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Abstract: Recently, different real-time optimization (RTO) schemes that guarantee feasibility
of all RTO iterates and monotonic convergence to the optimal plant operating point have been
proposed. However, simulations reveal that these schemes converge very slowly to the plant
optimum, which may be prohibitive in applications. This note proposes an RTO scheme based
on second-order surrogate models of the objective and the constraints, which enforces feasibility
of all RTO iterates, i.e., plant constraints are satisfied at all iterations. In order to speed up
convergence, we suggest an online adaptation strategy of the surrogate models that is based on
trust-region ideas. The efficacy of the proposed RTO scheme is demonstrated in simulations via
both a numerical example and the steady-state optimization of the Williams-Otto reactor.
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1. INTRODUCTION

To ensure profitability in the process industries, one typi-
cally maximizes the economic performance, while respect-
ing safety and environmental constraints. Hence, maximiz-
ing plant performance in real time, known as real-time
optimization (RTO), has gathered commendable industrial
attention. The goal of RTO is to enforce plant optimality
in the presence of uncertainty such as plant-model mis-
match and process disturbances. RTO methods rely on
the available (not necessarily very accurate) plant model
and measurements to push the plant towards optimality.

In the design of RTO schemes, it is desirable to achieve
the following properties: (i) plant optimality and feasi-
bility upon convergence, (ii) acceptable number of RTO
iterations, and (iii) plant feasibility throughout the opti-
mization process. The works of Gao and Engell (2005),
Chachuat et al. (2009), Marchetti et al. (2009, 2010) are
tailored to (i). However, the proposed schemes depend on
tuning parameters to enforce (ii) and cannot guarantee
(iii). Furthermore, it has been proposed to estimate gradi-
ents via surrogate models (Bunin et al., 2013a; Gao et al.,
2015).

Recently, Bunin et al. (2013b) suggested to rely on Lip-
schitz constants of the constraints and a Hessian upper
bound of the cost to enforce plant feasibility and mono-
tonic convergence in some kind of post-processing of RTO
iterates. Furthermore, it has been shown in Singhal et al.
(2015) that similar ideas can also be used to design data-
driven RTO schemes based on linear-quadratic surrogate
models, where the plant constraints are approximated in
a linear-affine fashion and the plant objective is modeled

as a quadratic function. Both Bunin et al. (2013b) and
Singhal et al. (2015) guarantee plant feasibility of all RTO
iterates, that is, they enforce (iii). However, simulations
have shown that the (conservative) first-order approxima-
tion of plant constraints using Lipschitz constants often
leads to slow convergence of the RTO algorithm, which
may be prohibitive in applications.

The present paper investigates data-driven RTO based on
surrogate models. We propose an RTO scheme based on
quadratically-constrained quadratic programs (QCQP),
which can be regarded as an extension of the scheme pro-
posed in Singhal et al. (2015) based on quadratic programs
(QP). The contributions of the present work are as fol-
lows: We sketch the feasibility and optimality properties of
the proposed RTO scheme. Furthermore, we analyze why
first-order constraint approximations based on Lipschitz
constants may lead to overly slow convergence. Finally,
we present a scheme for adapting second-order surrogate
models and illustrate via simulation that this leads to
considerably faster RTO convergence.

The paper is structured as follows. Section 2 briefly
formulates the RTO problem. Section 3 introduces the
QCQP-based surrogate model and draws a comparison
between the QCQP and the QP surrogate models. The
performance of the QCQP-based surrogate model is tested
on a numerical example. Section 4 introduces the on-
line adaptation algorithm for the upper bounding term
and presents the gradient-estimation method. Section 5
presents the Williams-Otto reactor case study, illustrating
the performance of the proposed RTO scheme. Finally, the
conclusions are presented in section 6.



2. PLANT OPTIMIZATION PROBLEM

Steady-state performance improvement can be formulated
mathematically as a nonlinear program

min ¢(u, d)
s.t. gj(u,d) <0,
ut <u =X uU,

Jj=1,..,n4

(1c)
where u is the n,-dimensional input vector, d is the ng4-
dimensional vector of disturbances, ¢ : R™ x R™ —
R is the plant cost, g; : R™ x R" — R is the j'
plant constraint. The symbol (<) denotes component-
wise inequality of vectors. The disturbance d models the
fact that the plant cost and constraints are affected by
disturbances. In this paper, however, we do not deal with
the disturbance d explicitly. Instead, we assume that the
plant cost ¢ and the plant constraints g; are not exactly
known.

3. RTO BASED ON SURROGATE MODELS

Next, we focus on RTO based on surrogate models to
find the plant optimum. The surrogate models will enforce
plant feasibility and guarantee monotonic plant cost de-
crease provided that the available measurements are noise
free. To this end, we recall two technical lemmas presented
in Bunin et al. (2013b).

Lemma 1. (Lipschitz upper bound). Let f : R"™ — R be
continuously differentiable over the compact set U4 C R™
such that

of
ou

where \ are the univariate Lipschitz constants of f. Then,
the evolution of f between the two successive inputs uy
and uyy1 is bounded by

-\ <

<\, Yuel,

2y

Flurin) < fluk) + Y Nl — unl- (3)
i=1
(|
Lemma 2. (Hessian upper bound). Let f : R™ — R be

twice continuously differentiable over the compact set U
C R™ such that

_f
87.1487.%‘ u
Let Agy1 := ug41 —ug. Then, the change in f between uy,
and ug4+1 can be bounded as

Flurgr) < f(ur) + VI (ur)" g + %AnglQAkJrla (4)

where Q > 0 is a diagonal matrix with the diagonal
elements Q;; = Z;ﬁl Mij, i=1,...,n,. O

—M;; < < My, Yuel, i,j=1,.,n,.

While the first lemma provides a first-order affine upper
bound for any continuously differentiable function over
any compact set, the second lemma gives a quadratic
approximation that upper bounds twice continuously dif-
ferentiable functions. Note that, in Lemma 2, the matrix
(@ can be seen as a Hessian upper bounding matrix for the
function f over the compact set U. We refer to Bunin et al.
(2013Db) for the proofs of these two lemmas.

8.1 RTO with QP surrogate model

Based on these two lemmas, the following QP-based sur-
rogate model is proposed in Singhal et al. (2015)

1 _
min Vo Apyr + 5 AL QA (5a)
N 2
subject to
g](uk)+z>\l,j|Ak+l,z| S Oa .] = 17---7ng7 (5b)

i=1
Vg Dk < =05, Vj € T,

ub— up < Ay 2w — g,

(5¢)
(5d)
where V¢, is the gradient of the plant cost function ¢ at
ur, and Vg; 1 is the gradient of the plant constraint g; at
uy. The positive definite matrix @ is the Hessian upper
bounding matrix for the cost function (computed as in
Lemma 2 for f := ¢), A;; are the univariate Lipschitz
constants of the plant constraint g;. The set J is the set
of e-active constraints defined as (Bunin et al., 2013b)

Te={ie{l,....ng}: —¢; < g;(ur) <0},
where € is a small positive scalar. The next RTO iterate
Uk+1 1S given by
U1 = Uk + Afq, (6)
where Aj | is the solution to Problem (5). The constraints
(5b) ensure that uy1 is a feasible point for the plant.

Singhal et al. (2015) showed that the RTO scheme based
on (5)-(6) guarantees plant feasibility at all RTO iter-
ations. However, this scheme may converge very slowly
because of the conservatism induced by both the Hessian
upper bound ) and the univariate Lipschitz constants
Ai,;. Furthermore, note that the surrogate model does not
use information on the constraint gradient for ensuring
feasibility in (5b), but only for keeping a distance from
the active constraints in (5¢), which may also contribute
to the slow convergence.

8.2 RTO with QCQP surrogate model

In order to achieve faster convergence, we propose the
following RTO scheme based on a QCQP surrogate model

. 1 =
min Vo Ay + 58411Q0k (7a)
subject to
1 _
9;(ur)+Vg]  Apgr + §A£+1Qjﬁk+1 <0, (7b)

Jj=1,...,ng,

(7c)
where Qj is the Hessian upper bounding matrix of the
plant constraint function g;. The input update is also
given by (6) with Az, being in this case the solution
to Problem (7).

Remark 1. (Nominal plant feasibility).

The scheme (7) can be understood as an RTO-specific
translation of the nominal optimization method suggested
in (Auslender et al., 2010). Therein, it is shown that the
QCQP formulation leads to recursively feasible iterates
provided that the gradient information is exact and the
following assumptions hold:

b —up < Apyq 2 uY — oy,



e The cost ¢ and the constraints g;, j = 1,..,ng,
are twice continuously differentiable on an open set
c%ntaining the input space U = {u € R™ :ul < u =<

e The initial input wg is feasible with respect to the
constraint functions g;, i.e., g;(up) <0, j =1,...,n.

e The Mangasarian-Fromovitch constraint qualification
(MFCQ) holds:

Vueu EIdER"'Vg]Td<0 Vi e J(u

[1,..,ng] : gj(u) = 0}.

Hence, using the surrogate model (7) is similar to the
approach used in Auslender et al. (2010), and the fea-
sibility proofs follow the same line of arguments. Note
however that, in Auslender et al. (2010), gradient Lipschitz
constants are used instead of the Hessian upper bound
matrices Q).

)= {j €

3.8 Matching of Lagrangian gradients

Both surrogate models (5) and (7) guarantee plant con-
straint feasibility. Yet, it not easy to tell which of the
schemes will lead to faster convergence. To this end, con-
sider the Lagrangian of the plant (1) at the input iterate
U

Ly = o + Z I,k Gj.k 5
j=1
where ¢y = ¢(ux), g5,k = gj(ux), and Ly := L(ux). The
gradient of the plant Lagrangian is

VL, =V¢r+ Z Wik VG k-
j=1
Next, consider the gradient of the Lagrangian of the QP
surrogate model (5) evaluated at ug,

ng 2nu
VLY =Vor+ 3 1 Vain+ Y > vk Sm
€Tk ji=1m=1

where ,u; ks Vi) = 0 are the Lagrange multipliers and A=
diag(\(i,5)),i = 1,...,n,. Here, S(m) is the m*"

m—1
the n,, X 2™ matrix S defined as S(i,m) = (—1)L2<"u*i> J,
with || being the floor function. The Lagrangian gradient
VL{? does not match that of the plant (1).

column of

Finally, consider the Lagrangian of the QCQP surrogate
model (7) evaluated at ug,

= Vg, + Z 15,6V Gj k-

Jj=1

VL

Note that all the terms depending on ); vanish, since
u = wug implies Apy; = 0. Hence, we conclude that
VLI® = VL. In other words, the advantage of the
QCQP surrogate model (7) is that its Lagrangian gradient
matches the Lagrangian gradient of the plant problem (1)
at ug. Hence, using the QCQP surrogate model (7) gives
a better representation of the plant at ug, which may lead
to faster convergence. Next, we compare the performances
of the two surrogate models via a numerical example.

Ezample 1. (RTO with QP and QCQP models).
Consider the following plant optimization problem

Fig. 1. RTO using the QP surrogate model (5) to optimize Problem
(8). The RTO iterates are in red and remain strictly inside
the feasible region shaded in green. The plant optimum is
highlighted in blue.

min (u; — 0.5)2 + (ug — 0.4)2
U, u2
subject to g1 = — 6u% —3.5u; +us — 0.6 <0
g2 = 2u% + 0.5uy + us — 0.75 < 0 (8)

g3 = —u?—(uz —0.5)2+0.01 <0
—0.5<u; <05, 0<uy <0.8

The plant optimum is u* = [0.35,0.32]7. Starting from
the initial feasible point ug = [-0.5,0.05]T, the RTO
algorithms using the QP and QCQP surrogate models are
implemented. For simplicity, we assume that the plant cost
and constraint values, as well as their respective gradients,
are available or can be measured at u; for each k. The
Lipschitz constants of the plant constraints taken from
Singhal et al. (2015) are )\171 = 10.45, /\271 = /\2,2 =
Al’g = 11, )\172 = 275, )\2’3 = 1.43. Initially, we take the
cost Hessian upper bound matrix as Q = diag(2.2,2.2). In
order to find the plant optimum using the QP surrogate
model (5), we use Algorithm 1 given in Singhal et al.
(2015) and also take the same tuning parameters for all
three constraints, € = 0.11, § = 0.0002, n. = 102 and
ns = 10719, The RTO result is shown in Figure 1, where it
is seen that the iterates remain strictly inside the feasible
region highlighted in green. Clearly, the plant optimum is
reached, but only after a large number of iterations.

Next, we apply RT'O based on the QCQP surrogate model
(7). The Hessian upper bound of the objective is the
same as the one for the QP surrogate model (5). The
constraint Hessian upper bound matrices used are Q1 =
Q3 = diag(2.2,2.2) and Q2 = diag(4.2,2.2). The results
are shown in Figure 2. It can be seen that, as before, all
RTO iterations remain strictly inside the feasible region.
However, the number of iterations taken to reach the plant
optimum has been significantly reduced to 7 iterations.
This simple numerical example supports our analysis that
the convergence speed is likely to increase by using the
QCQP surrogate model (7) instead of the QP surrogate
model (5).

However, note that the convergence speed depends on
the values of the Hessian upper bound matrices. If the
Hessian upper bounds are too conservative, then many
more RTO iterations are required to reach the plant KKT
point. For instance, let us take the cost and constraint
Hessian upper bounds as Q = @1 = @2 = Q3 =
diag(8,8). In this case, the QCQP algorithm (7) requires
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Fig. 2. RTO using the QCQP surrogate model (7) to optimize
Problem (8). The RTO iterations are in red and remain strictly
inside the feasible region shaded in green. The plant optimum
is highlighted in blue.
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Fig. 3. RTO using the QCQP surrogate model (7) and conservative
Hessian upper bounds to optimize Problem (8).
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Fig. 4. Cost improvement over RTO iterations: the green line
corresponds to the QP surrogate model (5); the black line
is for the QCQP surrogate model (7) with non-conservative
Hessian upper bound; the blue and red lines correspond to the
conservative upper bound, without and with online adaptation,
respectively, as described in Example 2 below.

a larger number of iterations to find the plant KKT point
(24 iterations), as shown in Figure 3. The cost function
evolutions corresponding to Figures 1, 2 and 3 are shown
in Figure 4.

Note that the Hessians in Problem (8) are constant. In
general, however, the Hessians of the cost and constraint
functions depend on the operating. Hence, if the Hessian
upper bounds are chosen to be globally valid over the

entire input space, they may be overly conservative for
the current RTO input.

4. ONLINE ADAPTATION OF HESSIAN BOUNDS

The preceding section motivates the idea of solving the
QCQP surrogate model (7) using tight Hessian upper
bounds that are valid locally in a neighborhood of the
current input iterate wg. A natural way of getting local
approximations of the Hessian upper bounds is to use the
existing plant model over a reduced input space. In order
to account for plant-model mismatch, these bounds can
be multiplied by an appropriate factor. However, if the
confidence in the model is low, then an on-line adaptation
strategy for the Hessian upper bounds might be more
appropriate. We sketch next an intuitive way of adapting
the Hessian upper bounds based on the trust-region ideas.

4.1 Adaptation of trust-region-like Hessian upper bounds

We suggest obtaining positive-definite Hessian upper
bounds by fitting convex quadratic functions to past
operating data. The Hessian upper bound of the fitted
quadratic model, labeled Dy, is then combined with the
previous Hessian upper bound, Qx—1, to give Qr = oDy, +
(1—a)Qk—1. The weighing factor a can be updated at each
iteration based on the agreement between the quadratic
model and the plant, thereby giving aj.

For this adaptation, consider the optimal value of the
cost function of the surrogate quadratic model, my :=
Vol A+ %AZTQA;, with A% representing the optimal
input of Problem (7). Let m; "’ and A¢;."?Y denote the mov-
ing averages of the improvement in the cost function values
of the surrogate model and the plant, respectively. These
moving averages are taken over the latest N iterations. If

the ratio
avg

N
Pk Agbzvg

is small, then the Hessian upper bound is too conservative
and the value of a can be increased. In contrast, if pg is
close to unity, the Hessian upper bound is rather close to
the local value of the plant Hessian, and the value of «
can be decreased. Note that such an adaptation is similar
to (or inspired by) trust-region methods, since the Hessian
upper bounds implicitly define the step length of the RTO
scheme.

In order to formalize the RTO scheme based on the
QCQP and the adaptation of the Hessian bounds, let
8,79 and ¢, represent the regression set and the convex
quadratic regression function at the k*" iteration of the
RTO algorithm. Let Hy be the Hessian of the regression
function ¢;“’. Consider the constants 0 < a < ap < @ < 1,
0 < N,B, and 0 < m; < 12. Define the maximal allowable
step size in each input direction as h;,% = 1, ..., n,, and the
initial Hessian upper bound on the cost, Qy. The procedure
is defined in Algorithm 1.

The Hessian upper bounds of the constraints can be
updated similarly by replacing the data points for the cost
with the constraint values in the regression set S, and
by computing the ratio py for the constraint function.



Algorithm 1 Adaptation algorithm

Step 0 (Initialization). Perform at least ((n., + 1)(n, +

2)/2) —1 RTO iterations with the QCQP surrogate model
(7) and generate the regression set S;,“. Fit the convex
quadratic function to the regression set and obtain ¢,.
Extract Hj, from ¢,“7. Set Q) = Qo and oy, = .

Step 1 (Choose ag41). Compute pj by calculating the
moving averages m;"? and A¢;"? over the past N RTO
iterations.

o If p, < mp, then agi1 = min{2ay, at,

o If p > mo, then agy1 = max{0.5ax,a},

e Else ag41 = ag.

Step 2 (Hessian upper bound of the fitted model).
Compute the diagonal matrix

[
Dii,k = E Hij,k; = 1, ceey Ty -
j=1

Step 3 (Hessian upper bound update).
o If p, <0 and ¢ — pr—1 < B, then
Qk+1_: Qo, Qg1 = Qp. _
e Blse Qrr1 = apr1Dp + (1 — apy1) Q.
Step 4 (RTO step size). Update the allowable input space
as Uik — N S U1 KUk + Ry T =1,00,n,.

Step 5: Increment k by one and run the RTO scheme with
the updated Hessian upper bound. Update the regression
set by adding the new data point to obtain the new set
S,%Y, and compute the Hessian Hy. Return to Step 1.

Ezample 2. (RTO with QCQP model and adaptation of
Hessian upper bounds) Consider the numerical example
of Problem (8). Starting with @ = Q1 = Q2 = Q3 =
diag(8,8), the Hessian upper bounds of the cost and
constraint functions are adapted using Algorithm 1. The
result is shown in Figure 5. In this case, it takes 15
iterations compared to the 24 iterations required when
the Hessian upper bounds are not adapted, as shown in
Figure 4.
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Fig. 5. RTO performance for Problem (8) when the Hessian upper
bounds are adapted online.

4.2 Combining gradient estimation and Hessian update

Note that the presence of measurement noise may cause
difficulties in accurately capturing the Hessian informa-
tion. To ensure that the regression set is well-poised, and

thus the curvature information is well captured by the
noisy data, we can introduce additional constraints in the
optimization Problem (7). These constraints were origi-
nally designed to estimate the gradient information from
past RTO iterations in the presence of noise (Marchetti
et al., 2010). Including them in the RTO problem ensures
that the next RTO iterate is located such that accurate
gradient information can be extracted. Hence, in addition
to extracting Hessian information via regression, we use
the past RTO data to estimate the gradient for the next
RTO iteration. For the sake of completeness, we briefly
recall the gradient estimation that is used in Marchetti
et al. (2010).

The use of the QCQP surrogate model (7) requires plant
gradient information for the cost and constraints. The
classical way of extracting gradient information is by per-
forming forward finite differences at each RTO iteration.
Alternatively, and in order to avoid these additional plant
perturbations, the data recorded during the previous RTO
iterations can also be used to estimate the gradient in the
following way:
Vi = Uy~ 'Y,

where V7, is the gradient estimate at ug, and the matrices
Y, and Uy are defined as:

Yy o= [y(ur) — y(ug—1)
U;.C = [uk — Uk —1

y(ur) — y(ug—n,)]" € R™,
U — uk_nu} € R™uXnu,
The matrix Uy, which is a function of uy, is required to
be non-singular. Note that y can represent the cost or the
constraint functions.
To ensure well-poisedness of the data, bounds on the gradi-
ent error norm are introduced. The gradient error consists
of truncation error and measurement error. The following
constraint can then be enforced to ensure that upyi is
located such that the gradient error norm is bounded by
Eupper > O

o Onoi

5 |Uy diag(URU)| + l’;m(fjf < upper; (9
where the first term on the left-hand side is an upper
bound on the truncation error, with ¢,,4, being an upper
bound on the spectral radius of the Hessian of the function
y whose gradient is estimated. The second term on the
left-hand side is an upper bound on the noise error,
with ZZ”" being the shortest distance between all possible
pairs of complement affine subspaces generated from S :=
{UkyUk—1, ooy Uk—n, } and dpeise the accepted range of
measurement noise. Note that eypper is user defined. Note
also that the non-convex constraint (9) is added to the
otherwise convex optimization Problem (7). It turns out
that an additional constraint can be added to maintain
convexity of the optimization problem, as illustrated in
Marchetti et al. (2010).

5. ILLUSTRATIVE EXAMPLE

The Williams-Otto reactor (Williams and Otto, 1960)
has been used as a benchmark problem to gauge the
performance of different RTO schemes in (Roberts and
Williams, 1981; Marchetti et al., 2010; Navia, 2012).
The isothermal reactor consists of an ideal continuous-
stirred tank reactor, where the reactants A and B are
fed with the mass flowrates F4 and Flz, respectively, the
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Fig. 6. Profit as a function of the iteration number when the matrix
@ is not updated. 25 simulation runs are shown, each one with
a different noise realization.

desired products P and E are formed together with the
intermediate product C and the undesired product G. The
mass flowrate of the product is F' = F)4+ Fpg. The following
reactions occur in the plant (here simulated reality):

A+ B—C,
B+C— P+ E, T

C+ P — G, ]763:773677%.

The optimization objective considers profit maximization
at steady state. The decision variables are the flowrate Fig

and the reactor temperature Tr. The RTO problem takes
the following form:

max ¢ = (1143.38Xp + 25.92X ) (Fa + F) — 114.34Fp,

Fp,Tr

T _
kl — 7‘_’16 Ty
- _ P
k2 = ’[”26 Ty

3 < Fp(kg/s) <6, 70 <Tr(°C) < 100,

where Xp and X are the steady-state concentrations of
the products P and E, respectively. These concentrations
are functions of the decision variables Fg and Tgk. Note
that the flowrate of reactant A is fixed at Fy = 1.8275
kg/s.

We initialize the problem at Fg = 4.78 kg/s and Tr =
77°C. We calculate the Hessian upper bound for the pro-
cess model taken from Marchetti (2009) to approximate
the Hessian upper bound of the plant. For this purpose,
we restrict the input space over which the cost function is
optimized. The values of the diagonal elements found for
the Hessian upper bound are )(1, 1) = 120 for the feedrate
Fp and Q(2,2) = 20 for the temperature Tg.

In order to test the performance of the QCQP surrogate
model (7), we add random noise to the plant cost values,
with Gaussian distribution, zero mean and standard devi-
ation of 0.5. The gradients are estimated using the method
described in Section 4.2. The values of the parameters
required to evaluate the constraint (9) are taken from
Marchetti et al. (2010). The two inputs Fp, and T are
scaled with the scaling factors % and %, respectively. The
Hessian upper bound @ is scaled accordingly. Result of
the RTO scheme without adaptation of @ is shown in
Figure 6. The result consists of 25 simulation runs for
different noise realizations. We do not apply any stopping
criterion for the simulations. It takes close to 60 iterations
on average to reach and stay in the vicinity of the plant
optimum. Figure 7 shows the performance of the RTO
scheme with adaptation of Q). Clearly, the vicinity of the
plant optimum is reached faster, in about 20 iterations
on average. The parameter values taken for the online
adaptation algorithm are N = 4, i, = 0.25, ny = 0.75,
a = 0.5, ap = 0.4, § = —1.5 and the scaled step sizes are
h1 = 0.08, hy = 0.043.

0 10 20 30

40 50, 60
Iterations

Fig. 7. Profit as a function of the iteration number when the matrix

Q@ is updated. 25 simulation runs are shown, each one with a
different noise realization.

6. CONCLUSIONS

This paper has presented an RTO scheme based on
quadratic surrogate models that are built to upper bound
the plant cost and constraint functions. Simulations have
shown that this scheme ensures plant feasibility and speeds
up convergence significantly. Furthermore, we have intro-
duced a trust-region-like adaptation of the Hessian upper
bounds that achieves even faster convergence. Future work
will focus on the formal analysis of the feasibility proper-
ties.
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