance and would not

prevent combustion from occurring.

Therefore, after considering the replacement of the combustible, the control of its concentra-

tion, or prevention of the combustible cloud formation, the removal of the oxidant should be

considered. An inert atmosphere with nitrogen or argon could be applied to reduce the oxygen

content of the atmosphere, however this measure may be efficient for enclosed volumes but

practically difficult at larger scales.

Finally, the ignition sources should be removed where the explosion risk remains. To fight

against ignition sources, one must look at how they are created. Their causes are diverse and

could be "direct" (i.e. open flame or hot surface), mechanically or electrically induced, result

of an exothermic reaction, or due to an electrostatic discharge [Rogers et al., 2003].

In some cases, self-sustained combustion can even be observed in the absence of an ignition

source other than a heat source or high temperatures. This is referred to as auto-ignition and

is characterized by the lowest temperature at which this phenomenon could occur (Auto-

Ignition Temperature AIT). Hence, working conditions must be set as to avoid at all cost that

such mixtures are exposed to temperatures close to these limits.

Electrostatic discharges are the most complex to prevent as charge accumulation can occur

during normal process and operations (i.e liquid flowing through pipes or powder charged in

bags) [Eckhoff, 2003].

There are five types of electrostatic discharges, with different origins and resulting in different

energy ranges [Stoessel, 2014]. As these energies could be sufficient to ignite some flammable

compounds and not others, it is necessary to estimate the degree of vulnerability of com-
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pounds in presence with the energies that could potentially be released. While gases and

vapors are much more sensitive to ignition than dusts, concentration controlling systems

could be sufficient preventive measures but as mentioned above, it is not necessarily the case

when dusts are involved. This raises an important criteria: the sensitivity towards ignition that

will determine the types of ignition source to prevent against.

The Minimal Ignition Energy (MIE) serves to evaluate the sensitivity of an explosive dust to

an electrical spark ignition. It is a measurement of the minimal amount of energy necessary

for a flammable gas, vapor, or dust cloud to ignite. MIE measurements are performed as

tube explosion tests conducted in modified Hartmann tubes, and the detailed procedure

is presented in Section 3.2. The MIE is a required explosion characteristic under the EU

Directive 99/92/EC on minimum requirements for the safety and health protection of workers

potentially at risk from explosive atmosphere, referred to as ATEX 137 [Council of the European

Union, 1999]. By comparison to known values, it serves to identify the types of electrostatic

sparks that could ignite the compound.

The diagram represented in Figure 3.1 gives approximate energy values that electrostatic

discharge can emit [Suter, 2008] . If a compound with a MIE lower than the maximal energy

that the discharge can generate comes in contact with the spark, ignition could occur and give

rise to a hazardous situation.

On this diagram, the green, yellow and red lines give three indicative thresholds: compounds

with very small MIEs would graphically be represented beneath the red limit, which corre-

sponds to extremely sensitive compounds, most often gases and vapors; between the red and

yellow limits is a region of highly sensitive compounds as hybrid mixtures (mixture of gases and

dusts in air) or highly flammable powders that could be ignited with energies less than 10 mJ;

between the yellow and green lines, the energy necessary to ignite these compounds would

be higher, between 100 mJ to 1000 mJ, which corresponds to normal combustible powders,

with medium sensitivities; finally above the green line, a compound with a MIE of 1000 mJ or

more would be considered not sensitive to electrostatic ignition and should be subjected to

further investigation to determine the related risks of accidental combustion or explosion if

these compounds were in contact with different ignition sources or under different conditions

(contact with a hot surface, flammability of layer depositions, etc.).

Corona and brush discharges occur when the air in vicinity the edge of a conductive material

becomes ionized and conductive. Corona discharges are the least energetic electrostatic

discharges, and are rarely considered as hazardous, though they could ignite compounds with

MIE in the 0.01 mJ to 0.1 mJ region which is the case for certain gases or vapors.

Brush discharges are more energetic as they can release up to 1 mJ to 3 mJ. Propagating brush

discharges (referred to as “Prop. Brush” in Figure 3.1) can occur due to the high speed transport

of liquids or powders in contact with an insulating material and are much more energetic and

can release energies up to several joules. Sparks result from the ionization of non-conductive

material between two conductive points, as for instance from the human body to another
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conductive element, and the released energies depend on the interacting bodies as shown in

the diagram.

Finally, cone discharges are due to the charging of a powder when displaced or stacked and

a “bulk cone” forms. As particles fall down the bulk in the container, they are charged due

to the friction at the bulk surface. The energy that can accumulate depends on the path the

particles follow and along which they are charged, which in turn depends on the diameter of

the container (D=0.5 m to 3 m on the diagram). Moreover, it also varies with particle size: the

larger particles will give rise to higher energies than the finer particles [Glor, 2003]. The two

blue curves correspond to this behavior for particles with median size d=1 mm or d=3 mm.
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Figure 3.1 – MIE and Electrostatic Discharges - with ignition sensitivity thresh-
olds, and cone discharges energies for different particles sizes

The previous discussion highlights the importance and the potential use of the MIE. For

instance, considering the charging of a fine powder into a non-grounded container, sparks

could be generated, the powder is likely to be in suspension while flowing down into the

container and the explosion risks are high, and none of these elements can be taken away. To

avoid any issues, the container sizing and in particular its diameter should then be fixed in

function of the powder’s MIE, an earth grounding solution to or within the container should

be designed, or if possible, provide an inert atmosphere to remove the oxidant. Besides the

contained, the human body may also cause sparks of approximately 10 mJ, and when handling
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sensitive compounds, depending on their MIE, it could be necessary to provide earth bonding

personal equipment for the operators.

MIE is a required information by the ATEX EU Directives and features among the necessary

flammability and explosion characteristics of the compounds during the risk analysis that

serves to identify potential explosive atmospheres which is the first step of the implementa-

tion of ATEX legislation. This allows to proceed with the second step by defining the zone

classification which also depends on how regularly the explosive atmosphere might be present.

The zones definitions according to the ATEX Directive are presented in table 3.1. The following

steps of the procedure deal with the consequent choice and design of equipment, materials,

and the assessment of where and which appropriate protective and preventive measures to

implement (i.e. earth bonding, or personal antistatic precautions) [Janes et al., 2011].

Table 3.1 – Zones Definitions of Explosive Atmospheres

Explosive Atmosphere Duration and Frequency Zone Gas/ Vapors Zone Dusts

Continuously present, or for long periods, or frequently 0 20

Likely to occasionally occur in normal operations 1 21

Not likely to occur in normal operations,

or only for a short period, or accidentally 2 22

3.2 Experimental Measurement

The assessment of ignition energy has been a concern for the mining industry since the early

20th century due to the flammability of coal and coal dusts. The US Bureau of Mines and

the UK Safety of Mines Research Establishment have been conducting systematic ignition

testings since the 1910’s. Over the century, the tests were improved and developed in parallel

by different national institutes, and applied to other types of dusts from the agricultural

and industrial worlds. Eckhoff [2003] reviews some significant developments brought to the

ignition tests by scientists all over the world through the 1960’s to the 1980’s. Finally, in 1994,

the International Electrotechnical Commission (IEC) set an international standard on the

measurement of minimum ignition energy of dust/air mixtures [International Electrotechnical

Commission, 1994] in order to ease the standardization of safe design of electrical equipment

destined for use in explosive atmospheres. The ASTM International (formerly American

Society for Testing and Materials) has also set an international standard accepted in 2003

[ASTM International, 2007]. Overall, the modern procedure to measure MIE is the following.

A dust sample is dispersed within an explosion vessel with pressurized air, and two electrodes

connected to a circuit produce an electrical spark of known energy. If the spark induces

observable flame propagation, the spark’s energy is reduced by half until no flame propagation

is observed for ten consecutive tests. The highest energy for which no flame propagation

occurs is recorded. As the sample suspension concentration in air influences the ignition
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energy, a range of dust sample weights are tested successively to determine the most readily

ignitable mixture, for which the lowest ignition energy is considered as the MIE.

The experiments are conducted in a modified Hartmann tube with a capacitor spark generator

or with a commercially available device, Mike 3, which is schematically represented in Figure

3.2.
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Figure 3.2 – Schema of a MIKE 3 Apparatus

The MIE is in reality a value comprised between E1 the highest energy at which ignition failed

ten consecutive times and E2 the lowest energy at which ignition did occur [Cesana and Siwek,

2010]:

E1 < M I E < E2 (3.1)

For a more accurate assessment of the actual sensitivity, the statistic energy is introduced and

can be calculated as follows:

log (ES) = log (E2)− I [E2].(log (E2)− log (E1))

(N I + I )[E2]+1
(3.2)

where I[E2] is the number of tests at energy E2 where ignition occurred, and (NI+I)[E2] is the
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total number of tests at energy E2 with and without ignition observed. An example taken from

work of Cesana and Siwek [2010] is represented in Figure 3.3 and shows how the calculation of

ES is performed: once the preliminary tests determined E1 and E2, the probability of ignition

is determined according to the test results from different sample weights tested at E1 and

E2. In this example, the probability of ignition is 2 out of 5, and calculated statistic energy is

ES=21 mJ.
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Figure 3.3 – Statistic Energy: Calculation Example

The experimental procedure to obtain this result is tedious: one has to conduct all the neces-

sary tests prior to narrowing the MIE between E1 and E2, then between 50 and 70 tests are

required as for indicating NI for a given sample weight and energy, one has to repeat the test

ten consecutive times. Therefore, usually, it is E1, the highest energy at which ignition failed

ten consecutive times, that is reported to be the MIE.

Some studies propose to reduce the amount of necessary trials to determine MIE more

accurately, by means of a slightly different probabilistic approach: with the same information,

E1, E2, number of tests with ignition observed or not, but with a reduced number of attempts,

a normal or a log-normal law partition function serves to define a probability of ignition as

a function of energy [Bernard et al., 2010]. The authors consider this estimation method to

be rather accurate, and allows to define several energy levels as E0.05 for a 5% probability of
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ignition or E0.95 for 95% probability of ignition according to the risk level one is ready to take

or the applications.

The MIE determination for gases and vapors is performed differently: the mixture is introduced

in a 2 L vessel in which concentration is controlled by temperature variations, and ignition

is induced with a calibrated spark generator. Energies of 1 mJ or 0.4 mJ can be applied with

5% confidence and for lower energies, calibrations with products of known MIE are used as

comparative points. The procedure is tedious as well and requires numerous tests to obtain

accurate results. Hence, predictive models for the MIE could be beneficial to reduce the efforts

required by the experimental determination.

3.3 Influencing Parameters

Explosive and flammability characteristics of gases and dusts exhibit numerous similarities

and are therefore treated by harmonized regulations. The dependance to flammability limits,

similar burning mechanisms and detonation phenomena, well defined minimum ignition

energies or temperatures are few examples [Eckhoff, 2003]. The influence of the concentration,

which is valid for gases, vapors and dusts clouds, lies on the necessity of low inter-particles

distances for the ignition propagation within the explosive cloud.

However, Eckhoff [2003] stresses two fundamental differences: firstly, vapor or gases only

propagate a flame when the mixture formed with air lies in the flammability range, while

settled or layer deposits of dusts could propagate a flame due to the presence of air in the inter-

particles spaces; secondly, the dusts do not create ignitable clouds under all circumstances.

Several parameters have influence on the dusts cloud formation and thus, on the ignition

sensitivity.

The particle size and the powder density influence the dispersibility and the settling velocity of

suspended dusts. Very fine powders tend to form agglomerates, and are therefore less likely to

disperse in a gas phase. On the other hand, coarse particle sizes are also less likely to disperse,

settle faster and are less sensitive to ignition sources. Dusts with particle sizes higher than

500μm do not explode [Bartknecht, 1989]. Similarly, powders of higher densities also tend to

settle faster due to higher particle weights.

Usually, dusts with particle size in the 1μm to 100μm range would exhibit the highest sensitiv-

ities, and therefore, it recommended to measure the explosibility characteristics of powders

after sieving the powder to obtain particle of less than 63μm [Bartknecht, 1989].

The moisture content may also increase the tendency to agglomerate and decrease the ignition

sensitivity [Eckhoff, 2003].

Finally, technical aspects of the measurement can affect the MIE measurement. Experiments

conducted on the Hartmann tube and the Mike 3 apparatus have shown that the dispersion
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method and the delay time elapsed between dusts dispersion and spark generation create

different turbulence regimes of the dusts cloud. Thus, real concentrations at the initiation

time near the spark region differ from the concentration estimation based on the dusts sam-

ple weight. Therefore, the ignition could be provoked or not and give rise to different MIE

measurements [Janes et al., 2008].

3.4 Data Collection and Treatment

For this study, the MIE values collection were not experimentally measured but gathered from

several reference sources: works by Babrauskas [2003], Hertzberg et al. [1992] and Grossel

[1988], authors of various handbooks on ignition, dust explosion and the safe handling of

powders, report numerous data of MIE. Tables A.1, A.2, and A.3 in the Appendix A summarize

the MIE data used and the sources that originally reported them.

More than 130 data were found in literature, corresponding to gases, vapors and dusts. A

first selection was conducted in order to separate the data according to physical state at 20°C

(the melting and boiling points are also reported in appended tables) and ensure they are

considered apart. Nevertheless for modeling purposes, they are later intentionally merged as

explained in Chapter 5.

All molecular structures were created and processed with the Codessa Pro Software [Petrukhin

et al., 2001] in order to generate the molecular descriptors necessary for the modeling. In total,

and after removal of the descriptors with lowest variances or that were not defined over the

complete dataset, 357 descriptors were recorded for 132 compounds.

3.5 Conclusion

We have seen that if a risk analysis highlights the presence of an explosive compound or the

probability of formation of an explosive atmosphere, many preventive measures could be

implemented. However, in some cases, it could be necessary to remove the ignition sources

and in order to target in priority those that can actually trigger the sensitive mixture, one

should assess its sensitivity. That is where the MIE is of great importance, and therefore is

required by the ATEX Directive.

The experimental procedure to determine the MIE was presented, and the influencing parame-

ters were reviewed. Considering the time and efforts required for a single MIE measurement, it

could be highly advantageous if predictive models could be proposed to aid the experimental

determination.

Therefore, a dataset was collected and prepared for the development of molecular based

predictive modeling. The results are presented in Chapter 5.
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Heat has remarkable effects on matter. It drives most matter transformations, either chemical,

physical or mechanical. Heat is a form of energy that may affect the internal energy of

molecules. Hence, it influences many of their microscopic and macroscopic properties. A

body subjected to a heat input, can either absorb this energy and increase its temperature

or release this energy in another form, i.e. work. Heat transfers through solids or fluids by

conduction, through fluids by convection or by radiation even through vacuum. As heat

itself is not a measurable variable, heat exchanges and heat variations symptoms, as the

temperature changes, can be observed to determine heat variations.

As heat plays an important role in most matter transformations, it is omnipresent in human

activities and examples range from cooking pasta to launching spatial probes or producing

daily used objects. For instance, phase transitions occur with internal energy changes. That is

why processing plastic materials requires to heat them to obtain a ductile and malleable body

in order to easily perform the desired transformation, and later to cool them down to preserve

the newly formed body from unintended deformations.

In chemical reactions especially, heat is of crucial importance. Chemical reactions consist in

breaking and making new bonds, accompanied by energy consumption (endoenergetic) or

release (exoenergetic) expressed as heat exchange. Heat governs the rates of the transforma-

tions, and therefore applying heat to a seemingly inert body can accelerate the transformation.

In all cases, controlling the operating conditions (pressure and temperature) of chemical

production is a mean of controlling the rate of the transformation.

For productivity purposes, operating conditions are usually set to favor high yield and through-

put of the desired product, which often involves high temperatures or pressures. Nevertheless,

when the reaction is exoenergetic, the conditions must be designed to evacuate the heat

produced during the reaction. Heat accumulation within a reactor, or any containing ves-

sel, may be hazardous as it will have several consequences: pressure and temperature rise,

acceleration of the ongoing reaction, degradation of the present products by triggering of

potential side-reactions. A thermal runaway takes place when the heat accumulation causes
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the increase of the reaction rate and the heat production rate, which in turn contributes even

further to the temperature rise. The apparatus needs to be designed to face these conditions,

so that the consequences of heat accumulation could be managed; otherwise risks of severe

consequences are incurred.

In order to design the adequate equipment and to apply optimal conditions for safe operations,

it is necessary to properly assess the thermal behavior and the calorimetric potential of

the handled reaction and compounds. A safety analysis may rely on several experimental

measurements.

Calorimetric analysis are the experimental measurements of heat flow rate during a chemical

or physical transformation. Either the heat flow rate is directly measured or indirectly through

measurement of the temperature evolution, for instance. In reaction calorimetry for example,

the production operating conditions are replicated as closely as possible, at a smaller scale

(mL to L scale), and the heat production occurring during the reaction is deduced from

comprehensive energy balance over the reactor. The Accelerating Rate Calorimeter (ARC)

reveals how a sample mass behaves in adiabatic mode (when the accumulated heat is not

evacuated) and can reveal important information regarding how the sample reacts in case of

cooling failure [Stoessel, 2008]

Thermal analysis techniques, which follow the evolution of physical and chemical properties

as function of temperature, may also be employed to gather information on a sample ther-

modynamic behavior. These methods include thermogravimetry for instance, that follows

mass variations, or Evolved Gas Analysis (EGA), that monitors gaseous products resulting from

thermal decomposition.

Differential Scanning Calorimetry (DSC) is at the crossroad of calorimetry and thermal analysis.

DSC is a particular analysis in which a sample and a reference are subjected to a temperature

pre-programmed profile and the heat exchange at the sample is measured. These measure-

ments can reveal important information regarding the tested compounds and the reaction

they can undergo. Besides heat potential evaluation of sample, the applications of DSC are

broad as it can be employed for identification and purity evaluation of compounds, determina-

tion of phase diagrams, or kinetic investigations [Höhne et al., 1996], and this comprehensive

overview makes it well adapted for safety studies.

This chapter will focus on the functioning principles of DSC in a first section. Then, the

possible experiments that can be run and the information they expose will be discussed. In the

third section we will detail how DSC experiments will be exploited in this project in particular

and how the DSC experiments are pre-treated prior to modeling.
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4.1 DSC Principles

The first calorimeter was developed by Lavoisier and Laplace around 1780 (according to

Rawlinson [2006], Sarge et al. [2014a]). The experiment they designed involved the burning of

lamp oil in a meshed container placed in a double-walled vessel. Both chambers contained

ice, and were connected to collecting funnels to evacuate melted ice. The purpose of this

setup was to trap the middle layer of ice between the heat producing combustion and the

outer ice layer, which protects the middle ice layer from melting due to heat exchange with the

surrounding at ambient temperature. Then, the melted ice was collected, weighted and the

heat production deduced from the latent heat of fusion of ice (already known since the 1760’s

thanks to the work of Joseph Black, as reported by Emeis [2004]) now referred to as melting

enthalpy. This setup also served to prove and quantify the heat production during metabolic

processes with the famous experiments conducted on a guinea pig, reported by Höhne et al.

[1996], Holmes [1987], Rawlinson [2006], Sarge et al. [2014a].

(a) Calorimeter of Lavoisier and
Laplace (from Science Museum,
London [Ice calorimeter])

(b) Guinea Pig experiment (from
[Sarge et al., 2014a])

Figure 4.1 – Calorimeter of Lavoisier and Laplace

The heat released by the studied body, be it the oil lamp or the guinea pig, is absorbed

by the experimental setup, i.e. the middle ice layer. Besides, the system is insulated from

the surrounding environment thanks to the outer ice layer. Therefore, the temperature is

maintained constant and the heat produced does not cause any temperature elevation, only

the phase transition of the melted ice. This system is considered as heat-compensating as the

temperature is held constant by evacuation of the produced heat.

Calorimetric measurements evolved since then in terms of precision and technology and

several designs arose from the initial basic calorimeter to allow for various experiments.

In Differential Scanning Calorimetry, the sample is not held at a constant temperature, it

is subjected to a temperature scan: the temperature is linearly varied between an initial

temperature Ti to a final temperature Tf at a constant scanning rate β. Usual temperature
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scan rate values range between 0.5 Kmin−1 and 10 Kmin−1.

Moreover, to be able to assess the heat production/consumption by the sample, it is compared

to a reference sample placed in the exact same environment either placed symmetrically in

the same furnace or in an identical one (referred to as twin design).

The conduct of typical DSC experiment is as follows:

• the sample is prepared, weighted and placed in a container, known as crucible; depend-

ing on the type of crucible, it may be sealed;

• the reference, typically an empty crucible, is also prepared;

• both the sample and the reference are placed in the furnace on their respective holders;

lids may be placed above the samples in the furnace to minimize heat losses;

• the desired temperature profile is programmed (either isothermal, heating or cooling,

initial and final temperatures and scan rate), information relative to the sample (material,

weight, etc) and the experiment are entered in the program and the experiment is

started;

• during the experiment, the temperature of both samples is very precisely monitored;

• the temperature records are automatically analyzed and the heat flow rate is directly

computed and graphically displayed as a function of time or temperature to render the

DSC curve, referred to as a thermogram.

The apparatus shall be regularly calibrated in order to obtain reliable quantitative measure-

ments. An experiment with standard reference material as the sample is conducted. Standard

materials are usually metals of known melting enthalpies; this allows to match the measured

heat flow with the known heat flow. Similarly, the temperature is also calibrated thanks to

melting points of metals that occur at a precise temperature (given that the metal is pure).

Multiple calibrations points through several reference materials are often necessary and a

minimum of three is recommended [Gmelin and Sarge, 1995]. Besides, calibration determines

several apparatus-depending parameters. For instance, the heat transfer from the furnace to

the sample is not immediate and depends on the heat capacities of the crucibles and holders

that are the main heat conduction path. The calibration experiments should be performed in

conditions as close as possible to the experimental conditions: similar crucibles, reference,

and temperature profile should be employed in the measurements and the calibrations.

There are two DSC systems that are employed nowadays with different functioning principles:

power compensation DSC and heat-flux DSC. In both cases, the procedure detailed previously

is applied.The main difference lies in the tracked parameter. In power compensation DSC,

the pre-programmed temperature is strictly enforced; if the sample consumes or generates

energy, the power supplying system compensates this heat source to maintain the sample’s
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temperature identical to this of the reference. In heat-flux DSC, both the sample and the

reference are supplied the same heat flux, and their temperatures allowed to evolve differently.

These two systems are presented in the following sections.

4.1.1 Power Compensation DSC

Power compensation DSC was developed in 1964 by Watson et al. [1964] for Perkin-Elmer

Corporation, who still commercializes this type of apparatus. It was not the first type of

differential analysis as the Boersma Differential Thermal analysis (DTA) already existed then

[Boersma, 1955]. Nevertheless, the power compensation DSC is more similar to the historical

example seen above as it operates under the heat-compensation principle.

Heat compensating consists in neutralizing the sample heat consumption or production in

order to suppress its contribution to temperature variations. The sample and the reference are

maintained at the same temperature despite the transformations the sample may experience.

For this, the temperatures are closely monitored with sensors placed in the holders. The

temperatures are processed by the CPU in a two-fold analysis. On one hand, the average

temperature control system ensures that if the sample and reference average temperature

differs from the programmed temperature profile, the power supplied to both heaters is varied

consequently to come closer to the desired temperature. On the other hand, differential

temperature control monitors the sample and reference temperatures: if they differ from each

other, the power supplies are individually varied in order to recover equal temperatures. If the

sample temperature is lower than the reference, higher power is fed to its heater; otherwise, it

is the reference material that receives an increased power input.

During an endothermic transition, the energy consumed by the sample is equal to the extra

energy the system fed to the sample relative to the reference; inversely, during exothermic

reactions, the energy generated by the sample, is equal to the energy fed to the reference to

preserve the thermal balance. Therefore, the system provides a direct measurement of the heat

flow from and to the sample as equal to the compensating energy and reported graphically as

a function of temperature or time. The system is schematically represented in Figure 4.2.

The heat flow rate fed to both holders ΦF−SR is proportional to the temperature difference be-

tween the programmed temperature and the average temperature of the sample and reference

ΔTP−SR:

ΦF−SR = −k1ΔTP−SR (4.1)

where k1 is a proportionality factor set by the controlling unit.

Similarly, the reference and the sample receive individual heat feed (noted ΦFS or ΦFR for
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Figure 4.2 – Schematic representation of power-compensated DSC

sample and reference respectively) proportional to the temperature difference between them

ΔTSR when it is non-null.

In order to recover the heat flow of interest, i.e. this related to the reaction or transition

the sample undergoes Φr, the heat supplied to the sample and reference respectively are

compared:

Φr =ΦF S −ΦF R

= −k2ΔTSR +k3ΔTSR

= KΔTSR (4.2)

where k2, k3 and K are also proportionality factors set by the controlling unit.

Overall, the measured signal of ΔTSR is directly proportional to the heat flow production

or consumption by the sample Φr, and equal to the heat flow that should be supplied to the

sample ΦFS or removed (actually fed the reference ΦFR) in order to maintain the sample and

the reference at equal temperatures [Höhne et al., 1996].

Nonetheless, this discussion considers an ideal case and neglects the heat conduction time

between the measurement point and the sample. As the temperature is measured beneath

the sample holder, the heat conduction path is short and can be neglected in the discussion.

However, in practice it is taken into account thanks to calibration measurements to determine

the time constant τ which depends on the sample heat capacity CS and the global heat flow
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resistance between the measurement point and the sample RMS :

ΦS =ΦM +τ · dΦM

dt
with τ≈Cs ·RMS (4.3)

where ΦS is heat flow rate from the sample and ΦM the measured heat flow rate.

4.1.2 Heat-Flux DSC

In heat-flux DSC, the apparatus design and the experience control are slightly different from

power-compensated DSC. First of all, both the sample and the reference are placed in a single

furnace, and are subjected to the same heating source. Both crucibles are placed on their

respective holders connected to the temperature sensors. The holders are often designed as

a metallic or ceramic disk where samples are placed and in which the thermal resistors are

directly embedded [Sarge et al., 2014b]. This design also ensures symmetrical positioning of

both samples in the furnace.

a) sample

b) reference

c) temperature sensors 

d) power supply

e) furnace
c

d

a b

e

Figure 4.3 – Schematic Representation of Heat-Flux DSC

In the furnace, due to this symmetrical arrangement, if the sample and the reference are at the

same temperature, the heat exchanged between the furnace and the sample ΦFS is the same

than between the furnace and the reference ΦFR.

If a temperature difference is detected between the sample and the reference ΔTSR, it is

necessarily caused by transitions or reactions occurring in the sample. This temperature

difference will give rise to a heat flow rate ΦSR between the sample and the reference, and the

new balance is the following:
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Φr =ΦSR =ΦF S −ΦF R (4.4)

Considering the sample and the reference individually, the following heat flow balances are

valid:

CS · dTS

dt
=ΦF S +Φr for the sample (4.5)

CR · dTR

dt
=ΦF R for the reference (4.6)

Now, considering the heat flow rates in the furnace

ΦF R −ΦF S =
TF −TR

RF R
− TF −TS

RF S

=
ΔTSR

Rth
(4.7)

where RFS and RFR are the heat transfer resistances between the furnace and the sample and

the furnace and the reference respectively, and due to the symmetrical design of the furnace

and holders RFS = RFR= Rth with Rth, the global heat transfer resistance of the system1.

Finally, by substituting Equations 4.5, 4.6 and 4.7 into Equation 4.4, the reaction heat flow rate

becomes:

Φr = −ΔTSR

Rth
−β · (CS −CR )−CS

dΔT (t )

dt
(4.8)

where ΔTSR is the temperature difference between the sample and the reference (the mea-

sured signal), CS and CR are the heat capacities of the sample and the reference respectively,

β the scan rate [Höhne et al., 1996].

Hence, the reaction heat flow rate is not directly proportional to the measured temperature

difference, but time-shifted due to two elements taken into account by the second and third

1The notation Rth stands for "Thermal Resistance" and is used here only to avoid confusion with R the gas
constant, which will be encountered later.
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terms of the Equation 4.8: the inherent heat capacities differences between the sample and

reference due to the sample nature and weight principally, and the resulting thermal inertia of

the sample. As the reference is usually an empty crucible, the sample is necessarily heavier

and even if massic heat capacity remains unchanged, a lag appears and has to be taken into

account to recover the signal of the heat flow from the reaction mass ( τ is the time constant

relative to the sample thermal inertia τ≈Cs ·Rth as seen for the power compensation DSC in

Section 4.1.1).

Thus, from the measurement of ΔTRS it is possible to recover the reaction heat flow rate Φr,

given that the necessary calibration experiments were conducted in order to determine all the

other parameters.

It is important to note that this holds under two approximations: that the heat transfer is

mostly conveyed through conduction rather than convection or radiation; and that the thermal

behavior is governed by the crucibles and sample holders, i.e. that their thermal resistance

and heat capacities are larger than this of the studied substances [Höhne et al., 1996]

4.2 Thermogram Analysis

Independently of the apparatus employed, the results of a DSC experiment are usually the

same: the records of sample and reference temperatures and sample heat flow rate as function

of time or temperature. Depending on the temperature profile applied, heating, cooling or

isothermal, and on the sample thermal behavior, the thermal curve or thermogram, may

exhibit several elements.

Figure 4.4 shows an example of typical DSC thermogram recorded under a heating program

and the thermal events observed are marked from (a) to (d). The information and characteri-

zation analysis that may be drawn from a DSC experiment are detailed below (labels (a) to (d)

refer to the elements of Figure 4.4 ) .

(a) Heat Capacity: the heat flow rate from the sample, when no thermal events are observed

besides the heating or cooling phenomena, is proportional to the heating rate β and the

heat capacity of the sample Cp,S. As it happens in Figure 4.4, the heat flow signal is not

normalized by the sample weight or molar quantity, thus to recover the specific heat

capacity, one can simply compute it as:

Cp ,S =
1

m
· Φ
β

(4.9)

It is important to note that the heat capacity varies during the experiments as it is a

temperature dependent factor, hence the measured value is indeed the average of heat

capacities over the studied temperature range and marked Cp ,S , but also due to the
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Figure 4.4 – Example of a Typical DSC Thermogram

phase or nature changes of the sample caused by the transformations. The slope or the

curvature of the baseline may be affected, and the proportional relationship holds only

on narrow temperature spans.

(b) Melting Point: DSC can be applied to accurately determine the phase change of samples,

especially the melting temperature and enthalpy of solids. Moreover, the melting point

analysis can also reveal the purity of the sample Rawlinson [2006] (see Figure 4.5).

Ф
[W

]

T [°C]

97%

99%

99.9%

Figure 4.5 – Purity Effect on Melting

At the highest purity, the melting point is characterized by a sharp endothermic peak

with linear slope that reaches the minimum at the compound’s exact melting tem-
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perature. In presence of impurities, the peak tends to broaden and occur at lower

temperatures than the actual melting point. The melting enthalpy is the integral of the

curve in this temperature range or the area under the melting point peak.

(c) Chemical Reaction: depending on the kind of experiment conducted, the tested sample

can either be a pure compound or a mixture. Reactions can either be endothermic or

exothermic as represented in Figure 4.4 (c). In the case of a pure compound, such an

exothermic peak indicates thermal decomposition, oxidation or polymerization of the

sample. For a reactive mixture, the peak could reveal a chemical reaction between the

present compounds.

Several elements can be withdrawn of the analysis of the curve. The onset tempera-

ture (To) may be defined as the temperature at which the reaction is progressing at a

significant rate. The difficulty to assess what "a significant rate" is, makes the onset

temperature determination nonstandard and subjective to operators and protocols.

There are however two common methods to determine it, either as the temperature

at which the curve reaches a given percentage (10% in Figure 4.6) of the maximum

or through extrapolation of a tangent [Sarge, 1991]. The tangent is by definition built

at the inflection point of the peak, i.e. on the ascending part of the peak, when the

slope is maximal. However, the result is not necessarily ideal, as the peak itself is rarely

ideal and doesn’t exhibit a linear heat flow rate. Therefore, most software packages

automatically calculate the tangent and allow the user to adjust it to an "auxiliary"

line that fits to a certain extent the "almost linear" part of the peak [Höhne et al., 1996,

Sarge, 1991]. Considering that the baseline itself can be determined by various methods

[Saito et al., 1986] and that the onset extrapolation parameters are dependent on the

sample characteristics [Sarge, 1991], the onset temperature determination can be rather

challenging in some cases.

Besides the onset temperature, the reaction enthalpy (ΔHr) is also calculated from the

characteristic peak of a reaction as the area under the curve. Both of these elements are

represented in Figure 4.6.
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Figure 4.6 – Onset Temperature and Reaction Enthalpy

(d) Secondary Reactions: Figure 4.4 exhibits a first reaction peak on (c) and a second

one on (d). In the cases where the tested sample is a mixture, the reaction (c) could

be the desired chemical reaction under investigation. Then, the secondary reaction

may be a side reaction as for example the decomposition reaction of the first reaction

products, and may be unexpected. Indeed, the main reaction could be identified from

the usual laboratory experiments, yet, the temperature is usually not raised to elevated

temperatures and this decomposition could be missed. Therefore, in DSC tests, the

scanned temperature range should go beyond the working temperature range in order

to shed light on potentially unnoticed reactions. From a safety point of view, these

reactions could be highly important especially if the heat release potential is high or if

the onset temperatures are neighboring from the working temperature range. From a

quality point of view, it is equally important to set the operating conditions such that

the freshly produced chemicals are not directly decomposed in a secondary reaction.

(e) Kinetic Behavior: the kinetics of a reaction are latent information that is not explicit

in a thermogram like Figure 4.4. During a DSC experiment, when the temperature is

sufficiently high for the reaction to take place at a significant rate (i.e. T > To ), two

elements contribute to the variation of the reaction rate r:

r = k ·C n = k[Ci (1−X )]n (4.10)

where k is the reaction rate constant, C the reactant concentration, n the reaction order,

and X the conversion of the reactant.

First, with the reactant consumption, the concentration C decreases and its influence

on the rate depends on the reaction order n . Second, the reaction rate constant k , is not

a constant anymore when the temperature varies (Arrhenius law), which is obviously

82



4.2. Thermogram Analysis

the case in a DSC test. Therefore, the heat flow rate generated by a first-order reaction

may be expressed as follows:

Φr = r ·V ·ΔHr = ko ·exp

(−Ea

RT

)
· (1−X ) ·ni ·ΔHr (4.11)

where ΔHr is the molar reaction enthalpy, ko the pre-exponential factor in Arrhenius

law, Ea the activation energy, R the gas constant, and no the initial molar quantity of

reactant (not to be confused with the reaction order n).

The impact of this relationship cannot be observed in one thermogram alone. However,

comparing several curves can serve to illustrate this discussion. In Figure 4.7, for a

virtual set of reactions of equal heat of transformation (no ·ΔHr), the pre-exponential

factor ko and the activation energies Ea are varied and the corresponding heat rates

represented. This highlights that reactions with rapid kinetics (i.e higher ko, lower Ea)

exhibit higher and narrower peaks. This indicates that the reaction rate accelerates at a

faster pace, and consumes reactants in shorter times. The broader and smaller peaks

are symptomatic of reactions with slower reaction rate accelerations, and hence slower

heat production.

In the case where the kinetic information of the reaction is unknown, they could be

determined from DSC experiments. Several methods based on model-fitting to one

single experiment operate by adjusting kinetic parameters, reaction order and reaction

mechanisms to measured heat flow rate [Borchardt and Farrington, 1957]. Nonetheless,

single measurements are considered insufficient for accurate estimations. For this

purpose, several DSC experiments should be performed at different scanning rates ( β ),

and the conversion should be computed from the obtained heat flow rates. Figure 4.8

shows examples of DSC curves obtained for the same sample tested at different scanning

rates and the corresponding conversion in function of temperature. Iso-conversional

methods [Flynn, 1983, Ozawa, 1965] imply to determine the temperatures at which an

equal conversion is achieved at different scan rates, to solve and determine for ko and

Ea. Finally, isothermal techniques are more appropriate for auto-catalytic reactions, as

the dynamic measurements could cover the self-accelerating behavior [Sourour and

Kamal, 1976] .

Figure 4.8 illustrates the iso-conversional method. First, DSC records of the sample

are conducted at different scan rates, and the result obtained is similar to Figure 4.8(a).

From these curves, the conversion X is calculated as the integral of this signal as a

function of the temperature, and the result obtained is shown in Figure 4.8 (b). Then,

Equation 4.11 can be used to set a system of equations for a given X, where T and Φr

are known and Ea and ko can be determined.
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Figure 4.7 – Kinetic Behavior on DSC - gray arrows indicate increase of pa-
rameter
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Figure 4.8 – DSC for Kinetic Evaluation

4.3 Data Collection, Treatment and Property Extraction

In the previous section, the procedure to measure DSC thermograms has been detailed and

the important information to analyze were reviewed.

For this work, the focus will be on thermal decomposition reactions of pure compounds. The

next section will present briefly the experimental conditions and characteristics of the data

that will serve for the model building phase.

Moreover, considering the other information contained in DSC curves, it has been decided

not to disregard the entire curve and keep only the onset temperature and enthalpy of decom-

position reaction, but to preserve the overall thermogram, or most of it, such that if further

developments (out of the scope of this project) would be found to complement our work,
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other parameters such as the reaction kinetics would be recovered eventually.

Therefore, the following part will present how the DSC curves are treated in a manner to

abstract them to few parameters that would allow a comprehensive reconstruction.

4.3.1 Data Collection

For this work, the data collection has been conducted in three phases. In the first part, the DSC

records of 20 nitroaromatic compounds were performed in heat-flux DSC apparatus by Mettler-

Toledo. Later, a set of 20 chemicals were tested by heat-flux and power-compensation DSC.

Each sample has been tested several times and these experiments are destined to evaluate

the experimental error of the measurements on both apparatus types. Moreover this set has

been designed to be structurally diverse and composed of compounds belonging to several

chemical families were selected: peroxides, azo-compounds, nitrites and nitrates.

Finally, a collection of about 900 DSC records were acquired from an industrial collaboration2.

All experimentally measured DSC experiments were recorded at the following conditions:

• Temperature range scanned: 30 ◦C to 400 ◦C

• Heating rate: 4 Kmin−1

• Sample weight: 2 mg to 5 mg

• Enclosing atmosphere: Air, RTP

• Crucible: Gold-plated, sealed, high pressure resistant, 20μL

The data collection from the industrial partner presented few differences. The crucibles were

enclosed under inert atmosphere, i.e. argon gas, and the sample weights could go up to 10 mg.

Due to the absence (or low concentration) of oxygen, it is possible to affirm the thermal events

observed on the DSC records are pure compound decomposition and not oxidation reactions.

Figure 4.9 presents an example of compound (i.e. pentanenitrile) that reacts when enclosed

under air at room temperature and pressure (RTP), whereas no particular peak is observed

when enclosed under argon. Finally, a test is conducted under 5 bar of oxygen, and the reaction

initially observed under air exhibits higher energy release and heat flow rate [Baati, 2011].

This experiment allows identifying this reaction as an oxidation. Nonetheless, under air, the

phenomena is so limited that it is practically negligible.

This discussion shows that when the crucibles are enclosed under air, oxidation cannot be

excluded as a possible reaction of the sample, nevertheless it is rather limited and presents

only small peaks that can be neglected. Therefore, the argon atmosphere is preferable, but the

experiments conducted under air are considered as practically equivalent and this parameter

will not be regarded as a distinctive parameter for further discussion or manipulations.

2Novartis AG Safety Laboratory made available for this project their database of thermal analysis of commercially
available products which included several hundred entries
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Figure 4.9 – Effect of Enclosing Atmosphere on DSC
Inset shows an enlarged view

Similarly, the sample weight ranges differ from the experimental set and the acquired set.

Figure 4.10 shows a compound (i.e. nonanenitrile) tested twice, once with a sample weight

of m =4.38 mg and once with m =11.0 mg [Baati, 2011]. As the heat flow rate is normalized by

sample weight, it appears that the peak is smaller for higher sample weights. This is due to the

fact that higher sample loads imply higher filling of the crucibles, hence the heat exchange area

is no longer the crucible base solely, but also at crucibles sides. Therefore, the measurement is

biased and potentially not all heat flow from the sample is detected at the measuring points.

Empirically, it has been determined that the optimal weight range would be between 2 mg to

5 mg.

Finally, the DSC database acquired from the industry was initially on hard support. In order

to use the thermograms, several treatments were necessary to digitize the information and

recover the numerical values. This treatment (scanning, image processing to recover curves

and axis, scale conversion, and finally digitization) may have introduced errors to the actual

data.

86



4.3. Data Collection, Treatment and Property Extraction

0

1

60 100 140 180

H
e

a
t
F

lo
w

 [
W

/g
]

T [°C]

m=11 mg

m= 4 mg

Figure 4.10 – Effect of Sample Weight on DSC

However, in view of the important number of thermograms available, it was favored to optimize

the data treatment and to minimize error introduction rather than experimentally reproduced

the tests. Besides, a selection was conducted to discard all thermograms that could not be

integrated into the database due to various reasons: all samples that were mixtures rather

than pure compounds, as well as polymers as their structure cannot be represented for the

modeling phase, or inert (no observable thermal behavior of interest) were discarded. It is

important to note that not all stable compounds were discarded; in order to have an overview

of all types of thermal behavior, some were kept for the study, but most were removed due to

their high abundance.

Then, all DSC data from the three collections (nitroaromatic, miscellaneous set for experi-

mental error evaluation and large set from industry) were merged into a unique database that

serves for the modeling work presented in Chapter 6. This resulted in a dataset of 414 DSC

thermograms.

All molecular structures were created and processed with the Codessa Pro Software [Petrukhin

et al., 2001] in order to generate the molecular descriptors necessary for the modeling by QSPR

and by ICAS software [Gani, 1999] to generate the Marrero-Gani groups necessary for the

modeling by GCM.

4.3.2 Thermogram Parametrization

As previously discussed, the information contained in DSC curves exceeds onset temperature

and enthalpy of decomposition reaction. Therefore, here, the DSC curves are abstracted to few

parameters and later reconstructed to recover most of the initial information. In principle, a

model-fitting method to a known curve with a limited numbers of parameters may be applied

and the parameters determined by identification.
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In chromatography, the graphical results obtained are comparable to DSC measurements.

The detection of products at the exit of the column as function of time presents a sequence of

peaks that have to be analyzed to determine the quantities and retention times on the column.

By analogy, in DSC the quantities to be evaluated are the reaction energies, the retention

times are the temperature of occurrence and the signal is the heat flow rate as function of

temperature instead of detected concentration in function of time.

After studying the signal processing methods used in chromatography, two fitting-methods

seem reasonably appropriate for our purpose. The DSC curve could be fitted either to a

Gaussian model (Equation 4.12 ) or a Fraser-Suzuki model (Equation 4.13 ):

f (T ) =Φmax ·exp

(−(T −Tmax )2

2σ2

)
(4.12)

f (T ) =Φmax ·exp

[
− 1

2a2 · l n2
(
1+ a(T −Tmax )

σ

)]
(4.13)

where Φmax is the maximum heat flow rate measured, Tmax the temperature at which the

maximum is measured, σ the peak standard deviation, and a in the Fraser-Suzuki model is an

asymmetric factor [Felinger, 1998].

In DSC, the peaks are highly comparable to Gaussian curves, and this model could well

describe most cases. However, in the cases where the kinetics of the reaction are of zeroth-

order for instance, the ascending part of peak would be Gaussian-like, while the descending

part would be rather abrupt, due to the entire consumption of the reactant and the immediate

interruption of the reaction. This would exhibit a highly asymmetric peak, and would also

be the case in other complex reactions mechanisms or non-integral orders. Therefore, the

Fraser-Suzuki model would be necessary for a unified description of all cases that could be

encountered.
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Figure 4.11 – Comparison of Gaussian and Fraser-Suzuki Models

Figure 4.11 shows how the Fraser-Suzuki model compares relative the equivalent Gaussian

model, when the asymmetric factor a is varied.

4.3.3 Property Extraction and Data Treatment

In order to properly fit the DSC curves with Fraser-Suzuki, the AKTS software was employed

[AKTS SA, 2000]. Not only does it include a fitting mode to identify the Fraser-Suzuki parame-

ters, it is specifically designed to treat DSC curves, hence the process of baseline correction,

the conversion of the curve from time scale to temperature scale or from heat flow to weight

normalized heat flows and the integration of energies are also enabled, given that the sample

weight and the scan rate are fed to the program.

The DSC curves are abstracted to five key properties, i.e. the peak maximum height, the peak

maximum temperature position, the width, and an asymmetric factor and the area under

the curve, as shown in Figure 4.12. These properties will later be modeled and estimated

individually (see Chapter 6). When the simulated values are computed, they are reassembled

into a Fraser-Suzuki equation, and the simulation of the entire DSC curve can be recovered

thanks to this back-processing.

The area under the curve, which is directly linked to the reaction enthalpy, could be estimated

from the curve simulations rather than modeled as a stand-alone parameter. This would

represent one less variable to model, and would be a significant reduction in time and compu-

tation. However, in order to avoid potential error propagation from mis-estimations of the

other parameters onto the area, it was chosen to be studied apart here.
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Figure 4.12 – Extraction of DSC Key Properties

For some thermograms, depending on the thermal behavior exhibited, there could be several

thermal events to analyze. As the focus is on the decomposition reactions, endothermic

peaks are disregarded as they are most often related to the melting of the compound if it is

in solid phase at the beginning of the experiment. Moreover, if several reaction peaks are

observed, only the "main peak" is held for the study. However, the assessment of which peak

is considered principal could either be based on energy release or temperature of occurrence.

This procedure was not automatized and a case by case evaluation was performed to determine

whether the main peak is the peak with highest energy release or the peak that appears at

lower temperatures by relative comparison of the multiple peaks.

The data collection gathered as explained in Section 4.3.1 is treated with the present procedure.

Finally, the DSC database has the following composition:

• more than 400 structurally diverse and thermally reactive chemicals

• DSC thermograms recorded with a heat-flow apparatus at β = 4Kmin−1

• the numerical descriptors for QSPR modeling

• the Marrero-Gani groups for GCM modeling

• 5 key properties extracted from each thermogram’s main peak.
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4.4 Conclusion

In this chapter, the general principles of Differential Scanning Calorimetry were reviewed.

Then, the two types of apparatus, power compensation and heat flow DSC, and their particular

functioning principles were detailed.

As the obtained results from both methods are sensibly the same, the elements to analyze

from a resulting thermogram were discussed independently from the measurement method.

Section 4.2 highlights the various parameters that can be identified or computed from DSC

experiments, as for instance the heat capacities, the melting point, which can be used for

compound identification, and the possible reactions the sample may undergo.

Regarding the reactions, DSC can expose the occurrence temperature and the energy release.

Moreover the kinetic behavior can also be determined from DSC experiments. For this purpose,

some of the major techniques were mentioned and briefly described.

Then, the data that will serve for this study in particular were gathered from three different

sets: two sets were experimentally recorded (40 DSC) and another larger set acquired from

a collaboration (≈400 DSC). The major differences between the data sets such as the weight

range or the enclosing atmosphere were discussed and their effect assessed to ensure that

these data were comparable and that they could be used within a unique database.

Finally, the DSC curves are abstracted to one main peak characterized by five key properties,

i.e. the peak maximum height, the peak maximum temperature position, the width, and an

asymmetric factor. These properties can be modeled and estimated individually and when

estimates are reassembled into a Fraser-Suzuki equation, the simulation of the entire DSC

curve can be recovered.
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5 MIE Modeling

5.1 Literature Review

As noted in Chapter 3, several tests and characteristics of compounds are used to evaluate the

probability of the explosion of a dust/air or a gas/air mixture: the auto-ignition temperature

(AIT), the flammability or explosive limits (LEL/UEL) or the flash point (FP), to name a few.

Besides the probability, severity needs to be estimated as well in order to grasp the related

risks. The severity can be evaluated with the Explosion Constant (Kst, or KG for gases) and the

Maximum Explosion Overpressure (Pmax) . Explosion constants represent the pressure rise a

sample of the considered product would cause in a 1 m3 spherical volume and the Maximum

Explosion Overpressure corresponds to the difference between the pressure at ignition and

the highest pressure recorded during the explosion.

With the rise of predictive models and their applications broadening to different fields, the fire

and explosions characterization field was also investigated through some of these properties

and several models were found in the literature, based either on GCM or QSPR. Table 5.1

summarizes some examples of models encountered in the literature for explosive properties.

This table shows for each model which one of the molecular structure based methods was

used, GCM or QSPR, mentioning if the molecular structure was the only input or if the model

is based on other physical or chemical properties (in column "Add. Param.?"). It appears in

Table 5.1 that several explosive properties were successfully modeled, however no MIE models

were found.

The most similar property modeled is probably the electric spark sensitivity EES, which

was investigated in several studies. Zeman et al. [2006] define the electric spark sensitivity

as the "electrostatic discharge energy required for 50 % initiation probability" and present

experimental measurements for several detonating secondary explosives, mainly polynitro

compounds, conducted on two laboratory-made instruments. The experimental procedure

exposes the tested sample to the electric spark as small sample in a cylinder of 5 mm height

and 5 mm diameter rather than dispersed. Works by Zeman et al. [2006] served as the basis for

several studies that correlate EES to molecular structure using mostly their experimental data.
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Table 5.1 – Comparative Summary of Literature Models for Explosive Charac-
teristics

Reference Method Model Type Dataset Performance Add.

Param.?

Flash Point

Albahri [2003] GCM polynomial 300 R2= 0.99

Katritzky et al. [2007] QSPR linear 758 R2= 0.92 ΔH f

Valenzuela et al. [2011] GCM linear 48 A AD < 5K Const. and

ΔHvap

Rowley and Wilding

[2010]

GCM polynomial +1000 ARD < 10%

Pan et al. [2010] GCM linear 314 R2= 0.98

Keshavarz and Ghan-

barzadeh [2011]

GCM linear 173 R2 = 0.97

Auto-Ignition Temperature

Egolf and Jurs [1992] QSPR linear 312 0.94< R2 <0.98

Suzuki [1994] QSPR linear 250 R2= 0.91 Tb , Tcr and

pcr

Mitchell and Jurs [1997] QSPR linear/ANN 327 0.68< R2 <0.87

Albahri [2003] GCM polynomial 500 R2=0.92

Pan et al. [2009] QSPR linear 446 0.85< R2 <0.89

Flammability Limits

Albahri [2003] GCM linear 475 R2=0.93

Gharagheizi [2009] QSPR linear 865 R2=0.92

Pan et al. [2009] QSPR linear/ANN R2=0.79

Lazzús [2011] GCM neural nets 418 R2=0.98

Bagheri et al. [2012] QSPR linear +1500 R2=0.91

Explosion Constant and Maximum Explosion Overpressure

Reyes et al. [2011] QPSR linear 35 0.91< R2 <0.96 dp

Electric Spark Sensitivity

Keshavarz et al. [2009a] GCM linear 21 ARD=21%

Fayet et al. [2010] QSPR linear 26 R2=0.90

Zhi et al. [2010] QSPR linear 30 R2=0.97

Wang et al. [2011] QSPR GFA/ linear 39 R2=0.92
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In 2009, Keshavarz et al. [2009a] proposed a model based on descriptors of the chemical

composition and structure that is able to estimate the value of the detonation velocity at

maximum nominal density D’, which is directly correlated to EES according to their work.

The descriptors used as parameters were the following: the number of constitutional atoms,

CaHbNcOd and nNR the number of nitrogen double bonds, N N and nN the number of

nitro groups.

The reported models were:

D ′ = 7.68−0.198a −0.111b +0.294c +0.0742d −0.635nN R −0.735nN (5.1)

EES = −0.4326D ′2 +37.21 (5.2)

The authors did not report an evaluation in terms of determination coefficient or relative

errors. However, they presented the experimental and predicted values of their dataset, thus,

the average relative deviation could be recomputed to evaluate their results and found to be

about 21%. A study from the French national institute for industrial environment and risks

(INERIS), relying on the same initial study by Zeman et al. and classical QSPR methodology

proposed the following model for the electric spark sensitivity of 26 nitroaromatic compounds:

EES = 29.6nsi ng le +63.3nC ,max +168.4QC ,max −27.8VC ,mi n +99.4 (5.3)

where nsingle is the relative number of single bonds, and nC,max, QC,min and VC,min are re-

spectively the maximum nucleophilic reactivity index, the minimum partial charge and the

minimum valence for a carbon atom [Fayet et al., 2010]. This model also results in responses

with average relative deviations of nearly 20%.

Later, Zhi et al. [2010] developed the following model:

EES = (−1)n1ω1Qni tr o −n1n2ω2ELU MO +ω3 (5.4)

with n1 the number of aromatic rings, n2 the number of substituents other than nitro groups,

Qnitro the minimal charge on a nitro group, and ELUMO the energy of the lowest unoccupied

molecular orbital. The correlation coefficient of this model is rather high R2 = 0.97, but on the

other hand the studied set of compounds is rather narrow (19 data for the training set, 2 of
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which have been excluded from the model, and 11 held for the testing set).

Finally, Wang et al. [2011] used an approach more similar to this of Fayet et al. and also

obtained satisfactory results as well: their model, built from the study of 39 nitroarenes is

composed of 8 parameters and gives R2 = 0.924 and R2
cv = 0.873.

Table 5.2 shows the experimental EES values of 1,3,-dihydrox-2,4,6-trinitrobenzene, and the

predictions found by the three latest models [Fayet et al., 2010, Wang et al., 2011, Zhi et al.,

2010]. This comparison highlights the fact despite the differences in the model development

and the obtained equations, all three studies propose simulated values for EESthat are rel-

atively similar and accurate. This points out the potential existence of several correlations

that may be found, while the establishment of one model as the most appropriate may be

challenging.

Table 5.2 – Comparison of EES from Literature Models

1,3,-dihydrox-2,4,6-trinitrobenzene

EES (exp) EES (sim) Dev RD

mJ mJ mJ %

Fayet et al. [2010] 12.3 11.4 -0.87 -7

Zhi et al. [2010] 12.3 9.7 -2.6 -21

Wang et al. [2011] 12.3 11.4 -0.91 -7

The motivation for simulations of MIE is driven by several elements. Firstly, it is an impor-

tant and necessary safety parameter when considering the handling of energetic materials.

Secondly, the experimental procedure detailed in Chapter 3 requires several repetitive steps:

varying sample weights and spark energies, and iterating the ten consecutive trials. These

repetitions accumulate the time and material costs. Besides, the results are given as threshold

values or ranges, from a finite and discontinuous set of values. Finally, from the discussion

above, and to our knowledge, there are no models to predict MIE from the molecular structure.

Therefore, the goal of this chapter is to develop and present predictive models for MIE val-

ues only, without any particular prior processing of experimental data, and without taking

into account other influencing properties such as the temperature of auto-ignition, nor the

minimum ignition temperature, the concentration relative to flammability limits or particle

size. From this perspective, only the structural influence is analyzed, hence the differences

between dusts, vapors or gas are virtually erased.

Firstly, the collected dataset presented in Tables A.1, A.2 and A.3 will be studied as a whole to

produce global models, in order to test if one correlation can be built directly from molecular

structure independently of all other considerations (physical state, dispersion, etc).

Secondly, local models will be developed for three subsets of the initial ensemble, mainly to
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separate the artificial merge we imposed between dusts, vapors and gases.

Finally, MIE values are measured in thresholds, hence the true MIE values are comprised

between delimited ranges, and therefore, classification could be more appropriate than re-

gression. Moreover, a classification method will also show whether or not there is a better

separation than the physical state criteria to propose local models.

5.2 Resulting Models

5.2.1 Global Models

The modeling of the MIE data was conducted as follows. Once the values are acquired and 318

QSPR descriptors are generated as detailed in Chapter 3, the dataset is ready to be analyzed.

The two first steps serve for feature selection. The first one consists in developing a repetitive

loop that allows to divide the dataset into a training and a validation set, with 90-10% pro-

portions, then applying the General Linear method to assign coefficients to all parameters,

and then evaluating the model on both training and validation set. The loop is repeated 100

times. The coefficients adjustments vary for every iteration depending on which data are on

the training set, on the other hand the subsets of parameters for which non-null coefficients

are determined does not vary significantly. This wrapper allows rapidly reducing the feature

set size approximately by half.

The second step calls for a stepwise regression model. The parameters are included succes-

sively, only if they contribute to improving the model’s performance. Here, the process is

made iterative as well, and several models are produced in order to determine the necessary

parameters to obtain a model’s performance higher than R2 = 0.95. The stepwise regression

algorithm requires a threshold p-value of an F-statistical test, above which the descriptors are

considered statistically irrelevant and are not included in the models. The iterative loop put

in place here increases the p-value in order to develop different models including additional

parameters, and achieving higher correlations to the targeted observation values.

It is as considering that the entire data set potentially contains 100% of the information

available, and this estimates which subset minimizes data loss due to dimension reduction.

Less than 100 descriptors are selected for the modeling phase.

Finally, after these two consecutive reductions of the descriptors space, the dataset is processed

through a third and last loop. Once again the division into training and validation sets is

performed to randomly take out 10% of the observations to later validate the model. The

stepwise regression is applied again, but this time the p-value threshold is fixed. Several

training - validation combinations are run, and one model is built for each of these random

combinations. The 10 best ones in terms of fitting of the validation set are selected to be

analyzed more closely. Figure 5.1 shows the responses of one particular model which is
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Figure 5.1 – Global Model Responses for MIE: Predicted vs Observed Values

representative of the obtained models.

In Figure 5.1, and on the other similar graphics, the model’s estimations and predictions are

plotted against the actual values of the observed compounds. Data in the lower right half of

the chart are underestimated, while data in the upper right corner are over-estimated by the

model. Ideally, the model should present good predictions of the observed values and data lie

close to the ideal fit represented by the black line and indicated by the blue dashed lines that

delimit a ± 5% range.

To recover the entire model, the parameters and their related coefficients are reported in

Tables A.5 and the responses in Appendix A.8, in Appendix A. The global model presented here

is evaluated and its performance is summarized in Table 5.3. This evaluation shows overall a

good performance of the model, that reflects well what can be observed on Figure 5.1. Both

training set and validation set are well estimated, and the determination coefficients R2 and

R2
cv are relatively high. Nevertheless, average relative deviations (noted ARDTr and ARDV al in

the table for training and validation sets respectively) show that the estimates are not accurate

and the mean errors are higher than 1000%. Indeed, on the Figure 5.1 it appears clearly that

a large subset of the observations are in the extremely low range of MIE values. The relative

errors occurring when predicting these very small values are rather large, which explains the

obtained ARD. On the other hand, the average absolute errors (A AE) for both training and

validation set are of about 8 mJ to 9 mJ, which would be a reasonable margin for data with high

MIE but meaningless for observations with M I E < 1m J . Therefore this raises the question as

to whether it is appropriate to study the dataset entirely when it is unevenly distributed across

the value range as half the set is concentrated within a region that represents about 1% of the

range of observations. In the following section, the dataset will be subdivided in order to be
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studied with respect to these observations and local models will be developed and discussed.

Table 5.3 – Global Model Evaluation Summary

Evaluation Global Model

R2 0.860

R2
cv 0.850

# Parameters 16

Training Set 117

Validation Set 15

ARDTr 1327 %

ARDV al 1210%

A AETr 8.7 mJ

A AEV al 8.1 mJ

5.2.2 Local Models

Dusts

As mentioned previously, the dataset comprises disparate values over the represented range of

MIE values. More than half the values are lower than MIE=10 mJ, and all dusts observations

present an MIE higher than 10 mJ. Thus, the first studied subset investigated is the dusts as it

seems the most clearly defined subset.

The data analysis conducted is the same than previously detailed for the development of the

global model. The results are illustrated with the three examples, which will be referred to as

model A, B and C.

Models A and B are typical illustrations of the main difficulty encountered when building and

selecting models. As one can see in table 5.4, model A reaches high correlation efficiency with

the training set as R2 = 0.986. However, the model fails to perform as well with the validation

set as the R2
cv = 0.365 and ARDV al is higher than 250%. This is supported by the Figure 5.2

that shows clearly how all training data lie within the region close to the ideal fit, whereas the

validation data are rather poorly predicted, and are dispersed away from fidelity. This is a

strong indication of an over-fitting issue: the model is adjusted to the training set so well that

it becomes unadapted for data outside the set, therefore the bad estimations for the validation

set.

On the other hand, model B presents a better visual aspect as the validation data are more

closely gathered around the ideal fit. Nonetheless, the evaluation reveals a rather weak model

that does not properly fit even the training set. Another important parameter to take into

account in this comparison is the number of parameters included in model A and B. They are

composed respectively of 28 and 7 structural descriptors.
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Figure 5.2 – Local Models Responses for MIE of Dusts

Table 5.4 – Comparative Evaluation Summary of Dusts Models for MIE

Evaluation MIE: Local Models for Dusts

Model A Model B

R2 0.986 0.398

R2
cv 0.365 0.502

# Parameters 28 7

Training Set 43 43

Validation Set 10 10

ARDTr 9.8% 53.6 %

ARDV al 253% 70.3 %

Ockham’s razor principle [Bishop, 2006, Witten et al., 2011] applies in these cases: in general,

the fewer parameters, the better the model, both in terms of simplicity and generalization.

However, the inclusion of more parameters usually permits to refine fitting and obtain higher

correlations; therefore the ideal number of parameters within the model should be a com-

promise between the complexity, performance and generalization of the model. A rule of

thumb also advices not to adjust more than 1 parameter per five observation entries. In this

case where about 50 observations are studied, an efficient model would describe the data

with 10 parameters. Unfortunately, no ideal model could be obtained to answer all these

requirements, nonetheless, model C hereafter could be considered as a good compromise to

describe MIE of the present subset.

Model C evaluation is presented in Figure 5.3 with the graphical representation of the model’s

reponses. Overall, it is highly similar to model A concerning the training set, where both
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Evaluation Model C

R2 0.974
R2

cv 0.543

# Parameters 27
Training Set 43
Validation Set 10
ARDTr 11.2 %
ARDV al 60.4%

Figure 5.3 – Best Local Model for MIE of Dusts

achieved good fitting results. Yet, model C overpasses model A when it comes to validation.

From the validation data, an outlier is predicted with a negative MIE. If a cut-off value were to

correct negative responses and replace them by zeros, the average deviations of the model

would be diminished by 6% points. The descriptors involved in this model are given in

Appendix A, Table A.6.

Liquids

As noted previously, about 50% of all observations fall in the region of 0 < M I E < 1mJ, and

therefore the dataset was divided in order to study local subsets separately. After taking out the

dusts and gases from the dataset, the MIE data are comprised in the range 0 mJ to 3.5 mJ with

75% exhibiting ignition energies lower than 1 mJ (with the exception of trichloroethylene (#78)

with an M I E = 295mJ, which was held out of the set due to very low sensitivity compared to

the other observations).

In order to increase the difference between the values comprised in the 0 mJ to 1 mJ region

and ease the modeling procedure, the MIE values are transformed into their corresponding

logarithm. After this operation, one observation was discarded: 2,2,3-trimethylbutane (#22)

which exhibits an M I E = 1mJ, which became 0 in logarithmic scale, and dirturbed model

evaluations due to virtually infinite errors.

Besides this pretreatment, models were built following the same procedure detailed in Section

5.2.1. In the third step of the procedure, it is important to fix the threshold p-value to determine

which parameters to add or remove from the model. Here, this value was particularly delicate

to adjust. When set to penter=0.250 no relevant models were obtained. In general, about 3 to

10 parameters were combined, however, the training set was not well described and for all of

them R2 < 0.5. If the threshold p-value was fixed to penter=0.255, the algorithm could not rank

the most relevant parameters properly, and this produced over-parametrized models with up
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Figure 5.4 – Local Model for MIE of Liquids

to 60 parameters.

The following example presented in Figure 5.4 is one of the best correlations obtained. The

correlations to the training and validation sets appear to be correct, and if one removes the

outlier from the evaluation, the relative deviations are relatively low. The removed outlier from

the evaluation of ARD is n-propyl chloride (#66) with M I E = 1.08mJ and log (M I E) = 0.0034

and therefore the relative error is very large, resembling the issue with observation #22. Despite

all efforts to limit the descriptors within the model, this one includes 35 parameters, which

makes it over-parametrized. Besides, this model is built from the logarithmic values of the MIE,

and when transformed back to recover the actual values, errors are also scaled up, resulting

once again in ARDV al > 100%. Overall, this model cannot be considered as satisfactory from

any criteria used for evaluation.

Liquids and Gases

Following the modeling of dusts and then liquids, gases were also studied separately, however,

all models developed presented either very low correlations to training and validation sets,

or extreme cases of over-fitting as shown in Figure 5.5: the models were adjusting too well

to the training set, and were then unable to generalize and apply properly to the validation

set. In this case, the correlation to the training set is so high that the measured determination

coefficient is R2 = 0.997 while the deviations on the validation set reach ARDV al = 900%.

As the 19 observations in gas phase comprised in the dataset follow a similar distribution to

those in liquid phase, they were studied in a combined subset and an example of the obtained

results is presented in Figure 5.6. Results are given for the logarithm of the MIE values. This

model could be considered better than the models presented previously for liquids only, as it

is based on a larger set and comprises fewer parameters. This potential to generalize better

is confirmed by the validation set evaluation : R2
cv is higher in this case and the deviations
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Figure 5.5 – Local Models for MIE of Gases: Overfitting Example - both axes
are logarithmic values [-]

ARDV al are lower. Overall, the predictive power of this model is arguably improved from

the previous one. Moreover, when recovering the MIE values by back transformation of the

logarithmic values, the impacted errors are less important than previously and the relative

deviations are actually decreased to ARDTr = 22% and ARDV al = 41%.
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Figure 5.6 – Local Model for MIE of Liquids and Gases
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5.2.3 Sensitivity Classification

Following the partition in various subsets according to chemicals physical state, data analysis

from the previous sections reflected the known fact that the vapors and liquids are more

sensitive than dusts, and present MIE values in the lowest range of the entire studied span. It

also highlighted that besides the differences in sensitivity, the different reactions mechanisms

and explosive behaviors could be anchored in structural differences as no global model could

be successfully built while higher results are achieved after data separation.

A more pragmatic approach would encourage performing a categorical classification of MIE

values. Indeed, if one applies a predictive model to some compounds of unknown MIE, and

the result points out a possibly sensitive or highly sensitive compound, one would not take the

risk to rely only on the predictions, and would use them to perform a guided testing phase with

expectations regarding the energy levels at which ignition is most probable. Thus, it seems

quite appropriate to investigate the possibility to categorize the data rather than predicting

exact values - with mitigate accuracies.

Accordingly, categories of sensitivity to ignition were to be delimited for the dataset.

In the Ignition Handbook of Babrauskas [Babrauskas, 2003], a British Standard classification is

reported as in Table 5.5 with the corresponding recommended precautions (note: the remark

concerning class 3 is not a recommendation, but was stated as it is in the original reference).

Table 5.5 – Ignition Sensitivity Categories of Powder Suspensions

MIE mJ Class Recommendations

1 1. Extreme sensitivity The presence of explosible mixture should be

avoided. Handling operations should minimize

possibility of powder dispersion. All possible steps

should be taken to ease the dissipation of charge

and to avoid charge operations.

10 2. High sensitivity Consider restrictions on the use of high resistivity

non-conductors when ignition energy is at or below

this level

25 3. Medium sensitivity The majority of ignition incidents occur when igni-

tion energy is at or below this level

100 4. Low sensitivity Consider earthing personnel when ignition energy

is at or below this level

500 5. Very low sensitivity Earth plant when ignition energy is at or below this

level

The dataset was then distributed within these categories: 64 compounds having M I E ≤ 1mJ

were assigned to class 1, 18 with 1 < M I E ≤ 10mJ were assigned to class 2 and 25 with
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10<M I E ≤ 25mJ were assigned to class 3. Finally, the remaining 25 with M I E > 25mJ were

assigned to class 4 and class 5 is not represented here.

A classification tree algorithm was applied in order to determine the structural descriptors

that could allow to recover this partition into the different MIE categories. Several series of

cross-validations were conducted to determine the ideal tree construction. At each iteration,

15 observations were hold out for validation, whereas the 117 others were used to train the

tree. In order to prevent the algorithm from developing complex trees with narrow categories

and numerous branches, the leaf size parameter was fixed, so that the tree construction would

always ensure that subcategories contain a minimum number of observations.

21 43

ZEN < 1.143 FPSA1 < -2.757

ZPC ≥  -7.758 SASA < 198.445

Start

yes

no

Figure 5.7 – MIE Classification Tree

An example of obtained tree is shown in Figure 5.7. This tree, comprises 4 nodes, i.e only 4

criteria to classify the data into the 4 classes.

The splits at each node are explicitly presented in Appendix A, Figure A.1. One can see that

at the first tree node, the descriptor ZPC serves to delimit the regions of classes 1 and 2 on

one hand, and classes 3 and 4 on the other. The second node at which classes 1 and 2 are

separated lies on descriptor ZEN. Finally, the tree determines class 3 and 4 depending on SASA

and FPSA1 values. The descriptors are given in Table 5.6.

All these parameters were involved in the models developed in the previous sections as for

instance Model C constructed for the dusts. For the tree construction, the constraint was on

the minimal population per leaf, which was set to be at least 8. This was determined through

numerical simulations to identify the values that realize a satisfactory compromise between

good separation and tree complexity. Indeed, this constraint prevents the tree construction

from developing numerous branches and giving rise to a complex and intricate category

system.
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Table 5.6 – Classification Tree Parameters

Splits Threshold Parameters Name

1-2 / 3-4 -7.75 ZPC Zefirov’s Partial Charges for atom #0000003(C)

1/2 -1.14 ZEN Sanderson’s atomic electronegativities for atom

#0000007(O)

3-4/4 1.98×102 SASA Solvent accessible surface for atom #0000008(C)

3/4 -2.76 FPSA1 Fractional PPSA (PPSA-1/TMSA) (Zefirov PC)

The main drawbacks from developing a simple classification are that some splits are faulty as

can be seen in Figure A.1. For instance, at the first node, three observations belonging to class

2 are already misclassified and sorted with classes 3 and 4. The second node has a high failure

ratio concerning class 2 as more data have been misclassified than not. Fortunately, they are

assigned to a more critical class and it performs much better with class 1 as only 3 data fall on

the wrong side of the separator. The third node separates well some of class 4 from class 3.

Finally, the fourth node has a lower performance as it appropriately sorted out 36 out of 48

observations that reach this point.

Globally, the classification tree presents good results as its performances are 80% correct

classification for the training set (94 out of 117), 60% for the validation set (9 out of 15) and

overall 78% correct classification.

Some improvements would be possible with higher branching degree, as the inclusion of

more parameters could allow to better refine the flaws noted above. Besides, it could be

beneficial to weight the error function, in order to favor "conservative" errors. Indeed, it would

be preferable to have a mis-classification into a higher sensitivity class than the opposite. All

attempts to do so did not exhibit enhanced classification performances than the tree discussed

here.

As mentioned earlier, it could be sufficient to bring the simulation to this point. Nevertheless,

in-class modeling was conducted in order to assess if the classification brings an improvement

to the models. For this purpose, stepwise regressions were conducted on the populations of

each class, and the results are gathered in Table 5.7. The models parameters are gathered in

Appendix A, Table A.7.

Considering the correlation coefficients obtained for the models built after classification, the

results do not show significant improvement. On the contrary, it would seem that classes 1

and 3 present lower correlations than the previously obtained ones. Moreover, the correlations

of the models’ response to validation sets for all classes are rather low. Nonetheless, the

major improvements lie in the number of parameters required that are kept to between 5

and 10 parameters, and the precision of the fittings and the predictions that are significantly

enhanced. While the previous models presented deviations ranging between 40 and 60% for

the training and higher than 100% for the validation set, here the models present average
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ARDTr = 15% and ARDV al = 34%.

Class 1 was studied after logarithmic transformation as it gathers the lowest MIE values

corresponding to the most sensitive observations. When recalculating the MIE values from

their simulated logarithmic correspondents, the deviations are modified, simply due to the fact

that the MIE values are in absolute smaller than their logarithms, hence the smaller relative

errors for training set and larger for validation set, respectively.

Table 5.7 – MIE Post-Classification Models

Class 1 Class 2 Class 3 Class 4

LOG MIE MIE MIE MIE

R2 0.669 0.589 0.998 0.734 0.938

R2
cv 0.032 0.008 0.037 0.033 0.468

# Parameters 10 5 5 8

Training Set 59 13 20 20

Validation Set 5 5 5 5

ARDTr 40 29 8 9 10

ARDV al 22 42 37 27 29

To illustrate the model application, simulation of the MIE value of cyclohexanone peroxide

(#98) with the model of Class 3 is detailed here. Table 5.8 represents the structure of this

compound and the descriptors included in the corresponding model.

If the descriptors values are replaced in the MIE equation for Class 3, the MIE of cyclohexanone

peroxide may be computed as:

M I E = 42.5+27.1 ·HDC A−2+0.472 ·C PS A+2.17E −2 ·S AS AN −0.987 ·2 IC −883 · IC

(5.5)

and the result obtained is M I E(#98) = 22.6mJ, which represents an accurate estimation of the

actual value M I E(#98) = 21mJ, with a relative deviation of RD = 8%. This result shows a great

enhancement compared to the dusts model, which predicts M I E(#98) = 30.6mJ.
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Table 5.8 – Cyclohexanone Peroxide Structure

Structure Value Descriptors Name

O

O

OH

O OH

3.50×10−2 HDC A−2 HA dependent HDCA-2 (Zefirov PC)

9.14×10−3 IC Moments of inertia C

−8.77×101 S AS AN Solvent accessible surface for atom #0000001(N)

1.46×101 2IC Average Structural Information content (order

2)

7.46 C PS A Charge density on solvent accessible surface (Ze-

firov’s PC) for atom #0000012(H)

5.3 Model Interpretation

The physical interpretation of models involving approximately 30 structural descriptors is

almost impossible and would not bring coherent sense. Nonetheless, it is possible to extract

some elements of discussion. For instance with model C developed with dusts MIE data, it

is possible to determine which of the 27 parameters of the model bring the most significant

contribution to the overall equation either by determining those with the highest correlations

to the responses or those with the highest weights in the model [Guha, 2008, Polishchuk et al.,

2013]. Another manner to point out the highest contributors to the models is to permute their

values and see how this influences the predictive power [Polishchuk et al., 2013]. This is also a

manner to check for chance correlations. Indeed, if randomized data give similar correlations

than the initial model, it simply invalidates it.

These three manipulations were performed. It was possible to determine that among the

27 descriptors in model C, only 2 do not bring a significant contribution to the model: after

permutation of the values of descriptors #23 (DPSA3) and #27 (Bond orders for N−O, see

Table A.6, Appendix A), it appears that the model overall predictive power (for both training

and validation data), initially R2 = 0.885, was only slightly affected by this, as it decreased to

R2 = 0.764 and R2 = 0.854 respectively. While for all other parameters, permutations brought

the correlation coefficient to 0.001 ≤ R2 ≤ 0.429. The highest loss of information can be directly

identified with the highest correlations drops, and this lead to marking highest contributing

descriptors. Overall, the three methods revealed some descriptors with higher importance:

• #3: 1B IC - Bonding Information content (order 1)

• #7: LOG Z E NC - Natural logarithm of Sanderson’s atomic electronegativities for C-atom

• #10: Z PCC - Zefirov’s Partial Charges for C- atom

• #14: ET SB ,C - Electrotopological state of atom for C- atom

• #17, #19 and #22: S AS Ax - Solvent accessible surface for several atoms and
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• #18, #20: C PS Ax Charge density on solvent accessible surface (Zefirov’s PC) for several

atoms

The electrotopological state of a given atom "encodes the intrinsic electronic state of the

atom as perturbed by the electronic influence of all other atoms in the molecule within the

context of the topological character of the molecule" [Hall and Kier, 1995]. It is thus a function

of the electronic, topological and valence state of the atoms and is highly dependent of its

electronegativity. The partial charges are also dependent on the electronegativities which

will determine the charge distribution among the structure and the surface area. The solvent

accessible surface areas are derived from the van der Waals areas of atoms and geometrical

configuration to take into account the parts that are "buried" inside the molecule’s saddles

or angles. Finally, the bonding information content is a topological index that captures the

molecule branching degree. All together, these descriptors are mostly based on the atoms

electronegativties on one hand, and the molecule overall geometry on the other hand. The

electronegativty-related descriptors are fairly correlated to each other and one could imagine

that their contributions to the model are redundant. However, when one of them is missing

the predictive ability of the model is significantly affected. Their contributions are somehow

synergetic and inter-correlated; thus they make further interpretations much more complex.

It is important to remark once again that the node-descriptors in the classification tree are the

same that we encountered in model C, namely ZEN (Sanderson’s atomic electronegativity for

O-atom), two derivations of ZPC (Zefirov’s Partial Charges for C-atom and Fractional Positively

charged surface area) and Solvent accessible surface for C-atom. This also confirms that these

categories of information are not chance correlations, however they are insufficient to entirely

describe the behavior towards ignition energies, and only permit classification. A selection of

a handful of parameter fail to offer more accurate estimations.

5.4 Conclusion

For this section, MIE data of more than 130 molecules were gathered from several reference

sources and treated with Codessa Pro software to derive the necessary numerical descriptors

for QSPR modeling. In a first stage, all available data were studied as whole set without

discrimination based on neither of physical state nor the MIE order of magnitude. This

allowed to develop a global model, general for the entire ensemble. Unfortunately, this model,

comprising 16 parameters, could only estimate the tendencies within the set as the general

trend is graphically recovered (see Figure 5.1). The response values computed, though, were

very weakly representative of the target values as the average deviation exceeded 1000%. This

was accounted on the unbalanced data distribution among the evaluated range, as 50% of the

observations are concentrated on 1% of the value span.

Following this, the second step consisted in the development of three local models for three

subsets corresponding to the data partition in function of the physical state. Among these
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three correlations, the only one that was considered satisfactory is the model C built for

the observations in solid state. This model relies on 27 parameters, which makes it rather

complex, nonetheless it fits well to the training data and gives strong indications for most of

the validation data.

As to compensate for the failed modeling of the gases and vapors sets, a fourth local set

was developed for a combination of these two sets. This could be justified not only by the

fact that they have similar behavior towards ignition [Eckhoff, 2003] but also by their similar

distribution in the studied dataset. This model exhibited much better performance than these

of gases and vapors separately, and even though it was built using the logarithmic transform

of the MIE values, it did not fail to recover the values after the reverse treatment. The average

deviations were about 20 to 40% which is still fairly large for predictions of a sensitive property.

Finally, the classification tree was developed to answer a more realistic approach and increase

the usage potential. As we consider here a sensitive property, for which experimental measure-

ments are very tedious and requires tens of trials, it could be more helpful to use predictive

models to correctly assign a molecule of unknown MIE to a category rather than give a poorly

reliable estimate value. The developed tree was reasonably simple and efficient: four nodes

to define four categories of sensitivity, with overall 78% correct assignment. Moreover, the

classification according to MIE values also improved considerably the modeling. Indeed,

the correlations developed within classes were less complex and showed improved accuracy

relatively to all previous ones.

The mitigate results obtained here probably reached their limitations. The initial hypothesis

that MIE could be correlated to molecular structure only without consideration of state, con-

centration, or particle size regarding dusts, cannot be confirmed here. It is probably erroneous

and should be rejected, or subjected to a another analysis with a more comprehensive dataset.

It could have been interesting to investigate modeling of MIE values as function of the structure

and particle size for instance, in a comparable manner to the models proposed by Reyes et al.

[2011] for the explosion constant Kst and maximum explosion overpressure Pmax . This would

also be in closer agreement with observations of Eckhoff [2003] or Bartknecht [1989] that the

particle size is a highly influencing factor.

Unfortunately, the collected dataset does not include such supplementary information that

could have been taken into account to develop structure-property-property models: indeed,

the references reported the MIE data with mentions of the concentration being the most

readily ignitable concentration or the dust particle size being comprised within a given range;

however these incomplete data could not be used for quantitative models.

This project has two major positive outcomes:

• First of all the classification tree is an interesting tool: it cannot be translated into a rule

of thumb as the descriptors require computation, yet, with the descriptors available it is
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a strong indication regarding a compound sensitivity to ignition. The classification itself

represents a primary determination of the energy level at which to start the experimental

procedure.

• The modeling procedure developed here, combining a classification model and regres-

sion models, allows to screen the data without prior knowledge nor supplementary data

such as the concentration or particle size. Moreover, it allows developing local models

more accurately than global models while it broadly applies to all data available here.
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6 DSC Models

In this chapter, a literature review will point at the various GCM and QSPR models that were

developed specifically for DSC derived data. This review allows identifying a suitable starting

point in the study of Nitro compounds, as several studies were successful in predicting some

of their properties. Nonetheless, with a broader dataset available, the investigated range is

enlarged. Here, all developed models for DSC thermograms are presented and discussed.

6.1 Literature Review

As shown in Chapter 1, molecular structure based models focused on hazardous characteristics

of chemicals since their early development stages. Toxicity but also thermal properties were

among the first applications of GCM and QSPR.

6.1.1 Group Contribution Models of Thermal Properties

Following the development of Group Contribution Methods by Lydersen [1955] and Ben-

son and Buss [1958], several researches proposed correlations between various hazardous

characteristics of compounds and their chemical structure.

In 1968, Benson and co-workers broadened the group contribution framework for the estima-

tion of several thermodynamic properties, and in 1974 the ASTM Chemical Thermodynamic

and Energy Evaluation Program (referred to as CHETAH) was released [Seaton et al., 1974].

The program’s calculations are based on the Benson groups contributions and give thermo-

chemical data from chemical structure only, as long as the molecule can be described by

Benson’s system. Among the criteria that can be estimated, six serve to assess the thermal

hazard related to the substance.

An updated version of the program was reviewed by Shanley and Melhem [1995]. The authors

noted several deficiencies in the software hazard evaluation method and faulty results. The

limitation to molecules that can be described in the Benson group-additivity system, the
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inability to distinguish isomers and the reliance on cut-off values were noted as the major

drawbacks of the method. To improve the CHETAH software, they developed a procedure to

identify the most stable possible decomposition products and calculate the corresponding

reaction enthalpy [Melhem and Shanley, 1996].

Murphy et al. [2003] completed this procedure with a methodology that allows calculating the

maximum temperature reached during rapid decomposition. For this purpose, they used the

CHETAH software to calculate the standard heat of formation, the method of Melhem and

Shanley [1996] to identify the most stable decomposition products to find the corresponding

reaction heat and finally estimations of the heat capacities as function of temperature to

calculate the adiabatic temperature rise (noted CART).

Considering the time and computational expenses of this procedure, Hada and Harrison [2007]

proposed to distinguish between CART and MART, defined as the maximum adiabatic rise

of temperature. To determine MART, they applied a highly similar procedure, while sparing

significant computing time as they bypass the equilibrium-based determination of the most

stable products and select the reaction route that maximizes the temperature rise. Despite the

theoretical flaws, MART calculations are conservative from a safety perspective as they most

probably over-estimate the actual ΔTad of decomposition. This tends to miss classification of

non-hazardous compound to hazardous, which represents an error on the safe side.

In 1991, two studies analyzed thermal stability of compounds with similar approaches. A

research from the Japanese Research Institute of Industrial Safety presented an analysis of

the DSC thermograms of 820 chemicals [Ando et al., 1991]. The compounds are classed

according to their characteristic functional groups and for each category, mean values for the

onset temperature and the reaction enthalpy and a percentage of exothermic samples in the

considered category are presented.

However, compounds bearing more than two functional groups were listed in several cate-

gories, thus blurring the statistics as they have been taken into account repeatedly. Moreover,

non-exothermic compounds were also maintained within classes, diminishing significantly

in some cases the mean ΔHr values. Therefore, using this classification in order to estimate

the characteristics of a compound’s decomposition might results in erroneous evaluations.

Besides, presenting a standard deviation for the mean values calculated and assigned to each

category would have reflected the dispersion within class.

The same year, Grewer presented a study conducted with a similar approach to this of Ando

et al. [Grewer, 1991] . The author analyzes the decomposition energies relatively to the chemi-

cal structure of a data collection found in the literature, experimentally measured on DSC and

ARC systems, or computed from known formation enthalpies (using CHETAH when possible).

He also computes the average values for each category. However, the results for the onset

temperatures are noted to vary greatly with the different substituents a molecule may bear

and their position (especially with aromatic compounds) and therefore, the average onset tem-

perature values cannot be applied for estimations. For instance, the average decomposition
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energy of an organic peroxide is noted to be about ΔHr= −300±50kJmol−1, or the opening of

a double bond gives in average ΔHr= −80±19kJmol−1. With nitro compounds, the author

noted the dependance of the energy generation with the number of nitro groups, hence, he

suggests that the decomposition energies are ΔHr= −400 kJmol−1 per NO2 group.

Unfortunately these two studies cannot be compared due to the use of different units: while

Grewer reports his values in [kJmol−1], Ando et al. uses [calg−1].

Grewer also investigated TD24, the temperature at which the adiabatic induction time to

maximum rate is 24 hours and suggest it is correlated to several functional groups [Grewer et al.,

1999]. These correlations are drawn based on nitro compounds with secondary substituents.

Nitro compounds are frequently used in the chemical industry and are known to decompose

with a high energy release; thus they present a serious risk in the industry [Grewer et al., 1999].

Therefore, the amount of published data regarding their thermal stability is larger than for

other chemical families, which in turn, also attracts further interest, especially applications of

predictive modeling which is rather data consuming.

For instance a study on nitro compounds incompatibility published DSC data of various

chemicals including a set of 24 nitro compounds [Duh et al., 1997]. The authors qualitatively

discussed the effect of several substituents on the stability of the compounds, showed an effect

of the ortho- meta- or para- position of multiple NO2 and of the number of NO2.

Their data were later employed for the development of predictive models by other research

groups. For instance, the decomposition enthalpies of 19 nitroaromatic compounds were

correlated to nNO2 , the number of NO2 in the molecule, with a mono-parametric relationship

(see Equation 6.1), and the average relative deviation of ARD = 5% shows good agreement

between measured and predicted data [Saraf et al., 2003].

ΔHr = −75 ·nNO2 in kcalmol−1 (6.1)

The activation energies of thermal decompositions of nitramines [Keshavarz, 2009a], and

nitroparaffins [Keshavarz, 2009b], and the onset temperature of decompositions of polyni-

troaromatic [Keshavarz et al., 2009b] were correlated to the molecular structures through

relationships comparable to GCM. The used parameters were mainly the elemental composi-

tion of the compounds (atoms counts), however some other parameters were included such

as the oxygen balance or a binary parameter that takes into account the presence or not of

carbons atoms bridging two aromatic groups. Therefore, these models do not correspond

exactly to GCM nor QSPR as seen in Chapter 1, however the structural descriptors do not

require particular computing and are developed for simple modeling purposes.
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The oxygen balance is defined as follows:

OB =
−1600(2nC +nH )

2−nO
· 1

MW
(6.2)

where nC is the number of carbon atoms, nH the number of H atoms, nO the number of oxygen

atoms and MW the molecular weight [Lothrop and Handrick, 1948].

More recently, the DSC data of 198 ionic liquids were modeled by GCM [Lazzús, 2012]. The

contributing groups that allow to represent all molecules of the dataset were identified as

11 cation substructures, 15 substituents to these substructures, and 31 anion substructures.

Their contributions to the thermal decomposition onset temperature were assessed from a

training set of 120 observations and were tested on the remaining 78 observations. The author

reports satisfactory results with average relative deviations of ARDTr= 4.34 % and ARDVal=

4.18 % for the training and validation sets respectively.

6.1.2 Quantitative Structure-Property Relationships

In the same study mentioned above, Saraf et al. [2003] propose a GCM model for decomposi-

tion enthalpies of 19 nitroaromatics, but also a QSPR model of the onset temperature of these

reactions [Saraf et al., 2003]. Their model depends on 3 parameters only, namely the highest

positive charge, HPC, the electrons delocalizability index, Sr, and the dipole moment, μ. The

obtained simulations of To show significant agreement with experimental data and present

an ARD= 6 %.

Despite the small deviations between experimental and predicted data, the correlation coeffi-

cient was rather low and no validation tests were performed, as noted by Fayet et al. [2010]

Therefore, Fayet et al. reproduced the models of Saraf et al. by analyzing the same set of nitro

compounds (experimental data from [Duh et al., 1997]), and propose different models, that

are arguably more robust. The major improvements are in the use of a validation set to test

the models and higher correlation coefficients (R2 = 0.91 and R2
cv = 0.84) .

They apply a procedure to develop several predictive models from the QSPR method for

decomposition enthalpies of nitro compounds [Fayet et al., 2009, 2010, 2011], electric spark

sensitivity [Fayet et al., 2010] (discussed in Chapter 5) and for impact sensitivity [Fayet et al.,

2012].

The descriptors used are generated with Codessa software [Petrukhin et al., 2001] or from

the Density Functional Theory (DFT) method. They select the Best Multi-Linear Model

(BMLR) according to the correlation coefficients yielded by the smallest number of parameters

following a so-called "breaking point rule": the correlation coefficient is analyzed in function

of the increasing number of parameters for nested models and if the R2 increase drops,

the parameter addition is stopped. Moreover, they test several random training-validation

divisions and select the division that performs the best correlations. This allows to avoid the
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dependance of the performance evaluation on the training or validation sets, to ensure that if

there are outliers in the validation sets, they would not affect the models’ performances for

instance.

For a study conducted on 77 nitro compounds (experimental data from [Ando et al., 1991]),

they obtained lower performances than for their previous study on 22 nitro-aromatic com-

pounds ( R2 = 0.77, and R2
cv = 0.70) and therefore suggest a decision tree to categorize data

into two classes with ΔHr > 500kJmol−1 or ΔHr ≤ 500kJmol−1.

Organic peroxides constitute another chemical family that has been often studied due to

relatively high thermal reactivity [Ben Talouba et al., 2011, Li and Koseki, 2005, Melhem and

Shanley, 1996].

Lu and coworkers looked into prediction of thermal stability of organic peroxides, charac-

terized by the onset temperature of decomposition and the heat release [Lu et al., 2011]. To

build their models they used two statistical methods: Multi-Linear Regression (MLR) and

Partial Least Squares (PLS). It was observed that the MLR method proposes models with fewer

parameters than PLS, but the cross-validation tests reveal poor predictive power (low or even

negative correlation coefficients).

Therefore, the PLS method is favored, and in order to limit the number of parameters, the

authors suggest performing a sensitivity analysis which would highlight the parameters that

have the greatest influence. Then, a ’breaking point rule’ similar to the one proposed by Fayet

et al. [2010] could be applied to suppress some parameters and favor a model presenting a

good compromise between correlative and predictive power and the number of parameters.

In 2014, another study proposes predictive models for the onset temperature of decomposi-

tions reactions of both nitro compounds and organic peroxides [Zhang et al., 2014]. The data

sets they use have both been investigated in the past (data from [Ando et al., 1991, Lu et al.,

2011]) but they apply the genetic algorithm (GA) to identify the best descriptors combinations

to build the predictive models.

The genetic algorithm among other non-linear techniques, has been more and more employed

in recent years for development of predictive models of safety related data [Gharagheizi, 2009,

Mallakpour et al., 2014, Pan et al., 2009, 2010, 2011] as well as the Artificial Neural Network

algorithm (ANN) [Jun et al., 2006, Lazzús, 2011, Nefati et al., 1996]. As they propose models of

impact sensitivities, AIT and other explosive characteristics closer to MIE than to DSC data,

most of these models were discussed in Chapter 5.

A similar approach has also been applied to study the decomposition temperature of chiral

polymers [Mallakpour et al., 2014]. The genetic algorithm is applied to screen among the

available descriptors, in order to select the most relevant ones for further non-linear modeling

with Support vector machine (SVM). With training and validation sets of 38 and 12 observations

respectively, they select five QSPR descriptors to develop the SVM model. They obtain high
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correlations between experimental and predicted data as R2 = 0.995 and R2
cv = 0.992, however

the structure of the model is rather complex and computationally expensive.

Klos et al. developed MLR and ANN models for thermal stabilities of 66 derivatives of phenyl-

carbamic acid gathered from DSC experiments. Their work exhibits the singularity of also

considering the temperature position of the peak maximum [Klos et al., 2008]. However, the

models show low performances, even with the non-linear modeling.

Table 6.1 summarizes the predictive models built for DSC data with both GCM and QSPR

methods.

Overall, this discussion allowed highlighting the different issues encountered by different

research groups during their work.

Mainly, the data availability seems to be a recurring limitation. The experimental data of the

thermal property to study has to be uniform in order to allow proper correlations. This imposes

comparable experimental conditions and should preferably come from a single reference or

experimental acquisition. This seems to be the main reason that some published data sets

serve for several studies.

Hence, the data sets are usually of restricted sizes (many studies from Table 6.1 considered

sets comprising about 20 observations) and usually focus on a specific chemical family so that

the compounds have similar features (i.e. nitro compounds mostly, in Table 6.1 only three

studies focus on other categories).

The calculated molecular descriptors must be available and relevant for each compound of

the considered set. Then, when developing predictive models, it is important to keep in mind

how these models could be applied later on. Thus, if a model is developed based on a narrow

set of data or if the used descriptors are only available for a limited kind of chemicals, then

it cannot be applied to chemicals external to this set, or only with a low reliability. Thus, the

group contribution method is nonetheless interesting, but for future purposes, the QSPR

methodology is preferable as it avoids limiting the method to the considered groups only and

does not rely either on the availability of other physico-chemical properties.

Another important element that appears from the comparison in Table 6.1, is that, for larger

sets, the fitting and predictive performances are much lower than studies performed on

narrower sets. Indeed, chemicals from similar subgroups will have comparable behavior and

thus can fit into a model, but this model may be unable to apply to several classes. This has

been noted when discussing the decision tree built to distinguish high and low decompositions

energies [Fayet et al., 2011].

When facing a similar issue while developing predictive models for impact sensitivities of 161

nitro compounds [Fayet et al., 2012], the authors propose four distinct models : three local

models for nitroaromatic, nitroaliphatic and nitramines and a global model valid for these

three sub-groups.
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Chapter 6. DSC Models

Finally, from the DSC thermograms only the onset temperature To and the decomposition

enthalpy ΔHr were modeled by the publications discussed above.

6.2 Experimental Error and Confidence Interval

As discussed in Chapter 2, Section 2.5.3, the reliability of the experimental data should be

assessed prior to modeling. For this purpose, a repeatability and reproducibility study was

conducted on a set of 20 chemicals. These compounds were analyzed by Heat-Flux DSC and

Power-compensation DSC following the procedure detailed in Chapter 4, Section 4.3.1.

Usually, the repeatability is assessed by analyzing one reference sample [Joint Committee

for Guides in Metrology (JCGM), 2008]. Metals used for calibrations could be used as their

thermal characteristics are known. However, in order to analyze the reliability of the DSC

measurements over a large temperature range, with exothermic reactions, it has been chosen

to analyze the results of the tests replicates of all the 20 compounds tested.

It is important to note that the data analysis was conducted on key characteristics of treated

DSC thermograms, and not on raw data. The baseline corrections, curve integration, Fraser-

Suzuki fittings and property extraction could introduce additional errors. However these

steps are necessary and are systematically conducted for all thermogram analysis, therefore

they could be considered as part of the measurement. Moreover, the repeatability conditions

were also respected as the thermograms’ treatments were also conducted by a single operator,

following a unique protocol over a short period of time.

From the 20 compounds tested, some underwent several thermal events and thus, exhibited

two or three peaks. For each thermogram, the best defined peak was selected: if a thermogram

exhibited several peaks, the one whose characteristics varied less across the five replicates was

held, while the others were disregarded. This selection allows to estimate the repeatability

of the measurements under the best conditions, and to avoid taking into account errors that

could have been introduced by thermograms manipulations, such as the baseline treatment.

These issues were mostly encountered when the thermograms exhibited overlapping peaks: in

those situations, the secondary peaks were often influenced by the baseline treatment and the

occurrence of the initial thermal events, and therefore were not selected for the repeatability

assessment. However, in the context of modeling, the selection of the main peak to be studied

was not based on these criteria, but on the relevance of the peak to the thermal behavior of

the compound (see Section 4.3.3).

A single-factor analysis of variance (ANOVA) determined that the samples different are signifi-

cant and do not allow data to be analyzed as a single group. T-tests could indeed prove that

some samples had relatively close means and could be assimilated, but the overall set is rather

disparate. Moreover F-tests also showed that the replicates of different samples had different

variances.
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Nonetheless, due to these disparities, it is impossible to assess among the 20 compounds

which one is the most representative of the reliability of the measurements. Therefore, the

relative standard deviation of the mean for all tested groups were computed and compared. It

appeared that besides few exceptions, the relative deviations were rather similar and could al-

low for the calculations of average relative deviations. So, after removing the five samples with

the highest deviations (mainly thermograms with rather small peaks who suffered large devia-

tions due to baseline treatments), the average relative deviations and repeatability coefficients

are computed and the results are summarized in Table 6.2.

In Table 6.2, the symbol of the peak width σ has been replaced by FW for two reasons: the

first is that the peak width is actually measured through the Full Width at Half-Maximum

FWHM which is correlated to σ through the relation: FW H M = 2
�

2ln2 ·σ; the second is to

avoid confusion with σx̄ , the standard deviation of the mean of the replicated measurements

and σx̄,r .

Table 6.2 – Repeatability Coefficients

σx̄ σx̄,r RC95% RC99%

Onset Temperature To 0.89 ◦C 0.5% 1.0% 1.5%

Reaction Enthalpy ΔHr 3870 Jmol−1 3.8 % 7.6 % 11.4%

Amplitude Φmax 8.60 Wmol−1 2.2 % 4.4 % 6.7%

Max Position Tmax 0.47 ◦C 0.2 % 0.5% 0.7%

Full Width Half Max FW 0.53 ◦C 2.7 % 5.4 % 8.1 %

Asymmetry a 0.05 17.6% 35.1 % 52.7 %

In the literature, the typical error margins reported for DSC measurements are in the range

of ±5 % to ±10 % for the heat of reaction [Ando et al., 1991], and about ±5 % for the onset

temperature [Saraf et al., 2003]. In the light of our results, it seems that the accuracy of DSC

measurements is much better than the expectations, especially regarding the temperature

determination. Indeed, the onset temperature To, and the maximum of the peak position

Tmax, are measured with an accuracy of ±5 K, and 95 % of replicates would fall within a margin

of less than ±1 %.

Regarding, the partial area, the influence of the baseline and the measured curve result in

larger errors and the 95 % repeatability coefficient is ±7.6 %. The ±10 % margin found in the

literature might correspond to the 99 % repeatability coefficient.

The asymmetry is represented by a dimensionless factor that takes small values mostly be-

tween ±1.2 in the studied set. Therefore, the relative deviations are much larger than all the

other characteristics.

As the DSC curves are fitted by Fraser-Suzuki models, the inference of the error on each

individual parameter included in the Fraser-Suzuki model has been assessed in order to
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Chapter 6. DSC Models

estimate the overall impact on the DSC curve. For this purpose, a tolerance zone is constructed

around the DSC curves. This tolerance zone is based on the estimation of the overall deviation

of the curve σΦ depending on the deviations for each of the parameters σx̄i .

The results have been computed following the procedure detailed in Chapter 2, Section 2.5.3,

and are detailed in Appendix B.1. Their implication is better explained when graphically

represented, as shown in Figure 6.1.

For the tolerance zone construction, the relative standard deviations of the means of the

different parameters σx̄,r have been rounded up to the higher integer to be more inclusive of

possible deviations. As the deviations for the temperature are small and a good accuracy is

expected, the tolerance zone is computed so that ±2 % are accepted. Similarly, the error mar-

gins of Φmax and FW were also increased to accept ±6 %. On the other hand, the deviations

of the asymmetric factor used to model the tolerance zone are lower than the actual values ,

±20 % instead of ±35 %, but the impact on the tolerance zone is limited. The Tolerance Zone

coefficients (abbreviated TZC) are shown in Table 6.3.
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Figure 6.1 – Tolerance Zone

Table 6.3 – Tolerance Zone Coefficients

σx̄,r σx̄,T Z TZC

Amplitude Φmax 2.2% 3% 6%

Max Position Tmax 0.2% 1% 2 %

Full Width Half Max FW 2.7% 3% 6 %

Asymmetry a 17.6% 10% 20 %
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6.3 Local and Global Models

6.3.1 Objectives

Considering the models found in the literature and the successful results obtained by other

research groups regarding the modeling of thermal stability of nitro compounds, it was decided

to perform a primary study on nitro compounds as well, in order to develop our own procedure

and to challenge the current state of the art in two aspects.

First of all, from all the literature review it appears that only the onset temperature To and

the reactions enthalpy ΔHr have been modeled [Fayet et al., 2010, Keshavarz et al., 2009a, Lu

et al., 2011, Saraf et al., 2003]. Hence, our first goal is to assess whether the prediction of an

entire DSC curve could indeed be performed.

Moreover, a limited number of studies propose models for large sets [Lazzús, 2012] or sets that

do not focus on a particular chemical structure. The DSC data available enable us to expand

the modeling in three steps:

• among the 400 compounds that constitute the database, several chemical families other

than the Nitro group may be investigated separately;

• develop a structurally heterogeneous set, that does not focus on a specific structure in

order to verify generalization;

• broaden the generalization even further with the development of "global models" by

investigating the overall dataset available.

The distinction between "Global" and "Local" sets comes mainly from the fact that chemical

families present intrinsic structural similarities and share common features, hence, they

represent a "localized" region of the feature space.

In order to meet these objectives, four studies are conducted separately as summarized by

Table 6.4. The following section will present and discuss the obtained results. In the discussion,

the models are referred to relatively to the dataset that served for the modeling (for instance

NO2 models are the DSC models developed with a set of nitro compounds only, whereas

"Global" models are the models developed with the overall dataset).

6.3.2 Nitro Compounds Study

The best multi-linear model built for each of the DSC key properties was selected based on

the performance evaluation. The best models evaluations are summarized in Table 6.5, and

the graphical representations of these models are shown in Figure 6.2. In Appendix B.2, Table

B.1 shows all the parameters selected for the models and their assigned coefficients.
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6.3. Local and Global Models

Table 6.4 – Model Investigation Plan

Initial Set Extension

Local Models 1. NO2 Set 3. Various Chemical Families
Section 6.3.2 Section 6.3.4

Global Models 2. Miscellaneous Set 4. Overall Dataset
Section 6.3.3 Section 6.3.5

All these models very accurately describe the training set, as high determination coefficients

were obtained for the training set. The highest deviations are observed for the asymmetry, but

as already discussed previously, the asymmetry takes small values, and the relative deviations

take large proportions. Indeed the highest relative deviations observed for the training set is

recorded for the prediction of a for 2,4-dinitrotoluene: the observed value is a = −0.06 while

the simulation gives a = −0.15 which results in a relative deviation of RD = 145%. The results

are detailed in Appendix B.2, Table B.2.

Regarding the validation, the models of peak’s amplitude and asymmetry record the most

important performance drops as they show lower correlation coefficients on the external

validation set and higher average relative deviations for the validation. To ensure these models

do not suffer from over-fitting, parameters were removed but this only decreased the goodness-

of-fit, without improving the validation correlations.

The peak max position and the reaction enthalpy were very successfully modeled. The training

set observations are well described and the models offer predictions of the external validation

set with deviations lower than ARDV al < 10%. Regarding the peak width model, the deviations

for both the training and validation sets are larger than these of To or ΔHr, nonetheless the

tendencies are well captured and the external set correlation coefficient is R2
ext = 0.985.

Despite some imprecision, the models were overall satisfactory, and the DSC curve recon-

struction could be performed after the modeling of each DSC key property. Few examples are

presented in Figure 6.3. Most of the DSC curves of the observations from the training set are

very well represented as shown with the two examples of Figure 6.3 (a) and (b). Regarding the

validation set, the predictions are not as accurate especially due to the important deviations

in the Φmax model. For instance, the predicted DSC curve for 1,3-dinitrobenzene (Figure 6.3

(c)) is close to the experimentally measured peak in terms of position, width and asymmetry,

however the peak’s amplitude is under-estimated and the prediction is below the tolerance

zone.
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Figure 6.2 – Graphical Representations of the Nitro Compounds Models Re-
sponses
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Table 6.5 – Nitro Models Evaluation Summary

Evaluation Partial Area Amplitude Max Position Full Width Asymmetry
ΔHr Φmax Tmax FW a

R2
Tr 0.994 0.994 0.988 0.981 0.942

R2
cv 0.980 0.983 0.967 0.950 0.784

R2
ext 0.950 0.405 0.881 0.985 0.341

R2 0.977 0.867 0.964 0.940 0.475
ARDTr [%] 1.7 7.0 0.7 9.3 39.7
ARDV al [%] 7.9 89.2 3.2 32.2 340.6
Parameters 5 6 5 5 5

Dataset Size 19
Training 16
Validation 3
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(a) 4-nitrobenzoic acid
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(b) 4-nitrophenol
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(c) 1,3-dinitrobenzene
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(d) 3-nitroaniline

Figure 6.3 – Examples of DSC Reconstructions from Nitro Models

The DSC prediction for 3-nitroaniline (Figure 6.3 (d)) shows the most erroneous prediction of
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Table 6.6 – Miscellaneous Set Models Evaluation Summary

Evaluation Partial Area Amplitude Max Position Full Width Asymmetry
ΔHr Φmax Tmax FW a

R2
Tr 0.976 0.973 0.925 0.978 0.924

R2
cv 0.956 0.956 0.860 0.965 0.841

R2
ext 0.986 0.953 0.984 0.887 0.290

R2 0.932 0.866 0.926 0.920 0.789
ARDTr [%] 71.7 84.4 6.4 32.2 41.7
ARDV al [%] 81.3 51.8 9.2 68.3 89.3
Parameters 5 6 5 5 5

Dataset Size 25
Training 22
Validation 3

this set, as the amplitude is predicted to be negative while all the studied set only included

exothermic reactions. 3-nitroaniline exhibits indeed one of the lowest energy release and

smallest peak amplitude, and the model over-estimates this tendency and results in an ampli-

tude prediction out of the studied range.

This first step shows that the DSC reconstruction method is successful and that the first goal is

reached. Hence, the investigation may proceed on the application expansion to various sets.

6.3.3 First Generalization

For the generalization study, the 20 DSC records used for the repeatability study were employed.

However, if the dataset were constituted from the merger of 19 nitro compounds and 20

miscellaneous chemicals, it would not reflect a chemical diversity as the NO2 specificities

would be over represented. Therefore, in order to obtain a balanced dataset, only five nitro

compounds were selected for the fused structurally diverse set that finally comprises 25

observations. This set and its corresponding models will be referred to as "miscellaneous set".

The obtained models are detailed in Appendix B.2, Tables B.3 and B.4, and their evaluation is

summarized in Table 6.6.

In this case, the correlation coefficients are very high, for both the training and validation sets.

On the other hand, the average relative deviations are globally higher than the NO2 models,

for both sets as well.

The DSC curves are recovered from the property estimations and predictions and examples

are shown in Figure 6.5. As the estimations and observations in the training set are rather well

correlated, as seen previously, some DSC simulations fit well or very close to the Tolerance

Zone as shown in Figure 6.5 (a) and (b).
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Figure 6.4 – Graphical Representations of the Models for the Miscellaneous
Set

However, the larger errors also reflect on the DSC predictions. In Figure 6.5 (c) and (d) for

instance, the Φmax model exhibits important inaccuracies, and as a result, the predictions

either overestimate or underestimate the actual amplitude. Moreover, the Tmax and FW

models are less accurate than the models built with a single chemical family, which affects the
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positions and shapes of these peaks.

Finally, as for the NO2 models, two of the smallest positive amplitude were predicted with

negative values (#13 heptene and #17 NN-dimethylformamide). However, this can here be

explained by the presence in this training set of a compound presenting an endothermic peak

(#20 triethylphosphate) and therefore, negative values are not outside of the observed range

for this set.

As five nitro compounds were included in both sets studied here, it is possible to compare

the results obtained from local models (developed with a set of nitro compounds only) with

results of a "global" model (developed with a diverse set, i.e. the miscellaneous set).
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(a) di-t-butyl peroxide
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(b) isopentyl nitrite

Temperature [°C]
0 50 100 150 200 250 300 350 400 450

H
ea

t F
lo

w
 [W

/g
]

-0.5

0

0.5

1

1.5

2

2.5
DSC Graph for # 6- Validation

Obs
Pred
Tolerance Zone

(c) di-(4-Cl-benzyl)azodicarboxylate
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(d) t-butyl peroxyacetate

Figure 6.5 – Examples of DSC Reconstructions from Miscellaneous Set Mod-
els

Figure 6.6 gathers the DSC estimations and predictions of the nitro compounds for which

both local and global models were developed. Clearly, the local models outperform the global

models in all cases shown here. Nevertheless, the global models are not irrelevant: the average

relative deviations for this specific group of five observations is of ARD = 8.0% and ARD = 11%
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for the Tmax and FW respectively. For the Φmax the average deviation reaches ARD = 22%

but this is mainly due to high deviations recorded for the prediction of the amplitude of the

DSC peak of # 11 3,4-dinitrotoluene (which belongs to validation set of "Miscellaneous set"

and training set of "Nitro set"). This is confirmed in Figure 6.6 (d), where the predicted DSC

curves for 3,4-dinitrotoluene: the Miscellaneous model underestimates by 53% the actual

peak’s amplitude while the Nitro model prediction is within the tolerated margins.

On the other hand, some DSC estimations are resembling much more to the measured peak,

as in Figure 6.6 (c), for 2-nitrobenzoic acid, which is a close-to-ideal fit.

Models built on diverse sets seem to be less accurate than local models. The tendencies are

well captured and the models generalize well from the training to the validation set, but the

overall deviations are larger.

From this first attempt to compare local and global models, it comes out that local models

offer higher accuracies, yet the risk of overfitting could hinder their predictive power, while

global models perform less accurate estimations and generalize better.
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(a) 2-nitroaniline

Temperature [°C]
0 50 100 150 200 250 300 350 400 450

H
ea

t F
lo

w
 [W

/g
]

-1

0

1

2

3

4

5

6

7

8

9
DSC Graph for # 5- Training

Obs
Pred Nitro
Pred Misc
Tolerance Zone

(b) 1,4-dinitrobenzene
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(c) 2-nitrobenzoic acid
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(d) 3,4-dinitrotoluene
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(e) 3-nitrotoluene

Figure 6.6 – Comparisons of DSC Reconstructions
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6.3.4 Chemical Families

The second expansion direction from the NO2 set is to locally investigate other chemical

families.

The structures of the compounds comprised in the collected dataset were analyzed and several

specific sub-structures were identified for defining the chemical families. The membership of

chemical to one or the other family is not exclusive and a single compound could appear in

several families.

The identified families , their defining groups, their population size and the average values

of the DSC key properties observed for the corresponding dataset are reported in Table C.1,

in Appendix C.1. The obtained average values of the the peak positions and decomposition

enthalpies are highly comparable to the results exposed by Ando et al. [1991].

In this table, the families are ranked by decreasing decomposition enthalpies. Hence, the nitro

compounds are indeed at the top of the rankings as the most energy releasing compounds

during their decomposition. Following, are several chemical families defined for the nitrogen-

bearing functional groups: nitroso, nitrites, azo compounds, tetrazoles and amines.

It is important to note here that the organic peroxides are not reported on this table, mainly

due to the fact that across the database of a few hundred observations, only 6 compounds were

of the organic peroxide class, five of which have already been included in the miscellaneous

set studied previously.

Out of the 14 families identified, 5 were selected to be modeled. The main criteria for this

selection was the energy release of the decomposition reactions as it sets the interest of the

family for safety considerations.

The families that served for model construction are Nitroso and Nitrites, Azo and Tetrazoles,

Phenylamines, and Ethers, which complete the Top 5 behind the Nitro compounds in the

chart of "most exothermic decomposition reactions", and Nitriles.

Nitroso and Nitrites on one hand, and Azo compounds and Tetrazoles on the other hand were

considered together in two families as they are structurally comparable, but mostly, in order

to obtain sets of sufficient sizes for modeling. The results of the modeling for each family

separately are computed in Table C.2 in Appendix C.1. In this table, the evaluation criteria of

the models are summarized and, when outliers are identified as highly impacting the relative

deviations evaluation, a corrected ARDc is computed to reflect the models performance on the

set after the exclusion of the outliers. Only one outlier is removed if necessary, and only once

was it necessary to remove two to recover values reflecting the overall set (for the asymmetry

of Azo and Tetrazoles family).

All models parameters, graphic visualization and responses are gathered in Appendix C.1. Not

all models are discussed in details here, however, few examples may be highlighted to develop
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the major outcomes of this modeling study:

• Overfitting is a recurring issue. Excessive parametrization of the models may generate

models that highly correlate the training sets but fail to apply properly to the validation

sets. In Figure 6.7 (a) is an example of overfitting model, with the representation of the

ΔHr model’s responses for Nitroso and Nitrates family. The correlation coefficients are

rather high, R2
Tr = 0.958 and R2

Tr = 0.929, and ARDTr = 7%.

This would be a successful model if the responses for the validation set were as close

to observations as these results show. This is not the case as the model performance

suffers an important drop for the validation set as ARDV al = 653%. Yet, the number

of parameters is very limited, as only 3 descriptors are included in the model, and the

removal of either one of them reduces the model’s descriptive power. Therefore, it is not

possible to decrease the model parametrization any lower.

Besides, and this is more critical, the validation set contains three of the five lowest

ΔHr values observed on the set. The model responses are indeed much higher than

the expected values due to the fact that the model memorizes the training set values

and projects the validation set to a higher range of ΔHr than their actual values. This

suggests that the division of the dataset into training and validation sets should be

revised in order to avoid this sort of distribution for the next models constructions.

• In order to prevent overfitting, limiting the number of parameters included in the model

is efficient. For instance, the model of Φmax of Phenylamines compounds in Figure 6.7

(b) is developed with 5 parameters only and presents relatively low ARD . Nonetheless,

this is done at the cost of the correlation coefficients. Indeed, considering the training

and validation set correlations coefficients, R2
Tr = 0.781 and R2

Tr = 0.774, and that the

model only includes 5 parameters, it would be possible to include additional descriptors,

in order to increase the correlations. Yet, the ARDV al = 10% and this can be regarded as

satisfactory and justifies to stop the model parametrization at this level. It is important

to note that here, the ARDV al has been corrected by the exclusion of one outlier (#

26 4-t-butylaniline) for which the relative deviation was very high (RD > 5000%), for

the reason that its actual amplitude is Φmax = 4.73×10−2 Wg−1 and the prediction is

Φmax,p = 2.42Wg−1.

• Figure 6.7 (c) presents the model Φmax of Ethers family. The peaks amplitudes of the 78

observations in the Ethers family are highly disparate and non-uniformly distributed

on the observed range: the values range between 0 Wg−1 to 12 Wg−1, with an average

about 1.91 Wg−1, yet 50% of the observations are in the 0 Wg−1 to 1 Wg−1 range. This

gives rise to inefficient models that fail both at describing the training set and predicting

the validation set (ARDTr = 263% and ARDV al = 343% ).

• Finally, there were some successfully modeled families as the Azo and Tetrazoles, Nitriles

and Phenylamines, which present overall good results for all their properties (good per-

formance on the training set and generalize well to the validation set, high correlations,
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Figure 6.7 – Examples of Models Responses for Chemical Families Sets

reasonable deviations, restricted number of parameters). For instance, the Tmax model

of Azo and Tetrazole family, shown in Figure 6.7 (d) is an example of successful model.

6.3.5 Global Models

In the previous study, several chemicals of the dataset were not investigated and their proper-

ties were not modeled, as they did not belong to the studied families. On the other hand, as

the membership to several families is allowed, some data may be duplicated while others are

not taken into account.

Similarly to the generalized Nitro study (Section 6.3.3), global models could be studied to see

if models not restricted to a single subset of observations could be developed.

The entire database of DSC records was analyzed. For each substance exhibiting an exothermic

behavior, one peak is selected, and its five DSC key properties serve as the entries.

A first selection of the QSPR descriptors eliminates those with the lowest variances or with
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Table 6.7 – Global Models Evaluation Summary

Evaluation Partial Area Amplitude Max Position Full Width Asymmetry
ΔHr Φmax Tmax FW a

R2
Tr 0.731 0.547 0.275 0.113 0.112

R2
V al 0.313 0.352 0.213 0.112 0.002

ARDTr [%] 424 659 31 98 189
ARDV al [%] 355 608 36 172 369
Parameters 22 18 10 6 6

Dataset Size 375
Training 337
Validation 38

missing values resulting in a working set of 351 descriptors per structure.

Due to the observation and features dimensions being too close (375 to 351), it was necessary to

include a feature selection step prior to modeling. For this purpose a PCA over the descriptors

space is performed and the 5 Principal Components (PC) computed. Then only the descriptors

that contribute the most to these five PC are held, resulting in a reduced feature matrix of 250

features for 375 observations.

Then, a stepwise procedure is conducted to generate each property’s corresponding model.

For this attempt, the p-value for the inclusion of parameters was set to p −enter = 0.05.

These results are rather poor: the models fail at being descriptive of the training set and

predictive of the validation set. The relative deviations are high and the correlations weak. Few

outliers were noticed, however, their removal did not bring much improvement on the overall

outcome, and these modifications were not reported here.

To test higher parametrization of the models, the p-value for the inclusion of parameters was

varied up to p −enter = 0.20. This rises the correlation coefficients of the training set, on the

other hand, the deviations are increased as well, which indicates clear overfitting. So this

option is not maintained.

The distribution of the observed values for each property was analyzed and it revealed un-

balance in some cases, which could hinder the correlations of the DSC properties to the

molecular structures. Figure 6.8 shows two examples of property values distribution: Φmax

and Tmax. From the analysis of Φmax distribution, it appears that approximately 50% of the

observations span in the lowest 4% of the observed range, and over 70% of the observations

are concentrated in the lowest 10%. A similar unbalanced distribution is also present in ΔHr,

whereas values of Tmax, FW and a follow distributions close to normal distribution.

The graphical representations of the models’ responses vs the observed values for Φmax and

Tmax are presented in Figure 6.9. The previous remarks concerning the distribution of the
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Figure 6.8 – Examples of DSC Properties Distribution
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(b) Global Model Tmax

Figure 6.9 – Examples of Global Models Responses

values of Φmax are clearly visible here: a very important concentration of values are in the

region of Φmax= 0 to 200 Wmol−1. As a result, the model is biased and predicts underestimated

values for the compounds with higher Φmax. The observations in the lower region of Φmax

are also predicted erroneously, and give rise to large relative deviations, hence the obtained

results showed in Table 6.7.

The property value distribution probably hinders the model formation, however it is certainly

not the only element. The Tmax property values exhibit a nearly normal distribution, yet

the model obtained is relatively weak. This suggests that the feature space from which the

correlations are drawn may be inappropriate to represent the overall dataset, or that it does

not hold the right information to represent the properties. It could be that particular features

only suit the dataset partially, hence the local models obtained so far, and face their limits

when covering the larger ensemble.

It is clear at this point that the considered dataset is not appropriate for a unique global model,
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that could apply to all chemicals included. The "one size fits all" type of model could not be

achieved in a robust and valid way. This would suggest to favor local models and work further

into their improvement rather than pursuing the development of a global model.

This assessment poses few questions, that will be addressed in the following parts:

• When building the local subsets from chemical families, how to address the multiple

membership issue correctly? Is there a prioritization of chemical families or functional

groups?

• Are there appropriate ways to create local subsets different than the chemical families?

• If several local models are available, how to determine which one to employ to predict

behavior of a specific compound?

Moreover, the analysis of the previous results calls for further consolidation of the modeling

procedure. It has been mentioned previously that when the validation set includes observation

data at the edge of the observed range, the models are unlikely to properly predict it. Therefore,

the separation procedure of the training and validation sets should be revised in order not

to be randomly performed, but to take further considerations to avoid assigning extreme

or under-represented cases into the validation set. The feature selection through PCA is a

modification that was implemented and, as it was beneficial, it is henceforth applied routinely.

6.4 Systematic Construction of Local Subsets

6.4.1 Modified Modeling Procedure

In order to answer the interrogations that sparked off in the last section, and to improve our

current modeling process, different strategies will be applied in parallel. First, in order to

determine if local subsets can be developed on different basis than the chemical families,

clustering based on the features space and on the labels space will be performed separately.

Then, to tackle the chemical family hierarchization, QSPR does not seem appropriate, and

therefore GCM will be applied.

To implement these strategies, the procedure is modified as schematically represented in

Figure 6.10.

• From the dataset, the training-validation separation, is no longer performed randomly.

The dataset distribution is evaluated through the mean and the scattering of the DSC

properties. Ten random training sets and the corresponding validation sets are gener-

ated, and the selected separation is the one for which the means in the training and in

the validation are the most similar. This reduces the risks to form an unrepresentative

training set, or the assignment of extreme cases into the validation set.
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Figure 6.10 – Schematic Representation of the Modified Modeling Procedure

• The training set serves to cluster the data. Two different clustering approaches are

applied:

• k-means clustering on the features space (i.e. the structural descriptors)

• hierarchical clustering on the labels space (i.e. the DSC properties).

In both cases, several clusters are created. The observations in the validation set are

then assigned to either one of the clusters, so that each cluster’s population contains

training and validation data.

It is important to note a major difference here, that is when clustering is conducted on

the features space, the introduction of an out-of-the-set molecule is straightforward:

from its structure, the distances to all clusters centroids are computed, and it can be

assigned to the closest cluster. If the clustering is performed with the DSC properties,

classification is required. Indeed, in the context of prediction, or even for the validation

set simulations, only the molecule’s structure is known and the DSC parameters are

to be determined. Therefore, its assignment into one of the clusters must rely on its

structural features. Therefore, the procedure step "Cluster Assignment" in Figure 6.10

varies depending on the applied method and includes classification to complement for

label space clustering. For this purpose, a decision tree is developed in Section 6.4.3.

• Then, the modeling proceeds within the different clusters to develop local models. For

every model, the stepwise procedure is run, and the p−enter value is varied to optimize

the models.

• Finally, the estimated and predicted values of the DSC properties serve for the DSC

reconstruction with the Fraser-Suzuki equation.
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Table 6.8 – Reduced Feature Space

i Parameter Name

1 γ 1X GAMMA polarizability (DIP)
2 T E

al l Topographic electronic index (all pairs)
3 H AS A2T S HASA-2/SQRT(TMSA) (Zefirov PC) (all)
4 J Balaban index
5 p A,mi n Min net atomic charge

6.4.2 Features Space Clustering

In this part, the QSPR descriptors of the chemicals constitute the feature space.

Through the PCA procedure detailed in Section 2.2.3, the features of the training set obser-

vations are analyzed and the five PC are determined, then a reduced feature space made of

the five descriptors that contribute the most to Principal Components is generated. The k

centroids of the clusters are generated and adjusted in the five-dimensional reduced features

space. The descriptors selected are shown in Table 6.8.

The number of clusters k to build was varied in order to maximize cluster separation. It

came out that between 4 and 7 clusters could be built to obtain similarly separated clusters.

Therefore, another criteria was applied to set k: the cluster population. When 6 or 7 clusters

are built, at least two groups are of restricted sizes (less than 15 observations), which could be

problematic for the upcoming modeling. Therefore, k is set to 4.

The validation observations are then projected onto the reduced feature space, the distances

to each centroid are computed, and the observations are assigned to the closest cluster.

The model construction is then conducted within the clusters. The evaluation summary for

the models is shown in Appendix C.2, Table C.9. As several models are built in every case,

a ’leave-many-out’ cross-validation was required to allow selecting the best models. Five

observations are left out of the training and serve for the evaluation. AIC and B IC are also

computed and the "best models" selected are the models that achieve the highest compromise

of low ARDV al , low AIC and good fitting correlation coefficient R2
Tr . In the worst cases where

no model stands out as the "best", the one with least parameters is held.

To give an overview, Table 6.9 "summarizes the summary" with the average values of all

evaluation criteria across the four clusters.

These results reflect rather weak models and hand-picking is necessary to find models that

yield ARD values in the range of 20%. The R2
Tr were purposely kept low to avoid highly

parametrized overfitting models, yet their performance and their generalization are limited.

Only cluster 3 shows high correlations to the training set, but considering its relatively narrow

building data set (15 observations), and poor predictive performance, it does not constitute a
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Table 6.9 – Clusters Models Evaluation Summary

Evaluation Partial Area Amplitude Max Position Full Width Asymmetry
ΔHr Φmax Tmax FW a

R2
Tr 0.741 0.716 0.718 0.687 0.744

R2
V al 0.637 0.238 0.297 0.409 0.662

ARDTr [%] 392 421 18 49 161
ARDV al [%] 194 104 30 74 135

significant contribution.

The underlying cause of these poor results seems to be, here again the unbalanced representa-

tion of the properties. Distributions similar to these shown in Figure 6.8(a) are observed here

for ΔHr and Φmax in clusters 1, 2 and 4.

As the set imbalance is a recurring issue and limits the modeling even in the case of grouping

by structural similarities (clustering on the feature space), it seems appropriate and necessary

to implement a clustering on the properties space.

6.4.3 DSC-based Clustering and Classification

For the aforementioned reasons, clusters are developed on the DSC properties space. This

part has been the subject of a master thesis conducted in collaboration with the present work

[Mage, 2015].

200 DSC curves are processed to render images of the studied peaks and sequenced into

vectors. Hierarchical clustering is applied on the DSC image space. The clustering objectives,

as in the previous section, are to maximize inter-cluster dissimilarities while maintaining

cluster population above 15 observations. Here, the ideal clusters number was k = 7. The

ideal settings were determined after several comparative analysis that will not be detailed here

[Mage, 2015].

Every cluster is represented by the most likely DSC peak: all properties within the cluster

are averaged and used to create a representative "typical" curve. These curves are shown in

Appendix C.3, Figure C.6.

Following the partition of the DSC thermograms into 7 clusters, classification is required.

Indeed, for a new molecule of unknown thermal behavior and for which the DSC thermogram

is to be predicted, its membership to either one of the seven clusters should rely on its

molecular structure.

For this purpose, a decision tree was built with the use of the Marrero-Gani GC+ framework to

represent the structures [Hukkerikar et al., 2012]. The tree is presented in Figure 6.11.
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Figure 6.11 – DSC Decision Tree

The performance of the decision tree to assign the DSC curves that did not serve to train the

hierarchical clustering was assessed (external validation). For this purpose, the data were

assigned to the clusters based on the tree nodes on one hand, and based on the distances

to the cluster centroids in the label space, on the other hand. The assignment following the

properties is considered the "right" assignment and was compared to the tree outcome. The

tree assignment is relatively good in most cases, despite some flaws: it correctly assigns more

than 90% of observations destined to cluster 1 (in red in Figure 6.11), but fails to recognize
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out-of-the-sample data destined to cluster 3 for instance [Mage, 2015].

To prevent from faulty assignment from the tree, the repartition of the dataset is performed

with the distance to the cluster centroids in the label space and will now be used to develop

local models using GCM modeling. These models are referred to as DSC clusters models as

the DSC properties have been used for the clustering.

The modeling is here different than with the QSPR method. The stepwise procedure was not

applied as it serves to select among features the most relevant one to build the model, whereas

when applying GCM, all groups may eventually contribute to a molecule’s properties. Hence

the Generalized Linear Model function in Matlab was used in order to assign coefficients to

all the groups. Nonetheless, from the 441 groups of the Marrero-Gani framework, 217 are

necessary to describe all molecules from the dataset, but not all these 217 groups contribute

to each model, nor do they appear in all molecules. In average, one molecule is described by

11 GC+ groups.

The evaluations of the models built for each cluster are presented in Appendix C.3, Table C.10,

and the global evaluation is represented in Table 6.10.

Table 6.10 – DSC Clusters Models Evaluation Summary

Evaluation Partial Area Amplitude Max Position Full Width Asymmetry

ΔHr Φmax Tmax FW a

R2
Tr 0.756 0.710 0.849 0.736 0.741

R2
V al 0.713 0.526 0.838 0.596 0.490

ARDTr [%] 166 199 8 39 143

ARDV al [%] 113 103 7 30 160

These results reflect a significant improvement relatively to the previous local models pro-

posed as the correlations coefficients are higher and more importantly, the deviations are

approximately reduced by half.

Some examples of the obtained responses are shown in Figure 6.12, illustrating the yielded

results and their limitations.

For instance, Figure 6.12 (a) shows the weakest model developed with this procedure. The

correlation coefficients are R2
Tr = 0.671 and ARDTr = 446%. However, it exhibits a pattern

that is symptomatic of GCM. Indeed, a great number of observations (42 out of 73) with Φmax

ranging between 0 and 500 Wmol−1 are all predicted with the same value Φmax= 128 Wmol−1,

which in fact is the constant term of this model yo . The underlying reason to these poor

predictions is that the model relies on 14 groups, 8 of which only appear in one or two

compounds. Hence, 42 molecules in this set are not concerned with any parameter in this

model, and therefore their predicted values correspond to the constant term.
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The most efficient solution to this issue would be to assign a contribution coefficient to every

group in the framework. However, when this was attempted the fitting power of the models

were perfect scores R2
Tr = 1, while the predictive power and the generalization decreased

drastically.

The same type of error appears again in Figure 6.12 (b), where the responses of model ΔHr of

DSC Cluster 3 are represented.

Observed [W/mol]
0 500 1000 1500 2000

P
re

di
ct

ed
 [W

/m
ol

]

0

500

1000

1500

2000
Training
Validation
Ideal
± 5%

(a) Φmax of DSC Cluster 4

Observed [J/mol] ×105
-4 -3 -2 -1 0

P
re

di
ct

ed
 [J

/m
ol

]

×105

-4

-3

-2

-1

0

Training
Validation
Ideal
± 5%

(b) ΔHr of DSC Cluster 3

Observed [J/mol] ×105
-3 -2 -1 0

P
re

di
ct

ed
 [J

/m
ol

]

×105

-3

-2

-1

0
Training
Validation
Ideal
± 5%

(c) ΔHr of DSC Cluster 6
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(d) Tmax of DSC Cluster 5

Figure 6.12 – Examples of DSC Clusters Models Responses

Globally, models are relatively satisfactory and, as the examples shown in Figure 6.12 (c) and

(d), the predictions are in good agreement with the observed values. In particular, the models

of Tmax are highly accurate and the highest average relative deviations are of ARDTr = 18%

for DSC Cluster 7.

Figure 6.13 shows few examples among the best DSC reconstructions based on simulations

performed with the DSC Clusters models. In this figure and in Table ?? (Appendix C.2), the

molecules are numbered to show the cluster number in the hundred digits: 2-nitrotoluene

belongs to cluster 1 and is the 40th compound in this cluster.
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(a) 2-nitrotoluene
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(b) 2-bromo-5-(morpholinomethyl)-
pyridine
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(c) veratrylamine
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(d) 2-chloromethyl-pyridine

Figure 6.13 – Examples of DSC Reconstructions from DSC Cluster Models

6.5 Model Application

In this section, some examples are detailed to present the overall procedure to output pre-

dictive simulations, the obtained results at each step of the entire procedure and to discuss a

few elements. Table 6.11 shows the structures of the examples that will be treated here. The

chemical families and DSC clusters these molecules belong to are indicated as well.

Assuming only the structures of these 4 compounds are known, the overall procedure to

simulate their DSC thermograms is detailed here. The first step is to generate their molecular

descriptors for QSPR modeling and to identify and count their GC+ groups.

A visual inspection of the structure here is sufficient to assign 4-Nitroaniline and 4-Nitrobenzoic

acid to the Nitro set, and DHBT and 5-Aminotetrazole to the Azo and Tetrazole set.

Regarding the assignment into DSC clusters, GC+ groups are required [Hukkerikar et al., 2012].
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Table 6.11 – Molecules treated as Examples

A B C D

Compound 4-Nitroaniline 4-Nitrobenzoic
acid

DHBT* 5-
Aminotetrazole

Chemical Family Nitro Nitro Azo and Tetrazoles
# in set 16 17 2 9
DSC Cluster 1 1 2 5
# in set 146 147 202 544

Structure

O

N
+

O
-

NH2 O OH

O

N
+

O
-

N

N

N

O

OH

NH

N

N

N

NH2

*DHBT stands for 3,4-Dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine

Table 6.12 shows in parallel the structure of DHBT as expressed in function of GC+ groups1

and the answers to all nodes in the decision tree that concern this molecule. Eventually, DHBT

is assigned in Cluster 2.

At this point of the procedure, it is already possible to obtain first estimations of the thermal

stability of these compounds. Table C.1 in Appendix C.1 reports the average values of the

characteristics of the DSC thermograms of all chemical families investigated. Thus, the first

estimations for the ΔHr and Tmax are:

• ΔH r = −1525Jg−1 and T max = 293◦C for Nitro compounds ( 4-Nitroaniline and 4-

Nitrobenzoic acid )

• ΔH r = −993Jg−1 and T max = 231◦C for Azo and Tetrazole (DHBT and 5-Aminotetrazole).

In the same manner, the average characteristics for each cluster are also known and gathered

in Figure C.6, Appendix C.3.

For instance, from the decision tree, DHBT was assigned to cluster 2, so its DSC thermogram

may by approximated by the thermogram shown in Figure 6.14.

1The GC+ groups were numbered in order to show the group order in the hundred digits, and 4th order refers
to atom counts and connectivity indices.
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Table 6.12 – Example of DSC Cluster Assignment

DHBT Structure Decision Tree Path

# Value Group Node Answer
1015 4 aCH aC−NO2 No
1017 2 aC fused with non aro-

matic ring
aC−Br No

1029 1 OH O ≥ 2 Yes
1176 1 N (cyclic) CH (cyclic) No
1180 1 CO (cyclic) N Yes
1195 1 N=N CF3 No
3032 1 aC−COcyc(fused rings) COO No
4002 5 H CH2 ≥ 2 Yes
4007 3 N
4008 2 O
4011 7 C
4016 3.54 0χ

4017 1.02 1χ

Temperature [°C]
0 100 200 300 400

H
ea

t F
lo

w
 [W

/m
ol

]

0

500

1000

1500

2000
Cluster 2

Average heat release =
203 kJ/mol

Figure 6.14 – Average Thermogram for Cluster 2

If an average molecular weight of M = 200gmol−1 is assumed, the ΔH r obtained with Table

C.1 and Figure 6.14 are sensibly the same, i.e. ΔH r = −203kJmol−1 ≈−1000Jg−1.

• ΔH r = −1445Jg−1 and T max = 343◦C for Cluster 1 ( 4-Nitroaniline and 4-Nitrobenzoic

acid)

• ΔH r = −1015Jg−1 and T max = 190◦C for Cluster 2 (DHBT)

• ΔH r = −380Jg−1 and T max = 341◦C for Cluster 5 (5-Aminotetrazole)

From the average characteristics of local subsets, either families or clusters, it is possible to
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propose a primary risk assessment regarding the studied compounds. This assessment is

approximate, but could be a valuable indication to determine the following actions to take.

Thermal risk assessment is performed through a systematic procedure in six steps [Stoessel,

2008], known as the cooling failure scenario. The six steps to develop the cooling failure

scenario can be summarized as:

1. Establish the operating conditions necessary for safely conducting a desired reaction.

This mainly requires to set the process temperature in function of the reaction heat

release rate and the heat removal rate by the cooling system.

2. Evaluate the highest temperature that would be reached in case of cooling failure, by

estimating that the desired reaction would follow an adiabatic course (noted MTSR for

Maximum Temperature of Synthesis Reaction).

3. Assess if a secondary reaction could be triggered in case MTSR is reached. If yes, evaluate

the highest temperature that would be reached by the secondary reaction adiabatic

course.

4. Identify the worst moment for the cooling failure to occur, i.e. often when the concen-

tration in potentially reactive chemicals is the highest.

5. Determine the time required to go from the process temperature Tp to MTSR. This re-

quires to know the kinetics of the synthesis reaction, and if unknown, it is approximated

to be instantaneous (conservative hypothesis).

6. Evaluate the kinetics of the secondary reaction through the Time to Maximum Rate

under adiabatic conditions TMRAD as:

T MRAD =
C ·R ·T 2

o

Φ(To ) ·Ea
(6.3)

where : C Jg−1 K−1 specific heat capacity

R Jmol−1 K−1 universal gas constant

To K starting temperature from which TMRAD is calculated

ΦTo
Wg−1 heat release rate at To

Ea Jmol−1 activation energy

Usually in risk assessment, the risk is evaluated through severity and the probability of an

undesired event. For the evaluation of the thermal risk, the probability may be evaluated

through the TMRAD. Strictly speaking, TMRAD does not reflect the probability of a cooling

failure. However, it indicates how much time the reaction would take to reach its highest

rate, if a cooling failure would occur at To. For controlled systems, it is considered that if the
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TMRAD is 24h or more, the operating conditions may be considered on the safe side. In case

of a cooling failure, there is enough time available to react and take the appropriate response.

If TMRAD is comprised between 8 and 24h the situation is assigned a "Medium" probability,

and finally below TMRAD = 8h, the probability is "High".

The TD24 is the counterpart of the TMRAD: it is the temperature at which TMRAD= 24h.

Regarding the severity, it is assessed through the temperature rise that a loss of temperature

control could cause. By assuming that the reaction proceeds under adiabatic conditions, all

heat released by the reaction will serve to self-heat the reaction mass, hence the temperature

increase ΔTAD which may be expressed as:

ΔTAD =
ΔHr,tot

C
(6.4)

After this short digression, it is now possible to use the results of our primary DSC approxima-

tions to average thermograms for chemical families and clusters to compute estimations of

ΔTAD and TD24.

In the present case, the DSC thermograms represent decompositions reactions of pure com-

pounds, hence from the exposed procedure above, only the information related the "secondary

reaction" or decomposition reactions apply. Moreover, one peak only is considered in each

thermogram, hence, ΔHr,tot is simply ΔHr. The other unknown parameters were simulated

with standard values as:

R constant R = 8.31 Jmol−1 K−1

C varied C = 1.5 , 2 and 2.5 Jg−1 K−1

Ea varied Ea = 50, 100 and 150 Jmol−1

ΦTo
determined from the average thermograms

ΔTAD approximated by ΔHr as C is the same

The obtained ranges may be represented in a risk matrix to visualize the risk in terms of

severity and probability. For the four chemicals serving as examples here, the Nitro and Azo

and Tetrazoles families, and Clusters 1, 2 and 5 are placed on the risk matrix shown in Figure

6.15.

All the chemical families and clusters of the examples are in the higher parts of the risk matrix,

as the heat release potential is high. This is not surprising as the chosen molecules belong

to the chemical families with the highest average ΔHr. However, the TD24 evaluation shows

some variations. For instance, the DSC Cluster 1, despite showing the highest heat release

potential, is not categorized as presenting "High Severity x High Probability" risks, due to the

temperature of occurrence of the decompositions reactions that are relatively high and this

leads to an estimated TD24 above 200 ◦C. On the other hand, Cluster 2 for instance, exhibits

151



Chapter 6. DSC Models

S
e
v
e
ri
ty

H
ig

h

Δ
H

r
>

 8
0
0
 J

/g

M
e
d
iu

m

1
0
0
<

 Δ
H

r
<

8
0
0
 J

/g

L
o
w

Δ
H

r
<

1
0
0
 J

/g

NO2: Nitro

NN:  Azo & 

Tetrazoles

1:     Cluster 1

2:     Cluster 2

5:     Cluster 5

TD24 >200°C 150 <TD24 <200°C TD24 <150 °C

Low Medium High

Probability of occurrence

NO2

NN

1

2

5

Figure 6.15 – Risk Matrix

lower average Tmax (T max = 190◦C see Figure 6.14), hence the TD24 estimation reveals a more

critical situation and therefore, compounds of Cluster 2 are ranked in "High Severity x High

Probability" category.

Considering these results are only indicative approximations, the procedure should continue

with the application of the local models to compute more accurate simulations of the DSC

thermograms.

Tables 6.13 details the calculations ofΔHr for Nitro Azo and Tetrazoles families, with the values

of descriptors to represent the structures of the four examples treated here. In Appendix B.2,

parameters of all models developed are tabulated and the same calculations as presented here

can be performed to estimate the five DSC key characteristics of the compounds of interest.

The obtained responses are also represented in Tables B.2, B.4, ?? and ??) in Appendices 6.6

and B.2 .

So far, the results were only discussed from a modeling perspective mainly because they could

not be validated properly or because they were relatively unstable and that different run would

present different models. Nonetheless, the examples chosen here are among the best results

obtained as they present good repeatability and remain stable with iterations. Thus, it is

possible here to have a closer look at the model’s parameters and their influence.

For instance in Table 6.13, the coefficients in the linear model point out the QSPR descriptors
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Table 6.13 – Examples of Enthalpy Calculation with Chemical Family Models

ΔHr for Nitro Compounds
i Coefficient Parameter 4-Nitroaniline 4-Nitrobenzoic acid

0 1.95×105 yo

1 1.59×104 ABMO,max -2.34 -2.31
2 7.70×103 BOC ,av g 1.17 1.00
3 −1.55×104 ER,max(HC ) 11.1 11.0
4 −3.37×103 F H AC A 0.156 0.188
5 3.99×103 Sγ

X Z 0.756 0.790

Pred ΔHr [Jg−1] -2055 -2157
Obs ΔHr [Jg−1] -2032 -2143
Rel. Dev. RD [%] 1.1 0.7

ΔHr for Azo and Tetrazoles
i Coefficient Parameter DHBT 5-Aminotetrazole
0 −3.09×102 yo

1 −4.90×103 F H AS A 0.348 0.559
2 −3.62×10−1 DPS A−2 434 171
3 1.31×102 EC ,tot /N 7.37 8.01

Pred ΔHr [Jg−1] -1205 -2063
Obs ΔHr [Jg−1] -1143 -2033
Rel. Dev. RD [%] 5.4 1.5

that positively and negatively contribute to ΔHr: higher bond orders for C atoms BOC ,av g and

higher antibonding molecular orbital contributions ABMO,max lead to higher ΔHr, while the

highest resonance energy of C−H bonds ER,max(HC ) contributes to decrease ΔHr.

The bond order of C atoms is known to be correlated to the dissociation energies of the −NO2

group in nitro-aromatic compounds [Fayet et al., 2009], and the resonance energies could be

related to the molecule’s ability to stabilize the −NO2. The influences of F H AC A and Sγ

X Z

are relatively limited. They are assigned the smallest coefficients, but also they take values

that slightly vary across the dataset of Nitro compounds. These two parameters could serve

as adjustements to the model rather than actual descriptors of the molecule’s behavior. In

this sense, it is understandable why local models would suffer from potential overfitting: if

parameters are included in the model to satisfy the fitting to the particular set of observations ,

it faces higher risks of failure to generalize.

Regarding the Azo and Tetrazole family, the ΔHr model comprises three parameters related

to the molecules polarity and inter-molecular interactions. Electrostatic interactions are ac-

counted for in EC ,tot /N , which is the only parameter with a positive contribution toΔHr, while

the other two have negative contributions (thus lead to higher enthalpy release). DPS A−2 is

the difference between total charge weighted partial positive and negative surface areas. The

Charged Partial Surface Areas (CPSA) are a class of descriptors that encode for information
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relative to solvent-accessible surface area, partial charges and polar interactions [Golmoham-

madi and Dashtbozorgi, 2010]. Finally, F H AS A (Fractional H-acceptors surface area) has the

largest influence on this model. It reveals the ability of the molecule to make hydrogen-bonds,

which contribute to higher intra- and inter-molecular interactions and increase the potential

heat release of decompositions reactions.

Tables 6.14 presents the calculations of ΔHr for Cluster 1, 2 and 5 based on group contribu-

tions.

In Table 6.14, the molecular weight of the compounds are also reported, in order to convert

ΔHr into comparable units. Indeed, the development of the models for the various families

was conducted on ΔHr expressed in [Jg−1] and this was changed in the modeling based on

DSC clusters to [Jmol−1]. The results are equivalent, however the coefficients are adjusted to

output values in the corresponding units.

The GCM models are more straightforward to interpret than QSPR models. In Cluster 1,

which comprises most nitroaromatic compounds of the overall set, it is not surprising that

the number of NO2 groups on an aromatic C ( group #1080 aC−NO2) is the most influential

parameter of the model. Similarly, in ΔHr model for Cluster 2 on the atom count of C, H and

O, but also on the presence of an aromatic ring (accounted for by aCH, and the presence of a

ketone group on a cyclic C (group #1180 CO (cyclic)2). Finally, ΔHr of 5-Aminotetrazole is

computed with only the number of NH23, and is rather accurate.

It is important to note that the cluster models include more groups than those represented

here, but in Table 6.14, only groups relevant to the examples are represented. For instance,

there are 9 parameters in ΔHr model for Cluster 5, but only one is necessary (or relevant) for

5-Aminotetrazole.

Once all DSC key characteristics have been estimated, it is possible to simulate the DSC

thermograms. In Figure 6.16, the DSC simulations obtained with the family models and

the cluster models (marked as QSPR or GCM in the figure) are compared to the average

thermogram construction for the corresponding cluster.

The DSC simulations of 4-nitroaniline, 4-nitrobenzenzoic acid and DHBT show good agree-

ment and match with the projected average of the clusters. In the context of predictive

application, it would not be possible to compare to the DSC measurements to verify the

adequacy of these predictions, and therefore these mutual agreement confirm the results

and reinforce their reliability. Nonetheless, the comparison to the actual measurements are

shown in Figure C.14, Appendix C.3, and indeed, these three simulations actually do represent

accurately the DSC measurements.

2’cyclic’ refers to non-aromatic closed structures in GC+ framework
3in GC+ framework, groups may be defined as a substituent on a another group, and when it is not the case,

they are marked with the mention "except as above", for instance the group preceding " NH2 except as above" is
aC−NH2.
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Table 6.14 – Examples of Enthalpy Calculation with Cluster Models

ΔHr Cluster 1

i Coefficient Parameter 4-Nitroaniline 4-Nitrobenzoic acid

0 −2.28×105 yo

1080 −2.22×105 aC−NO2 1 1
4007 −4.27×104 N 2 1
4011 2.44×104 C 6 7

M [gmol−1] 138 167
Pred ΔHr [Jmol−1] −3.89×105 −3.22×105

Pred ΔHr [Jg−1] -2814 -1924
Obs ΔHr [Jg−1] -2032 -2143
Rel. Dev. RD [%] 38 10.2

ΔHr Cluster 2
i Coefficient Parameter DHBT

0 −2.34×105 yo

1015 −8.75×103 aCH 4
1180 −1.36×105 CO (cyclic) 1
4002 1.72×104 H 5
4007 7.46×104 N 3
4008 −4.31×104 O 2

M [gmol−1] 163
Pred ΔHr [Jmol−1] −1.82×105

Pred ΔHr [Jg−1] -1117
Obs ΔHr [Jg−1] -1143
Rel. Dev. RD [%] 2.3

ΔHr Cluster 5
i Coefficient Parameter 5-Aminotetrazole

0 −6.94×104 yo

1065 −9.23×104 NH2 except as above 1

M [gmol−1] 85
Pred ΔHr [Jmol−1] −1.62×105

Pred ΔHr [Jg−1] -1900
Obs ΔHr [Jg−1] -2063
Rel. Dev. RD [%] 6.5
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Concerning the 5-aminotetrazole, the two models and the average show divergent results.

In such cases, the local models are more reliable than the average projection. Especially in

this particular case, as they predict decomposition at a lower temperature and with higher

energy release, and hence represent a worse scenario than the projected average. In the case of

predictive application of the models, such a result would strongly suggest to take precautions

in the use of these simulations and preferably to perform an experiment to obtain the DSC

thermogram of this compound.

In any case, when possible the experimental measurement should be favored; however the

DSC simulations obtained from the various models developed here could allow for primary

estimations, screening of numerous compounds, and a guiding tool in experimental planning.
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Figure 6.16 – Examples of DSC Reconstructions

6.6 Conclusion

In this chapter, a short literature review showed that regarding thermal stability of chemicals,

there were mainly two properties that were studied, the reaction enthalpy ΔHr and the onset

temperature To. Besides, most studies focused on structurally similar compounds, most often
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that belong to a unique chemical family, and often, it would be nitro compounds.

In order to challenge the DSC reconstruction method based on the Fraser-Suzuki equation,

it has been decided to perform the initial modeling attempts on nitro compounds, which

successfully provided the first set of predictive local models. Then, a second modeling phase

integrated nitro compounds into a set of structurally diverse chemicals which showed that

a defined substructure to all observations is not a requirement to modeling, and that good

performing models could be obtained. Yet, in this phase, the correlations were satisfactory,

while the deviations were larger than for the local models built with NO2 compounds only.

From this initial modeling phase, the following steps were to expand both the local and global

models: hence with the dataset of 375 compounds, one large global set and five additional

chemical families were studied. The chemical families investigated were : Nitroso and Nitrites,

Azo and Tetrazoles, Phenylamines, Ethers and Nitriles. The results were mitigated, as in some

cases very well performing models were obtained while others due to overfitting issues were

unable to predict out-of-the-set data.

Regarding the global model, it was undoubtedly the weakest set of models obtained. The

correlations were poor and the deviations very high. Yet, these results could not be imputed to

over-fitting problems as the models failed to predict the validation data but also to describe the

training data. The structure of the dataset itself was analyzed and this highlighted the fact that

the observations were non-uniformly distributed over the considered ranges. This imbalance

in data representation, especially the over representation of compounds of small exoenergetic

decompositions, hindered the model building process by depreciating the predictions of

properties of the compounds with higher decompositions energies or peak amplitude.

This under-performance on the ’one-size-fits-all’ models raised the interest towards the local

models, and posed several interrogations regarding whether alternative subsets could serve

for developing local models, and if yes, how to determine which one to apply.

To answer these questions, two approaches to systematically subdivide the dataset were

implemented. On the one hand, a k-means clustering was performed on the structural feature

space, and on the other hand, a hierarchical clustering was conducted on the DSC curves.

For the latter clustering, a classification system was necessary in order to assign the molecules

of unknown DSC into the clusters. The classification tree applies to all molecules of the dataset

and outputs the membership of the molecule to one of seven DSC Clusters, but also a "typical

DSC curve". From this perspective, the decision tree represents a semi-quantitative global

model.

The local models developed within the feature space clusters present limited fitting and

predictive powers. The parametrization was closely controlled to avoid over-fitting, yet, this

lead to poor models. The second set of local models, created from the clustering of the DSC

curves, resulted in better-performing results.
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In summary, it was not possible to develop a highly efficient regression global predictive

model, however, the decision tree presents a large application range and allows to sort out the

compounds into 7 categories. At this stage, the corresponding "average DSC curve" may also

be used as a rough estimate for the considered compound. Then, the local models within the

clusters allow for a quantitative evaluation of the DSC properties, which are then included

into the Fraser-Suzuki model to recover the DSC curves. Moreover, the models corresponding

to six chemicals families have also been developed and allow for more accurate estimations.

These models would highly benefit from further testings in order to be more comprehensively

evaluated, especially to determine their application domains, for instance. Moreover, they

could be further challenged and optimized with the inclusion of additional observations.

Finally, considering the results obtained here, it seems that GCM, despite their simplicity

could allow for models as efficient, or even better, than QSPR.
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For effective design and implementation of preventive and protective measures, rigorous risk

assessment is necessary, and this requires thorough characterization of the process and the

involved chemicals. For this purpose, number of safety data are required which may be ob-

tained from knowledge, databases, or experimental measures. Ideally, when this information

is available at the early stages of a process design, it allows for an optimal integration of safety

measures to the system, or to consider possible substitutions of a hazardous chemical with

another, with lower intrinsic hazards, or in lower quantities, to enable a simplified control.

Timely availability of these data do not only allow for easing the inherently safer design, it also

reduces time and resources necessary for postliminary process modifications or corrections.

Moreover, Product Design is nowadays increasingly employed, especially in biotechnology

or life sciences fields where drugs, pesticides or food products are created, and selected for

their physico-chemical properties or biological activities in silico prior to being physically

synthesized. As these compounds are not readily available for experimental analysis, only the

simulated properties can be estimated until their preparation in sufficient quantities.

In this context, predictive modeling of safety-related data has gained interest and in the recent

years, several applications of structure-based modeling focused on explosive characteristics

of chemicals such as the flash point, Auto-Ignition Temperature, flammability limits, or

explosion constants, and thermal stability, in particular decomposition enthalpies and onset

temperature.

Nevertheless, it was noticed that the Minimal Ignition Energy (MIE) of compounds was not

modeled, whereas this characteristic of the compounds’ sensitivity to ignite relies on a time

and material expensive procedure that could highly profit from the use of predictive simula-

tions. We propose several regression models, a global model and local models depending on

the compounds physical state at room temperature. From the obtained results, the model

developed from the Dusts subset presented the most accurate fittings and predictions, yet

they were not fully satisfactory.

Therefore, a global classification model was proposed in the form of a simple decision tree

that includes only 4 structural descriptors and allows for classing the data according to their

sensitivity into 4 categories corresponding to the British Standard MIE classification. Then,
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intra-classes models were developed and the predictions were greatly improved as the relative

errors obtained were reduced below 50 %. However, a 50 % error on a safety-related criteria

is rather unreliable and could not be reasonably applied in safety studies in itself. It could

be however interesting to integrate it as a primary screening tool that could narrow the MIE

range to investigate, and hence, reduce the number of experimental measurements required

to determine the MIE value.

To improve these models, it is highly probable that the underlying hypothesis should be revised.

As it has been noted, the MIE value greatly depends on several factors besides the molecular

structure, especially the particle size for dusts, the concentration, and the physical state. Here,

these parameters were overlooked. The physical state distinction was only disregarded when

developing the global model, in order to gather all the available observations in a unique set;

they were separated later into different subsets. On the other hand, due to the absence of

information regarding the particle size and mixture concentration, these parameters were not

taken into account while their influence on the MIE is established. It would complement the

models obtained here if information regarding these aspects could be included for a more

comprehensive estimation system.

Regarding the thermal stability of chemicals, several studies were found in the literature

review that propose predictive models for the decomposition enthalpy ΔHr and the onset

temperature To, temperature at which the decomposition reaction progresses at a significant

rate. These two characteristics can be determined from DSC experiments. However, we have

showed that the DSC thermograms analysis allows to identify the reaction kinetics as well. For

this purpose several DSC thermograms are required and the curve shape should be analyzed.

Without deepening the investigations to the kinetics determination, it was nonetheless decided

to propose a modeling method that would allow to preserve the DSC curve shape and limit the

data loss. Therefore, for the analyzed thermograms, five key DSC properties were extracted by

Gaussian-like fittings with the Fraser-Suzuki equation. With the peak’s amplitude, position,

width and an asymmetry factor, the entire curve is preserved.

In a similar manner to the procedure for the MIE models, one set of global models, and

several local models were developed. Once again, the global regression models yielded weak

predictions, while local models were more accurate. Therefore, another strategy relying on a

combination of global classification and subsequent local models is suggested. This approach

offers a systematic classification of chemicals into different categories, and for each category,

a tailored set of models could allow to recover the chemicals DSC key properties, which in

turn serve the DSC curve reconstruction.

Besides, the nitro compounds were particularly focused on by previous studies, while limited

information was found on other compounds. Indeed the nitro compounds exhibit the highest

decomposition reactivity, yet, other families also present hazardous thermal behavior. There-

fore, specific models were also created for various chemical families, which ranked on top

of the list according to decomposition enthalpy released: nitroso, nitrites, azo compounds,
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tetrazoles, ethers and nitriles. From these modeling phase, some accurate results were ob-

tained, yet the subsets were rather narrow and would certainly benefit from additional data

and further validation.

Actually, this would be beneficial to all models proposed here. Despite the broad dataset

investigated (approximately 400 compounds), the structural descriptors were also numerous,

and the feature selection methods applied did not sufficiently reduce the structure space

dimension to avoid over-fitting issues. By increasing the number of observations, the model

parametrization could be improved to retain less descriptors, while increasing the quality and

the performance of the models.

It is important to note not all the available data has been exploited. For each thermogram that

exhibited several peaks, the DSC key properties were all extracted, yet only the principal peak

was held for the present work. The procedure should be extended to incorporate the simula-

tions of several peaks per thermogram, in order to complete the thermal trail simulations and

actually deliver comprehensive simulations. This could also be done through the construction

of a classification system that would recognize from the molecular structures if compounds

would exhibit simple or complex thermal decompositions, and if secondary or even tertiary

peaks are expected, they could be modeled following a similar procedure to what we devel-

oped here. However, from a safety point of view, the "main peaks" selected here correspond

either to the highest energy release or the lowest temperature of decomposition, and represent

the critically hazardous thermal event the compounds could undergo. Secondary or tertiary

peaks would complement this information, without significantly affecting the outcome of the

simulation.

A potential perspective to explore would be the modeling of mixtures. Structure-based models

conventionally apply to single molecules, yet, in practice compounds are rarely found in

pure composition, unless for storage or transportation of raw materials and final products.

For all other operations, especially reactions, reactants are mixed or diluted in solvents and

by-products are also present. Therefore, after analyzing the thermal stability, safety studies

would consider the compound in its matrix. To extend QSPR methods to mixtures, the "mixing

rules" apply [Nieto-Draghi et al., 2015]. Some properties were modeled with such methods as

for instance the application of Peng-Robinson equation of state model for binary mixtures

[Jaubert and Mutelet, 2004, Peng and Robinson, 1976] or the density of mixtures [Ajmani

et al., 2006]. Besides the synergetic effects and interactions that arise in multiple components

mixtures, the molar fractions should also be accounted for.

Simulating safety data from the molecular structure offers several advantageous applications

in process design. Besides the possibility to predict characteristics which cannot be experi-

mentally measured, there is also a time benefit. Predictions can be made at a very early stage

of the process design, so that hazardous behavior could already be anticipated. Moreover,

simulations can allow analyzing several alternatives within limited resources, saving them

for considering potential substitution of a hazardous compound by a less hazardous one
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or modification of the process. It is also noteworthy that predictive models help avoiding

expendable handling of harmful chemicals.

We propose a method relying on molecular-based approaches to predict an explosive sen-

sitivity evaluation, MIE, and thermal stability through DSC simulations to identify thermal

threats without necessarily facing them. In both cases, a combination of global classification

and local regressions models are proposed to obtain approximate estimations that are refined

to more accurate predictions.

It is important to stress that predictive models should be handled with precaution when

applied to sensitive data such as safety related information. They are also limited to pure

compounds, whereas matrix should not be disregarded. Thus they are not intended to replace

proper experimental investigations, but rather be a helpful tool that allows focusing the

experimental work on the most critical compounds. The major benefits of such procedures

within process design context are mainly to broaden the number of evaluations within given

time and resources, an efficiency gain in testing phase with better resource allocation and

valuable timing leading to anticipation.
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Minimal Ignition Energies Data

Table A.1 – MIE Values for Gaseous Compounds

# Name Tb MIE [mJ] Reference

1 1,3-butadiene -4 0.13 c

2 2,2-dimethylpropane 9 1.6 a

3 butane -1 0.26 i

4 cyclopropane -33 0.18 i

5 dimethyl amine 7 0.30 g

6 ethane -89 0.26 i

7 ethyl chloride 12 0.30 g

8 ethyl nitrite 17 0.17 a

9 ethylamine 16 2.4 a

10 ethylene -103 0.07 i

11 ethylene oxide 11 0.06 i

12 isobutane -13 0.52 a

13 methylacetylene -23 0.12 c

14 methylether -24 0.29 c

15 propane -42 0.26 i

16 propylene -47 0.28 a

17 toluene 11 0.24 i

18 vinyl acetylene 6 0.08 a

19 vinyl chloride -13 0.30 g
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Table A.2 – MIE values for liquid compounds

# Name Tm Tb MIE [mJ] Reference

20 1,3-cyclopentadiene -90 40 0.67 a

21 1-heptyne -80 100 0.56 a

22 2,2,3-trimethylbutane -26 81 1.0 a

23 2,2-dimethylbutane -100 50 1.6 a

24 2,3-butadione -2 88 0.41 a

25 2-pentene -165 30 0.18 g

26 2-propanol -89 83 0.65 a

27 acetaldehyde -123 20 0.38 a

28 acetone -95 56 1.2 a

29 acetonitrile -45 81 2.8 a

30 acrolein -88 53 0.13 a

31 acrylonitrile -84 77 0.16 c

32 allyl chloride -135 45 0.78 a

33 alpha-pinene -64 155 1.4 a

34 aziridine -78 56 0.48 g

35 benzene 6 80 0.22 c

36 cyclohexane 7 81 0.22 c

37 cyclohexene -104 83 0.53 a

38 cyclohexene oxide -40 130 0.74 a

39 cyclopentane -94 49 0.24 i

40 diethyl ether -116 35 0.20 i

41 dihydropyran -70 86 0.36 a

42 diisobutylene -94 101 0.96 a

43 dimethoxymethane -105 42 0.42 a

44 dimethyl sulfide -98 35 0.48 a

45 dioxane 12 101 0.30 g

46 di-tert-butyl peroxide -40 109 0.41 a

47 epichlorohydrin -25 118 0.29 a

48 ethyl acetate -84 77 1.4 c

49 furan -86 31 0.23 a

50 heptane -91 98 0.70 a

51 hexane -96 68 0.29 i

52 iso-octane -107 99 1.4 a

53 isopentane -161 28 0.25 i

54 isopropyl alcohol -89 83 0.65 c

55 isopropyl chloride -117 35 1.1 i

56 isopropyl ether -60 68 1.1 a

57 isopropyl mercaptan -131 57 0.53 a
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Table A.2 – MIE Values for Liquid Compounds (continued)

# Name Tm Tb MIE [mJ] Reference

58 isopropylamine -95 31 2.0 a

59 methanol -98 65 0.14 c

60 methylcyclohexane -126 101 0.27 c

61 methylethyl ketone -86 80 0.53 c

62 methylformate -100 32 0.40 a

63 m-xylene -48 139 0.20 i

64 n-butyl chloride -123 78 0.33 i

65 nitroethane -90 112 0.22 a

66 n-propyl chloride -128 47 1.1 a

67 o-xylene -25 144 0.20 i

68 pentane -130 36 0.51 a

69 propargyl alcohol -51 114 0.21 a

70 propionaldehyde -81 46 0.33 a

71 propylene oxide -112 34 0.14 i

72 p-xylene 13 138 0.20 i

73 pyrrole -23 129 1.7 a

74 tetrafluoroethylene -142 131 3.5 i

75 tetrahydrofuran -108 66 0.54 a

76 tetrahydropyran -45 88 0.22 c

77 thiophene -38 84 0.39 a

78 trichloroethylene -73 87 295 i

79 triethyl amine -115 90 1.2 a

80 vinyl acetate -93 73 0.70 a
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Table A.3 – MIE Values for Solid Compounds

# Name Tb CEx,min [g/L] MIE [mJ] Reference

81 1,3-bis(4-nitrophenyl)urea 240 0.095 60 h

82 2,4-dichlophenoxy ethyl ben-

zoate

66 0.045 60 d

83 2-acetylamino5-nitrothiazole 263 0.16 40 d

84 2-amino-5-nitrothiazole 195 0.075 30 d

85 4-chloro-2-nitro aniline 116 0.75 140 d

86 a,a’-azo isobutyronitrile 97 25 f

87 aceto acetanilide 83 20 f

88 adipic acid 152 60 c

89 anthranilic acid 146 0.030 35 d

90 ascorbic acid 190 0.070 60 d

91 aspirin 136 16 e

92 azelaic acid 109 25 f

93 benzoic acid 122 12 e

94 benzotriazole 100 0.030 30 d

95 benzoyl peroxide 103 21 e

96 bis(2-hydroxy-5-chlorophenyl)-

methane

177 0.040 60 d

97 caprolactam 68 60 e

98 cyclohexanone peroxide 76 21 e

99 dehydroacetic acid 109 0.030 15 d

100 diazo amino benzene 96 0.015 20 d

101 dicyclopentadiene dioxide 185 30 f

102 dimethyl isophtalate 61 15 f

103 dimethyl terephtalate 142 20 f

104 dinitrobenzamide 183 0.040 45 d, h

105 dinitrobenzoic acid 204 0.050 45 d, h

106 dinitrotoluamide 177 15 h

107 diphenyl 69.2 0.065 20 d

108 di-t-butyl p-cresol 69 15 f

109 DL methionine 281 35 d

110 ethylenediaminetetraacetic

acid

248 0.075 50 d

111 fumaric acid 287 35 f

112 hexamethylenetetramine 200 10 c

113 isatoic anhydride 235 25 d

114 isophtalic acid 300 25 f

115 lauryl peroxide 53 12 e
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Table A.3 – MIE Values for Solid Compounds (continued)

# Name Tb CEx,min [g/L] MIE [mJ] Reference

116 l-sorbose 163 0.065 80 d

117 mannitol 166 0.065 40 d

118 methylamino anthraquinone 170 50 d

119 nitropyridone 285 0.045 35 d

120 o-chloroaceto acetanilide 141 0.035 30 d

121 p-chloroaceto acetanilide 131 0.035 20 d

122 pentaerythritol 260 10 c

123 phosphorus pentasulphide 288 0.050 15 d

124 phtalimide 234 0.030 50 d

125 phthalic anhydride 131 0.015 15 c

126 phytosterol 135 0.025 10 d

127 p-phenylene diamine 145 30 f

128 salicylanilide 136 20 d

129 sorbic acid 135 0.020 15 d, e

130 stearic acid 70 25 d

131 t-butyl benzoic acid 168 25 f

132 terephtalic acid 300 20 f

133 trinitrotoluene 80 75 h

Table A.4 – MIE Values Sources

References

a Calcote et al. [1952]
b Calcote et al. [1952]
c Haase [1977]
d Cross and Farrer [1982]
e NFPA [1986]
f Bartknecht [1989]
g Berufsgenossenschaften [1992]
h Hertzberg et al. [1992]
i Babrauskas [2003]
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Appendix A. Minimal Ignition Energies Data

Table A.5 – Global MIE Parameters

i Coefficient Parameter Name

0 −3.35 ·102 yo Intercept

1 −2.22 ·101 NS Number of S atoms

2 1.78 ·101 NC l Number of Cl atoms

3 1.54 ·101 MR Average atom weight

4 -4.15 1χ Kier& Hall index (order 1)

5 −3.53 ·10−1 1B IC Bonding Information content (order 1)

6 −5.39 ·10−1 Z PCC Zefirov’s Partial Charges for atom #0000008(C)

7 5.55 ET SP,O Electrotopological state of atom (All pairs, Zefirov’s

PC) for atom #0000006(O)

8 2.41 ·10−1 ET SB ,C Electrotopological state of atom (All bonds, Ze-

firov’s PC) for atom #0000011(C)

9 -1.55 C PS AC S A,N Charge density on solvent accessible surface (Ze-

firov’s PC) for atom #0000001(N)

10 4.95 ·101 C PS AC S A,C Charge density on solvent accessible surface (Ze-

firov’s PC) for atom #0000002(C)

11 -1.69 S AS AC Solvent accessible surface for atom #0000003(C)

12 -3.26 P N S A1 PNSA1 Partial negative surface area (Zefirov PC)

13 8.55 P N S A3 PNSA3 Atomic charge weighted PNSA (Zefirov PC)

14 9.54 ·101 F H AS A2 Fractional Area-weighted surface charge of hydro-

gen bonding acceptor atoms HASA2 (Zefirov PC)

15 −1.06 ·101 H AS A2T S Area-weighted surface charge of hydrogen bonding

acceptor atoms over square root of Total molecular

surface area(Zefirov PC)

16 3.20 ·101 MPCH MOPAC Partial Charges for atom #0000014(H)
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Table A.6 – MIE Dust Model C Parameters

i Coefficient Parameter Name

0 4.25 ·102 yo Intercept

1 −6.14 ·10−1 0IC Average Information content (order 0)

2 -1.14 0SIC Structural Information content (order 0)

3 -1.45 1B IC Bonding Information content (order 1)

4 −2.94 ·10−1 VM Molecular volume

5 1.54 SM Molecular surface area

6 -3.62 Z E NC Sanderson’s atomic electronegativities for atom

#0000008(C)

7 -1.21 LOG Z E NC Natural logarithm of Sanderson’s atomic electroneg-

ativities for atom #0000010(C)

8 2.62 LOG Z E NH Natural logarithm of Sanderson’s atomic electroneg-

ativities for atom #0000012(H)

9 −4.98 ·10−1 Z E NH Sanderson’s atomic electronegativities for atom

#0000016(H)

10 3.26 Z PCC Zefirov’s Partial Charges for atom #0000003(C)

11 2.78 Z PCO,max Max partial charge (Zefirov) for atoms for atom O

12 3.55 ·10−1 ET SB ,C Electrotopological state of atom (All bonds, Ze-

firov’s PC) for atom #0000003(C)

13 4.41 ·10−1 ET SB ,C Electrotopological state of atom (All bonds, Ze-

firov’s PC) for atom #0000010(C)

14 1.07 ET SB ,C Electrotopological state of atom (All bonds, Ze-

firov’s PC) for atom #0000011(C)

15 1.97 ET SP,H Electrotopological state of atom (All pairs, Zefirov’s

PC) for atom #0000016(H)

16 7.35 T E
al l Topographic electronic index (all bonds)

17 5.63 S AS AO Solvent accessible surface for atom #0000006(O)

18 −2.69 ·101 C PS AO Charge density on solvent accessible surface (Ze-

firov’s PC) for atom #0000006(O)

19 -6.60 S AS AC Solvent accessible surface for atom #0000008(C)

20 3.05 ·101 C PS AC Charge density on solvent accessible surface (Ze-

firov’s PC) for atom #0000008(C)

21 6.57 ·10−1 C PS AC Charge density on solvent accessible surface (Ze-

firov’s PC) for atom #0000011(C)

22 -9.85 S AS AH Solvent accessible surface for atom #0000014(H)

23 −6.01 ·10−2 DPS A3 Difference in CPSAs (PPSA3-PNSA3) (Zefirov PC)

24 −2.92 ·10−2 MPCC MOPAC Partial Charges for atom #0000003(C)

25 −6.51 ·10−1 MPPCO MOPAC Partial Charges for atom #0000007(O)

26 4.86 ·10−1 F H AS A Fractional HASA H-acceptor surface area HASA-

1/TMSA (HASA/TMSA) (MOPAC PC)

27 5.56 ·10−1 BON−O MOPAC Bond Orders for bond #0000001(N) -

#0000007(O) 175



Appendix A. Minimal Ignition Energies Data
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Figure A.1 – Graphical Representation of the MIE Classification Tree. Blue:
Class 1, Red: Class 2, Green: Class3, Black: Class 4
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Table A.7 – MIE Classes Models Parameters

Class i Coefficient Parameter Name

1 0 −2.51 yo Intercept
1 2.81 ·10−1 NSI NGLE ,R Relative number of single bonds
2 −1.12 3χ Randic index (order 3)
3 6.93 ·10−1 3χ Kier&Hall index (order 3)
4 1.71 ·10−2 0IC Average Information content (order 0)
5 1.11 ·10−1 SX Y XY Shadow / XY Rectangle
6 9.67 LOG Z E N Natural logarithm of Sanderson’s atomic elec-

tronegativities for atom #0000006(O)
7 −3.68 ·10−2 C PS AC S A Charge density on solvent accessible surface (Ze-

firov’s PC) for atom #0000003(C)
8 1.28 ·10−1 C PS AC S A Charge density on solvent accessible surface (Ze-

firov’s PC) for atom #0000012(H)
9 −2.31 ·10−1 W PS A1 Weighted Partial positive surface area (Zefirov

PC)
10 −1.27 F H AC AM Fractional H-acceptors charged surface area

(MOPAC PC)

2 0 5.83 ·10−1 yo Intercept
1 8.56 IC Moments of inertia C
2 4.51 ·10−1 Z E N Sanderson’s atomic electronegativities for atom

#0000007(O)
3 −2.09 ·10−1 Z PC Zefirov’s Partial Charges for atom #0000003(C)
4 4.05 ·10−1 C PS AC S A Charge density on solvent accessible surface (Ze-

firov’s PC) for atom #0000001(N)
5 7.74 ·10−2 S AS A Solvent accessible surface for atom #0000006(O)

3 0 4.25 ·101 yo Intercept
1 −8.83 ·102 IC Moments of inertia C
2 −9.87 ·10−1 2SIC Average Structural Information content (order

2)
3 2.17 ·10−2 S AS A Solvent accessible surface for atom #0000001(N)
4 4.72 ·10−1 C PS AC S A Charge density on solvent accessible surface (Ze-

firov’s PC) for atom #0000012(H)
5 2.71 ·101 HDC A2 HA dependent HDCA-2 (Zefirov PC)

4 0 6.95 ·102 yo Intercept
1 −1.30 ·101 NSI NGLE ,R Relative number of single bonds
2 −2.40 ·102 NT RI PLE ,R Relative number of triple bonds
3 2.75 ·10−1 LOG Z E N Natural logarithm of Sanderson’s atomic elec-

tronegativities for atom #0000011(C)
4 1.62 ·10−1 ET SB Electrotopological state of atom (All bonds, Ze-

firov’s PC) for atom #0000011(C)
5 −9.57 ·10−1 PPS A1 Partial positive surface area (Zefirov PC)
6 −2.40 ·101 HDC A1 HA dependent HDCA-1 (Zefirov PC)
7 −1.11 ·103 HDC A2T HA dependent HDCA-2/TMSA (Zefirov PC)
8 −1.41 MPC MOPAC Partial Charges for atom #0000004(C)

177



Ta
b

le
A

.8
–

M
o

d
el

s
R

es
p

o
n

se
s

D
at

a
G

lo
b

al
M

o
d

el
L

o
ca

lM
o

d
el

s
C

la
ss

ifi
ca

ti
o

n
C

la
ss

M
o

d
el

s

#
N

am
e

M
IE

[m
J]

P
re

d
A

R
D

%
P

re
d

A
R

D
%

A
ct

u
al

Tr
ee

P
re

d
A

R
D

%

1
1,

3-
b

u
ta

d
ie

n
e

0.
13

-8
.3

0
64

84
0.

15
13

1
1

v
0.

21
63

2
2,

2-
d

im
et

h
yl

p
ro

p
an

e
1.

57
-8

.7
5

65
7

1.
51

4
v

2
1

1.
87

19
3

b
u

ta
n

e
0.

26
0.

02
93

v
0.

25
5

1
1

0.
28

8
4

cy
cl

o
p

ro
p

an
e

0.
18

-2
.3

6
14

14
0.

16
13

1
1

0.
19

7
5

d
im

et
h

yl
am

in
e

0.
30

6.
39

20
30

0.
34

12
1

1
0.

34
14

6
et

h
an

e
0.

26
-1

.4
9

67
2

v
0.

29
12

1
1

0.
39

48
7

et
h

yl
ch

lo
ri

d
e

0.
30

15
.2

49
55

0.
42

41
1

1
0.

26
13

8
et

h
yl

n
it

ri
te

0.
17

-5
.8

1
35

20
0.

18
4

1
1

0.
20

18
9

et
h

yl
am

in
e

2.
40

6.
19

15
8

1.
22

49
2

1
v

2.
71

13
10

et
h

yl
en

e
0.

07
6.

97
98

56
0.

07
1

1
1

0.
09

31
11

et
h

yl
en

e
ox

id
e

0.
06

-8
.8

8
14

42
8

0.
10

66
1

1
0.

12
95

12
is

o
b

u
ta

n
e

0.
52

v
-3

.4
3

76
0

0.
45

14
1

1
0.

53
1

13
m

et
h

yl
ac

et
yl

en
e

0.
12

11
.1

95
58

0.
14

19
1

1
0.

10
13

14
m

et
h

yl
et

h
er

0.
29

-2
.1

3
83

4
0.

17
43

1
1

0.
15

50
15

p
ro

p
an

e
0.

26
-5

.1
4

20
76

v
0.

17
33

1
1

v
0.

19
25

16
p

ro
p

yl
en

e
0.

28
0.

51
84

0.
26

8
1

1
0.

23
17

17
to

lu
en

e
0.

24
v

3.
72

14
52

0.
22

9
v

1
1

0.
23

4
18

vi
n

yl
ac

et
yl

en
e

0.
08

v
-6

.3
2

77
90

0.
08

0
1

1
0.

12
41

19
vi

n
yl

ch
lo

ri
d

e
0.

30
-3

.4
3

12
44

0.
32

5
1

1
0.

28
7

20
1,

3-
cy

cl
o

p
en

ta
d

ie
n

e
0.

67
6.

67
89

6
0.

54
19

1
1

0.
38

43
21

1-
h

ep
ty

n
e

0.
56

-7
.0

8
13

65
0.

56
0

1
1

0.
44

22
22

2,
2,

3-
tr

im
et

h
yl

b
u

ta
n

e
1.

00
-8

.2
3

92
3

0.
78

22
1

1
0.

71
29

23
2,

2-
d

im
et

h
yl

b
u

ta
n

e
1.

64
-2

.9
6

28
0

0.
73

56
2

1
1.

42
13

24
2,

3-
b

u
ta

d
io

n
e

0.
41

8.
94

20
81

0.
42

2
1

1
0.

45
11

25
2-

p
en

te
n

e
0.

18
11

.3
61

57
0.

33
81

1
1

0.
34

90
26

2-
p

ro
p

an
o

l
0.

65
-0

.4
0

16
2

0.
72

11
1

1
0.

88
35

27
ac

et
al

d
eh

yd
e

0.
38

-4
.1

2
11

83
0.

62
63

1
1

0.
36

6
28

ac
et

o
n

e
1.

15
-5

.3
6

56
6

0.
65

44
2

1
1.

04
10

29
ac

et
o

n
it

ri
le

2.
80

1.
01

64
1.

83
35

2
1

2.
78

1
30

ac
ro

le
in

0.
13

v
-3

.8
2

30
41

0.
10

26
1

1
0.

15
16

31
ac

ry
lo

n
it

ri
le

0.
16

-1
6.

0
10

09
9

0.
22

37
1

1
0.

23
43

32
al

ly
lc

h
lo

ri
d

e
0.

78
3.

44
34

2
0.

41
47

1
1

0.
40

49



Ta
b

le
A

.8
–

M
o

d
el

s
R

es
p

o
n

se
s

(c
o

n
ti

n
u

ed
)

D
at

a
G

lo
b

al
M

o
d

el
L

o
ca

lM
o

d
el

s
C

la
ss

ifi
ca

ti
o

n
C

la
ss

M
o

d
el

s

#
N

am
e

M
IE

[m
J]

P
re

d
A

R
D

%
P

re
d

A
R

D
%

A
ct

u
al

Tr
ee

P
re

d
A

R
D

%

33
al

p
h

a-
p

in
en

e
1.

40
21

.6
14

40
1.

72
23

2
2

1.
24

12
34

az
ir

id
in

e
0.

48
-8

.1
6

18
01

0.
62

30
1

1
0.

27
44

35
b

en
ze

n
e

0.
22

-5
.6

7
26

79
0.

24
7

1
1

0.
18

19
36

cy
cl

o
h

ex
an

e
0.

22
-4

.0
9

19
61

0.
38

71
1

1
0.

38
71

37
cy

cl
o

h
ex

en
e

0.
53

7.
95

14
14

0.
31

41
1

1
0.

38
27

38
cy

cl
o

h
ex

en
e

ox
id

e
0.

74
-0

.9
4

22
8

0.
48

36
1

1
0.

42
43

39
cy

cl
o

p
en

ta
n

e
0.

24
-3

.4
6

15
41

0.
27

14
1

1
0.

28
17

40
d

ie
th

yl
et

h
er

0.
20

0.
82

30
9

0.
26

31
1

1
0.

28
39

41
d

ih
yd

ro
p

yr
an

0.
36

v
9.

58
25

61
0.

26
27

1
1

0.
57

59
42

d
ii

so
b

u
ty

le
n

e
0.

96
3.

66
28

1
0.

90
6

1
1

0.
86

11
43

d
im

et
h

ox
ym

et
h

an
e

0.
42

11
.9

27
43

0.
29

31
1

2
0.

30
29

44
d

im
et

h
yl

su
lfi

d
e

0.
48

17
.6

35
62

0.
48

1
1

1
0.

30
38

45
d

io
xa

n
e

0.
30

10
.5

33
97

0.
34

12
1

2
0.

26
14

46
d

i-
te

rt
-b

u
ty

lp
er

ox
id

e
0.

41
-0

.9
5

33
1

0.
41

1
1

2
0.

50
23

47
ep

ic
h

lo
ro

h
yd

ri
n

0.
29

21
.1

71
71

0.
27

6
v

1
4

v
0.

28
5

48
et

h
yl

ac
et

at
e

1.
42

-5
.2

4
46

9
1.

46
3

2
2

v
0.

45
68

49
fu

ra
n

0.
23

-0
.4

1
28

1
0.

22
0

1
1

v
0.

33
45

50
h

ep
ta

n
e

0.
70

v
2.

36
23

8
0.

53
24

1
1

0.
45

36
51

h
ex

an
e

0.
29

7.
81

25
92

0.
29

2
1

1
0.

27
5

52
is

o
-o

ct
an

e
1.

35
-5

.4
0

50
0

1.
56

16
2

2
v

1.
22

9
53

is
o

p
en

ta
n

e
0.

25
v

0.
48

91
0.

32
26

1
1

0.
42

66
54

is
o

p
ro

p
yl

al
co

h
o

l
0.

65
3.

42
42

5
0.

52
20

1
1

0.
53

18
55

is
o

p
ro

p
yl

ch
lo

ri
d

e
1.

08
6.

70
52

1
1.

25
16

2
1

1.
19

10
56

is
o

p
ro

p
yl

et
h

er
1.

14
4.

54
29

8
0.

87
23

v
2

2
1.

19
4

57
is

o
p

ro
p

yl
m

er
ca

p
ta

n
0.

53
-6

.7
7

13
78

1.
13

11
3

1
1

0.
56

6
58

is
o

p
ro

p
yl

am
in

e
2.

00
7.

56
27

8
3.

64
82

2
1

1.
85

7
59

m
et

h
an

o
l

0.
14

-9
.7

8
70

89
0.

14
2

1
1

0.
15

11
60

m
et

h
yl

cy
cl

o
h

ex
an

e
0.

27
7.

16
25

54
0.

39
43

1
1

0.
42

55
61

m
et

h
yl

et
h

yl
ke

to
n

e
0.

53
2.

09
29

3
0.

84
58

1
1

0.
49

7
62

m
et

h
yl

fo
rm

at
e

0.
40

v
-7

.7
5

20
38

0.
60

50
1

1
0.

51
27

63
m

-x
yl

en
e

0.
20

9.
19

44
95

0.
35

76
1

1
v

0.
34

72
64

n
-b

u
ty

lc
h

lo
ri

d
e

0.
33

1.
53

36
5

0.
56

70
1

1
0.

51
55

65
n

it
ro

et
h

an
e

0.
22

1.
17

43
0

0.
20

10
1

1
0.

22
1



Ta
b

le
A

.8
–

M
o

d
el

s
R

es
p

o
n

se
s

(c
o

n
ti

n
u

ed
)

D
at

a
G

lo
b

al
M

o
d

el
L

o
ca

lM
o

d
el

s
C

la
ss

ifi
ca

ti
o

n
C

la
ss

M
o

d
el

s

#
N

am
e

M
IE

[m
J]

P
re

d
A

R
D

%
P

re
d

A
R

D
%

A
ct

u
al

Tr
ee

P
re

d
A

R
D

%

66
n

-p
ro

p
yl

ch
lo

ri
d

e
1.

08
12

.1
10

23
0.

74
32

2
1

1.
17

8
67

o
-x

yl
en

e
0.

20
0.

92
35

8
0.

16
22

1
1

0.
26

28
68

p
en

ta
n

e
0.

51
3.

00
48

9
0.

35
32

v
1

1
0.

38
26

69
p

ro
p

ar
gy

la
lc

o
h

o
l

0.
21

-3
.2

8
16

62
0.

24
15

1
1

0.
21

2
70

p
ro

p
io

n
al

d
eh

yd
e

0.
33

-0
.4

9
25

0
0.

50
55

1
1

0.
25

25
71

p
ro

p
yl

en
e

ox
id

e
0.

14
-1

0.
5

75
66

0.
13

7
1

1
0.

16
18

72
p

-x
yl

en
e

0.
20

4.
81

23
03

0.
18

8
1

1
0.

20
1

73
p

yr
ro

le
1.

70
12

.8
65

1
1.

43
16

2
1

v
1.

92
13

74
te

tr
afl

u
o

ro
et

h
yl

en
e

3.
5

6.
71

92
3.

95
13

2
3

3.
46

1
75

te
tr

ah
yd

ro
fu

ra
n

0.
54

10
.6

18
71

0.
19

65
1

1
0.

21
61

76
te

tr
ah

yd
ro

p
yr

an
0.

22
4.

00
17

20
0.

25
15

1
1

0.
42

92
77

th
io

p
h

en
e

0.
39

10
.9

26
94

0.
41

6
1

1
0.

42
9

78
tr

ic
h

lo
ro

et
h

yl
en

e
29

5
28

5
3

-
-

5
4

-
-

79
tr

ie
th

yl
am

in
e

1.
15

6.
45

46
1

1.
05

8
2

2
1.

29
12

80
vi

n
yl

ac
et

at
e

0.
70

-1
.4

4
30

5
0.

73
5

1
1

0.
62

11

81
1,

3-
b

is
(4

-n
it

ro
p

h
en

yl
)u

re
a

60
43

.8
27

v
62

.6
4

v
4

4
v

47
.7

20
82

2,
4-

d
ic

h
lo

p
h

en
ox

y
et

h
yl

b
en

zo
at

e
60

v
73

.7
23

v
45

.7
24

4
4

61
.0

2
83

2-
ac

et
yl

am
in

o
5-

n
it

ro
th

ia
zo

le
40

48
.5

21
38

.1
5

4
4

40
.7

2
84

2-
am

in
o

-5
-n

it
ro

th
ia

zo
le

30
48

.9
63

26
.7

11
v

4
4

32
.8

9
85

4-
ch

lo
ro

-2
-n

it
ro

an
il

in
e

14
0

89
.0

36
14

0
0

4
4

13
6

3
86

a,
a’

-a
zo

is
o

b
u

ty
ro

n
it

ri
le

25
24

.1
3

25
.3

1
v

3
4

24
.7

1
87

ac
et

o
ac

et
an

il
id

e
20

30
.2

51
20

.4
2

3
4

19
.2

4
88

ad
ip

ic
ac

id
60

28
.9

52
50

.5
16

4
4

v
77

.6
29

89
an

th
ra

n
il

ic
ac

id
35

43
.0

23
35

.4
1

v
4

4
33

.9
3

90
as

co
rb

ic
ac

id
60

62
.2

4
25

.1
58

4
4

56
.5

6
91

as
p

ir
in

16
24

.5
53

31
.6

98
3

3
17

.0
6

92
az

el
ai

c
ac

id
25

19
.0

24
11

.7
53

3
3

24
.3

3
93

b
en

zo
ic

ac
id

12
11

.4
5

29
.8

14
9

3
3

11
.9

1
94

b
en

zo
tr

ia
zo

le
30

33
.1

10
v

39
.3

31
4

4
38

.1
27

95
b

en
zo

yl
p

er
ox

id
e

21
7.

98
62

60
.4

18
8

v
3

4
19

.5
7

96
b

is
(2

-h
yd

ro
xy

-5
-c

h
lo

ro
p

h
en

yl
)-

m
et

h
an

e
60

57
.9

3
57

.5
4

4
4

59
.7

1
97

ca
p

ro
la

ct
am

60
12

.4
79

19
.5

67
4

2
62

.5
4

98
cy

cl
o

h
ex

an
o

n
e

p
er

ox
id

e
21

23
.5

12
v

30
.7

46
3

3
v

22
.6

8



Ta
b

le
A

.8
–

M
o

d
el

s
R

es
p

o
n

se
s

(c
o

n
ti

n
u

ed
)

D
at

a
G

lo
b

al
M

o
d

el
L

o
ca

lM
o

d
el

s
C

la
ss

ifi
ca

ti
o

n
C

la
ss

M
o

d
el

s

#
N

am
e

M
IE

[m
J]

P
re

d
A

R
D

%
P

re
d

A
R

D
%

A
ct

u
al

Tr
ee

P
re

d
A

R
D

%

99
d

eh
yd

ro
ac

et
ic

ac
id

15
30

.4
10

3
v

-1
2.

8
18

5
3

3
16

.9
13

10
0

d
ia

zo
am

in
o

b
en

ze
n

e
20

17
.0

15
31

.7
59

3
4

23
.8

19
10

1
d

ic
yc

lo
p

en
ta

d
ie

n
e

d
io

xi
d

e
30

14
.0

53
v

15
.8

47
4

4
30

.9
3

10
2

d
im

et
h

yl
is

o
p

h
ta

la
te

15
29

.4
96

16
.5

10
3

3
16

.8
12

10
3

d
im

et
h

yl
te

re
p

h
ta

la
te

20
19

.9
1

45
.7

12
9

3
3

15
.3

23
10

4
d

in
it

ro
b

en
za

m
id

e
45

58
.1

29
46

.9
4

4
4

v
51

.6
15

10
5

d
in

it
ro

b
en

zo
ic

ac
id

45
v

42
.2

6
v

43
.9

2
v

4
4

47
.4

5
10

6
d

in
it

ro
to

lu
am

id
e

15
44

.5
19

7
19

.5
30

3
4

16
.8

12
10

7
d

ip
h

en
yl

20
-5

.7
1

12
9

18
.5

7
3

4
20

.3
2

10
8

d
i-

t-
b

u
ty

lp
-c

re
so

l
15

16
.4

9
48

.1
22

0
3

4
16

.3
8

10
9

D
L

m
et

h
io

n
in

e
35

48
.9

40
49

.9
43

4
4

34
.1

2
11

0
et

h
yl

en
ed

ia
m

in
et

et
ra

ac
et

ic
ac

id
50

31
.2

38
34

.3
31

4
3

37
.6

25
11

1
fu

m
ar

ic
ac

id
35

v
27

.8
21

8.
90

75
v

4
3

34
.5

1
11

2
h

ex
am

et
h

yl
en

et
et

ra
m

in
e

10
19

.1
91

26
.2

16
2

2
2

v
1.

7
83

11
3

is
at

o
ic

an
h

yd
ri

d
e

25
34

.8
39

23
.9

5
3

3
21

.1
16

11
4

is
o

p
h

ta
li

c
ac

id
25

v
28

.0
12

12
.4

50
3

3
22

.1
12

11
5

la
u

ry
lp

er
ox

id
e

12
24

.2
10

2
78

.5
55

4
v

3
3

v
11

.5
4

11
6

l-
so

rb
o

se
80

50
.3

37
42

.9
46

4
4

83
.9

5
11

7
m

an
n

it
o

l
40

45
.0

13
52

.8
32

4
4

42
.0

5
11

8
m

et
h

yl
am

in
o

an
th

ra
q

u
in

o
n

e
50

24
.4

51
v

30
.9

38
4

4
41

.2
18

11
9

n
it

ro
p

yr
id

o
n

e
35

21
.8

38
20

.3
42

4
4

31
.6

10
12

0
o

-c
h

lo
ro

ac
et

o
ac

et
an

il
id

e
30

38
.9

30
27

.8
7

4
4

47
.8

59
12

1
p

-c
h

lo
ro

ac
et

o
ac

et
an

il
id

e
20

44
.0

12
0

14
.3

28
3

4
v

20
.4

2
12

2
p

en
ta

er
yt

h
ri

to
l

10
31

.6
21

6
15

.3
53

2
3

10
.0

0
12

3
p

h
o

sp
h

o
ru

s
p

en
ta

su
lp

h
id

e
15

15
.7

5
52

.6
25

1
3

4
v

30
.0

10
0

12
4

p
h

ta
li

m
id

e
50

v
28

.1
44

16
.8

66
v

4
4

42
.5

15
12

5
p

h
th

al
ic

an
h

yd
ri

d
e

15
16

.0
7

9.
70

35
3

3
18

.2
21

12
6

p
h

yt
o

st
er

o
l

10
12

.4
24

30
.4

20
4

2
4

10
.0

0
12

7
p

-p
h

en
yl

en
e

d
ia

m
in

e
30

28
.5

5
16

.6
45

4
4

v
-5

6.
0

28
7

12
8

sa
li

cy
la

n
il

id
e

20
29

.8
49

20
.9

4
v

3
4

20
.5

2
12

9
so

rb
ic

ac
id

15
24

.9
66

24
.3

62
3

3
13

.7
9

13
0

st
ea

ri
c

ac
id

25
16

.1
35

17
.0

32
3

3
24

.1
3

13
1

t-
b

u
ty

lb
en

zo
ic

ac
id

25
v

12
.7

49
16

.5
34

3
3

v
19

.6
22



Ta
b

le
A

.8
–

M
o

d
el

s
R

es
p

o
n

se
s

(c
o

n
ti

n
u

ed
)

D
at

a
G

lo
b

al
M

o
d

el
L

o
ca

lM
o

d
el

s
C

la
ss

ifi
ca

ti
o

n
C

la
ss

M
o

d
el

s

#
N

am
e

M
IE

[m
J]

P
re

d
A

R
D

%
P

re
d

A
R

D
%

A
ct

u
al

Tr
ee

P
re

d
A

R
D

%

13
2

te
re

p
h

ta
li

c
ac

id
20

33
.4

67
v

71
.4

25
7

3
3

21
.5

7
13

3
tr

in
it

ro
to

lu
en

e
75

v
51

.6
31

v
56

.8
24

4
4

v
36

.3
52



Differential Scanning Calorimetry

B.1 Tolerance Zone Construction

In chapter 6, the experimental error of DSC measurements is estimated through a repeatability

study. As the DSC curves are fitted by Fraser-Suzuki models, as shown in equation 1, the

inference of the error on each individual parameter included in the Fraser-Suzuki model has

been assessed in order to estimate the overall impact on the DSC curve.

Φ =Φmax ·exp

[− ln(2)

a2 · ln2
(
1+2a

(T −Tmax )

FW

)]
(1)

The results have been computed following the procedure detailed in chapter 2, section 2.5.3.

The intermediate steps are fully expressed here. The tolerance zone, which is constructed

around the DSC curves, and is based on the estimation of the overall deviation of the curve

σΦ depending on the deviations for each of the parameter σx̄i :

σΦ =

√√√√∑
i

[(
∂Φ

∂xi

)
B
·σx̄i

]2

(2)

where ∂Φ
∂xi

are:

∂Φ

∂Φmax
= exp

[− ln(2)

a2 · ln2
(
1+2a

(T −Tmax )

FW

)]
(3)

∂Φ

∂Tmax
=Φ · ln(2)

a2 ·
4a ln

(
1+2a (T−Tmax )

FW

)
FW +2a(T −Tmax )

(4)
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Appendix B. Differential Scanning Calorimetry

∂Φ

∂FW
=Φ · 2ln(2)

a2 · ln

(
1+2a

(T −Tmax )

FW

)
· (2a(T −Tmax )+FW )

FW 2
(5)

∂Φ

∂a
=Φ ·

[(
2ln(2)

a3 · ln2
(
1+2a

(T −Tmax )

FW

))
+

( −4ln(2)(T −Tmax )

a2(FW +2a(T −Tmax ))
· ln

(
1+2a

(T −Tmax )

FW

))] (6)
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B.2. Nitro Compounds Study

B.2 Nitro Compounds Study

Table B.1 – Nitro Compounds Models Parameters

Property i Coefficient Parameter Name

ΔHr 0 1.95 ·105 yo Intercept

1 1.59 ·104 ABMO,max Max anti-bonding contribution of one MO

2 7.70 ·103 BOC ,av g Average bond order for atom C

3 −1.55 ·104 ER,max(HC ) Max resonance energy for bond H-C

4 −3.37 ·103 F H AC A Fractional H-acceptor ability of the molecule

(HACA/TMSA) (MOPAC PC)

5 3.99 ·103 Sγ

X Z Relative shadow area: ZX Shadow / ZX Rectangle

Φmax 0 1.20 ·103 yo Intercept

1 11.2 0SIC Structural Information content (order 0)

2 −2.27 HDS A2 HA dependent H-donors surface area (Zefirov

PC)

3 −1.29 ·103 BOσ−σ,max Max σ−σ bond order

4 −15.9 EC ,tot/N Total molecular electrostatic interaction / # of

atoms

5 16.3 OK Image of the Onsager-Kirkwood solvation en-

ergy

6 11.6 Stot /N Total entropy (300K) /# atoms

Tmax 0 −9.89 ·102 yo Intercept

1 −4.67 ·10−1 PPS A2 Total charge weighted PPSA (MOPAC PC)

2 6.80 ·102 BMO,max Max bonding contribution of one MO

3 6.88 ·103 BOσ−π,max Max σ−π bond order

4 5.07 ·103 NRIC ,mi n Min nucleophilic reaction index for atom C

5 −79.3 BOC ,av g Average bond order for atom C

FW 0 6.57 ·103 yo Intercept

1 21.3 Ene(CC ),max Max nuclear-electron attraction for bond C-C

2 −2.05 ·10−2 νH Highest normal mode vibration frequency

3 −1.16 ·102 EaC ,max Max atomic state energy for atom C

4 1.66 W PS A2 Weighted PPSA (PPSA2*TMSA/1000) (Zefirov

PC)

5 −5.97 ·101 OK Image of the Onsager-Kirkwood solvation en-

ergy

a 0 −43.3 yo Intercept

1 7.84 ·10−3 HDS AM H-donors surface area (MOPAC PC)

2 78.8 RC ,max Max 1-electron reaction index for atom C

3 1.54 ER,max(NO) Max resonance energy for bond N-O

4 −72.4 NRIC ,mi n Min nucleophilic reaction index for atom C

5 −1.82 ·10−2 Svi b Vibrational entropy (300K)
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B.2. Nitro Compounds Study

Table B.3 – Miscellaneous Set Models Parameters

Property i Coefficient Parameter Name

ΔHr 0 3.24 ·103 yo Intercept

1 −1.09 ·103 EC ,tot /N Total molecular electrostatic interaction / # of atoms

2 2.87 ·105 PC S AC Partial Charged Surface Area for atom C

3 7.14 ·103 F H AS A Fractional H-acceptors surface area HASA-1/TMSA (Ze-

firov PC)

4 4.19 NC S A Negatively Charged Surface Area (MOPAC PC)

5 −4.68 ·103 OK Image of the Onsager-Kirkwood solvation energy

Φmax 0 2.60 yo Intercept

1 −3.20 ·102 NP /N Relative number of P atoms

2 9.99 ·10−2 DPS A3 Difference in CPSAs (PPSA3-PNSA3) (MOPAC PC)

3 −2.68 ·102 EC ,av g Average electrophilic reaction index for atom C

4 −6.18 T E
al l Topographic electronic index (all bonds)

5 1.28 ·10−1 NHD count of H-donors sites (Zefirov PC) (all)

Tmax 0 4.67 ·102 yo Intercept

1 6.26 ·102 VM ,X Y Z Molecular Volume / XYZ Box

2 −3.64 P N S A3 Atomic charge weighted PNSA (MOPAC PC)

3 2.49 ·102 ABMO,max Max anti-bonding contribution of one Molecular Orbital

4 −1.38 ·103 EC ,max Max electrophilic reaction index for atom C

FW 0 −1.11 ·103 yo Intercept

1 1.28 ·103 NBr /N Relative number of Br atoms

2 7.01 ·101 ρHC ,mi n Min coulombic interaction for bond H-C

3 456 F PS AHD H-donors Fractional partial positively charged surface

area (version 2)

4 574 BOσπ,max Max SIGMA-PI bond order

5 2.19 ·101 Enn(HC ),mi n Min nuclear repulsion for bond H-C

a 0 7.82 yo Intercept

1 1.01 ·101 NC ,max Max nucleophilic reaction index for atom C

2 −6.92 ·10−1 VC ,max Max valency for atom C

3 −3.31 ·10−2 ΔH f /N Final heat of formation / # atoms

4 −1.39 ρHC ,max Max coulombic interaction for bond H-C

5 1.11 ·101 RC ,max Max 1-electron reaction index for atom C
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Confidential Data

The following tables, figures and results have been developed based on a proprietary database,

and therefore some elements are subject to confidentiality request from the industrial partner

of this project.

C.1 Chemical Families Study
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C.1. Chemical Families Study

Table C.2 – Chemical Families Models Evaluation Summary

Evaluation Partial Area Amplitude Max Position Full Width Asymmetry

ΔHr Φmax Tmax FW a

Nitroso and Nitrites

R2
Tr 0.958 0.986 0.953 0.944 0.966

R2
V al 0.929 0.946 0.685 0.916 0.990

ARDTr [%] 7 16 7 14 45

ARDV al [%] 653 145 7 23 28

Parameters 3 3 4 4 3

Dataset Size 13 Training 10 Validation 3

Azo and Tetrazoles

R2
Tr 0.936 0.886 0.894 0.924 0.638

R2
V al 0.942 0.705 0.949 0.845 0.979

ARDTr [%] 11 40 10 15 1171

ARDTr,c [%] 92

ARDV al [%] 18 31 7 15 80

Parameters 3 3 3 4 4

Dataset Size 14 Training 10 Validation 4

Phenylamines

R2
Tr 0.948 0.781 0.788 0.770 0.738

R2
V al 0.955 0.774 0.035 0.557 0.613

ARDTr [%] 37 72 7 41 221

ARDV al [%] 16 1013 35 117 76

ARDV al ,c [%] 10

Parameters 5 5 5 7 9

Dataset Size 28 Training 23 Validation 5

Nitriles

R2
Tr 0.900 0.909 0.896 0.429 0.798

R2
V al 0.823 0.260 0.010 0.150 0.146

ARDTr [%] 211 190 7 64 388

ARDV al [%] 48 1030 39 103 1912

ARDV al ,c [%] 100 26 255

Parameters 5 5 6 2 4

Dataset Size 27 Training 21 Validation 6

Ethers

R2
Tr 0.744 0.641 0.520 0.356 0.365
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Appendix C. Confidential Data

Table C.2 – Chemical Families Models Evaluation Summary (continued)

Evaluation Partial Area Amplitude Max Position Full Width Asymmetry

ΔHr Φmax Tmax FW a

R2
V al 0.212 0.510 0.042 0.292 0.578

ARDTr [%] 248 263 21 82 246

ARDV al [%] 247 343 28 165 554

ARDV al ,c [%] 176 139 106 128

Parameters 8 4 7 4 7

Dataset Size 78 Training 72 Validation 6
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C.1. Chemical Families Study

Tables C.3 to C.7 are subject to the confidentiality clause and are for this reason withheld.

Table C.3 – Nitroso and Nitrites Models Parameters

Table C.4 – Azo and Tetrazoles Models Parameters

Table C.5 – Phenylamines Models Parameters

Table C.6 – Nitrile Models Parameters

Table C.7 – Ethers Models Parameters
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Appendix C. Confidential Data
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Figure C.1 – Graphical Representations of the Models for the Nitroso and
Nitrites Set
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Figure C.2 – Graphical Representations of the Models for Azo and Tetrazoles
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Figure C.3 – Graphical Representations of the Models for Phenylamines
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Figure C.4 – Graphical Representations of the Models for Nitriles
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Figure C.5 – Graphical Representations of the Models for Ethers
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Table C.8 is subject to the confidentiality clause and is for this reason withheld.

Table C.8 – Chemical Families Models Responses

199



Appendix C. Confidential Data

C.2 Models on Clusters

Table C.9 – Clusters Models Evaluation Summary

Evaluation Partial Area Amplitude Max Position Full Width Asymmetry

ΔHr Φmax Tmax FW a

Cluster 1

R2
Tr 0.710 0.663 0.638 0.637 0.656

R2
CV 0.935 0.441 0.478 0.908 0.194

ARDTr [%] 649 526 24 62 185

ARDCV [%] 15 50 15 80 117

Parameters 10 12 19 29 35

Dataset Size 131 Training 126 Validation 5

Cluster 2

R2
Tr 0.700 0.606 0.646 0.638 0.635

R2
CV 0.737 0.189 0.077 0.029 0.841

ARDTr [%] 571 988 18 67 209

ARDCV [%] 562 192 53 125 220

Parameters 13 13 31 32 41

Dataset Size 131 Training 126 Validation 5

Cluster 3

R2
Tr 0.932 0.976 0.963 0.685 0.913

R2
CV 0.035 0.124 0.451 0.474 0.681

ARDTr [%] 71 40 7 25 26

ARDCV [%] 170 119 18 43 58

Parameters 3 3 3 2 3

Dataset Size 15 Training 10 Validation 5

Cluster 4

R2
Tr 0.621 0.619 0.625 0.789 0.773

R2
CV 0.843 0.198 0.181 0.223 0.932

ARDTr [%] 276 131 25 41 224

ARDCV [%] 30 53 35 48 143

Parameters 5 5 5 9 12

Dataset Size 55 Training 50 Validation 5
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C.3 DSC Properties Clustering
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Figure C.6 – DSC Clusters Representation
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Figure C.6 – DSC Clusters Representation (continued)
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Table C.10 – DSC Clusters Models Evaluation Summary

Evaluation Partial Area Amplitude Max Position Full Width Asymmetry

ΔHr Φmax Tmax FW a

DSC Cluster 1

R2
Tr 0.650 0.730 0.822 0.662 0.632

R2
CV 0.084 0.179 0.487 0.105 0.306

ARDTr [%] 39 57 7.3 34 103

ARDCV [%] 19 28 11 19 39

Parameters 17 12 7 15 17

Dataset Size 48 Training 43 Cross-Validation 5

DSC Cluster 2

R2
Tr 0.900 0.862 0.928 0.940 0.989

R2
CV 0.441 0.132 0.923 0.989 0.976

ARDTr [%] 159 288 10.4 21 21

ARDCV [%] 14 26 15 6.8 19

Parameters 8 5 4 5 7

Dataset Size 18 Training 13 Cross-Validation 5

DSC Cluster 3

R2
Tr 0.821 0.918 0.909 0.903 0.656

R2
CV 0.926 0.477 0.992 0.962 0.370

ARDTr [%] 233 146 3.9 43 45

ARDCV [%] 513 163 1.0 22 49

Parameters 3 7 10 7 8

Dataset Size 22 Training 17 Cross-Validation 5

DSC Cluster 4

R2
Tr 0.763 0.671 0.737 0.304 0.697

R2
CV 0.867 0.929 0.960 0.104 0.528

ARDTr [%] 409 446 8.3 51 101

ARDCV [%] 169 189 4.1 66 558

Parameters 14 14 17 24 22

Dataset Size 73 Training 68 Cross-Validation 5

DSC Cluster 5

R2
Tr 0.808 0.791 0.822 0.730 0.593

R2
CV 0.798 0.499 0.907 0.462 0.075

ARDTr [%] 91 141 4.8 35 225

ARDCV [%] 9.5 42 3.1 28 61
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Table C.10 – DSC Clusters Models Evaluation Summary (continued)

Evaluation Partial Area Amplitude Max Position Full Width Asymmetry

ΔHr Φmax Tmax FW a

Parameters 9 6 10 13 7

Dataset Size 48 Training 43 Cross-Validation 5

DSC Cluster 6

R2
Tr 0.963 0.982 0.998 0.934 0.877

R2
CV 0.996 0.993 1.000 0.904 0.800

ARDTr [%] 18 54 0.9 29 347

ARDCV [%] 8.4 177 0.7 14 309

Parameters 13 9 24 9 7

Dataset Size 29 Training 24 Cross-Validation 5

DSC Cluster 7

R2
Tr 0.389 0.018 0.729 0.676 0.744

R2
CV 0.883 0.471 0.594 0.645 0.377

ARDTr [%] 215 261 18 60 157

ARDCV [%] 56 96 14 54 86

Parameters 22 15 56 46 44

Dataset Size 130 Training 125 Cross-Validation 5
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Tables C.11 to C.17 are subject to the confidentiality clause and are for this reason withheld.

Table C.11 – DSC Cluster 1 Models Parameters

Table C.12 – DSC Cluster 2 Models Parameters

Table C.13 – DSC Cluster 3 Models Parameters

Table C.14 – DSC Cluster 4 Models Parameters

Table C.15 – DSC Cluster 5 Models Parameters

Table C.16 – DSC Cluster 6 Models Parameters

Table C.17 – DSC Cluster 7 Models Parameters
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Figure C.7 – Graphical Representations of the Models for DSC Cluster 1
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Figure C.8 – Graphical Representations of the Models for DSC Cluster 2
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Figure C.9 – Graphical Representations of the Models for DSC Cluster 3
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Figure C.10 – Graphical Representations of the Models for DSC Cluster 4
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Figure C.11 – Graphical Representations of the Models for DSC Cluster 5
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Figure C.12 – Graphical Representations of the Models for DSC Cluster 6
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Figure C.13 – Graphical Representations of the Models for DSC Cluster 7
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Table C.18 is subject to the confidentiality clause and is for this reason withheld.

Table C.18 – DSC Clusters Models Responses
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Figure C.14 – Examples of DSC Reconstructions Compared to Actual Mea-
surements
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Abbreviations

Acronyms

AIC Akaike Information Criterion

AIT Auto-Ignition Temperature

AM1 Austin Model 1

ANN Artificial Neural Network

ARC Accelerating Rate Calorimeter

ARD Average Relative Deviation

ASTM American Society of the International Association for Testing and Materials

BIC Bayesian Information Criterion

CART Calculated Adiabatic Rise of Temperature

CHETAH Chemical Thermodynamic and Energy Evaluation Program

CPU Central Processing Unit

DFT Density Functional Theory

DHBT 3,4-Dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine

DSC Differential Scanning Calorimetry

DSC Differential Scanning Calorimetry

DTA Differential Thermal Analysis

EGA Evolved Gas Analysis

EHT Extended Hückel Theory

FWHM Full Width at Half Maximum

GA Genetic Algorithm

GC+ Marrero-Gani Group Contribution

GCM Group Contributions Method

GMM Gaussian Mixture Models

IEC International Electrotechnical Committee

LEL Lower Explosive Limit

MART Maximum Adiabatic Rise of Temperature

MIE Minimum Ignition Energy

MLR Multiple Linear Regression
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Abbreviations

MNDO Modified Neglect of Diatomic Overlap

MTSR Maximum Temperature of Synthesis Reaction

OB Oxygen Balance

OLS Ordinary Least Squares

PCA Principal Component Analysis

PLS Partial Least Squares

PM3 Parametrized Model 3

QSAR Quantitative Structure-Activity Relationship

QSPR Quantitative Structure-Property Relationship

RC Repeatability Coefficients

RMSE Root Mean Square Error

RTP Room Temperature and Pressure

SCF Self-Consistent Field

SOM Self-Organizing Maps

SSE Sum of Squared Errors

SSR Sum of Squares of the Regression

SST Total Sum of Squares

SVM Support Vector Machine

TD24 Temperature at which TMRAD=24h

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TMRAD Time to Maximum Rate in Adiabatic conditions

TZC Tolerance Zone Coefficients

UEL Upper Explosive Limit
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Abbreviations

Symbols

Symbol Name Units

a Asymmetric Factor -

A Activation Function -

C Heat Capacity JK−1

C Concentration molm−3

d Particle Size m

D Diameter m

e Residual Error -

E Error Function -

ES Statistic Energy mJ

Ea Activation Energy Jmol−1

FW Full Width Maximum Height ◦C

G Group Contribution -

ΔH Enthalpy Jg−1 or Jmol−1

i Iteration -

k Proportionality Factor -

k Kinetic Rate Constant s−1

k Number of Cluster -

ko Preexponential Factor (Arrhenius Law) s−1

M Molecular Weight gmol−1

n Reaction Order -

n Molar Quantity mol

n Number of Observations -

O Output Function -

P Pressure Pa

p Number of Parameters -

R Universal Gas Constant Jmol−1 K−1

r Reaction Rate molm−3 s

T Temperature ◦C or K

V Volume m3

x Structural Descriptor Value -
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Abbreviations

Greek Symbols

Symbol Name Units

α Parameter Coefficient -

β Scan Rate Ks−1

χ Randiç Index -

Φ Heat Flow Rate Wg−1 or Wmol−1

σ Standard Deviation -

τ Time Constant s

Subscripts

Subscripts Meaning

adj Adjusted

b Boiling

c Corrected

crit Critical

F Furnace

f Final

i Initial

M Measurement Point

max Maximum, refers to Peak’s Maximum

o Onset

p Process

P Programmed

R Reference

r Reaction

S Sample

th Thermal
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