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Abstract

Neural networks are considered robust in the sense that the failure of neurons can be compen-
sated by additional learning phases. Nevertheless, in a critical application such as flight control,
for which neural networks are now appealing solutions, one cannot afford any additional learning
at run-time.

In this paper, we view a neural network as a distributed system of which neurons can fail,
and we evaluate its robustness in the absence of any (recovery) learning phase. We give, for the
first time, tight bounds on the number of neurons that can fail, without harming the result of
a computation or making any assumption on the learning algorithm. To determine our bounds,
we leverage the very fact that neuronal activation functions are Lipschitzian.

We distinguish the case of neurons that can fail and stop their activity (crash) from the case
of neurons that can fail by transmitting arbitrary information (Byzantine). We show that, in
the first case (crash), the bound is on a polynomial value expressed in terms of the number
of neurons per layer, the Lipschitz constant of the neuronal activation function, the number of
failing neurons, the synaptic weights and the depth of the layer where the crash occurred. In
the second case (Byzantine), besides the parameters of the first case, the bound depends also on
a polynomial term in the maximum error value of failing neurons. We also show how to extend
our results to the case where synapses can fail.

In particular, in the case of multilayer (often called deep) neural networks, our results provide
a guidance on how to distribute synaptic weights over layers, and how to tune the neuron
activation function to increase robustness.

1 Introduction

Since their inception in the 1940s [25], neural networks received an oscillating amount of interest
[34, 3]. They went trough two periods of excitement followed by a loss of interest. After the very
first period of excitement, from the 1950s [33] to the late 1960s, came the AI winter, when Minksy
questioned the ability of perceptrons to learn non linearly separable functions such as XOR [27].
Neural networks received a regain of interest in the late 1970s with the back-propagation algorithm
[43] that overcame learning issues. Interest vanished again in the 1990s due to the lack of computing
power, even-tough important practical achievements were done in the late 1980s and early 1990s
in the field of image recognition [21, 20]. Neural networks are now back in the headlines for their
outstanding performance [12, 35, 17, 39, 37], in tasks such as function approximation, image and
speech recognition, as well as weather prediction [16]. Today, neural networks are being implemented
to serve in far more critical applications than those of the last decade. New applications that seek
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the use of neural networks include flight control [6], radars [9] and electric cars [8]. This motivates
a better understanding of the extend to which neural networks can be robust.

A simple approach to achieve robustness is to consider the entire neural network as a single piece
of software [11], replicate this piece on several machines, and use classical state machine replication
schemes to enforce the consistency of the replicas [36]. In this context, no neuron is supposed to
fail independently: the unit of failure is the entire machine hosting the network. However, forcing
an entire network to run on a single machine clearly hampers scalability. One could also consider
strict subsets of the neural network as different pieces of software, running on one Turing machine
each [7]. In this case, classical replication schemes can still be applied, but one has to face usual
distributed computing problems, e.g., to handle the synchronicity of message passing between the
subsets of the network [23].

Biological plausibility, together with scalability, call for going one step further and considering each
neuron as a single physical entity that can fail independently, i.e., to go for genuinely distributed
neural networks [28]. This approach is considered for example in the Human Brain project [24],
trying to emulate the mammalian brain, the connectomics approach, searching for the nervous
system topology [22], or various works on hardware-based neural networks [14, 29, 5].

In this paper, we explore this path and view a neural network as a distributed system where neurons
can fail independently. We ask what is the maximum number of such failures that can be masked
by the neural network, i.e., without having any impact on the overall computation. Addressing this
question goes however first through precising it.

It is actually well known that the failure of neurons can be tolerated through additional learning
phases [32, 41]. However, stopping a neural network and recovering its failures through a new
learning phase is not an option for critical applications. One can also consider specific learning
schemes a priori that makes it possible to tolerate failures a posteriori, e.g., shutting down parts
of the network while learning, in order to cope with failures at run-time [30, 15, 17, 39]. We also
exclude such a possibility to seek a general result. Our question can then be precised as follows:
if (a) we do not make any assumption on the learning scheme and (b) we preclude the possibility
of adding learning phases after computations have started, what is the maximum number of faulty
neurons that can be tolerated by a neural network?

At this point, the question might sound trivial and the answer could be simply none. Indeed,
how on earth could a neural network tolerate failures if it was not specifically devised with that
purpose in mind? More specifically, if the failures of a number of neurons do not impact the overall
result, then these neurons could have been be eliminated from the design of that network in the
first place. In fact, the reason why the question is nontrivial is over-provisioning [19]. Indeed,
neural networks are rarely built with the minimal number of neurons to perform a computation. To
estimate exactly this minimal number, one needs to know the target function the network should
approximate, which by definition is unknown1. In fact, it has been experimentally observed that
over-provisioning [26, 4, 12, 15] leads to robustness. Yet the relation between the over-provision and
the actual number of failures to be tolerated has never been precisely established. In this paper, we
establish this relation for the first time2.

In this paper, we present non-trivial tight bounds on the number of faulty neurons a neural network
can support without harming the computation result. We do not require any additional learning

1In machine learning, we only know a finite number of the values of the target function: the learning data set
2 Of course over-provisioning has its own cost: the need for larger learning data sets and a higher risk of over-fitting

[42], two topics that are out of the scope of this paper.
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phase nor make any assumption on the prior learning algorithm. In the case of multilayer, or so
called deep networks, we formulate our results in the form of fault-per-layer distribution. The results
are obtained using analytic properties of the different mathematical components of a neural network,
namely the activation function, the synaptic weights, and the computation model of the network. By
relying on the very fact that neuronal activation functions are bounded, and in practice Lipschitzian
[38], we set precise bounds on the error propagation over the layers and therefore establish upper
bounds on the number of failures a neural network can support.

Our results can directly be used as a basis to set-up constraints on the construction of a neural
network. In addition to setting learning constraints using our bounds, designers can use our results
as a recipe to tune the coefficient of Lipschitzness as well as the trade-off between robustness and
ease of learning. Another application is to gauge when recovery-learning should be launched, for
example in a hardware implementation, knowing the degradation rate (space radiation degradation
of satellites for example).

For didactic reasons, we present our results in an incremental manner: we consider first a network
with a single layer and focus on the crashes of neurons, then we generalize to a multilayer network
with arbitrary (Byzantine [18]) failures of neurons, and finally to the arbitrary failures of synapses.

The rest of the paper is organized as follows. In Section 2, we model a neural network as a distributed
system. In Section 3 we prove the upper bound on crash failures in the case of single-layer neural
network. We use this proof as a starting point for the generalization given in Section 5 on Byzantine
failures, first for neurons and then for synapses. We conclude the paper in Section 6 by highlighting
some interesting trade-offs. For space limitations, some of the proofs are deferred to the appendices.

2 Model

In this section, we present our model, in which we view a neural network as a distributed system,
then we describe the computation model and state the robustness criteria.

2.1 Neural networks as distributed systems

We distinguish two main kinds of components of a neural network:

Processes: Neurons are the computing nodes of an neural network, they are unreliable, can either
stop computing (crash) or send a value different from their nominal output (Byzantine faults). The
failure of any node is independent from the failure of any other node. Neurons communicate via
message-passing [23] through communication channels called synapses.

Channels: Synapses have a similar reliability model as the neurons: either they are correct, they
stop transmitting the messages, or they transmit different messages than those they were supposed
to transmit (those sent by correct neurons). The failure of a synapse is also independent from that
of other synapses and neurons.

One important property of synapses is they are weighed3. The weight in a synapse models the
importance a neuron gives to the output of the neuron at the other end of the synapse. Faults at
synapses can then be modeled as errors in the value of the weight: a crashed synapse is weighed by
value 0, and a Byzantine synapse exhibits any other value than the nominal value it is supposed to
have.

3The weights are determined by the initial learning phase, when building the network.
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Figure 1: A (feed forward) neural network (solid nodes and edges), with L = 3, N2 = 3 and
N1 = N3 = 4. Input and output nodes (dotted) are not considered as parts of the network, but as
clients. For readability, only some synaptic weights are represented (blue).

2.2 Computation

In the classical model of a multilayer perceptron [12], neurons are distributed over a series of layers.
In our paper, L is the number of layers, each identified with index l and containing Nl neurons.
We call L− l the depth of the layer l. Each neuron fires (broadcasts) a signal to all the neurons of
the next layer. Neuron j at the layer l receives the sum given by s(l)j of Equation 1, where y(l−1)i

and w(l)
ji denotes respectively the output value at the ith neuron of the l− 1th layer, and the weight

of the synapse from that same neuron to the jth one of the next layer l. To define its own output
y
(l)
j , the jth neuron of the lth layer in turn injects the sum given by Equation 1 into a non-linear
activation function, often called a squashing function, ϕ, after adding a bias4.

s
(l)
j =

Nl−1∑
i=1

w
(l)
ji y

(l−1)
i with y(l)j = ϕ(s

(l)
j ), for l ≥ 1 ; y(0)j = xj and Fneu(X) =

NL∑
i=1

w
(L+1)
i y

(L)
i (1)

Definition 1. Let A = C([0, 1]d, [0, 1]) denote the space of continuous functions mapping [0, 1]d to
[0, 1]. Fneu(.) as defined by Equation 1 is said to be a neural ε-approximation of a target function
F (.) ∈ A if we have: ∀X ∈ [0, 1]d: ‖F (X)− Fneu(X)‖ < ε

Universality. The effectiveness of feed-forward neural networks –which are the most common
model in the literature – rely on a fundamental theorem [13] that guarantees their universal approx-
imating power with as few as one single layer (L=1). The theorem has been successively proven
and generalized [13]5.

[Universality theorem.] (We refer the reader to the proof of [13].) Let d be an integer, let ϕ(.) : R→
[0, 1] be a strictly-increasing continuous function. Then given any function F ∈ A and ε > 0, there
exist an integer N(ε), and a set of coefficients (w

(1)
ji )

1≤i≤d
1≤j≤N(ε) and (w

(2)
i )1≤i≤N(ε) such that Fneu(.)

defined in Equation 1 is a neural ε-approximation of F (.).
4Following the usual notational convenience [12], we omit the bias in the computation model, cf. appendix.
5Note that universality for L=1 is harder to obtain than for L > 1 (fewer layers to approximate the target

function).
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Activation function. This function, is behind the non-linearity of neural networks, increasing
their approximating power. The universality theorem holds for any non-constant, bounded and
monotone-increasing activation function ϕ(.). Yet, two main popular choices for ϕ in machine
learning applications are the logistic function sigmoid given by: sigmoid(x) = 1

1+e−x and the
hyperbolic tangent tanh. In this paper, we only impose on ϕ the conditions of the universality
theorem, and consider that ϕ is Lipschitzian, meaning thatK = sup |ϕ(x)−ϕ(y)x−y |

(x,y)∈R2
exists and is a

finite real number. The commonly used functions, sigmoid is 1
2 -Lipschitzian, and as any Lipschitzian

function it can be tuned to be K-Lipschitzian, where K is any desired positive real value, by for
example taking x 7→ ϕ(K2 x) as the K-tuned activation function. (The detailed derivation of the
Lipschizness of ϕ is given in the appendix.)

2.3 Failures and robustness

Definition 2. We say that a neuron i in layer l is dead (crashed), when the output value at that
neuron y(l)i is permanently 0. We say that neuron i is failing arbitrarily (Byzantine), when y(l)i can
take any value, however, we assume the error in our model to be bounded.

Hypothesis 1. (Bounded error hypothesis.) There exist a uniform upper bound λ ∈ R∗+ such that
for any input X any erroneous neuron where the output is yi(X) + λi, with yi(X) is the nominal
value dictated by the computation model and λi the error, the neuron final value is bounded by λ in
absolute value: ∀i ∈ [0, N ] : |yi + λi| ≤ λ

The latter hypothesis is a translation of the physical limits of the synapses: if an erroneous neuron
corrupts the value it is supposed to send, this value is limited by the highest amount of electric charge
the synapse can transport to the next neuron. Note that without this hypothesis, Byzantine
neurons cannot be tolerated: a crazy neuron can send values as high as needed to fake a working
network, while in fact all the other neurons are crashed (dead).

Definition 3. We say that a neural ε-approximation Fneu(.) of a target function F (.) realized by
N neurons supports Nfail faulty neurons, if for any subset of neurons Ifail ⊂ {1, · · · , N} of size
Nfail, we can modify Fneu(.) for the failing neurons consequently (0 for dead neurons, yi + λi for
Byzantine ones) and still ε-approximate F (.) by Fneu(.).

2.4 A corollary to universality

As a consequence of the universality theorem, we can define a minimal number of neurons Nmin(ε)
below which ε-accuracy cannot be achieved. By definition of Nmin(ε), if a neural network is built
with Nmin(ε) neurons, it cannot support any neuron’s crash.

Clearly, neural networks are not robust when built with the minimal amount of neurons. We thus
evaluate Nfail for networks over-provisioned in neurons. We base our inquiry on the obvious fact
that if a neural network contains more than Nmin(ε) neurons, it must be realizing ε′-accuracy, with
ε′ ≤ ε: Indeed, given ε′ ≤ ε and Fneu(.) a neural approximation realizing ε′-approximation of F (.)
with Nmin(ε

′) neurons, Fneu(.) also realizes an ε-approximation of F (.).

In the rest of the paper, we set the conditions under which non-minimal networks, containing N
neurons, and achieving ε′-accuracy (ε′ ≤ ε), can supportNfail failures and keep achieving ε-accuracy.
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3 Failure of neurons in a single-layer neural network

This section deals with the case of the single layer neural network given by the universality theorem.
To establish our bound, we translate the fact that the network supports the crash of Nfail neurons
as given by Definition 3, which we combine with an estimation of the distance between the value
of the damaged network and the nominal value of the output (which we recall is close to the target
by a distance ε′). We end up with an upper bound on Nfail.

To prove that the obtained bound is tight, we look at the worst failure case. Intuitively, this
corresponds to killing “key neurons“: those with highest weights, and looking at an input were those
same neurons were instrumental: firing the highest possible value y(1)j , the closest possible to 1.

Theorem 1. It is possible for a neural network to support up to Nfail crashed neurons, as long
as Nfail ≤ ε−ε′

wm
, where wm = max(‖w(2)

i ‖, i ∈ [1, N ]) is the maximum norm of the weights from
the hidden layer to the output node. When no additional constraints are imposed on F (.) or on the
network, this bound is tight.

We can rephrase the result of Theorem 1 in terms of number of neurons. With the work of Barron
[1, 2] we know that: Nmin(ε) ≈ C

ε for small enough ε where C is a constant depending on the nature
of the target function F (.), and the learning data-set that we consider as exogenous to our study.
If in addition the over-provisioning was done with the minimal amount to achieve ε′:

Nfail ≈ 1
wm

[ C
Nmin(ε)

− C′

Nmin(ε′)
] where C and C ′ are constants of the same nature as the parameter

introduced by Barron.

For convenience, all the estimations of Nfail are stated in terms of ε and ε′, since the latter param-
eters are easier to evaluate.

Proof. Upper bound. Let Fneu denotes the neural ε′-approximation of F, and let Ffail denotes
the remainder of the neural function Fneu after Nfail dead neurons at the only hidden layer, let
Ifail be the set containing the Nfail dead neurons, and let X ∈ Rd any input vector. By triangular
inequality of norms we have:

‖F (X)− Ffail(X)‖ ≤ ‖F (X)− Fneu(X)‖+ ‖Fneu(X)− Ffail(X)‖ (2)

With an equality case when for an input X we have F (X)− Fneu(X) and Fneu(X)− Ffail(X) are
positively proportional (Condition 1: equality case of the triangular inequality). We know that:

‖F (X)− Fneu(X)‖ < ε′ (3)

since Fneu(.) is an ε′-approximation of F (.). From Equation 1 applied to the output neurons in the
case of both normal Fneu(.) and Ffail(.) neural functions, we have:

‖Fneu(X)− Ffail(X)‖ = ‖
N∑
i=1

w
(2)
i yi(X)︸ ︷︷ ︸

Fneu signal from the hidden layer to the output.

−
N∑

i=1,i/∈Ifail

w
(2)
i yi(X)‖

︸ ︷︷ ︸
Ffail signal from the hidden layer to the output.

= ‖
N∑

i=1,i∈Ifail

w
(2)
i yi(X)‖
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Using another triangular inequality on norms we get

‖Fneu(X)− Ffail(X)‖ ≤
N∑

i=1,i∈Ifail

‖w(2)
i ‖.‖ yi(X)︸ ︷︷ ︸

case of Fneu(.)

− 0︸︷︷︸
case of Ffail(.)

‖ (4)

With an equality case when the dead neurons are those for which the corresponding weights in the
previous sum are positive. (Condition 2)

And by definition of wm and the hypothesis on the bounded activation function we have: (∀X ∈
Rd)(∀i ∈ [1, N ]) : ‖w(2)

i ‖ ≤ wm and yi(X) ≤ 1. Inequality 4 becomes:

‖Fneu(X)− Ffail(X)‖ ≤
N∑

i=1,i∈Ifail

w(2)
m︸ ︷︷ ︸

sum over the set of dead neurons containing Nfail times a constant term

≤ Nfail.w
(2)
m

(5)

With an equality case if the dead neurons are those for which the corresponding weights in the
previous sum are those where the maximal value of the weights is achieved. (Condition 3)

Merging inequalities 2, 3 and 5 we obtain: ‖F (X)− Ffail(X)‖ ≤ Nfail.w
(2)
m + ε′.

So that if we want to guarantee that Ffail, the neural function obtained with Nfail neurons dead
is still an ε-approximation of F (.), i.e, if we want ‖F (X) − Ffail(X)‖ ≤ ε a sufficient condition on
the weights, the learned accuracy and the number of dead neurons is: Nfail.w

(2)
m ≤ ε− ε′. Thus the

upper bound on Nfail : Nfail ≤ ε−ε′

w
(2)
m

.

Tightness. Let α > 0 any given positive real. If (condition 4) there is an input X such that for
any neuron i in Ifail, we have yi(X) > max(1− α

2 , 1−
α

2(ε−ε′)), i.e yi(X) close enough to 1.

In the worst case, when no constraint prevents condition 4, and conditions 1 to 3 – mentioned
in the upper bound proof – to be impossible, we can write the equality case from 2, 3 and 5.

‖F (X)− Ffail(X)‖ = ‖
N∑

i=1,i∈Ifail
w

(2)
i yi(X)‖+ ‖F (X)− Fneu(X)‖

moreover, at Inequality 3, for any α > 0 we can exhibit an input X such that ‖F (X)−Fneu(X)‖ >
ε′− α

2 , otherwise ε
′ is not the best accuracy achieved by Fneu(.). In case of an input combining this

situation with the conditions of the previous paragraph, we obtain:

‖F (X)− Ffail(X)‖ > max(1− α
2 , 1−

α
2(ε−ε′))Nfail.w

(2)
m + ε′ − α

2

Which in case of more crashes than allowed by the upper bound of the theorem, Nfail >
ε−ε′

w
(2)
m

leads

to: ‖F (X)−Ffail(X)‖ > max(1− α
2 , 1−

α
2(ε−ε′))(ε−ε

′)+ε′− α
2 = ε− α

2 +max(−
α
2 ,−

α
2(ε−ε′))(ε−ε

′) >

ε− α
2 −

α
2(ε−ε′)(ε− ε

′) which leads to: ‖F (X)− Ffail(X)‖ > ε− α.
While α is any positive real number, we can take the previous inequality to the limit α 7→ 0, and we
would have exhibited an input violating ε-accuracy for Ffail. Proving that the bound is tight.
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4 Generalization to multilayer networks and Byzantine failures

In this section, we give a generalization of the result of Theorem 1. While the previous result
shows that we can derive a tight upper bound on how many neurons can crash without losing the
ε-accuracy, it does not say anything about a situation where some neurons can send values different
from what expected. Interestingly, the proof we provided to Theorem 1 suggests a generalization
to neurons with arbitrary behavior.

Assume a neuron i is broadcasting, instead of its nominal value yi, a corrupted value: yi + λi,
Inequality 5 in the previous proof intuitively suggests that if we have a uniform upper bound on λi,
we can derive a generalized version of Theorem 1 to include the case of Byzantine neurons. Using
the bounded error hypothesis 1, we present a lemma that enables not only to generalize Theorem
1 to Byzantine neurons, but to go beyond and generalize the sufficient condition to a multilayer
neural network, or so-called deep neural networks, as well as to the case of failing synapses.

4.1 Error forward propagation

The idea behind the error forward propagation lemma is that, by induction on the number of layers,
when errors occurs at NCl

neurons of layer l, the effect will be transmitted by all the correct neurons
in the layers l′ between it and the output , only the correct ones (Nl′ −NCl′ ), as the failing one will
be sending their own error, and Hypothesis 1 makes it possible to include the received error in the
error of the failing ones. Resulting, in the worst case, in a multiplications, as many times as there
are still layer to reach the output, by the Lipschitz constant, Nl′ −NCl′ , the maximum weight w(l)

m ,
and finally by the bound λ of Hypothesis 1 and by NCl

. The previous products are summed over
the layers. Figure 2 shows error propagation in a simple neural network of 2 layer with 2 neurons
each. As a calculation convention for the rest of the paper, we will consider an (L + 1)-th layer
consisting of the output node with NL+1 = 1 correct neuron and NCL+1

= 0 failing neurons (though
it is not part of the neural network, unlike the (L+ 1)-th synapses which are part of the network).

Lemma 1. In a neural network containing L layers, if in each layer l, NCl
neurons, among the Nl

neurons of that same layer, are affected by errors such that each neuron j of layer l is broadcasting
an output y(l)j + λlj to the next layer instead of the nominal y(l)j , then the effect on the output is
bounded by:

‖Fneu(X)− Fλ(X)‖ ≤ λ
L∑
l=1

NCl
KL−l

L+1∏
l′=l+1

(Nl′ −NCl′ )w
(l′)
m (6)

where Fneu(.) is the nominal neural function, Fλ(.) the neural function accounting for the errors λ(l)j ,

and w(l)
m = max(|w(l)

ji |, (j, i) ∈ [1, Nl][1, Nl−1]) is the maximum norm of the weights of the incoming
synapses to layer l.

Unless there are additional constraints on the network and on F (.), this upper bound is tight.

Note that the smallest are K and the different w(l)
m , the smallest is the propagating error. This

should be kept in mind for the upcoming results.

The lemma is provable by induction: thanks to the structure of neural networks, an L + 1-layer
network can be seen as single-layer network (last layer), in which, before applying the activation
function, each node is the output of an L-layer network (all the neurons to the left).
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A proof of the lemma is given in the appendix.
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Figure 2: (Error forward propagation) Neuron 2 of layer 1 is broadcasting, in addition to its nominal
value y(1)2 an error λ(1)2 , this error, weighed with at most w(2)

m , will affect the nominal values of correct
neurons (neuron 1) from layer 2 that will inject it in the activation function and relay its effect.
Failing neuron 1 of layer 2 will add another error λ(2)1 ), weighed with at most w(3)

m to the output
node. Er is bounded by λ(Kw(2)

m + w
(3)
m ).

4.2 Upper bound on neuron failures

While the universal approximation theorem guarantees universal ε-approximation with single-layer
neural network for any function on a compact subset of a finite-dimensional space of inputs, prac-
titioners of machine learning are using more and more deep networks with several layers, latest
reported results [40] on image-recognition tasks give numbers as high as few hundred layers.

It is therefore important, from the practical point of view, to give the multi-layer equivalent of the
main result formulated in Section 3, Theorem 1. As we establish in the following, the number of
crash per layer is not uniform and depends on the depths of the layer in a quasi-geometric fashion
with regards to the weight distribution.

With the notations used before, if we have a network of L hidden layers, each layer l containing

Nl neurons, and writing Nfail =
L∑
i=1

NCl
as the number of misbehaving neurons with NCl

being

the part of Nfail happening at layer l. Using Lemma 1, and the same reasoning as in the proof of
Theorem 1, it is possible to derive a tight upper bound, not directly on Nfail as in monolayer case,
but on the NCl

than sums up to Nfail.

Theorem 2. An upper bound for a multilayer neural network to support Nfail is given by the

inequality: λ
L∑
l=1

NCl
KL−l

L+1∏
l′=l+1

(Nl′ −NCl′ )w
(l′)
m ≤ ε− ε′. Unless there are additional constraints on

the network and on F (.), such as symmetries or periodicity, this bound is tight.

As noted after Lemma 1, small K and small weights reduce the propagating error, which translates
in the previous theorem as: the smallest are K and the weights, the easier it is to satisfy the bound
while NCl

are getting larger. This sets the basis for the trade-off on tuning K or reducing the
weights, as we stated in the introduction an as we will discuss in the conclusion.

Proof. Denote by Ffail the output of the network after Nfail failures, using Lemma 1 we have:
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‖Fneu(X) − Ffail(X)‖ ≤ λ
L∑
l=1

NCl
KL−l

L+1∏
l′=l+1

(Nl′ − NCl′ )w
(l′)
m . Combining this with inequalities

2 and 3 we obtain: ‖F (X) − Ffail(X)‖ ≤ ε′ + λ
L∑
l=1

NCl
KL−l

L+1∏
l′=l+1

(Nl′ − NCl′ )w
(l′)
m . Therefore, to

guarantee that ‖F (X)−Ffail(X)‖ ≤ ε, we should have:
L∑
l=1

NCl
.w

(L+1)
m .

L∏
l′≥l+1

(Nl′−NCl′ )w
(l′)
m ≤ ε−ε′.

Which proves Theorem 2. Tightness follows from the worst case corresponding to the intersection
of equality situations in inequalities 2 and 3 and in Lemma 1.

4.3 The failure of synapses

In a system where the computing nodes are physically more reliable compared to synapses, due to
the physical flexibility required from the latter, as the ability to modify themselves by learning, they
are much more likely to be damaged than neurons. Though the errors might have radically different
nature or causes, the interconnections of synaptic role (coefficients) and neurons role (neuron value)
in the working equations of a neural network makes it possible to derive results on synapses from
the results on neurons of the previous sections.

We need the following lemma, establishing a link between errors at synapses and consequences on
neurons. Again we use the convention that layer L+1 corresponds to the output node, in addition
to the convention that layer 0 corresponds to input nodes (although not part of the network).

Lemma 2. In an L-layer neural network, an error of value λ(l)ji at the synapse from neuron i of
layer l − 1 to neuron j of layer l is at worst, of the same effect as an error at neuron i of value λ.
Under similar absence of constraints as before, this bound is tight.

Lemma 2 is proven in the appendix.

Theorem 3. To guarantee robustness, we obtain the following upper bound on Nfail =
L+1∑
l=1

NCl
,

the number of arbitrarily failing synapses, with NCl
being the number of failing ones linking layer

l − 1 to layer l: λ
L+1∑
l=1

NCl
KL+1−lw

(l)
m

L+1∏
l′=l+1

(Nl′ − NCl′ )w
(l′)
m ≤ ε − ε′. Unless there are additional

constraints on the network and on F (.), this upper bound is tight.

Proof. With the convention mentioned above, applying Lemma 2 enables us to see the failure of
Nfail synapses in an L-layer network as, in the worst case, the failure of Nfail neurons in an L+ 1
network, applying Theorem 2, the result follows. Tightness comes from equality cases as usually.

5 Concluding remarks

Summing-up, when a neural network is built with just the required number of neurons to ε-
approximate a target function, robustness to the failure of a single neuron is impossible. When
built to ε′-approximate a target function, with ε′ ≤ ε (which is the common case), our results set a
tight upper bound on the number of neurons and synapses that can fail without losing ε-accuracy.
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To guarantee robustness to the failure of Nfail neurons, the designer can use our results, precisely
minimizing the left hand term in Lemma 1, during the learning scheme6. Satisfying this mini-
mization guarantees that the neural network has learned the optimal weight distribution. During
operations, Nfail neurons can fail without losing ε accuracy (the reasoning for synapses is similar).

Clearly, over-provisioning to guarantee ε′-accuracy has a cost in learning data sets. Designers using
our results will have to cope with a dilemma that somehow resembles the celebrated bias/variance
dilemma [10] in machine learning: should a neural network generalize well to data it did not see
in the learning phase, or should it output very precise approximations for the data seen during
learning, and risk over-fitting? In our case, it is a robustness/ease-of-learning dilemma. The key
trade-off involves robustness, cost of learning in terms of data sets and size of the network, in two
forms:

Trade-off on the Lipschitz-constant of the activation function (K). For example, choosing
a low value of K < 1 leads to easily satisfying the inequalities of our different theorems even with
high numbers of erroneous neurons or synapses. One should recall that K is an estimate of how
sharp the discrimination between inputs at the level of a single neuron is (see our appendix on
Lipschitzness). Therefore, for a neural network approximating a target function while using a low-
K activation function, the learning time and number of necessary neurons should be significantly
higher than with a high-K activation function, because the latter is much more discriminating on
the input data.

Trade-off on synaptic weights. As for the Lipschitz-constant K, one can note in our inequations
that imposing very low weights leaves some room for higher values of the number of erroneous
components while still satisfying the bound. Achieving this requires an increase of the number of
neurons. Intuitively: you need more units to sum to the desired value, if the coefficients are low.

Finally, if we know additional information about the network topology, for example if the network
is convolutional7 [20], we can use, in addition to the Lipschitz inequality, some of their periodicity
properties and end up with less general bounds. Obviously, those bounds will remain specific to the
convolutional topology and our bounds lie as a basis for the general case.

6We proved our bound independently of any learning scheme. If one particular scheme is taking the left-hand-side
of our bounds as a minimization constraint to set a distribution of weights and neurons per layer, it will guarantee
a minimal effect of any failure a posteriori. To our knowledge there has been one single attempt to theoretically
formulate such a constraint [31], but it only minimizes the effect of the crash of a single neuron. In our case the
minimization stands for a distribution of neurons and synapses.

7A feed-forward topology where neurons are not connected to all the neurons of the next layer and where the
weights have some periodicity. These are widely used in image recognition.
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Appendices

A On the activation function and its Lipschitzness

A.1 Bias

In the model, we specified that we will use an non-biased activation function for notational conve-
nience. As in most machine learning literature, this is done without the loss of generality, considering
an additional constant neuron (value = 1) in each layer. During the learning phase – when building
the network – instead of learning its bias value, the neuron of layer l will just learn the weight given
to the constant neuron of layer l − 1. As this weight will be always multiplied by 1, it will serve as
the bias, around which the activation function will be centred.

Figure 3: The profile of a sigmoid function, centred around 0 and tuned with several values of K.
The larger is K, the steeper is the slope and the more discriminating is the activation function.

A.2 Lipschitzness

In the paper, we used the fact that the activation function x 7→ sigmoid(K.x) is K’-Lipschitz
with K’=K/2 and K is the tuning coefficient, we prove here that this apply to sigmoid, which, is
one of the most largely used activation functions in the literature. The reasoning generalizes to
any continuous differential function, replacing 1/2 by the supremum of the first derivative of the
activation function.

Lemma 3. The activation function ϕ(x) = sigmoid(x) is 1/2-Lpschitz, with 1/2 as the best Lip-
schitz constant on the interval [0, 1], and more generally, the K-tuned activation function ϕ : x 7→
sigmoid(K.x) is K’-Lipschitz with K’=K/2 as the best Lipschitz constant on the interval [0, 1], which
is translated by the following property:
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∀(x, y) ∈ [0, 1]2 : |ϕ(x)− ϕ(y)| ≤ K ′.|x− y|
∀α > 0, ∃(x, y) ∈ [0, 1]2 : |ϕ(x)− ϕ(y)| > (K ′ − α).|x− y|

(7)

Proof of Lemma 3

Proof. We proof the lemma directly on x 7→ sigmoid(K.x)

Thanks to the following inequalities:

∀x ∈ [0, 1] : |e−K.x| ≤ 1,
1

|1 + e−K.x|
≤ 1/2

We obtain the following bound on the first derivative of sigmoid(K.x):

|dϕ
dx

(x)| = | K.e−K.x

(1 + e−K.x)2
|

≤ K/2 = K ′
(8)

Since K’ is an upper bound on the absolute value of the first derivative of ϕ, the latter is then
K’-Lipschitz on any compact subset of its input, following the mean value theorem:

∀(x, y) ∈ [0, 1]2 : ∃c ∈]x, y[: ϕ(x)− ϕ(y) = dϕ

dx
(c).(x− y) (9)

Using Equation 9 and Inequality 8 applied to c, we obtain:

∀(x, y) ∈ [0, 1]2 : |ϕ(x)− ϕ(y)| ≤ K ′.|x− y| (10)

Which is the first inequality of Lemma 3.

To prove that K’ is the best Lipschitz constant, we look back at Equation 8, which in the case of
x = 0 leads to |dϕ(x)dx (0)| = K/2 = K ′

Let α be any positive real number, by continuity of the first derivative of ϕ, there exists α′ > 0 such
that:

∀c ∈]0, α′[: |dϕ
dx

(c)− dϕ

dx
(0)| < α

which leads to:
∀c ∈]0, α′[: dϕ

dx
(c) >

dϕ

dx
(0)− α = K ′ − α (11)

Using again the mean value theorem on x = 0 and y = α′, similarly to Equation 9:

∃c ∈]0, α′[: ϕ(0)− ϕ(α′) = dϕ

dx
(c).(0− α′)

And applying Equation 11 on this latter particular c we transform the previous equation to the
following inequation:
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|ϕ(0)− ϕ(α′)| > (K ′ − α′)|0− α′| (12)

Which shows that for any given α > 0 we can exhibit two inputs, here x = 0 and y = α′, such that
we have the second part of Inequality 7 in Lemma 3

B Proof of Lemma 1

Lemma 1. In a neural network containing L layers, if in each layer l, NCl
neurons, among the Nl

neurons of that same layer, are affected by errors such that each neuron j of layer l is broadcasting
an output y(l)j +λlj to the next layer instead of the nominal y(l)j , then the effect on the output is lower

or equal to λ
L∑
l=1

NCl
KL−l

L+1∏
l′=l+1

(Nl′ −NCl′ )w
(l′)
m :

‖Fneu(X)− Fλ(X)‖ ≤ λ
L∑
l=1

NCl
KL−l

L+1∏
l′=l+1

(Nl′ −NCl′ )w
(l′)
m (13)

Where Fneu(.) is the nominal neural function, Fλ(.) the neural function accounting for the errors
λ
(l)
j , and w

(l)
m = max(|w(l)

ji |, (j, i) ∈ [1, Nl][1, Nl−1]) is the maximum norm of the weights of the
incoming synapses to layer l.

Unless there are additional constraints on the network and on F (.), this upper bound is tight.

Proof. We proceed by induction on L.

Initiation. Let Nfail = NC1 be the number of neurons failing in the single layer of the network,
letIfail be the set containing those neurons, we have:

‖Fneu(X)− Fλ(X)‖ = ‖
∑
i∈Ifail

w
(2)
i (y

(1)
i + λ

(1)
i )‖ (14)

Which, by the triangular inequality leads to:

‖Fneu(X)− Fλ(X)‖ ≤
∑
i∈Ifail

‖w(2)
i (y

(1)
i + λ

(1)
i )‖ (15)

With equality cases when the terms are positively proportional (Condition 1). Applying Hypoth-
esis 1 and the definition of wm(2) gives us:

‖Fneu(X)− Fλ(X)‖ ≤ NC1w
(2)
m λ (16)

With equality case when for an input y(1)i + λ
(1)
i = λ (Condition 2) and when the failing neurons

are all linked to the output with the maximal weight w(2)
m (Condition 3).
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We observe that Inequation 16 is the L = 1 version of the Lemma, and that in the worst case
of failure, when no additional constraint on the network to avoid that we have Conditions 1 to 3
simultaneously occurring, the bound is tight.

Induction step. Assume that the proposition of Lemma 1 holds for networks with to some number
of layers L ≥ 1.

Now consider a network consisting of L+ 1 layers. The layered structure of the network enables us
to see each of NL+1 neurons of the (L + 1)-th layer, first as an output to an L-layer network (all
the nodes the left of that neuron), and second, after applying the activation function, as a neuron
in a single-layer neural network (consisting in the L+ 1 layer alone).

In this last (L+ 1)-th layer, we can distinguish two subsets of neurons:

1. (Failing neurons at layer L+1) A subset of NCL+1
failing neurons, that will yield, as in the

initiation step (sigle layer), an error of at most NCL+1
w

(L+2)
m λ

2. (Correct neurons at layer L+1) A subset of NL+1 − NCL+1
correct neurons, that will just

forward, in addition to their nominal value, the error Er of the L-layer neural network behind
them, multiplying it by at most the maximum synaptic weight from layer L to layer L+1,
w

(L+1)
m and the Lipschitz constant K, yielding an error of at most Er(NL+1 −NCL+1

)K

By the induction hypothesis we have:

Er ≤ λ
L∑
l=1

NCl
KL−l

L+1∏
l′=l+1

(Nl′ −NCl′ )w
(l′)
m

As the output node is linear (not part of the neural network, not performing any non-linear activation
function), the errors mentioned in 1 and 2 will be added and yield a total error bounded as follow:

‖Fneu(X)− Fλ(X)‖ ≤ NCL+1
w(L+2)
m λ+ (NL+1 −NCL+1

)Kλ

L∑
l=1

NCl
KL−l

L+1∏
l′=l+1

(Nl′ −NCl′ )w
(l′)
m

= λ

L+1∑
l=1

NCl
KL+1−l

L+2∏
l′=l+1

(Nl′ −NCl′ )w
(l′)
m

(17)

Which is the desired bound for an L+ 1-layer network. The equality case follows from considering
the inter-occurrence of the equality cases at all the contributing parts, in case no constraint on the
network is set to avoid it.

By induction, the proposition of Lemma 1 is true for any integer L ≥ 1.

C Proof of Lemma 2

Lemma 2. In an L-layer neural network, an error of value λ(l)ji in a synapse linking neuron i from

layer l − 1 to neuron j at layer l is equivalent to an error at neuron j of at most K|λ(l)ji w
(l)
ji | for
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l ≤ L, and to an error or at most |λ(l)ji w
(l)
ji | if the synapse is linking the last layer l − 1 = L to the

output node l = L+ 1. Under similar absence of constraints as before, this bound is tight.

Proof. Let l be a hidden layer in the neural network, and let i and j any neurons from l − 1 and l
respectively.

An error of value λ in neuron i yields a received sum at neuron j, noted s(l)λ,j and given by Equation
1 as follow:

s
(l)
λ,j =

Nl−1∑
k=1,k 6=i

w
(l)
jk y

(l−1)
k + w

(l)
ji (y

(l−1)
i + λ

(l)
ji )

=

Nl−1∑
k=1

w
(l)
jk y

(l−1)
k + w

(l)
ji λ

(l)
ji

(18)

Therefore, by K’-Lipschitzness of the activation function, in the case of l < L+ 1, the output error
of neuron j is given by the following equation:

|error| = |ϕ(s(l)λ,j)− ϕ(s
(l)
j )|

≤ K ′.|s(l)λ,j − s
(l)
j |

= K ′.|λ(l)ji w
(l)
ji |

(19)

and in the case of the last layer (no activation function at the output node):

|error| = |s(l)λ,j − s
(l)
j |

= |λ(l)ji w
(l)
ji |

(20)
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