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1 Introduction

Higher spin fields play an important role in all known examples of the AdS/CFT duality [1].

In the case of the N = 4 SYM there are massive string states in AdS, which must be taken

into account at finite ’t Hooft coupling λ, and whose effect appears at infinite coupling

in the form of 1/
√
λ corrections. More recently there has been a resurgence of higher

spin gauge theories in AdS4 [2–5], conjectured to be dual to three-dimensional CFTs like

the O(N) vector model [6], the Gross-Neveu model [7] or certain large N Chern-Simons

theories [8]. In all these recent cases, computations involving AdS higher spin fields pose

additional technical challenges. The goal of this paper is to develop a formalism to deal

with tensor fields in AdS, that makes computations almost as simple as those with scalar

fields.

More specifically, we shall develop the embedding formalism for treating massive sym-

metric traceless AdS tensor fields with J indices (or spin J fields, for short), but some of the

methods here developed should be extendable to antisymmetric tensors or mixed symme-

try tensors. The basic idea of the embedding formalism is that fields in Euclidean AdSd+1

space, or their CFTd dual operators, can be expressed in terms of fields in an embedding

Minkowski space Md+2. The action of the AdSd+1 isometry group, or of the conformal

group SO(d + 1, 1), can then be realised as the group of linear Lorentz transformations.

This fact has been explored in many places in the literature to simplify computations,

including computations of correlation functions of higher spin fields [9–12], of conformal

blocks for external operators with spin [13, 14], and of Witten diagrams to derive Feynman

rules in Mellin space [15–17], to name a few.

We shall start, in section 2, by introducing the basic definitions that allow us to

describe AdS fields in the embedding formalism, including the representation of differential

operators such as the Laplacian. As a first application of the formalism, we compute in

section 3 the bulk-to-bulk propagator of a massive spin J field in AdS. Explicit expressions

for the scalar and spin 1 cases are known for a long time, while the expressions for the

massive spin 2 and p-form cases are known only more recently [18]. The new propagator

has the required short distance behaviour derived in [19] using zeta function regularisation.

It also reproduces the known form of the vector propagator, as well as the traceless part

of the graviton propagator in the massless limit, as given in [20]. In general it is known

that the bulk-to-bulk propagator is closely related to the product of two bulk-to-boundary

propagators integrated over a common boundary point [21, 22]. In section 4 we make

this relation precise by deriving a split representation for spin J propagators in AdS. We

also consider the case of the graviton propagator whose split representation has generated

some discussion in the literature [23, 24]. Taking one of the bulk points to the boundary,

the spin J propagator also defines the bulk-to-boundary propagator for this field. As

an application of this result we derive in section 5 the relation between the AdS local

coupling of two scalar fields and one spin J field, and the OPE coefficient of the dual

CFT operators. Finally, in section 6 we make use of this split representation to derive

the conformal block expansion of four-point correlation functions computed via Witten

diagrams. In particular, we determine the Mellin amplitude associated to AdS graviton
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Figure 1. Euclidean AdS and its boundary in the embedding space. This picture shows the AdS2

surface X2 = −1 and the identification of a boundary point (in blue) with a light ray (in red) of

the light cone P 2 = 0, which intersects the Poincaré section on a (black) point.

exchange between minimally coupled massive scalars in general spacetime dimension. A

number of technical computations are left to appendices.

2 Embedding formalism for AdS

In this paper we consider tensor fields in Euclidean (d+1)-dimensional Anti de Sitter space

AdSd+1. Obviously this is just the (d+ 1)-dimensional hyperbolic space. Our expressions

can be Wick-rotated to Minkowski signature, provided one is careful with the iε prescription

(see [25, 26] for some details). In this section we introduce notation and develop the

embedding formalism to treat tensor fields in AdSd+1. We shall see how the use of this

formalism simplifies computations considerably, making conformal invariance manifest at

all time, just like for tensor fields in d-dimensional CFTs. This simple idea has been used

before (e.g. [27, 28]) and is also known has tractor calculus [29, 30].

Euclidean AdSd+1 space can be defined by the set of future directed unit vectors,

X2 = −1 , X0 > 0 , (2.1)

in (d+ 2)−dimensional Minkowski space Md+2. As it is well known, the isometry group of

AdSd+1 is the d-dimensional conformal group SO(d+ 1, 1). This group acts linearly on the

embedding space Md+2, and its action is interior to points on the hyperboloid X2 = −1.

A simple example is that of AdSd+1 written in Poincaré coordinates xµ = (z, ya), with y a

d-dimensional vector. In this case AdS points are parameterized as

X =
1

z

(
1, z2 + y2, ya

)
, (2.2)
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where we used light cone coordinates

XA =
(
X+, X−, Xa

)
, (2.3)

with metric

X ·X = ηABX
AXB = −X+X− + δabX

aXb . (2.4)

Here and below, we use capital letters to denote embedding space indices in Md+2, lower

case letters to denote indices in Rd, and greek letters to denote AdSd+1 indices.

AdS boundary points can be obtained by sending some of the X coordinates to infinity.

In this limit the hyperboloid approaches the light cone, so that a given specific point at

infinity in the hyperboloid approaches one light ray. This allows for the identification of

the AdS boundary with light rays, according to

P 2 = 0 , P ≡ λP , λ ∈ R . (2.5)

For example, for the Poincaré patch considered above, boundary points are parame-

terised by

P =
(
1, y2, ya

)
. (2.6)

figure 1 summarizes this geometric picture.

We wish to establish the relation between fields in AdSd+1 and Md+2. In particular,

here we will consider traceless symmetric tensors. Let us then consider a traceless sym-

metric tensor of Md+2 with components HA1...AJ (X), defined on the surface X2 = −1 and

transverse to this surface,

XA1HA1...AJ (X) = 0 . (2.7)

This defines a tensor in AdSd+1, whose components are simply obtained by the projection

hµ1...µJ =
∂XA1

∂xµ1
· · · ∂X

AJ

∂xµJ
HA1...AJ (X) . (2.8)

The extension of the embedding tensor H(X) away from the AdSd+1 submanifold X2 = −1

is not physical. On one hand, this means that components of the tensor that are transverse

to the hyperboloid, i.e. of the type

HA1...AJ (X) = X(A1
ΨA2...AJ )(X) . (2.9)

are unphysical. Indeed, these components, which do not satisfy the transverse condi-

tion (2.7), have vanishing projection to AdSd+1. On the other hand, it also means that

whenever we take a derivative in the embedding space, that derivative can only be tangent

to the AdSd+1 submanifold.

We wish to have a more economical way of encoding AdSd+1 tensors, without having to

deal with all the indices and constraints arising from the linear realization of the SO(d+1, 1)

symmetry. Let us first recall how this can be achieved in the case of Rd tensors, extensively

discussed in [11]. In this case a symmetric traceless tensor with components FA1···AJ (P )

is defined on the light-cone P 2 = 0 of the embedding space with the requirement that

– 4 –
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F (λP ) = λ−∆F (P ), for λ > 0, where ∆ is the conformal dimension. This tensor can be

encoded in the polynomial

F (P,Z) = ZA1 . . . ZAJFA1···AJ (P ) , (2.10)

where Z2 = 0 encodes the traceless condition. To be tangent to the light-cone P 2 = 0 the

embedding tensor must satisfy PA1FA1···AJ = 0, which can be implemented by requiring

F (P,Z+αP ) = F (P,Z) for any α. In addition, we can impose the orthogonality condition

P · Z = 0 because FA1···AJ = P(A1
ΨA2···AJ ) has vanishing projection into physical Rd

tensors. Moving to the case of AdS symmetric traceless tensors HA1...AJ (X), defined on

the submanifold X2 = −1, they can be encoded by (d+ 1)-dimensional polynomials as

H(X,W ) = WA1 . . .WAJHA1...AJ (X) , (2.11)

where W 2 = 0 = X ·W . The traceless condition allows one to restrict the polynomial to

the submanifold W 2 = 0, and the transverse condition allows for the further restriction

X ·W = 0. In sum, a symmetric traceless tensor can be fully encoded by a polynomial

H(X,W ) defined on the submanifold X2 + 1 = W 2 = X ·W = 0. To recover the AdS

tensor from a given polynomial we define the operator

KA =
d− 1

2

(
∂

∂WA
+XA

(
X · ∂

∂W

))
+

(
W · ∂

∂W

)
∂

∂WA
(2.12)

+XA

(
W · ∂

∂W

)(
X · ∂

∂W

)
− 1

2
WA

(
∂2

∂W · ∂W +

(
X · ∂

∂W

)(
X · ∂

∂W

))
.

We constructed this second order differential operator such that it is interior with respect

to the submanifold X2 + 1 = W 2 = X ·W = 0 (i.e. its action on a function only depends

on the value of the function on this submanifold). Moreover, it is transverse (XAKA =

0), symmetric (KAKB = KBKA) and traceless (KAK
A = 0), so that its action on any

polynomial of W will define a transverse symmetric traceless AdS tensor. To be precise, it

acts as a projector since

1

J !
(
d−1

2

)
J

KA1 . . .KAJW
B1 . . .WBJ = G B1

{A1
. . . G BJ

AJ} , (2.13)

where

GAB = ηAB +XAXB , (2.14)

is the induced AdS metric (and therefore a projector). Our convention for the index

symmetrization is normalized according to

G B1

{A1
. . . G BJ

AJ} =
1

J !

∑

π

G B1
Aπ1

. . . G BJ
AπJ

− traces , (2.15)

where the sum is over all permutations of the A indices and we subtract the traces using the

AdS metric GAB. In particular, notice that acting on the polynomial (2.11), the projector

KA simplifies to

KA =

(
d− 1

2
+W · ∂

∂W

)
∂

∂WA
(2.16)
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because the tensor HA1...AJ is already traceless and transverse. It is then straightforward

to show that the components of the symmetric and traceless AdS tensor in (2.11) can be

recovered from its polynomial via

HA1...AJ (X) =
1

J !
(
d−1

2

)
J

KA1 . . .KAJH(X,W ) , (2.17)

where (a)J = Γ(a+ J)/Γ(a) is the Pochhammer symbol. Thus from now on we will work

with polynomials that uniquely determine AdS symmetric traceless tensors.

Our main goal in this paper is to construct in a systematic way and in full generality

the AdS propagator for a massive spin J field. This means that we need to define an

embedding differential operator that computes the AdS covariant derivative. Acting on

symmetric traceless tensors encoded in polynomials of W , as in (2.11), the embedding

differential operator that does the job is

∇A =
∂

∂XA
+XA

(
X · ∂

∂X

)
+WA

(
X · ∂

∂W

)
. (2.18)

As necessary, this operator is interior to the submanifold X2 + 1 = W 2 = X · W =

0 and transverse (XA∇A = 0). With the help of this differential operator and of the

projector (2.12), we can compute the divergence of a tensor by

(∇ ·H)(X,W ) =
1

J
(
d−3

2 + J
) ∇ ·KH(X,W ) . (2.19)

The left hand side of this equation is the polynomial whose projection to AdS gives the

divergence Dµ1h
µ1
µ2...µJ . Instead, in the right hand side we freed first one embedding index

acting with KA, and then contracted it with the embedding differential operator ∇A.1

The Laplacian of a tensor field in AdS, ∇2H, can be simply recovered from the poly-

nomial (
∇2H

)
(X,W ) = ∇ · ∇H(X,W ) , (2.20)

which, after projection to AdS, computes DνDνhµ1...µJ .

The embedding space can also be used to compute covariant derivatives of more general

tensors (with open indices). Given an embedding tensor TA1...An obeying the transversality

condition (2.7), its covariant derivative is simply given by

∇BTA1...An(X) = G C
B G C1

A1
. . . G Cn

An

∂

∂XC
TC1...Cn(X) , (2.21)

where the projector G C
B is the AdS metric given in (2.14).

3 AdS propagators of spinning particles

Let us first recall some basic results on particles with spin 1 and 2. A massive spin 1

particle is described by the Euclidean action
∫

AdS
dd+1x

√
g

[
1

2
(DµAν)2 − 1

2
(DµAµ)2 +

1

2
M2AµAµ −Aµjµ

]
, (3.1)

1On the submanifold X2 +1 = W 2 = X ·W = 0, the order of the operators KA and ∇A is not important

because ∇ ·K = K · ∇.

– 6 –
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where Dµ is the AdS covariant derivative and jµ is a classical source. This action gives

rise to the Proca equation

D2Aµ −Dµ(DνAν)−M2Aµ = −jµ . (3.2)

Taking the divergence of this equation in the absence of source, we conclude that DνAν = 0.

Thus, in the absence of source, the Proca equation is equivalent to D2Aµ = M2Aµ and

DνAν = 0.

A massive spin 2 particle is described by the Euclidean action [18, 31, 32]
∫

AdS
dd+1x

√
g

[
1

2
(Dµhνα)2 − 1

2
(Dµh)2 +DµhµνD

νh−DµhναD
αhνµ (3.3)

+d(hµν)2 +
d

2
h2 +

1

2
(M2 + 2)(h2

µν − h2)− Tµνhµν
]
,

where Tµν is a classical source and h = gµνhµν is the trace of the field hµν . This action

can be obtained from the Einstein-Hilbert action for the metric gµν + hµν in the presence

of a negative cosmological constant equal to −d(d− 1)/2, by expanding to quadratic order

in the metric fluctuation hµν , and adding the Fierz-Pauli mass term 1
2(M2 + 2)(h2

µν − h2)

to the lagrangian. The equation of motion can be written as [18]

(D2 −M2)hµν −DµD
σhσν −DνD

σhµσ − 2gµνh (3.4)

+

(
DµDν −

M2 + 2

d− 1
gµν

)
h = −Tµν +

1

d− 1
gµνTσ

σ ,

where we recall that the AdS radius is 1 in our units. By taking the trace and the divergence

of this equation in the absence of source, we can derive

D2hµν = M2hµν , Dµhµν = 0 , hµ
µ = 0 . (3.5)

The generalization of these equations to higher spin is more involved. Starting from

spin 3 one must either introduce non-local terms or auxiliary fields [33–35]. However,

on-shell, these equations always reduce to

D2hµ1...µJ = M2hµ1...µJ , Dµhµµ2...µJ = 0 , hµ µµ3...µJ
= 0 . (3.6)

This will be enough for our purposes, since it determines all poles associated with propa-

gating degrees of freedom.

3.1 Bulk-to-bulk propagator

To construct the bulk-to-bulk propagator of a spin J field between points X1 and X2,

respectively with polarization vectors W1 and W2, we need to consider polynomials of

degree J in both W1 and W2 that can be constructed from the three possible scalar products

W1 ·W2, X1 ·W2 and X2 ·W1. The coefficient of each term can be a generic function of

the chordal distance u = −1−X1 ·X2. Thus we write with full generality

Π∆,J(X1, X2,W1,W2) =
J∑

k=0

(W12)J−k
(
(W1 ·X2)(W2 ·X1)

)k
gk(u) , (3.7)

where we introduced the notation W12 = W1 ·W2.

– 7 –
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To see how this formalism relates to the more conventional treatment, let us consider

the simple case of J = 1 and arbitrary dimension ∆. In this case we have

Π(X1, X2,W1,W2) = W12 g0(u) + (W1 ·X2)(W2 ·X1) g1(u) . (3.8)

Next we should act with the projector operator (2.12) to recover the components of the

propagator as an embedding tensor

ΠA,B(X,Y ) =
(
ηAB +XAXB + YAYB − (1 + u)XAYB

)
g0(u)

+
(
XB − (1 + u)YB

)(
YA − (1 + u)XA

)
g1(u) . (3.9)

Finally we can project to some AdS coordinate system using (2.8). The terms proportional

to XA or YB are then seen to have a vanishing projection. The result can be expressed, in

terms of the usual tensor structures constructed from derivatives of the chordal distance

between both points, as

Πµ,ν(x, y) = − ∂2u

∂xµ∂yν
g0(u) +

∂u

∂xµ
∂u

∂yν
g1(u) . (3.10)

Let us return to the problem of finding the general form of the functions gk(u) in (3.49).

Based on a similar analysis in flat space that we include in appendix A, there is an al-

ternative way other than (3.7) of writing the propagator that turns out to simplify the

computation,

Π∆,J(X1, X2,W1,W2) =

J∑

k=0

(W12)J−k
(
(W1 · ∇1)(W2 · ∇2)

)k
fk(u) . (3.11)

The equivalence of expressions (3.7) and (3.11) relates the functions gk(u) and fk(u)

through

gk(u) =

J∑

i=k

(−1)i+k
(
i!

k!

)2 1

(i− k)!
f

(i+k)
i (u) , (3.12)

where f
(k)
i (u) = ∂kufi(u) denotes the k-th derivative of fi(u).

The equations for the bulk-to-bulk propagator of a massive spin J field are given by

(
∇2

1 −∆(∆− d) + J
)

Π∆,J(X1, X2,W1,W2) = −δ(X1, X2) (W12)J + . . . , (3.13)

∇1 ·K1 Π∆,J(X1, X2,W1,W2) = . . . , (3.14)

where we wrote the mass squared in (3.6) in AdS units as M2 = ∆(∆−d)−J , such that ∆

is the dimension of the dual operator. In these equations, the dots represent local source

terms that are not important for the propagating degrees of freedom. As we shall see, they

only change the propagator by contact terms. Since we will reproduce known formulae

for lower spin fields, and also to make explicit our normalisation of the delta function

singularity in the propagator equation, it is helpful to write these two equations in terms

– 8 –
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of components of the physical tensors. A mechanical computation shows that acting with

the projector (2.12) we obtain the familiar equations

(
D2

1 −∆(∆− d) + J
)

Πµ1...µJ ,ν1...νJ (x1, x2) = −gµ1{ν1
· · · g|µJ |νJ} δ(x1, x2) + . . . , (3.15)

Dµ1
1 Πµ1...µJ ,ν1...νJ (x1, x2) = . . . , (3.16)

where D1 is the covariant derivative acting on functions of x1 and we use the same con-

vention for index symmetrization as given in (2.15).

The simplicity brought by the formalism can now be appreciated by the action of

the Laplacian on our ansatz (3.11). One obtains for the propagator equation (3.13) the

expression

(W12)Jδ(X1, X2) + · · · =
J∑

k=0

(W12)
J−k−1

[
2(J − k) (W1 · ∇1)

k+1
(W2 · ∇2)

k
(X1 ·W2) (3.17)

+W12

(
(W1 ·∇1)(W2 ·∇2)

)k(
u (2 + u)∂2

u + (d+ 1) (1 + u)∂u + k (2 + k − 2J)−∆(∆− d)
)]
fk .

Although it is not explicit, this equation is actually symmetric under exchange of points 1

and 2. In fact, the term (X1 ·W2)fk (u), arising from the first line, can be written as

−W2 · ∇2

∫ u

du′fk(u
′) , (3.18)

so the tensor structure of this term can be obtain from that of the second line in (3.17) by

setting k → k+1. Further simplification is achieved by using instead the k-th derivative of

fk, since in (3.12) there are always at least k derivatives of fk. Thus, using the shorthand

notation hk = f
(k)
k , (3.17) becomes

(
u(2 + u)∂2

u + (d+ 1)(1 + u)∂u −∆(∆− d)
)
h0 = 0 , (3.19)

(
u(2 + u)∂2

u + (d+ 1 + 2k)(1 + u)∂u + 2k(k − J + 1)−∆(∆− d)
)
hk = 2(J + 1− k)hk−1,

for k = 0 and k > 0, respectively. The former is nothing more than the equation for the

scalar propagator. Solving the latter for J up to 7 we found a recurrence relation for hk in

terms of hk−1 and hk−2. Inspired by this result we conjecture that the general solution is

defined recursively by

hk = ck

(
(d− 2k + 2J − 1)

(
(d+ J − 2)hk−1 + (1 + u)h′k−1

)
+ (2− k + J)hk−2

)
, (3.20)

where

ck = − (1 + J − k)

k(d+ 2J − k − 2)(∆ + J − k − 1)(d−∆ + J − k − 1)
, (3.21)

and

h0(u) =
Γ(∆)

2π
d
2 Γ
(
∆ + 1− d

2

) (2u)−∆
2F1

(
∆,∆ +

1− d
2

, 2∆− d+ 1,−2

u

)
. (3.22)

The normalization of h0 is fixed by the δ-function source in the propagator equation. The

equation for the divergence (3.14) was checked to hold for J up to 6. Previous results for

propagators in AdS were confirmed for J = 1 and J = 2, as we now discuss [18, 21, 22, 36].
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3.1.1 Spin 1

In the case J = 1 explicitly considered above, using (3.12) and f
(i+k)
i = h

(k)
i , it is simple to

see that the functions of the chordal distance that multiply the different tensor structures,

as described by (3.10), are given by

g0(u) = (d−∆)F1(u)− 1 + u

u
F2(u) , (3.23)

g1(u) =
(1 + u)(d−∆)

u(2 + u)
F1(u)− d+ (1 + u)2

u2(2 + u)
F2(u) , (3.24)

where

F1(u) = N (2u)−∆
2F1

(
∆,

1− d+ 2∆

2
, 1− d+ 2∆,−2

u

)
,

F2(u) = N (2u)−∆
2F1

(
∆ + 1,

1− d+ 2∆

2
, 1− d+ 2∆,−2

u

)
, (3.25)

with

N =
Γ(∆ + 1)

2πd/2(d− 1−∆)(∆− 1) Γ
(
∆ + 1− d

2

) . (3.26)

3.1.2 Spin 2

To make contact with previous results in the literature we will compare (3.7) for J = 2

with the result for massive symmetric spin 2 field in [18]. The solution of the equations of

motion for a symmetric spin two propagator can be organized in five structures (including

the trace part for now)

Gµ1µ2;ν1ν2(u) =
5∑

i=1

A(i)(u)T (i)
µ1µ2;ν1ν2

, (3.27)

where T
(i)
µ1µ2;ν1ν2 are the five independent structures

T (1)
µ1µ2;ν1ν2

= gµ1µ2gν1ν2 , (3.28)

T (2)
µ1µ2;ν1ν2

= ∂µ1u ∂µ2u ∂ν1u ∂ν2u , (3.29)

T (3)
µ1µ2;ν1ν2

= ∂µ1∂ν1u ∂µ2∂ν2u+ ∂µ1∂ν2u ∂µ2∂ν1u , (3.30)

T (4)
µ1µ2;ν1ν2

= ∂ν1u ∂ν2u g
µ1µ2 + ∂µ1u ∂µ2u g

ν1ν2 , (3.31)

T (5)
µ1µ2;ν1ν2

= ∂µ1∂ν1u ∂µ2u ∂ν2u+ ∂µ2∂ν1u ∂µ1u ∂ν2u+ (ν1 ↔ ν2) , (3.32)

and the specific form of the functions A(i)(u) is given in [18]. However, there are only

three symmetric and traceless structures that can be constructed from T
(i)
µ1µ2;ν1ν2 . These
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correspond to following structures in the embedding formalism

(W12)2 → T
(3)
µ1µ2;ν1ν2

2
− T

(1)
µ1µ2;ν1ν2

(
1 + d− u(2 + u)

)

(1 + d)2
− T

(4)
µ1µ2;ν1ν2

1 + d
, (3.33)

W12(W1 ·X2)(W2 ·X1)→ −u(1 + u)(u+ 2)T
(1)
µ1µ2;ν1ν2

(1 + d)2
+

(1 + u)T
(4)
µ1µ2;ν1ν2

1 + d
− T

(5)
µ1µ2;ν1ν2

4
,

(3.34)

(W1 ·X2)(W2 ·X1)2 → u2(2 + u)2T
(1)
µ1µ2;ν1ν2

(1 + d)2
+ T (2)

µ1µ2;ν1ν2
− u(u+ 2)T

(4)
µ1µ2;ν1ν2

1 + d
. (3.35)

Therefore, the functions in the expansion (3.27) are given by

A(2)(u) = g2(u) , A(3)(u) =
1

2
g0(u) , A(5)(u) = −1

4
g1(u) , (3.36)

A(1)(u) = −1 + d− u(2 + u)

(1 + d)2
g0(u)− u(1 + u)(u+ 2)

(1 + d)2
g1(u) +

u2(2 + u)2

(1 + d)2
g2(u) , (3.37)

A(4)(u) = − 1

1 + d
g0(u) +

(1 + u)

1 + d
g1(u)− u(u+ 2)

1 + d
g2(u) . (3.38)

Using the results of the previous section for J = 2, we recover the results of [18]. This is

the full result for the propagator up to contact terms. In section 4.4 we shall discuss in

detail the contact terms for the spin 2 case.

3.2 Bulk-to-boundary propagator

In the embedding formalism, the bulk-to-boudary propagator of a spin J and dimension

∆ field has the simple form

Π∆,J(X,P ;W,Z) = C∆,J

(
(−2P ·X)(W · Z) + 2(W · P )(Z ·X)

)J

(−2P ·X)∆+J
. (3.39)

This is the unique structure compatible with conformal symmetry, which in this formalism

is encoded by the constraint

Π∆,J(X,λP ;α1W,α2Z + βP ) = λ−∆(α1α2)JΠ∆,J(X,P ;W,Z) , (3.40)

for arbitrary constants λ, α1, α2 and β. The normalization constant C∆,J is fixed by con-

sidering the bulk-to-bulk propagator, properly normalised by its short distance behaviour,

and then sending one of the bulk points to the boundary, according to

lim
λ→∞

λ∆Π∆,J(X,λP +O(λ−1);W,Z) = Π∆,J(X,P ;W,Z) . (3.41)

Let us check that this works for the bulk-to-bulk propagator computed in the previous

section. First we observe that the recurrence relation (3.20) is simplified in the limit

u→∞. In this limit, this relation preserves the same asymptotic behaviour for all functions

hk(u). Hence, from the asymptotic behaviour of h0 (u), we conclude that hk ≈ sku−∆, and

therefore (3.20) gives rise to a recursion relation for sk,

sk = ck

(
(d− 2k + 2J − 1)(d−∆ + J − 2) sk−1 + (2− k + J) sk−2

)
. (3.42)
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This equation has the following solution

sk = s0
J !

k!(J − k)!

(−1)k

(J + ∆− k − 1)k
, (3.43)

which implies after the use of (3.12) that

gk(u) ≈ s0
J !

k!(J − k)!

J + ∆− 1

∆− 1
u−∆−k . (3.44)

It is then clear that we recover the form of the bulk-to-boudary propagator (3.39),

Π∆,J(X,P ;W,Z) = s0 2∆ (∆− 1 + J)

∆− 1

(
2(W · P )(X · Z)− 2(W · Z)(X · P )

)J

(−2X ·P )J+∆
. (3.45)

The constant s0 is fixed by the normalisation imposed by the delta function source in the

propagator equation. We can just fix it by looking at the asymptotic behaviour of the

function h0(u), which fixes the normalisation constant C∆,J introduced in (3.39) to be

C∆,J =
(J + ∆− 1) Γ(∆)

2πd/2 (∆− 1) Γ(∆ + 1− h)
. (3.46)

3.3 Short distance limit

Next we consider the short distance limit where u→ 0. Our goal is to check computations

done in [19] that can also be done by directly computing the difference between the short

distance behaviour of spin J propagators of dimension ∆ and d − ∆. First, let us note

that our solution for the spin J propagator is based on the recursion relation (3.19), where

the seed is given by the scalar propagator (3.22). It so happens that the scalar propagator

diverges at short distances. However, the coefficients of all the divergent terms are invariant

under ∆ → d − ∆. Therefore, since the recurrence relation is also invariant under this

transformation, the difference of the spin J propagators of dimension ∆ and d−∆ is finite

in the limit u→ 0. Defining h̃0 as the difference of h0 for dimension ∆ and d−∆ we can

obtain, from the explicit result (3.22),

h̃0(u) = sin
(π

2
(d− 2∆)

) ∞∑

k=0

Γ(d−∆ + k) Γ(∆ + k)

π
d+1

2 2d+kk! Γ
(

1+d
2 + k

) (−u)k . (3.47)

To make contact with the computation of [19] we only need to consider the difference of

the trace of the spin J propagators. In the embedding formalism the trace can be obtained

simply by acting on the propagator with the operator

1
(
J !(d−1

2 )J
)2 (K1 ·K2)J , (3.48)

where K is defined in (2.12) and we were careful with the numerical factor to obtain exactly

the trace. We show in appendix B that in the limit u → 0 the action of this operator on

the difference of propagators Π̃ is

(K1 ·K2)J Π̃∆,J(X1, X2,W1,W2) ≈ (K1 ·K2)J(W12)J g̃0(u = 0) . (3.49)
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To compute g̃0(u = 0) we need to use the relation (3.12) involving a sum over all the

h̃k(u = 0), which in turn can be determined using the recursion relation (3.20) and the

series expansion (3.47) of h̃0. We did this computation up to J = 12 and verified that the

result for the difference of the trace of the propagators exactly matches that of [19],

g(J)
(∆ + J − 1)(∆− J − d+ 1) Γ(∆− 1) Γ(d− 1−∆) sin

(
π
2 (d− 2∆)

)

2dπ
d+1

2 Γ
(

1+d
2

) , (3.50)

where g(J) is given by

g(J) =
(2J + d− 2)(J + d− 3)!

(d− 2)!J !
, d ≥ 3 , (3.51)

g(0) = 1 , g(J) = 2 , d = 2 . (3.52)

3.4 Massless limit

To analyse the massless limit of the spin J bulk-to-bulk propagator let us introduce the

new representation

Π∆,J = (W12)JG(u) +W1 · ∇
(

J∑

k=1

(W12)J−k (W2 ·X1)k (W1 ·X2)k−1 Lk(u)

)
. (3.53)

Comparing with expression (3.7) we conclude that

g0(u) = G(u) + L1(u) , (3.54)

gk(u) = −L′k(u) + (k + 1)Lk+1(u) , k = 1, . . . , J − 1 , (3.55)

gJ(u) = −L′J(u) . (3.56)

These relations can be inverted to give the functions Lk in terms of the functions gk,

Lk(u) = −
J∑

l=k

Γ(l + 1)

Γ(k + 1)

∫ u

. . .

∫
du′

︸ ︷︷ ︸
l−k+1

gl(u
′) . (3.57)

The function G(u) follows after a simple manipulation,

G(u) = g0(u) +

J∑

l=1

Γ(l + 1)

∫ u

. . .

∫
du′

︸ ︷︷ ︸
l

gl(u
′) ,

=
J∑

l=0

J∑

i=l

(−1)i+l
Γ2(i+ 1)

Γ(l + 1) Γ(i− l + 1)
hi(u) = h0(u) , (3.58)

where we used equation (3.12) and f
(i+k)
i (u) = h

(k)
i (u).

Expression (3.53) for the bulk-to-bulk propagator is very convenient to study the mass-

less limit. In this case, gauge invariance implies that the propagator is always coupled to

conserved currents. If the current is also traceless, then the functions Lk in (3.53) do not
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contribute to physical processes (because their contribution vanishes after integrating by

parts). In other words, the function G(u) is the only physical degree of freedom. This is the

same result found in [37] for every spin J . Notice that, one must be careful in intermediate

calculations because the gauge artifacts Lk(u) diverge in the massless limit ∆→ J + d− 2

(this is clear from the explicit form of the coefficient ak in (3.21)). In general, however,

the conserved current is not traceless. The analysis of this case is more involved and was

considered in [38]. The main result is that the structures that couple to the multiple traces

of the current also remain finite in the massless limit. To clarify this point we now review

the spin 2 case.

3.4.1 Graviton

As explained above, it is important to isolate physical components from gauge artifacts.

The massive spin 2 symmetric and traceless propagator (3.27) can be rewritten in the form,

Gµ1µ2;ν1ν2 =
∂µ1∂ν1u ∂µ2∂ν2u+ ∂µ1∂ν2u ∂µ2∂ν1u

2
G(u) + gµ1µ2gν1ν2 H(u)

+ ∂(µ1

[
∂µ2)∂ν1u ∂ν2uX(u)

]
+ ∂(ν1

[
∂ν2)∂µ1u ∂µ2uX(u)

]
(3.59)

+ ∂(µ1

[
∂µ2)u ∂ν1u ∂ν2uY (u)

]
+ ∂(ν1

[
∂ν2)u ∂µ1u ∂µ2uY (u)

]

+ ∂µ1

[
∂µ2uZ(u)

]
gν1ν2 + ∂ν1

[
∂ν2uZ(u)

]
gµ1µ2 ,

where ( , ) denotes symmetrization. Only the first line in this expression gives a finite

contribution when coupled to a conserved symmetric tensor (not necessarily traceless).

The physical components G(u) and H(u) can be written in terms of h0(u) as

G(u) = h0(u) , (3.60)

H(u) = − 1

d
(
d− 1 + ∆(∆− d)

)
(
d
(
2d− 4 + ∆(∆− d)

) ∫ ∞

u
du′
∫ ∞

u′
du′′h0(u′′)

− d(1 + u)

∫ ∞

u
du′h0(u′) +

(
d+ ∆(∆− d)

)
h0

)
. (3.61)

Both functions are regular in the massless limit and agree with [20].

4 Split representation of AdS propagators

There is an alternative representation for bulk-to-bulk propagators which is often termed

as split representation. The aim of this section is to introduce this representation for spin

J fields and explicitly compute the propagator in some examples. We start by defining a

basis of spin J harmonic functions, denoted as Ων,J . As will be shown, the propagator can

be written as a linear combination of these functions.

4.1 Spin J harmonic functions in AdS

The integral over the boundary point of the product of two bulk-to-boudary propagators,

with dimensions h+iν and h−iν, is by construction invariant under the exchange ν ↔ −ν.

Moreover, it depends just on the bulk points X1 and X2 and polarization vectors W1 and
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Figure 2. Representation of AdS harmonic function Ων,J in terms of two spin J bulk-to-boundary

propagators of dimension h± iν integrated over the boundary point.

W2. This is schematically represented in figure 2 and leads to the following definition of

the AdS harmonic function

Ων,J(X1, X2;W1,W2)=
ν2

πJ !(h− 1)J

∫

∂
dP Πh+iν,J(X1, P ;W1, DZ)Πh−iν,J(X2, P ;W2, Z) ,

(4.1)

where Z denotes a polarization vector on the boundary and h = d/2 was introduced for

convenience. The operator DZ , given by,

DA
Z =

(
h− 1 + Z · ∂

∂Z

)
∂

∂ZA
− 1

2
ZA

∂2

∂Z · ∂Z , (4.2)

is the boundary counterpart of (2.12) and implements index contraction of tensors defined

on the boundary of AdS. In appendix C, we compute the integral (4.1) and show that it

is given by a linear combination of two bulk-to-bulk propagators [21]

Ων,J(X1, X2;W1,W2) =
iν

2π

(
Πh+iν,J(X1, X2;W1,W2)−Πh−iν,J(X1, X2;W1,W2)

)
. (4.3)

Notice that Ων,J is an eigenfunction of the Laplacian operator and is divergence free,
(
∇2

1 + h2 + ν2 + J
)

Ων,J(X1, X2;W1,W2) = 0 , (4.4)

∇1 ·K1 Ων,J(X1, X2;W1,W2) = 0 . (4.5)

These properties follow from (4.3) and equations (3.13)–(3.14) for the bulk-to-bulk propa-

gator.

Besides being an eigenfunction of the Laplacian, Ων,J satisfies an orthogonality relation.

To see this, consider the integral

1

J !
(
d−1

2

)
J

∫

AdS
dY Ων,J(X1, Y ;W1,K) Ων,J(Y,X2;W,W2) = Cν, ν(X1, X2;W1,W2) ,

This object can only depend on the invariants X1 ·X2, W1 ·W2 and (W1 ·X2)(W2 ·X1).

Therefore, it is invariant under the exchange (X1,W1)↔ (X2,W2). By construction, Cν, ν
is an eigenfunction of the Laplacian. Thus, the expression

(
∇2

1 −∇2
2

)
Cν, ν(X1, X2;W1,W2) =

(
ν2 − ν2

)
Cν, ν(X1, X2;W1,W2) = 0 , (4.6)
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must vanish because it must be both antisymmetric and symmetric under the permutation

(X1,W1)↔ (X2,W2). This means Cν, ν only has support at ν = ±ν. Notice also that Cν,ν
is a harmonic function in the variables X1 and X2, so it should be proportional to Ων,J .

Thus

Cν, ν(X1, X2;W1,W2) =
1

2

[
δ(ν + ν) + δ(ν − ν)

]
Ων,J(X1, X2;W1,W2) , (4.7)

where the constant of proportionality was determined in appendix D. Integrating Cν, ν over

ν, we find

1

J !
(
d−1

2

)
J

∫

AdS
dY Ων,J(X1, Y ;W1,K)

∫
dν Ων,J(Y,X2;W,W2) = Ων,J(X1, X2;W1,W2) ,

(4.8)

which implies that
∫ ∞

−∞
dν Ων,J(X1, X2;W1,W2)=δ(X1, X2)(W12)J+(W1 · ∇1)(W2 · ∇2)Q(X1, X2;W1,W2) ,

(4.9)

since we can always add to the right hand side of (4.9) a total derivative because Ων,J has

zero divergence. The function Q can be written as

Q(X1, X2;W1,W2) = −
J∑

l=1

∫
dν cJ,l(ν)

(
(W1 · ∇1)(W2 · ∇2)

)l−1
Ων,J−l(X1, X2;W1,W2) .

(4.10)

This means that we can write the completeness relation2

J∑

l=0

∫
dν cJ,l(ν)

(
(W1 · ∇1)(W2 · ∇2)

)l
Ων,J−l(X1, X2;W1,W2) = δ(X1, X2)(W12)J , (4.11)

where cJ,0(ν) = 1. In appendix D we derive the general formula

cJ,l(ν) =
2l(J − l + 1)l

(
h+ J − l − 1

2

)
l

l!(2h+ 2J − 2l − 1)l(h+ J − l − iν)l(h+ J − l + iν)l
, (4.12)

using a recursive argument to increase J and l.

4.2 Split representation

Let us express the propagator as a linear combination of harmonic functions,

Π∆,J(X1, X2;W1,W2) =

J∑

l=0

∫
dν al(ν)

(
(W1 · ∇1)(W2 · ∇2)

)J−l
Ων,l(X1, X2;W1,W2) ,

(4.13)

2We call this a completeness relation because if we use the representation (4.1) of the harmonic functions,

equation (4.11) tells us that the functions Fν,l,P (X,W ) ≡ (W · ∇)lΠh+iν,J−l(X,W ;P,Z), with ν ∈ R,

P ∈ Rd and l = 0, 1, . . . J , form a complete basis for spin J (symmetric and traceless) tensors in AdS.
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Figure 3. The split representation of the spin J propagator obtained by integrating over ν and

summing over the spin l of two bulk-to-boundary propagators of dimension h± iν integrated over

the boundary point, according to (4.13).

as represented in figure 3. This is the split representation of the propagator. The coefficients

al(ν) of the split representation can be obtained using the equations of motion. More

specifically, using the commutation relation

[
∇2, (W · ∇)n

]
= −n(2h− 1 + 2W · ∂W − n)(W · ∇)n , (4.14)

in equation (3.13), we find

[
∆(∆− d)− J −∇2

1

]
Π∆,J(X1, X2;W1,W2) = (4.15)

J∑

l=0

∫
dν al(ν)

[
(J − l)(2h+ J + l − 2) + ν2 + (∆− h)2

](
(W1 · ∇1)(W2 · ∇2)

)J−l
Ων,l .

We shall assume that the traceless part of the contact terms has the following general form

[
∆(∆− d)− J −∇2

1

]
Π∆,J(X1, X2;W1,W2) (4.16)

=

J∑

s=0

vJ−s
(
(W1 · ∇1)(W2 · ∇2)

)J−s[
(W12)sδ(X1, X2)

]
,

where vJ−s are constants and v0 = 1 is fixed by the normalisation of the delta-function term

without derivatives. Using the representation (4.11) of the delta function, and comparing

with (4.15) we obtain

al(ν)
[
(J − l)(2h+ J + l − 2) + ν2 + (∆− h)2

]
=

J∑

s=l

vJ−s cs,s−l(ν) , (4.17)

for 0 ≤ l ≤ J . Since cJ,0 = 1, the case l = J gives immediately

aJ(ν) =
1

ν2 + (∆− h)2
. (4.18)

To determine the coefficients al(ν) for l < J we look for a solution of (4.17) with the

minimal number of poles in ν. From the explicit form of cs,s−l(ν) given in (4.12), we are
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led to the ansatz

al(ν) =
J−l∑

q=1

rl,q
ν2 + (h+ l + q − 1)2

, l < J , (4.19)

where the J and ∆ dependence of the residue is implicit. To determine these residues we

consider equation (4.17) when ν2 → −(h+ l + q − 1)2. This gives

rl,q
[
(J − l)(2h+ J + l − 2)− (h+ l + q − 1)2 + (∆− h)2

]

=

J∑

s=l

vJ−s lim
ν→i(h+l+q−1)

[
ν2 + (h+ l + q − 1)2

]
cs,s−l(ν) (4.20)

=

J∑

s=l+q

vJ−s
(−1)q+12s−l+1s!(h+ l + q − 1)

(
h+ l − 1

2

)
s−l

(q − 1)!l!(s− l)!(s− l − q)!(2h+ 2l − 1)s−l(2h+ 2l + q − 1)s−l
.

On the other hand, the limit ν2 →∞ of (4.17) gives

vJ−l =
J−l∑

q=1

rl,q . (4.21)

Using these two equations, one finds that

vk =
(−1)k J !(2h+ 2J − 2k − 2)k

2kk!(J − k)!(h+ J − k − 1)k(∆ + J − k − 1)k(2h−∆ + J − k − 1)k
, (4.22)

which in turn determines the residues rl,q through equation (4.20). As an example, we

show the first coefficients,

aJ−1(ν) = − J

y2

(
ν2 + (h+ J − 1)2

) , (4.23)

aJ−2(ν) =
J (J − 1)

4y3 (J + h− 2)
(
ν2 + (h+ J − 1)2

) − J (J − 1)

4y2 (J + h− 2)
(
ν2 + (h+ J − 2)2

) ,

(4.24)

with yk = (∆+J−k)(2h−∆+J−k). The expression for other coefficients, aJ−k(ν), cannot

be written explicitly in such a compact form. However, they are completely determined

by (4.20) and (4.22). In section 6, we shall use a very different argument to derive a

recursion relation that also fixes all coefficients al(ν).

In finding the solution for the coefficients al(ν) we made two simplifying assumptions:

the structure of the contact terms in the propagator equation (4.16) and the existence of a

minimal number of poles in ν. In the next subsections, we consider the case of spin 1 and

2 and determine the full split representation. We will find that the above assumptions are

indeed correct.
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4.3 Spin 1

The divergence of the spin 1 propagator vanishes at separate points. However, one must

take special care with possible contact terms. Notice that, in general, these give non-zero

contributions to Witten diagrams. To determine the possible contact terms we return to

the Proca equation, which gives for the propagator

(
D2

1 + 1−∆(∆− d)
)

Πµ,ν(x1, x2)−DµD
σΠσ,ν(x1, x2) = −gµνδ(x1, x2) . (4.25)

In the embedding formalism this can be written as
[
∇2

1 + 1−∆(∆− d)− 2

d− 1
(W1 · ∇1)(K1 · ∇1)

]
Π∆,1(X1, X2;W1,W2) = −W12 δ(X1, X2) .

It is straightforward to check that this equation is solved exactly by the split representation

we found in the previous section,

Π∆,1(X1, X2;W1,W2) =

∫
dν Ων,1(X1, X2;W1,W2)

ν2 + (∆− h)2
(4.26)

−
∫
dν (W1 · ∇1)(W2 · ∇2) Ων,0(X1, X2)

(∆− 1)(2h−∆− 1) (ν2 + h2)
.

In this calculation we used the basic properties (4.4) and (4.5) of the harmonic functions,

the simple commutators (D.25) given in appendix D and the completeness relation (4.11).

We conclude that, in this case, the coefficients a1(ν) and a0(ν) are entirely determined by

their poles (4.18) and (4.23) without any additional regular piece.

4.4 Spin 2

The massive spin 2 propagator is traceless and divergenceless when the two bulk points it

connects are different. To determine possible contact terms we write the full propagator

as a sum of three terms. The first term is the traceless part that we discussed so far. Since

it is traceless it can be written as a polynomial in W1 and W2,

Π∆,2(X1, X2;W1,W2) =

2∑

l=0

∫
dν al(ν)

(
(W1 · ∇1)(W2 · ∇2)

)2−l
Ων,l(X1, X2;W1,W2) ,

(4.27)

where the poles of the coefficients were computed in section 4.2,

a2(ν) =
1

ν2 + (∆− h)2
, a1(ν) = − 2

∆(2h−∆) (ν2 + (h+ 1)2)
, (4.28)

a0(ν) =
1

2h(∆− 1)(2h−∆− 1) (ν2 + (h+ 1)2)
− 1

2h∆(2h−∆) (ν2 + h2)
. (4.29)

We will show that this is the complete expression for these coefficients. In addition to the

traceless part of the propagator, we add a second term which is a pure trace,

(
ηAB +XA

1 X
B
1

) (
ηCD +XC

2 X
D
2

) ∫
dν t(ν) Ων,0(X1, X2) , (4.30)
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and a third term given by

[ (
ηAB +XA

1 X
B
1

)
∇C2 ∇D2 +∇A1∇B1

(
ηCD +XC

2 X
D
2

) ] ∫
dν q(ν) Ων,0(X1, X2) . (4.31)

We now use the full equation of motion (3.4) to write the complete equation for the

propagator
(
D2

1 + 2−∆(∆− d)
)
Gµ1µ2;ν1ν2−Dµ1

DσGσµ2;ν1ν2−Dµ2
DσGµ1σ;ν1ν2−2gµ1µ2

Gσ
σ

;ν1ν2 (4.32)

+

(
Dµ1Dµ2 −

∆(∆− d)

d− 1
gµ1µ2

)
Gσ

σ
;ν1ν2 = −1

2

(
gµ1ν1gµ2ν2 + gµ1ν2gµ2ν1 −

2gµ1µ2gν1ν2
d− 1

)
δ(x1, x2) .

We can determine the coefficients t(ν) and q(ν) by imposing this equation, including contact

terms. To see this, let us apply the left hand side to each one of the terms (4.27), (4.30)

and (4.31), that make up the full propagator. Acting on the traceless part of the propagator,

the left hand side of (4.32) gives a traceless contribution

− (W12)2δ(X1, X2) +
(2h− 1)2

(
(W1 · ∇1)(W2 · ∇2)

)2

2h(2h+ 1)∆(∆− 1)(2h−∆)(2h−∆− 1)
δ(X1, X2) , (4.33)

plus a contribution with non zero trace,

∫
dν ρ(ν)

(
ηAB +XA

1 X
B
1

) [
∇C2 ∇D2 +

ν2 + h2

2h+ 1

(
ηCD +XC

2 X
D
2

)]
Ων,0(X1, X2) , (4.34)

where

ρ(ν) =
2

(2h+ 1)∆(2h−∆)
− 2(2h− 1)(ν2 + h2)

(2h+ 1)2∆(∆− 1)(2h−∆)(2h−∆− 1)
. (4.35)

Applying the left hand side of (4.32) to (4.30), we obtain

∫
dν t(ν)

[
σ(ν)

(
ηAB +XA

1 X
B
1

)
+ (2h− 1)∇A1∇B1

] (
ηCD +XC

2 X
D
2

)
Ων,0(X1, X2) , (4.36)

where

σ(ν) =
4h(∆− 1)(2h−∆− 1)

2h− 1
− ν2 − h2 . (4.37)

Finally, the left hand side of (4.32) applied to (4.31) gives
∫
dν q(ν)

([
σ(ν)

(
ηAB +XA

1 X
B
1

)
+ (2h− 1)∇A1 ∇B1

]
∇C2 ∇D2 (4.38)

+ ∆(2h−∆)

[
∇A1 ∇B1 −

ν2 + h2

2h− 1

(
ηAB +XA

1 X
B
1

)] (
ηCD +XC

2 X
D
2

))
Ων,0(X1, X2) .

To perform these calculations the following identities were useful

∇2∇A∇BF (X) = ∇A∇B
[
∇2 − 2(2h+ 1)

]
F (X) + 2

(
ηAB +XAXB

)
∇2F (X) ,

∇A∇C∇C∇BF (X) +∇B∇C∇A∇CF (X) = ∇A∇B
(
2∇2 − 4h

)
F (X) , (4.39)

where F (X) is a scalar function in AdS and the covariant derivative was defined in (2.21).
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Putting together the contributions from the three terms and requiring that they sum

up to the right hand side of (4.32), determines

q(ν) = − 2h− 1

2h(2h+ 1)∆(∆− 1)(2h−∆)(2h−∆− 1)
,

t(ν) = q(ν)

[
ν2 + h2

2h+ 1
− ∆(2h−∆)

2h− 1

]
. (4.40)

Since both t(ν) and q(ν) are analytic in ν, we conclude that the terms (4.30) and (4.31)

are pure contact terms, as expected.

It should be possible to generalize this analysis to propagators with higher spin, using

the appropriate equations of motion [33, 34, 39–41]. However, we will not attempt here to

find a closed formula for the contact terms of a propagator of arbitrary spin.

4.4.1 Graviton propagator

In the massless limit, the bulk propagator couples to a conserved current. This means one

can drop total derivatives of the propagator. The full propagator is then given by
∫
dν a2(ν) ΩAB,CB

ν,2 (X1, X2) + (total derivative)

+
(
ηAB +XA

1 X
B
1

) (
ηCD +XC

2 X
D
2

) ∫
dν

[
t(ν) + a0(ν)

(h2 + ν2)2

(2h+ 1)2

]
Ων,0(X1, X2) . (4.41)

The graviton propagator is obtained in the massless limit ∆ → d = 2h. Recall that there

is no van Dam-Veltman-Zhakarov discontinuity in AdS [42, 43]. In this limit, both t(ν)

and a0(ν) diverge but the combination that appears in (4.41) remains finite. This gives

the split representation of the graviton propagator

ΠAB,CD
d,2 (X1, X2) =

∫
dν

ν2 + h2
ΩAB,CD
ν,2 (X1, X2) + (total derivative) (4.42)

−
(
ηAB +XA

1 X
B
1

) (
ηCD +XC

2 X
D
2

)

2h(2h− 1)

∫
dν

(h+ 1)2 + ν2
Ων,0(X1, X2) .

Notice that the total derivative (or pure gauge term) diverges in the massless limit.

5 Three-point function

A simple application of the above formalism is to consider a three-point Witten diagram

with two insertions of scalar fields φ1, φ2 and one of a spin J field at the boundary, as

represented in figure 4. This diagram, computed at tree level, will allow us to related the

OPE coefficient of the dual operators in the field theory to the local coupling of AdS fields.

The simplest AdS local cubic vertex of a spin J field to two scalars φ1 and φ2 is of the form

gφ1φ2h

∫

AdS
dx
√
g
(
φ2∇µ1 · · · ∇µJφ1

)
hµ1···µJ , (5.1)

where gφ1φ2h is a bulk coupling constant. Notice that the derivatives can act on either of

the scalar fields because we consider a spin J field of vanishing divergence. Moreover, a
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P1

P2

P3

X
�1

�2
�, J

Figure 4. Witten diagram that computes a CFT three-point function of a spin J primary operator

of dimension ∆ and two scalar primary operators of dimension ∆1 and ∆2.

vertex with more derivatives can be reduced to this form by integrating by parts and using

the (linear) equations of motion of the fields.

To compute the cubic Witten diagram in figure 4 from the above vertex, we consider

insertions of the scalar field φ1 at the boundary point P1, of φ2 at P2 and of the spin J

field at P3. The corresponding bulk-to-boudary propagator for a field of dimension ∆ and

spin J is given in (3.39). Thus, this Witten diagram is given by the integral over the AdS

interaction point of the bulk-to-boudary propagators, and generates the CFT three-point

function3

〈Oφ1(P1)Oφ2(P2)Oh(P3, Z)〉

=
gφ1φ2h√
C∆1C∆2C∆,J

∫

AdS
dX Π∆2,0(X,P2)

Π∆,J(X,P3;K,Z) (W · ∇)J Π∆1,0(X,P1)

J !
(
d−1

2

)
J

(5.2)

=
gφ1φ2h√
C∆1C∆2C∆,J

b(∆1,∆2,∆, J)

(
(Z · P1)P23 − (Z · P2)P13

)J

P
∆1+∆2−∆+J

2
12 P

∆1+∆−∆2+J
2

13 P
∆+∆2−∆1+J

2
23

,

where K is the projector defined in (2.12) and we used the notation Pij = −2Pi · Pj and

C∆ = C∆,0 for short. In the last equality, we used the fact that this three-point function is

determined by conformal symmetry up to an overall constant. To determine the constant

b(∆1,∆2,∆, J) we have to perform the integral over AdS. In the case J = 0, the AdS

integral in (5.2) is well known [44, 45] and gives

b(∆1,∆2,∆, 0)=C∆1C∆2C∆

π
d
2 Γ
(

∆1+∆2+∆−d
2

)
Γ
(

∆1+∆2−∆
2

)
Γ
(

∆1+∆−∆2
2

)
Γ
(

∆+∆2−∆1
2

)

2 Γ(∆1) Γ(∆2) Γ(∆)
.

(5.3)

To compute the integral for general spin J , we use the differential operator

D31 = Z · P1

(
Z · ∂

∂Z
− P3 ·

∂

∂P3

)
+ P3 · P1

(
Z · ∂

∂P3

)
, (5.4)

3 The factor 1/
√
C∆1C∆2C∆,J corresponds to the normalization choice of CFT operators that have unit

two-point function,

〈O(P1, Z1)O(P2, Z2)〉 =

(
(−2P1 · P2)(Z2 · Z1) + 2(Z2 · P1)(Z1 · P2)

)J
(−2P1 · P2)∆+J

.
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introduced in [13]. Noting that

1

J !
(
d−1

2

)
J

Π∆,J(X,P3;K,Z) (W · ∇)J Π∆1,0(X,P1)

= 2JC∆1C∆,J
(∆1)J
(∆)J

(D31)J
1

(−2P3 ·X)∆(−2P1 ·X)∆1+J
, (5.5)

the computation of the above AdS integral reduces to that of the scalar case by commuting

the differential operator (D31)J with the integral symbol. Finally, using

(
(Z · P1)P23 − (Z · P2)P13

)J

P
∆1+∆2−∆+J

2
12 P

∆1+∆−∆2+J
2

13 P
∆+∆2−∆1+J

2
23

=
1(

∆+∆2−∆1−J
2

)
J

(D31)J
1

P
∆1+∆2−∆+J

2
12 P

∆1+∆−∆2−J
2

13 P
∆+∆2−∆1+J

2
23

, (5.6)

we arrive at the result

b(∆1,∆2,∆, J) = 2J
(

∆ + ∆2 −∆1 − J
2

)

J

C∆,J

C∆,0

C∆1

C∆1+J

(∆1)J
(∆)J

b(∆1 + J,∆2,∆, 0) (5.7)

= C∆1C∆2C∆,J

π
d
2 Γ
(

∆1+∆2+∆−d+J
2

)
Γ
(

∆1+∆2−∆+J
2

)
Γ
(

∆+∆1−∆2+J
2

)
Γ
(

∆+∆2−∆1+J
2

)

21−J Γ(∆1) Γ(∆2) Γ(∆ + J)
.

The result (5.2) establishes the relation between the local AdS coupling gφ1φ2h and the

CFT OPE coefficient Cφ1φ2h,

Cφ1φ2h =
b(∆1,∆2,∆, J)√
C∆1C∆2C∆,J

gφ1φ2h . (5.8)

As a check of this result, let us consider the case of the stress-energy tensor with ∆ = d

and J = 2. In this case, the OPE coefficient is determined by a Ward identity [46, 47]

CφφTµν =
d∆φ

(d− 1)
√
CT

, (5.9)

where CT is the coefficient of the two point function of the (standard) stress tensor (notice

that here we are redefining the stress tensor such that it has unit two point function). This

is given by [48, 49]

CT =
1

2πGN

d+ 1

d− 1

π
d
2 Γ(d+ 1)

Γ3
(
d
2

) , (5.10)

where GN is the gravitational coupling of the (d+ 1)-dimensional (Euclidean) dual theory

SE =
1

16πGN

∫
dd+1x

√
g

[
−d(d− 1)−R+

1

2
(∇φ)2 +

1

2
M2
φφ

2

]
, (5.11)

and we are setting the AdS radius to one. Expanding this action around the AdS back-

ground, gµν = gAdS
µν +

√
32πGNhµν , and rescaling the scalar field φ→ √16πGNφ, we obtain

canonically normalized kinetic terms 1
2(∇φ)2 for the scalar and (3.3) with M2 = −2 for
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hµν . This means that the cubic coupling is given by gφφhµν =
√

8πGN . Substituting this

value in equation (5.8) and multiplying by 2 because φ1 = φ2,4 we indeed confirm the Ward

identity (5.9) for generic dimension d.

Let us now specify to the case of planar N = 4 SYM at large ’t Hooft coupling λ and

use its dual description as type IIB superstring theory on AdS5 × S5. The string theory

action takes the schematic form

S =
1

2κ2
10

∫
d10x
√
g
[
L2 + `2sL4 + . . .

]
, (5.12)

where Lk is the part of the Lagrangian density with k spacetime derivatives, κ10 is the grav-

itational coupling and `s is the string length. Expanding around the AdS5×S5 background

and reducing to AdS5, the effective action becomes

S =
1

2κ2

∫
d5x
√
g
[
`−2
s L̃0 + L̃2 + `2sL̃4 + . . .

]
, (5.13)

where L̃k contains k or less spacetime derivatives (notice that some derivatives in the ten-

dimensional action can act on background fields and produce factors of 1/R which is 1

in our units). The gravitational coupling κ satisfies κ2 = 8πG
(5)
N and can be removed by

rescaling the fields so that they have canonically normalized kinetic terms in the action.

This gives the following scaling for the cubic coupling of the type (5.1),

gφ1φ2h ∼ κ
[
`J−2
s +O

(
`Js
)]
. (5.14)

Converting to gauge theory parameters, the planar OPE coefficient for operators with unit

two point function will then be given by

Cφ1φ2h ∼
1

N

(
1

λ

)J−2
4 b(∆1,∆2,∆, J)√

C∆1C∆2C∆,J

[
1 +O

(
1√
λ

)]
. (5.15)

Note that the explicit dependence on the ’t Hooft coupling comes from the tree level string

theory coupling of the dual fields. There is additionally an implicit dependence on the ’t

Hooft coupling through the dimension of the operators that are not protected, in general.

For example, in the case of two protected operators (fixed ∆1 and ∆2) and a non-protected

operator with ∆(λ) ∼ λ1/4 and fixed J we find

Cφ1φ2h ∼
1

N

λ
∆1+∆2−1

4 2−∆(λ)

sin
(
π
2

(
∆1 + ∆2 + J −∆(λ)

)) . (5.16)

The presence of poles (as a function of λ) in the 3pt-functions as been previously observed

in [50] using Witten diagrams and in [51] using a large spin expansion that is valid to all

orders in planar perturbation theory.

4Notice that there is an extra Wick contraction in this case.
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6 Four-point function

As a further application if the embedding formalism we consider four-point functions of

scalar primary operators computed from Witten diagrams with a spin J field exchange. In

general, a four-point function of scalar primary operators in a conformal field theory can

be decomposed in partial waves as follows [52]

〈Oφ1 . . .Oφ4〉 =
1

(P12)
∆1+∆2

2 (P34)
∆3+∆4

2

(
P24

P14

)∆12
2
(
P14

P13

)∆34
2
∞∑

l=0

∫ ∞

−∞
dν bl(ν)Fν,l(u, v) ,

(6.1)

where the conformal partial wave Fν,l(u, v) is a function of the cross ratios

u =
P12P34

P13P24
, v =

P14P23

P13P24
. (6.2)

This function can be defined as the integral of the product of two three-point functions

(P12)−
∆1+∆2

2 (P34)−
∆3+∆4

2

(
P24

P14

)∆12
2
(
P14

P13

)∆34
2

Fν,l(u, v) (6.3)

=
1

β

∫
dP5 〈Oφ1(P1)Oφ2(P2)Oh+iν,l(P5, DZ)〉〈Oh−iν,l(P5, Z)Oφ3(P3)Oφ4(P4)〉 ,

where β is a normalization constant given in equation (E.7) of appendix E and DZ is the

differential operator that implements index contraction defined in (4.2). In this expression,

the three-point functions are given by

〈Oφ1(P1)Oφ2(P2)Oh+iν,l(P5, Z)〉 =

(
(Z · P1)P25 − (Z · P2)P15

)l

P
∆1+h+iν−∆2+l

2
15 P

∆2+h+iν−∆1+l
2

25 P
∆1+∆2+h−iν+l

2
12

. (6.4)

We remark that the conformal partial wave Fν,l(u, v) can also be written as a conformal

block of dimension h+ iν and spin l plus the conformal block of its shadow operator, which

has dimension h− iν and the same spin.5

As an application of the technology developed in the previous sections, we will compute

the conformal partial wave decomposition of the four-point function associated to the

Witten diagram of figure 5. In this diagram, the external operators are scalar fields φi,

with dimension ∆i, which exchange a field of dimension ∆ and spin J . The spin J field

couples to the external scalars through the cubic coupling (5.1). Next we use the split

representation of the spin J bulk-to-bulk propagator given by (4.1) and (4.13),

gφ1φ2hgφ3φ4h[
J !
(
d−1

2

)
J

]2
∫
dX1dX2 Π∆1(P1, X1)

[
(K1 · ∇1)JΠ∆2(P2, X1)

]
Π∆3(P3, X2) (6.6)

[
(K2 · ∇2)JΠ∆4(P4, X2)

] J∑

l=0

∫
dν al(ν)(W1 · ∇1)J−l(W2 · ∇2)J−lΩν,l(X1, X2;W1,W2) ,

5The conformal partial wave Fν,J(u, v) can be expressed in terms of conformal blocks G∆,J(u, v) as

Fν,J(u, v) = κν,JGh+iν,J(u, v) + κ−ν,JGh−iν,J(u, v) , (6.5)

where κν,J is a normalization constant defined in [53].
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P4
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�, J

Figure 5. Witten diagram describing a spin J exchange between scalar primaries of arbitrary

dimension. Using the split representation of the bulk-to-bulk propagator this diagram can be

converted into the product of two three-point functions integrated over the common boundary

point P5.

where gφ1φ2h and gφ3φ4h are the cubic couplings between the external scalars and the spin

J field. The corresponding diagram is also represented in figure 5. The integration over

the bulk points X1 and X2 produces a product of two three-point functions integrated over

the point P5 exactly as in the definition of the conformal partial wave Fν,J . Therefore, we

conclude that the coefficients bl(ν) of the partial wave expansion (6.1) are proportional to

the functions al(ν) of the split representation (4.27) of the propagator. More precisely, we

can write

bl(ν) = gφ1φ2hgφ1φ2h αl(ν) al(ν) , (6.7)

where αl(ν) is independent of ∆ and it is given in equation (E.8) of appendix E.

The structure of the coefficients bl(ν) was studied in detail in appendix A.5 of [53]. In

particular, the residues of the spurious poles of bl(ν) are related through

bl(ν) ≈− Zl+q,q bl+q
(
i(h− 1 + l)

)

ν2 + (h+ l + q − 1)2
, q = 1, 2, . . . , (6.8)

where

ZJ,q =
J !

(J − q)!q!
2(−2)q

(
∆1+∆2+1−2h−q

2

)
q

(
∆3+∆4+1−2h−q

2

)
q

(
∆12+1−q

2

)
q

(
∆34+1−q

2

)
q

Γ(q)(h+ J − q)q−1
.

(6.9)

In equation (6.8) we used the symbol ≈ to mean that the two sides of the expression have

the same residue at the pole in ν2 shown explicitly. Given (6.7) and (6.8) it is possible to

derive a similar constraint on the coefficients al(ν),

al(ν) ≈ −Zl+q,q αl+q
(
i(h+ l − 1)

)

αl
(
i(h+ q + l − 1)

) al+q
(
i(h− 1 + l)

)

ν2 + (h+ l + q − 1)2

=
(l + q)!

l!q!

(−1)q+1

2q−1(q − 1)! (h+ l)q−1

al+q
(
i(h− 1 + l)

)

ν2 + (h+ l + q − 1)2 , (6.10)
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where the last expression was guessed by generalizing the results of explicit calculations for

l = 0, . . . , 20 and q = 0, . . . , 20. It is remarkable that all the dependence of the functions

ZJ,q, αl and αl+q on the external dimensions ∆i cancelled. This had to happen because

al(ν) are the expansion coefficients of the bulk propagator in the split representation. This

is a very non-trivial consistency check of our results.

In fact, using (6.10) we can obtain the full split representation of a dimension ∆ and

spin J bulk-to-bulk propagator. The starting point is al(ν) = 0 for l > J and

aJ(ν) =
1

ν2 + (∆− h)2
, (6.11)

as derived in section 4. Then, for l < J we take the minimal choice that is compatible

with (6.10),

al(ν) =

J−l∑

q=1

(l + q)!

l!q!

(−1)q+1

2q−1(q − 1)! (h+ l)q−1

al+q
(
i(h− 1 + l)

)

ν2 + (h+ l + q − 1)2 . (6.12)

One can easily check that this reproduces the results (4.23) and (4.24) for l = J − 1 and

l = J−2. Moreover, one can check that this is consistent with the explicit expression (4.19)

for the coefficients al(ν) found in section 4.2.

6.1 Example: AdS graviton exchange

One application of the split representation derived above is the computation of the AdS

graviton exchange diagram. More precisely, we compute the contribution to the four-point

function of scalar primary operators, from the diagram in figure 5(a), where the exchanged

bulk field is the graviton. This reads6

〈Oφ1(P1)Oφ1(P2)Oφ3(P3)φ3(P4)〉 (6.13)

=
8πGN
C∆1C∆3

∫

AdS
dX1dX2 T

(12)
AB (X1) ΠAB,CD

d,2 (X1, X2)T
(34)
CD (X2) ,

where

T
(12)
AB (X) = ∇AΠ∆1(X,P1)∇BΠ∆1(X,P2) +∇BΠ∆1(X,P1)∇AΠ∆1(X,P2) (6.14)

− (ηAB +XAXB)
[
∇CΠ∆1(X,P1)∇CΠ∆1(X,P2) + ∆1(∆1 − d)Π∆1(X,P1)Π∆1(X,P2)

]
,

and similarly for T
(34)
CD (X). This Witten diagram was first computed in [54] for some specific

values of ∆1, ∆3 and d. Here, we will use the split representation (4.42) of the graviton

propagator to obtain directly the conformal partial wave expansion of the Witten diagram

for all values of ∆1, ∆3 and spacetime dimension d = 2h. This calculation is very similar

to the one discussed above for (6.6). Since the the sources T
(12)
AB (X1) and T

(34)
CD (X2) are

conserved we can drop the total derivative terms in (4.42), as expected. To determine the

contribution from the remaining two terms, we use the representation (4.1) of the harmonic

6We include the denominator C∆1C∆3 in order to obtain the four-point function of operators normalized

to have unit two-point function (see footnote 3).
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functions Ων,2 and Ων,0. After integrating over the bulk points X1 and X2, we are left with

the integral over the boundary point P in (4.1), of the product of two three-point functions

like in the definition (6.3) of the conformal partial waves. Then the partial amplitudes, as

defined in (6.1), are given by

b2(ν) =
8πGN

2πhΓ(∆1)Γ(∆3)Γ(∆1 + 1− h)Γ(∆3 + 1− h)

1

ν2 + h2
, (6.15)

b0(ν) = −8πGN

[
4∆1(2h−∆1) + (2h− 1)(h2 + ν2)

][
4∆3(2h−∆3) + (2h− 1)(h2 + ν2)

]

64πhh(2h− 1)Γ(∆1 + 1− h)Γ(∆3 + 1− h)Γ(∆1)Γ(∆3)
[
ν2 + (h+ 1)2

] ,

which determine the conformal partial wave expansion of the graviton exchange diagram.

Notice that this result is consistent with the relation (6.8) for the spurious poles of the

partial amplitudes. Moreover, the pole of b2(ν) is fixed by the conformal Ward identity. To

see that, we first use the relation between the residues of the conformal partial amplitudes

bl(ν) and OPE coefficients [52, 53, 55]. In the particular case of the stress-energy tensor

this gives

lim
ν→ih

(
ν2 + h2

)
b2(ν) =

h(2h− 1)Γ(2h+ 2)Cφ1φ1TµνCφ3φ3Tµν

2Γ3(h+ 1)Γ(∆1 − h+ 1)Γ(∆3 − h+ 1)Γ(∆1 + 1)Γ(∆3 + 1)
.

(6.16)

Secondly, the OPE coefficients are determined by the Ward identity as in (5.9). This

reproduces the relation (5.10) between the bulk gravitational coupling GN and the CFT

central charge CT .

6.1.1 Mellin amplitude

Recalling that given a conformal four-point function, its Mellin amplitude M(s, t) is de-

fined by

〈Oφ1(P1)Oφ1(P2)Oφ3(P3)Oφ3(P4)〉 =
1

(P12)∆1(P34)∆3
(6.17)

×
∫

dsdt

(4πi)2
M(s, t)u

t
2 v−

s+t
2 Γ

(
∆1 −

t

2

)
Γ

(
∆3 −

t

2

)
Γ2

(−s
2

)
Γ2

(
s+ t

2

)
,

where the integration contours run parallel to the imaginary axis and the cross-ratios u

and v were defined in (6.2). As explained in [53, 55], the Mellin amplitude also admits a

conformal partial wave expansion,

M(s, t) =

∞∑

l=0

∫
dν bl(ν)Mν,l(s, t) , (6.18)

where the partial waves Mν,l(s, t) involve Mack polynomials and are given in [53] in our

conventions.

In the case of the graviton exchange diagram, we find the Mellin amplitude can be

expressed as the following integral
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M(s, t) =

∫
dν

[
Pν,2(s, t) b2(ν) +

(t+ 2− h)2 + ν2

[
(h− 2∆1)2 + ν2

][
(h− 2∆3)2 + ν2

] 4b0(ν)

]
(6.19)

× Γ
(

2∆1+2−h−iν
2

)
Γ
(

2∆1+2−h+iν
2

)
Γ
(

2∆3+2−h−iν
2

)
Γ
(

2∆3+2−h+iν
2

)
Γ
(
h−t−iν−2

2

)
Γ
(
h−t+iν−2

2

)

8πΓ
(

2∆1−t
2

)
Γ
(

2∆3−t
2

)
Γ(iν)Γ(−iν)

,

where the spin 2 Mack polynomial reads

Pν,2(s, t) =
(2h− t− 3)(2h− t− 1)

8h
[
(h− 1)2 + ν2

] (6.20)

− h2 − 8hs2 − 8hst− 2ht2 − 4ht− 2h+ ν2 + t2 + 4t+ 3

8h
.

The integral over ν can be done explicitly using the following identities,

∫
dν

∏
σ=±1

∏3
k=1 Γ

(
ak+σiν

2

)

8πΓ(iν)Γ(−iν)
= Γ

(
a1 + a2

2

)
Γ

(
a1 + a3

2

)
Γ

(
a2 + a3

2

)
, (6.21)

and

1

Γ
(
a−t

2

)
Γ
(
b−t
2

)
∫ ∞

−∞

dν

4π

l(ν)l(−ν)(
ν2 + (∆− h)2

) =

∞∑

m=0

Rm
t−∆− 2m

, (6.22)

where

l(ν) =
Γ
(
h+iν−t

2

)
Γ
(
a+iν−h

2

)
Γ
(
b+iν−h

2

)

Γ(iν)
,

Rm = Γ

(
a+ ∆− 2h

2

)
Γ

(
b+ ∆− 2h

2

) (
1 + ∆−a

2

)
m

(
1 + ∆−b

2

)
m

m!Γ
(
∆− h+ 1 +m

) . (6.23)

The final result for generic conformal weights ∆i of the external scalars and spacetime

dimension is

M(s, t) = Cφ1φ1TµνCφ3φ3Tµν

∞∑

m=0

Q2,m(s)

t− 2h+ 2− 2m
(6.24)

+
8πGNΓ(∆1 + ∆3 − h)

(
hs−∆1∆3 − s(∆1 + ∆3)

)

4πhΓ(∆1)Γ(∆3)Γ(∆1 + 1− h)Γ(∆3 + 1− h)
,

where

Q2,m(s) =
(1− 2h)hΓ(2h+ 2)Pih,2(s, 2h− 2 + 2m)

4m!Γ4(h+ 1)(h+ 1)mΓ(∆1 + 1− h−m)Γ(∆3 + 1− h−m)
, (6.25)

is the spin 2 Mack polynomial as defined in [53] and the product of OPE coefficients is

given by

Cφ1φ1TµνCφ3φ3Tµν = 8πGN
∆1∆3Γ3(h+ 1)

πhh(2h− 1)Γ(2h+ 2)
. (6.26)

Notice that this value for the OPE coefficient is consistent with (6.15) and (6.16). The final

result (6.24) for the Mellin amplitude consists of two pieces. The first piece is a sum of poles
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with residues entirely determined by the product of OPE coefficients Cφ1φ1TµνCφ3φ3Tµν .

This piece follows from the structure of the Mellin amplitudes and was known before (see

appendix A.3 of [53]). The second term in (6.24) was not known before and required a

careful treatment of the contact terms in the graviton propagator.

In the large s ∼ t limit, the Mellin amplitude simplifies to

M(s, t) ≈ − 8πGNΓ(∆1 + ∆3 − h+ 1)

4πhΓ(∆1)Γ(∆3)Γ(∆1 + 1− h)Γ(∆3 + 1− h)

s2 + st

t
. (6.27)

Using the flat space limit of AdS [15], this corresponds to the following bulk scattering

amplitude between massless scalars7

T (S, T ) ≈ −8πGN
S2 + ST

T
, (6.28)

where S and T are the usual flat space Mandelstam invariants. This is the correct result

for the graviton exchange amplitude between minimally coupled massless scalars [56, 57].

Another check of the result (6.24) is the property M(s, t) = M(−s − t, t), that follows

from the invariance of the Witten diagram under the exchange of points 1↔ 2 (or 3↔ 4).

Finally, as an example, we present the result when ∆1 = ∆3 = 2h = 4,

M(s, t) = −2GN
3π

(
(s+ 4)(s+ 2)

(t− 6)
+

8 (s+ 2)2

(t− 4)
+

6s(s+ 2) + 8

(t− 2)
+ 5(3s+ 8)

)
, (6.29)

which matches the result obtained in [15] (after the appropriate change of conventions).

The four-point function associated to an AdS graviton exchange between scalar primary

operators can be expanded in conformal blocks in the crossed channel. More precisely, we

can write

〈Oφ1(P1)Oφ1(P2)Oφ3(P3)Oφ3(P4)〉 =

∞∑

n,l=0

p(n, l)G
(13)(24)
∆(n,l),l (P1, . . . , P4) , (6.30)

where G
(13)(24)
∆(n,l),l is the conformal block describing the exchange of an operator with spin l

and dimension

∆(n, l) = ∆1 + ∆3 + 2n+ l + γ(n, l) , (6.31)

in the (13)(24) channel. The anomalous dimensions γ(n, l) are small if the interactions in

the dual AdS space are weak. In fact, we can think of γ(n, l) as the gravitational binding

energy of a two particle state with angular momentum l [58]. The quantum number n

increases the ellipticity of the corresponding classical orbits and we will set it to zero

for simplicity. Using the techniques described in [53], one can compute the anomalous

dimensions in terms of the Mellin amplitude. To first order in the gravitational coupling

we obtain

γ(0, l) =−
∫ i∞

−i∞

dt

2πi
M(0, t) Γ2

(
t

2

)
Γ

(
∆1 −

t

2

)
Γ

(
∆3 −

t

2

)

× 3F2

(
−l, l + ∆1 + ∆3 − 1,

t

2
; ∆1,∆3; 1

)
, (6.32)

7See equation (132) of [53] for the flat space limit formula in the present conventions.
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where the Mellin amplitude was given in (6.24). Using the large l asymptotic behaviour,

3F2

(
−l, l + ∆1 + ∆3 − 1,

t

2
; ∆1,∆3; 1

)
≈ Γ(∆1)Γ(∆3)

Γ
(
∆1 − t

2

)
Γ
(
∆3 − t

2

) 1

lt
, (6.33)

we conclude that the large spin behaviour of the anomalous dimension γ(0, l) is controlled

the leading t-pole of the Mellin amplitude (6.24). This gives

γ(0, l) ≈ −Cφ1φ1TµνCφ3φ3Tµν

Γ(2h+ 2)Γ(∆1)Γ(∆3)

2Γ2(h+ 1)Γ(∆1 − h+ 1)Γ(∆3 − h+ 1)

1

l2h−2
, (6.34)

which agrees with the results of [59–61] (in particular see formula (B.33) of [60]), if we

assume that the stress-energy tensor is the operator with minimal twist.

7 Concluding remarks

In this work we developed the embedding formalism to deal with tensor fields in Anti-de

Sitter spacetime. In particular, we encoded symmetric traceless tensors into polynomials of

an auxiliary null vector and found differential operators that implement the laplacian and

divergence in this language. With this technology, we were able to obtain the bulk-to-bulk

propagator of massive spinning particles in AdS. We also found a split representation for

these propagators. This is a very useful integral representation because it is based on the

product of bulk-to-boundary propagators. For example, it leads directly to the conformal

partial wave expansion of four-point Witten diagrams. Up to spin 2, we gave complete

split representations of the bulk-to-bulk propagator, including contact terms. By a careful

study of the massless limit, we obtained the split representation of the graviton propagator

which was the subject of some controversy in the literature [23, 24]. For spin greater than

2, we only gave the split representation up to contact terms, i.e. for non-coincident points.

It should also be possible to obtain the complete split representation, for instance studying

the non-local equations of motion proposed in [34].

We illustrated the use of the embedding formalism and the split representation of

the propagators, by computing three and four-point functions involving tensor fields. In

particular, we obtained a closed formula for the conformal partial wave expansion and the

Mellin amplitude associated to graviton exchange between to scalars of arbitrary conformal

weight in general spacetime dimension.

There are several natural extensions of our work. An obvious one is to study anti-

symmetric and mixed symmetry tensors. More interesting, would be the generalization to

spinorial fields. Another simple extension is the study of higher spin fields in de Sitter

space. We leave these ideas for the future, hoping to have convinced the reader that em-

bedding methods can be very powerful in the treatment of higher spin fields in AdS, for

example in the computation of Witten diagrams.
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A Harmonic functions in flat space

In this appendix we collect some basic facts about harmonic functions in flat space, hope-

fully this will make the transition to AdS more transparent. The equation for the propa-

gator of a spin J field in flat space is simpler than the AdS one (3.13),

(
∂2 −m2

)
ΠA1...AJB1...BJ
m

(
X −X

)
= −PA1...AJ B1...BJ

m2 δ
(
X −X

)
, (A.1)

where Pm2 is a projector. For example,

PABm2 = ηAB − ∂A∂B

m2
. (A.2)

More generally, the projector is

PA1...AJB1...BJ
m2 =

1

J !

∑

permBi

J∏

i=1

PAiBi
m2 − (Ai and Bi traces) . (A.3)

The projector commutes with the Laplacian, therefore

ΠA1...AJB1...BJ
m

(
X −X

)
= PA1...AJB1...BJ

m2 Πm

(
X −X

)
. (A.4)

The analogue of AdS harmonic function (4.3) in flat space is

ΩA1...AJB1...BJ
ν

(
X −X

)
=
iν

2π

[
ΠA1...AJB1...BJ
iν

(
X −X

)
−ΠA1...AJB1...BJ

−iν
(
X −X

)]

= PA1...AJB1...BJ
−ν2 Ων

(
X −X

)
. (A.5)

The harmonic function can be written using an integral representation

Ων(X) = ν

∫
dK eiK·Xδ

(
K2 − ν2

)
, (A.6)

that can be explicitly checked from

Π±iν(X) =

∫
dK

eiK·X

K2 + (±iν + ε)2
=

∫
dK

eiK·X

K2 − ν2 ± iε . (A.7)

The generalization of harmonic functions Ων to spin J is now straightforward,

ΩA1...AJB1...BJ
ν (X) = ν

∫
dK eiK·Xδ

(
K2 − ν2

) 1

J !

∑

πBi

J∏

i=1

(
ηAiBi − KAiKBi

ν2

)
− traces ,

(A.8)
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where the sum is over the permutations of all Bi indices. For example, for spin 2 we have

ΩA1A2B1B2
ν (X) =

ν

2

∫
dK eiK·Xδ

(
K2 − ν2

)
(A.9)

[(
ηA1B1 − KA1KB1

ν2

)(
ηA2B2 − KA2KB2

ν2

)

+

(
ηA1B2 − KA1KB2

ν2

)(
ηA2B1 − KA2KB1

ν2

)

−2

d

(
ηA1A2 − KA1KA2

ν2

)(
ηB1B2 − KB1KB2

ν2

)]
,

with d+ 1 being the spacetime dimension.

These harmonic functions satisfy orthogonality and completeness relations similar

to (4.7) and (4.11). For scalars, we have

∫
dν Ων

(
X −X

)
= δ
(
X −X

)
, (A.10)

and
∫
dY Ων(X − Y ) Ων

(
Y −X

)
=
δ(ν + ν) + δ(ν + ν)

2
Ων

(
X −X

)
. (A.11)

The generalization of (A.11) to non-zero spin is simply

∫
dY ΩA1...AJB1...BJ

ν (X − Y ) ΩB1...BJC1...CJ
ν

(
Y −X

)

=
δ(ν + ν) + δ(ν + ν)

2
ΩA1...AJ C1...CJ
ν

(
X −X

)
. (A.12)

On the other hand, the generalization of (A.10) to generic spin is more subtle. For spin 1

and 2 one has
∫
dν

[
ΩAB
ν

(
X −X

)
+

1

ν2
∂A∂

B
Ων

(
X −X

)]
= ηABδ

(
X −X

)
, (A.13)

and
∫
dν

[
ΩA1A2B1B2
ν

(
X −X

)
+

1

2ν2
∂A1∂

B1
ΩA2B2
ν

(
X −X

)
+

1

2ν2
∂A2∂

B2
ΩA1B1
ν

(
X −X

)

+
1

2ν2
∂A1∂

B2
ΩA2B1
ν

(
X −X

)
+

1

2ν2
∂A2∂

B1
ΩA1B2
ν

(
X −X

)

+
d+ 1

d ν4
∂A1∂A2∂

B1
∂
B2

Ων

(
X −X

)
+

1

d
ηA1A2ηB1B2Ων

(
X −X

)]

=
1

2

(
ηA1B1ηA2B2 + ηA1B2ηA2B1

)
δ
(
X −X

)
, (A.14)

respectively. This should be compared with the completeness formula (4.11) for harmonic

functions in AdS. In fact, the limit ν � 1 of (4.11) matches exactly the flat space formulas

above.
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B Embedding space operations

The embedding formalism gives a compact form to write all tensor structures of the spin

J propagators in AdS and it allows simpler tensor manipulations. The main aim of this

section is to compute the trace over all structures present in the propagator,

(K1 ·K2)J(W12)J−l
(
(W1 ·X2)(W2 ·X1)

)l
. (B.1)

To make the derivation more pedagogical, we will present two intermediate tensor opera-

tions that are necessary to compute the trace (B.1).

First operation — symmetric traceless contraction. The first operation is the

action of the differential operator K1 on the W1 variables.8 For that we will use the

identity,

(K · P )J(W ·Q)J

J !
(
h− 1

2

)
J

= B{A1 . . . BAJ}G{A1
. . . GAJ} =

J !
(
B2G2

)J
2

2J
(
h− 1

2

)
J

C
h− 1

2
J (t) , (B.2)

where C
h− 1

2
J (t) is the Gegenbauer polynomial and

BA = PA + (X · P )XA , GA = QA + (Q ·X)XA , t =
P ·Q+ (P ·X)(Q ·X)

(P ·X)
(
(Q ·X)2 +Q2

) 1
2

,

(B.3)

where it was used that P 2 = 0. This last expression will also be useful to compute (E.3)

below.

Second operation. The second operation is the action of the operator K on a specific

vector containing the polarization vector W ,

KA1 . . .KAJ

(
WA1 + αYA1(W · Y )

)
. . .
(
WAJ + αYAJ (W · Y )

)
, (B.4)

where α is any function that does not depend on W , and Y is a generic bulk vector

satisfying Y 2 = −1. The result of this operation is

(2h− 1)J

(
h+

1

2

)

J
2F1

(
1,−J, h+

1

2
,
α(1 +X · Y )(1−X · Y )

2

)
. (B.5)

This expression was guessed by performing the operation for J = 1, . . . , 5 and should be

valid for any J .

8In this process we consider K2 as a generic vector. To compute the trace (B.1), K2 needs to act on the

variables W2 and so we have to remember that the differential operator K2 has to be placed to the left of

all vectors W2.
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Trace over structures of propagator. Multiplying (B.1) by J !xl

l!(J−l)! and summing over

l gives a generator of all the structures,

(K1 ·K2)J
(
W1 ·

(
W2 + x(W2 ·X1)X2

))J
. (B.6)

The original expression can be recovered expanding the final result in x. Applying (B.2)

to this expression, we obtain

|J/2|∑

k=0

θk(J !)2
(
h− 1

2

)
J−k

22kk!(J − 2k)!
(K2 ·X1)2k

(
K2 ·

(
W2 + αX1(W2 ·X1)

))J−2k
(W2 ·X1)2k , (B.7)

where |J/2| is the integer part of J/2, α = 1 + x(X1 · X2) and θ = x2 − α2. In this

calculation we have used K2 ·
(
xX2(X1 ·W2)

)
= 0. The evaluation of the expression outside

the fraction in (B.7) can be done by multiplying by 2 J !
(2k)!(J−2k)!y

2k and summing over k,

giving

(
K2 ·

(
W2 + (α+ y)X1(W2 ·X1)

))J
+
(
K2 ·

(
W2 + (α− y)X1(W2 ·X1)

))J
. (B.8)

Then, using the second tensor operation (B.4) we obtain

2(2h− 1)J

(
h+

1

2

)

J

J∑

m=0

|m/2|∑

k=0

(−J)m(−1)m

2m
(
h+ 1

2

)
m

m!
(
u(2 + u)

)m
αm−2ky2k

(m− 2k)!(2k)!
. (B.9)

Notice that, as expected, this expression just depends on even powers of y. Thus, the

expression outside the fraction in (B.7) is recovered by matching powers of y,

(2h− 1)J
(
h+ 1

2

)
J

J !

J∑

m=0

(−J)m(−1)m

2m
(
h+ 1

2

)
m

m!
(
u(2 + u)

)m
αm−2k

(1 + J − 2k)m−J
. (B.10)

Joining all pieces in a single expression we conclude that

1

J !(2h− 1)J
(
h+ 1

2

)
J

(K1 ·K2)J
(
W12 + x(W1 ·X2)(W2 ·X1)

)J
(B.11)

=

|J/2|∑

k=0

J∑

m=0

(
h− 1

2

)
J−k

22kk!

(−J)mm!
(
u(2 + u)

)m(
2(1 + u)x− 1− u(2 + u)x2

)k(
x(1 + x)− 1

)m−2k

2m
(
h+ 1

2

)
m

(m− 2k)!
.

This simplifies dramatically in the limit u→ 0, as only the x = 0 term survives. The final

result is

(K1 ·K2)J
(
W12 +x(W1 ·X2)(W2 ·X1)

)J
= (2h−1)J

(
h+

1

2

)

J

(
h− 1

2

)

J

J !+O(u) . (B.12)

C Split representation of the bulk-to-bulk propagator

The harmonic functions Ων,J can be defined by the integral over the boundary point that

connects two bulk-to-boudary propagators, as in equation (4.1). Alternatively, the har-

monic functions Ων,J can be defined by the difference of two bulk-to-bulk propagators with
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dimensions h + iν and h − iν, as in equation (4.3). The goal of this appendix is to show

that these are equivalent definitions.

We start from equation (4.1),

ν2

πJ !(h− 1)J

∫

∂
dP Πh+iν,J(X1, P ;W1, DZ) Πh−iν,J(X2, P ;W2, Z) . (C.1)

The boundary contraction can be done using an identity similar to (B.2) [11, 13], with

result
2JJ !Ch+iν,JCh−iν,Jν2

π(h− 1)J

∫

∂
dP

(
(P ·W1)(P ·W2)

)J
Ch−1
J (t)

(−2P ·X1)h+iν+J (−2P ·X2)h−iν+J
, (C.2)

where t is defined as

t = X1 ·X2 +
(P ·X1)(P ·X2)

(P ·W1)(P ·W2)
W1 ·W2 −

P ·X1

P ·W1
W1 ·X2 −

P ·X2

P ·W2
W2 ·X1 . (C.3)

It is possible to choose polarizations such that W1 · X2 and W2 · X1 vanish. With this

specific choice only the term in (W12)J survives. Using the definition of the Gegenbauer

polynomial and performing a Feynman parametrization, (C.2) becomes

J !Ch+iν,JCh−iν,Jν2

π(h− 1)J

J∑

l=0

|l/2|∑

k=0

∫

∂
dP

∫ ∞

0

dq

q
(C.4)

×
(−1)k+l2lqh+l Γ(2h+ 2l)

(
h− 1

)
J−k(W12)J−l

(
(W1 · P )(W2 · P )

)l
(2X1 ·X2)l−2k

k!(l − 2k)!(J − l)!qiν Γ(h+ iν + l) Γ(h− iν + l) (−2P · Y )2h+2l
,

with Y = X1 + qX2. The integral over the boundary point P is conformal and can be done

using the equality [14]

∫

∂
dP

PA1 . . . PA2l

(−2P · Y )2h+2l
=
πh (2h+ 2l)−h Y

A1 . . . Y A2l

(−Y 2)h+2l
− traces . (C.5)

As the integration variables are contracted with W1 and W2, and since Wi · Xj = 0, we

have ∫

∂
dP

(W1 · P )l(W2 · P )l

(−2P · Y )2h+2l
=

πh (2h+ 2l)−h l!

(−2)l (h+ l)l (−Y 2)h+l
(W12)l . (C.6)

The sum over k can be done and gives an hypergeometric function, so (C.4) becomes

Ch+iν,JCh−iν,Jν2

π

J∑

l=0

∫
dq

πhJ ! Γ(h+ l)(W12)J 2F1

(
−l, 3

2 − h− J, 3− 2h− 2J,− 2
u

)

(J − l)! Γ(h+ iν + l) Γ(h− iν + l) (−2u)−l q1−h+iν−l (−Y 2)h+l
.

(C.7)

Finally, using the equality
∫ ∞

0

dα

α

α−c
(

(1+α)2

α + 2u
)b =

Γ(b+ c) Γ(−c)
Γ(b) (2u)b+c

2F1

(
1

2
+ c, b+ c, 1 + 2c,−2

u

)

+
Γ(b− c) Γ(c)

Γ(b) (2u)b−c
2F1

(
1

2
− c, b− c, 1− 2c,−2

u

)
, (C.8)
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Figure 6. Product of two harmonic functions Ων,J(X1, Y ;W1,K) and Ων,J(Y,X2;W,W2), where K

acts on the polarisation vectorW of Y , represented as the integral over bulk-to-boudary propagators.

After integration over the bulk point Y , we are left with two bulk-to-boudary propagators and one

two-point function on the boundary.

the integral over q can also be expressed in terms of hypergeometric functions. These two

hypergeometric functions correspond precisely to the two propagators with ∆ = h ± iν
in (4.3). Thus, from the term proportional to (W12)J in the propagator (3.7), we obtain

g0(u) =
2πhJ !C∆,JC2h−∆,JΓ(1 + h−∆)

Γ(2h−∆) (2u)∆
(C.9)

×
J∑

l=0

(−1)l 2F1

(
−l, 3

2 − h− J, 3− 2h− 2J,− 2
u

)
2F1

(
1
2 + ∆− h,∆ + l, 1 + 2∆− 2h,− 2

u

)

(J − l)! (2h−∆)l
.

We checked up to J = 5 that this expression for g0 is reproduced by formula (3.12) where

the functions f
(i+k)
i = h

(k)
i are determined by (3.20) and (3.22). This shows that (4.3) is

equivalent to (4.1).

D AdS harmonic functions

Orthogonality. The AdS harmonic functions satisfy the orthogonality relation (4.7) that

says that the integral of two Ω functions over a commom bulk point gives again an Ω

function. The argument that led to the orthogonality relation could not fix the overall

constant multiplying the right hand side of (4.7). The goal of this appendix is to fix this

constant by evaluating this bulk integral using the representation (4.1) of the AdS harmonic

functions. This computation is represented in figure 6. We need to do the following integral

1

J !
(
h− 1

2

)
J

(
νν

πJ !(h− 1)J

)2 ∫
dP1dP2dY Πh+iν,J(X1, P1;W1, DZ1) Πh−iν,J(Y, P1;K,Z1)

×Πh−iν,J(Y, P2;W,DZ2) Πh+iν,J(X2, P2;W2, Z2) , (D.1)

where the operator K and DZ were included to perform the index contraction between the

propagators. We start by performing the integral over the bulk point Y ,

1

J !
(
h− 1

2

)
J

∫
dY Πh−iν,J(Y, P1;K,Z1) Πh−iν,J(Y, P2;W,Z2) . (D.2)
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After the contraction over the polarizations, this gives9

(−4)JCh−iν,JCh−iν,J
∫
dY Iν,ν,J , (D.3)

where

Iν,ν,J =
1

(−2P1 · Y )h−iν+J(−2P2 · Y )h−iν+J

(
(P1 · Z2)(P2 · Y )(Y · Z1) (D.4)

+ (P2 · Z1)(P1 · Y )(Y · Z2)− (P1 · P2)(Y · Z1)(Y · Z2)− (P1 · Y )(P2 · Y )(Z1 · Z2)
)J
.

and the constant C∆,J is defined in (3.46). Next we define the differential operator

D = D21D12 +D12D21 −H12

(
(P1 · ∂P1)(P2 · ∂P2) +

1

2
(P1 · ∂P1 + P2 · ∂P2)

− 2(Z1 · ∂Z1)(P1 · ∂P1 + P2 · ∂P2)− 2Z1 · ∂Z1 + 4(Z1 · ∂Z1)(Z1 · ∂Z1)
)
, (D.5)

where

H12 = 2
(
(P1 · Z2)(P2 · Z1)− (P1 · P2)(Z1 · Z2)

)
, (D.6)

Dij = (Zj · Pi)
(
Zj ·

∂

∂Zj
− Pj ·

∂

∂Pj

)
+ (Pj · Pi)

(
Zj ·

∂

∂Pj

)
. (D.7)

Then we have

1

4(h− iν + J)(h− iν + J)
D
(
(P12)JIν,ν,J

)
= (P12)J+1Iν,ν,J+1 . (D.8)

Thus, the differential operator D allows us to write

Iν,ν,J =
1

4J(h− iν)J(h− iν)J(P12)J
DJ 1

(−2P1 · Y )h−iν(−2P2 · Y )h−iν
. (D.9)

So the integral (D.3) can be rewritten as

Ch−iν,JCh−iν,J
(h− iν)J(h− iν)J(P12)J

DJ
∫
dY

1

(−2P1 · Y )h−iν(−2P2 · Y )h−iν
. (D.10)

Now the integral over Y only involves scalar bulk-to-boudary propagators. So, let us

analyze
∫

dY

(−2P1 · Y )h−iν(−2P2 · Y )h−iν

=

∫
ddx

∫ ∞

0

dz

zd+1

z2h−iν−iν+ε

[
z2 + (x− x1)2

]h−iν[
z2 + (x− x2)2

]h−iν , (D.11)

where the bulk-to-boudary propagator was written in Poincaré coordinates and we have

introduced a regulator zε, planning to take the limit ε → 0 at the end. Using the Fourier

representation of the propagator, we obtain
∫ ∞

0

dz

z

∫
ddk

(2π)d
z−iν−iν+ε eik·(x1−x2) Π̂iν(|k|z) Π̂iν(|k|z) , (D.12)

9Notice that generally contraction of symmetric and traceless structures gives a Gegenbauer polynomial.

In this particular case the expression is simplified because the denominator of t in (B.2) vanishes.
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where the function Π̂iν(|k|z) is just the Fourier transform

∫
ddx

eik·x

(z2 + x2)h−iν
(D.13)

=

∫ ∞

0

ds

s
sh−iν

e−sz
2
e−

k2

4s

Γ(h− iν)

∫
ddx e−s(x−i

k
2s)

2

=
πh

Γ(h− iν)

∫ ∞

0

ds

s
s−iν e−sz

2− k
2

4s .

This turns (D.12) into

π2h

Γ(h− iν)Γ(h− iν)

∫
ddk

(2π)d
eik·(x1−x2)

(
4

k2

) iν+iν
2
∫
dz

z

dsdt

st
zεs−iνt−iνe−z

(
s+t+ 1

s
+ 1
t

)
,

(D.14)

where the dependence on k was brought into an explicit form by doing a rescaling s→ sk2

4z ,

t→ tk2

4z and z → 2z
k . The second integral in (D.14) is

∫
dz

z

dsdt

st
zεs−iνt−iνe−z

(
s+t+ 1

s
+ 1
t

)
= 2Γ(ε)

∫ ∞

−∞
dUdV

e−iU(ν+ν)−iV (ν−ν)

(
4 cosh(U) cosh(V )

)ε

=

∏
n,m=±1 Γ

(
ε+imν+inν

2

)

2Γ(ε)
=
ε→0

2πΓ(iν)Γ(−iν)
[
δ(ν − ν) + δ(ν + ν)

]
, (D.15)

where U and V are related to t and s by s = eU+V and t = eU−V . We conclude that the

integral (D.11) over AdS of two scalar bulk-to-boudary propagators is

2π2h+1Γ(iν)Γ(−iν)

Γ(h− iν)Γ(h− iν)

∫
ddk

(2π)d
eik·(x1−x2)

(
k2

4

)− iν+iν
2 [

δ(ν − ν) + δ(ν + ν)
]

=
2πh+1Γ(−iν)

Γ(h− iν)(x2
12)h−iν

δ(ν − ν) +
2π2h+1Γ(iν)Γ(−iν)

Γ(h+ iν)Γ(h− iν)
δd(x1 − x2)δ(ν + ν) .

Now we just have to act J times with the differential operator D according to (D.10).

Notice that

− 1

(J + ∆− 1)(J + ∆)
D (H12)J

(P1 · P2)∆
=

(H12)J+1

(P1 · P2)∆
, (D.16)

where the structure H12 is defined in (D.6), so D will generate the structure of the spin J

boundary two-point function,

(−1)J

(∆− 1)J(∆)J
DJ 1

(−2P1 · P2)∆
=

(H12)J

(−2P1 · P2)∆
. (D.17)

Finally, we conclude that

1

J !
(
h− 1

2

)
J

∫
dY Πh−iν,J(Y, P1;K,Z1) Πh−iν,J(Y, P2;W,Z2)

= Ch−iν,JCh−iν,J
[
δ(ν − ν)

2πh+1(h− iν − 1)Γ(−iν)

(h+ J − iν − 1)Γ(h− iν)

(H12)J

(P12)h−iν+J

+ δ(ν + ν)
J !2π2h+1Γ(iν)Γ(−iν)

(h− iν)J(h− iν)JΓ(h+ iν)Γ(h− iν)

DJδd(P1, P2)

(P12)J

]
. (D.18)
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There remains one integral to do on the boundary, say on the point P2. Let us start

by performing the integral of the term proportional to δ(ν − ν) in (D.18),

∫
dP2

Πh+iν,J(X2, P2;W2, DZ2)(H12)J

J !(h− 1)J(P12)h−iν+J
. (D.19)

This integrand can be written as the limit of two bulk-to-boundary propagators
∫
dP2

Πh+iν,J(X2, P2;W2, DZ2)

J !(h− 1)J

1

Ch−iν,J
lim

X1→P1
W1→Z1

Πh−iν,J(X1, P2;W1, Z2) . (D.20)

If one naively takes the limit outside, the integral is proportional to the harmonic function

Ων,J(X1, X2;W1,W2), which itself can be written as a sum of two bulk-to-bulk propagators

as in (4.3). Then the limit X1 → P1 of the bulk-to-bulk propagators just gives a sum of two

bulk-to-boundary propagators from X2 to P1 with dimension h+ iν and h− iν. However,

this cannot be correct because the original integral (D.19) had dimension h − iν at point

P1. Dropping the term with wrong dimension, one obtains the result10

∫
dP2

Πh+iν,J(X2, P2;W2, DZ2)(H12)J

J !(h− 1)J(P12)h−iν+J
= − i

2νCh−iν,J
Πh−iν,J(X2, P1;W2, Z1) . (D.21)

The contribution from the term proportional to δ(ν + ν) in (D.18) can be easily fixed

using a simple symmetry argument, since the original integral (D.1) is an even function of

ν. Thus, we conclude that (D.1) is given by
[
δ(ν + ν) + δ(ν − ν)

]
ν2

2πJ !(h− 1)J

∫
dP1 Πh+iν,J(X1, P1;W1, DZ1) Πh−iν,J(X2, P1;W2, Z1) , (D.22)

which shows (4.7).

Completeness. The goal of this section is to determine the coefficients cJ,l(ν) that ap-

pear in the completeness relation (4.11),

J∑

l=0

∫
dν cJ,l(ν)

(
(W1 · ∇1)(W2 · ∇2)

)l
Ων,J−l(X1, X2;W1,W2) = δ(X1, X2)(W12)J . (D.23)

Our strategy will be to find a recursion relation that fixes all coefficients cJ,l(ν) starting

from the initial condition cJ,0(ν) = 1 derived in the main text. With this in mind, we take

the divergence of the equation above at the point X1. On the right hand side we use11

∇1 ·K1

[
δ(X1, X2)(W12)J

]
= −J(2h+ 2J − 3)

2
W2 · ∇2

[
δ(X1, X2)(W12)J−1

]
, (D.24)

and on the left hand side we use the commutation relations

[
∇ ·K,W · ∇

]
=

(
2h− 1

2
+DW

)
∇2 −

(
(DW )2 +

3(2h− 1)

2
DW +

(2h− 1)2

2

)
DW ,

[
∇2,W · ∇

]
= −2

(
h− 1 +DW

)
W · ∇ , (D.25)

10The extra term was generated when we naively interchanged the limit with the integration symbol.
11To derive this formula one needs to use W1 ·X2 δ(X1, X2) = 0 and similar identities.
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where DW = W · ∂W . Using these basic commutators, one can show that

[
∇2, (W · ∇X)n

]
= −n(2h− 1 + 2DW − n)(W · ∇X)n . (D.26)

Similarly, with a bit more effort, one finds
[
∇ ·K, (W · ∇X)l

]
=

1

2
(W · ∇X)l−1l(2h+ l + 2DW − 2) (D.27)

×
[
1− l − (l +DW − 1)(2h+ l +DW − 2) +∇2

]
.

Using these commutators, the divergence of equation (4.11) can be written as

−W2 · ∇2

J∑

l=1

∫
dν cJ,l(ν)

(l + 1)(3− l − 2h− 2J)
[
(h+ J − 1)2 + ν2

]

2
(D.28)

×
(
(W1 · ∇1)(W2 · ∇2)

)l−1
Ων,J−l(X1, X2;W1,W2) =

J(2h+ 2J − 3)

2
W2 · ∇2

[
δ(X1, X2)W J−1

12

]
.

Shifting the summation variable l→ l+ 1, we can identify this equation as W2 · ∇2 acting

on (4.11) with J replaced by J − 1. This gives the recursion relation

cJ,l+1(ν) =
J(2h+ 2J − 3)

(l + 1)(2h+ 2J − l − 3)

cJ−1,l(ν)

(h+ J − 1)2 + ν2
, (D.29)

which supplemented with the initial condition cJ,0(ν) = 1 determines all cJ,l(ν). In fact,

one can write the general solution in closed form,

cJ,l(ν) =
2l(J − l + 1)l

(
h+ J − l − 1

2

)
l

l!(2h+ 2J − 2l − 1)l(h+ J − l − iν)l(h+ J − l + iν)l
. (D.30)

E Computation of partial amplitude

The goal of this appendix is to derive the expression for the function αl(ν) appearing in

the partial amplitude (6.7). The tensor operations present in (6.6) are of the form

(W1 · ∇1)J−l Π∆,l = C∆,l (W1 · ∇1)J−l
(
2(W1 · Z)(P5 ·X1)− 2(W1 · P5)(Z ·X1)

)l

(−2P5 ·X1)∆+l

= C∆,l

(2P5 ·W1)J−l
(
2(W1 · Z)(P5 ·X1)− (W1 · P5)(Z ·X1)

)l
(∆ + l)J−l

(−2P5 ·X1)∆+J
, (E.1)

(W1 · ∇1)J Π∆2 =
C∆2 (W1 · ∇1)J

(−2P2 ·X1)∆2
= C∆2 (∆2)J

(2W1 · P2)J

(−2P2 ·X1)∆2+J
, (E.2)

and

(?) ≡ (K · ∇)J Π∆2 (W · ∇)J−l Π∆,l

C∆2C∆,lJ !
(
h− 1

2

)
J

= (E.3)

= (∆2)J (∆ + l)J−l 2
J(J − l)! Γ(3/2− h− J)

(
2(P2 · P5)(X1 · Z)− 2(P2 · Z)(P5 ·X1)

)l

(−2P2 ·X1)∆2+J (−2P5 ·X1)∆+J

×
J−l∑

m=0

Γ(1− h− J +m)
(
2(P2 ·X1)(P5 ·X1)

)m
(P25)J−l−m

Γ
(
1− h− J + m

2

)
Γ
(

3−2h−2J+m
2

)
m! (J − l −m)!

.
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The first two operations follow almost immediately from the definition, just notice that

in (E.1) the differential operator can act only in the denominator as it gives zero once it

acts on the numerator. To obtain (E.3) we use (B.2).

The function Fν,J is defined as the integral over the boundary of three-point functions.

So, to derive Fν,J from (6.6) we need to integrate over one of the bulk points, say X1,

generating a structure that has the form of a three-point function at points P1, P2 and P5.

Joining all the pieces that connect to the bulk point X1, we have

∫
dX1 Π∆1(?) C∆2 C∆,l =

B∆1,∆2,∆,l,J

(
(Z · P2)(P1 · P5)− (Z · P1)(P2 · P5)

)l

P
∆2+l+∆1−∆

2
12 P

∆1+∆+l−∆2
2

15 P
∆+∆2+l−∆1

2
25

, (E.4)

where the function B∆1,∆2,∆,l,J is given by

B∆1,∆2,∆,l,J =
J−l∑

m=0

C∆2 C∆,l (∆2)J (∆ + l)J−l (−1)J+m (J − l)!21−2h−J
√
π (J − l −m)!m! C∆+J−m−l

×
Γ
(

3−2h−2J
2

)
(m− h− J)!

(
∆+∆1−∆2−l

2

)
l
b∆1,∆2+J−m,∆+J−m−l,0

Γ(m+ 2− 2h− 2J) (∆ + J −m− l)l C∆2+J−m
. (E.5)

Notice that to perform the integration over X1 we used an identity similar to (5.6). The

function b∆1,∆2,∆,J is the same as in (5.7). The integration over X2 produces a similar term

and so the next step to read off the relation is to integrate the product of two three-point

functions over the boundary point.

At this point we just need to bring the expression close to equation (3.16) of [62] that

is related to the function Fν,J . So we just need to evaluate

∫
dP5

(
P25(DZ · P1)− P15(DZ · P2)

)J

P
∆1+∆−∆2+J

2
15 P

∆2+∆−∆1+J
2

25 P
∆1+∆2−∆+J

2
12

(
P45(Z · P3)− P35(Z · P4)

)J

P
∆3+d−∆−∆4+J

2
35 P

∆4+d−∆−∆3+J
2

45 P
∆3+∆4−d+∆+J

2
34

,

(E.6)

where the operator DZ is the projection operator (4.2), as defined in [11, 13]. Its action

produces a Gegenbauer polynomial. The integral over P5, involving these polynomials,

is precisely (3.16) of [62], where it was shown to be equal to a linear combination of

conformal blocks. Taking into account the definition of the function Fν,J in terms of

conformal blocks,12 it is possible to extract the coefficient β,

βν,∆i,J =
23−2Jπ1+h Γ(iν) Γ(−iν) (h− iν − 1)J (h+ iν − 1)J

Γ
(

∆1+∆2−h−iν+J
2

)
Γ
(
h+J+∆1−∆2+iν

2

)
Γ
(
h+J−∆1+∆2+iν

2

)
Γ
(

∆1+∆2+J+iν−h
2

)

× 1

Γ
(
h+J+∆3−∆4−iν

2

)
Γ
(
h+J+∆4−∆3−iν

2

)
Γ
(

∆3+∆4+J−h−iν
2

)
Γ
(

∆3+∆4+iν−h+J
2

) .

(E.7)

12Notice that the conformal blocks of [62] and [53] have different normalization.
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The coefficient αl(ν) can be read after gathering all the components together,

αl = B∆1,∆2,h+iν,l,J B∆3,∆4,h−iν,l,J
ν2βν,∆i,l

πJ !(h− 1)J
, (E.8)

or explicitly,

αl(ν) =
((J − l)!)2Γ2

(
3−2h−2J

2

)
RJ,l(ν,∆1,∆2)RJ,l(−ν,∆3,∆4)

π3h+124h+4J+2l+3Γ(∆1 + 1− h)Γ(∆2 + 1− h)Γ(∆3 + 1− h)Γ(∆4 + 1− h)
,

(E.9)

where we defined

RJ,l(ν,∆1,∆2) =

J−l∑

p=0

(−1)pΓ(p+ 1− h− J)(h+ J − p+ iν)p (J − p+ ∆2)p
(J − l − p)!p!Γ(p+ 2− 2h− 2J)

×
(

∆1 + ∆2 − h+ l + iν

2

)

J−l−p

(
h+ l + iν −∆12

2

)

J−l−p
.

(E.10)
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