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Abstract—A large number of algorithms for multidimensional
signals processing and scientific computation come in the form
of iterative stencil loops (ISLs), whose data dependencies span
across multiple iterations. Because of their complex inner struc-
ture, automatic hardware acceleration of such algorithms is
traditionally considered as a difficult task. In this paper, we
introduce an automatic design flow that identifies, in a wide
family of bidimensional data processing algorithms, subportions
that exhibit a kind of parallelism close to that of ISLs; these are
mapped onto a space of highly optimized ad-hoc architectures,
which is efficiently explored to identify the best implementations
with respect to both area and throughput. Experimental results
show that the proposed methodology generates circuits whose
performance is comparable to that of manually optimized solu-
tions, and orders of magnitude higher than those generated by
commercial high-level synthesis tools.

Index Terms—Dataflow synthesis, embedded systems, field-
programmable gate array (FPGA), High-level synthesis, iterative
functions, multimedia processing, performance optimization.

I. INTRODUCTION

TENCIL computing is an important pattern used in a
large variety of domains, including multimedia process-
ing [10], [18], [21], and discrete scientific algorithms [5], [9].
These applications rely on regular kernels that consume most
of the execution time, showing both iterative nature and com-
plex data dependencies that make them difficult to accelerate
using traditional hardware and software methods [5], [44].
Stencil kernels come in the form of an iterated func-
tion T applied over a multidimensional signal f (a frame).
The iterated function is obtained by repeatedly composing a
transformation tr with itself

Si=u(f).o=tu(fi),.... fn =t(fu—1) =T(f).

Typically, the desired T(f) is a fixed point of the single step
transformation tr : tr(7(f)) = T(f). In this case, the ideal
output of the process is the fixed point to which the trans-
formation converges starting from the initial frame. This class
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of algorithms is known in the literature as iterative stencil
loops (ISLs) [6], and has been analyzed within the com-
piler community to find efficient implementations targeted to
CPUs [6] and graphic processing units (GPUs) [7].

The design of dedicated hardware accelerators for ISL algo-
rithms, on the contrary, still represents an unsolved challenge,
as no automatic flow to date can guarantee high-performance
implementations, mainly because of the inherently complex
data dependencies.

Standardized approaches exist for the acceleration of iter-
ative algorithms—a broad class that also includes ISLs — on
field programmable gate array (FPGA) devices. The typical
structure includes two frame buffers [1]-[3], A and B, and the
logic to compute the transformation tr. The initial frame is
loaded in one of the buffers, and then the following iteration

is computed and stored in the other buffer (f (in A) = fi

(in B) X f> (in A), ...). The procedure continues until the
desired number of iterations has been performed. However,
this simple architecture shows a substantial shortcoming: area
and on-chip memory required are lower bounded by the frame
size, making it too costly in real-world conditions.

In this paper, we propose a high-level synthesis (HLS) flow
that addresses the problem of automated hardware accelera-
tion of ISL algorithms, combining architectural aspects and
a novel algorithm analysis technique. The rationale behind
the proposed methodology stems from this observation: some
algorithms feature a peculiar form of spatial locality, where
the value of each element p at iteration i + 1 (p;41) depends
only on a small number of elements in the neighborhood of
p at iteration i (p;). This feature has been instrumental to
develop compiler techniques, known as tiling [45], [46], for
algorithm manipulation. In this paper, we leverage the flex-
ibility of reconfigurable hardware to push this locality even
further, exploiting it to generate custom modules that work on
a portion of the frame, and that output a subset of the inter-
mediate results used by the subsequent iterations. Suppose,
for example, that we want to compute a single element p of
the final resulting matrix, obtained after n number of itera-
tions (let us call it p,). The value of p, depends on a set
P, 1 ={ prll_l, A p:’ll_ 1} of elements computed at iteration
n — 1. Propagating these data dependency relations backward
until the input frame, we obtain the domain of the function
that computes p,. Since ISL algorithms are uniform over the
whole domain, such function is uniquely determined by the
number of levels we want to traverse and, inspired by its geo-
metric representation (see Fig. 1), we call it a cone of depth n.
We can generalize this concept considering cones that com-
pute a set P, of elements of the nth iteration: in this broader
definition, a cone is also characterized by the set of output
points P,. In the remainder of this paper, we will refer to the
set P, of a cone as its output window.

0278-0070 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

<
S ST A== —
- X 77 L

ITERATION N-1 N 7y ”

ITERATION N

Fig. 1. Cone of depth 2 and window size 4.

Algorithm 1 Generic Iterative Convolution Filter

for (iteration = 0O; iteration < N, iteration++) do
for (x = 0; x < X; x++) do
for (y = 0; y < Y; y++) do
sum = 0
for (i = -Kernel_Size; i < Kernel_Size; i++) do
for (j = -Kernel_Size; j < Kernel_Size; j++) do
sum = sum + Kernel(j,i) * Image(x-j, y -i)

Temp(x,y) = sum
for (x = 0; x < X; x++) do
for y =0;y < Y; y++) do
Image(x,y) = Temp(x,y)

It can be observed that the desired processing can be per-
formed by repeatedly applying a cone to portions of the
input matrix. This approach leads to hardware implementa-
tions whose on-chip memory requirements are independent
of the frame size. The parameters that define a “cone-based”
architecture are the cone window size (for the sake of illustra-
tion we consider a square window), the cone depth, and the
number of cones simultaneously present in hardware. Finding
the best architecture (i.e., the best combination of cones) that
satisfies a specified constraint, such as a minimum frame rate,
is a challenging task, due to the large number of tradeoffs at
stake that make the space search complex. In this paper, we
address this problem by proposing an efficient estimation of
area and throughput of a given cone architecture, thus avoid-
ing to actually synthesize them, which would require dozens
of hours for realistic window size and cone depth values.

The proposed methodology starts from the hardware struc-
ture we proposed in [41] and, following the design principles
we first outlined in [43] and [44], complements our pre-
liminary research efforts in this field by defining a novel
methodology to automatically identify ISLs even if these are
present only in a section of the input algorithm.

II. TARGET FAMILY OF ALGORITHMS

Many image and video processing algorithms [10], [21]
aim at finding an output matrix of the same size as the input
(e.g., a filtered image) by means of an iterative process: each
step produces an intermediate matrix, which is computed by
processing one or more elements produced during the previ-
ous iteration. Algorithm 1 provides an illustrative algorithm
belonging to this class: the pseudo-code emphasizes the iter-
ative behavior (i.e., the N iterations of the outermost loop),
as well as the necessity to scan the entire intermediate matrix
(consisting of X x Y elements) to produce the updated result.

Although the pseudocode in Algorithm 1 might
seem very specific, its structure models a large num-
ber of existing algorithms, especially in the multimedia
field. For instance, all the algorithms presented

in [3], [10], [13], [15], [16], [18], and [20] can be expressed
in that form, as well as algorithms for scientific computation,
such as convolution and the Jacobi iterative algorithm to
solve linear eigenvalue problems [17].

Even when the whole algorithm has to be repeated multiple
times starting from different input data, as it happens in [18],
each execution can be considered an independent instance of
the pattern, unless they share intermediate results. To formalize
the properties that characterize the members of the considered
family of algorithms, let us define the following notations.

1) Let (x,y, n) represent the element (x, y) of the interme-

diate matrix at iteration n.

2) Let G(x,y,n) represent the set of elements that are
necessary to correctly compute the value of the ele-
ment (x,y,n), that is the domain of (x,y,n) (when
some regularity conditions are met we will refer to G
as to the dependency schema of the algorithm). Since
the elements belonging to G(x, y, n) are those required
to compute an element at iteration n, they have to be
generated at iteration n — 1.

Now, let us define the following properties.

1) Uniform Dependencies [48]: The shape of G(x,y, n) is
independent of (x, y). This property is the key of stencil
computing, and states that the relative position of the
elements that are necessary to compute any (x,y) do
not change across the input matrix.

2) Domain Narrowness: The elements of G(x,y,n)
are a proper subset of the input matrix S, with
|G(x,y,n)| << |S]. The traditional definition of uni-
form dependency [48] does not explicitly exclude a
situation where all the elements of S are necessary
to compute an element (x,y). Although our approach
can handle such pathological case, we argue that a
more interesting scenario arises when the cardinality of
G(x,y,n) is smaller than the cardinality of S, because
in this case computation can be split and parallelized.

3) Uniform Interiteration Dependencies: For each iteration
n, and for each element (x, y), G(x, y, n) = G(x, y, n+1),
i.e., the dependency pattern remains the same at every
iteration.

Remarkably, among the algorithms that satisfy these three
conditions, there is the family of ISL algorithms [5]-[8], that
iteratively apply the same core operations (the stencil) on uni-
form patterns of dependent data. The number of iterations
can either be known in advance (as, for instance, in an itera-
tive convolution filter [13], where the amount of desired blur
corresponds to a number of filtering steps), or potentially
unbounded (as in fixed point algorithms, where one would
ideally iterate until an equilibrium is reached).

III. STATE-OF-THE-ART IMPLEMENTATIONS

Let us now focus on the design of optimized circuits
for the algorithms that exhibit the properties of domain
narrowness (DN), uniform dependencies, and uniform interit-
eration dependencies. Known approaches consider mostly the
family of ISLs, which is a proper subset of the algorithms
characterized by the three properties. The most relevant are
compared in Table I with respect to their area usage, perfor-
mance and memory requirements. The main bottlenecks are
shown as shaded gray cells: the criticality of the bottleneck
grows with the color darkness.
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COMPARISON AMONG DIFFERENT APPROACHES. THE MAIN BOTTLENECKS ARE SHOWN AS SHADED GRAY CELLS
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Fig. 2. Different approaches to the design of optimized hardware for ISLs.

A. State-of-the-Art Methodologies: Taxonomy

In order to explain the main differences between the state-
of-the-art approaches and the proposed one, let us introduce
a simple example: Fig. 2 shows an algorithm where an oper-
ation k, whose area usage is Ay and whose execution time is
E}, characterized by I = 3 adjacent inputs and Oy = 1 out-
put, is executed on all the X x Y elements of the input matrix
for N = 3 iterations. Thus, each iteration of the algorithm
requires Z = (X - Y/Oy) operators of type k. In this context,
the implementation of all the k operators required to execute
the N iterations of the algorithm is not viable in typical realis-
tic scenarios, because of its extremely large area requirements.
In fact the area usage is directly proportional to both Z and N,
which makes it almost impossible to implement this solution
on actual devices for reasonable values of X and Y, e.g., 8
millions of k operators would be necessary to compute ten
iterations on a 1024 x 768 image.

Chavda et al. [32] and Yao et al. [33], indicated as sequen-
tial (S) in Fig. 2, proposed the implementation of a single
instance of the operator k, which is used several times in
order to compute all the intermediate and final results, which
are the (x,y, n) elements introduced in the previous section.
As reported in Table I, the area usage of this approach is
very low, since only a single instance of the operator k has
to be implemented in hardware. However, the performance of
this approach is low as well, since all the operations have
to be performed strictly sequentially by the single opera-
tor available, and its memory requirements huge, because all
the intermediate results have to be stored for the subsequent
iteration.

The second approach, indicated as single window (SW)
in Fig. 2, aims at taking full advantage of parallel execu-
tion by instantiating a window of k operators processing
multiple inputs coming from the same iteration [10], [35].

The parameter w represents the width of the window, which
is basically the number of k operators working together at
the same time, while S; and S, represent the set of input
and output elements, respectively. This approach is widely
used in [31], [34], [36], and [37], especially on algorithms
characterized by simple dependencies. However, this approach
cannot be considered a viable solution when dealing with algo-
rithms characterized by complex dependencies, since it does
not take into account the relations between successive frames,
and therefore it is generally suboptimal when multiple itera-
tions are performed at once. In fact, if the dependencies among
the iterations are not considered, it is not possible to ensure
that all the output values of an intermediate step are directly
used in the following one, thus some of them have to be
stored for later use (memory overhead) or discarded and then
computed again when necessary (timing overhead).

Finally, the approach indicated as iterated window (IW) in
Fig. 2 is the one proposed in this paper and it is shaped to
match the dependencies of the algorithm to be implemented.
Therefore, its main goal is not to maximize the number of
parallel processing elements, but rather to span across differ-
ent iterations, and ensure that each computed element can be
immediately reused. To this end the proposed approach deals
at each iteration only with the subset of data [namely a collec-
tion of overlapping G(x, y, n) values] necessary to compute the
information needed by the following iteration. Since in most
cases the set of elements that can be successfully computed
at iteration n is only a subset of the elements computed at
iteration n — 1, the resulting structure is usually very similar
to a 3-D cone, as shown in Fig. 2.

The resulting architecture is characterized by the size of
the input window (w;), the size of the output window (w,),
and the number of iterations computed by each cone (¢). This
value can be computed as t = (N/H), where N is the total
number of iterations and H is the number of cones that are
necessary to produce a valid output starting from a set of input
values, through all the N iterations. The shape of the cores
(e.g., the relationship between w; and w,) employed depends
on the dependencies schema of the selected algorithm, thus on
the size and shape of the G(x,y, n) sets. The proposed flow
automatically derives the best fitting ones for each algorithm.

B. Evaluation and Comparison of Existing Implementations

As described in the previous section and shown in Table II
for an instance of the ISL family, the algorithms considered
here have traditionally been a challenging problem for the
designers, mainly because of the complexity of their data
dependencies. This is especially true when considering exe-
cution time, as proved by the results shown in Table II,
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TABLE II
STATE-OF-THE-ART IMPLEMENTATIONS OF CHAMBOLLE

Ref. Device Iterations Image Frame
Resolution Rate (fps)

[ 201 ] GeForce 7800 GS [ 50; 100; 200 [ 256 x 256 [ 17.5:9.6;5 |
[ 201 | GeForce 7800 GS | 50: 100,200 [ 512 x512 [ 5;26:13 |
[ 120] | GeForce Go 7900 GTX [ 50; 100; 200 [ 256 x 256 [ 34.1; 17.5; 8.9 |
[ 120] | GeForce Go 7900 GTX [ 50; 100; 200 | 512 x 512 | 9.3;4.7;23 |

[21] | ATT m Radeon HD3650 100 512 x 512 1-2

[21] | ATI m Radeon HD3650 100 512 x 512 3-4

[21] NVIDIA GTX285 100 512 x 512 5-6

which includes the best performing implementations of the
Chambolle algorithm. Most of the state-of-the-art solutions
fail in achieving real-time performance on reasonable images
(with a size > 512 x 512) even on GPGPUs platforms. In the
literature, the problem of designing efficient implementations
for this class of algorithms has been tackled within the com-
piler community using the concept of loop tiling [45], [46], a
platform-independent technique that divides the iteration space
into blocks, aiming to maximize data reuse and parallelism.
Our approach takes full advantage of tiling principles, and
combines them with the benefits provided by fully custom
computation on fine-grained reconfigurable platforms.

Exploiting the potential of FPGA devices for stencil
computing is a relatively new research direction. While
existing implementations of ISLs on CPUs [5], [6] and
GPGPUs [7], [8] have ultimately struggled achieving high per-
formance, ground-breaking works on FPGAs (such as [47]),
have demonstrated high potential. In fact, CPUs and GPGPUs
have rigid architectures in terms of memory organization,
which may not map well on all algorithms. FPGAs overcome
these limitations, but they nonetheless show well known limi-
tations in terms of area and external memory accesses, which
requires the hardware implementing the stencil algorithm to be
carefully designed. Our approach addresses this requirement,
by performing a meticulous analysis based on both area and
overall throughput.

Commercial alternatives to translate algorithms to hardware
exist on the market. HLS tools like Xilinx Vivado [23] or
Synopsys Synphony C Compiler [22] are commonly used to
perform a set of predefined array and loop transformations,
such as loop unrolling, merging, flattening, pipelining, and
array partitioning, on the C description of the input algorithm.
However, they are inherently general purpose and can apply
only generic optimizations without specifically exploiting the
peculiarities of the specific algorithm. For this reason, the
performance of the implementations generated by these frame-
works are generally unsatisfying for ISLs, especially when
compared to manually optimized implementations.

Given the lack of support for the automatic generation of
custom hardware designs for ISLs, many ad-hoc implemen-
tations have been proposed for specific ISL algorithms. For
example, Fowers et al. [4] proposed an optimized implemen-
tation for noniterative 2-D convolutions, and Akin et al. [41]
provided an efficient hardware approach for Chambolle [18].
However, since these solutions are manually tailored for a spe-
cific algorithm, they lack generality and reusability, and the
effort required to adapt one of these solutions to a different
problem (if possible) is generally not negligible.

Our previous research efforts in the field of ISLs have shown
that high-performance implementations can be obtained by
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Fig. 3. Simple example of a mixed cone-based architectural template.

combining a dependency analysis from the C code [44], and
a hardware architecture specifically designed for iterative ker-
nels [43]. In this paper, we complement these considerations
to obtain a complete and automated HLS flow. Specifically,
we herein include techniques to detect an ISL structure within
a give C code, and to perform a deep design space exploration
to implement it in hardware.

IV. PROPOSED ARCHITECTURE TEMPLATE

In order to automatically discover whether a given algo-
rithm presents these three characteristics defined in Section II,
we introduced in Section V-A symbolic execution as a means
to automatically extract its data dependencies. This technique
makes it possible to express the result of the (i+m)th iteration
as a function of (some of) the elements computed at the ith
iteration. Then, given the data available from the ith iteration,
instead of trying to compute the whole f; 11, we can focus on a
subset of the matrix elements and directly compute the results
of a generic (i + m)th iteration (with m > 1), thus obtain-
ing a subset of fi;,,. We refer to the core that performs such
multi-iteration computation as a cone of depth m.

We define an architectural template as the combination
of multiple levels of cones that can compute the result of
multiple iterations of the elementary transformation tr. The
combinations of cones of different depths are also considered
to cover all the required iterations and explore the differ-
ent area/throughput tradeoffs. These structures, as shown in
Figs. 3 and 4, work as follows: a small subset of the input
data is transferred from the off-chip to the on-chip memory,
consisting of multiport block RAMs, to feed the cones of the
first level of the architecture (A, B, C, and D in Fig. 3). The
output of each level is then stored again in the on-chip mem-
ory, so that it can be used as input for the subsequent level
without the need of performing data transfer from/to the exter-
nal memory. Finally, the output of the last level (Level 3 in
Fig. 3) is sent back to the off-chip memory and the whole
process starts over on a different window of the input, until
the final result has been computed.

The number and depth of the cones in the actual architec-
ture has to be tailored to the algorithm under consideration,
since the dependencies can significantly vary from algorithm
to algorithm. Thus, multiple instances of the template may
exist, and each one is uniquely characterized by the size of
the output window of each cone and the number of levels in
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which the computation is divided. Fig. 3 shows an instance of
the template with an output window of 4 x4 elements and three
levels of computation. The only requirement for an instance
to be feasible is that, if cones of different depths are required,
at least one cone of each depth must be implemented on the
device. For instance, the structure in Fig. 3 is feasible if the
available resources are sufficient to fit cones A and E.

The proposed template provides an efficient datapath struc-
ture for ISLs, which can be coupled with a simple control logic
provided with a standard memory interface. This interface can
be used to fetch data from the external memory and forward
it to the cones and then to store back in the external memory
the output of the computation. The only information that the
control logic needs in order to perform these tasks is the size
of the chunks of data to be read/written from/to the external
memory (i.e., the size of the input/output windows of the cone
architecture). Fig. 4 shows a practical example of how a final
architecture looks like, using the Chambolle algorithm as an
example. For the sake of illustration, the computation has been
assigned to only two cones that span two iterations, and pro-
duce an output window of 8 x 8 pixels [Fig. 4(a)]. The cones
are then repeated multiple times to cover the required num-
ber of iterations [Fig. 4(b)], thus producing the full datapath.

The control logic is very simple and has a negligible complex-
ity with respect to the rest of the design, as it is only in charge
of incrementally computing the result by sliding the output
windows of the cones over the area of the output frame. This
is achieved by feeding the two cones with the corresponding
(possibly overlapping) portions of the input frame, as shown
in Fig. 4(c). The block view of the complete architecture, and
the corresponding RTL implementation on an FPGA device,
are finally illustrated in Fig. 4(d).

V. PROPOSED HLS DESIGN FLOW

The HLS methodology proposed in this paper can be applied
to the design of an optimized hardware architecture exploiting
two different kinds of optimizations.

1) Cone Collapsing: A sequence of elaboration steps per-
formed on a window of the input frame is computed
with a single hardware component (a cone).

2) Horizontal Parallelism: Different elements of the same
frame are elaborated in parallel by different cones.

The core idea is to perform the computation of the inner-
most loop on a subset of elements, instead of considering
the whole data set. This in turn makes it possible to split
the computation into several different tasks, implemented in
hardware as cones that span on more iterations and that
can be executed completely in parallel. The main drawback
arises from the overhead introduced on the edges between
the different subsets, which depends both on the number of
iterations of the algorithm and on the shape of the subsets.
However, the proposed approach tries to endow the designer
with tools to explore the design space and identify the best
tradeoff between the parallelization of the computation and
the overhead generated.

Relying on this idea, the design flow hereby proposed starts
from the C description of a given algorithm, analyzes its
dependencies and detects whether it can be effectively imple-
mented with a cone-based architecture. The output of the flow
is the VHDL description of the Pareto-optimal (area versus
throughput) implementations of the given algorithm, in the
vast solution space of all the instantiations of the structural
template described in Section IV.

A. Symbolic Execution

To understand if the architecture template proposed in
the previous section can be successfully adopted for the
implementation of a specific algorithm, it is necessary to dis-
cover if the latter exhibits DN, uniform dependencies and
uniform interiteration dependencies, at least for a portion
of the input frame and for a subset of the computation
iterations.

Our approach exploits symbolic execution to automatically
extract useful information on the structure and the charac-
teristics of the input algorithm. To generate the cones, it is
necessary to express the value of an element p € fi4,, as a
function of a set of elements of the frame produced at the
ith iteration (i.e., f;). This functional relation is often com-
puted by hand (such as in [41]) but, when different numbers
of levels are evaluated during the design space exploration,
the advantages of an efficient and automatic way to determine
the equations for m = 1, ..., N are straightforward.
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The first analysis phase is an optimized symbolic exe-
cution of a C description' of the input algorithm, where
symbolic expressions are propagated, rather than the actual
values of the variables. Thus, output of the iterations from
i to i + m, is not the numeric value of fi,,, but a set of
equations that relate each element of fi;, to a subset of
elements of f;.

To automatically perform symbolic execution with min-
imum instrumentation effort we exploited C++ (ISO/IEC
14882:2003) templating and overloading capabilities. The key
idea is to use templates to define parametric “symbolically
executable” types. Then we overload all the relevant oper-
ations upon such classes (4, —, *, etc.) so that, while
executing the instrumented code, the results of arithmetic
operations are logged along with their symbolic values (e.g.,
if a = 3 and b = 4 the arithmetic result of the a - b
is 12, while the symbolic value of the same operation is
a x b). In this way, the information that allows to com-
pletely reconstruct the data flow is recorded within the vari-
able containing it, which is directly accessible at the end
of the computation. A symbolically tracked variable carries
information on:

1) its arithmetical actual value;

2) the index of the iteration it belongs to;

3) possibly, information about its location within the data

set (usually matrix indexes);

4) its symbolic value;

5) history of its previous (symbolic and arithmetical)
values.

The iteration indexes and the history of all its previous val-
ues are used to compare equations at different frames of the
symbolic execution, in order to detect and measure uniform
interiteration dependencies.

Exploiting C++ language features keeps the instrumentation
overhead to a minimum. The modifications to be performed
on the input C code are as follows.

1) The modification of the type declaration of the variables
to be tracked (in a sense, the declaration section of the
algorithm acts as an analyzer configuration).

2) The initialization of all the arrays to be tracked. This ini-
tialization does not involve the values of the elements of
the arrays, but it is needed to store, in each one of those
elements, the indexes of their location within the array
itself. For instance, the symbolic variable corresponding
to an element matrix[x][y] would contain, along with the
other data, also the two indexes x and y.

3) The (highly-automatable) definition of new overloaded
functions—one for each custom or library function to
be tracked by the symbolic analysis—that take as input
symbolic values instead of the original ones.

Below, a snippet of the definition of the symbolic integer:

class symb_int: public symb element(
public:

int n, level, store n[MAX LEVEL];
string svalue, id, temp svalue;
string store_svalue [MAX LEVEL] ;
[...1}

IThere are no “strict” syntactic constraints on the language used to describe
the algorithms. Some language features, though, can generate code for which
symbolic execution is less effective, such as accessing arrays by using pointer
arithmetic and dereferentiation instead of square brackets.

Let us consider, as an example, the overloaded + operator:

symb_int& operator+ (symb_int opl, symb_int op2) {
[...]

ssl << "(" << opl.svalue <<"+"<< op2.svalue<<")";
s82 << "(" << opl.id << "_+_" << op2.id << ")";
temp->n = opl.n + op2.n;

temp->svalue = ssl.str().c_str();
temp->id = ss2.str().c_str();
temp->store nlopl.level]l=opl.n;
return xtemp; }

The stringstream ssl is used to propagate the symbolic
value (svalue) corresponding to the result of the sum oper-
ation by concatenating the two svalue variables of the two
input symb_int. Similarly, ss2 is used for the propagation of
the id. Finally, the variable n holding the actual value of the
sum is computed by adding the two numeric values in input.

In addition to overloaded operators, we have also developed
a mechanism to keep track of function calls:

int funct (int n); //custom or library function

symb_int funct(symb int n){ //automatically
generated
n.funct ("funct", funct (n.n)) ;
return n;}
void funct (const charxfname="f",int value:O){
this->n=value;
stringstream ssl, ss2;
ssl << fname << this->svalue;
ss2 << fname << this->temp svalue;
this->svalue=ssl.str();
this->temp svalue = ss2.str();}

The mechanism consists in automatically defining, for each
(custom or library) function used in the given algorithm, a
new overloaded function that takes as input a symbolic value
instead of the original one (e.g., a symb_int instead of a simple
int) so that every time a function is called on a symbolic value,
the function defined by our design flow is invoked instead of
the one defined by the user or present in the library. The main
tasks performed by the functions generated by the flow are:

1) to keep track of the computational flow (i.e., the opera-
tions applied to the symbolic variable);

2) to retrieve the return value by invoking the original func-
tion with the actual value of the symbolic variable as
parameter.

In this way, not only simple operations can be tracked by

the proposed symbolic execution, but also complex functions
defined by the users or imported from the standard libraries.

B. Data Dependencies Analysis

The output of symbolic execution is then processed to esti-
mate its level of DN, uniform dependencies and uniform
interiteration dependencies. As shown in Fig. 5, symbolic
execution produces a dependencies schema for each element
of the data matrix and for each iteration. This dependencies
schema is expressed as a formula, where elem[a][p]_n iden-
tifies the element located at coordinates (a, b) at the iteration
level n. We are interested in discovering if a subset (ideally
consisting of all the elements) of the data matrix is character-
ized by the same formula for a certain number of iterations
(ideally all), without involving any dynamic control flow (e.g.,
data-dependent conditionals).

To this end, we developed a python tool that identifies the
maximum subsets of the domain within which DN, uniform
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(function((((m[3][1]_2*2)+(m[1][1]_2*m[2][2]_2))-m[2][0]_2)-7)/(m[2][1]_2+3))/2) = 1822

)
b
%
\\

[/
AR
il

e[x][yl_(n+1)=f((e[x+1][y]l_n*2+e[x-1][y]l_n*
[Xlly+1]_n-e[x]ly-1]_n-7)/(e[x]ly]_n+3))

elxllyl_(n+1)=
elxllyln

Fig. 5. Graphical representation of the data of the python analyzer.

dependencies and uniform interiteration dependencies hold. As
shown in Fig. 6, the tool produces both a graphical represen-
tation of the three properties for each iteration (two images
are produced for each iteration: one for DN and one for uni-
form dependencies/uniform interiteration dependencies) and
the corresponding structured description. The graphical rep-
resentation is useful for the designer to understand at a glance
if (and roughly how much) the considered algorithm can ben-
efit from the proposed implementation approach, while the
structured description is fed to the following phases of the
flow to generate the correct architecture for the algorithm
considered.

1) Domain Narrowness Analysis: In order to evaluate
the presence, level, and location of DN in the algorithm,
the tool has to check the following fundamental condition: the
value of each element at iteration level L should only depend,
directly or indirectly (e.g., function calls), on constant val-
ues (propagated by the symbolic execution) or on values of
other elements computed at previous iteration levels (includ-
ing the initial values), but not, for instance, on the values of
the elements at the same iteration level.

Then the tool has to identify, for any given point P of
every step n, what are the points in n — 1 that P depends
upon (i.e., its domain). At this point, in order to estimate
the DN, a metric that takes into consideration both the size
and the shape of the different domains has to be evalu-
ated. In our approach, we have decided to assign, to each
point P’ in the domain of P at iteration n — 1 (domain(P)),
a penalty w that is directly proportional to the distance
(e.g., Cartesian distance, Manhattan distance, etc.) between
P and P

wpp = distance(P, P').

Then, the aggregation (e.g., the sum) W of all the w penalties
is a measure of the inverse of the DN of point P (DN(P))

W =

1
2 VPP = DN(P)

P’'edomain(P)

Finally, the output is stored for the following phases of the
design flow and a graphical representation is produced where
the darker is the color of a cell, the higher is the number
and the penalties of the elements of its dependencies schema

Domain Narrowness Uniform (Inter-lteration) Dependencies
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Fig. 6. Example of a possible graphical output of the python analyzer.

(that is, the less it is characterized by the DN property); in
particular, a white cell identifies an element that only depends
on itself (at the previous iteration), while a black cell iden-
tifies an element that does not satisfy the DN property (e.g.,
it depends on other elements at the same iteration level). The
exact values of the DN of each element is coded in the picture
as a scale of gray, while it is stated explicitly in the textual
representation of the output. Fig. 5 shows that the tool is able
to detect that all the elements of the matrix have high DN at
all iteration levels, and also that the border depends only on
one element of the previous iterations, while the other cells
have a larger dependencies domain.

2) Dependencies Analysis: To estimate the uniform depen-
dencies and the uniform interiteration dependencies properties,
the first task performed by the tool is the generation, starting
from the input formulas, of a tree representing the dependen-
cies of each element of the input matrix, for each level of
iteration. Then, all the syntax trees of the elements of each
iteration level are compared in order to partition them into
classes, each of whom is characterized by the same syntax
tree, (that is, by the same dependencies schema). In order to
perform a fair comparison among all the syntax trees, they are
preprocessed in the following way.

1) The absolute indexes of the array members of the syntax
tree are transformed into indexes relative to the target
element. Let us consider the following syntax trees:

a) the first one is array[5][7] + array[5][8] and refers
to the element array[5][7];
b) the second one is array[6][2] + array[6][3] and
refers to the element array[6][2].
Even though the two syntax trees are different, they can
be both expressed (by using indexes relative to the ele-
ment array[x][y]) as array[x][y] + array[x][y + 1], and
thus they can be correctly detected as equivalent.

2) The resulting formula is simplified, in order to facilitate
the detection of equivalent expressions. For instance, the
operations among actual values are performed and the
result is stored in the tree (e.g., 3 %2 + 1 is substituted
with the corresponding result, 7, so that the two syntax
treesa+b+3%x2+1anda+b+ 22+ 3 can be
correctly detected as equivalent).

3) Each formula is normalized (by taking into account the
lexical order of the operands) in order to convert all its
possible representations into a canonical form (so that
the two syntax trees a + b and b + a can be correctly
detected as equivalent).
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An example of the output of this phase is shown in Fig. 5,
where two distinct classes (each one characterized by cells of
the same color) of elements are detected:

1) class A, characterized by: e[x][y]_(n + 1) = e[x][y]_n;

2) class B, characterized by: e[x][y]_(n + 1) = f((e[x +

1yl % 2 + elx — Hlyl_n * [xlly + 1]_n — elx]ly —
_n—="T7)/(elx][yl_n + 3)).

The partition of the matrix in the equivalence classes of
points that have domains with equal shape is an inverse mea-
sure of the uniformity of the dependencies schema: if all
the pixels (over all the different iterations) have same shaped
domains, there will be only one class of equivalence. On the
other hand, if they are all different, the number of pixels
becomes equivalent to the number of classes (which is the
situation with the lowest uniformity possible).

Note that the metrics proposed can detect the presence of the
properties even in subparts of the algorithm, and to different
degrees. This significantly widens the set of algorithms that
can be addressed by the proposed synthesis flow. Moreover,
it is not necessary that the properties are evident in the algo-
rithm code upon inspection, since the tool will exploit the
information coming from the symbolic execution.

For instance, consider the following synthetic example
(which is not a simple ISL where a single stencil is repeated
on the whole data for all the iterations):

for (i=0;i<N;i++){
for (x=0;x<DIM;X++)
for (y=0;y<DIM;y++)
if (x>0 && x<DIM-1 && y>0 && y<DIM-1
&& x< (DIM-1)/2 && i>=(N-1)/2)
m2 [x] [y]=funct ((ml[x+1] [y]*2+ml[x-1] [y]*
ml [x] [y+1]-ml[x] [y-11-7)/(m1[x] [y]+3));
else if (x>0 && x<DIM-1 && y>0 && y<DIM-1
&& x>DIM/2 && i>=(N-1)/2)
m2 [x] [y]=ml[x+1] [y]+ml[x-1] [y]-funct (ml[x] [y]);
else if (x>0 && x<DIM-1 && y>0 && y<DIM-1 &&
x>DIM/2)
m2 [x] [y]l=(ml[x+1] [y]+ml[x-1][y])/2+ml[x] [y];
else
m2 [x] [y]=ml[x] [y];
for (x=0;x<DIM;X++)
for (y=0;y<DIM;y++)
if (x>0 && x<DIM-1 && y>0 && y<DIM-1)
ml [x] [y]=m2[x] [y]/2;
else
ml [x] [y]=m2[x] [y];}

When executed on an input data matrix of 15x15, it produces
the output shown in Fig. 6, where it is possible to observe the
following.

1) The first two iterations considerably differ from the

other three.

2) The DN is verified by all the elements at all the iteration
levels, even though with different levels of locality (three
different classes are identified by the tool).

3) Without considering the borders, the first two iterations
satisfy both uniform dependencies and uniform interit-
eration dependencies in the whole data set, while in the
last three iterations the tool automatically identifies two
huge subsets where the two properties locally hold.

4) The borders are correctly detected as “special elements,”
so that they can be handled as a separated class of ele-
ments by the proposed approach, since they satisfy the
DN and uniform (interiteration) dependencies properties
for all the five iterations.

Algorithm 2 Cones Generation

Input (from the symbolic execution phase):
o Sets of output window sizes w,
o Possible heights ¢ of the computational cone
Output (to the architectures generation phase):
e Equation and code implementing the sets of possible cone
structures
wi=0
for each (xt, yx, N) belonging to w, do
w; = w; + G(x, yg, N — 1)
Synthesize a cone able to generate w, starting from w;

C. Cones Generation

As shown in Algorithm 2, the design flow exploits the
information about the maximum size of the data matrix sub-
sets that locally satisfy both DN and uniform (interiteration)
dependencies on a certain number of consecutive iterations to
generate all the possible cones. These cones are characterized
by a higher number of output elements (w,) that spans dif-
ferent numbers of iterations [which is ¢+ = (N/H)]. For each
combination of output window (w,) and cone height (N/H),
a specific computational cone is implemented. To derive the
input window (w;) from w,, it is possible to proceed by iden-
tifying the sets G(x,y, N — t), one for each (x,y, N) element
of w,, which represents the inputs of the cone. After this phase,
it is possible to generate and synthesize the hardware cone
able to produce the desired output window starting from the
elements at the iteration N — .

The main issues that arise during the synthesis of a cone
is the exponential growth, while performing symbolic execu-
tion, of the number of symbols included in the expressions,
that makes it impractical for complex algorithms. In the pro-
posed flow, we overcome this issue by exploiting the properties
defined in Section II, which enable an efficient symbolic exe-
cution for the targeted class of algorithms. First, it is not
necessary to find an equation for all the elements of fit,:
if the uniform dependencies property holds, the dependen-
cies of the elements in the frame are uniform, which allows
tracking only one element in order to get the desired expres-
sions for the whole f4,,. Second, if the uniform interiteration
dependencies property holds data dependencies between two
consecutive iterations i and i + 1 are the same for each value
of i e {I,...,N—1}. As a consequence, it suffices to perform
symbolic execution for just one iteration to find the relation
between fi11 and f;, which in turn can be used as a building
block to compute the dependencies between any pair of fiy,,
and f; during the VHDL generation.

The equations returned by the symbolic execution are
exploited to automatically generate a synthesizable VHDL
description of the cones. During the equations-to-VHDL trans-
lation, the exponential explosion of the number of symbols is
avoided by enforcing data reuse. In fact, a large number of
operations on the same elements is repeated multiple times
to satisfy the data dependencies, as shown in the example in
Fig. 7. The first cone, in fact, in order to compute its output
window consisting of C> and Dj, would require to compute
some intermediate results multiple times: for instance, C; and
D; would have been computed two times, By and E( three
times, while Cp and Dg five times. This redundancy is not
detected by the symbolic execution itself, which would instead
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Second cone

First cone

Fig. 7. Example of the data-reuse technique.

Algorithm 3 Architectures Generation

Input (from the data dependencies analysis phase):
o Total number N of iterations
o Dependencies structure of the algorithm
Input (from the cones generation phase):
e Equation and code implementing the sets of possible cone
structures
Output (to the design space exploration phase):
e Sets of possible parallel hardware implementations
o of the considered multimedia iterative algorithm

for p=0;p < 75"“(;'1”;;%’)””"); p++) do

Schedule 1 cone at level % in position p
for (iteration = % — 1 ; iteration > 0; iteration—) do

Schedule all the cones necessary at level iteration in position
p, in order to feed the cones already scheduled at level iteration+1

in position p

introduce a large number of repeated symbols and operations
in the equations. In our flow, we handle it by unrolling the
dependencies between fii,, and f; through m iterations and,
for each operation between two elements, we store the result
in a register: whenever the operation appears more than once,
the register is reused (as a sort of cache). This generates a
VHDL code with a high degree of resource reuse, which can
be handled by any synthesis tool for FPGAs.

D. Architectures Generation

Algorithm 3 describes how it is possible to generate the
space of all the possible architectures (intended as combi-
nations of different cones) that implement the given input
algorithm. When generating an architecture with a specific set
of cones, two different scenarios are possible, depending on
the height of the considered cones.

If at least one of the cones works on all the iterations of
the algorithm (thus if + = N for that cone), then it is sufficient
to deploy on the target device one or more of those cones
(depending on the available area) that can work in parallel
on different portions of the input data. Then, as soon as their
computation is concluded, the control logic simply stores their
output and feeds them with other portions of the input data,
shifting the location of their output window in order to cover
the whole output data set.

Otherwise, if all the considered cones only span a subset of
the iterations (see Fig. 2), then the flow has to combine more
cones to produce a single output window of the final iteration
starting from the input data fetched by the control logic. The
resulting architecture is similar to the one shown in Fig. §,
where six cones spanning ¢t = 4 iterations are necessary to
cover all the N = 12 iterations of the algorithm. As stated
in Algorithm 3, the first cone to be considered is cone 6.
Then cones 4 and 5 are instantiated in order to generate the

Execution Order
(1,2,4,3,5,6)

Level 1 (H-2)

Level 3 (H)

Fig. 8. Cone structure and scheduling for N = 12 and H = 3 (thus, 7 = 4).

data required by cone 6. Finally, cones 1 and 2 are required
by cone 4, while cones 2 and 3 by cone 5. The execution
order the flow exploits to perform the whole computation is
handled by the control logic and is then the following: 1, 2, 4,
3, 5, and 6. Note that the output of intermediate cones, such
as cone 2, is temporary stored in the on-chip memory in order
to avoid multiple executions of the same computation.

For what concerns the area and computation overhead,
Fig. 7 shows what happens when two or more cones are
executed on adjacent output windows. While the area and com-
putation overhead within a single cone is detected and resolved
during the cones generation phase (see Section V-C), this does
not happen at the architectural level. As shown in Fig. 7, in
fact, a portion of the computation (consisting of Co, Do, Eo,
Fo, D1, and Ej in this case) is performed in both the cones,
thus leading to area and computation overhead. This redun-
dancy is an essential and unavoidable part of our approach,
which makes it possible to split the computation and distribute
it on a set of cores working in parallel. The percentage of this
overhead can be computed with the following formula:

(Opcone-based — OPinitial) - 100
Opinitial

where Op.one-based 15 the number of operations effectively
performed by the cone-based architectures generated with our
flow and Opinitial 1s the number of operations of the initial
algorithm (which computes one iteration at a time). The DN
parameter is a good proxy to estimate this overhead, since
it directly depends on the shape of the dependencies schema
of the input algorithm. In addition to this, the computational
overhead can be minimized by tuning some of the parameters

that characterize each architectural solution, such as:
1) increasing the size of the output window of each cone;
2) reducing the height of each cone (i.e., the number of

iterations it computes).

In particular, experimental results have shown that the com-
putational overhead never exceeds 50% in all the cone-based
architectures characterized by cones with an output window of
more than 7 x 7 pixels and spanning less than five iterations.
However, in order to automatically select the best tradeoffs
among redundant computation, on-chip memory requirements,
area usage and performance, the proposed flow performs a
deep design space exploration. over all the instances of the
proposed architectural template, as described in Section V-E.

(D

E. Design Space Exploration

The main issues that arise when trying to extract the Pareto-
optimal architectures (see Figs. 11 and 15) from all the ones
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generated in the previous phase of the flow (as described in
Algorithm 3), is the evaluation of the cost and throughput
of each architecture of the solution space. This would indeed
require, in principle, to synthesize each possible combinations
of cones: for typical problem sizes this may take days of CPU
time, making a complete design space exploration unfeasible.
As an example, in a simple scenario with cones spanning 1,
2, 4, 5, or 10 iterations, considering architectures obtained
combining two different kinds of cones with output windows
ranging from 1 x 1 to 100 x 100 elements, the solution space
consists of 5 x 5 x 100 = 2500 possible architectures.

To address this issue we hereby propose a novel technique
that quickly (generally in the orders of a few minutes) esti-
mates the area requirements of all the cone architectures. The
proposed evaluation only requires a very small number (as low
as two) of circuit syntheses (considering only a single cone for
each synthesis), and its accuracy is related to the number of
syntheses that the designer is willing to perform (the higher the
number, the more accurate the estimation). Describing the area
requirements analytically presents several challenges, the main
one arising from the nonlinear growth of the area with respect
to the number of cones in the architecture, due to the opti-
mization and the logic reuse performed by the synthesis tool.
However, we observed that the trend of the area occupation
follows the growth of the number of registers allocated into
the cones. We captured the observed trend with the following
relation:

AT' = AT + (Reg, —Reg, ) - Sizere - g

where A% is the estimated area requirement for an architecture
whose cones have an output window consisting of x elements.
Reg, represents the number of registers that have been used
to build the HDL of a cone with an output window consisting
of x elements: this quantity is known as soon as the VHDL
description of the algorithm is generated and data reuse is
enforced. Sizere, represents the average size (typically 32-bit)
of the registers allocated during the generation of the HDL of
the cone architecture. Finally, the o correction factor takes into
account the degree of logic reuse performed by the synthesis
tool, which can be experimentally evaluated by interpolating
two initial syntheses X and Y in the following way (if a higher
accuracy is needed, more initial synthesis can be performed):

Ax — Ay
o= - .
(Regy — Regy) - Sizereg

3)

However, we have observed in our experiments that the results
of two synthesis are generally sufficient to obtain a value of «
that makes it possible to perform very accurate estimations, as
proved in Section VI. On the other hand, appraising through-
put follows the traditional approach of summing the delays
of the operations included in each cone, and counting the
number of cones running in parallel. This information is imme-
diately available, as well as the information about latency,
after the VHDL generation phase. Once the architectures space
is completely characterized (that is, area and throughput of
each possible implementation have been estimated) the flow
finally extracts the Pareto set, exhaustively exploring a set of
a (typically) few hundreds/thousands solutions.

VI. EXPERIMENTAL RESULTS

As mentioned in Section I, we validated proposed flow on
different case studies, of which we discuss the most signifi-
cant two, characterized by different complexity: 1) an iterative
Gaussian filter [13] and 2) the Chambolle algorithm [18].

A. Iterative Gaussian Filter

The first case considered is the blur effect, essentially con-
sisting in convolving an image f with a Gaussian kernel G.
Convolution is a fundamental mathematical operation that
is used in many common image processing operators [10].
In image processing, it is used to implement operations in
which the values of the output pixels are calculated as linear
combination of a subset of the input pixels.

Convolution belongs to a class of algorithms commonly
referred to as spatial filters: a kernel (or mask) is moved
across the original image, and each pixel is computed as the
weighted sum of the neighboring elements, where the weights
are the values in the mask. The semantic of the weights in the
mask depends on the operation to be performed on the orig-
inal image. For example, a blurring filter can be obtained by
taking the kernel values from a Gaussian distribution. In the
case of blurring filters, and more generally in Gaussian ker-
nels, the convolution with a large kernel can be approximated
by an iterative application of a smaller kernel [11].

The first task performed by the proposed design flow is
the symbolic execution of the input algorithm, immediately
followed by the data dependencies analysis phase. In order
to show how it is possible to automatically extract, from the
input algorithm, information about the portions of code that
can be optimized thanks to the proposed architecture, we have
performed the symbolic execution and the data dependencies
analysis phases on a piece of code performing five iterations of
the iterative Gaussian filter (IGF) applications, thus consisting
of the following tasks.

1) PRE: Generic not-parallelizable preprocessing.

2) IGF_In: nth iteration of the IGF.

3) POST: Generic not-parallelizable post-processing.

Fig. 9 summarizes the results obtained by the proposed
design flow when provided with the same IGF running on
1024 x 768 images with kernels of different sizes (each bar of
Fig. 9 refers to a different kernel size: 3 x 3, 5 x 5, 15 x 15,
55 x 55, or 101 x 101). The level DN of domain narrow-
ness has been computed as 100—the percentage of elements
belonging to the dependencies schema of an element, averaged
on all the elements of the data structure. Thus, bars close to
100 correspond to computational iterations that, for a partic-
ular kernel size, show a very high level of DN. The level
UD of uniform dependencies has been computed as the per-
centage of elements that share the same dependencies schema
within each computational iteration (in case multiple sets of
such elements exist, the larger one has been selected): a value
close to O represents a situation in which almost each element
is characterized by a different dependencies schema, while a
value close to 100 refers to a scenario in which almost all
the elements share the same dependencies schema. The level
UIID of uniform interiteration dependencies has been com-
puted by taking into consideration, for each iteration i, both
the previous (i—1) and the subsequent (i+1) iterations (if exist-
ing): then, if the three iterations perform the same computation
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Fig. 9. DN, uniform (interiteration) dependencies and optimization index
estimation for the IGF on different kernel sizes.

(i.e., they would produce the same output if fed with the same
input data), the UIID of iteration i is set to 100. If only two of
them (i and i—1, or i and i+ 1) perform the same computation,
the UIID of iteration i is set to 50. Otherwise, the UIID of
iteration i is set to 0. Finally, an optimization index has been
computed as (DN x UD % UIID)/10000 in order to estimate
how much a particular configuration of image and kernel size
is suitable for the proposed optimizations (the higher, the bet-
ter). Of course other more complex aggregation functions can
be used in place of the proposed one, even though in all our
experiments a simple multiplication among the three metrics
has proved to be sufficient to correctly identify the iterations
to be processed with the proposed flow.

As can be seen in Fig. 9, the iterations of the IGF have been
correctly recognized by the proposed design flow as portions
of code that can be optimized with the proposed technique
(high optimization index values). In addition, the optimization
index provides the designer with an estimate of how much the
different algorithm tasks are suitable for the proposed synthe-
sis. The optimization index corresponding to the iterations of
the IGF decreases with the size of the kernel, while it grows
with the size of the input image.

Once the algorithm portion that is most susceptible to
optimization has been selected, the flow proceeds with the
generation of the different cones and with the architecture
space exploration, which in turn requires performance and
area estimation of each possible configuration. To test the pre-
cision of the estimation technique, we previously performed
most of the syntheses and compared them with the corre-
sponding estimations [44]: results are presented in Fig. 10,
with respect to different output window sizes and number of
iterations. The maximum estimation error is 6.58%, and the
average error is 2.93%, suggesting that the proposed model
provides a very accurate evaluation without requiring a full
synthesis. Let us now analyze the Pareto set of optimal cone
architectures. Fig. 11 shows the Pareto curve with respect to

11

800

—O— Actual  —O— Estimated

Needed synthesis for the estimation of «

700

/%linns
600 /
500 / %“ns
400 X
/ / //“":’“""5
300 el
// 2 iterations
e .
' T reraioms

10 20 30 40 50 60 70 80
Output window area (number of elements)

Thousand of slice LUTs

TR

Fig. 10. IGF area estimation.
1 -
hd % 1
o) e oes ™ .
" e PR
= AL
2 R
<«
@
=
I
&
3
2 0 500 1000 1500
D
£ .
= ... ,
o % ol -
IS LA LP o vt o e e
0 1000 2000 3000 4000 5000 6000
Number of K-Slice LUTs
Fig. 11. IGF Pareto curve (image size: 1024 x 768).

performance (in this case, the time to process a single frame)
and area requirements (i.e., the number of slices on an FPGA),
for the convolution of a 1024 x 768 image. The set of Pareto
solutions is reported into the zoomed window.

If the design is targeted to a specific FPGA device, and
hence the amount of resources is known in advance, the pro-
posed design flow tries to identify, by exploiting the estimated
area usage of each kind of cone, the number of cone instances
that would fit the target device. In this way, the flow is able to
estimate the maximum throughput achievable for each kind of
cone, as shown in Fig. 12. In particular, this chart shows the
throughput variation on a Xilinx Virtex-6 XC6VLX760 FPGA
when the size of the output window is varied. The cones that
lead to best performances are those whose depth is a divider
of the number of overall iterations (in the example, ten iter-
ations are best performed with cones of depth 1, 2, and 5).
The reason why cones of depth 3 and 4 perform worse is that
they are not dividers of 10, causing allocation of additional
specific cones (of depth 1 and 2, respectively) to implement
the remaining iterations, and making the exploitation of the
available area suboptimal. Even by considering a single cone
depth, the trend reported in Fig. 12 is not monotone because,
although larger cones typically lead to better throughputs, it
may happen that smaller cones allow to better fit the device
area. It is finally worth noting that, among all the implemen-
tations, the area required by the control logic never exceeds
2.3% of the resources required by the full system.

A comparison between our cone-based solutions and the
ones presented in the literature shows a significant speed-up
on the same device (or a comparable one) and with a similar
resource usage. For instance, [16] presents a 20 iterations con-
volution with a 3 x 3 kernel working on a Xilinx Virtex-II Pro
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at 13.5 frames/s with 1024 x 768 images and at less than
5 frames/s with Full-HD images, while our architecture is
able to achieve, on the same FPGA device, up to 35 frames/s
on Full-HD images. With a more modern FPGA such as a
Virtex 6, our architecture is able to reach 110 frames/s on
1024 x 768 images.

B. Chambolle Algorithm

For what concerns Chambolle [18], we have applied the
proposed design flow to a portion of the optical flow algorithm,
consisting of the following steps.

1) Acquisition: Data acquisition and filtering phase.

2) PRE: Generic not-parallelizable preprocessing.

3) Chamb_In: nth iteration of Chambolle.

4) POST: Generic not-parallelizable post-processing.

5) Visualization: Data rendering and visualization phase.

The results are presented in Fig. 13. Even though the data
acquisition and visualization phases are parallel by construc-
tion, since they work on each element of the data matrix
without taking into account the values of the other elements,
the flow is able to automatically detect that the phases that
present a high value of the optimization index (computed as
described in Section VI-A) are only the four iterations of the
Chambolle algorithm, whose dependencies schemas are then
selected to be the input of the following steps of the synthe-
sis flow (cones and architecture generation and design space
exploration).

As for the Gaussian filter, we initially estimated the area of
each possible cone architecture for Chambolle and compared
the results with respect to the actual synthesis results [44].
Fig. 14 reports the results, which are again very accurate, as
the maximum area estimation error we observed is 6.36%, and
the average one is 2.19%.

After characterizing the architectures, we extracted the
Pareto curve illustrated in Fig. 15. When a specific FPGA
is targeted, the behavior of the throughput is similar to that
discussed for the iterative filter. In this example, it can be
observed that the best solution in terms of throughput is not
the one with the largest output window (9 x 9), but rather the
solution with 8 x 8 cones, since in this case two instances
of the cone can be deployed simultaneously on the device
(see Fig. 16). The performance of the proposed architectures
are competitive with respect to state-of-the-art implementa-
tions. For example, the architectures in [3], [20], and [21], are
unable to reach the real-time threshold (i.e., 30 frames/s) even
on small images because of their intrinsic lack of parallelism.

As a baseline comparison, we implemented the Chambolle
kernel using Vivado HLS, a state-of-the-art commercial tool.
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Fig. 13. DN, uniform (interiteration) dependencies, and optimization index
estimation for Chambolle on different image sizes.

800

1 —O— Actual

—O— Estimated

w
S
=

Thousand of slices LUT
- wn
S g

2iterations

<Y
S
=3

Literation

0 10 20 30 40 50 60 70 80
Output window area (number of elements)

Fig. 14. Chambolle area estimation.
1 —
0.05
= LB, &
< 08 0.04 * A F R
§ 0.7 * et seay,
g 0.031 .o ’.;:"v. ‘8“
2 06 |
bt ::Z 0.02 LEENLMM LA S
g 001
& 04
503 g 3
2 0 500 1000 1500
aé 0.2 -
£ o1 /
0 Aphimtot ey 94 %4 o @
0 1000 4000 6000 8000

Number of K-Slice LUTs

Fig. 15. Chambolle Pareto curve (image size: 1024 x 768).

The loop manipulation techniques offered by the tool (flatten-
ing, unrolling, and pipelining) are not effective on the complex
stencil shape, leading to an implementation that processes
one pixel at a time. The corresponding hardware requires
a relatively low area (33k look up tables (LUTSs)), but per-
forms poorly in terms of throughput (0.14 frames/s). Another
comparison point we considered is the manually optimized
implementation discussed in [41]. This paper represents a
reasonable upper bound, because it features a partial loop
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unrolling, but also a set of application-specific optimizations—
such as an approximated LUT-based square root—that cannot
be replicated by an automatic HLS tool. The hardware in [41]
reaches 38 frames/s on 1024 x 768 images and 99 frames/s on
512 x 512 resolutions, but it required several months of man-
ual design efforts. Our flow automatically obtained comparable
results—24 frames/s on 1024 x 768 images and 72 frames/s on
512 x 512 images—using an automated procedure, thus posi-
tioning itself as an ideal tradeoff between performance and
productivity.

VII. CONCLUSION

In this paper, we consider the synthesis of a wide set of
iterative bidimensional data processing algorithms on custom
hardware platform. We propose both a novel architectural tem-
plate and an analysis tool that automatically extracts subparts
of the algorithm susceptible of optimization.

Experimental results show that the performance of the solu-
tions synthesized are at least comparable to (and, in some
cases, significantly better than) state-of-the-art manual imple-
mentations, both in performance (in terms of frames/s) and
required area. Since the framerate metric implicitly captures
the (bad) side effects of computational redundancy (such as
resource wasting, throughput reduction, etc.), this shows how
well redundancy is compensated by the proposed approach.
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