
Human computation for data, information, and knowledge
management

Nguyen Thanh Tam

ABSTRACT
The paradigm of Human Computation has grown rapidly
in recent years and has thus sparked great interest in both
the industry and the research community. In this survey,
we give an overview of the state-of-the-art of human com-
putation in the context of data, information, and knowledge
management (DIKM). On the one hand, we study how to
use human intelligence to solve computation problems in
DIKM applications such as data acquisition, data analysis,
data curation, data storage, and data usage. On the other
hand, we study how to help computational systems to solve
human problems by understanding human needs. Towards
this goal, we cover the kinds of human-computation systems;
the various techniques for design and dissemination of tasks
for human interaction; the methods employed for reconcil-
ing human inputs against given tasks and determining the
quality of those inputs; and the various kinds of applications
based on human computation.

1. INTRODUCTION TO HUMAN COMPU-
TATION

The paradigm of Human Computation has grown rapidly
in recent years and has thus sparked great interest in both
the industry and the research community. In this survey, we
characterize human computation along two broad themes,
combining human and computer abilities to address two
generic tasks: 1) Using human intelligence to solve com-
putational problems; and 2) Helping computer systems un-
derstand human needs so that they can assist them better.

Computers have long been used to solve a wide range of
problems which require fast computation or need to be per-
formed repeatedly. However, despite the advances in compu-
tational capacity, we still need human involvement in many
computational problems that are beyond the scope of exist-
ing artificial intelligence and machine learning techniques.
To motivate the need of human computation, a large body
of work in the literature has delineated several reasons that
could be summarized as follows:

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ACM X-XXXXX-XX-X/XX/XX.

First, a computer is simply a general-purpose device that
is programmed to follow a set of pre-defined human instruc-
tions. Hence, as long as there exist certain classes of prob-
lems whose solutions cannot be written down programmat-
ically, the need for human intelligence is unavoidable. This
can be clearly seen, for example, in the domain of visual
recognition. Although many automatic heuristics have been
developed, there is no single general purpose solution. In
such a scenario, employing human participants can provide
better accuracy. A practical example tool has been pre-
sented in the literature [56], in which ‘Clickworkers’ (human
volunteers) were shown images of the surface of Mars, and
asked to mark the craters (something that could not be rec-
ognized correctly by computers). Some other domains which
need human computation include audio recognition, under-
standing natural language, market analysis, etc.

Second, computers and their applications are designed to
serve humanity. Since only we ourselves have correct un-
derstanding of what we really want, involving humans in
computation is a natural way to ensure the quality and user
satisfaction of applications. Examples can be found in the
form of recommender systems such as IMDB [84], in which
the movies need to be rated for the purposes of querying
and recommending movies to users. Since movie preference
varies from person to person, it is intuitively impossible to
develop automatic rating algorithms that truly match hu-
man expectations. Instead, the system lets users provide
ratings for movies and then aggregates all personal ratings
to obtain a public rating for each movie, for the benefit of
satisfying user intent.

Third, in the scientific and engineering domains there are
many problems where the ground truth information is not
easily available, and human answers can be used for scientific
corroboration. For example, one can employ experts to vali-
date the output of automatic tools [82]. Another example is
collecting human inputs as training data for machine learn-
ing techniques [99] and for gathering pollution data [96].

Fourth, the rapid expansion of information and commu-
nication technologies has opened unprecedented opportu-
nities for massive collaboration among people from across
the world, something which was not possible earlier. Es-
pecially with the emergence of online and mobile platforms
such as crowdsourcing [25], social network [8], and partici-
patory sensing [16], anyone with access to the Internet can
contribute to tackle problems which cannot be solved by
solitary individuals. In crowdsourcing platforms such as
Amazon Mechanical Turk, a worker can perform “human
intelligence tasks” such as image labeling and text annota-

tion [64] among many others. In social networks, human
activities and profiles can be used to discover social trends
or to predict epidemics [40]. And in participatory sensing,
humans can act as sensors to provide public information at
large scales via personal smartphones [16].

All these systems are relatively new and have opened up
exciting venues for the cooperation of ordinary human be-
ings for carrying out computation tasks, and have also drawn
spectacular attentions in the research community. Quinn
et. al. [88] tries to position the human computation against
other related topics such as crowdsourcing, collective intelli-
gence, and social computing. Kittur et. al. [66] promotes the
crowdsourcing as an alternative workplace for future gener-
ations and sketch out major challenges of implementing this
promotion. Doan et. al. [25] classifies crowdsourcing sys-
tems in the world-wide-web and focuses on how these sys-
tems are correlated to each other. Law et. al. [69] covers
the basic definitions and core research questions of differ-
ent aspects in human computation but only provides base-
line methods as references. However, to the best of knowl-
edge, a systematic survey which covers the kinds of human-
computation systems; the various techniques for design and
dissemination of tasks for human consumption; the methods
employed for aggregating human inputs against given tasks
and determining the quality of those inputs; and the various
kinds of applications based on human computation; has not
been seriously undertaken.

We aim to fill this gap and in this paper, we give an
overview of the state-of-the-art of human computation in
the context of data, information, and knowledge manage-
ment (DIKM). Specifically, we thematicize our classification
of human computation problems, systems, and techniques
according to the function characteristics of the DIKM tasks
that can be computed using human input. The remaining
sections of this paper are organized as follows. Section 2
presents existing human computation systems. Section 3
reviews the well-known human computation problems and
their models. Section 4 describes extensive methodologies
to design, post, and control human computation tasks for
the purposes of maximizing output quality under resource
constraints (e.g. time, cost). Finally, Section 5 overviews
applications that require human computation in the domain
of data, information, and knowledge management.

2. KINDS OF HUMAN COMPUTATION SYS-
TEMS

Existing human computation systems can be categorized
as follows.

2.1 Micro-work Systems
In micro-work systems, a crowd of users is employed to

complete small tasks (ranging in time duration from a few
seconds to a few minutes) for fair amounts of incentives.
These systems provide an opportunity for time and money
work that would otherwise be accomplished by a handful of
hired experts, to be completed in a fraction of the time and
money by a crowd of ordinary humans. For example, Ama-
zon Mechanical Turk (AMT) is a well-known micro-work
system with millions of active crowd workers and hundreds
of thousands of human computation tasks. In Amazon Me-
chanical Turk (AMT), tasks range from labeling images with
keywords to judging the relevance of search results and lin-

Figure 1: Micro-task on Amazon Mechanical Turk

guistic jobs (e.g. translate, proof-reading). Figure 1 illus-
trates a typical micro-task on AMT. Although workers from
any country can work on tasks on AMT, only US and Indian
workers can receive money directly in their bank accounts.
Therefore, the majority of workers on AMT are US and In-
dian citizens. Moreover, the workers are young since more
than 50% of AMT workers have age below 34 [92]. In ad-
dition, the workers keep getting younger as the average age
decreases through time. The workers on AMT are highly ed-
ucated since most of them have an undergraduate degree or
higher [92]. Other well-known micro-work platforms include
CrowdFlower, CloudCrowd, etc.

Implicit human computation also involves the completion
of micro-tasks by crowds of human users. In implicit human
computation users solve a problem as a side effect (passively)
of something else they are doing. The ESP Game [109] pro-
vides an example of an implicit HC system that allows peo-
ple to label images while enjoying themselves. In this game,
the participant labels an input image by a keyword, which
most properly describes the image, from a set of provided
keywords. The ultimate goal is to obtain proper labels for
each image. This effort is part of the larger goal of collect-
ing proper labels for images on the Web, which would be an
invaluable for information retrieval applications.

Another example is reCAPTCHA [110], which is a piggy-
back HC system built on top of CAPTCHA (used by web-
sites to prevent spam). By solving the CAPTCHA, users im-
plicitly perform OCR tasks, such as digitizing books, news-
papers and old time radio. In a reCAPTCHA task, a user
is presented with two words. One word serves as a conven-
tional CAPTCHA, while the other word cannot by recog-
nized by automatic OCR techniques. If a user recognizes
the recognized word, the answer to the unrecognized word
is assumed to be correct, and is collected as training data
for further OCR tools.

2.2 Social-based Systems
Social-based human computation systems encourage mil-

lions of people over the world to contribute to human compu-
tation problems via the Internet. With the growth of Web
2.0 technologies, there are many kinds of works that can
be performed by people. The first type of social-based HC
systems can be described as ‘Knowledge-Base’. Wikipedia
is a well-known example of human computation knowledge-
base, which has thousands of editors to continually edit arti-
cles and contribute knowledge for building the world’s most
comprehensive free encyclopedia. The writing is distributed

and open in that essentially almost anyone who has access
to the Internet can contribute.

Q&A sites that allow users to post questions, provides
answer, and edit and organize the constructed information,
also fall under the category of Social-based HC systems. A
typical example is Yahoo! Answers, which is a general Q&A
forum. The human computation in such systems involves
answering the questions and the incentives include social
benefits such as prestige, fun and social networking. The
collected human answers provide a large body of human-
knowledge data, that can be used for solving further AI
problems. Other example Q&A sites are ask.fm, Quora,
etc.

Some social-based HC systems take the form of competi-
tions. In contrast to micro-tasks, HC competitions aim to
solve complex problems and offer high prices. Instead of col-
laborating, human participants compete with each other to
achieve higher ranks. The collected human solutions offer
a great variety of ways to solve a particular computational
problem, thus not only enhancing overall knowledge but also
changing the way computers approach the problem. A well-
known example is Topcoder.com, which offers various com-
puter science problems, ranging from algorithms to software
design and development. Another example is the Goldcorp
Challenge 1, which employs geological experts from all over
the world to identify the locations of gold deposits.

‘Crowdfunding’ and ‘Skill Markets’ are yet other types
of social-based HC systems. Crowdfunding is an HC-based
strategy for funding one’s projects by asking a multitude
of people to contribute small amounts of money instead of
seeking huge contributions from a few big investors. The
advantage of crowdfunding is that it is easy for people to in-
vest a small amount of money. A multi-level payment mech-
anism is often applied, in which the more one contributes,
the more rewards one gets such as e.g., souvenirs, progress
updates, first copy of the product at discounted price, etc. In
‘Skill Markets’, people work as freelancers to complete jobs.
Example marketplaces include Elance, ODesk, and Free-
lancer.com, where millions of freelancers do various kinds
of work.

It is worth noting that social-network services are also
considered as social-based human computation systems due
to their long-existing nature of human computation. They
enable the wisdom of the crowd efficiently by providing fun-
damental infrastructure to employ a mass amount of user in
a short period of time. As such, social-network services are
born a platform qualified not only for spreading human com-
munications, but also for human computation tasks. For ex-
ample in [17], the authors leverage a micro-blog service (i.e.
Twitter) to collect answers for decision making questions by
actively distributing the questions to workers via the “@”
markup. However, social network services are only best-fit
for knowledge collection. This is because it is often difficult
to build a payment mechanism on top of social networks. As
such, social networks cannot be used for micro-tasks that re-
quire monetary payment.

2.3 Pervasive Systems
Pervasive systems make use of activities that human be-

ings perform in their daily lives to solve computational prob-
lems. With the rapid uptake of mobile technologies, we can
access human computation power via smart phones to im-

1http://www.goldcorpchallenge.com/

plement pervasive systems. The first type of such systems
include community-based traffic navigation platforms (e.g.
Waze), also called geosocial networks. In Waze [32], the hu-
man participants are drivers who report real-time traffic and
road information such as accidents, traffic jams, speed-traps,
and nearby police units. All this information is publicly
shared among drivers for the purposes of routing and nav-
igation. The Waze community has millions of active users
mainly across Europe, Asia, and North America. Similarly,
Google Maps and Google Earth also employ human-powered
traffic information for various data visualization purposes.

Human-powered newspapers serve as another example of
pervasive HC systems. Instead of using professional re-
porters, local people are employed to report rumours and
stories in their communities. An example is Ushahidi [85],
in which people in crisis situations (e.g., in disaster and con-
flict zones) submit their reports through the web and mobile
phones. These reports are then aggregated and organized
temporally and geospatially to give a general view of emerg-
ing situations. There are some distinct advantages of this
approach. One is the relatively faster reporting of informa-
tion as compared to traditional methods since professional
journalists are limited in number. Also, in human powered
newspapers, the information is untamed and covers differ-
ent points of views of human participants, as opposed to
the point of view of a single individual (the professional re-
porter).

Participatory sensing systems are also pervasive HC sys-
tems, in which people equipped with sensors, e.g., built in
their smartphones, measure environmental conditions. An
example is Common Sense [27], which is a human-power pol-
lution monitoring application. Common Sense uses special-
ized handheld air quality sensing devices, which are deployed
across a large number of human participants, to collectively
measure the air quality of an area. Similarly, we can apply
the same method to monitor other environmental conditions
such as noise and water.

2.4 Management Systems
Management systems are general-purpose human compu-

tation systems that are designed to manage the entire human
computation process, including designing and posting tasks,
collecting and aggregating human inputs, and performing
further analyses. The first example is CrowdDB [33], which
aims to develop a declarative language to express the logic of
the expected human computation task instead of describing
it in natural language. CrowdDB employs human power via
crowdsourcing to answer the uncertain queries that cannot
by processed by automatic engines. For example, we can
write the following query to retrieve all computer science
departments across universities:

SELECT ∗ FROM departments
WHERE name ˜= ”CS” ;

However, different computer science departments in dif-
ferent universities could have different names or even be in
different languages. As such, we need humans to perform
matching between department entities. Based on the query,
CrowdDB will automatically generate human computation
tasks in HTML code and post them in Amazon Mechan-
ical Turk. After collecting crowd answers, CrowdDB will

aggregate them to produce the final query result.
Another example is CrowdForge [65], which aims to man-

age human computation workflow, including decomposing
large tasks into small ones, and assigning these tasks to hu-
man participants. Both dynamic and fixed workflows are
supported to allow the parallelization of human computation
tasks. More precisely, CrowdForge employs a MapReduce-
liked model to post micro-tasks into crowdsourcing plat-
forms such as Amazon Mechanical Turk. A sample complex
task studied is article writing [65], in which an article is par-
titioned into different Map tasks, such as collecting and writ-
ing facts about an entity. After all facts are collected, a Re-
duce task is performed by human users to combine the facts
into one paragraph. For quality control purposes, Crowd-
Forge uses majority voting to determine the best write-ups
for the article.

As an industrial example, CrowdFlower [104] supports in-
tegrating human computation into business processes by of-
fering three important features: workflows, taxonomy, and
quality control. First, CrowdFlower help users define the
workflows by pre-designing job templates for crowdsourcing
tasks such as image categorization, text transcription, and
sentiment analysis. On top of the user-defined workflows,
the system will automatically route and process data be-
tween multiple CrowdFlower jobs and/or external services.
Second, CrowdFlower help users manage a large number of
jobs hierarchically by letting them define a taxonomy of tags
and indexing the CrowdFlower jobs by these tags. Based on
the tag index, users can search the jobs efficiently. Third,
CrowdFlower allows to control the quality of workers by us-
ing test questions (whose answers are known before-hand) to
discard the answers of workers who do not substantially pass
the test questions. Moreover, the system also supports peer
review and provides statistical reports on the outcome of
worker answers, for the purposes of evaluating and profiling
workers.

3. CLASSIFICATION OF HC PROBLEMS
AND QUALITY CONTROL TECHNIQUES

In this section we will classify the general kinds of prob-
lems that humans can help solve in current human computa-
tion systems, and the techniques used to control the quality
of human performance.

3.1 Discrete-function Problems
The techniques and models that fall in this category make

use of human abilities for computation to solve classification
problems. In general, the output of a classification problem
consists of possible labels assigned for each object, given a
set of existing objects. Document labeling, image tagging,
relevance feedback, are all classification tasks that are typi-
cally completed online via crowdsourcing marketplaces. Us-
ing humans as labelers is particularly beneficial in various
settings where ground truth exists but is unknown or the
problem itself is subject to human judgements.

It is worth noting that many data integration and infor-
mation extraction problems described in Section 5 can be
mapped onto the classification problem. For example, the
schema matching problem, where we employ humans to val-
idate the correspondences generated by automatic matching
tools [], can be formulated as that correspondence between
scheme can be considered to be an object, and there are

two possible classification labels: YES (the correspondence
is approved), and NO (the correspondence is disapproved).
Similarly, other problems such as ‘entity resolution’ (users
are asked to determine whether a given pair of records is
duplicate) and ‘entity extraction’ (users are asked to deter-
mined whether a URI matches to an existing entity) can be
modeled as discrete-function based problem.

Model. A large body of work has studied the problem of
aggregating user answers, which can be formulated as fol-
lows: There are n objects {o1, . . . , on}, where each object
can be assigned by k users {w1, . . . , wk} into one of m pos-
sible labels L = {l1, l2, . . . lm}. The aggregation techniques
take as input the set of all user answers that is represented
by an answer matrix :

M =

a11 . . . a1k

.

.

.
. . .

.

.

.
an1 . . . ank

 (1)

where aij ∈ L is the answer of user wj for object oi. The
output of aggregation techniques is a set of aggregated values
{γo1 , γo2 , . . . γon}, where γoi ∈ L is the unique label assigned
for object oi. In order to compute aggregated values, we first
derive the probability of possible aggregations P (Xoi = lz),
where Xoi is a random variable of the aggregated value γoi
and its domain value is L. Each technique applies different
models to estimate these probabilities. For simplicity sake,
we denote γoi and XOi as γi and Xi, respectively. After
obtaining all probabilities, the aggregated value is computed
by 2:

γi = argmax
lz∈L

P (Xi = lz) (2)

Techniques. A rich body of research has proposed differ-
ent techniques for answer aggregation. In what follows, we
describe the most representative techniques for answer ag-
gregation.

• Majority Decision (MD): is a straightforward method
that aggregates each object independently [68]. Given
an object oi, among k received answers for oi, we count
the number of answers for each possible label lz. The
probability P (Xi = lz) of a label lz is the percentage

of its count over k; i.e. P (Xi = lz) = 1
k

∑k
j=1 1aij=lz .

However, MD does not take into account the fact that
users might have different levels of expertise and it is
especially problematic if most of them are malicious
(e.g. spammers).

• Filtering: In general, filtering techniques try to de-
tect low-quality users and minimize the ill-effects of
their answers to the results. There are two well-known
techniques in the literature , namely Honeypot and
ELICE. In principle, Honeypot (HP) [71] operates as
MD, except that untrustworthy users are filtered in
a preprocessing step. In this step, HP merges a set
of trapping questions Ω (whose true answer is already
known) into original questions randomly. Users who
fail to answer a specified number of trapping questions
are neglected as spammers and removed. Then, the

2Note that
∑
lz∈L P (Xi = lz) = 1

probability of a possible label assigned for each object
oi is computed by MD among remaining users. How-
ever, this approach has some disadvantages: Ω is not
always available or is often constructed subjectively;
i.e truthful users might be misidentified as spammers
if trapping questions are too difficult.

Expert Label Injected Crowd Estimation (ELICE) [62]
is an extension of HP. ELICE also uses trapping ques-
tions Ω, but to estimate the expertise level of each user,
it calculates the ratio of her answers which are identi-
cal to the correct answers of Ω. Then, it estimates the
difficulty level of each question by the expected num-
ber of users who correctly answer a specified number of
the trapping questions. Finally, it computes the object
probability P (Xi = lz) by logistic regression [45] that
is widely applied in machine learning. In brief, ELICE
considers not only the user expertise (α ∈ [−1, 1]) but
also the question difficulty (β ∈ [0, 1]). The benefit is
that each answer is weighted by the user expertise and
the question difficulty; and thus, the object probabil-
ity P (Xi = lz) is well-adjusted. However, ELICE also
has the same disadvantages regarding the trapping set
Ω as previously described in the case of HP.

• Maximum Likelihood: This approach tries to trans-
form the aggregation problem into a maximum likeli-
hood formulation, in which human inputs are sample
values and the aggregated results are parameters to
be estimated. There are two well-known techniques
in the literature, namely EM and GLAD. The Expec-
tation Maximization (EM) technique [52] iteratively
computes object probabilities in two steps: expecta-
tion (E) and maximization (M). In the (E) step, object
probabilities are estimated by weighing the answers of
workers according to the current estimates of their ex-
pertise. In the (M) step, the expertise of workers is
re-estimated based on the current probability of each
object. This iteration is repeated until all object prob-
abilities are unchanged. Simply, EM is an iterative
algorithm that aggregates many objects at the same
time. Since it takes a lot of steps to reach convergence,
the running time is a critical issue.

Generative model of Labels, Abilities, and Difficulties
(GLAD) [117] is an extension of EM. This technique
takes into account not only the worker expertise but
also the question difficulty of each object. It tries to
capture two special cases. The first case is when a
question is answered by many workers, the natural as-
sumption is that the workers with high expertise have
a higher probability of answering correctly. Another
case is when a worker answers many questions, the
question with high difficulty has a lower probability of
being answered correctly. In general, GLAD as well as
EM-based approaches are sensitive to arbitrary initial-
izations. Particularly, GLAD’s performance depends
on the initial value of user expertise α and question
difficulty β. In fact, there is no theoretical analysis for
the performance guarantees and it is necessary to have
a benchmark for evaluating different techniques in the
same setting.

• Learning: This approach applies learning techniques
to simultaneously estimate both the difficulty level of

human computation tasks and the expertise of users to
compute the aggregated results. There are two tech-
niques in the literature, namely SLME and ITER. In
principle, Supervised Learning from Multiple Experts
(SLME) [89] also operates as EM, but characterizes the
user expertise by sensitivity and specificity—two well-
known measures from statistics—instead of the confu-
sion matrix. Sensitivity is the ratio of positive answers
which are correctly assigned, while specificity is the
ratio of negative answers which are correctly assigned.
One disadvantage of SLME is that it is incompatible
with multiple labels since the sensitivity and specificity
are defined only for binary labeling (aggregated value
γ ∈ {0, 1}). Iterative Learning (ITER) is an iterative
technique based on standard belief propagation [59].
It also estimates the question difficulty and the user
expertise, but is slightly different in details. While
others treat the reliability of all answers of one user as
a single value (i.e. user expertise), ITER computes the
reliability of each answer separately. And the difficulty
level of each question is also computed individually for
each user. As a result, the expertise of each user is
estimated as the sum of the reliability of her answers
weighted by the difficulty of associated questions. One
advantage of ITER is that it does not depend on the
initialization of model parameters (answer reliability,
question difficulty). Moreover, while other techniques
often assume users must answer all questions, ITER
can divide questions into different subsets and the out-
puts of these subsets are propagated in the end.

3.2 Continuous-function Problems
In this section, we study another class of problems, in

which user inputs are real values, instead of discrete labels as
in the classification problem. Several applications mentioned
in Section 5 can be mapped to this problem formulation such
as participatory sensing and measuring.

Model. A large body of work in this category has studied
the rating aggregation problem, which is formulated as fol-
lows. There are n objects {o1, . . . , on}, where each object
can be rated by k users {u1, . . . , uk} into a rating score r.
The domain value of r could be real numbers, a predefined
scale (e.g. from 1 to 10) [35], bounding boxes [116], etc. In
other words, the problem input is the set of all user scores
that is represented by a score matrix:

R =

r11 . . . r1k
.
.
.

. . .
.
.
.

rn1 . . . rnk

 (3)

where rij is the input score of user uj for object oi. The
problem output is a set of aggregated scores {γo1 , γo2 , . . . γon},
where γoi is the final score assigned for object oi.

Techniques. A rich body of research has proposed differ-
ent techniques for rating aggregation. In what follows, we
describe the most representative ones.

• Average Approach: The simplest approach to com-
pute the aggregated scores is using the average: γoi =∑k

j=1 rij

k
. This approach considers each object inde-

pendently and does not take into account the differ-
ences (e.g. trustworthy, expertise) between users. An-
other disadvantage of this approach is the sensitivity to

outliers, e.g., some users could provide very high rating
scores or very low rating scores. An improved version
to avoid the outlier sensitivity is Beta Model [54], in
which 5% upper scores and 5% lower scores of the score
matrix will be excluded from the aggregation.

• Trust-based Approach: The average approach assumed
that the user inputs are trustworthy and the provided
values are equally reliable. However, in several con-
texts such as spam or malicious users, the aggregated
scores could be wrong or misleading. To overcome
this problem, the trust-based techniques associate each
user u with a trust score t(u), indicating the trust-
worthiness level of the user; i.e., the probability of u
provides correct input. Moreover, each object o is also
assigned a trust score indicating the trustworthiness of
the object; i.e., the probability of the final score of o
being correct. The idea is that a rating score is likely
to be true if it is provided by trustworthy users, and
a user is trustworthy if most rating scores he or she
provides are trusted. Based on such inter-dependency
between objects and users, an iterative procedure is
often performed until convergence is reached, to com-
pute the trust scores. To implement this procedure, a
wide range of models have been proposed in the liter-
ature, such as factor-graph [23] and maximum likeli-
hood estimation [107]. By using the trust scores, we
can determine the final value of each item by using a
weighted average computation of its values, where the
weights are trustworthiness values of users.

• Sampling-based Approach: In practical settings, to ob-
tain the true final rating, we need to employ a large
number of users. Since humans make mistakes, their
individual errors could be complemented with each
other to produce the result very close to ground truth [100].
For example, a movie having an aggregated rating score
of 8/10 over 100 users might be worse than another
having an aggregated rating score of 7/10 over 10000
users. However, due to limited budget of time and
cost, we can only obtain a small set of users.

To address this issue, the techniques under this cat-
egory consider the obtained rating scores as a set of
(random) sampling inputs over all possible users. As
such, the aggregation of sampling scores is an estima-
tion of the true rating scores for the objects. To mea-
sure the estimation error, a wide range of statistical
and probabilistic models can be employed. For ex-
ample, in [39], the authors simply compute the mean
and standard variation of user scores, then perform
ANOVA and t-test to compute the error rate. Another
example is in [4], the authors compute the estimation
error via the numerical integration of multivariate nor-
mal distributions, since the mean of sampling rating
scores is considered as the sampling of a normal distri-
bution (due to central limit theorem).

• Knowledge-based Approach: On top of the above tech-
niques, one can develop further extensions by exploit-
ing prior knowledge (e.g., user profiles, rating history,
object features). For example, we can compute the
trustworthiness of users from their rating history us-

ing the models in [114, 115]. Then, these apriori trust-
worthiness values can be incorporated into trust-based
techniques. Another example is taking into account
various data-level aspects (e.g., object similarity, ob-
ject relationship), which can be computed from the
pre-defined attributes of the objects [20]. Then, we
could perform clustering to divide the objects into clus-
ters, using similarity measures such as Pearson’s cor-
relation coefficient and Jaccard metric [35]. The rat-
ing scores of the objects can be adjusted by cluster-
ing them together (e.g., the difference between rating
scores in the same cluster cannot be relatively larger
than the diameter of that cluster). Moreover, we can
also leverage the collaborative filtering paradigm [95],
whose idea is that a user is likely to provide close rat-
ing scores for similar objects and similar users are likely
to provide close rating scores for the same object. The
similarity between users and objects can be computed
via user profiles and object features.

3.3 Partial-function Problems
In the two previous sections, we have studied the aggre-

gation problems, whose output is to determine the final dis-
crete/continous values of given objects. In this section, we
study another class of problems in which we try to com-
pute the relationships between objects. In general, there
are two typical problems studied in the literature as follows:
(i) association rule aggregation – studies the appearance fre-
quency between subsets, (ii) ranking aggregation – studies
the ordering between objects.

It is noteworthy that several applications that we will dis-
cuss in Section 5 can be built on top of these models such
as recommender systems, in which users provide ratings for
artifacts (e.g. movies, books, musics) and their ratings are
aggregated into a unified rating for the purposes of querying
and recommending.

3.3.1 Association Rule Aggregation

Model. Let U be a set of human users, and let I = {i1, i2, . . .}
be a non-empty finite set of unique items. Let 0 ≤ θs, θc ≤ 1
are predetermined threshold values for support and con-
fidence. An input of user u ∈ U is an association rule
r = A → B with user support uc and user confidence us,
where A,B ⊆ I, A ∩ B = ∅. Moreover, a rule is defined
to be significant in U iff the average of support values and
the average of confidence values given by all users in U are
greater than θs and θc, respectively. However, in practice
the number of relevant users and rules could be huge. Due
to limited budget of time and cost, we can only ask a small
sampling set of random users. As such, we need to estimate
the significance of a rule given a small set of users.

Technique. In [4], the authors propose a sampled-based
estimation to determine whether a rule is significant given a
subset of sampling users. More precisely, for a particular rule
r = A→ B, we have obtained so far the answers of n users:
(s1, c1), . . . , (sn, cn), where (si, ci) is the pair of support and
confidence values given by user ui. There are two challenges.
First, since we only have a sampling set of users, using the
sample mean of support and confidence values to determine
the rule significance might be misleading; i.e., avg(si) ≥ θs
and avg(ci) ≥ θc do not mean the rule r is truly significant.
Second, the support and confidence values are dependent

since a user input is a support-confidence pair. In other
words, we cannot consider the rule significance by treating
the support and confidence thresholds individually. To over-
come these challenges, the authors propose to estimate the
bivariate probability distributions of the support and confi-
dence of the rules. In other words, the bivariate probability
pr of rule r indicates likelihood that the true mean of sup-
port and confidence values of r greater than (θs, θc). The
idea is that if pr ≥ 0.5, r is significant; otherwise, r is not
significant. The error rate of this conclusion is 1−pr. Tech-
nically, they build a bivariate normal distribution between
support and confidence values and compute the probability
as the numerical integration of the distribution [36].

3.3.2 Ranking Aggregation

Model. Ranking (voting, rating) aggregation is the prob-
lem of combining different user ordering preferences on a
limited set of items. Formally: Let U = {u1, . . . , uk} be a
set of human users, and let O be a non-empty finite set of
unique items. An input of a user ui is an ordering τi of a
subset Si ⊆ O; i.e., τi = [o1 ≥ o2 ≥ . . . ≥ on], with each
oj ∈ S and ≥ is some ordering relation on S. τi is also called
a rank list on O; i.e. τi(oj) = j is the rank of oj w.r.t. τi.
Let |τi| denote the number of elements in τi. τi might not
be a full list; i.e. |τi| < |O|. Denote R = {τ1, . . . , τk} is the
set of all user rankings. The problem output is to determine
an aggregated ranking τ such that τ is a full list over the
union of elements of τ1, . . . , τk; i.e. S = ∪τi∈R∪oj∈τioj .

Techniques. The research efforts on solving the ranking
aggregation problem can be categorized into the following
methods.

• Score based: This approach aggregates the final rank-
ing by computing the ranking scores for each item
(higher the score, better the rank). The process con-
sists of following steps. In the first step, for each item
o ∈ O, we will compute the normalized ranking scores
wτi(o), . . . , wτk (o) over all user rankings τi ∈ R. Sev-
eral normalization computations [91] include score nor-
malization, Z-score normalization, rank normalization,
and Borda rank normalization. In the second step, we
will compute the aggregated ranking score sτ (o) of the
item o by combining its normalized ranking scores; i.e.
sτ (o) = f(wτi(o), . . . , wτk (o)). One simple way to im-
plement the aggregation function f(.) is using the sum,
min, or max [70]; e.g. sτ (o) =

∑
τi∈R wτi(o). A com-

plex implementation is using a weighted version of the
sum [70]: sτ (o) = hR(o)

∑
τi∈R wτi(o), where hR(o) is

the number of occurrences of o over all user rankings
in R with the idea is that the items appear in more
user rankings are likely to be more important. In the
final step, the aggregated ordering can be simply ob-
tained following the decreasing order of the aggregated
ranking scores.

• Distance based: This approach computes the ranking
aggregation by solving an optimization formulation, in
which the objective function is the distance between
user orderings. Formally, D(.) is the distance measure-
ment between two or many orderings. The ranking ag-
gregation problem then becomes finding an aggregated
ranking τ such that the distance value D(τ, τ1, . . . , τk)

is minimal. A wide range of distance measures has
been proposed [24], such as Spearman footrule distance
(which uses the absolute difference between the ranks
of an item according to the given rankings τi and τj)
and Kendall distance (which uses the number of pair-
wise adjacent transpositions needed to transform from
ranking τi to another ranking τj).

In general, the optimization formulation of ranking ag-
gregation is intractable (e.g., using the Kendall dis-
tance with k = 4 is NP-Hard [28]). Therefore, a wide
range of important properties that an aggregation so-
lution needs to satisfy have been studied in the litera-
ture, such as Condorcet property [121].

• Probability based: The methods in this category cap-
ture the item ranking via probabilistic interpretation.
Technically, for two given items oi and oj , we will com-
pute the probability of an item oi having a greater
order of an item oj ; i.e. Pr(oi > oj). Several prob-
abilistic models to compute Pr(oi > oj) have been
proposed, such as Bradley-Terry model [13] and Thur-
stone model [101]. The Bradley-Terry model formu-
lates a logistic function over the true ranking scores

of oi and oj (i.e., Pr(oi > oj) = es(oi)

e
s(oj)+e

s(oj)
) and

performs a log-likelihood maximization to compute all
the pair-wise probability values and the true ranking
scores simultaneously. The Thurstone model follows
a similar process, in which the ranking score for each
item has a Gaussian distribution.

With the similar idea of computing pair-wise ranking
probabilities, one can use Markov chains [28] in which
the states correspond to the items to be ranked and
the transition probability from state i to state j is
the probability of the item oi has a higher order of
the item oj w.r.t. some user rankings τi ∈ R. As
such, computing the aggregated ordering is equivalent
to determining the stationary probability distribution
of the Markov chains, which can be done in polyno-
mial time [28]. Probabilistic models in general and
Markov chains in particular not only offer a parame-
terizable approach but also open ways to integrate dif-
ferent heuristics into the probability formulation (e.g.,
one could use other distributions rather than Gaussian
distribution). As such, the ranking aggregation can be
iteratively refined by these heuristics, producing a fine-
grained aggregated ranking.

In sum, while the score-based focuses on computing a uni-
fied ranking score for the ranking, the distance-based method
aims to minimize the differences between the final ranking
and individual ones. Taking advantages of the two, the
probability-based allows more fine-grained combination of or-
dering preferences.

3.4 Similarity based Problems
There are many applications whose core features rely on

computing the similarity between two objects or the match-
ing degree of an object against pre-defined conditions. An
example application is detecting duplicate tuples for the pur-
pose of data repair in databases, in which we need to define
the duplication by proposing a similarity measurement be-
tween two tuples. Another example application is searching

data tuples against queries, in which we need to define the
relevance of search results by capturing the similarity be-
tween a tuple and a query.

In general, the output of some similarity-based applica-
tions can be mapped onto discrete and continuous function
problems. For example, the confirmation questions for val-
idating whether or not two given objects are similar (e.g.,
scheme matching, image search) can be viewed as a classifi-
cation problem with two labels – YES/NO. Another example
is the rating questions for evaluating the similarity between
objects (e.g. sorting, information integration), which can be
viewed as a classification problem with multiple labels – less
similar/similar/highly similar/etc.

However, some other applications have their own char-
acteristics (e.g., clustering) that can be mapped onto the
following formulation.

Model. Clustering/partition aggregation is the problem of
finding a unified clustering, given a set of input clusterings
from users. Denote U = {u1, . . . , uk} as the set of users,
O = {o1, . . . , on} as the set of objects where each object oi
can be represented/transformed into a vector of some multi-
dimensional metric space. The set of user inputs is IP =
{P1, . . . , P −k}, where each Pi is the clustering provided by
user ui. A clustering/partition Pi = {Ci1, Ci2, . . .} is a set
of clusters, where each cluster Cij ⊆ O. We also denote P
as the set of all possible clusterings w.r.t. O. The problem
output is to construct a consensus clustering P ∗ ∈ P, which
makes the best out of the input clusterings (e.g. in terms of
the overlaps between the consensus clustering and individual
clustering).

The clustering aggregation problem is often studied in
metric spaces, in which the optimization formulation of the
problem is:

P ∗ = argmax
P∈P

V (P) = argmax
P∈P

k∑
i=1

S(P, Pi) (4)

where V (P) is called the objective value of P and S(., .) is
a similarity measure between clusterings. In other words,
the consensus clustering is the clustering that maximizes its
similarity with all input clusterings.

Techniques. Several similarity measures for clustering ag-
gregation problem have been studied in the literature, such
as Mirkin distance [44](which was also proved to be NP-
Complete), Jaccard coefficient [10], and normalized mutual
information [98]. Based on these measures, research efforts
on clustering aggregation can be categorized as follows.

• Graph-based: This kind of method transforms the clus-
tering aggregation problem into a graph/hypergraph
partitioning problem [98]. One formulation is con-
structing a fully connected graph, in which the nodes
are the objects O and an edge between two objects
is associated with a weight equal to the number of
times they appear in the same cluster across the in-
put clusterings IP . Then, the graph partitioning tool
METIS [60] can be used to find the consensus clus-
tering. Another formulation is constructing a hyper-
graph, in which the hypernodes are the objects O and
a hyperedge represents a cluster Cij . Then, the hy-
pergraph partitioning tool HMETIS [61] can be used,
in which the minimal number of hyperedges is removed
such that the remaining ones are not overlapping. Other

graph-based methods include Hyperbrid Bipartite Graph
Formulation [31], Random Walker [1], meta-clustering [98],
etc.

In general, the graph-based methods are popular since
they are representative to understand. However, one
of their weaknesses is that they are sensitive to the
well-known graph partitioning algorithms, which could
produce different outputs w.r.t. particular parameter
sets.

• Heuristics-based: These methods employ out-of-the-
box heuristics to solve the clustering aggregation prob-
lem. The general idea is that they often start from an
initial clustering, then try to improve the clustering
via different heuristics (local search, simulated anneal-
ing, genetic, etc.). The first heuristic is Best-of-k [41],
which starts with an input clustering P ∈ IP and then
replaces with each of the remaining clusters if the ob-
jective value V (P) is increased. The second heuristic
is local search [106], in which we start with an ini-
tial clustering (could be the result of Best-of-k), then
generate new clusterings by moving object from one
cluster to another. The new clustering can be com-
pared with the previous clustering via the objective
value V (P) or defining a changing cost. If there ex-
ists a move that generates better clusterings, the al-
gorithm is continued; otherwise, the algorithm stops.
The third heuristic is simulated annealing [41], which
is used to improve the local search process by trying to
avoid local optima. Several other heuristics have also
proposed, such as pivot-based algorithm [2] and Balls
algorithm [38].

In this category, we also have a wide range of genetic
algorithms [73, 120]. In such algorithms, the initial
population is the set of input clusterings and we gener-
ate new possible clusterings via crossover and mutation
steps until the population with highest fitness value is
achieved. These genetic algorithms differ in the gener-
ation mechanisms (cross, mutation) and the definitions
of fitness value. In sum, the heuristic-based methods
also endure the issue of being sensitive to parameters.
Although theoretical approximation bounds are pro-
vided, there is no absolute winner for all datasets and
settings.

• Probability-based: The methods in this category view
the clustering as assigning labels to the objects. In
other words, the objects with the same label belongs
to the same cluster. Then, finding the consensus clus-
tering is interpreted under probability terms as com-
puting, for each object oi, the probability that oi is
assigned to a label ci. Formally, we would like to
compute p(oi = ci|Θ), where Θ is the parameter set
derived from the input clusterings IP . As such, the
clustering aggregation becomes a maximum likelihood
estimation problem, in which the label set {c1, c2, . . .}
and the parameter set Θ is estimated simultaneously to
maximize their log-likelihood function [103]. In the lit-
erature, the maximal likelihood problem is often solved
by the expectation-maximization algorithm [76], which
repeats two steps (E-step and M-step) until conver-
gence. The idea is that while the E-step computes the

expected values of the current parameters, the M-step
maximizes the current likelihood value by replacing a
new and better parameter set.

In particular, the probability-based methods can deal
with partial input clusterings, where users can only
perform clustering on a subset of objects [42]. This
is because the original object set O is often large and
the resource budget (time,cost) for employing users is
limited. In this case, the other methods in this cate-
gory might not be applicable since two partial input
clusterings can have no common object.

• Others: There are also miscellaneous methods pro-
posed for specific cases of the clustering aggregation
problem. In [26], the authors designed locally adap-
tive clustering algorithms to work with numerical data.
In [102], the authors define the similarity measure as
a category utility function, which is based on informa-
tion theory and works for categorical data. In [105],
the authors studied a weighted version of the problem,
by assigning each input clustering with a weight. This
is practically useful since the clusterings of different
users might not have the same quality. For example,
the weights can be used to capture the user reliability
or the confidence of users on the quality of their input
clusterings. In [87], the authors studied fuzzy-version
of clustering aggregation. Similar to probability-based
methods, the idea of using fuzzy clustering is to soften
the clusterings where the objects are associated with
fuzzy numbers instead of being fixed into clusters.

4. TASK DESIGN AND DISSEMINATION
In human computation, human users participate in com-

putation problems by providing inputs for human compu-
tation tasks. In this section, we study different aspects of
human computation tasks, including task design, task work-
flows, and task posting. Task design studies the way to
design human computation tasks that can positively affect
human inputs (e.g., motivating human users to provide cor-
rect answers). Task workflow studies how to decompose a
big problem into subtasks that can be distributed effectively
to human participants. Task posting studies different strate-
gies to elicit human inputs that can achieve high-quality
output while saving the computational resources (e.g., time,
cost)

4.1 Task Design
A task can be viewed as a piece of work where human users

work to solve a certain computational problem. In general,
a task can be modeled as a tuple 〈I, c〉 where I is the basic
information and c is the reward to pay human participants.
Basic information includes inputs, what is being computed,
and possible outputs. Formally, I = 〈O,Q,R, 〉 where O is
a set of objects, Q is the question being asked about the
object(s), and R is the domain of possible outputs.

4.1.1 Question
In the literature, there are two types of questions that are

often considered [4]:

• Closed questions: In this kind of question, we con-
cretely define the object O and the output domain R.

The answers are often designed in the form of multiple-
choice lists to make sure that the user provides an an-
swer ∈ R.

• Open questions: In this kind of question, users define
the object themselves and provide the corresponding
answer. Users may record their answers in natural
language, which requires Natural Language Processing
(NLP) tools for interpreting the answer.

While closed questions avoid extra cost for answer processing
and are robust to invalid answers, open questions are useful
for enriching the knowledge base by allowing users to extend
the set of objects.

4.1.2 Incentives
Incentives refer to how human workers will be rewarded

(or penalized) for the successful (or failed) execution of a
computational task. For example, in Amazon Mechanical
Turk, we often find many tasks with payment 0.1$ per user.
Human users are not a homogeneous group and can have
wide-ranging levels of expertise, experiences, and motives.
Users seek to understand which activities are rewarded and
whether those rewards are worthy of their knowledge and
effort. Thus, it is necessary to reward users properly, ac-
cording to their level of effort and expertise. There are sev-
eral ways to motivate users to participate and complete their
tasks effectively, including financial incentives, non-financial
incentives, and hybrid incentives. Financial incentives are
the method of rewarding users via monetary payment [97]
(e.g. by transferring directly to a bank account or using
digital currency such as bitcoin). Non-financial incentives
involve virtual rewards (e.g. points, badges), user satis-
faction, social recognition and the feeling of contributing
towards the greater good [90]. Hybrid incentives combine
both financial rewards and non-financial rewards in a sys-
tematic way [97]. Many research studies have shown the
effect of these incentive strategies on the performance of hu-
man work, especially crowdsourcing. Moreover, literature
also suggests that designers should understand variations in
human users behaviors (e.g. competence, enjoyment, and
autonomy) [37]; therefore, many works tackle the challenge
of clearly understanding the desired behavior of users and
designing the rewards accordingly [6, 9].

4.1.3 Requirements for Effective Tasks
To achieve good results, tasks need to be properly de-

signed so that the human participants are actually comput-
ing the correct results under the influence of appropriate
incentives. Many practical design requirements/guidelines
have been concluded in the literature, such as:

(R1) Graphical interface: the task requires a graphical user
interface with human-readable instructions. The lay-
out and design of the interface can have a direct effect
on the speed and accuracy with which people complete
the tasks [122].

(R2) Context information: it is a best practice to provide
context information. More context information en-
ables humans to better understand the task and spend
their effort [67].

(R3) Individually workable: the tasks need to be atomic and
workable by humans. In the literature, large tasks are

often decomposed into smaller tasks for multiple par-
ticipants. Thus, designers need to show the position
of each task in the overall decomposition. By knowing
the information as a whole, the human participants
can adequately solve their tasks [67].

(R4) Communication language: we need to visually sepa-
rate task language from context language. Workers
often have difficulty identifying the true purpose of
the task in a complex question they were being asked
to carry out. For example, the authors in [67] used
background colors to emphasize and separate the pri-
mary task instructions from explanatory and context
information.

(R5) Task complexity: Higher task complexity drastically
discourages malicious workers from attempting to cheat [29].
In other words, task must be designed so that giving
spam or malicious answers must take approximately
equal time to giving correct answers. As such, short
completion duration may indicate a malicious worker.

(R6) Variance of task: Greater variability and more con-
text changes discourage malicious workers as the task
appears less susceptible to automation or cheating, in
other words less profitable [29].

(R7) Self-reporting, verifiable questions, and task duration:
Add self-report response from workers prevents cheat-
ing since an inconsistent self-report response could in-
dicate a malicious worker. Short completion time may
also indicate a malicious worker. Moreover, the tasks
must have verifiable questions to test the worker reli-
ability [64].

4.2 Task Workflows
A complex problem should be divided into a collection of

tasks where one or many workers can participate. These
tasks might depend on each other, motivating the need for
decomposing tasks and assembling them into a workflow.
Figure 2 presents a general workflow that integrates various
research challenges. One typical research challenge is how to
effectively design the workflow to avoid overhead costs and
overlapping works between human participants.

• Fixed Workflow: the tasks are performed in a prede-
fined order. Moreover, the task assignment (how tasks
are distributed to users) are also computed before-
hand. A well-known strategy is Find-Fix-Verify which
is effective in countering low-quality workers. The
Find-Fix-Verify strategy splits a complex problem into
sequential tasks and review phases to utilize user vot-
ing and mutual agreement to obtain reliable results [12].
More precisely, in the Find phase, a set of users will
identify which needs to be done. Then in the Fix
phase, a new group of users is asked to solve the iden-
tified issues. Last, in the Verify phase, other indepen-
dently group of workers performs verification on the
submitted work. Another strategy is Solve-Decompose-
Combine [67], which allows the task owners to moni-
tor the workflow and intervene if necessary. The Solve
step asks a user to solve a task. The Decompose step
asks another user to decompose a task into various sub-
tasks. The Combine step asks another user to merge
the outputs from subtasks. Particularly, some Verify

Figure 2: Generic crowdsourcing workflow

controls are included to improve the result quality at
each step.

• Dynamic Workflow: The sequence of task execution
and which tasks are assigned to which users are not
decided in advance. Two strategies are often studied:
semi-automatic and automatic. In the semi-automatic
strategy, tasks are designed with the help of workers.
For example in [122], a traveling plan is designed us-
ing the workers on Amazon Mechanical Turk. The re-
questers define several constraints for their plan. First,
workers will pose ideas that are essentially tasks for
other workers to complete if they believe the idea is
reasonable. The system also help by identifying viola-
tions: if the traveling plan does not satisfy a constraint,
a new task will be asked to resolve this violation. In
the automatic strategy, tasks are designed automati-
cally based on the user answers received thus far. For
example in [21], the choice of the next question to be
asked and the number of workers needed, is reached
automatically based on decision theory.

4.3 Task Posting
The goal of task posting strategies is to determine and

(dynamically) vary the assignment of tasks to human par-
ticipants, so that the computational resources (e.g., total
monetary cost expended and the total time used for complet-
ing the tasks) are minimized. There are two types of posting
strategies in the literature: cost-driven posting strategies and
time-driven posting strategies.

Cost-driven posting strategies. The goal of these strate-
gies is to minimize the expected total expenditure that must
be paid to achieve a target overall accuracy. This cost mini-
mization problem can be also stated in another formulation:
given a limited budget of user inputs, we aim to maximize
the overall accuracy of the output results. To solve one or
the other problem formulation, research studies have pro-
posed the following representative strategies:

• Graph-based : A possible approach for cost-driven task
posting is designing an offline scheme that computes
all the task assignments before any participant arrives.
In [58], the authors implement task allocation via a bi-
partite graph with one type of nodes corresponding to
each of the tasks and another set of nodes correspond-
ing to each of the workers. An edge (i, j) indicates that
task i is performed by j, weighted by the corresponding
cost. With such a graph, they propose a probabilistic
model to compute the probability of output error. On

top of the probabilistic model, they use the maximal
likelihood estimation to find the best task assignment
given a predefined error threshold.

• Filtering : The number of tasks to be given to a user
can be reduced by using feature-based filters that spec-
ify some features of the objects must be true regard-
less of user input. For example in image data [74], two
profile images should not be matched unless they have
the same gender, hair color, and skin color. This pred-
icate allow us to filter all pairs of images that cannot
be matched, thus avoiding redundant input from user.

• Decision theory : The monetary cost for human partic-
ipation can be reduced by asking the questions incre-
mentally. In many cases, we cannot ask users to answer
all necessary questions due to limited budget. More-
over, the answers to different questions might lead to
different output quality. As such, the decision on which
questions are to be asked is important, for making the
most out of user input. In [53], the authors quan-
tify the potential benefit of a question, whose object
is a candidate match, by the changes this candidate
match makes to the utility of the dataspace. Another
implementation is [82], in which the authors measure
the potential benefit of a question, whose object is a
correspondence, by the reduction this correspondence
makes to the uncertainty of a matching network. Given
the received answers thus far, these systems always
continue to ask users the most beneficial question.

• Dependency : In general, the tasks might depend on
each other; i.e., the answer of a task affects the answer
of another task. We can leverage the task dependency
to reduce the cost by deriving the answers of some
tasks without asking users. In [112], the authors ap-
ply transitive relations, using which some pairs’ labels
can be deduced without asking humans to label them,
thus reducing the number of crowdsourced pairs. For
example, if o1 and o2 are matching, and o2 and o3 are
matching, we do not need to crowdsource the label for
(o1, o3) since they can be deduced as matching based
on transitive relations. In [49], the authors harness
network-level integrity constraints to reduce the error
rate of aggregating human inputs. The idea is that
the correctness of one human input can be used to jus-
tify the others via constraint evidence. In the end, the
number of human inputs is reduced given a predefined
error threshold.

• Active learning : Having a similar idea to the Depen-
dency method, this method tries to predict the answers
of tasks without user input. In [118], the authors aim
to build a classification model for automatically repair-
ing imprecise data. Since the data are huge, we can
only obtain a small set of user inputs, which then are
used for training the classification model. However,
different training inputs might lead to different model
accuracy. The goal then becomes how to obtain the
best inputs from users. To achieve this goal, the au-
thors design an active learning process, in which the
tasks with highest learning benefit are chosen to be

given to users. The learning benefit of a task is mea-
sured by the accuracy of possible classification models
that could be learned by the user inputs received so
far.

Time-driven posting strategies. The goal of these strate-
gies is to minimize the expected total time to complete all
assigned tasks, given that the monetary budget for tasks is
fixed upfront. Another formulation of the time-driven goal
is, given a quality threshold for resulting outputs, we aim
to minimize the completion time of the tasks necessary to
achieve the quality threshold. A wide range of strategies
have been proposed in the literature, including the follow-
ing most representative ones:

• Grouping : The interdependence between tasks can be
used to reduce the time for completing them. For ex-
ample, the work in [7] designs a task allocator that
tries to allocate many similar tasks to the same user.
Putting multiple related questions in the same task al-
lows human users to complete them faster since these
related questions provide “context” for each other (i.e.
the information in one question can be used to answer
another question).

• Game theoretical approach: In practice, human users
might be lazy to complete the tasks. In [30], the au-
thors propose a game-theoretical model for pricing the
tasks so that the users compete with each other to fin-
ish the tasks as fast as possible. The idea is that, for
those who finish first, they will get more money and
move to the other tasks earlier (with the potential to
continue earning much more money).

• Parallel strategy : Since human workers have latencies,
deadline becomes a critical problem in applications
that require fast computation such as searching. To
improve the completion time, we can post the tasks in
parallel, in which multiple tasks are answered and/or
each task are performed by multiple workers simulta-
neously. In [119], the authors propose a delay predic-
tion model to determine the overall completion time
and the overall accuracy of user inputs. Since parallel
posting is potential wasteful (the cost for posted tasks
is multiply), this prediction model helps to decide the
minimal level of parallel (how many questions/work-
ers should be performed/employed at the same time)
given an accuracy acceptance threshold. It is worth
noting that the parallel strategy might be not appli-
cable for the cases where the output of a task is the
input of another task (as in workflows).

• Humans as real-time processing units: Some researches
make use of human computation in real-time applica-
tions, in which each human is considered as a human
processing unit (HPU) that has latency as the time
to complete a job [22]. This setting draws inspiration
from traditional performance optimization on comput-
ers with CPUs. In general, there are two types of la-
tency that need to be optimized: (i) waiting time –
the duration from when a job is published in a human
computation market to when it is accepted by a hu-
man worker, and (ii) completion time – the time for

a human worker to complete a job. The latter can be
controlled by monetary reward and difficulty level of
tasks as shown in survival analysis models [30, 113].
Whereas, optimizing the former is often more difficult
due to the stochastic behavior of human workers [11]
(i.e. a human worker might choose not to accept a
task for an unknown reason). To tackle this issue,
Bernstein et. al. [11] proposes a retainer model, whose
idea is to employ a set of prepaid workers, so that they
can wait online and perform a task immediately when
it is published. They also consider rewarding addition-
ally incentives for workers who accept the tasks more
quickly. However, a major limitation of the retainer
model is that the quality might be even reduced since
the workers could be careless or stressed to handle the
tasks simultaneously (a prepaid task might come in the
middle of work of another normal task).

4.4 Working Examples
We now present working examples of task-related tech-

niques and methodologies that are applied in existing human
computation frameworks, in practical settings.

Human annotation for videos. As a first example, the
authors of [63] designed a system that enables crowd work-
ers to extract step-by-step structure from an existing video,
in which each step is a meaningful segment that provides
textual and visual annotations of the video content. A fixed
human computation workflow is used, consisting of three
stages: Find, Verify, and Expand. In the Find stage, the
human computation task is to mark possible steps for a
video segment. A worker input is a collection of timestamps
and textual annotations for each step. At the end of the
Find step, an aggregation operation is performed: times-
tamps from different workers are combined via a clustering
algorithm (e.g. DBSCAN) to produce the steps (final times-
tamps are the mean timestamps of the produced clusters).
In the Verify stage, the human computation task is to vote
on the best annotations for each step, which are output from
the Find step. The authors used majority voting to make
the final decision. In case of tie-breaks, the longest descrip-
tion is picked. In the Expand stage, the human computation
task is to select a thumbnail that best summarizes each step,
in which a multiple-choice question with static thumbnails
of the video is presented to the workers. To aggregate the
worker choices of thumbnails, the authors use majority vot-
ing.

Human categorization for text data. As a another ex-
ample, the authors of [5] designed a framework that employs
crowd workers to extract categories from text data, for the
purpose of text clustering. The studied dataset is on the
contribution types of top Wikipedia contributors. A fixed
human computation workflow is used with two steps: Re-
Representation and Iterative Clustering. In the first step,
the human computation task is to provide a label of con-
tribution type for an individual contributor or a group of
contributors. The worker inputs are fed to the next step, in
which an iterative clustering process is performed for clus-
tering similar contributors. In the second step, the human
computation task is to group similar contributors. This is
similar to the clustering aggregation problem yet the differ-
ence is that the workers subsequently refine the clustering
results of each other without using any automatic clustering

technique.

Human-power search engine for querying images.
In [119], the authors designed a mobile application that al-
lows for searching images via an query image, in which hu-
man workers are employed to validate whether a candidate
image is similar to the query image or not. The human com-
putation task consists of an image pair between the query
image and a candidate image retrieved by automatic tools
(Figure 3). Two possible answers are given: YES – the two
images are similar, and NO – other. No further context in-
formation is provided since images are quite illustrative data
for humans. After all worker inputs are collected, they are
aggregated by majority rule to determine the best image as
the retrieved result (Figure 5).

Figure 3: Image Search Task

Human validation for automatic matching results [51].
In [51], the authors designed a system that allows the crowd
workers to validate the results of automatic schema match-
ing tools. The human computation task is to validate the
correctness of an attribute correspondence generated by au-
tomatic tools (Figure 4). Different types of context informa-
tion are provided based on the relationships of the given cor-
respondences with the others in a large network of schemas.
Two possible answers are allowed: YES – the correspon-
dence is approved, and NO – otherwise. For each corre-
spondence, the worker inputs are aggregated via the EM-
algorithm (see Section 3.1) to compute the final validation
for the correspondence (along with an error rate value). A
dynamic workflow is used for the crowdsourcing process, in
which worker inputs are elicited until the error rate of ag-
gregated results is less than a pre-defined threshold. More
precisely, for each correspondence, if the worker inputs agree
on its approval or disapproval, the system stops asking more
questions to the crowd. On top of this workflow, a cost-
driven task posting strategy is used, in which the number
of worker inputs is minimized given an error threshold of
aggregated results. To this end, the authors leverage the
relationships between correspondences to justify their vali-
dation against each other, thus requiring less worker inputs
to achieve the same error rate.

5. APPLICATIONS
In this section, we present well-known applications that

make use of human computation, spanning various domains:
(i) Data acquisition – measure real-world physical conditions
and collect the measured data, (ii) Data analysis – inspect
data characteristics to discover useful information and pat-
terns, (iii) Data curation – maintain and extract important
information for reuse and preservation, (iv) Data storage –
store data in readable formats efficiently, and (v) Data usage

Figure 4: Schema Matching Task with 3 different
contextual information: (A) All alternative targets,
(B) Transitive closure, (C) Transitive violation

– support exploring and visualizing data for decision-support
purposes.

5.1 Data Acquisition
Human-assisted Machine Learning. In many machine
learning applications (e.g., classification, visual recognition,
and object detection), training data is needed to parameter-
ize the automatic models. However, in traditional systems,
training data is often limited (e.g., only a single expert is
hired) and out of date (e.g., old data is used several times
for modern techniques). To address this problem, a large
body of works [14, 99, 108] employs human computation in
the form of crowdsourcing to iteratively improve the train-
ing data. All of these works are feasible due to the mass
availability of thousands of crowd workers and their cheap
hiring cost in online platforms (e.g., as stated earlier, Ama-
zon Mechanical Turk, CrowdFlower).

In general, these works design an active learning process,
which is executed as follows. Firstly, automatic results are
produced based on existing training data. Then, crowd
workers are employed to validate these results. Combin-
ing worker inputs, the system generates new training data.
On top of the new training data, another iteration is per-
formed using the same automatic techniques. In brief, this
active learning process entails a human computation loop,
in which human users iteratively contribute to improve the
output quality of automatic tools.

Participatory Sensing and Measuring. In participa-
tory sensing, people are equipped with built-in sensors in
their smartphones to measure real world physical conditions.
There are various applications in this category such as envi-
ronmental monitoring and tracking daily activities.

Traditional environmental monitoring systems rely on ag-
gregate statistics by fixed sensors to measure and report
environmental pollution over an area (e.g., community, city,
state). These systems have several limitations. For example,
since the cost of sensor deployment is high, the sensors might
not cover all the desired regions. Moreover, due to vari-
ous factors including low battery or damaged components,
the deployed sensors might report imprecise measurement.
To overcome these limitations, participatory sensing systems
(e.g. Common Sense [27]) use specialized handheld air qual-
ity sensing devices, which are distributed to a large number
of human participants, for collectively measuring various air
quality indices such as carbon emissions, noise levels, and
water conditions.

Similar methods are demonstrated in PEIR – another par-
ticipatory sensing system [78], which uses mobile phones to
infer daily activities of human participants. For example,
the combination of personalized accelerometer data and a

sequence of locations from the GPS can recognize the trans-
portation mode of a user, such as biking, driving, or taking
public transports (bus, metro).

5.2 Data Analysis
Entity Extraction. Entity linking is the problem of match-
ing URIs to entities in the Web context. In [23], the authors
design the human computation tasks to be published on a
crowdsourcing platform using three elements: i) the name
of the textual entity, ii) contextual information generated
by the original HTML document from which the entity was
extracted, and iii) the current top-k matches for the entity
provided by the automatic tools. They experimented with
various types of contextual information such as the text cor-
responding to the extracted entity and the text snippets
around each occurrence of the entity in the HTML page.
The question of a matching task is asking crowdsourcing
workers to select one or many among the candidate URIs
for the given entity. The answers given by workers can be
aggregated into final matching results or used as training
data for machine-learning algorithms.

Linked Data. Automatic relationship extraction in the
literature has limitations in terms of accuracy while rela-
tionship extraction using experts incurs a very high cost.
To circumvent this issue, the work in [18] shows how to cre-
ate a taxonomy using crowd workers. The human workers
are presented with three crowdsourcing tasks: generate cat-
egories from items, select the best category for an item from
a list of categories and categorize the item into appropriate
categories. The categories and the items are then collected
to generate a full taxonomy using an automatic structure
inference. Another approach in relationship extraction is
provided in [57] where the workers are asked to specify the
relationships between simple tags. These basic relationships
are then aggregated incrementally as new tag relations ar-
rive to generate a complete structure.

Sentiment Analysis. While sentiment analysis is a very
challenging task for computers, it is a trivial task for humans
as it involves human natural language processing. The feasi-
bility of using human for sentiment analysis is shown in [72]
where the authors proposed a method to analyze sentiments
in Twitter tweets regarding a keyword. After gathering
enough tweets related to the keywords, a crowdsourcing task
is created for each tweet according to a pre-defined template.
Crowd workers are recruited to provide their feelings about
the tweets such as Good, Satisfied, Not Satisfied. The an-
swers are then aggregated based on a probabilistic model to
get an estimated correct answer.

5.3 Data Curation
Credibility and Trust. Information credibility has been
studied in the literature to evaluate the trustworthiness of
a data source or an artifact, indicating whether the infor-
mation is trustable or not. With the growth of the web,
information credibility is applied to assess the credibility of
websites. However, assessing the credibility of information
on the web is still a challenging issue. As a publicly available
platform in which anyone can share anything, the web is in-
herently uncertain, in which information published cannot
be easily verified for validity, legitimacy and trustworthi-
ness. Moreover, as the web contents are shared by humans,

automatic techniques might not be able to truly assess the
credibility of web content.

Overcoming this issue, a large body of work employs hu-
man computation to evaluate the credibility of websites. In
general, these works collect users’ feedback by allowing them
to provide ratings on a web page. Possible rating scores can
be binary (e.g., Postive/Negative [39]) or multiple (Trustful-
ness/Unbiased/Security/Page design [46]). The ratings are
then combined to produce the credibility score of the web
page (e.g., by computing the means and standard variances
of user rating scores [39]).

Annotation. Annotation is the process of attaching meta-
data (e.g., comments, tags, markups) to different types of
data such as images, text, media, etc. Since data has differ-
ent characteristics and formats, automatic annotation tools
might not be able to produce meaningful annotations that
satisfy user needs. Moreover, humans often understand the
content of data more easily than computers (e.g., watch-
ing videos). As such, many research works employ human
computation for the purposes of data annotation. As an
example, the authors of [63] designed a system that enables
human participants to annotate step-by-step structure for an
existing video, in which each step is a meaningful segment
with textual and visual annotations of the video content.
Human annotations are then combined by majority voting
to decide the best annotations for the videos.

Entity Resolution. Entity Resolution (also known as en-
tity reconciliation, duplicate detection, record linkage) is the
task of finding different records that refer to the same en-
tity in database systems. In [111], the authors generated
two types of human computation tasks for entity resolution.
The first type of task is asking the humans to verify, for
each pair of records, whether they refer to the same entity
or not. The possible outputs of pair-based tasks, for ex-
ample, are “These items are similar” or “These items are
different”. The second type of task is asking the humans to
find all duplicate records among a small group of individual
records. User interface of group-based tasks often contains a
list of records, in which to indicate duplicate records, users
assign them to the same label from a drop-down list at the
front of each record. In both types of tasks, the context in-
formation includes a brief description of the task and more
detailed instructions are displayed below. In general, the
first type of tasks takes more monetary cost to employ users
since all pair of records need to be verified, whereas the sec-
ond type of task increases the difficulty level of the question
since users have to consider multiple records at the same
time.

5.4 Data Storage
Schema Matching. Schema matching is the process of
identifying attribute correspondences between database schemas.
Since automatic matching tools rely on heuristics, their re-
sults are inherently uncertain. As such, a post-matching
human effort is needed to validate the matching results.
There are various works that employ human computation
for schema matching. Typical examples are [51, 75], in
which the system employs human users via crowdsourcing
platforms (e.g., Amazon Mechanical Turk) to validate the
correctness of generated attribute correspondences. Crowd-
sourcing fits in this application since validating one corre-
spondence is a small task that requires very little cost and

effort. Figure 4 depicts a typical crowdsourcing task, in
which a worker is asked to validate an attribute correspon-
dence in schema matching. Different types of context infor-
mation are provided such as top-k candidate matches and
constraint-related evidence [51].

Ontology Alignment. Ontology alignment is the process
of determining correspondences between concepts. A set
of correspondences is also called an alignment. Similar to
schema matching, human computation is also employed to
validate the correctness of automatically generated corre-
spondences, which are inherently uncertain. A well-known
work is [93], in which the authors employ crowd workers
via crowdsourcing platforms (e.g. CrowdFlower) to work
on a set of candidate mappings between two ontologies for
improving their accuracy. Two types of human computa-
tion tasks are proposed: validation tasks and identification
tasks. A validation task presents workers with two concepts
and the relationship that connects them and ask the workers
whether or not they agree with the relationship. An identifi-
cation task (or creation task) asks workers to identify/create
the relationship between two given concepts. Further con-
text information is also provided such as the data instance
of the two concepts.

Sorting/Ordering/Joining. In practice, there are always
sorting tasks which cannot be computed automatically such
as “order these variants of a sentence by quality”, or “order
the images of animals by adult size”. The reason is that the
order of the sorting elements is subjective to human evalua-
tion. In [74], the authors studied this problem by designing
human computation tasks for sorting such datasets. The hu-
man participants are asked to compare pairs of items against
each other or assign a rating to each item. Based on human
inputs, the authors that an actual algorithm that sort items
using pairwise comparisons or their ratings can be obtained.

5.5 Data Usage

Query Answering. Automatic image search techniques in
the literature have limitations in terms of accuracy. Going
beyond this issue, the work in [119] employs humans due to
their natural ability for comparing images. In that, a human
computation task is validating the automatic search results.
More precisely, for a query image, their system generates a
set of candidate search results. Each pair of <query image,
candidate image> is then validated by crowd workers. Pos-
sible outputs are YES (if the worker thinks two images are
similar) and NO (if the worker thinks two images are not
similar). Figure 5 shows the user interface where the im-
age search engine returns three candidate images, and each
candidate image is validated by independent workers.

Figure 5: Image Search Aggregation

User Relevance Feedback. Relevance evaluation is an
important requirement in information retrieval systems. For
example, it is a necessity when developing a new search en-
gine or comparing different search engines with each other.
The challenge is that the search results of automatic tech-
niques are inherently uncertain, since there does not exist an
automatic algorithm to perfectly evaluate the relevance of
search results to user (otherwise that algorithm itself entails
a perfect search method for the given retrieval tasks). To
overcome this challenge in the context of document retrieval,
early research in relevance evaluation employs a small set
of examiners (e.g. editors, volunteers, students) to deter-
mine the relevance of every document in a corpus to a set
of test queries, thus creating a test collection. Newly devel-
oped retrieval techniques are then evaluated by comparing
their top-k documents with those in the test collection. Us-
ing this human computation method, various test collections
have been created and refined annually such as TREC [19],
NTCIR [55], and CLEF [15].

However, using test collections has two major limitations.
First, it is assumed that the test collections should cover im-
portant characteristics of the document corpus. This might
not hold when the corpus is at large scale and changes fre-
quently. Second, the domains of retrieval tasks are limited
to only those studied by the test collections. For a new
search domain, it takes a lot of time and cost to employ
the examiners for creating the test collections. To tackle
this issue, Alonso et. al. [3] employs another scale of human
computation by using crowdsourcing services to obtain user
relevance feedback as a result of micro-tasks. Due to the
mass number and high availability of crowdsourcing work-
ers, the search results are quickly evaluated to measure the
effectiveness of a given retrieval technique regardless of the
corpus and its domain.

Recommender Systems. As aforementioned, implicit hu-
man computation systems generally exploit the user traces
in an underlying platform to solve computational problems
such as spelling correction and optical character recogni-
tion. This human computation method is further employed
to help the computational systems serve users better as in
collaborative filtering and adaptive web-sites. On the one
hand, collaborative filtering applications [94] exploit histori-
cal user purchases to recommend products that truly match
user expectations. More precisely, existing collaborative fil-
tering techniques leverage existing users’ ratings based on
similarity between users and/or products in order to select
those that have highest ratings for recommendation. The
core idea is that products recommended by a particular user
will be preferred by those other users who are similar to her.
On the other hand, there is a large body of work on devel-
oping adaptive web sites [86] by exploiting the click logs of
users to improve the presentation of a Web page. For exam-
ple, based on the sequence of clicked URLs, the web designer
can design a better navigation between the URLs [77].

Visualization. Human computation is also applied to im-
prove the visualization of data in terms of graphical percep-
tion. Since there is no universal definition of visualization
effectiveness (e.g. “beauty” is a perceptual concept that can
vary from culture to culture, from person to person, and
even throughout history), a straightforward approach is to
employ a sample set of users to evaluate a given visualiza-
tion design. To make the sample evaluation significant with

low cost, Heer et. al. [43] leverage crowdsourcing services
(e.g. AMT) to perform the evaluation. Their experimen-
tal findings show that using crowdsourced results not only
provide the design guidelines similar to those of the experts
in the field but also gain new understandings in designing
visual elements.

6. CONCLUSION
We have discussed the state-of-the-art of human compu-

tation in the context of data, information, and knowledge
management (DIKM). Our purpose in developing this clas-
sification of human computation systems, models, and ap-
plications is to understand the entire life-cycle of human
computation systems in an ordered way [34, 83].

While the focus of our classification lies on the function
characteristics of DIKM problems, we offer a practical guide-
line of techniques and tools to deal with different aspects of
human computation such as modeling of problems, reconcil-
iation of human input, and task design and dissemination.
Specifically, we discuss the applicability and limitations of
such techniques to help both researchers and developers.
While researchers can use our survey to position their re-
search directions and identify unsolved problems, develop-
ers can leverage the surveyed techniques for their potential
applications [47–50, 79–81].

References
[1] Daniel Duarte Abdala, Pakaket Wattuya, and Xiaoyi

Jiang. “Ensemble clustering via random walker con-
sensus strategy”. In: ICPR. 2010, pp. 1433–1436.

[2] Nir Ailon, Moses Charikar, and Alantha Newman.
“Aggregating inconsistent information: ranking and
clustering”. In: JACM (2008), p. 23.

[3] Omar Alonso, Daniel E. Rose, and Benjamin Stewart.
“Crowdsourcing for Relevance Evaluation”. In: SIGIR
Forum (2008), pp. 9–15.

[4] Yael Amsterdamer et al. “Crowd Mining”. In: SIG-
MOD. 2013, pp. 241–252.

[5] Paul André, Aniket Kittur, and Steven P Dow.“Crowd
synthesis: Extracting categories and clusters from com-
plex data”. In: CSCW. 2014, pp. 989–998.

[6] Judd Antin and Aaron Shaw. “Social desirability bias
and self-reports of motivation: a study of amazon me-
chanical turk in the US and India”. In: CHI. 2012,
pp. 2925–2934.

[7] Amos Azaria, Yonatan Aumann, and Sarit Kraus.
“Automated agents for reward determination for hu-
man work in crowdsourcing applications”. In: AA-
MAS. 2013, pp. 1–22.

[8] Eugene Barsky and Michelle Purdon. “Introducing
Web 2.0: social networking and social bookmarking
for health librarians”. In: JCHLA (2006), pp. 65–67.

[9] Benjamin B Bederson and Alexander J Quinn. “Web
workers unite! addressing challenges of online labor-
ers”. In: CHI. 2011, pp. 97–106.

[10] Asa Ben-Hur, Andre Elisseeff, and Isabelle Guyon.
“A stability based method for discovering structure
in clustered data”. In: PSB. 2001, pp. 6–17.

[11] Michael S. Bernstein et al. “Crowds in Two Seconds:
Enabling Realtime Crowd-powered Interfaces”. In: UIST.
2011, pp. 33–42.

[12] Michael S Bernstein et al. “Soylent: a word processor
with a crowd inside”. In: UIST. 2010, pp. 313–322.

[13] Ralph Allan Bradley and Milton E Terry.“Rank anal-
ysis of incomplete block designs: I. The method of
paired comparisons”. In: Biometrika (1952), pp. 324–
345.

[14] Steve Branson et al. “Visual recognition with humans
in the loop”. In: ECCV. 2010, pp. 438–451.

[15] Martin Braschler.“CLEF 2001 – Overview of results”.
In: Evaluation of Cross-Language Information Re-
trieval Systems. 2002, pp. 9–26.

[16] Jeffrey A Burke et al. “Participatory sensing”. In:
Center for Embedded Network Sensing (2006).

[17] Caleb Chen Cao et al.“Whom to Ask?: Jury Selection
for Decision Making Tasks on Micro-blog Services”.
In: VLDB. 2012, pp. 1495–1506.

[18] Lydia B Chilton et al. “Cascade: Crowdsourcing tax-
onomy creation”. In: CHI. 2013, pp. 1999–2008.

[19] Charles L Clarke, Nick Craswell, and Ian Soboroff.
Overview of the trec 2009 web track. Tech. rep. DTIC
Document, 2009.

[20] Chenyun Dai et al. “An approach to evaluate data
trustworthiness based on data provenance”. In: SDM.
2008, pp. 82–98.

[21] Peng Dai, Daniel Sabey Weld, et al.“Decision-theoretic
control of crowd-sourced workflows”. In: AAAI. 2010.

[22] James Davis et al. “The hpu”. In: CVPRW. 2010,
pp. 9–16.

[23] Gianluca Demartini, Djellel Eddine Difallah, and Philippe
Cudré-Mauroux. “ZenCrowd: Leveraging Probabilis-
tic Reasoning and Crowdsourcing Techniques for Large-
scale Entity Linking”. In: WWW. 2012, pp. 469–478.

[24] Persi Diaconis. “Group representations in probability
and statistics”. In: Lecture Notes-Monograph Series
(1988), pp. i–192.

[25] Anhai Doan, Raghu Ramakrishnan, and Alon Y Halevy.
“Crowdsourcing systems on the world-wide web”. In:
CACM (2011), pp. 86–96.

[26] Carlotta Domeniconi et al. “Locally adaptive met-
rics for clustering high dimensional data”. In: DMKD
(2007), pp. 63–97.

[27] Prabal Dutta et al. “Common sense: participatory ur-
ban sensing using a network of handheld air quality
monitors”. In: SenSys. 2009, pp. 349–350.

[28] Cynthia Dwork et al. “Rank aggregation methods for
the web”. In: WWW. 2001, pp. 613–622.

[29] Carsten Eickhoff and Arjen P. de Vries. “How Crowd-
sourcable is your Task?” In: CSDM. 2011, pp. 11–14.

[30] Siamak Faradani, Björn Hartmann, and Panagiotis G
Ipeirotis. “What’s the Right Price? Pricing Tasks for
Finishing on Time.” In: Human Computation (2011).

[31] Xiaoli Zhang Fern and Carla E Brodley.“Solving clus-
ter ensemble problems by bipartite graph partition-
ing”. In: ICML. 2004, p. 36.

[32] Michael Fire et al. “Data mining opportunities in
geosocial networks for improving road safety”. In: IEEEI.
2012, pp. 1–4.

[33] Michael J. Franklin et al.“CrowdDB: Answering Queries
with Crowdsourcing”. In: SIGMOD. 2011, pp. 61–72.

[34] Avigdor Gal et al. “Completeness and ambiguity of
schema cover”. In: CoopIS. 2013, pp. 241–258.

[35] Florent Garcin et al. “Rating aggregation in collab-
orative filtering systems”. In: RecSys. 2009, pp. 349–
352.

[36] Alan Genz. “Numerical computation of rectangular
bivariate and trivariate normal and t probabilities”.
In: Statistics and Computing (2004), pp. 251–260.

[37] Elizabeth M. Gerber and Julie Hui. “Crowdfunding:
Motivations and Deterrents for Participation”. In: TOCHI
(2013), 34:1–34:32.

[38] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas.
“Clustering aggregation”. In: TKDD (2007), p. 4.

[39] Katherine Del Giudice. “Crowdsourcing credibility:
The impact of audience feedback on Web page cred-
ibility”. In: ASIST (2010), pp. 1–9.

[40] Peter A Gloor et al. “Web science 2.0: Identifying
trends through semantic social network analysis”. In:
CSE. 2009, pp. 215–222.

[41] Andrey Goder and Vladimir Filkov.“Consensus Clus-
tering Algorithms: Comparison and Refinement.” In:
ALENEX. 2008, pp. 109–117.

[42] Ryan G Gomes et al. “Crowdclustering”. In: NIPS.
2011, pp. 558–566.

[43] Jeffrey Heer and Michael Bostock. “Crowdsourcing
Graphical Perception: Using Mechanical Turk to As-
sess Visualization Design”. In: CHI. 2010, pp. 203–
212.

[44] Kenneth Higbee. “Mathematical Classification and
Clustering”. In: Technometrics (1998), pp. 80–80.

[45] David W. Hosmer and Stanley Lemeshow. Applied lo-
gistic regression. Wiley-Interscience Publication, 2000.

[46] Zhicong Huang, Alexandra Olteanu, and Karl Aberer.
“CredibleWeb: a platform for web credibility evalua-
tion”. In: CHI. 2013, pp. 1887–1892.

[47] Nguyen Quoc Viet Hung et al. “ERICA: Expert guid-
ance in validating crowd answers”. In: SIGIR. 2015,
pp. 1037–1038.

[48] Nguyen Quoc Viet Hung et al. “Minimizing efforts in
validating crowd answers”. In: SIGMOD. 2015, pp. 999–
1014.

[49] Nguyen Quoc Viet Hung et al. “On leveraging crowd-
sourcing techniques for schema matching networks”.
In: DASFAA. 2013, pp. 139–154.

[50] Nguyen Quoc Viet Hung et al. “SMART: A tool for
analyzing and reconciling schema matching networks”.
In: ICDE. 2015, pp. 1488–1491.

[51] NguyenQuocViet Hung et al. “On Leveraging Crowd-
sourcing Techniques for Schema Matching Networks”.
In: DASFAA. 2013, pp. 139–154.

[52] Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang.
“Quality management on Amazon Mechanical Turk”.
In: HCOMP. 2010, pp. 64–67.

[53] Shawn R Jeffery, Michael J Franklin, and Alon Y
Halevy. “Pay-as-you-go user feedback for dataspace
systems”. In: SIGMOD. 2008, pp. 847–860.

[54] Audun Jsang and Roslan Ismail. “The beta reputa-
tion system”. In: BECC. 2002, pp. 41–55.

[55] Noriko Kando et al. “Overview of IR tasks at the first
NTCIR workshop”. In: NTCIR. 1999, pp. 11–44.

[56] Bob Kanefsky, Nadine G Barlow, and Virginia C Gulick.
“Can distributed volunteers accomplish massive data
analysis tasks”. In: Lunar and Planetary Science (2001).

[57] Dimitris Karampinas and Peter Triantafillou.“Crowd-
sourcing taxonomies”. In: ESWC. 2012, pp. 545–559.

[58] David R Karger, Sewoong Oh, and Devavrat Shah.
“Budget-optimal task allocation for reliable crowd-
sourcing systems”. In: Operations Research (2014),
pp. 1–24.

[59] DR Karger, S Oh, and D Shah. “Iterative learning
for reliable crowdsourcing systems”. In: NIPS. 2011,
pp. 1953–1961.

[60] George Karypis and Vipin Kumar. “A fast and high
quality multilevel scheme for partitioning irregular
graphs”. In: SIAM Journal on scientific Computing
(1998), pp. 359–392.

[61] George Karypis et al. “Multilevel hypergraph par-
titioning: applications in VLSI domain”. In: VLSI
(1999), pp. 69–79.

[62] FK Khattak and A Salleb-Aouissi. “Quality Control
of Crowd Labeling through Expert Evaluation”. In:
NIPS-CSS. 2011.

[63] Juho Kim et al. “Crowdsourcing Step-by-step Infor-
mation Extraction to Enhance Existing How-to Videos”.
In: CHI. 2014, pp. 4017–4026.

[64] Aniket Kittur, Ed H. Chi, and Bongwon Suh.“Crowd-
sourcing user studies with Mechanical Turk”. In: CHI.
2008, pp. 453–456.

[65] Aniket Kittur et al.“Crowdforge: Crowdsourcing com-
plex work”. In: UIST. 2011, pp. 43–52.

[66] Aniket Kittur et al. “The Future of Crowd Work”. In:
CSCW. 2013, pp. 1301–1318.

[67] Anand Kulkarni, Matthew Can, and Björn Hartmann.
“Collaboratively Crowdsourcing Workflows with Turko-
matic”. In: CSCW. 2012, pp. 1003–1012.

[68] LI Kuncheva, CJ Whitaker, and CA Shipp. “Limits
on the majority vote accuracy in classifier fusion”. In:
Pattern Anal. Appl. (2003), pp. 22–31.

[69] Edith Law and Luis von Ahn.“Human computation”.
In: Synthesis Lectures on Artificial Intelligence and
Machine Learning (2011), pp. 1–121.

[70] Joon Ho Lee. “Analyses of multiple evidence combi-
nation”. In: SIGIR. 1997, pp. 267–276.

[71] Kyumin Lee, James Caverlee, and Steve Webb. “The
social honeypot project: protecting online commu-
nities from spammers”. In: WWW. 2010, pp. 1139–
1140.

[72] Xuan Liu et al.“Cdas: a crowdsourcing data analytics
system”. In: VLDB. 2012, pp. 1040–1051.

[73] Huilan Luo, Furong Jing, and Xiaobing Xie. “Com-
bining multiple clusterings using information theory
based genetic algorithm”. In: CIS. 2006, pp. 84–89.

[74] Adam Marcus et al.“Human-powered sorts and joins”.
In: VLDB. 2011, pp. 13–24.

[75] R. McCann, Warren Shen, and AnHai Doan. “Match-
ing Schemas in Online Communities: A Web 2.0 Ap-
proach”. In: ICDE. 2008, pp. 110–119.

[76] Geoffrey McLachlan and David Peel. Finite mixture
models. John Wiley & Sons, 2004.

[77] Bamshad Mobasher, Robert Cooley, and Jaideep Sri-
vastava. “Creating adaptive web sites through usage-
based clustering of URLs”. In: KDEX. 1999, pp. 19–
25.

[78] Min Mun et al. “PEIR, the personal environmental
impact report, as a platform for participatory sensing
systems research”. In: MobiSys. 2009, pp. 55–68.

[79] Hung Quoc Viet Nguyen et al. “Minimizing human
effort in reconciling match networks”. In: ER. 2013,
pp. 212–226.

[80] Quoc Viet Hung Nguyen et al. “An evaluation of ag-
gregation techniques in crowdsourcing”. In: WISE.
2013, pp. 1–15.

[81] Quoc Viet Hung Nguyen et al. “BATC: a benchmark
for aggregation techniques in crowdsourcing”. In: SI-
GIR. 2013, pp. 1079–1080.

[82] Quoc Viet Hung Nguyen et al. “Pay-as-you-go rec-
onciliation in schema matching networks”. In: ICDE.
2014, pp. 220–231.

[83] Thanh Tam Nguyen et al. “Result selection and sum-
marization for Web Table search”. In: ICDE. 2015,
pp. 231–242.

[84] Andrei Oghina et al. “Predicting imdb movie ratings
using social media”. In: ECIR. 2012, pp. 503–507.

[85] Ory Okolloh. “Ushahidi, or’testimony’: Web 2.0 tools
for crowdsourcing crisis information”. In: Participa-
tory learning and action (2009), pp. 65–70.

[86] Mike Perkowitz and Oren Etzioni.“Adaptive web sites”.
In: CACM (2000), pp. 152–158.

[87] Kunal Punera and Joydeep Ghosh.“Consensus-based
ensembles of soft clusterings”. In: Applied Artificial
Intelligence (2008), pp. 780–810.

[88] Alexander J. Quinn and Benjamin B. Bederson. “Hu-
man Computation: A Survey and Taxonomy of a Grow-
ing Field”. In: CHI. 2011, pp. 1403–1412.

[89] Vikas C. Raykar et al. “Supervised Learning from
Multiple Experts: Whom to Trust when Everyone
Lies a Bit”. In: ICML. 2009, pp. 889–896.

[90] Steven Reiss. “Multifaceted nature of intrinsic moti-
vation: The theory of 16 basic desires.” In: Review of
General Psychology (2004), p. 179.

[91] M Elena Renda and Umberto Straccia.“Web metasearch:
rank vs. score based rank aggregation methods”. In:
SAC. 2003, pp. 841–846.

[92] J. Ross et al. “Who are the crowdworkers?: shift-
ing demographics in mechanical turk”. In: CHI. 2010,
pp. 2863–2872.

[93] Cristina Sarasua, Elena Simperl, and Natalya F Noy.
“Crowdmap: Crowdsourcing ontology alignment with
microtasks”. In: ISWC. 2012, pp. 525–541.

[94] Badrul Sarwar et al. “Item-based collaborative filter-
ing recommendation algorithms”. In: WWW. 2001,
pp. 285–295.

[95] Mudhakar Srivatsa, Li Xiong, and Ling Liu. “Trust-
Guard: countering vulnerabilities in reputation man-
agement for decentralized overlay networks”. In: WWW.
2005, pp. 422–431.

[96] Matthias Stevens and Ellie DâĂŹHondt.“Crowdsourc-
ing of pollution data using smartphones”. In: Work-
shop on Ubiquitous Crowdsourcing. 2010.

[97] Osamuyimen Stewart, Juan M Huerta, and Melissa
Sader. “Designing crowdsourcing community for the
enterprise”. In: KDD. 2009, pp. 50–53.

[98] Alexander Strehl and Joydeep Ghosh.“Cluster ensembles-
a knowledge reuse framework for combining parti-
tionings”. In: AAAI. 2002, pp. 93–99.

[99] Chong Sun et al.“Chimera: Large-Scale Classification
using Machine Learning, Rules, and Crowdsourcing”.
In: VLDB. 2014.

[100] James Surowiecki. “The wisdom of crowds: Why the
many are smarter than the few and how collective
wisdom shapes business”. In: Economies, Societies
and Nations (2004).

[101] Leon L Thurstone. “The method of paired compar-
isons for social values.” In: JAPSYCH (1927), p. 384.

[102] Alexander Topchy, Anil K Jain, and William Punch.
“Clustering ensembles: Models of consensus and weak
partitions”. In: TPAMI (2005), pp. 1866–1881.

[103] Alexander P Topchy, Anil K Jain, and William F
Punch. “A Mixture Model for Clustering Ensembles.”
In: SDM. 2004, pp. 379–390.

[104] http://www.crowdflower.com/. In: ONLINE (2014).

[105] Sandro Vega-Pons, Jyrko Correa-Morris, and José Ruiz-
Shulcloper. “Weighted partition consensus via ker-
nels”. In: Pattern Recognition (2010), pp. 2712–2724.

[106] Sandro Vega-Pons and José Ruiz-Shulcloper. “A sur-
vey of clustering ensemble algorithms”. In: IJPRAI
(2011), pp. 337–372.

[107] Matteo Venanzi, Alex Rogers, and Nicholas R Jen-
nings.“Crowdsourcing Spatial Phenomena Using Trust-
Based Heteroskedastic Gaussian Processes”. In: HCOMP.
2013.

[108] Sudheendra Vijayanarasimhan and Kristen Grauman.
“Large-scale live active learning: Training object de-
tectors with crawled data and crowds”. In: CVPR
(2014), pp. 97–114.

[109] Luis Von Ahn and Laura Dabbish. “Labeling images
with a computer game”. In: CHI. 2004, pp. 319–326.

[110] Luis Von Ahn et al. “recaptcha: Human-based char-
acter recognition via web security measures”. In: Sci-
ence (2008), pp. 1465–1468.

[111] Jiannan Wang et al. “CrowdER: Crowdsourcing En-
tity Resolution”. In: VLDB. 2012, pp. 1483–1494.

[112] Jiannan Wang et al. “Leveraging Transitive Relations
for Crowdsourced Joins”. In: SIGMOD. 2013, pp. 229–
240.

[113] Jing Wang, Siamak Faridani, and P Ipeirotis. “Es-
timating the completion time of crowdsourced tasks
using survival analysis models”. In: CSDM. 2011.

[114] Yao Wang and Julita Vassileva. “Bayesian network-
based trust model”. In: WI. 2003, pp. 372–378.

[115] Yao Wang and Julita Vassileva. “Trust and reputa-
tion model in peer-to-peer networks”. In: P2P. 2003,
pp. 150–157.

[116] Peter Welinder and Pietro Perona. “Online crowd-
sourcing: rating annotators and obtaining cost-effective
labels”. In: CVPRW. 2010, pp. 25–32.

[117] Jacob Whitehill et al. “Whose Vote Should Count
More: Optimal Integration of Labels from Labelers
of Unknown Expertise”. In: NIPS. 2009, pp. 2035–
2043.

[118] Mohamed Yakout et al. “Guided data repair”. In:
VLDB. 2011, pp. 279–289.

[119] Tingxin Yan, Vikas Kumar, and Deepak Ganesan.
“CrowdSearch: Exploiting Crowds for Accurate Real-
time Image Search on Mobile Phones”. In: MobiSys.
2010, pp. 77–90.

[120] Hye-Sung Yoon et al. “Heterogeneous clustering en-
semble method for combining different cluster results”.
In: BioDM. 2006, pp. 82–92.

[121] H Peyton Young and Arthur Levenglick. “A consis-
tent extension of Condorcet’s election principle”. In:
SIAM Journal on Applied Mathematics (1978), pp. 285–
300.

[122] Haoqi Zhang et al. “Human Computation Tasks with
Global Constraints”. In: CHI. 2012.

http://www.crowdflower.com/

	Introduction to Human Computation
	Kinds of Human Computation Systems
	Micro-work Systems
	Social-based Systems
	Pervasive Systems
	Management Systems

	Classification of HC Problems and Quality Control Techniques
	Discrete-function Problems
	Continuous-function Problems
	Partial-function Problems
	Association Rule Aggregation
	Ranking Aggregation

	Similarity based Problems

	Task Design and Dissemination
	Task Design
	Question
	Incentives
	Requirements for Effective Tasks

	Task Workflows
	Task Posting
	Working Examples

	Applications
	Data Acquisition
	Data Analysis
	Data Curation
	Data Storage
	Data Usage

	Conclusion

