
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1

A Parametric Non-Convex Decomposition
Algorithm for Real-Time and Distributed NMPC

Jean-Hubert Hours, Student Member, IEEE and Colin N. Jones, Senior Member, IEEE

Abstract—A novel decomposition scheme to solve parametric
non-convex programs as they arise in Nonlinear Model Predictive

Control (NMPC) is presented. It consists of a fixed number of
alternating proximal gradient steps and a dual update per time
step. Hence, the proposed approach is attractive in a real-time
distributed context. Assuming that the Nonlinear Program (NLP)
is semi-algebraic and that its critical points are strongly regular,
contraction of the sequence of primal-dual iterates is proven,
implying stability of the sub-optimality error, under some mild
assumptions. Moreover, it is shown that the performance of the
optimality-tracking scheme can be enhanced via a continuation
technique. The efficacy of the proposed decomposition method
is demonstrated by solving a centralised NMPC problem to
control a DC motor and a distributed NMPC program for
collaborative tracking of unicycles, both within a real-time
framework. Furthermore, an analysis of the sub-optimality error
as a function of the sampling period is proposed given a fixed
computational power.

Index Terms—Augmented Lagrangian, Alternating minimisa-
tion, Proximal gradient, Strong regularity, Kurdyka-Lojasiewicz
property, Nonlinear Model Predictive Control.

I. INTRODUCTION

The applicability of NMPC to fast dynamics is hampered by
the fact that an NLP, which is generally non-convex, is to be
solved at every sampling time. Solving an NLP to full accuracy
is not tractable when the system’s sampling frequency is high,
which is the case for many mechanical or electrical sys-
tems. This difficulty is enhanced when dealing with distributed
systems, which consist of several sub-systems coupled through
their dynamics, objectives or constraints. This class of systems
typically leads to large-scale NLPs, which are to be solved
online as the system evolves. Solving such programs in a
centralised manner may be computationally too demanding
and may also hamper autonomy of the agents. Therefore, much
research effort is currently brought to develop decentralised
computational methods applicable to MPC. Although several
distributed linear MPC algorithms are now available, there
only exists very few strategies [16] that can address online
distributed NMPC programs, as they generally result in non-
convex problems. Most of these techniques essentially consist
in fully convexifying the problem at hand and resort to Sequen-
tial Convex Programming (SCP). Hence, from a theoretical
point of view, they cannot really be considered as distributed
non-convex techniques, since the decomposition step occurs at
a convex sub-level. In addition, the SCP method of [16] has

Jean-Hubert Hours and Colin N. Jones are with the Laboratoire
d’Automatique, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015
Lausanne (e-mail:jean-hubert.hours@epfl.ch,colin.jones@epfl.ch). The work
of Jean-Hubert Hours and Colin N. Jones is supported by the European Re-
search Council under the European Union’s Seventh Framework Programme
(FP/2007-2013), ERC Grant Agreement 307608.

not been analysed in an online optimisation framework, where
fixing the number of iterations is critical. In general, it should
be expected that SCP techniques require a high number com-
munications between agents, since a sequence of distributed
convex NLPs is to be solved. Therefore, our main objective is
to propose a novel online distributed optimisation strategy for
solving NMPC problems in a real-time framework. Our ap-
proach is useful for deployment of NMPC controllers, but can
also be applied in the very broad parametric optimisation con-
text. We address the problem of real-time distributed NMPC
from a distributed optimisation perspective. However, some
approaches based on distributed NMPC algorithms, which
fully decompose the NMPC problem into smaller NMPC prob-
lems exist in the literature [27]. Yet, to the author’s knowledge,
they have not been analysed in a real-time setting. Moreover,
the approach of [27] is limited to the input constrained case.

A standard way of solving distributed NLPs is to apply
Lagrangian decomposition [9]. This technique requires strong
duality, which is guaranteed by Slater’s condition in the convex
case, but rarely holds in a non-convex setting. The augmented
Lagrangian framework [6] mitigates this issue by closing the
duality gap for properly chosen penalty parameters [25]. The
combination of the bilinear Lagrangian term with the quadratic
penalty also turns out to be computationally more efficient
than standard penalty approaches, as the risk of running into
ill-conditioning is reduced by the fast convergence of the dual
sequence. In addition, global convergence of the dual iterates
can be obtained [11]. However, the quadratic penalty term
induces non-separability in the objective, which hampers de-
composing the NLP completely. Several approaches have been
proposed to remedy this issue [20]. Taking inspiration from
the Alternating Direction Method of Multipliers (ADMM) [9],
we propose addressing the non-separability issue via a
novel Block-Coordinate Descent (BCD) type technique. BCD
or alternating minimisation strategies are known to lead to
‘easily’ solvable sub-problems, which can be parallelised un-
der some assumptions on the coupling structure, and are well-
suited to distributed computing platforms [7]. The central idea
of our algorithm is to apply a truncated proximal alternating
linearised minimisation in order to solve the primal augmented
Lagrangian problem approximately. Our convergence analysis
is based on the recent results of [3], [5], which provide a
very general framework for proving global convergence of
descent methods on non-smooth semi-algebraic objectives.

Augmented Lagrangian techniques have proven effective
at solving large-scale NLPs [31]. Yet, in an online context,
they are hampered by the fact that a sequence of non-convex
programs need to be solved to an increasing level of
accuracy [6]. Recently, a parametric augmented Lagrangian

mailto:jean-hubert.hours@epfl.ch
mailto:colin.jones@epfl.ch

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2

algorithm has been introduced by [30] for centralised NMPC
problems. Our online decomposition method builds upon
the ideas of [30], but extends them to the online distributed
framework. Furthermore, our analysis brings the results of [30]
one step further by proving contraction of the sequence of
primal-dual iterates under some mild assumptions. In
particular, new insights are given on how the penalty parameter
and the number of primal iterations need to be tuned in order to
ensure boundedness of the tracking error, which is the core of
the analysis of a parametric optimisation algorithm. Moreover,
an interesting aspect of our analysis is that it shows how the
proposed decomposition algorithm can be efficiently modified
via a continuation procedure [2], leading to faster convergence
of the tracking scheme. This theoretical observation is
confirmed by a numerical example presented later in the
paper. Our technique is also designed to handle a more
general class of parametric NLPs, where the primal Projected
Successive Over-Relaxation (PSOR) of [30] is limited to
quadratic objectives subject to non-negativity constraints.

From an MPC perspective, the effect of the sampling
period on the behaviour of the combined system-optimiser
dynamics has been analysed qualitatively in [1]. However,
it is often claimed that faster sampling rates lead to better
closed-loop performance. This thinking neglects the fact
that MPC is an optimisation-based control strategy, which
requires a significant amount of computations within a
sampling interval. Hence, sampling faster entails reducing
the number of iterations in the optimiser quite significantly,
as the computational power of any computing platform is
limited, especially in the case of embedded or distributed
applications. In the last part of the paper, we propose an anal-
ysis of the effect of the sampling period on the behaviour of
the system in closed-loop with our parametric decomposition
strategy. It is demonstrated that the proposed theory accounts
for the observed numerical behaviour quite nicely.

In Section III, the parametric distributed optimisation
scheme is presented. In Section IV, some key theoretical
ingredients such as strong regularity of generalised equations
and the Kurdyka-Lojasiewicz inequality are introduced, and
convergence of the primal sequence is proven. As explained
later in the paper, strong regularity and the Kurdyka-
Lojasiewicz inequality encompass a broad class of problems
encountered in practice. Then, in Section V, contraction of
the primal-dual sequence is proven and conditions ensuring
stability of the tracking error are derived. In Section VI,
basic computational aspects are investigated. Finally, the
proposed approach is tested on two numerical examples,
which consist in controlling the speed of a DC motor to track
a piecewise constant reference, and collaborative tracking of
unicycles. The effect of the sampling period on the tracking
error is analysed given a fixed computational power, or
communication rate for the distributed case.

II. BACKGROUND

Definition 1 (Proximal operator). Let f : Rn ! R[{+1} be
a proper lower-semicontinuous function and ↵ > 0. The prox-
imal operator of f with coefficient ↵, denoted by prox

f
↵ (·), is

defined as follows:

prox

f
↵ (x) := argminy f(y) +

↵

2

ky � xk22 . (1)

Definition 2 (Critical point). Let f be a proper lower semi-
continuous function. A necessary condition for x⇤ to be a
minimiser of f is that

0 2 @f (x⇤
) , (2)

where @f (x⇤
) is the sub-differential of f at x⇤ [26].

Points satisfying (2) are called critical points.

Definition 3 (Normal cone to a convex set). Let ⌦ be a convex
set in Rn and x̄ 2 ⌦. The normal cone to ⌦ at x̄ is the set

N⌦ (x̄) :=
�

v 2 Rn
�

� 8x 2 ⌦, v>
(x� x̄) 0

. (3)

The indicator function of a closed subset ⌦ of Rn is denoted
by ◆⌦ and is defined as

◆⌦ (x) =

(

0 if x 2 ⌦

+1 if x /2 ⌦

. (4)

Lemma 1 (Sub-differential of indicator function [26]). Given
a convex set ⌦, for all x 2 ⌦,

@◆⌦ (x) = N⌦ (x) . (5)

Lemma 2 (Descent lemma,[6]). Let L : Rn ! R a continu-
ously differentiable function such that its gradient rL is �L-
Lipschitz continuous. For all x, y 2 Rn,

L(y) L(x) +rL(x)> (y � x) +
�L
2

ky � xk22 . (6)

The distance of a point x 2 Rn to a subset ⌃ of Rn is
defined by

d(x,⌃) := inf

y2⌃

�

�x� y
�

�

2
. (7)

The open ball with center x and radius r is
denoted by B (x, r). Given x, x 2 Rn, the box
set

�

x 2 Rn
�

� x x x

is denoted by B (x, x). Given
a closed convex set ⌦ ✓ Rn, the single-valued projection
onto ⌦ is denoted by ⇡⌦ (·). The relative interior of ⌦ ✓ Rn

is denoted by ri⌦. Given a polynomial function f , its degree
is denoted by deg (f). A semi-algebraic function is a function
whose graph can be expressed as a union of intersections of
level sets of polynomials.

III. SOLVING TIME-DEPENDENT DISTRIBUTED NONLINEAR
PROGRAMS

A. Problem formulation
The following class of parametric NLPs with separable

cost, partially separable equality constraints and separable
inequality constraints is considered

minimise

z1,...,zNa

J (z) :=

Na
X

i=1

Ji (zi) (8)

s.t. Qc (z1, . . . , zNa) = 0,

gi (zi) + Tisk = 0,

zi 2 Zi, i 2 {1, . . . , Na} ,

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 3

where z :=

�

z>
1 , . . . , z

>
Na

�> 2 Rnz , with nz =

PNa

i=1 ni � 2

and zi 2 Rni . The vectors zi model different agents, while
the function Qc : Rnz ! Rm represent constraint couplings.

Remark 1. For clarity, the definition of NLP (8) is restricted
to constraint couplings. However, cost couplings can be
addressed by the approach described in the sequel.

The functions Ji : Rni ! R and gi : Rnz ! Rqi

are individual cost and constraint functionals at
agent i 2 {1, . . . , Na}. In an NMPC context, the nonlinear
equality constraint involving gi models the dynamics of agent i
over a prediction horizon. The vector sk is a time-dependent
parameter, which lies within a set S ✓ Rp, where k stands
for a time index. When it comes to NMPC, the parameter sk
stands for a state estimate or a reference trajectory, for
instance. The matrices Ti 2 Rqi⇥p are constant. The linear
dependence of the local equality constraints in the parameter s
is not restrictive, as extra variables can be introduced in
order to obtain this formulation. For all s 2 S , we define the
equality constraints functional

G(·, s) :=
�

Qc (·)> , (g1 (·) + T1s)
>
, . . . , (gNa

(·) + TNa
s)

>�>

For all i 2 {1, . . . , Na}, the constraint sets Zi are assumed to
be bounded boxes. Note that such an assumption is not restric-
tive, as slack variables can always be introduced. KKT points
of NLP (8) are denoted by w⇤

k or w⇤
(sk) without distinction.

Assumption 1. The functions Qc, Ji and gi are multivariate
polynomials. For each i 2 {1, . . . , Na}, deg (Ji) � 2.

Remark 2. From a control perspective, this implies that the
theoretical developments that follow are valid when NLP (8)
is obtained via discretisation of optimal control problems
with polynomial dynamics and quadratic costs for instance.

As we are targeting distributed applications, further
assumptions are required on the coupling function Qc.

Assumption 2 (Sparse coupling,[7]). The sub-
variables z1, . . . , zNa can be re-ordered and grouped
together in such a way that a Gauss-Seidel sweep on the
real-valued function kQck22 can be performed in P parallel
steps, where P ⌧ Na. The re-ordered and grouped sub-
variables are denoted by z1, . . . , zP , so that the re-arranged
vector z is defined by z = (z>

1 , . . . , z
>
P)

>. In the remainder, it
is assumed that NLP (8) has been re-arranged accordingly.

Remark 3. Assumption 2 is standard in distributed computa-
tions [7]. It encompasses a large number of practical prob-
lems of interest. For consensus problems, in which coupling
constraints z1 � zi = 0 appear for all i 2 {2, . . . , Na}, one
obtains P = 2 parallel steps, corresponding to the update
of z1 followed by the updates of z2, . . . , zNa in parallel. When
the coupling graph is a tree, such as in the case of a
distribution network, one also obtain P = 2. Our approach is
likely to be more efficient when P is small relative to Na.

It is worth noting that the problem formulation (8) does
not encompass standard NMPC programs, which typically
involve terminal weights and constraints that group together
all sub-systems states. Thus, in order to obtain a separable

objective subject to partially separable constraints, one may
resort to the NMPC design proposed by [18], which does not
involve any terminal conditions, but is based on a sufficiently
long prediction horizon to ensure closed-loop stability under
the optimal NMPC control law. Another possibility is to
extend the distributed invariance design procedure of [12] to
the nonlinear case via a standard linearisation and level-set
shrinking argument. One could also design box-shaped
terminal sets and separable terminal quadratic penalties using
the approach outlined in [22].

B. A non-convex decomposition scheme for optimality tracking

At every time instant k, a critical point of the parametric
NLP (8) is computed inexactly in a distributed manner. The
key idea is to track time-dependent optima w⇤

k of (8) by
approximately computing saddle points of the augmented
Lagrangian

L⇢ (z, µ, sk) := J (z) +
⇣

µ+

⇢

2

G (z, sk)
⌘>

G (z, sk) ,

(9)

subject to z 2 Z , where Z := Z1 ⇥ Z2 ⇥ . . . ⇥ ZP and
µ := (µ>

C , µ
>
1 , . . . , µ

>
P)

> 2 Rm+q , with q :=

PP
i=1 qi,

is a dual variable associated with the equality constraints
Qc (z) = 0, g1 (z1)+T1sk = 0,. . . , gP (zP)+TP sk = 0. The
scalar ⇢ > 0 is the so-called penalty parameter, which remains
constant as sk and µ vary. As Qc, Ji and gi are multivariate
polynomials, L⇢ (·, µ, s) is a multivariate polynomial, whose
degree is assumed to be larger than 2. We define

dL := deg (L⇢ (·, µ, s)) � 2 . (10)

In the rest of the paper, sub-optimality of a variable is high-
lighted by a ¯·, and criticality by a ·⇤. We intend to build an ap-
proximate KKT point (z̄(sk+1)

>, µ̄(sk+1)
>
)

> of (8) by incre-
mental improvement from the KKT point (z̄(sk)>, µ̄(sk)>)

>,
once the parameter sk+1 is available.

Algorithm 1 Optimality tracking splitting algorithm
Input: Suboptimal primal-dual solution (z̄(sk)

>, µ̄(sk)
>
)

>,
parameter sk+1, augmented Lagrangian L⇢ (·, µ̄k, sk+1).
Primal/Inner loop:
z(0) z̄(sk)
for l = 0 . . .M � 1 do

for i = 1 . . . P do . P ⌧ Na

. In parallel in group i

z
(l+1)
i bckMin

⇣

z
(l)
i , µ̄(sk), ⇢, sk+1

⌘

end for
end for
z̄(sk+1) z(M)

Dual update: µ̄(sk+1) µ̄(sk) + ⇢G (z̄(sk+1), sk+1)

Algorithm 1 computes a suboptimal primal variable z̄(sk+1)

by applying M iterations of a proximal alternating linearised
method to minimise the augmented Lagrangian functional
L⇢ (·, µ̄(sk), sk+1) +

PP
i=1 ◆Zi

(·).

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 4

We define the block-wise augmented Lagrangian function
at group i 2 {1, . . . , P}, where P ⌧ Na by Assumption 2,

L(i)
⇢,µ,s := L⇢ (z1, . . . , zi�1, ·, zi+1, . . . , zP , µ, s) (11)

and a quadratic model at zi, encompassing all agents of group
i, given a curvature coefficient ci > 0,

q (·; zi, ci) :=L(i)
⇢,µ,s (zi) +rL(i)

⇢,µ,s (zi)
>
(·� zi)

+

ci
2

k·� zik22 .

Given an iteration index l � 1, we define

L(i,l)
⇢,µ,s := L⇢

⇣

z
(l+1)
1 , . . . , z

(l+1)
i�1 , ·, z(l)i+1, . . . , z

(l)
P , µ, s

⌘

.

For every group of agent indexed by i 2 {1, . . . , P}, a
regularisation coefficient ↵i > 0 is chosen. In practice, such
a coefficient should be taken as small as possible.

Algorithm 2 Parallel backtracking procedure at group i 2
{1, . . . , P} and iteration l � 1, bckMin (zi, µ, ⇢, s)

Input: Primal variable z
(l)
i 2 Zi, initial guess on local

curvature ci > 0, block-wise augmented Lagrangian L
(i,l)
⇢,µ,s,

quadratic model q, regularisation coefficient ↵i > 0 and
backtracking coefficient � > 1.
z
(u)
i z

(l)
i

Backtracking loop:

while L
(i,l)
⇢,µ,s

⇣

z
(u)
i

⌘

+

↵i

2

�

�

�

z
(u)
i � z

(l)
i

�

�

�

2

2
> q

⇣

z
(u)
i ; z

(l)
i , ci

⌘

do
ci � · ci
z
(u)
i prox

◆Zi
ci

✓

z
(l)
i �

1

ci
rL(i,l)

⇢,µ,s

⇣

z
(l)
i

⌘

◆

end while
Output: z(u)i

Each step of the alternating minimisation among the P
groups of agents (Algorithm 1) consists in backtracking
projected gradient steps in parallel for each group (Algo-
rithm 2). Later in the paper, it is proven that the backtracking
loop of Algorithm 2 terminates in a finite number of iterations,
and that convergence of the primal loop in Algorithm 1 to a
critical point of the augmented Lagrangian (9) is guaranteed
for an infinite number of primal iterations (M =1 in Algo-
rithm 1). In practice, after a fixed number of primal iterations
M , the dual variable is updated in a first-order fashion. Hence,
the whole procedure yields a suboptimal KKT point

w̄k+1 =

�

z̄ (sk+1)
>
, µ̄ (sk+1)

>�>

for program (8) given parameter sk+1.

Remark 4. Incremental approaches are broadly applied in
NMPC, as fully solving an NLP takes a significant amount of
time and may result in unacceptable time delays. Yet, existing
incremental NMPC strategies [15], [32] are based on Newton
predictor-corrector steps, which require factorisation of a KKT
system. This a computationally demanding task for large-scale
systems that cannot be readily carried out in a distributed
context. Therefore, Algorithm 1 can be interpreted as a
distributed incremental improvement technique for NMPC.

Remark 5. Note that the active-set at z⇤ (sk+1) may be
different from the active-set at z⇤ (sk). Hence, Algorithm 1
should be able to detect active-set changes quickly. This is the
role of the proximal steps, where projections onto the sets Zi

are carried out. It is well-known that gradient projection
methods allow for fast activity detection [10].

IV. THEORETICAL TOOLS: STRONG REGULARITY AND
KURDYKA-LOJASIEWICZ INEQUALITY

The analysis of Algorithm 1 is based on the concept of
generalised equations, which has been introduced in real-
time optimisation by [30]. Another key ingredient for the
convergence of the proximal alternating minimisations in
Algorithm 1 is the Kurdyka-Lojasiewicz (KL) property, which
has been introduced in nonlinear programming by [3], [5]
and is satisfied by semi-algebraic functions [8]. Hence, this
property encompasses a broad class of functions appearing
in NLPs arising from the discretisation of optimal control
problems.

A. Parametric generalised equations
KKT points w⇤

(s) =
�

z⇤(s)
>
, µ⇤

(s)
>�> of the parametric

nonlinear program (8) satisfy z⇤(s) 2 Z and
(

0 2 rzJ(z
⇤
(s)) +rzG(z⇤(s), s)>µ⇤

(s) +NZ (z⇤(s))

G(z⇤(s), s) = 0

.

(12)

Relation (12) can be re-written as the generalised equation

0 2 F (w, s) +NZ⇥Rm
(w) , (13)

where

F (w, s) :=

rzJ(z) +rzG(z, s)>µ
G(z, s)

�

, w =

z
µ

�

. (14)

In order to analyse the behaviour of the KKT points of (8) as
the parameter sk evolves over time, the generalised equation
(13) should satisfy some regularity assumptions. This is
captured by the strong regularity concept [24], [30].

Definition 4 (Strong regularity,[24]). Let ⌦ be a compact
convex set in Rn and f : Rn ! Rn a differentiable mapping. A
generalised equation 0 2 f(x)+N⌦ (x) is said to be strongly
regular at a solution x⇤ 2 ⌦ if there exists radii ⌘ > 0 and
 > 0 such that for all r 2 B (0, ⌘), there exits a unique
xr 2 B (x⇤,) such that

r 2 f(x⇤
) +rf(x⇤

) (xr � x⇤
) +N⌦ (xr) , (15)

and the inverse mapping r 7! xr from B (0, ⌘) to B (x⇤,) is
Lipschitz continuous.

Remark 6. Note that strong regularity incorporates active-set
changes in its definition, as the normal cone is taken at xr in
Eq. (15). The set of active constraints at xr may be different
from the one at x⇤. Nevertheless, Lipschitz continuity of the
solution is guaranteed.

Remark 7. As the constraint set Z in (8) is polyhedral, it
can be shown that strong regularity of a KKT point of (8)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 5

is equivalent to linear independence constraints qualification
and strong second-order optimality [17], which are standard
assumptions in nonlinear programming.

As parameter sk changes in time, strong regularity is
assumed at every time instant k.

Assumption 3. For all parameters sk 2 S and associated
solutions w⇤

k, the generalised equation (13) is strongly regular
at w⇤

k.

From the strong regularity Assumption 3, it can be proven
that the non-smooth manifold formed by the solutions to the
parametric program (8) is locally Lipschitz continuous. The
first step to achieve this fundamental property is the following
Theorem proven in [24].

Theorem 1. There exists radii �A > 0 and rA > 0 such that
for all k 2 N, for all s 2 B (sk, rA), there exists a unique
w⇤

(s) 2 B (w⇤
k, �A) such that

0 2 F (w⇤
(s) , s) +NZ⇥Rm

(w⇤
(s)) (16)

and for all s, s0 2 B (sk, rA),

kw⇤
(s)� w⇤

(s0)k2 �A kF (w⇤
(s0) , s)� F (w⇤

(s0) , s0)k2 ,
(17)

where �A is a Lipschitz constant associated with the strong
regularity mapping of (13).

Remark 8. Theorem 1 is actually a refinement of Theorem
2.1 in [24], as the radii �A and rA are assumed not to
depend on the parameter sk 2 S .

Relation (17) does not exactly correspond to a Lipschitz
property. Yet, this point is addressed by the following Lemma.

Lemma 3. There exists �F > 0 such that for all w 2 Z⇥Rm,

8s, s0 2 S, kF (w, s)� F (w, s0)k2 �F ks� s0k2 . (18)

Proof. Let w 2 Z ⇥ Rm and s, s0 2 S .

F (w, s)� F (w, s0) =

(rzG (z, s)�rzG (z, s0))
>
µ

G (z, s)�G (z, s0)

�

=

2

6

6

4

0

T1 (s� s0)
. . .

TP (s� s0)

3

7

7

5

.

Hence, (18) holds with

�F = P ·max {kT1k2 , . . . , kTP k2} .

Algorithm 1 tracks the non-smooth solution manifold
by traveling from neighbourhood to neighbourhood, where
Lipschitz continuity of the primal-dual solution holds. Such
tracking procedures have been analysed thoroughly in the
unconstrained case by [15] for a Newton-type method, in
the constrained case by [30] for an augmented Lagrangian
approach and in [28] for an adjoint-based technique. These
previous tracking strategies are purely centralised second-
order strategies and do not readily extend to solving NLPs

in a distributed manner. Our Algorithm 1 proposes a novel
way of computing predictor steps along the solution manifold
via a decomposition approach, which is tailored to convex
constraint sets with closed-form proximal operators. Such a
class encompasses boxes, non-negative orthant, semi-definite
cones and balls for instance. The augmented Lagrangian
framework is particularly attractive in this context, as it allows
one to preserve ‘nice’ constraints via partial penalisation.

B. Convergence of the inner loop

The primal loop of Algorithm 1 consists of alternating prox-
imal gradient steps. In general, for non-convex programs as
they appear in NMPC, the convergence of such Gauss-Seidel
type methods to critical points of the objective is not guar-
anteed even for smooth functions, as oscillatory behaviours
may occur [23]. Yet, some powerful convergence results on
alternating minimisation techniques have been recently de-
rived [5]. The key ingredients are coordinate-wise proximal
regularisations and the KL property [3]. The former enforces a
sufficient decrease in the objective at every iteration, while the
latter models a local growth of the function around its critical
points. In our analysis, the convergence of the primal sequence
generated by Algorithm 1 is of primary importance, since
it comes with a sub-linear convergence rate estimate, which
depends on the so-called Lojasiewicz exponent [3] of the aug-
mented Lagrangian function and does not assume that the opti-
mal active set has been identified. This last point is of primary
importance in a parametric setting, as there are no guarantees
that the active-set at z̄k is the same as the one at z⇤k+1.

The following Theorem is a formulation of the KL property
for a multivariate polynomial function over a box. In this
particular case, the Lojasiewicz exponent can be explicitly
computed. It is proven to be a simple function of the degree
of the polynomial and its dimension.

Theorem 2. Let L : Rn ! R, n � 1, be a polynomial function
of degree deg (L) � 2. Let ⌦ ⇢ Rn be a non-trivial polyhedral
set. Assume that all restrictions of L to faces of ⌦ that are
not vertices, have degree larger than two. Given x⇤ a critical
point of L+ ◆⌦, there exists constants � > 0 and c > 0 such
that for all x 2 B (x⇤, �) \ ⌦ and all v 2 N⌦ (x),

krL (x) + vk2 � c |L (x)� L (x⇤
)|✓(deg(L),n)

, (19)

where

✓ (d, n) := 1� 1

d (3d� 3)

n�1 . (20)

Proof. Let x⇤ be a critical point of L+◆⌦. From [3], as L+◆⌦
is a semi-algebraic function, there exists a radius �0 > 0, a
constant c0 > 0 and a coefficient ✓0 2 (0, 1) such that for all
x 2 B (x⇤, �0) \ ⌦ and all v 2 N⌦ (x),

krL (x) + vk2 � c0 |L (x)� L (x⇤
)|✓

0
. (21)

Define ✓0f as the infimum of all ✓0 for which (21) is satis-
fied. Our goal is to show that

✓0f ✓ (deg (L) , n) ,

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 6

as it directly implies that (19) is satisfied. One can assume that
✓0f > 0, since for ✓0f = 0 the proof would be immediate. For
the sake of contradiction, assume that

✓0f > ✓ (deg (L) , n) .

Hence, one can pick ˜✓ 2
⇣

✓ (deg (L) , n) , ✓0f

⌘

and c00 > 0,
and construct a sequence {(xn, vn)} satisfying for all n � 1,

8

>

<

>

:

xn 2 B
✓

x⇤,
1

n

◆

\ ⌦, vn 2 N⌦ (xn)

krL (xn) + vnk2 < c00 |L (xn)� L (x⇤
)|✓̃

. (22)

Without loss of generality, one can find a face F of ⌦, which
is not a vertex and contains x⇤, and a subsequence {xnk

} such
that

xnk
2 riF ,

for k large enough and satisfying (22). Moreover, for all x 2
riF , there exists p 2 RdF

x = x⇤
+ Zp ,

where Z 2 Rn⇥dF is a full column-rank matrix, with dF the
dimension of the affine hull of F . As the face F is not a
vertex, dF � 1. Subsequently, one can define a polynomial
function L⇤

: RdF ! R as follows

L⇤
(p) := L (x⇤

+ Zp) .

From the results of [13] (no matter whether 0 is a critical
point of L⇤ or not, see Remark 3.2 in [4]), as deg (L⇤

) � 2

by assumption, there exists a radius �⇤ > 0 and a constant
c⇤ > 0 such that for all p 2 B (0, �⇤)

krL⇤
(p)k2 � c⇤ |L⇤

(p)� L⇤
(0)|✓(deg(L

⇤),dF)
.

However, deg (L⇤
) deg (L) and dF n, which implies that

✓ (deg (L⇤
) , dF) ✓ (deg (L) , n) . (23)

As L⇤ is a continuous function, the radius �⇤ can always be
chosen such that

|L⇤
(p)� L⇤

(0)| < 1 .

This implies that for all p 2 B (0, �⇤),

krL⇤
(p)k2 � c⇤ |L⇤

(p)� L⇤
(0)|✓(deg(L),n)

.

Hence, there exists K � 1 such that for all k � K,

krL (xnk
) + vnk

k2 �
1

kZk2
kZ>

(rL (xnk
) + vnk

)k2

� 1

kZk2
kZ>

(rL (x⇤
+ Zpnk

) + vnk
)k2

� 1

kZk2
krL⇤

(pnk
)k2

� c⇤

kZk2
|L (xnk

)� L (x⇤
)|✓(deg(L),n)

.

The third inequality follows from Z>vnk
= 0, as vnk

is in the
normal cone to F . However, since c00 can be chosen equal to
c⇤/kZk2 as ⌦ has finitely many faces, the above implies that

|L (xnk
)� L (x⇤

)|✓(deg(L),n)
< |L (xnk

)� L (x⇤
)|✓̃ .

This leads to a contradiction for k large enough so that
|L (xnk

)� L (x⇤
)| < 1, as ˜✓ > ✓ (deg (L) , n) by assump-

tion.

Corollary 1. Given µ 2 Rm+q , s 2 S and ⇢ > 0,
L (·, µ, s) + ◆Z satisfies inequality (19) around all its critical
points with radius � > 0 and constant c > 0, where L (·, µ, s)
is the augmented Lagrangian function defined in (9).

Proof. This is an immediate consequence of Theorem 2 and
Assumption 1.

In order to guarantee convergence of the primal loop of
Algorithm 1 via Theorem 2.9 in [5], two ingredients are
needed: a sufficient decrease property and a relative error
condition. From the sufficient decrease, convergence of the
series

P

�

�z(l+1) � z(l)
�

�

2

2
is readily deduced. By combining

the relative error condition and the KL property, this can
be turned into convergence of the series

P

�

�z(l+1) � z(l)
�

�

2
,

ensuring convergence of the sequence
�

z(l)

via a Cauchy
sequence argument [5].

Lemma 4 (Primal sufficient decrease). For all l � 1,
µ 2 Rm+q , s 2 S and ⇢ > 0,

L⇢

⇣

z(l+1), µ, s
⌘

+◆Z

⇣

z(l+1)
⌘

+

↵

2

�

�

�

z(l+1) � z(l)
�

�

�

2

2
(24)

 L⇢

⇣

z(l), µ, s
⌘

+ ◆Z

⇣

z(l)
⌘

,

where ↵ := min

�

↵i

�

� i 2 {1, . . . , P}

.

Proof: We first need to show that the backtracking pro-
cedure described in Algorithm 2 terminates. This is an almost
direct consequence of the Lipschitz continuity of the gradient
of L

(i)
⇢,µ,s for i 2 {1, . . . , P}, as the augmented Lagrangian

is twice continuously differentiable and Z is compact. From
Lemma 2, it follows that for all i 2 {1, . . . , P} and l � 1,

L(i,l)
⇢,µ,s

⇣

z
(l+1)
i

⌘

 L(i,l)
⇢,µ,s

⇣

z
(l)
i

⌘

+rL(i,l)
⇢,µ,s

⇣

z
(l)
i

⌘> ⇣

z
(l+1)
i � z

(l)
i

⌘

+

�i
2

�

�

�

z
(l+1)
i � z

(l)
i

�

�

�

2

2
,

where �i is a Lipschitz constant of rL(i)
⇢,µ,s. By taking

ci > �i + ↵i ,

which is satisfied at some point in the while loop of
Algorithm 2, since � > 1, one gets

L(i,l)
⇢,µ,s

⇣

z
(l+1)
i

⌘

+

↵i

2

�

�

�

z
(l+1)
i � z

(l)
i

�

�

�

2

2
 L(i,l)

⇢,µ,s

⇣

z
(l)
i

⌘

+rL(i,l)
⇢,µ,s

⇣

z
(l)
i

⌘> ⇣

z
(l+1)
i � z

(l)
i

⌘

+

ci
2

�

�

�

z
(l+1)
i � z

(l)
i

�

�

�

2

2
,

which is exactly the termination criterion of the while loop
in Algorithm 2. Moreover,

z
(l+1)
i = prox

◆Zi
ci

✓

z
(l)
i �

1

ci
rL(i,l)

⇢,µ,s

⇣

z
(l)
i

⌘

◆

= argmin

x2Zi

ci
2

�

�

�

�

x�
✓

z
(l)
i �

1

ci
rL(i,l)

⇢,µ,s

⇣

z
(l)
i

⌘

◆

�

�

�

�

2

2

= argmin

x2Zi

rL(i,l)
⇢,µ,s

⇣

z
(l)
i

⌘> ⇣

x� z
(l)
i

⌘

+

ci
2

�

�

�

x� z
(l)
i

�

�

�

2

2
.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 7

Hence

rL(i,l)
⇢,µ,s

⇣

z
(l)
i

⌘> ⇣

z
(l+1)
i � z

(l)
i

⌘

+

ci
2

�

�

�

z
(l+1)
i � z

(l)
i

�

�

�

2

2
 0 ,

which implies that

L(i,l)
⇢,µ,s

⇣

z
(l+1)
i

⌘

+◆Zi

⇣

z
(l+1)
i

⌘

+

↵i

2

�

�

�

z
(l+1)
i � z

(l)
i

�

�

�

2

2
(25)

 L(i)
⇢,µ,s

⇣

z
(l)
i

⌘

+ ◆Zi

⇣

z
(l)
i

⌘

,

as z
(l+1)
i , z

(l)
i 2 Zi. By summing inequalities (25) for all

i 2 {1, . . . , P}, one obtains the sufficient decrease property
(24).

Lemma 5 (Relative error condition). For all µ 2 Rm+q , s 2 S
and ⇢ > 0, there exists � (µ, ⇢, s) > 0 such that

9v(l+1) 2 NZ

⇣

z(l+1)
⌘

, (26)
�

�

�

rzL⇢

⇣

z(l+1), µ, s
⌘

+ v(l+1)
�

�

�

2
 � (⇢, µ, s)

�

�

�

z(l+1) � z(l)
�

�

�

2
.

Proof: From the definition of z(l+1)
i as a proximal iterate,

we have that for all i 2 {1, . . . , P},

9v(l+1)
i 2 NZi

⇣

z
(l+1)
i

⌘

,

0 = rL(i,l)
⇢,µ,s

⇣

z
(l)
i

⌘

+ ci

⇣

z
(l+1)
i � z

(l)
i

⌘

+ v
(l+1)
i .

Hence

0 = rL(i,l)
⇢,µ,s

⇣

z
(l+1)
i

⌘

+rL(i,l)
⇢,µ,s

⇣

z
(l)
i

⌘

�rL(i,l)
⇢,µ,s

⇣

z
(l+1)
i

⌘

+ ci

⇣

z
(l+1)
i � z

(l)
i

⌘

+ v
(l+1)
i , (27)

and from the Lipschitz continuity ofrL(i)
⇢,µ,s, one immediately

obtains
�

�

�

v
(l+1)
i +rL(i,l)

⇢,µ,s

⇣

z
(l+1)
i

⌘

�

�

�

2
 (�i + ci)

�

�

�

z
(l+1)
i � z

(l)
i

�

�

�

2
.

Let v := (v>
1 , . . . , v

>
P)

>. It then follows that
�

�

�

v(l+1)
+rL⇢,µ,s

⇣

z(l+1)
⌘

�

�

�

2

P
X

i=1

�

�

�

v
(l+1)
i +rL(i,l)

⇢,µ,s

⇣

z
(l+1)
i

⌘

�

�

�

2

+

�

�

�

riL⇢,µ,s

⇣

z(l+1)
⌘

�rL(i,l)
⇢,µ,s

⇣

z
(l+1)
i

⌘

�

�

�

2

P
X

i=1

(�i + ci)
�

�

�

z
(l+1)
i � z

(l)
i

�

�

�

2
+ �

�

�

�

z(l+1) � z(l)
�

�

�

2

P
X

i=1

(�i + ci + �)

!

�

�

�

z(l+1) � z(l)
�

�

�

2
,

where � > 0 is a Lipschitz constant of rL⇢,µ,s. This last
inequality yields the relative error condition (26) by taking

� (⇢, µ, s) :=

P
X

i=1

(�i + ci + �) .

Theorem 3 (Global convergence of the primal sequence).
Taking M = 1 in Algorithm 1, the primal sequence

�

z(l)

converges to a critical point z1 (µ̄ (sk) , sk+1) of
L⇢ (·, µ̄ (sk) , sk+1) + ◆Z .

Proof: By Theorem 2 and Corollary 1, the function
L⇢ (·, µ̄ (sk) , sk+1) + ◆Z satisfies the KL property. Moreover,
sufficient decrease is guaranteed by Lemma 4 along with a
relative error condition in Lemma 5. As L⇢ (·, µ̄ (sk) , sk+1)

is continuous and Z compact, global convergence of the
sequence

�

z(l)

to a critical point of L⇢ (·, µ̄ (sk) , sk+1)+ ◆Z
is a direct consequence of Theorem 2.9 in [5].

C. Convergence rate of the primal loop
The results of [3] and [5] provide an asymptotic convergence

rate estimate for the proximal alternating loop in Algorithm
1. The convergence rate depends on the Lojasiewicz exponent

✓ (dL, nz)

defined in (20), which only depends on the dimension of
NLP (8) and the degree of the polynomial functions involved
in it. This is an important point in our analysis, as µ̄k and sk
are updated at every time instant.

Lemma 6 (Asymptotic convergence rate estimate). There
exists a constant C > 0 such that, assuming z̄ (sk) 2 B (0, �),
where � has been defined in Corrolary 1,

kz̄ (sk+1)� z1 (µ̄k, sk+1)k2 (28)

CM� (dL,nz) kz̄ (sk)� z1 (µ̄k, sk+1)k2 ,

where

 (d, n) :=
1

d (3d� 3)

n�1 � 2

, (29)

for d, n � 2.

Proof: As nz � 2 and dL � 2,

✓ (dL, nz) 2
✓

1

2

, 1

◆

.

Inequality (28) is then a direct consequence of Theorem 2 in
[3] as the initial primal iterate is z̄ (sk).

Remark 9. The R-convergence rate estimate of Lemma 6
shows that the convergence of the primal sequence

�

z(l)

is theoretically sub-linear. However, reasonable performance
can be observed in practice. Moreover, in this paper, the
convergence rate is used only for a theoretical purpose.

V. CONTRACTION OF THE PRIMAL-DUAL SEQUENCE

Algorithm 1 is a truncated scheme both in the primal
and dual space, as only M primal proximal iterations are
applied, which are followed by a single dual update. By using
warm-starting, it is designed to track the non-smooth solution
manifold of the NMPC program. At a given time instant k,
the primal-dual solution w̄k is suboptimal. Thus, a natural
question is whether the sub-optimality gap remains stable, as
the parameter sk varies over time, that is if the sub-optimal
iterate remains close to the KKT manifold, or converges to
it. Intuitively, one can guess that if sk evolves slowly and
the number of primal iterations M is large enough, stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 8

of the sub-optimality error is expected. This section provides
a formal statement about the sub-optimality gap and demon-
strates that its evolution is governed by the penalty parameter
⇢, the number of primal iterations M and the magnitude of
the parameter difference sk+1�sk, which need to be carefully
chosen according to the results provided later in the paper.

A. Existence and uniqueness of critical points
As the overall objective is to analyse the stability of the

sub-optimality error kw̄k � w⇤
kk2, a unique critical point

w⇤
k should be defined at every time instant k. This is one

of the roles of strong regularity. Given a critical point w⇤
k

for problem (8) at sk, its strong regularity (Assumption 3)
implies that there exists a unique critical point for problem
(8) at sk+1, assuming ksk+1 � skk2 is small enough.

Assumption 4. For all k � 0, ksk+1 � skk2 rA.

Remark 10. In an NMPC setting, this assumption is satisfied
if the sampling frequency is fast enough compared to the
system’s dynamics.

Lemma 7. For all k � 0 and sk 2 S , given w⇤
k such that

0 2 F (w⇤
k, sk) +NZ⇥Rm

(w⇤
k) ,

there exists a unique w⇤
k+1 2 B (w⇤

k, �A) such that

0 2 F
�

w⇤
k+1, sk+1

�

+NZ⇥Rm

�

w⇤
k+1

�

.

Proof: This is an immediate consequence of Assumption
4 and strong regularity of w⇤

k for all k � 0.

B. An auxiliary generalised equation
In Algorithm 1, the primal loop, which is initialised

at z̄k, converges to z1 (µ̄k, sk+1), a critical point of
L⇢ (·, µ̄k, sk+1) + ◆Z (·), by Theorem 3 in Section IV. The
following generalised equation characterises critical points of
the augmented Lagrangian function L⇢ (·, µ̄, s) + ◆Z (·) in a
primal-dual manner:

0 2 H⇢ (w, d⇢ (µ̄) , s) +NZ⇥Rm
(w) , (30)

where, given µ⇤
k, one defines d⇢ (µ̄) := (µ̄� µ⇤

k) /⇢ and

H⇢ (w, d⇢ (µ̄) , s) :=

2

4

rzJ (z) +rzG (z, s)
>
µ

G (z, s) + d⇢ (µ̄) +
µ⇤
k � µ

⇢

3

5 .

Lemma 8. Let µ̄ 2 Rm, ⇢ > 0 and s 2 S . The primal point
z⇤(µ̄, s) is a critical point of L⇢(·, µ̄, s) + ◆Z(·) if and only if
the primal-dual point

w⇤
(d⇢ (µ̄) , s) =

z⇤ (µ̄, s)
µ̄+ ⇢G (z⇤ (µ̄, s) , s)

�

satisfies (30).

Proof: The necessary condition is clear. To prove
the sufficient condition, assume that w⇤

(d⇢ (µ̄) , s) =

�

z⇤ (d⇢ (µ̄) , s)
>
, µ⇤

(d⇢ (µ̄) , s)
>�> satisfies (30). The sec-

ond half of (30) implies that µ⇤
(d⇢ (µ̄) , s) = µ̄ +

⇢G (z⇤ (d⇢ (µ̄) , s) , s). Putting this expression in the first part

of (30), one obtains that z⇤ (d⇢ (µ̄) , s) is a critical point of
L⇢ (·, µ̄, s) + ◆Z (·).

In the sequel, a primal-dual point satisfying (30) is denoted
by w⇤

(d⇢ (µ̄) , s) or w⇤
(µ̄, s) without distinction.

As z1 (µ̄k, sk+1) is a critical point of L⇢ (·, µ̄k, sk+1) +

◆Z (·), one can define

w1
(d⇢(µ̄k), sk+1) :=

z1 (µ̄k, sk+1)

µ̄k + ⇢G (z1(µ̄k, sk+1), sk+1)

�

,

(31)

which satisfies (30). Note that the generalised equation (30)
is parametric in s and d⇢(·), which represents a normalised
distance between a dual variable and an optimal dual variable
at time k. Assuming that the penalty parameter ⇢ is well-
chosen, the generalised equation (30) can be proven to be
strongly regular at a given solution.

Lemma 9 (Strong regularity of (30)). There exists ⇢̃ > 0 such
that for all ⇢ > ⇢̃ and k � 0, (30) is strongly regular at
w⇤

k = w⇤
(0, sk).

Proof: As Z is polyhedral, this follows from the reduction
procedure described in [24], the arguments developed in
Proposition 2.4 in [6] and strong regularity of (13) for all
k � 0.

Assumption 5. The penalty parameter satisfies ⇢ > ⇢̃.

From the strong regularity of (30) at w⇤
k, using Theorem

2.1 in [24], one obtains the following local Lipschitz property
of a solution w (·) to (30).

Lemma 10. There exists radii �B > 0, rB > 0 and qB > 0

such that for all k 2 N,

8d 2 B (0, qB) ,8s 2 B (sk, rB) , 9!w⇤
(d, s) 2 B (w⇤

k, �B) ,

0 2 H⇢(w
⇤
(d, s), d, s) +NZ⇥Rm

(w⇤
(d, s))

and for all d, d0 2 B (0, qB) and all s, s0 2 B (sk, rB),

kw⇤
(d, s)� w⇤

(d0, s0)k2
�B kH⇢ (w

⇤
(d0, s0), d, s)�H⇢ (w

⇤
(d0, s0), d0, s0)k2 ,

where �B > 0 is a Lipschitz constant associated with (30).

Note that, given w 2 Z ⇥ Rm, d, d0 2 Rm and s, s0 2 S ,
one can write

H⇢ (w, d, s)�H⇢ (w, d
0, s0) = F (w, s)� F (w, s0) +

0

d� d0

�

,

which, from Lemma 3, implies the following Lemma.

Lemma 11. There exists �H > 0 such that for all w 2 Z ⇥
Rm, for all d, d0 2 Rm and all s, s0 2 Rm,

kH⇢ (w, d, s)�H⇢ (w, d
0, s0)k2 �H

�

�

�

�

✓

d
s

◆

�
✓

d0

s0

◆

�

�

�

�

2

.

(32)

Proof: After straightforward calculations, one obtains the
Lipschitz property with

�H :=

q

max

�

�2F , 1

+ �F .

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 9

C. Derivation of the contraction inequality

In this paragraph, it is proven that under some conditions,
which are made explicit in the sequel, the optimality tracking
error kw̄k � w⇤

kk2 of Algorithm 1 remains within a pre-
specified bound if the parameter sk varies sufficiently slowly
over time.

First, note that given a sub-optimal primal-dual solution
w̄k+1 and a critical point w⇤

k+1,
�

�w̄k+1 � w⇤
k+1

�

�

2
kw̄k+1 � w1

(d⇢ (µ̄k) , sk+1)k2 (33)
+

�

�w1
(d⇢ (µ̄k) , sk+1)� w⇤

k+1

�

�

2
,

where w1
(d⇢(µ̄k), sk+1) has been defined in (31). The anal-

ysis then consists in bounding the two right hand side terms in
(33). The first one can be upper-bounded by applying strong
regularity of (30) and the second one using the convergence
rate of the primal loop in Algorithm 1.

Lemma 12. If ksk+1 � skk2 satisfies

ksk+1 � skk2 < min

⇢

rB ,
qB⇢

�A�F

�

, (34)

where rB and qB have been defined in Lemma 10, and
kw̄k � w⇤

kk2 < qB⇢, then,
�

�w1
(d⇢ (µ̄k) , sk+1)� w⇤

k+1

�

�

2

�B�H
⇢

�

kw̄k � w⇤
kk2 + �A�F ksk+1 � skk2

�

.

Proof: Note that w⇤
k+1 can be rewritten w⇤

k+1 =

w⇤ �d⇢
�

µ⇤
k+1

�

, sk+1

�

, which is a solution to (30) at sk+1.

�

�d⇢
�

µ⇤
k+1

�

�

�

2
=

�

�µ⇤
k+1 � µ⇤

k

�

�

2

⇢

 �F�A
⇢
ksk+1 � skk2 < qB ,

by applying Theorem 1, Lemma 3 and from hypothesis (34).
Moreover,

kd⇢(µ̄k)k2 =

kµ̄k � µ⇤
kk2

⇢

kw̄k � w⇤

kk2
⇢

< qB .

Now, as ksk+1 � skk2 < rB one can apply Lemmas 10 and
11 to obtain
�

�w1
(µ̄k, sk+1)� w⇤

k+1

�

�

2

 �B�H
�

�d⇢ (µ̄k)� d⇢
�

µ⇤
k+1

�

�

�

2

 �B�H
⇢

�

kµ̄k � µ⇤
kk2 +

�

�µ⇤
k+1 � µ⇤

k

�

�

2

�

 �B�H
⇢

�

�

�w̄k � w⇤
k

�

�

2
+ �A�F

�

�sk+1 � sk
�

�

2

�

,

by Theorem 1.
In the following Lemma, using the convergence rate esti-

mate presented in Section IV, we derive a bound on the first
summand kw̄k+1 � w1

(d⇢(µ̄k), sk+1)k2.

Lemma 13. If ksk+1 � skk2 < rB , kw̄k � w⇤
kk2 < qB⇢ and

�

1 +

�H�B
⇢

�

kw̄k � w⇤
kk2 + �H�BrB < � ,

where � has been defined in Corollary 1, then
�

�w̄k+1 � w1
(d⇢ (µ̄k) , sk+1)

�

�

2
 (35)

C (1 + ⇢�g)M
� (dL,nz)

⇣

�B�H ksk+1 � skk2

+

�

�w̄k � w⇤
k

�

�

2

⇣

1 +

�B�H
⇢

⌘⌘

,

where �G > 0 is the Lipschitz constant of G(·, s) on Z (well-
defined as Z is bounded).

Proof: From Algorithm 1, it follows that

kw̄k+1 � w1
(d⇢ (µ̄k) , sk+1)k2

�

�

�

�

✓

z̄k+1 � z1 (µ̄k, sk+1)

⇢ (G (z̄k+1, sk+1)�G (z1 (µ̄k, sk+1) , sk+1))

◆

�

�

�

�

2

 (1 + ⇢�G) kz̄k+1 � z1 (µ̄k, sk+1)k2 .

In order to apply Lemma 6, one first need to show that z̄k lies
in the ball B

�

z1(µ̄k, sk+1), �
�

, where � is the radius involved
in the KL property.
�

�z̄k � z1(µ̄k, sk+1)
�

�

2
 (36)

�

�z̄k � z⇤(0, sk)
�

�

2
+

�

�z⇤(0, sk)� z1(µ̄k, sk+1)
�

�

2

�

�w̄k � w⇤
k

�

�

2
+ �H�B

�

kd⇢(µ̄k)k2 + ksk+1 � skk2
�

✓

1 +

�H�B
⇢

◆

kw̄k � w⇤
kk2 + �H�B ksk+1 � skk2

< � ,

where the second step follows from strong regularity of (30) at
w⇤

(0, sk) and the hypotheses mentioned above. Thus one can
use the R-convergence rate estimate of Lemma 6 and apply
the inequalities in (36) to obtain (35).

Gathering the results of Lemmas 12 and 13, one can state
the following theorem, which upper-bounds the sub-optimality
error at time k+1 by a linear combination of the sub-optimality
error at time k and the magnitude of the parameter difference.

Theorem 4 (Contraction). Given a time instant k, if the
primal-dual error kw̄k � w⇤

kk2, the number of primal itera-
tions M , the penalty parameter ⇢ and the parameter difference
ksk+1 � skk2 satisfy

• ksk+1 � skk2 < min

⇢

rA, rB ,
qB⇢

�A�F

�

,

• kw̄k � w⇤
kk2 < qB⇢ ,

• ⇢ > ⇢̃ ,
•
✓

1 +

�H�B
⇢

◆

kw̄k � w⇤
kk2 + �H�B ksk+1 � skk2 < � ,

(37)

then the following weak contraction is satisfied for all time
instants k � 0:

�

�w̄k+1 � w⇤
k+1

�

�

2
 �w (⇢,M) kw̄k � w⇤

kk2 (38)
+ �s (⇢,M) ksk+1 � skk2 ,

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 10

where

�w (⇢,M) := C (1 + ⇢�G)

✓

1 +

�B�H
⇢

◆

M� (dL,nz)

+

�B�H
⇢

, (39)

and

�s (⇢,M) := C (1 + ⇢�G)�B�HM� (dL,nz)
+

�B�H�A�F
⇢

.

(40)

Proof: This is a direct consequence of Lemmas 12 and
13.

Remark 11. Note that the last hypothesis (37) may be quite
restrictive, since kw̄k � w⇤

kk2 needs to be sufficiently small for
it to be satisfied. However, in many cases the radius � is large
(+1 for strongly convex functions).

In order to ensure stability of the sequence of sub-optimal
iterates w̄k, the parameter difference ksk+1 � skk2 has to be
sufficiently small and the coefficient �w (⇢,M) needs to be
strictly less than 1. This is clearly satisfied if the penalty
parameter ⇢ is large enough to make �B�H/⇢ small in (39). Yet
the penalty parameter ⇢ also appears in 1 + ⇢�G. Hence
it needs to be balanced by a large enough number of
primal iterations M in order to make the first summand
in (39) small. The same analysis applies to the second coeffi-
cient �s (⇢,M) in order to mitigate the effect of the parameter
difference ksk+1 � skk2 on the sub-optimality error at k+ 1.

Corollary 2 (Boundedness of the error sequence). Assume that
⇢ and M have been chosen so that �w (⇢,M) and �s (⇢,M)

are strictly less than 1, and ⇢ > ⇢̃. Let rw > 0 such that

� �
✓

1 +

�H�B
⇢

◆

rw > 0 (41)

and rw < qB⇢. Let rs > 0 such that

rs <
(1� �w(⇢,M))rw

�s(⇢,M)

. (42)

If kw̄0 � w⇤
0k2 < rw and for all k � 0,

ksk+1 � skk2 min

⇢

rs, rA, rB ,
qB⇢

�A�F

�

, (43)

then for all k � 0, the error sequence satisfies

kw̄k � w⇤
kk2 < rw . (44)

Proof: The proof proceeds by a straightforward induc-
tion. At k = 0, kw̄0 � w⇤

0k2 < rw, by assumption. Let k � 0

and assume that kw̄k � w⇤
kk2 < rw. As ksk+1 � skk2 < rA,

by applying Theorem 1, there exists a unique w⇤
k+1 2

B (w⇤
k, �A), which satisfies (13). As ksk+1 � skk2 satisfies

(43), kw̄k � w⇤
kk2 < qB⇢, ⇢ > ⇢̃ and (37) is satisfied, from

the choice of rw and rs, we have
�

�w̄k+1 � w⇤
k+1

�

�

2
 �w (⇢,M)

�

�w̄k � w⇤
k

�

�

2
(45)

+ �s (⇢,M) ksk+1 � skk2
 �w (⇢,M) rw + �s (⇢,M) ksk+1 � skk2
 rw , (46)

as ksk+1 � skk2 rs < (1��w(⇢,M))rw/�s(⇢,M). Note from
the choice of rw and rs, the condition (37) guaranteeing the
weak contraction (38) is also recursively satisfied.

D. Improved contraction via continuation

In Algorithm 1, only one dual update is performed to move
from parameter sk to parameter sk+1, in contrast to standard
augmented Lagrangian techniques where the Lagrange
multiplier µ and the penalty parameter ⇢ are updated after
every sequence of primal iterations. Intuitively, one would
expect that applying several dual updates instead of just one,
drives the suboptimal solution w̄k+1 closer to the optimal
one w⇤

k+1, thus enhancing the tracking performance over
time. However, as the number of primal iterations M is fixed a
priori, it is not obvious at all why this would happen, as primal
iterations generally need to become more accurate when the
dual variable moves closer to optimality. Therefore, we resort
to an homotopy mechanism [2] to fully exploit property (38).

The parameter s can be seen as an extra degree of
freedom in Algorithm 1, which can be modified along the
iterations. More precisely, instead of carrying out a sequence
of alternating proximal gradient steps to find a critical point
of L⇢ (·, µ̄k, sk+1) + ◆Z directly at the parameter sk+1,
one moves from sk towards sk+1 step by step, each step
corresponding to a dual update and a sequence of alternating
proximal gradients. The proposed approach can be seen as a
form of ‘tracking in the tracking’. More precisely, one defines
a finite sequence

n

sjk

o

of D parameter along the homotopy
path

�

(1� ⌧) sk + ⌧sk+1

�

� ⌧ 2 [0, 1]

by

sjk :=

✓

1� j

D

◆

sk +

j

D
sk+1, j 2 {0, . . . , D} , (47)

where D � 2. This modification results in Algorithm 3
below. At every step j, an homotopy update is first carried
out. A sequence of proximal minimisation is then applied
given the current parameter s and multiplier µ, which is
updated at the end of step j. In a sense, Algorithm 3 consists
in repeatedly applying Algorithm 1 on an artificial dynamics
determined by the homotopy steps.

The reason for introducing Algorithm 3 is that it allows
for a stronger contraction effect on the sub-optimality gap
�

�w̄k+1 � w⇤
k+1

�

�

2
than Algorithm 1, as formalised by the

following Theorem.

Lemma 14 (Optimality along the homotopy path). Given a
time instant k � 0, for all j 2 {1, . . . , D}, there exists a
unique primal-dual variable w⇤

⇣

sjk

⌘

2 B (w⇤
k, rA) satisfying

0 2 F
⇣

w⇤
⇣

sjk

⌘

, sjk

⌘

+NZ⇥Rm

⇣

w⇤
⇣

sjk

⌘⌘

. (48)

Proof: This comes directly from the strong regularity of
(13), Assumption 4 and

�

�

�

sjk � sk

�

�

�

2
 ksk+1 � skk2 for all

j 2 {1, . . . , D}.

Remark 12. Note that the NMPC program (8) at parameter
sjk, j 2 {1, . . . , D}, is feasible, by strong regularity of (13)
at w⇤ �s0k

�

, since
�

�

�

sjk � sk

�

�

�

2
< rA. However, in general, for

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 11

Algorithm 3 Homotopy-based optimality tracking splitting
algorithm

Input: Suboptimal primal-dual solution
�

z̄ (sk)
>
, µ̄>

k

�>,
parameters sk and sk+1.
s sk, µ µ̄k, zwms z̄k
Continuation loop:
for j = 1 . . . D do

s s+
sk+1 � sk

D
Primal loop:
z(0) zwms

for l = 0 . . .M � 1 do
for i=1. . . P do

z
(l+1)
i bckMin

⇣

z
(l)
i , µ, ⇢, s

⌘

end for
end for
zwms z(M)

Dual update: µ µ+ ⇢G
�

z(M), s
�

end for
z̄ (sk+1) zwms; µ̄k+1 µ

an arbitrarily large parameter difference ksk+1 � skk2, this is
not true, as the feasible set of the NMPC controller associated
with (8) is not convex.

Theorem 5 (Improved contraction via continuation). Assume
that ⇢ > ⇢̃ and that ⇢ and M have been chosen so that
�w (⇢,M) ,�s (⇢,M) < 1. Given a time instant k � 0,
if kw̄k � w⇤

kk2 < rw, where rw satisfies the assumptions
of Corollary 2, and ksk+1 � skk2 satisfies (43), then the
primal-dual sub-optimal variable w̄k+1 yielded by Algorithm
3 satisfies the following inequality
�

�w̄k+1 � w⇤
k+1

�

�

2
 �D

w (⇢,M) kw̄k � w⇤
kk2 (49)

+ �s (⇢,M)

PD�1
i=0 �i

w (⇢,M)

D
ksk+1 � skk2

Proof: For all j 2 {1, . . . , D}, define

µ̄j
k := µ̄j�1

k + ⇢G
⇣

z̄jk, s
j
k

⌘

with µ̄0
k := µ̄k and where z̄jk is obtained after M alternating

proximal gradient steps applied to L⇢

⇣

·, µ̄j�1
k , sjk

⌘

+ ◆Z . One
can thus define a sub-optimal primal-dual variable

w̄j
k :=

✓

⇣

z̄jk

⌘>

,
⇣

µ̄j
k

⌘>
◆>

for the homotopy parameter sjk. By applying Corollary 2, one
obtains that for all j 2 {0, . . . , D � 1},

�

�

�

w̄j
k � w⇤

⇣

sjk

⌘

�

�

�

2
< rw < qB⇢ ,

since
�

�

�

sj+1
k � sjk

�

�

�

2
=

ksk+1 � skk2
D

< min

⇢

rs, rA, rB ,
qB⇢

�A�F

�

.

It can also be readily shown that for all j 2 {0, . . . , D � 1},
✓

1 +

�H�B
⇢

◆

�

�

�

w̄j
k � w⇤

⇣

sjk

⌘

�

�

�

2
+ �H�B

�

�

�

sj+1
k � sjk

�

�

�

2
< � .

(50)

Subsequently, one can apply the same reasoning as for proving
Theorem 4, and get that for all j 2 {0, . . . , D � 1},
�

�

�

w̄j+1
k � w⇤

⇣

sj+1
k

⌘

�

�

�

2
 (51)

�w (⇢,M)

�

�

�

w̄j
k � w⇤

⇣

sjk

⌘

�

�

�

2
+ �s (⇢,M)

�

�

�

sj+1
k � sjk

�

�

�

2
.

By iterating inequality (51) from j = 0 to D � 1, we obtain
�

�w̄k+1 � w⇤
k+1

�

�

2
 �w (⇢,M)

�

�w̄D�1
k � w⇤ �sD�1

k

�

�

�

2

+

�s (⇢,M)

D
ksk+1 � skk2

 . . .

 �D
w (⇢,M)

�

�w̄0
k � w⇤ �s0k

�

�

�

2

+ �s (⇢,M)

PD�1
j=0 �j

w (⇢,M)

D
ksk+1 � skk2

which is exactly inequality (49).
As �w (⇢,M) < 1, �s (⇢,M) < 1 and D � 2, it follows

that

�D
w (⇢,M) < �w (⇢,M)

and

�s (⇢,M)

PD�1
i=0 �i

w (⇢,M)

D
< �s (⇢,M) ,

which implies that the contraction (49) is stronger than (38). In
practice, the coefficients �w (⇢,M) and �s (⇢,M) in (38) can
be reduced by an appropriate tuning of the penalty ⇢ and
the number of primal proximal steps M . Yet this approach is
limited, as previously discussed in Paragraph V-C. Therefore,
Algorithm 3 provides a more efficient and systematic way of
improving the optimality tracking performance. Superiority of
Algorithm 3 over Algorithm 1 is demonstrated on a numerical
example in Section VII.

VI. COMPUTATIONAL CONSIDERATIONS

By making use of partial penalisation, Algorithm 1 allows
for a more general problem formulation than [30], where the
primal QP sub-problem is assumed to have non-negativity con-
straints only. Moreover, the approach of [30] is likely to be effi-
cient only when the sub-optimal solution is close enough to the
optimal manifold so as to guarantee positive definiteness of the
hessian of the augmented Lagrangian. In practice, this cannot
always be ensured if the reference change or disturbances are
too large. In contrast, our framework can handle any polyno-
mial non-convex objective subject to convex constraint set Zi

for which the proximal operator (1) is cheap to compute. This
happens when Zi is a ball, an ellipsoid, a box, the non-negative
orthant or even second-order conic constraints and the semi-
definite cone. However, the theoretical properties derived in
Section V seem to be limited to polyhedral constraint sets.

Remark 13. For many non-convex sets, such as spheres or
mixed-integer sets, the proximal operator (1) can be obtained
in closed-form. However, the analysis of Section V does not
readily extend, as Robinson’s strong regularity is defined for
closed convex sets [24].

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 12

Remark 14. In a distributed framework, any convex
polyhedral set Zi could be handled by Algorithm 1, as a non-
negative slack variable can be introduced for every agents.

Algorithm 1 can be further refined by introducing local
copies of the variables. Considering the NLP

minimise J(z1, . . . , zP)

s.t. G(z1, . . . , zP) = 0

z1 2 Z1, . . . , zP 2 ZP ,

variables yi can be incorporated in the equality constraints,
resulting in

minimise J(y1, . . . , yP)

s.t. G(y1, . . . , yP) = 0

yi � zi = 0 8i 2 {1, . . . , P}
z1 2 Z1, . . . , zP 2 ZP .

Subsequently, at iteration l + 1, some of the alternations are
given by

minimise

zi2Zi

⌫>
i

⇣

y
(l+1)
i � zi

⌘

+

⇢

2

�

�

�

y
(l+1)
i � zi

�

�

�

2

2

+

↵i

2

�

�

�

zi � z
(l)
i

�

�

�

2

2
,

where ⌫i is a dual variable associated with the equality
constraint yi � zi = 0. This step can be rewritten

minimise

zi2Zi

�

�

�

�

zi �
1

↵i + ⇢

⇣

↵iz
(l)
i + ⇢y

(l+1)
i + ⌫i

⌘

�

�

�

�

2

,

which corresponds to projecting
1

↵i + ⇢

⇣

↵iz
(l)
i + ⇢y

(l+1)
i + ⌫i

⌘

onto Zi. This type of an approach is useful if the minimisation
over the yi variables is tractable, for instance when J is
multi-convex and G is multilinear, and the projection onto Zi

is cheap to compute.

VII. NUMERICAL EXAMPLES

Algorithms 1 and 3 are tested on two nonlinear systems, a
DC motor (centralised) in paragraph VII-A and a formation
of three unicycles (distributed) in paragraph VII-B. The effect
of the penalty parameter ⇢ and the sampling period �t is
analysed, assuming that a fixed number of iterations can be
performed per second. Thus, given a sampling period �t,
the number of communications between the P groups of
agents is limited to a fixed value, which models practical
limitations of distributed computations. In particular, it is
shown that the theoretical results proven in Section V are
able to predict the practical behaviour of the combined
system-optimiser dynamics quite well, and that tuning the
optimiser’s step-size ⇢ and the system’s step-size �t has an
effect on the closed-loop trajectories.

From a practical perspective, the purpose of the simulations
that follow is to investigate the effect of a limited computa-
tional power and limited communication rate on the closed-
loop performance of our scheme. This is of particular impor-
tance in the case of distributed NMPC problems, as in practice,

only a limited number of packets can be exchanged between
the P groups of agents within a fixed amount of time, which
implies that a suboptimal solution is yielded by Algorithm 1.

Remark 15. In the following examples, the first optimal
primal-dual solution w⇤

0 is computed using the distributed
algorithm proposed in [21]. A random perturbation is then
applied to this KKT point.

A. DC motor
The first example is a DC motor with continuous-time

bilinear dynamics

ẋ = Ax+Bx · u+ c ,

where

A =

✓

�Ra/La 0

0 �B/J

◆

, B =

✓

0 �km/La

km/J 0

◆

,

c =

✓

ua/La

�⌧l/J

◆

,

and the parameters are borrowed from the experimental iden-
tification presented in [14]:

La = 0.307 H, Ra = 12.548 ⌦, km = 0.22567 Nm/A2 ,

J = 0.00385 Nm.sec2, B = 0.00783 Nm.sec ,

⌧l = 1.47 Nm, ua = 60 V .

The first component of the state variable x1 is the
armature current, while the second component x2 is the
angular speed. The control input u is the field current of the
machine. The control objective is to make the angular speed
track a piecewise constant reference xref

2 = ±2

rad/sec, while
satisfying the following state and input constraints:

x =

✓

�2 A
�8 rad/sec

◆

, x =

✓

5 A
1.5 rad/sec

◆

,

u = 1.27 A, u = 1.4 A .

The continuous-time NMPC problem for reference tracking
is discretised at a given sampling period �t using an explicit
Euler method, which results in a bilinear NLP. Although the
consistency of the explicit Euler integrator is 1, only the first
control input is applied to the real system, implying that the
prediction error with respect to the continuous-time dynamics
is small. For simulating the closed-loop system under the
computed NMPC control law, the MATLAB integrator ode45
is used with the sampling period �t. The prediction horizon
is fixed at 30 samples. This is a key requirement for the
analysis that follows, as explained later.

In general, the computational power of an embedded
computing platform is quite limited, meaning that the total
number of proximal steps that can be computed within one
second by Algorithms 1 and 3 is fixed and finite. Later
on, we refer to this number as the computational power,
expressed in prox/sec. The results plotted in Figs. 1, 2, 3 and 4
are obtained for a computational power of 2 · 103 prox/sec. In
Fig. 1, it clearly appears that a better tracking performance
is obtained for �t = 0.018 sec, compared to a lower
sampling period (�t = 0.004 sec) or a larger sampling period

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 13

2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

x2

2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

x2

2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

x2

Time (s)
Fig. 1. Angular speed against time for increasing sampling periods �t and a
fixed computational power 2·103 prox/sec: 0.004 sec (top), 0.018 sec (middle)
and 0.04 sec (bottom). The sub-optimal trajectory obtained with Algorithm 1
is plotted in dashed red, while the full NMPC trajectory obtained using IPOPT
(for the same �t) is in blue.

(�t = 0.04 sec). The effect of the system’s step-size �t on
the performance of Algorithm 1 given a fixed computational
power is demonstrated more clearly in Fig. 5.

Another key parameter is the penalty coefficient ⇢, which
can also be interpreted as a step-size for the optimiser. In order
to demonstrate the effect of ⇢ on the efficacy of our optimality
tracking splitting scheme, the sampling period �t is fixed
at 0.018 sec given a computational power of 2 · 103 prox/sec,
which implies that the total number of primal iterations
is M = 36, and ⇢ is made vary within

�

20, 100, 1 · 103

. Fig-
ure 2 shows that a better tracking performance is obtained
with ⇢ = 100 than with ⇢ = 20 or ⇢ = 1 · 103. This can be
deduced from the expression of the coefficient �w (⇢,M) in
Eq. (39), as explained in Paragraph V-C. The optimal choice
of the penalty parameter is known to be critical to the conver-
gence speed of ADMM, which is very similar to our optimality
tracking splitting scheme, since it can be interpreted as a trun-
cated Gauss-Seidel procedure in an augmented Lagrangian. To
our knowledge, this effect has only been observed for ADMM-
type techniques when dealing with convex programs. When
solving non-convex programs using augmented Lagrangian
techniques, it is commonly admitted that ⇢ should be chosen

2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

3

x2

2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

x2

2 2.5 3 3.5 4 4.5 5−2

−1

0

1

x2

Time (s)
Fig. 2. Angular speed against time for increasing penalty parameters ⇢ and
a fixed computation power 2 · 103 prox/sec: 20 (top), 100 (middle) and 1000
(bottom). The sub-optimal trajectory obtained with Algorithm 1 is plotted in
dashed red, while the full NMPC trajectory obtained using IPOPT (for the
same �t) is in blue.

large enough in order to ensure (locally) positive definiteness
of the hessian of the augmented Lagrangian. Taking ⇢ too large
is known to result in ill-conditioning. For Algorithm 1, which
is essentially a first-order method, the analysis is different, as ⇢
does not affect the algorithm at the level of linear algebra,
but does impact the contraction of the primal-dual sequence,
and thus the convergence speed over time, or tracking perfor-
mance. Thus our study provides a novel interpretation of the
choice of ⇢ via a parametric analysis in a non-convex frame-
work. The effect of the optimiser step-size ⇢ on the closed-loop
performance fully appears in Fig. 6. Satisfaction of the KKT
conditions of the parametric augmented Lagrangian problem

minimise

z2B(z,z)
L⇢ (z, µ̄k, sk+1)

is measured along the closed-loop trajectory by computing

!k := k⇡B(z,z) (z̄ (µ̄k�1, sk)�rL⇢ (z̄ (µ̄k�1, sk) , µ̄k�1, sk))

�z̄ (µ̄k�1, sk) k2,

which is plotted in Fig. 3. Over time, convergence towards
low criticality values is faster for �t = 0.18 sec, than for
shorter sampling period (�t = 0.004 sec) or larger sampling

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 14

2 2.5 3 3.5 4 4.5 5

10−4

10−2

100

102

ωk

Time (s)
Fig. 3. Optimality of bound constrained augmented Lagrangian program
for different sampling periods �t and a fixed computation power 2 ·
103 prox/sec: 0.004 sec (black), 0.018 sec (red) and 0.04 sec (blue).

period (�t = 0.04 sec). The same effect can be observed for
the feasibility of the nonlinear equality constraints G (·, sk),
as pictured in Fig. 4.

2 2.5 3 3.5 4 4.5 510−8

10−6

10−4

10−2

100

G
(z̄

k
,s

k
)

Time (s)
Fig. 4. Norm of equality constraints kG (z̄k, sk)k2 for different sampling
periods �t and a fixed computation power 2 · 103 prox/sec: 0.004 sec
(black), 0.018 sec (red) and 0.04 sec (blue).

From the results presented in Figures 1, 2, 3 and 4, one
may conclude that sampling faster does not necessarily
result in better performance of Algorithm 1. This behaviour
is confirmed by Figure 5. For every computational power
within

�

1 · 103, 2 · 103, 3 · 103, 4 · 103

, the sampling period
is made vary from �t = 2 · 10�3 sec to �t = 4 · 10�2

sec. The tracking performance is assessed by computed
the normalised L2-norm of the difference between the
full-NMPC output trajectory obtained with IPOPT [29] and
the output signal obtained with Algorithm 1 (at the same
sampling period), on a fixed time interval between 2 sec and 4

sec. More precisely, the optimality tracking error is defined by

E :=

v

u

u

t

1

Ns

Ns
X

k=1

(y⇤k � ȳk)
2
,

where {y⇤k} is the system output signal obtained with IPOPT,
{ȳk} is the system output signal obtained with Algorithm 1
(for the same �t) and Ns is the number of time samples. For
a fast sampling, the error E appears to be quite large (1 ·100),
as the warm-starting point is close to the optimal solution but
only few primal proxes can be evaluated, resulting in little
improvement of the initial guess in terms of optimality. This

effect can even be justified further by Theorem 4: as the
number of primal iterations M is fixed by the sampling
period, the term M� (dL,nz) in the expression of �w (⇢,M)

and �s (⇢,M) is not sufficiently small to dampen the effect
of the term 1 + ⇢�G, and thus the contraction (38) becomes
looser, thus degrading the closed-loop performance. As the
sampling becomes slower, more primal proximal iterations can
be carried out and subsequently, the error E is reduced. The
same reasoning as before on �w (⇢,M) and �s (⇢,M) can be
made. However, if the sampling frequency 1/�t is too low, the
initial guess is very far from the optimal point, to the point
that Assumption 4 may not be satisfied anymore, hence the
error increases again. Thus, at every computational power,
an optimal sampling period is obtained. As the computation
power increases, the optimal �t appears to decrease and the
associated optimality tracking error E drops.

Remark 16. Note that we compare the behaviour of our
parametric optimisation algorithm on NLPs of fixed dimen-
sion, no matter what the sampling period is, as the number
of prediction samples has been fixed. This means that the
prediction time changes as the sampling period varies, which
may have an effect on the closed-loop behaviour. However,
it is important to remember that the error E is measured
with respect to the closed-loop trajectory under the optimal
full-NMPC control law computed at the same sampling period.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.0410−2

10−1

100

E

Sampling period �t (s)
Fig. 5. Evolution of the optimality tracking error E against sampling period
for different computation power: 1·103 primal iterations per sec.(red), 2·103
(black), 3·103 (blue) and 4·103 (green).

0 200 400 600 800 100010−2

10−1

100

E

Penalty parameter ⇢
Fig. 6. Evolution of the optimality tracking error E against penalty parame-
ter ⇢ for 2 · 103 prox/sec and �t = 0.018 sec.

An interesting aspect of the non-convex splitting
Algorithm 1 is that the step-size ⇢ has an effect on the

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 15

closed-loop behaviour of the nonlinear dynamics, as shown
in Fig. 6. Given fixed sampling period and computational
power, the tracking performance can be improved by tuning
the optimiser step-size ⇢. In a sense, ⇢ can now be interpreted
as a tuning parameter for the NMPC controller. In particular,
for a fixed number of primal iterations M , choosing ⇢
too large makes the numerical value of the contraction
coefficients �w (⇢,M) and �s (⇢,M) blow up, subsequently
degrading the tracking performance. From the arguments

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

10−2

10−1

E

Sampling period �t (s)
Fig. 7. Evolution of the optimality tracking error E against sampling
period �t. Algorithm 1 for 3 · 103 prox/sec in black, for 4 · 103 prox/sec in
blue. Algorithm 3 with 3 homotopy steps for 3 · 103 prox/sec in dashed red,
with 4 homotopy steps for 4 · 103 prox/sec in red.

developed in paragraph V-D of Section V, one can expect
Algorithm 3 to track the time-dependent optima more closely
than Algorithm 1. This is confirmed by Fig. 7.

B. Collaborative tracking of unicycles
The second example is a collaborative tracking problem

based on NMPC. Three unicycles are controlled so that a
leader follows a predefined path, while two followers maintain
a fixed formation. This control objective can be translated into
the cost function of an NMPC problem, which is then written
Z T

0

�

�

�

x(1)
(t)� xr

(t)
�

�

�

2

Q1

+

�

�

�

u(1)
(t)
�

�

�

2

R1

+

�

�

�

u(2)
(t)
�

�

�

2

R2

+

�

�

�

u(3)
(t)
�

�

�

2

R3

+

�

�

�

x(1)
(t)� x(2)

(t)� d1,2

�

�

�

2

Q1,2

+

�

�

�

x(1)
(t)� x(3)

(t)� d1,3

�

�

�

2

Q1,3

dt,

where Q1, Q1,2, Q1,3, R1, R2, R3 are positive definite
matrices, d1,2, d1,3 are vectors that define the formation
between unicycles 1, 2 and 3 and xr

(·) is a reference path. All
agents 1, 2 and 3 follow the standard unicycle dynamics

8

>

<

>

:

ẋ1 = u1 cosx3

ẋ2 = u1 sinx3

ẋ3 = u2

,

subject to input constraints

u1 2 [0, 0.5] , u2 2
h

�⇡
2

,
⇡

2

i

.

The continuous-time NMPC problem is discretised using a

−2 −1 0 1 2

−1

−0.5

0

0.5

1

Fig. 8. Trajectories of the three-unicycles formation for 300 prox/sec, �t =
0.20 sec and ⇢ = 3 · 103.

Runge-Kutta integrator of order 4 [19], while the closed-loop
system is simulated with the MATLAB adaptive step-size
integrator ode45. In the resulting finite-dimensional NLP,
two cost coupling terms appear between agents 1 and 2, as
well as agents 1 and 3. This can be addressed by the splitting
Algorithm 1. Moreover, the whole procedure then consists in
a sequence of proximal alternating steps between agent 1 and
the group {2, 3}, which can compute their proximal descents
in parallel without requiring any communication. For this
particular NLP with cost-couplings, the dual updates can be
performed in parallel. Results of the collaborative tracking

0 10 20 30 40 50 600

0.05

0.1

Time (s)
Fig. 9. Evolution of the formation error between unicycles 1 and 2 for
Algorithm 1 (blue), compared with the formation error obtained with the
full NMPC (IPOPT, black).

NMPC are presented in Figures 8 and 9. The number of iter-
ations/communications per second has been fixed at 300 and
the sampling period set to �t = 0.20 sec. Within the sampling
period, this results in M = 60 exchanges of packets between
agent 1 and agents 2, 3, which perform their computations in
parallel. The penalty parameter was ⇢ = 3·103. The formation-
keeping NMPC has been first simulated with the unicycles
in closed-loop with the full-NMPC control law, computed
using IPOPT with accuracy 1·10�7, which is purely centralised,
hence not very interesting from a practical point of view, in
this particular case. The full-NMPC trajectory is plotted in
black in Fig. 8, while the one obtained using Algorithm 1 is
represented in blue. The closed-loop formation error

✏1,2 :=

�

�

�

x(1) � x(2) � d1,2

�

�

�

2

is plotted in Fig. 9. At every reference change, the error
rises, but decreases again as the tracking converges. The

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 16

performance could be further improved by tuning the penalty ⇢
or performing a few homotopy steps as in Algorithm 3.

VIII. CONCLUSION

An novel non-convex splitting Algorithm for solving NMPC
programs in a real-time framework has been presented. Con-
traction of the primal-dual sequence has been proven using
regularity of generalised equations and recent results on non-
convex descent methods. It has been shown that the proposed
Algorithm can be further improved by applying a continuation
technique. Finally, the proposed approach has been success-
fully tested on two numerical examples.

REFERENCES

[1] M. Alamir. Monitoring control updating period in fast gradient based
NMPC. In Proceedings of the European Control Conference, pages
3621–3626, July 2013.

[2] E.L. Allgower and K. Georg. Introduction to numerical continuation
methods. SIAM, 1990.

[3] H. Attouch and J. Bolte. On the convergence of the proximal algorithm
for nonsmooth functions involving analytic features. Mathematical
Programming, 116:5–16, 2009.

[4] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating
minimisation and projection methods for non-convex problems: an
approach based on the Kurdyka-Lojasiewicz inequality. Mathematics
of Operations Research, 35:438–457, 2010.

[5] H. Attouch, J. Bolte, and B.F. Svaiter. Convergence of descent methods
for semi-algebraic and tame problems: proximal algorithms, forward-
backward splitting and regularised Gauss-Seidel methods. Mathematical
Programming, 137:91–129, 2013.

[6] D.P. Bertsekas. Constrained optimization and Lagrange multiplier
methods. Athena Scientific, 1982.

[7] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and distributed computation:
numerical methods. Athena Scientific, 1997.

[8] J. Bolte, A. Daniilidis, and A. Lewis. The Lojasiewicz inequality
for nonsmooth sub-analytic functions with applications to subgradient
dynamical systems. SIAM Journal on Optimization, 17:1205–1223,
2007.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Maching Learning, 3(1):1–
122, 2010.

[10] Calamai, P.H. and Moré, J.J. Projected gradient methods for linearly
constrained problems. Mathematical Programming, 39:93–116, 1987.

[11] A.R. Conn, N.I.M. Gould, and P.L. Toint. A globally convergent aug-
mented Lagrangian algorithm for optimization with general constraints
and simple bounds. SIAM Journal on Numerical Analysis, 28:545–572,
1991.

[12] Conte, C. and Voellmy, N.R. and Zeilinger, M.N. and Jones, C.N. and
Morari, M. Distributed synthesis and control of constrained linear
systems. In Proceedings of the 2012 American Control Conference,
pages 6017–6022, June 2012.

[13] D. D’Acunto and K. Kurdyka. Effective Lojasiewicz gradient inequality
for polynomials. Annales Polonici Mathematici, 87, 2005.

[14] S. Daniel-Berhe and H. Unbehauen. Experimental physical parameter
estimation of a thyristor driven DC-motor using the HMF-method.
Control Engineering Practice, 6:615–626, 1998.

[15] M. Diehl, H.G. Bock, and J.P. Schloeder. A real-time iteration scheme
for nonlinear optimization in optimal feedback control. SIAM Journal
on Control and Optimization, 43(5):1714–1736, 2005.

[16] Q. Tran Dinh, I. Necoara, and M. Diehl. A dual decomposition algorithm
for separable nonconvex optimization using the penalty framework. In
Proceedings of the 52nd Conference on Decision and Control, 2013.

[17] A.L. Dontchev and R.T. Rockafellar. Characterizations of strong
regularity for variational inequalities over polyhedral convex sets. SIAM
Journal on Optimization, 6(4):1087–1105, 1996.

[18] Grüne, L. and Pannek, J. Nonlinear Model Predictive Control. Springer-
Verlag London, 2011.

[19] E. Hairer and G. Wanner. Solving ordinary differential equations I.
Springer, 2008.

[20] A. Hamdi and S.K. Mishra. Decomposition methods based on aug-
mented Lagrangian: a survey. In Topics in nonconvex optimization.
Mishra, S.K., 2011.

[21] Hours, J.-H. and Jones, C.N. An augmented Lagrangian coordination-
decomposition algorithm for solving distributed non-convex programs.
In Proceedings of the 2014 American Control Conference, pages 4312–
4317, Portland, Oregon, USA, June 2014.

[22] Kögel, M. and Findeisen, R. Stability of NMPC with cyclic horizons. In
Proceedings of the 9th IFAC Symposium on Nonlinear Control Systems,
pages 809–814, September 2013.

[23] M.J.D. Powell. On search directions for minimisation algorithms.
Mathematical Programming, 4:193–201, 1973.

[24] Stephen M. Robinson. Strongly regular generalised equations.
Mathematics of Operations Research, 5(1):43–62, 1980.

[25] R.T. Rockafellar. Augmented Lagrangian multiplier functions and
duality in non-convex programming. SIAM Journal on Control and
Optimization, 12(2):268–285, 1974.

[26] R.T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer,
2009.

[27] B.T. Stewart, S.J. Wright, and J.B. Rawlings. Cooperative
distributed model predictive control for nonlinear systems.
Journal of Process Control, 21(5):698–704, 2011.

[28] Q. Tran Dinh, C. Savorgnan, and M. Diehl. Adjoint-based predictor-
corrector sequential convex programming for parametric nonlinear op-
timization. SIAM Journal on Optimization, 22(4):1258–1284, 2012.

[29] A. Waechter and L.T. Biegler. On the implementation of a primal-
dual interior point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106(1):25–57, 2006.

[30] V.M. Zavala and M. Anitescu. Real-time nonlinear optimization as
a generalised equation. SIAM Journal on Control and Optimization,
48(8):5444–5467, 2010.

[31] V.M. Zavala and M. Anitescu. Scalable nonlinear programming via
exact differentiable penalty functions and trust-region Newton methods.
SIAM Journal on Optimization, 24(1):528–558, 2014.

[32] V.M. Zavala and L.T. Biegler. The advanced-step NMPC controller:
optimality, stability and robustness. Automatica, 45(1):86–93, 2009.

Jean-Hubert Hours received the Bachelor’s and
Master’s degrees in Electrical Engineering from
Supélec, Paris, France, and from ETH Zurich,
Switzerland, in 2009 and 2011 respectively. He is
currently a PhD student in the Automatic Control
Laboratory at the École Polytechnique Fédérale de
Lausanne (EPFL), Lausanne, Switzerland. His re-
search interests are in nonlinear model predictive
control, distributed optimisation and nonlinear pro-
gramming.

Colin N. Jones received the Bachelor’s degree
in Electrical Engineering and the Master’s degree
in Mathematics from the University of British
Columbia, Vancouver, BC, Canada, and the Ph.D.
degree from the University of Cambridge, Cam-
bridge, U.K., in 2005. He is an Assistant Professor
in the Automatic Control Laboratory at the École
Polytechnique Fédérale de Lausanne (EPFL), Lau-
sanne, Switzerland. He was a Senior Researcher
at the Automatic Control Laboratory of the Swiss
Federal Institute of Technology Zurich until 2010.

His current research interests are in the areas of high-speed predictive
control and optimisation, as well as green energy generation, distribution and
management.

	Introduction
	Background
	Solving time-dependent distributed nonlinear programs
	Problem formulation
	A non-convex decomposition scheme for optimality tracking

	Theoretical tools: Strong regularity and Kurdyka-Lojasiewicz inequality
	Parametric generalised equations
	Convergence of the inner loop
	Convergence rate of the primal loop

	Contraction of the primal-dual sequence
	Existence and uniqueness of critical points
	An auxiliary generalised equation
	Derivation of the contraction inequality
	Improved contraction via continuation

	Computational considerations
	Numerical examples
	DC motor
	Collaborative tracking of unicycles

	Conclusion
	References
	Biographies
	Jean-Hubert Hours
	Colin N. Jones

