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Topological insulators have attracted abundant attention for a variety of reasons—notably, the possibility for lossless
energy transport through edge states “protected” against disorder. Topological effects such as the quantum Hall state
can be induced through a gauge field, which is, however, hard to create in practice, especially for charge-neutral
particles. One way to induce an effective gauge potential is through a dynamic, time-periodic modulation of the lattice
confining such particles. In this way, the Haldane quantum Hall effect was recently observed in a cold-atom system.
Here, we show how this same effect can be induced for light confined to a lattice of identical optical resonators, using
an on-site modulation of the resonant frequencies. In this system, coupled-mode analysis shows the presence of
one-direction edge states immune to backscattering losses. We also discuss possible realizations of the model, which
could enable slow-light devices of unprecedented quality. © 2016 Optical Society of America

OCIS codes: (230.4555) Coupled resonators; (230.3240) Isolators; (230.3990) Micro-optical devices.
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1. INTRODUCTION

Topological order has opened a new frontier in the classification
of distinctive phases of matter and is thus a center of attention in
theoretical and condensed matter physics [1]. Its study has also
reached the field of photonics [2] for two main reasons. First,
photonic analogs of topological systems are a promising route
to bridging theory and experiment. Second, a signature of a
topologically nontrivial material is the presence of one-directional
edge states providing energy transport immune to disorder. This
could prove extremely valuable for slow-light photonic devices,
which find a variety of applications [3,4] but whose performance
is severely limited by backscattering due to fabrication imperfec-
tions [5–7].

Historically, topological order was first recognized in relation
to the quantum Hall effect. In that area, Haldane had a ground-
breaking contribution [8] in demonstrating that the effect can
arise even with zero magnetic field averaged over a primitive cell.
The research into topological photonics was also started by
Haldane in two theoretical studies [9,10], which were quickly fol-
lowed by an experimental realization of a photonic topological
insulator using gyromagnetic media [11]. This result was, how-
ever, obtained in the gigahertz frequency range. Due to the lack of
suitable materials, reproducing this scheme in the visible or the
near-infrared spectrum—which are the most interesting for
applications—is still a major challenge. The milestone of an
experimental realization of topological edge states for light in
the near-infrared has been reached using coupled microring
resonators [12,13] or coupled waveguides [14] by taking advan-
tage of the symmetry-induced degeneracy of rotating and

counter-rotating modes. More specifically, these systems are char-
acterized by a preserved time-reversal symmetry (TRS), which
leads to an important limitation of the topological protection.
The groundbreaking result (which is now known as the spin
quantum Hall effect) of Kane and Mele [15] that, for electrons,
this protection is still present in TRS systems relies on the anti-
unitarity of the time-reversal operator (T 2 � −1). For photons,
this operator is unitary, and the result no longer holds [2], at least
not in its full strength. Instead, the protection relies on the sym-
metry that prevents the mixing of propagating and counterpro-
pagating modes in a waveguide, which in practice may be broken
by disorder. This suggests the need for systems where TRS is bro-
ken [9,10,16–23]. Recently, the possibility to use a fine-tuned
dynamic modulation of a system to engineer a gauge field for pho-
tons has been shown both theoretically [19] and experimen-
tally [24,25].

The seminal work by Haldane [8] considered a honeycomb lat-
tice [Fig. 1(a)] with real first-neighbor and complex second-
neighbor couplings. In the absence of the latter, the band structure
of the lattice has six Dirac points and no band gap [Fig. 1(b)].
Haldane showed that the complex second-neighbor hopping terms
break the TRS and open a topological band gap analogous to the
one of a standard quantum Hall system with a constant magnetic
field. Generally, complex coupling coefficients on a lattice imply an
effective gauge field, with the Peierls phase [26] defining the cor-
respondence between the two. In the Haldane model, the associ-
ated magnetic field is zero when averaged over the unit cell, but
there is a nonzero magnetic flux through a triangle enclosed by
second-neighbor hopping, which is responsible for opening the
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band gap. Recently, this was successfully observed using cold atoms
in a “shaken” optical lattice [27], which, together with previous
research in that field [28–31], inspired the results presented here.
In this work, we show how an analog of the Haldane model can be
achieved in a Kagomé lattice of photonic resonators using a time-
periodic modulation of the resonant frequencies, where only the
phase of the modulation varies among different sites, in a spatially
periodic manner. We further show the existence of backscattering-
immune edge states and discuss the possibilities for a practical
implementation of the system.

2. MODEL

We consider a lattice of optical resonators in which the resonant
frequencies ωi are subject to a periodic modulation in time. The
linear photonic Hamiltonian, most generally, reads

H �
X
i

�ωi � Ai cos�Ωt � ϕi��a†i ai −
X
ij

J ija
†
i aj; (1)

where a† is the photon creation operator, Jij are the hopping co-
efficients, and Ai and ϕi denote the site-dependent amplitude and
phase of the dynamic modulation, which can be achieved, for
example, through electro-optic modulation [32,33], optically in-
duced material nonlinearities [34], or optomechanical interaction
with phonon modes [35]. The Hamiltonian is particle-number
preserving; thus Eq. (1) describes the system with any fixed num-
ber of photons (subspaces of different photon numbers are de-
coupled). The equation also applies to classical light, since it is
a concise way to write the coupled-mode theory that can be used
for an array of optical resonators. In Supplement 1, we outline the
theoretical details of the Floquet theory [36–38] that we employ
to solve the time-periodic Hamiltonian of Eq. (1). One approach
is to expand the modes of the array on the Floquet basis:

jfnig; mi � jfnigi exp
�
−
i
Ω

X
i
Ai sin�Ωt � ϕi�ni � imΩt

�
;

(2)

where ni denotes the occupation number of site i, and m is an
integer. In Supplement 1, we derive the matrix elements of the
matrix for diagonalization whose eigenstates correspond to the
exact solution of the system when all orders m are included. In
practice, we truncate m up to a given mmax, always checking for
convergence. The relationship between this system and the
Haldane model is more intuitively revealed through Floquet

perturbation theory, which is also outlined in detail in
Supplement 1. Within this approach, a time-independent effec-
tive Hamiltonian describing the evolution of the system for time-
scales much larger than 1∕Ω can be written and expanded in or-
ders of 1∕Ω. To first order, this results in effective complex cou-
pling coefficients J 0ij � iJ 0 0ij , where

J 0ij � JijJ 0�ρij�; (3)

J 0 0ij � 2
X
ij

X∞
m�1

�−1�m
Ωm

X
p

J m�ρip�J m�ρpj�JipJpj

× sin�m�ϕip − ϕpj��a†i aj; (4)

with J m the Bessel functions of the first kind, and ρij ;ϕij
constants defined as

ρijeiϕij � �Ajeiϕj − Aieiϕi �∕Ω: (5)

The imaginary iJ 0 0ij thus introduces a gauge field for the photons,
and more specifically—in the lattice geometries we discuss
below—the magnetic flux required for the Haldane effect.

In the recent experimental observation of the Haldane model
with cold atoms [27], the honeycomb lattice confining the atoms
was “shaken” by a periodic, elliptical modulation. In the reference
frame of the lattice, this results in a site-dependent potential in the
Hamiltonian. This can also be implemented in the resonator array
considered here through a modulation of the form of Eq. (1), with
the remark that, since both our Hamiltonian and that of Ref. [27]
are particle-number preserving, the particle statistics (bosons or
fermions) are not important. Thus, all the considerations of
Ref. [27] also hold for the lattice of optical resonators if we
set the couplings Jij of Eq. (1) to those of the honeycomb lattice,
and Ai and ϕi such that

Ai cos�Ωt � ϕi� � A0

xi
r

cos�Ωt� � A0

yi
r

sin�Ωt�; ∀ i:

(6)

Here, A0 is a constant, �xi; yi� is the position of the ith resonator,
and r is the first-neighbor distance. Thus, replicating the cold-
atom system is possible. However, we note that this requires a
gradient in the amplitude Ai of the modulation of the frequency
of the optical resonators. This is because, in the cold-atom case,
there is a constant inertial force on all lattice sites, and thus a
spatial gradient in the potential. Ideally, we would like to have
instead a modulation that shares the spatial periodicity of the
underlying lattice. This is, however, impossible in the case of
the honeycomb geometry, for the following reason. The lattice
has two sites in the unit cell [marked A and B in Fig. 1(a)].
Assuming a modulation with the same periodicity, we are limited
to two arbitrary amplitudes AA and AB , and two arbitrary phases
φA, φB . Whatever their values, however, looking at Eq. (5), it is
obvious that ϕAB � π � ϕBA, which means that ϕAB − ϕBA � π.
Since all terms in the second-neighbor imaginary hoppings
[Eq. (4)] that come out of this modulation are proportional to
sin�m�ϕAB − ϕBA�� with m an integer, they are all zero.

The spatial gradient in Ai that is needed in the honeycomb
geometry breaks the spatial periodicity and makes it impossible
to analyze the system in momentum space, which is a significant
theoretical disadvantage. In addition, in view of potential exper-
imental realizations, this feature introduces an extra challenge,
since the maximum amplitude of the modulation is inevitably

Fig. 1. (a) Honeycomb lattice with two sites A and B in the primitive
cell (highlighted in orange). The Haldane model involves a complex
second-neighbor hopping, i.e., along the red dashed lines. The Brillouin
zone in reciprocal space is also shown. (b) Band structure of the lattice
with first-neighbor coupling J and zero second-neighbor coupling. Six
Dirac cones at the K -points are present.
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limited, which in turn would limit the maximum system size.
Fortunately, this can be easily overcome through a small modifi-
cation of the lattice geometry—namely, by considering the
Kagomé lattice illustrated in Fig. 2(a). This lattice has three lattice
sites per elementary cell, and the band structure [Fig. 2(b)] is sim-
ilar to that of the honeycomb lattice in that there are six Dirac
cones. The main difference comes from the additional flat band.
Importantly, in the presence of second-neighbor couplings similar
to those of the Haldane model, topologically nontrivial band gaps
can be opened between the first and the second and/or the second
and the third bands [39,40].

We thus now focus on a Kagomé lattice of identical resonators
of frequencyω0 on all sites, assuming first-neighbor couplings only
[along the black lines of Fig. 2(a)], with a hopping coefficient J .
The dynamicmodulation that we additionally assume has the form
ωA � ω0 � A0 cos�Ωt � φ�, ωB � ω0 � A0 cos�Ωt � 2φ�,
and ωC � ω0 � A0 cos�Ωt � 3φ�, where A, B, and C refer to
the three sites of the primitive cell. Since the Hamiltonian is
time-periodic, the spectrum has a Brillouin-zone-like structure
in the sense that, if ω is an eigenstate of the time-dependent
Hamiltonian, so are ω� mΩ, for all integer m. The eigenstates
are time-periodic functions with period T , and can be computed
through expansion on the Floquet basis of Eq. (2).We consider the
subspace of a single excitation only, i.e., ni � 1; nj≠i � 0, and
truncate the orders of m at mmax � 10 (convergence is always
checked).

The Floquet two-dimensional band structure of the lattice can
then also be computed, with time- and space-periodic solutions

un�k; t� �
X
i;m

vi;m�k; n�e−ikRi eimΩt ; (7)

with vi;m�k; n� the eigenvectors from the diagonalization, and Ri
the position of site i. The Floquet band diagram is shown in
Figs. 3(a) and 3(b) for J � 0.1Ω, A0 � 0.9Ω, and φ � 2.1.
As discussed and displayed in Fig. 3(a), the bands are repeated
in frequency space at an interval of Ω. In Fig. 3(b), which shows
a close-up of the zeroth-order bands of Fig. 3(a), we see that band
gaps are opened due to the dynamic modulation. To quantify
their topological properties, we compute the Chern number

for all bands by integrating the Berry curvature F �k� [41,42] over
the Brillouin zone. Numerically, we compute F �k� on a discrete
mesh in k-space using the eigenvectors vm;i�k; n� [43,44]. The
nonzero Chern numbers (1, −2, and 1 for the three bands, respec-
tively) confirm the nontrivial nature of the band gaps.

The band structure can also be computed starting from the
perturbative expansion of Eq. (1). As mentioned above, this
has the advantage of making the connection between this system
and the Haldane model more intuitive. In the presence of the
modulation, the effective Hamiltonian up to first order in pertur-
bation theory can then be written in k-space as

H̃ �
X
k

A†
k�ω0 �H�k��Ak (8)

with

A†
k � �a†A;k; a†B;k; a†C;k�; (9)

where a†A;k is the Fourier transform of the a†A operator creating a
particle on site A, and correspondingly for B and C . The coupling
matrix is given by

Fig. 2. (a) Kagomé lattice with three sites in the primitive cell, and the
corresponding Brillouin zone. (b) Corresponding band structure with
first-neighbor coupling J . There are six Dirac cones, and in addition
a flat band. (c) The dynamic modulation results in effective imaginary
couplings along the dashed lines. These are both first- and second-
neighbor (brown and red lines, respectively). The three first-neighbor
vectors a1, a2, and a3 appearing in Eq. (11) are also defined.

Fig. 3. (a) Quasi-energy bands computed through diagonalization on
the Floquet basis, for J � 0.1Ω, A0 � 0.9Ω, and φ � 2.1. The bands
are repeated in orders of mΩ, with m an integer. (b) Zoom-in on the
m � 0 region of (a). (c) Bands computed through a perturbative expan-
sion of the effective time-independent Hamiltonian. In (b) and (c), the
Chern number for each band is indicated.
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H�k� � −2J

0
@ 0 tAB�k� tAC �k�

t�AB�k� 0 tBC �k�
t�AC �k� t�BC �k� 0

1
A; (10)

where the (dimensionless) couplings can be split into

tAB�k� � �tAB;0 � tAB;1� cos�ka1� � t 0AB;1 cos�k�a2 � a3��;
tAC �k� � �tAC;0 � tAC;1� cos�ka2� � t 0AC;1 cos�k�a1 − a3��;
tBC �k� � �tBC;0 � tBC;1� cos�ka2� � t 0BC;1 cos�k�a1 � a2��;

(11)

where, in the first line, tAB;0 is the first-neighbor coupling from
site A to site B, tAB;1 is the double-hop coupling (through site C)
to a first-neighbor site B, and t 0AB;1 is the double-hop coupling
(again through site C, but in a different direction) to a second-
neighbor site B. The vectors ai are defined such that a1 points
from A to B, a2 points from A to C, and a3 points from B to C
[see Fig. 2(c)]. Simply put, the zeroth-order effective Hamiltonian
results in rescaled first-neighbor couplings [tAB;0; tAC;0; tBC;0,
black lines in Fig. 2(c)], while the first order results in all the cou-
plings marked by dashed lines in Fig. 2(c) (tAB;1; tAC;1; tBC;1,
brown lines; t 0AB;1; t

0
AC;1; t

0
BC;1, red lines), which always involve

an intermediate hopping, and are purely imaginary. The coeffi-
cients can be derived from Eqs. (3) and (4), and are given explic-
itly in Supplement 1. In Fig. 3(c), we show the bands computed
by diagonalizing this effective Hamiltonian, which agree very well
with the exact solution of Fig. 3(b), and the computed Chern
numbers are the same.

3. EDGE STATES

Topological invariants like the Chern number cannot change as
long as the band gap remains open. Hence, the width of the band
gap is an important parameter, giving an energy scale to the topo-
logical protection against disorder (only fluctuations on a larger
scale can destroy the topological properties). Thus, in Fig. 4, we

plot maps of the gap width ΔT (if two gaps are present, the largest
value is taken), versus the parameters A0 and φ. The data in
Figs. 4(a) and 4(b) are computed for J � 0.1Ω, with the pertur-
bation theory Hamiltonian in Fig. 4(a), and the full diagonaliza-
tion in Fig. 4(b), and show very good agreement. In Figs. 4(c) and
4(d), J � 0.5Ω was used, and the agreement is no longer present.
It is natural that the perturbative expansion works well for small
J∕Ω when the Floquet bands of different orders are well-separated
[Fig 3(a)], but has limited reliability as J increases. Importantly,
however, the topological effect is present even beyond perturba-
tion theory: a gap of width larger than 0.2Ω is opened for
J � 0.5Ω, A0 � 1.6Ω, and φ � 2.1. Notice that for any value
of the parameters in this system, the band gap is inevitably limited
to a fraction of Ω due to the higher-order Floquet bands.

In Fig. 5, we show the band structures with the largest band
gaps for J � 0.3Ω, J � 0.5Ω, and J � 0.7Ω, with parameters A0

and φ chosen for the largest ΔT (see Fig. 2 of Supplement 1).
Topologically, there is a difference between the bands in
Figs. 3(b) and 5(a), with Chern numbers 1, −2, and 1, and those
of Figs. 5(b) and 5(c), with Chern numbers 1, 0, and −1. What is
important, however, is that in both cases there are bands with a
nonzero topological invariant. The bulk-boundary correspon-
dence principle [1,2] then applies, guaranteeing the existence

Fig. 4. (Largest) width of the opened band gap due to the dynamic
modulation of frequency Ω versus the amplitude A0 and the phase angle
φ for the Kagomé lattice with first-neighbor coupling J � 0.1Ω.
(a) Floquet perturbation theory. (b) Expansion on the Floquet basis.
(c),(d) Same as (a) and (b), but for J � 0.5Ω. The color scheme is
the same in panels (a) and (b), as well as in panels (c) and (d).

Fig. 5. Bands structure with the largest possible band gap for various
values of J∕Ω. (a) J � 0.3Ω, A0 � 0.5Ω, and φ � 2.1. (b) J � 0.5Ω,
A0 � 1.6Ω, and φ � 2.1. (c) J � 0.7Ω, A0 � 3.05Ω, and φ � 2.67.
The Chern number for each band is indicated.
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of gapless edge states at an interface between the topological
material and a topologically trivial one (e.g., empty space). In
terms of practical applications, propagating modes robust to dis-
order are thus expected to appear in a finite system.

The existence of the topological edge modes is illustrated in
Fig. 6 for a ribbon geometry, with a finite number of sites in
one direction, and periodic boundary conditions in the other.
The one-dimensional Floquet band structure can again be
computed by expanding on the Floquet basis, and is shown in
Figs. 6(a) and 6(d) for J � 0.5Ω, A0 � 1.6Ω, and φ � 2.1.
The difference between the two panels comes from the truncation
at the edges—compare Figs. 6(b) and 6(e). Regardless of how we
truncate, there is a band that closes the band gap of the bulk struc-
ture, due to the nonzero topological invariants. Modes belonging
to that band are localized close to the boundaries of the ribbon;
the important point, however, is that the modes at kx and −kx are
localized at opposite edges. This is illustrated in Figs. 6(c) and
6(f ), where we plot the position dependence of the magnitude
of the eigenvectors of the two states indicated by a blue and a
red dot in Figs. 6(a) and 6(d), respectively. The amplitude on the
x axis is the quantity

P jvm;i�k; n�j2, where the sum is over all m,
and over all sites at the same position along y. The edge modes are
exponentially localized at the boundaries [notice the logarithmic
scale on the x axes of Figs. 6(c) and 6(f )]; thus the overlap be-
tween the forward- and backward-propagating modes decreases
exponentially with the width of the ribbon in the y direction.

This is only possible due to the broken TRS, and ensures protec-
tion against backscattering in the presence of disorder.

4. DISCUSSION

Our proposal is related to the seminal work of Ref. [19], in which a
dynamic modulation of an optical lattice was first proposed to
achieve an effective gauge field for photons. On the fundamental
level, the main difference here is the lattice geometry, which is such
that a second-neighbor complex coupling is sufficient to give rise to
the quantum Hall effect (as in the Haldane model). On the prac-
tical side, this actually leads to a variety of simplifications, perhaps
most importantly the fact that the resonant frequency of each
individual cavity has to be modulated, instead of the cavity–
cavity coupling coefficients. To achieve the latter, in Ref. [19]
a fairly complex coupling scheme was proposed, in which two
different resonators couple through an intermediate “link” cavity,
with specific requirements for the symmetries of all cavity modes.
Our system is instead the simplest possible, consisting of an array of
identical, single-mode resonators. Furthermore, the dynamic
modulation itself takes the simple form of a constant amplitude
across the whole system, and a spatially periodic phase pattern.

Several considerations have to be made for the results pre-
sented here to have practical implications. We have not consid-
ered the loss rate κ of the optical resonators, which is in practice
always nonzero. To be able to meaningfully talk about light trans-
port, this must be smaller than the coupling constant J . In addi-
tion, κ must also be smaller than the band gap ΔT , so that the
latter can be resolved. By extension, this also implies κ ≪ Ω. In
state-of-the-art photonic crystal cavities, κ∕ω0 of the order of 10−6

can now be routinely achieved [45–47] at telecommunication
frequencies ω0∕2π ≈ 200 THz; thus κ∕2π � 0.5 GHz is a rea-
sonable and conservative assumption. The coupling constant J is
the easiest parameter to control by varying the distance between
resonators. Thus the most important challenge is to have a suffi-
ciently highΔT . In fact, independently of κ,ΔT is a general figure
of merit for the magnitude of the topological protection that
should be maximized.

In Ref. [19], electro-optic modulation was suggested as the
practical tool for driving the resonant-frequency oscillation.
This offers sufficient control over the phase, and has been shown
to be scalable [19,48]. The maximum achievable modulation fre-
quency Ω∕2π is of the order of several gigahertz. A band gap ΔT
of the order of 1 GHz could thus be achieved, which lies just
above the limit set by κ. We note that this challenge holds both
for our proposal and for that of Ref. [19]. Very recently [22], it
was suggested to use the coupling of the optical resonators to
localized phonon modes to induce the frequency modulation.
In this scheme, Ω is fixed by the phonon resonant frequency,
which can be as high as Ω∕2π � 10 GHz in two-dimensional
optomechanical crystals [49]. This is sufficiently large for our
scheme, and the required phase control can be easily implemented
through the phase of the lasers driving the mechanical oscillations
[22,35]. Within that paradigm, another recent optomechanical
scheme [23] investigated the Kagomé lattice of resonators, focus-
ing on creating and probing topological states for sound (i.e.,
phonons). Within that proposal, it is also possible to create topo-
logical states of light, but the size of the band gap is shown to be
proportional to the phonon hopping coefficient. This is typically
orders of magnitude smaller than the phonon resonant frequency,

Fig. 6. (a) Floquet bands for the ribbon geometry shown in (b), with a
finite number of sites in one direction (the system is truncated at the solid
black lines), and periodic boundary conditions in the other (along the
dashed black lines). The parameters are as in Fig. 4(b): J � 0.5Ω,
A0 � 1.6Ω, and ϕ � 2.1. (c) Spatial dependence of the eigenstates
marked in blue and red, respectively, in panel (a). The y axis is aligned
with the y axis of panel (b). (d)–(f ) Same as (a)–(c), but for a different
truncation [compare (b) and (e)].
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and thus also smaller than the best optical loss rate κ that could
possibly be achieved in state-of-the-art photonic devices.

While both of the modulation schemes mentioned above
could be employed for an experimental realization of our system,
a third option is also worth mentioning. Using the optically
induced Kerr nonlinearity, repeated switching at a terahertz rate
has recently been demonstrated in a micropillar cavity [34]. The
maximum amplitude in such a scheme is limited to only a fraction
of Ω, but assuming Ω∕2π � 1 THz, A0 � 0.05Ω (which can be
read out of the sine-like dependence of the cavity resonant fre-
quency measured in Ref. [34]), J � 0.2Ω, and φ � 2.1, we
obtain for our Kagomé lattice a topological band gap of width
0.033Ω, i.e., ΔT ∕2π � 33 GHz. This value is two orders of
magnitude larger than the loss rate of state-of-the-art cavities,
which ensures that the band gap cannot be closed by the dephas-
ing associated to the radiative losses. Regarding disorder, the non-
zero topological invariants guarantee protection when the energy
scale associated to the disorder magnitude is much smaller than
ΔT . Disorder in photonic systems is a complex phenomenon and
appears in various forms—thus, a comprehensive study would re-
quire intricate modeling and is beyond the scope of this work.
However, we note that the ΔT value we estimate here is very sim-
ilar to the magnitude of the disorder-induced fluctuation in the
resonant frequencies of nominally identical photonic crystal
cavities [50,51]. Moreover, the latter can in principle be further
reduced by post-processing techniques [52,53]. All these consid-
erations suggest that an implementation of our scheme on a
photonic crystal platform is a very promising outlook for future
research.

In conclusion, we have described a straightforward implemen-
tation of the Haldane-like quantumHall effect for light in a lattice
of optical cavities, with an effective gauge field produced through
a time-periodic modulation of the resonant frequencies. The site
dependence of the phase of the modulation breaks TRS and opens
topologically nontrivial band gaps, which, in a finite geometry,
yields propagating, backscattering-free edge states. These can find
applications for high bit-rate storage [4]; for enhanced nonlinear
effects, e.g., for frequency conversion or generation of nonclassical
light for quantum information processing [54–57]; and for
enhanced radiative coupling between distant quantum dots for
on-chip quantum computation [58,59].
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