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Abstract

Neural networks have been traditionally considered robust in the sense that their precision
degrades gracefully with the failure of neurons and can be compensated by additional learning
phases. Nevertheless, critical applications for which neural networks are now appealing solutions,
cannot afford any additional learning at run-time.

In this paper, we view a multilayer neural network as a distributed system of which neurons
can fail independently, and we evaluate its robustness in the absence of any (recovery) learning
phase. We give tight bounds on the number of neurons that can fail without harming the result
of a computation. To determine our bounds, we leverage the fact that neural activation functions
are Lipschitz-continuous. Our bound is on a quantity, we call the Forward Error Propagation,
capturing how much error is propagated by a neural network when a given number of components
is failing, computing this quantity only requires looking at the topology of the network, while
experimentally assessing the robustness of a network requires the costly experiment of looking
at all the possible inputs and testing all the possible configurations of the network corresponding
to different failure situations, facing a discouraging combinatorial explosion.

We distinguish the case of neurons that can fail and stop their activity (crashed neurons)
from the case of neurons that can fail by transmitting arbitrary values (Byzantine neurons). In
the crash case, our bound involves the number of neurons per layer, the Lipschitz constant of the
neural activation function, the number of failing neurons, the synaptic weights and the depth
of the layer where the failure occurred. In the case of Byzantine failures, our bound involves, in
addition, the synaptic transmission capacity. Interestingly, as we show in the paper, our bound
can easily be extended to the case where synapses can fail.

We present three applications of our results. The first is a quantification of the effect of
memory cost reduction on the accuracy of a neural network. The second is a quantification of
the amount of information any neuron needs from its preceding layer, enabling thereby a boosting
scheme that prevents neurons from waiting for unnecessary signals. Our third application is a
quantification of the trade-off between neural networks robustness and learning cost.

1 Introduction

Since their inception in the 1940s [1], artificial neural networks received an oscillating amount of
interest. They went trough two periods of excitement, each followed by a loss of interest, before
the current popularity. After the very first period of "discovery", from the 1950s [2] to the late
1960s, came the AI winter, when Minksy questioned the ability of perceptrons to learn non linearly
separable functions such as the exclusive OR [3]. Neural networks received a regain of interest in the
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late 1970s with the back-propagation algorithm [4] that overcame learning issues. Interest vanished
again in the 1990s due to the lack of computing power, even-tough important practical achievements
were done in the late 1980s and early 1990s in the field of image recognition [5].

Neural networks are now back in the headlines for their outstanding performance [6] in tasks such
as function approximation, image and speech recognition, as well as weather prediction [7]. Today,
neural networks are considered in far more critical applications than those of the last decade: flight
control [8], radars [9] and electric cars [10]. This motivates a better understanding of the extent to
which neural networks can be robust.

A simple approach to achieve robustness is to consider the entire neural network as a single piece
of software [11], replicate this piece on several machines, and use classical state machine replication
schemes to enforce the consistency of the replicas [12]. In this context, no neuron is supposed to fail
independently: the unit of failure is the entire machine hosting the network. However, forcing an
entire network to run on a single machine clearly hampers scalability. One could also consider strict
subsets of the neural network as different pieces of software, each running on one Turing machine [13].
In this case, classical replication schemes can still be applied, but one has to face usual distributed
computing problems, e.g., to handle the synchronization of message passing between subsets of the
network [14].

Biological plausibility, together with scalability, call for going one step further and considering each
neuron as a single physical entity (that can fail independently), i.e., to go for genuinely distributed
neural networks [15]. This approach is considered for example in the Human Brain project [16],
trying to emulate the mammalian brain or the various works on hardware-based neural networks [17].
More recently, teams from IBM reported [18, 19] a successful neuromorphic implementations of
convolutional neural networks that require a running power as low as 25 mW to 275 mW. In those
settings, the unit of failure is one single neuron or synapse, and not a whole machine.

In this paper, we explore this granularity and view a neural network as a distributed system where
neurons can fail independently. We ask what is the maximum number of such failures that can
be masked by the neural network, i.e., without having any impact on the overall computation.
Addressing this question goes, however, first through precising it.

It is actually well known that the failure of neurons can be tolerated through additional learning
phases [20, 21]. However, stopping a neural network and recovering its failures through a new
learning phase is not an option for critical applications [8, 10, 9]. One can also consider specific a
priori learning schemes that make it possible to tolerate failures a posteriori, e.g., shutting down
parts of the network while learning, in order to cope with failures at run-time (dropout) [6, 22].

Our question can then be posed as follows: if (a) we do not make any assumption on the learning
scheme and (b) we preclude the possibility of adding learning phases to recover from failures when
the neural network is in the deployment phase, what is the maximum number of faulty neurons that
can be tolerated?

At this point, the question might sound trivial and the answer could be simply: none. Indeed, how
could a neural network tolerate failures if it was not specifically devised with that purpose in mind?
More specifically, if the failures of a number of neurons do not impact the overall result, then these
neurons could have been eliminated from the design of that network in the first place. In fact, the
reason why the question is nontrivial is over-provisioning [23]. Indeed, neural networks are rarely
built with the minimal number of neurons to perform a computation. To estimate exactly this
minimal number, one needs to know the target function the network should approximate, which
by definition is unknown since the sole mainspring for machine learning is that we only know a
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finite number of the values of the target function: the learning data set. In fact, it has been
experimentally observed that over-provisioning leads to robustness [24, 25, 26, 22]. Yet, the exact
relation between the over-provision and the actual number of failures to be tolerated has never been
precisely established. This paper establishes this relation for the first time.

More precisely, we present tight bounds on the number of faulty neurons a feed-forward neural
network1 can tolerate without harming the computation result, nor requiring any additional learning
phase or specific prior learning algorithm. In fact, our bounds are not simply expressed in terms of
numbers of failures, but in terms of weight and failure distribution. Indeed, unlike process failures
in traditional distributed computing that all have the same effect, neuron failures do not: they are
weighted. In the general case of multilayer, or so called deep, networks, we formulate our results in
the form of a fault-per-layer distribution.

Our results are obtained using analytic properties of the different mathematical components of a
neural network, namely the activation function, the synaptic weights, and the neural computation
model. By relying on the very fact that neural activation functions are bounded, and in practice
Lipschitzian [27], we set precise bounds on the error propagation over the layers, and subsequently
establish tight bounds on the number of failures a neural network can tolerate.

For didactic reasons, we present our results in an incremental manner. We consider first a network
with a single layer and focus on the crashes of neurons, then we generalize to a multilayer network
with Byzantine (arbitrary [28]) failures of neurons. We show that if the transmission capacity of
synapses is unlimited, no neural network can tolerate the presence of a single Byzantine neuron.
Inspired by results from biophysics [29] and neuroscience [30], we consider, however, synapses with
a limited transmission capacity, and give a bound on the Byzantine failures of neurons as a function
of this capacity. Finally we show how bounds on synapses failures can be derived from bounds on
neurons failures.

We discuss several applications of our results. The first is a bound on the effect on output accuracy
of reducing the computational precision per neuron. This effect has been recently highlighted
experimentally [31], however, without any theoretical explanation until the present. The second is
a synchronization scheme that reduces the waiting time for neurons. The third is a quantification
of the trade-off between robustness and ease of learning. We also discuss how to adapt our bounds
to convolutional networks.

The rest of the paper is organized as follows. In Section 2 we model a neural network as a distributed
system and state the robustness criteria. In Section III we prove an upper bound on crash failures in
the case of single-layer neural network. We use this proof as a starting point for the generalization to
Byzantine failures and given in Section IV, first for neurons and then for synapses in the multilayer
case. We discuss in Section 5 some applications of our results. We conclude the paper by discussing
other models and future work.

1Feed-forward networks are the most common in the literature [26], and today’s most popular topology: the
convolutional neural network for example [5], is a particular case of the feed-forward topology. We will discuss some
of these in Section 5.
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2 Model

2.1 Viewing a Neural Network as a Distributed System

We distinguish two main kinds of components of a neural network.

Neurons. These are the computing nodes (processes) of a neural network. They are either correct,
in which case they execute their assigned computation (see below), or they fail, in which case they
can stop computing (crash) or even send an arbitrary value (Byzantine faults). The failure of any
neuron is independent from the failure of any other. Neurons communicate via message-passing
[14] through synchronous point-to-point communication channels called synapses.

Figure 1: A (feed forward) neural network (solid nodes and edges), with d = 3, L = 3, N2 = 3 and
N1 = N3 = 4. Input and output nodes (dotted) are not considered as parts of the network, but as its
clients. For readability, only some synaptic weights are represented (bold blue). X = (x1, . . . , xd).

Synapses. These are the communication channels connecting the neurons. Just like neurons,
synapses are either correct, in which case they transmit the signal provided to them (see below) or
fail, in which case they stop transmitting the signals, or they transmit arbitrary signals.The failure
of a synapse is also independent from that of other synapses and neurons. Synapses are weighted2.
The weight models the importance a neuron j gives to the signals emitted by a neuron i at the
other end of the synapse and is therefore also called the weight from neuron i to neuron j. Faults at
synapses can then be modeled as errors in the value of the weight: a crashed synapse is viewed as
weighted by value 0 (stops transmitting), whereas a Byzantine synapse transmits any other value
than the nominal value it is supposed to transmit, within its capacity.

Indeed, synapses have a bounded transmission capacity. This assumption is supported by two
important works in biophysics [29] and neuroscience [30]. Hence if a faulty neuron corrupts the
value it is supposed to send, the transmitted value is limited by the highest amount of electric
charge flow the synapse can transport to the next neuron.

Assumption 1. (Bounded transmission) There exists an upper bound C ∈ R∗+ such that, for any
input and any Byzantine neuron, the value transmitted by any synapse from that Byzantine neuron
is bounded by C in absolute value.

When Assumption 1 is not satisfied, we say that the network has unbounded transmission.
2The weights are determined by the initial learning phase, when training the network.
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Neural Computation. The effectiveness of feed-forward neural networks relies on a fundamental
theorem [32] that guarantees their universal approximating power with as few3 as one single layer.

Let ε be any positive real number (an accuracy level), and F any continuous function mapping
[0, 1]d to [0, 1]. The goal is to build an approximation of F with accuracy ε (as constructed in the
classical model of a multilayer perceptron [26]) which we abstract in the following description:

Neurons are distributed over a series of layers. We denote by L the number of layers, each identified
with index l and containing Nl neurons. Any neuron of layer l − 1 is said to be on the left of any
neuron of layer l (layer l is on the right of layer l − 1). Each neuron fires (broadcasts) a signal
(message) to all the neurons of the layer on its right. Neuron j at layer l receives the sum given by
s
(l)
j of Equation 1, where y(l−1)i and w(l)

ji denote respectively the output value at neuron i of layer
l − 1, and the weight of the synapse from that same neuron to neuron j of the next layer l. To
define its own output y(l)j , neuron j of layer l in turn injects the sum given by Equation 3 into a
non-linear activation function, called a squashing function, ϕ, after adding a bias4.

Fneu(X) =

NL∑
i=1

w
(L+1)
i y

(L)
i (X) (1)

with y(l)j = ϕ(s
(l)
j )(l ≥ 1); y(0)j (X) = xj (2)

and s(l)j =

Nl−1∑
i=1

w
(l)
ji y

(l−1)
i (3)

Definition 1. (Approximation) We denote by A = C([0, 1]d, [0, 1]) the space of continuous functions
mapping [0, 1]d to [0, 1]. Fneu as defined by Equation 1 is said to be a neural ε-approximation of a
target function F ∈ A if we have: ∀X ∈ [0, 1]d: ‖F (X)− Fneu(X)‖ ≤ ε.

Universality. We recall the universality theorem for a single layer network5: Let d be any integer
and ϕ : R → [0, 1] a strictly-increasing continuous function, such that limx→−∞ ϕ(x) = 0 and
limx→+∞ ϕ(x) = 1. Given any function F ∈ A and ε > 0, there exist an integer N(ε), and a set
of coefficients (w

(1)
ji )1≤i≤d1≤j≤N(ε) and (w

(2)
i )1≤i≤N(ε) such that Fneu defined in Equation 1 is a neural

ε-approximation of F .

Activation Function. This function, denoted ϕ is the essence of the non-linearity of neural net-
works. The universality theorem holds for any non-constant, bounded and monotonically increasing
activation function ϕ. Yet, two main popular choices for ϕ in machine learning applications are the
logistic function sigmoid given by: sigmoid(x) = 1

1+e−x and the hyperbolic tangent tanh.

In this paper, we only impose on ϕ the conditions of the universality theorem, and consider that ϕ
is K-Lipschitzian, meaning that K = sup |ϕ(x)−ϕ(y)x−y |

x 6=y
exists and is a finite real number.

Moreover,K can be tuned. Consider for instance the commonly used function, sigmoid, this function
is 1

4 -Lipschitzian but can be tuned to be K-Lipschitzian (Figure 2) , by taking in this case x 7→
3Note that universality for L=1 is harder to obtain than for L > 1: fewer layers to approximate the target function.
4Following the usual notational convenience [26], we omit the bias in the computation model. This is done without

loss of generality, considering an additional constant neuron (value = 1) in each layer. During the learning phase –
when building the network – instead of learning its bias value, the neuron of layer l just learns the weight given to
the constant neuron of layer l − 1. As this weight is always multiplied by 1, the weight serves as the bias, around
which the activation function is be centered.

5The interested reader can refer to the proof of [32].
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Figure 2: The profile of a sigmoid function, centered around 0 and tuned with several values of K.
The larger is K, the steeper is the slope and the more discriminating is the activation function at
each neuron.

ϕ(4Kx) as the K-tuned activation function. (The detailed derivation of the Lipschizness of ϕ is
given in a companion technical report [33].). In this paper we consider, without loss of generality,
sigmoid as the choice for ϕ.

2.2 Failures and Robustness

Definition 2. (Failures) We say that a neuron i in layer l crashes when neuron i stops sending
values, in which case y(l)i is considered6 to be equal to 0 by other neurons7. We say that neuron i is
Byzantine, when y(l)i is arbitrary.

Definition 3. (Robustness) We say that a neural ε-approximation Fneu of a target function F
realized by N neurons tolerates Nfail faulty neurons, if for any subset of neurons Ifail ⊂ {1, · · · , N}
of size Nfail, we can modify Fneu for the failing neurons according to Definition 2 and still ε-
approximate F by Fneu.

Lemma 1. With unbounded transmission, no neural network can tolerate a single Byzantine neuron.

Proof. As a consequence of the neural computation and definitions 2 and 3, if the transmission is
unbounded, a Byzantine neuron at layer L sending a value higher than ε plus the difference between
the nominal Fneu and the contribution of the remaining neurons breaks the ε-approximation as
stated in Definition 1.

2.3 Over-Provisioning

Using the universality theorem, we can define a minimal number of neurons Nmin(ε) below which
the neural network cannot yield an ε-approximation of F . By definition of Nmin(ε), if a neural
network is built with Nmin(ε) neurons, the network cannot tolerate any crashed neuron.

6The strictly-increasing activation function ϕ does not allow a correct neuron to output value 0.
7Remember that we assume synchronous transmission.
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Clearly, neural networks are not robust, they do not tolerate any neuron failure when built with the
minimal amount of neurons. But, as we discussed in the introduction, this is usually not the case:
they are over-provisioned [23] and contain more than Nmin(ε) neurons. With the work of Barron
[34], we know that Nmin(ε) = Θ(1ε ) and that given N neurons, a network can achieve an error in
the order of 1

N when N is large. Instead of looking at over-provisioned networks as containing more
than Nmin(ε), we consider the quality of the approximation they are providing: given ε′ ≤ ε and
Fneu a neural ε′-approximation of F , Fneu is also a neural ε-approximation of F and is said to be
an over-provisioned ε-approximation of F .

In the following, we set the conditions under which a neural network, realizing an ε′-approximation
(ε′ ≤ ε) of F , can tolerateNfail failures and keep realizing an ε-approximation of F . For convenience,
all the bounds on the failures are stated in terms of ε and ε′.

3 Single-layer Neural Networks

For didactic reasons, we first start with the case of a single layer neural network. We translate the
fact that the network tolerates the crash of Nfail neurons as given by Definition 3 to an inequation,
which we combine with an estimation of the distance between the value of the damaged network
and the nominal value of the output (which we recall is close to the target by a distance ε′). We
end up with an upper bound on Nfail.

To prove that the bound is tight, we look at the worst failure case. Intuitively, this corresponds, fol-
lowing the tradition in distributed computing [14], to an adversary killing “key neurons“: those with
highest weights, and looking at an input were those same neurons were instrumental: broadcasting
the highest possible value y(1)j , as close to 1 as possible.

Theorem 1. Let F be any function mapping [0, 1]d to [0, 1]. Let ε and ε′ be any two positive real
numbers such that 0 < ε′ ≤ ε. For any neural ε′-approximation Fneu of F (Definition 1) and any
integer Nfail: If Nfail ≤ ε−ε′

wm
where wm = max(‖w(2)

i ‖, i ∈ [1, N ]) is the maximum norm of a weight
from the single layer to the output node, then Fneu is a neural ε-approximation of F that tolerates
Nfail crashed neurons (Definition 3). The bound on Nfail is tight.

Proof. Upper bound. Applying the universality theorem8 on F and ε′, let Fneu be a neural ε′-
approximation of F with N the number of neurons of Fneu and wm the maximal weight from the
single layer of Fneu to the output.

Let Nfail be any integer such that Nfail ≤ ε−ε′
wm

. Denote by Ffail any of the modified values of

the neural function Fneu after Nfail neurons crash: Ffail =
N∑

i=1,i/∈Ifail
w

(2)
i yi, where Ifail is a a set

containing Nfail crashed neurons. Let X ∈ [0, 1]d be any input vector. By the triangle inequality:

‖F (X)− Ffail(X)‖ ≤ ‖F (X)− Fneu(X)‖
+‖Fneu(X)− Ffail(X)‖.

(4)

8The existence of a neural approximation for a given target function is taken here as granted by the universality
theorem. One might wonder how do neurons, viewed as distributed processes, build the network (i.e put the correct
weights to their linking synapses) in the first place to approximate that target function. This is done, during the
learning phase, via the back-propagation algorithm [4]: neurons communicate in the reverse direction (from the
output to the input) and re-adjust the weights locally according to the error value they are given by the output client.
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Since Fneu is an ε′-approximation of F we have:

‖F (X)− Fneu(X)‖ ≤ ε′. (5)

From the definition of Ffail, we have: ‖Fneu(X)−Ffail(X)‖ = ‖
N∑

i=1,i∈Ifail
w

(2)
i yi(X)‖. Using another

triangle inequality on norms we get:

‖Fneu(X)− Ffail(X)‖ ≤
N∑

i=1,i∈Ifail

‖w(2)
i ‖yi(X). (6)

By definition of wm and the hypothesis on the bounded activation function, ‖w(2)
i ‖ ≤ wm and

yi(X) ≤ 1 for all X and i. Inequality 6 becomes:

‖Fneu(X)− Ffail(X)‖ ≤
N∑

i=1,i∈Ifail

wm = Nfailwm (7)

Merging inequalities 4, 5 and 7 we obtain: ‖F (X)− Ffail(X)‖ ≤ Nfail.wm + ε′.

Since Nfail ≤ ε−ε′
wm

, we have ‖F (X)− Ffail(X)‖ ≤ ε.

Therefore the upper bound on Nfail : Nfail ≤ ε−ε′
wm

, guarantees that Ffail, the neural function
obtained from Fneu with Nfail crashed neurons is still an ε-approximation of F .

Tightness. Let Nfail be any integer such that Nfail >
ε−ε′
wm

and assume that Fneu tolerates the
crash of Nfail. Let δ = Nfail − ε−ε′

wm
, by the initial assumption, δ > 0.

Consider ε′ to be the supremum on the approximation with which the over-provisioned neural
network Fneu approximates F , i.e ε′ = supX∈[0,1]d(‖F (X)− Fneu(X)‖).
Consider the equality cases as well as the limit cases (close to equality) for the key inequalities that
lead to the upper bound on Nfail: In 4, equality occurs iff F (X)−Fneu(X) and Fneu(X)−Ffail(X)
are positively proportional (equality case of the triangle inequality). In 6, equality occurs iff the
weights of the crashed neurons are positively proportional. Assume an input and choice of crashed
neurons satisfying both of these equality cases.

Let α be any positive real number. To be close to the limit case of Inequality 5, we can chose inputs
X such that ‖F (X)−Fneu(X)‖ > ε′− α

2 , those inputs exist otherwise ε′ is not the supremum error
achieved by Fneu or F is not a continuous function and we will have a contradiction.

In 7, the limit case corresponds to crashed neurons being those with maximal weights and inputs
such that the neurons in Icrash all output a value close to 1: letX be an input satisfying the previous
equality and limit cases such that for any neuron i in Ifail, we have yi(X) > max(1− α

2 , 1−
α

2(ε−ε′)),
i.e yi(X) close to 1. With this worst-case choice of input and crashed neurons, we obtain: ‖F (X)−

Ffail(X)‖ = ‖F (X)−Fneu(X)‖+‖
N∑

i=1,i∈Ifail
w

(2)
i yi(X)‖ > ε′− α

2 +max(1− α
2 , 1−

α
2(ε−ε′))Nfail.wm.

Thus, in case of more crashes than allowed by the upper bound of the theorem (Nfail >
ε−ε′
wm

) leads
to:

‖F (X)−Ffail(X)‖ > ε′− α
2 +max(1− α

2 , 1−
α

2(ε−ε′))(ε− ε
′+δwm) = ε− α

2 +max(−α
2 ,−

α
2(ε−ε′))(ε−

ε′ + δwm) + δwm = ε− α
2 −min(α2 ,

α
2(ε−ε′))(ε− ε

′ + δwm) + δwm.
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If ε− ε′ ≥ 1 then min(α2 ,
α

2(ε−ε′)) = α
2(ε−ε′)) and the latter inequality leads to ‖F (X)− Ffail(X)‖ >

ε− α
2 −

α
2(ε−ε′)(ε− ε

′ + δwm) + δwm = ε− α+ δ′, where δ′ = δwm(1− α
2(ε−ε′)) > 0 (for small α).

If ε − ε′ < 1 then min(α2 ,
α

2(ε−ε′)) = α
2 and the latter inequality leads to ‖F (X) − Ffail(X)‖ >

ε− α
2 −

α
2 (ε− ε′ + δwm) + δwm = ε− α

2 (1 + (ε− ε′ + δwm)) + δwm and since ε− ε′ + δwm > 0 this
implies that ‖F (X)− Ffail(X)‖ > ε− α

2 + δwm, which also leads to:

‖F (X)− Ffail(X)‖ > ε− α + δ′ (δ′ < δwm for small α and −α < −α
2 ) since α > 0).

In the inequality ‖F (X)− Ffail(X)‖ > ε− α+ δ′.

α is any positive real number, for which we can chose an input leading to the inequality. Since F
and Ffail are continuous, we can take the previous inequality to the limit α 7→ 0 and we abtain an
inequality that contradict the assumption that Fneu tolerates the crash of Nfail neurons.

Therefore, by contradiction, the bound is tight.

4 Multilayer Networks and Byzantine Failures

This section generalizes Theorem 1. While that theorem says that we can derive a tight bound
on how many neurons can crash without losing ε-accuracy, it does not capture the situation where
neurons can send values different from those expected, whether this difference is arbitrary or con-
trolled. The latter situation is that of correct neurons in a multilayer network: if a correct neuron
has faulty neurons on its left9, the output value of this neuron embeds some imprecision. The aim
is to evaluate how the loss of accuracy propagates through layers and bound it on the output.

4.1 Forward Error Propagation

Theorem 2 below says that, when errors occur at fl neurons of layer l, the effect is transmitted by
all correct neurons at any layer l′ between layer l and the output. This leads, in the worst case, to a
series of multiplications, as many times as there are layers on the right before reaching the output,
i.e (L−l) times, by the Lipschitz constant, by the number of correct neurons at layer l′, i.e (Nl′−f ′l ),
by the maximum weight w(l′)

m , by fl and by the bound C of Assumption 1. The previous products
are summed over the layers. As a calculation convention for the rest of the paper, we consider an
(L + 1)-th layer consisting of the output node with NL+1 = 1 correct neuron and fL+1 = 0 failing
neurons (though it is not part of the neural network, unlike the (L + 1)-th sets of synapses which
are part of the network). Finally, the effect of a failure on the output increases exponentially with
the depth of the layer (dependency on KL−l).

Denote by Fep the quantity described above and given by the following equation:

Fep = C

L∑
l=1

(
flK

L−lw(L+1)
m

L∏
l′=l+1

(Nl′ − fl′)w(l′)
m

)
.

Note that Fep has a polynomial dependency on K as observed in Figure 3.

Theorem 2. Consider a neural network containing L layers. If in each layer l, fl neurons, among
the Nl neurons, are affected by errors such that any neuron j within layer l broadcasts an output
y
(l)
j + λlj to the next layer instead of the nominal y(l)j , then the effect on the output is bounded as
follows:

9The conventions of left and right are defined in the neural computation described in Section 2.1.
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Net 1
Net 2
Net 3
Net 4
Net 5
Net 6
Net 7
Net 8

Er

Figure 3: Experimental values of the error (Er) at the output of several neural networks, affected
with similar amount of neuron failures, plotted against the Lipschitz constant in a log scale.

‖Fneu(X)− Fλ(X)‖ ≤ Fep (8)
where Fneu is the nominal neural function, Fλ the neural function accounting for the errors λ(l)j ,

and w(l)
m = max(|w(l)

ji |, (j, i) ∈ [1, Nl][1, Nl−1]) is the maximum norm of the weights of the incoming
synapses to layer l. The bound (8) is tight.

Proof. We proceed by induction on L.

Initiation.

Let Nfail = f1 be the number of neurons failing in the single layer of the network, let Ifail be the
set containing those neurons, we have:

‖Fneu(X)− Fλ(X)‖ = ‖
∑

i∈Ifail
w

(2)
i (y

(1)
i + λ

(1)
i )‖

Which, by the triangle inequality leads to:

‖Fneu(X) − Fλ(X)‖ ≤
∑

i∈Ifail
‖w(2)

i (y
(1)
i + λ

(1)
i )‖, equality cases occur for positively proportional

terms (Condition 1). Applying Assumption 1 and the definition of wm(2) gives us:

‖Fneu(X)− Fλ(X)‖ ≤ f1w(2)
m C (9)

Equality cases occur for inputs such that y(1)i + λ
(1)
i = C (Condition 2) and when the failing

neurons are all linked to the output with the maximal weight w(2)
m (Condition 3).

We observe that Inequation 9 is the (L = 1) version of Theorem 2, and that similarly, due to the
worst case of failures (i.e when Conditions 1 to 3 are simultaneously occurring), the bound is tight.

Induction step.

Assume Theorem 2 holds for networks with up to some number of layers L ≥ 1.
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Now consider a network consisting of (L+ 1) layers. The layered structure of the network enables
us to see each of the NL+1 neurons of the (L+ 1)th layer, first as an output to an L-layer network
(all the nodes to the left of that neuron), and second, after applying the activation function, as a
neuron in a single-layer neural network (consisting of the (L+ 1)th layer alone).

In this last (L+ 1)th layer, we can distinguish two subsets of neurons:

1. (Failing neurons at layer L+1) A subset of fL+1 failing neurons, that yields, as in the initiation
step (sigle layer), an error of at most fL+1w

(L+2)
m C.

2. (Correct neurons at layer L+1) A subset of NL+1 − fL+1 correct neurons. Those neurons
transmit to the output side (their right side), in addition to their nominal value, the error
E of the L-layer neural network on the left of layer (L+1), multiplying it by at most the
maximum synaptic weight from layer L to layer (L + 1), w(L+1)

m and the Lipschitz constant
K, yielding an error of at most E(NL+1 − fL+1)K.

By the induction hypothesis we have:

E ≤ C
L∑
l=1

flK
L−l

L+1∏
l′=l+1

(Nl′ − f ′l )w
(l′)
m

As the output node is linear (not part of the neural network and not performing any non-linear
activation function), the errors mentioned in 1 and 2 are added and yield a total error bounded as
follows:

‖Fneu(X)− Fλ(X)‖ ≤ fL+1w
(L+2)
m C + (NL+1 − fL+1)KE

≤ C
L+1∑
l=1

flK
L+1−l

L+2∏
l′=l+1

(Nl′ − f ′l )w(l′)
m

which is the desired bound for an (L+ 1)-layer network. The equality case follows from considering
the inter-occurrence of the equality cases at all the contributing parts, in case no constraint on the
network is set to avoid it.

By induction, Theorem 2 is true for any integer L ≥ 1.

4.2 Tight Bound on Neuron Failures

With the notations used before, in a network of L layers, each layer l containing Nl neurons, we
consider Nfail = (fl)

L
l=1 as the distribution per layer of Byzantine neurons (fl being the contribution

of layer l to Nfail). Using Theorem 2, and the same reasoning as in the proof of Theorem 1, it is
possible to derive a tight bound, not on the total number of failures as in single layer case, but on
the failures per layer distribution10 Nfail = (fl)

L
l=1.

Theorem 3. Let F be any continuous function mapping [0, 1]d to [0, 1], let ε and ε′ be any two
positive real numbers such that 0 < ε′ ≤ ε. Given any Fneu that is an L-layer neural ε′-approximation
of F with Nl neurons per layer l, given Nfail = (fl)

L
l=1 such that ∀lfl < Nl and

Fep ≤ ε− ε′. (10)
Then Fneu tolerates the distribution of Byzantine neurons Nfail. The bound (10) is tight.

10We use the natural extension of Definition 3 to this generalization from an integer Nfail to an L-tuple of failures
per layer.
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Proof. Denote by Ffail the output of the network after Nfail failures, using Theorem 2 we have:

‖Fneu(X)−Ffail(X)‖ ≤ C
L∑
l=1

flK
L−l

L+1∏
l′=l+1

(Nl′ − f ′l )w
(l′)
m . Combining this with inequalities 4 and 5

we obtain: ‖F (X)− Ffail(X)‖ ≤ ε′ + C
L∑
l=1

flK
L−l

L+1∏
l′=l+1

(Nl′ − f ′l )w
(l′)
m . If Nfail satisfies inequality

10 then we have ‖F (X)−Ffail(X)‖ ≤ ε. This proves the upper bound. Tightness follows the worst
case reasoning on the equality and limit cases as done in the proof of Theorem 1.

To better appreciate the message of Theorem 3, one has to bare in mind that the left-hand side of
Equation 7 comes from the forward error propagation due to the failure distribution Nfail (Theorem
2) while the right-hand side is the the maximal error permitted by the over-provision.

Note that, in Theorem 2, small K and small weights reduce the propagating error Fep, which
translates in Theorem 3 to: the smaller the K and the weights, the easier it is to satisfy the
condition with large fl. This sets the basis for the trade-off on tuning K or reducing the weights,
as we stated in the introduction and as we discuss in the last section. Note also that in the case of
crashes without Byzantine neurons, Assumption 1 is not necessary and C can be replaced by the
maximum of the activation function (1 in case of sigmoid), which is the maximum value a neuron
can send. Note finally that Lemma 1 can also be derived as a limit case of Theorem 3: Nfail

C→∞−−−→ 0.

4.3 The Failure of Synapses

The following lemma links errors at synapses to errors at neurons. Again we use the convention that
layer L+ 1 corresponds to the output node, in addition to the convention that layer 0 corresponds
to input nodes.

Lemma 2. In any L-layer neural network, an error of value λ(l)ji at the synapse from neuron i of
layer l − 1 to neuron j of layer l is at worst, equivalent to an error at neuron i of value C.K.

Proof. Let l be a layer in the neural network, and let i and j be any neurons from l − 1 and l
respectively.

An error of value λ(l)ji in the synapse from neuron i to neuron j yields a received sum at neuron j,

noted s(l)λ,j and given by Equation 1 as follows:

s
(l)
λ,j =

Nl−1∑
k=1,k 6=i

w
(l)
jk y

(l−1)
k + w

(l)
ji y

(l−1)
i + λ

(l)
ji

=
Nl−1∑
k=1

w
(l)
jk y

(l−1)
k + λ

(l)
ji

Therefore, by K-Lipschitzness of the activation function, the output error of neuron j is bounded
as follows:

|error| = |ϕ(s
(l)
λ,j)− ϕ(s

(l)
j )| ≤ K.|s(l)λ,j − s

(l)
j | = K.|λ(l)ji |

In the worst case the transmitted error |λ(l)ji | is equal to C following Assumption 1 and the bound
|error| ≤ C.K is tight.
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Theorem 4. Given Nfail = (fl)
L+1
l=1 , the distribution of Byzantine synapses, with fl being the

number of failing ones linking layer l−1 to layer l: If C
L+1∑
l=1

flK
L+1−lw

(l)
m

L+1∏
l′=l+1

(Nl′−f ′l )w
(l′)
m ≤ ε−ε′

then Fneu tolerates the distribution of Byzantine synapses Nfail = (fl)
L+1
l=1 . This bound is tight.

Proof. Lemma 2 implies that the failure of a distribution Nfail of synapses in an L-layer network is
equivalent, in the worst case, to the failure of a distribution Nfail of neurons in an L+ 1 network.
Applying Theorem 3, the result follows.

4.4 Reduced Over-provisioning

Our condition, under which over-provisioned networks can be robust (Theorem 3), concerns networks
reaching a precision ε′ finer than the one they are required to keep ε (i.e ε′ < ε). One can wonder
how hard it is to reach ε′ (i.e, how precise should the over-provisioned network be to tolerate Nfail).
The following corollary establishes the feasibility of building robust networks that can be arbitrarily
close to non robust ones (ε′ − ε being arbitrarily small).

Corollary 1. Let Nfail be any set of L integers as described in 4.2, ε > 0 any precision level
and F any target function. Then for every ε′ > 0 such that ε′ < ε, there exist a neural network
approximating F with precision ε′ and preserving precision ε under failure distribution Nfail.

Proof. The existence of a network ε′-approximating F is guaranteed by the universal approximation
theorem [32] applied to ε′ and F . Let w(l)

m be the maximal weights at each layer of this network, for
the robustness constraint, let (Nl)1≤l≤L be any set of integers, large enough such that the condition
of Theorem 3 is satisfied with Nfail, w

(l)
m and ε− ε′. Then, following Theorem 3, this network is an

ε-approximation of F that tolerates the failure distribution Nfail.

5 Applications

5.1 Reducing Memory Cost

When implementing neural networks in hardware, reducing memory cost typically goes with reduc-
ing the precision with which each neuron performs its local computation. However, reducing this
local precision impacts accuracy. Recently, experimental results [31] reported interesting trade-offs
between cost reduction and accuracy of the output. We provide here the first theoretical result
quantifying those trade-offs.

In the case of a neural network containing L layers where the cost reduction implies a maximum
error of λl per layer l, the accuracy degradation in the output is bounded by a sum similar to what
we give in Theorem 3. This application is not a direct consequence of Theorem 3 but can be more
specifically derived from the observations made in the proof of Theorem 2, in which we replace the
uniform bound C on the transmission capacity by local bounds λl per layer. We get the following
theorem.

12



Theorem 5. If in each layer l, the implementation induces an error at each neuron j of layer l
bounded by λl, then the effect on the output is bounded as follows:

‖Fneu(X)− Fλ(X)‖ ≤
L∑
l=1

KL−lλl

L∏
l′=l

Nl′w
(l′+1)
m (11)

where Fneu is the nominal neural function, Fλ the neural function accounting for the errors λl,
w

(l)
m = max(‖w(l)

ji ‖, (j, i) ∈ [1, Nl][1, Nl−1]) the maximum norm of the weights of the incoming
synapses to layer l, and K the Lipschitz coefficient of the activation function. Inequality 11 is tight.

Proof. The proof is similar to that of Theorem 2. We proceed by induction on L, the number of
layers in a neural network.

Initiation. In a single-layer neural network with N neurons, if each neuron i introducing an error
λi, and all errors bounded by C, then the difference between the nominal output and the output

affected by errors is given by
N∑
i=1

λiw
(2)
i where w(2)

i is the weight from neuron i to the output,

therefore the total error is bounded by NCw(2)
m where w(2)

m is the maximum weight from the single
layer to the output. This is the base case (L = 1) of our induction.

Induction step. Let L be an integer such that we have the result of Inequality 11 for every network

of L layers. Let EL =
L∑
l=1

KL−lλl
L∏
l′=l

Nl′w
(l′+1)
m .

Consider now a network of L+1 layers. As for the proof of Theorem 2, every neuron i of layer L+1
is the output of an L layer network. Neuron i therefore receives a sum affected by an error of at
most EL to which it adds its own error λL+1

i , and applies the activation function which multiplies
the total error by at most K.

The total error at each neuron i is therefore bounded by KEl +KλL+1. Applying the base case at
the final output of the network, we bound the final error by NL+1w

(L+2)
m (KEl + KλL+1) which is

equal to
L+1∑
l=1

KL−lλl
L+1∏
l′=l

Nl′w
(l′+1)
m and proves the induction.

5.2 Boosting Computations

Consider a network where neurons do not have the same reactive speed to inputs, but can be reset
instantly to ignore their actual computation. Each time a neuron receives a sufficient amount of
information from its preceding input layer, it sends a reset to the slow neurons (in the preceding
layer) instead of waiting for their values and move on with its own computation, adopting value 0
for the slow neurons. Theorem 3 gives a sense of that sufficient amount of information from which
we derive the following corollary.

Corollary 2. Following the notation of Theorem 3 in the crash case (C = 1 as explained in 4.2),
If Fneu is an ε′-approximation of F , then given any family of integers fl satisfying the conditions of
Theorem 3, then each neuron of layer l has to wait only for Nl−1 − fl−1 signals from layer l − 1 to
send a value to layer l+1, as well as a reset to the missing neurons at layer l−1, while guaranteeing
a correct ε-approximation of F at the output.

Proof. The corollary is a direct consequence of Theorem 3.
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5.3 Balancing Robustness and Ease of Learning

Improving the robustness of a neural network can be viewed as minimizing Fep (the right hand
term of the inequality in Theorem 2) during the learning scheme.

This would ensure that the neural network has learned the optimal weight distribution and is taking
full advantage of the over-provisioning. Clearly, over-provisioning to guarantee ε′-accuracy impacts
the amount of data needed for learning without over-fitting. This creates a dilemma that somehow
resembles the famous bias/variance dilemma [35] in machine learning. In our case, this corresponds
to a robustness/ease-of-learning dilemma. The trade-off has two forms we detail below.

Trade-off on the Lipschitz constant of the activation function (K). Choosing a low value of
K leads to satisfying the inequalities of theorems 3 and 4 with high numbers of faults (dependency
on KL−l). But one should recall that K is an estimate of how sharp the discrimination between
inputs at the level of a single neuron is (Figure 2). Therefore, for a network with a low-K activation
function, the learning time and the number of necessary neurons can be higher than with a high-K
activation function, for the latter is more discriminating.

Trade-off on synaptic weights. Like for the Lipschitz-constantK, one can note in theorems 3 and
4 (multiplications by the weight) that imposing low weights leaves some room for higher numbers
of faults while still satisfying the bound. Achieving this goes through increasing the number of
neurons. Intuitively, more neurons are needed to sum to the desired value, if the weights are lower.

6 Concluding Remarks

We established tight bounds relating the output accuracy loss of a neural network to failures of its
neurons and synapses. Our bounds are derived from a quantity, Fep, the forward error propagation
(given in Theorem 2), relating the propagation of imprecision in a neural network to specific parame-
ters of that network, namely, weights, transmission capacity of synapses, coefficient of Lipschitzness
of the activation function and number of neurons per layer. The bounds provide a theoretical ex-
planation for some of the cost reduction strategies observed experimentally [31]. Leveraging these
bounds, we provided a scheme to boost the synchronization of neural networks and we identified
key trade-offs between robustness on the one hand, and learning cost on the other hand.

Whilst our results were established in the context of a feed forward neural network, the underlying
methodology (theorems 1, 2 and 3) can be applied to other neural computing models. In the case
of the convolutional network model [5], the neurons have a limited receptive field (they are not
connected to all other neurons in the adjacent layers like in the feed-forward case), and the weights
have a periodic distribution within each layer reducing the size of the set of synapses, which leads in
turn to less restrictive bounds (i.e tolerating larger amount of failures). More precisely, the maximal
weight constraint w(l)

m appearing in theorems 2 and 3 will run only11 on the R(l)-different values of
the weights from layer l− 1 to layer l, R(l) being the size of the receptive field of layer l (i.e to how
many neurons of layer l − 1 each neuron of layer l is connected).

11With the notation of theorems 2 and 3, let us consider a convolutional network as a multilayer feed forward
neural network such as for each synapse connecting a neuron i in layer l to a neuron j in layer l − 1 not belonging
to the receptive field of i, we have w

(l)
ji = 0. Together with the weight sharing property of convolutional networks

this leads to the equality between the maximal weight in absolute value over a layer w
(l)
m and the maximum weight

in absolute value over a single receptive field.
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More generally, we believe that the methodology that led to our results can be applied to any
set of distributed processes achieving a global computation while putting weights on the values of
each other and (unlike classical settings in distributed computing [14]) are not performing the same
computation in each node and do not have to agree on values, as long as a similar condition to
Assumption 1 applies (bounded channel capacity).

To conclude, it is important to note that our results were established independently of the chosen
learning scheme. An appealing research direction is to consider a specific learning scheme taking
the forward error propagation as an additional minimization target which would reduce the impacts
of failures. To our knowledge, there has been one single attempt to theoretically formulate such an
optimization problem [36], but it only minimizes the effect of the crash of a single neuron. Our
bounds help formulate the distributed optimization problem for a multiple neurons and synapses,
which opens the question of the computational cost of building a neural network that achieves a
given robustness constraint with such a learning scheme.
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