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Abstract: Stochastic optical fluctuation imaging (SOFI) is a super-
resolution fluorescence imaging technique that makes use of stochastic
fluctuations in the emission of the fluorophores. During a SOFI measure-
ment multiple fluorescence images are acquired from the sample, followed
by the calculation of the spatiotemporal cumulants of the intensities
observed at each position. Compared to other techniques, SOFI works well
under conditions of low signal-to-noise, high background, or high emitter
densities. However, it can be difficult to unambiguously determine the
reliability of images produced by any superresolution imaging technique.
In this work we present a strategy that enables the estimation of the
variance or uncertainty associated with each pixel in the SOFI image. In
addition to estimating the image quality or reliability, we show that this
can be used to optimize the signal-to-noise ratio (SNR) of SOFI images
by including multiple pixel combinations in the cumulant calculation. We
present an algorithm to perform this optimization, which automatically
takes all relevant instrumental, sample, and probe parameters into account.
Depending on the optical magnification of the system, this strategy can be
used to improve the SNR of a SOFI image by 40% to 90%. This gain in
information is entirely free, in the sense that it does not require additional
efforts or complications. Alternatively our approach can be applied to
reduce the number of fluorescence images to meet a particular quality level
by about 30% to 50%, strongly improving the temporal resolution of SOFI
imaging.

© 2016 Optical Society of America
OCIS codes: (100.6640) Superresolution; (170.2520) Fluorescence microscopy.
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1.

Introduction

Recent developments have proven a strong interest in diffraction-unlimited far-field fluores-
cence imaging. By making use of fluorophore dynamics, the resolution limit imposed by
diffraction can be overcome to allow a strongly improved spatial resolution [1]. A number

#251336 Received 14 Oct 2015; revised 22 Dec 2015; accepted 23 Dec 2015; published 15 Jan 2016
(C) 2016 OSA 1 Feb 2016 | Vol. 7, No. 2 | DOI:10.1364/BOE.7.000467 | BIOMEDICAL OPTICS EXPRESS 468



of different techniques have appeared that achieve this goal, including STED/RESOLFT imag-
ing [2,3] and PALM/STORM imaging [4—6]. These approaches deliver spatial resolutions down
to the tens of nanometers scale in biological samples, though trade-offs in the temporal resolu-
tion or repeatability of the imaging are required [7].

Stochastic optical fluctuation imaging (SOF]I) is an alternative way to achieve superresolu-
tion [8]. Like all diffraction-unlimited techniques, SOFI makes use of fluorescence dynamics
of the fluorophores, focusing on the on/off ‘blinking’ behavior that is known to occur in most
labels. In SOFI, multiple fluorescence images of the sample are acquired in rapid succession.
Since the fluorophores rapidly cycle between the fluorescent and non-fluorescent states, each
of these images presents a different ‘view’ on the sample structure because different combina-
tions of emitters are active in each image. An image with a sub-diffraction spatial resolution
can be reconstructed by calculating the cumulant of the fluorescence signal detected in each
detector pixel in time. In principle the resulting procedure can achieve an unlimited spatial
resolution since the calculation of the n"-order cumulant results in an image with an /n-fold
resolution improvement in three dimensions, which can be enhanced to a factor of n via Fourier-
reweighing or deconvolution [9]. The availability of a full theoretical model validating the spa-
tial resolution improvement is a key feature of SOFI imaging.

In practice the need to sample the fluorescence at all points on the sample means that wide
field imaging, using a two-dimensional array detector such as a CCD or CMOS camera, is the
preferred method to acquire SOFI images. In fact, SOFI imaging is particularly convenient for
wide-field imaging as the spatial resolution is increased in all directions, mitigating the reduced
z-resolution intrinsic to wide-field imaging. Extending SOFI to cumulants of more than one
pixel allows for the calculation of additional ‘virtual pixels’, effectively yielding an output
image that has a higher pixel density than the input images, and making the full resolution
enhancement accessible [9].

Compared to other super-resolution techniques, the main advantage of SOFI is that it can deal
with a very wide range of conditions [10] and does not require special imaging hardware. For
example, there is no requirement that individual fluorophores are resolvable, and the imaging
can work well under conditions of low signal-to-noise-ratio (SNR), as can occur when imaging
dim fluorophores in high-background conditions or when imaging at extended depth in the
sample. However, the fluorophores must display fluorescence fluctuations that can be captured
on the detector, and the improvements in spatial resolution have largely been limited to a two-
to four-fold increase. In practice SOFI imaging has been performed using quantum dots [8,11],
organic fluorophores [12, 13], and fluorescent proteins [14—18]. Other mechanisms to generate
fluorescence fluctuations have also been used [19-21].

Since SOFI imaging makes use of a statistical parameter, the cumulant, the estimation of this
parameter becomes more accurate and hence the quality of the SOFI image becomes better as
more fluorescence images are included in the analysis. Ultimately the spatial and temporal res-
olution that can be achieved with SOFI is limited by the SNR of the calculated images. Higher-
order calculations, which result in higher spatial resolutions, become progressively more noisy,
and therefore require more experimental images to result in a usable SOFI image.

One of the complications in super-resolution imaging is that it is difficult to unambiguously
verify the reliability or quality of the generated images, especially when a large amount of
computer processing is involved. However, such estimations are required to ensure that only
well-supported observations and conclusions are considered. Previously we have suggested
performing this quality control by combining more than one super-resolution imaging tech-
nique [15], which can be be done if the fluorophore provides the required functionality. But,
this is not possible if only one imaging technique is suited to the measurement conditions in
question, in which case the reliability must be estimated using only the imaging data.

#251336 Received 14 Oct 2015; revised 22 Dec 2015; accepted 23 Dec 2015; published 15 Jan 2016
(C) 2016 OSA 1 Feb 2016 | Vol. 7, No. 2 | DOI:10.1364/BOE.7.000467 | BIOMEDICAL OPTICS EXPRESS 469



Based on statistical resampling we develop a strategy for the direct estimation of the
spatially-resolved signal-to-noise ratio (SNR) of arbitrary SOFI images. We then show how
this strategy can be used to considerably enhance the quality of the calculated SOFI images,
and hence the spatial and/or temporal resolution, by optimally combining the cumulants that
result in the same SOFI pixel. Our work not only provides a way for the unbiased estimation
of the SOFI imaging quality, but also enables higher-quality SOFI images to be obtained while
requiring fewer fluorescence images, while not imposing any additional requirements or limi-
tations.

2. SOFI theory

In this section we briefly recapitulate the theory underlying SOFI imaging. The key to this
imaging is estimating the cumulant of the intensity distribution sampled by each pixel on the
detector over time. Following Ref. [8], the fluorescence F at position r is given by

U(r—r,)gjs;(t) (1)

HMZ

where we assume N fluorophores with spatial coordinates given by the set {r;}. €; is the bright-
ness of the fluorophores , s;(¢) describes the intensity fluctuations of the emitter (being equal
to one when the emitter is in the fluorescent on-state, and less than one in a dim or dark state),
and U (r) is the point spread function (PSF) of the microscope.

In the simplest approach (which we do not recommend in practice) a SOFI image is generated
simply by performing an independent cumulant calculation for each of the detector pixels. In
this way, a second order image SOFI, and higher order images are given by [8]

SOFLy(r, ) = G[F(r,1),F(r,t +7)] )
SOFL,(r,7) = Cy[F (r,1),F(r,t+11),...,F(r,t + 7,-1)] 3)

where C, represents the calculation of the n"-order cumulant. Various strategies for performing
this calculation have been described [22], and many software packages include this among their
standard libraries of procedures.

Using these details, it can be shown analytically that SOFI imaging leads to an improvement
in spatial resolution. The second order cumulant C, can be written as

Go[F(r,1), F(r,t +7)] = (8F (r,1) - 8 F (r,1 + 7)) @)

Il
™M=

ZU —r1))U(r —ry)€jgc (As;(t)Asi(t +T)) (5)
1k=

UZ(I‘—I‘I')81202(T) (6)

[
~M= T

where the difference delta As;(z) is given by the difference between the instantaneous value
of 5;(t) and its mean (s;()). Furthermore we have assumed that the emitters blink indepen-
dently from each other so that (As;()Asi(t + 7)) = ¢2(7) 8, for some c;(7) and with 8 the
Kronecker delta. Equation (6) reveals that the SOFI image contains the PSF squared, leading
to the factor of two enhancement in spatial resolution in all three spatial directions. ¢2(7) is a
function that describes the second-order cumulant of the fluctuating molecules. However, if we
assume that the blinking behavior is identical for all molecules, then ¢, (7) becomes an identical
scaling factor for each pixel. The procedure described here scales straightforwardly to higher
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order cumulants, where the n™-order cumulant will contain the PSF raised to the n™ power,
thus demonstrating the n-fold resolution improvement available.

In actual measurements there are two problems with the straightforward application of
Eq. (3). If two or more time lags 7; are identical, this results in artifacts in the SOFI image.
Choosing distinct time lags eliminates this distortion but lowers the signal since the emitter
fluctuations decorrelate when 7 # 0. More problematic is the fact that the calculated SOFI im-
age has the same number of pixels as the fluorescence images, meaning that the optical size
of the pixels is unchanged. Since the optical size of the detector pixels is usually chosen to
sample the diffraction-limited PSF, the higher spatial resolution in SOFI may not be available
in practice due to inadequate sampling of the enhanced structural information [9].

The natural solution to the latter problem is the expansion of the cumulant calculation to
cumulants between different pixels, that is, camulants of the form Co[F (r,t),F(r+ &, + 1)),
where & is a vector encoding a spatial shift as an integral number of detector pixels (another
approach to this problem is the use of Fourier interpolation [23]). Adapting Eq. (6), we find

G |F(r,t),F(r+&,t+1)]=U (\%) §U2 (r+ % rj) g7ca(t) (7)
J

We thus obtain ‘virtual pixels’ containing additional information that can not be recovered
by interpolating the SOFI image discussed previously. In general, in a two-dimensional SOFI
calculation of order n, (n — 1) spatial shifts and time lags can be specified, while approximately
n? virtual pixels can be generated for each pixel on the detector. In three-dimensional SOFI this
increases to n3 virtual pixels. These virtual pixels are located at the geometric mean between the
input detector pixels used in their calculation, while the signal of each virtual pixel is weighed
by the distance between the pixels with respect to the size of the PSF.

Starting from a detector in which the pixels are laid out in a regular 2D grid, there are multiple
pixel combinations that give rise to the same virtual pixel (Fig. 1). Due to the weighing with
the extent of the PSF, the pixel combination in which the detector pixels are closest together
will yield the highest signal (red arrow in Fig. 1(a)), though there are many more less-optimal
combinations (black arrows). It is therefore natural to ask whether it is possible to combine
all of these pixel combinations to produce SOFI images with optimized signal-to-noise ratios
(SNRs). In other words, given a set of estimated cumulants {k;}, each calculated for different
pixel combinations leading to the same virtual pixel, can we find a set of weights {w;} such
that the signal of each SOFI pixel

S=wiki +woKkr+--- (8)

has an optimal signal-to-noise ratio (SNR)?

This question is difficult to answer because the set of optimal weights depends on many
parameters, including the size of the PSF with respect to the detector pixels, the brightness and
fluorescence dynamics of the emitters, the background emission levels, etc. Note also that these
weights should not be confused with the “distance factor corrections” used as part of the SOFI
cross-cumulant calculation [9], which is automatically included as part of a standard SOFI
calculation in our software. As we show further along in this contribution, it is indeed possible
to achieve this in a way that takes all of these issues into account automatically, though doing
so first requires a way to estimate the SNR of arbitrary SOFI images.
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Fig. 1. a: The same virtual pixel (black box) can be generated using different combinations
of detector pixels (green boxes). In general the combination(s) in which the detector pix-
els are closest together will contain the most signal (red arrow), but there are many more
less-favorable combinations (black arrows). b: For three-dimensional SOFI the amount of
combinations which exist for the same virtual pixel (black box) is even larger.

3. Estimating the uncertainty of SOFI pixels and pixel combinations

A SOFI image consists of many SOFI pixels, the values of which represent estimates for the
underlying cumulants. Due to noise in the measurement and the fact that every measurement
is necessarily of finite duration, the signal at each of these pixels has some level of uncertainty
associated with it. We quantify this uncertainty using the SNR, defined as

SNR = L 9
Var(S)

where S is the value of a particular SOFI pixel and Var(S) is the variance of S. In other words, we
define the SNR as the ratio between the value of the signal and the uncertainty of its estimate.
A ‘good’ SOFI image is thus one in which the SNR of the pixels is high.

The classical way to determine the uncertainty associated with a particular measurement
is to repeat the experiment multiple times. However, this is barely possible for SOFI imag-
ing due to photodestruction of the fluorophores and/or dynamics of the sample. Searching for
an alternative way to determine the measurement uncertainty, we turned our attention to the
well-established statistical resampling techniques. Since the calculation of a desired statistic
typically involves hundreds or more data points (such as an image sequence used for SOFI), we
can construct a large number of different but closely related datasets simply by leaving out one
or more of the data points.

Delete-1 jackknife resampling [24] generates as many distinct datasets as there are measure-
ment points by each time discarding a single measurement point (image). The SOFI analysis is
then applied to each of these datasets, yielding results that are similar but not identical to that
obtained on the full dataset (Fig. 2(a)). The spread of all these calculated results indicates how
robust the calculated statistic is with respect to the input data, or in other words, indicates its
uncertainty (a statistic with a low uncertainty is not changed much by leaving out a single data
point [22]). The result is an estimate for the variance of the statistic.

Given the set of cumulant estimates {xj, k», ...}, we applied the jackknife resampling tech-
nique as follows: from the stack of N acquired images, we construct N new image stacks each
consisting of N — 1 images by leaving out a single (unique) fluorescence image each time. By
applying the SOFI calculation to each of these resampled image stacks, we obtain N estimates
for each cumulant. Importantly, performing these calculations requires only about four times
more calculation time compared to a standard SOFI calculation, allowing the full procedure to
be performed in minutes or less. Denoting the value of the i cumulant estimate obtained by
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Fig. 2. a: Uncertainty estimation using resampling: from a single SOFI dataset containing
N fluorescence images, N derived datasets are created by sequentially discarding a single
fluorescence image. This results in N SOFI images that can be compared to obtain the
variance associated with each SOFI (virtual) pixel. b: A plot of the standard deviations of
each pixel as determined by repeating a computer simulation 100 times versus the standard
deviation obtained by resampling analysis on one of the simulated datasets. The black line
corresponds to the function y = x.

excluding image f as K;y, the overall i jackknife estimator for this statistic is given as

Z¥=1 Kif

N (10)

KiGjack) =

The covariances between the different K-statistics and the variances of the individual cumulant
estimates (equal to the covariance of a statistic with itself) can then be estimated using [24]

Y1 (Kif = Kigac)) (Kjf — Kjack))
N1

Covar(k;, ;) =

Y

Where all (co-)variances between the K-statics in the set can be conveniently arranged in matrix
form as follows.

Var(k) Covar(xy,k2) --- Covar(ky, k)
Covar(x, k1) Var(x») -+ Covar(kz, k)
Ac><c = : : . : (12)
Covar(k,, k1) Covar(k., k) - Var(x.)

For an arbitrary set of weights the signal given by Eq. (8) can now be shown to have an associ-
ated estimated variance given by

Var(S Z Z wiwjA;j (13)

i=1j=

where i and j run over all cumulant estimates in the set.

To test the usefulness of the uncertainty estimation, we generated a computer simulated set of
fluorescence images containing immobilized blinking emitters, following the simulation proce-
dure outlined in [25]. As Fig. 2(b) shows, the resulting estimated variance corresponds very well
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with the variance estimated by repeatedly performing the same simulation. For high uncertain-
ties the jackknife estimation slightly underestimates the actual variance, which is a consequence
of the fact that consecutive fluorescence images are not entirely independent. In principle this
can be addressed by using a delete-n jackknife approach, though the deviation is sufficiently
small as to not warrant this extra effort.

IS

N
NS

Fig. 3. Three images showing the SNRs of the same virtual SOFI pixel, but constructed
using different pixel combinations (the insets indicate the detector pixels that were com-
bined). As expected the SNR of the image becomes progressively lower as the distance
between the pixel detectors increases.

Figure 3 shows example SNRs calculated for different pixel combinations leading to the same
SOFI pixels. As expected the calculated SNR is highest for the combination with the closest
distance between the detector pixels, though the other combinations still lead to informative
images.

We do note that our approach in effect only estimates the precision of the calculated result,
but not the accuracy. As a result we cannot detect any fundamental bias. Experimentally a
possible bias can only be detected via correlation with an independent imaging technique [15].
However, since the imaging enhancement of SOFI is unambiguously described by a theoretical
model which does not indicate any bias, we believe that this distinction is sufficiently small to
be ignored in what follows.

4. Determining the optimal weights of the cross-cumulant combinations

The combination of Eq. (8) and Eq. (13) allows us to readily determine the SNR of any virtual
pixel in the SOFI image given an arbitrary set of weights. The SNR is given by

N Y wik;

SNR = = 14)
v/ Var(s) \/ Yiog Xjoy wiwjAij
at the extremum the following must hold form € 1,2,... ¢
JdSNR
=0 (15)
oW
Kin SY o1 WwiAmj
e AL | (16)
Var(S)  Var(S),/Var(S)
< A,;  Var(S
Yy V) a7
=
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Note that the right-hand side of (17) is independent of our choice of m. As a result we can

construct a set of (¢ — 1) linear equations by choosing m to belong to 2,3,... ¢
Y (A’"j —A""> =0 (18)
=1 Kin Ki
which can be turned into (still for m # 1)
3] CRET) JE TR 9)
Ziwi \ Kn K1 K1 Kin

a set of linear equations which can be numerically solved for all (w;/w1) in a straightforward
manner (e.g. using LU decomposition and back-substitution). We are now free to choose an
arbitrary wy as the SNR does not change upon rescaling of all weights for any factor r # 0

/Var(rS)  ry/Var(S)  y/Var(S)
s r S 8
For example, we can arbitrarily pick w; = 1, from which all other weights are uniquely deter-
mined by solving the set of n — 1 variations of Eq. (19). These weights in combination with
Eq. (8) give us the recipe for obtaining a virtual pixel with the maximal SNR.

(20)

5. Practical application and results

In principle the previous procedure allows us to define a set of weights for every single (virtual)
pixel in the SOFI image. For example, for fluorescence images consisting of 512 x 512 pixels,
this would result in approximately 10° sets of weights for a second order SOFI image. Clearly
this would not just be computationally demanding, but the resulting sets of weights would be
sensitive to noise and to the underlying structure of the sample around each virtual pixel.

Instead we only determine a single set of weights for each virtual pixel type used in the image
(e.g. 4 for second-order SOFI), averaging over multiple SOFI pixels to determine a ‘consensus’
set. The underlying assumption is that the optimal pixel weights are largely determined by the
characteristics of the PSF, and that this PSF is invariant over the entire image. When calculating
the w vector we thus average the k vectors and A matrices to come up with an on average correct
and structure-independent result.

Furthermore, to avoid excessive computation and exclude background pixels, we do not run
the calculation for all virtual pixels of the same type in the acquired fluorescence images. In-
stead we randomly select between 200 and 1000 pixels for which we run the full jackknife
procedure as described above. This sampling is limited to non-background regions of the im-
age, selected in a randomized fashion. To verify whether a sufficiently large number of detector
pixels has been sampled, we suggest repeating the calculation procedure using a different set
of detector pixels, and checking that the calculated weights have converged.

A pseudocode listing of the complete procedure is given in algorithm 1. The algorithm was
implemented in Igor Pro (WaveMetrics Inc., Lake Oswego, OR) based on the SOFI algorithms
implemented in the Localizer [25] software package. This code is freely available together
with Localizer. The calculation of the weights for a given dataset takes some time (minutes to
tens of minutes on a typical desktop computer). When analyzing many datasets with similar
conditions (same probe, same instrumental settings) it is possible to perform this process only
once, reusing the weights for subsequent calculations.

To test the developed approach, we transfected HeLa cells using a plasmid encoding the flu-
orescent protein ffDronpa [15] targeted to the cell membrane using the N-terminal part of Lyn-
kinase as a targeting motif. The cell culturing and washing have been described in Ref. [15].
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Algorithm 1 Algorithm for the calculation of the optimal weights.
1: Let N be the number of fluorescence images in the dataset
2: Select P non-background detector pixels
3: for v in virtual SOFI pixels do
4:  for p in selected detector pixels P do
5 for i in pixel combinations for v do
6: Calculate SOFI signal k;, for detector pixel p and pixel combination i
7
8

for fis1toN do
Calculate delete-1 SOFI signal k;y,, for detector pixel p and pixel combination i,
excluding the contribution of the f fluorescence image

9: end for
10: end for
11: Calculate covariance matrix Ap using Eq. (10) and Eq. (11), replacing k;y with K;zp.

12:  end for

13:  Calculate §; and A by averaging A, and K;;, over p.

14 Determine optimal weights {w;} for virtual pixel v using Eq. (19), replacing k with K
and A with A.

15: end for

Imaging was carried out on two different instruments, allowing different total magnifications to
be used. Measurements using a 150x magnification were performed on an Olympus CellTIRF
instrument in TIRF mode as described in Ref. [15]. The second instrument was a custom-built
system based on an Olympus IX71 microscope body. Excitation was provided by a 488 nm laser
at an approximate power of 2.4 mW at the back aperture of the microscope body. Datasets with
a total magnification of 330x were recorded in EPI mode using an Olympus PLANAPO 100x
NA 1.4 objective combined with a 3.3x magnifier, while datasets with a total magnification of
495x were recorded in TIRF mode using an Olympus UAPON 150xOTIRF NA 1.45 combined
with the same magnifier. In all cases images were recorded using a Hamamatsu ImagEMx2
camera using an exposure time of 30 ms and an electron-multiplication gain optimized to the
expression levels of the cells.

Figure 4 shows an example of the improvements that can be obtained using our procedure.
Shown are SOFI images at different optical magnifications calculated from 100 images ac-
quired over 3 seconds of living HeLa cells. Comparing both the conventional and combination-
optimized figures clearly shows the improvement in imaging quality possible through our pro-
cedure. In general, the attainable imaging improvement depends on the size of the PSF with
respect to the optical pixel size of the detector, since the SOFI signal for each pixel combina-
tion depends on the distance between the pixels, scaled by the size of the PSF (Eq. (7)). As we
detail in appendix A, we find that the dataset with 107 nm projected pixel size requires 33%
fewer fluorescence images for an equivalent SNR and shows a 40% rise in image SNR for the
same number of fluorescence images with the new method. The dataset with 48 nm projected
pixel size requires 50 to 60% fewer frames for an equivalent SNR and shows an 80% increase in
SNR for the same number of frames. The dataset with 32 nm projected pixel size requires 50%
fewer frames for an equivalent SNR and shows a 93% increase in SNR for the same number of
frames. Taken together, these results show that our technique allows the temporal resolution of
SOFI imaging to be increased substantially while achieving the same imaging quality. Alterna-
tively, better quality images can be constructed from the same datasets. Because our strategy is
based on resampling, this strategy automatically takes all relevant specifics of the measurement
into account.
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Fig. 4. Example results obtained using the procedure outlined in this manuscript. In each
case 100 fluorescence images of live HeLa cells expressing Lyn-Dronpa measured at dif-
ferent optical magnifications were analyzed. Shown are a conventional second-order SOFI
analysis (where only the closest pixel combination(s) are used) and an analysis where all
combinations within a 5 by 5 grid surrounding the virtual pixel are used with optimal
weights as determined by the resampling methodology.

6. Fast approximation to the exact calculation

In some cases, such as when performing initial exploration of the acquired datasets, it may not
be desirable to wait for the full calculation of the optimal weights. During our investigations
we noticed that there is frequently a strong correlation between the average SOFI signal of a
certain pixel combination and the resulting optimal weight for that combination (Fig. 5).

In general the combinations with the highest signal also end up having the largest weight,
with a linear dependence between them. This relation can be used to efficiently compute ap-
proximations to the exact solution (Fig. 6), by simply setting w; = K.

Interestingly, we also noticed that the relation between w and S was more complex in some
samples compared to others. For example, using the fluorescent protein rsGreenl [18] as the
label, we obtained the trend displayed in Fig. 5. However, in measurements using ffDronpa as
the fluorophore, the weights show an initial drop when the SOFI signal increases, followed by a
subsequent increase. In some cases this leads to the appearance of weights with negative values.
As a result the applicability of the fast linear approximation of the weights should be used only
after verifying the validity on a representative experiment. While the appearance of negative
weights may appear surprising, these arise naturally, as can be shown with simulations and do
indeed lead to the maximal SNR (Fig. 7).
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Fig. 5. A plot of the optimal weights for pixel combinations leading to different virtual
SOFI pixels, as determined using our algorithm, against the average signal of those pixel
combinations. Data is shown for for 2™(left) and 3rd(right) order SOFI, with different
colors representing different virtual pixel types. The lines show a least-squares linear fit
with intercept fixed to zero.
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Fig. 6. Comparison of the conventional SOFI imaging, imaging using our optimized algo-
rithm, and using weights derived from a linear approximation.
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Fig. 7. Plot of the weights versus SOFI signal as determined by resampling for a simulation.
The only difference between the two simulations is that in the left graph the probe has a
brightness of 30,000 detected photons per second in the on-state, in the right graph the
brightness is 1,000 detected photons per second.
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In any case the validity of this approximation can be verified for a particular system by running
the exact calculation and inspecting the obtained weights visually (Fig. 5).

7. Conclusion

In this work we presented a strategy to estimate the uncertainty associated with a particular
SOFI measurement, based on statistical resampling. Our approach can be used to determine the
per-pixel SNR and whole-image SNR associated with a single SOFI measurement. It automat-
ically takes into account the particularities of the experiment, including instrumental aspects
such as camera sensitivity and exposure time, and sample-related issues such as probe bright-
ness, labeling density, and blinking kinetics. Knowledge of these uncertainties makes it possible
to unambiguously determine to what extent quantitative analyses on SOFI data are supported.

We then showed how our procedure can be used to obtain a linear combination of the differ-
ent pixel combinations such that the SNR of each type of SOFI pixel is maximized. This does
not impose any additional requirements on the measurement. We estimate that our procedure
results in an approximately 40% to 80% increase in SNR, allowing higher-quality images to be
calculated from the same dataset, or alternatively allowing similar-quality images to be calcu-
lated using 30% to 60% fewer input fluorescence images. Since this improvement is entirely
free, in the sense that it uses information that is always present in SOFI datasets, we expect that
it will enable SOFI imaging to be performed on more challenging and more dynamic systems
than was currently possible.

We also note that the resampling methodology introduced here can be expanded to any down-
stream result based on SOFI imaging. As a result we believe that our resampling methodology
holds great promise for future quantitative analysis of SOFI data.

8. Appendix A: Quantifying the gain in SNR

We used two different strategies to quantify the improvement in imaging performance. The
first strategy entails the direct estimation of the SNR using the resampling approach which was
introduced in this paper. In the second strategy we approximate the noise in the image as the
width of the image histogram, and compare the number of input fluorescence images required
to achieve a comparable histogram width with and without our procedure.

The direct estimation of the SNR is done by calculating images such as the ones shown in
Fig. 3, where the value of each pixel is the SNR of that pixel in the corresponding SOFI image.
We then create histograms of the SNR images (example shown in Fig. 8(b)). In this histogram
two distinct peaks are visible, corresponding to background (low-SNR) and signal (high-SNR).
We estimate the SNR of the image as the maximum of the high-SNR peak.

In the second strategy we calculate SOFI images from a single dataset for different numbers
of input images (including e.g. 100 input images, 200, 300, etc.), using both the standard SOFI
calculation where only the closest combinations are used and the optimized approach presented
in our study. For each image we calculate a histogram of the pixel values (Fig. 8(a)). In general,
noise causes the histograms to broaden, and as a result the histogram width is a measure of
the noise content of the associated SOFI image. Given these images, we then quantify the im-
provement in imaging by comparing the number of input images required to reach a particular
histogram width using the standard calculation and the weights-optimized calculation.

The advantage of the second approach is that it is essentially independent of the resampling
approach and thus provides an independent second assessment. However, the first approach is
more straightforward since it results in a direct estimate of the SNR. In a sense the approaches
are complementary: the first strategy estimates to what degree an image can be improved when
including the same number of images, while the second strategy estimates the achievable in-
crease in temporal resolution (lower number of input images) available using our technique
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while maintaining the same image quality.

The achievable improvement with our technique mainly depends on the size of the point
spread function with respect to the optical pixel size of the camera. The dataset with 107 nm
projected pixel size requires 33% fewer frames for an equivalent SNR and shows a 40% rise
in image SNR for the same number of frames with the new method. The dataset with 48nm
projected pixel size requires 50 to 60% fewer frames for an equivalent SNR and shows an 80%
increase in SNR for the same number of frames. The dataset with 32 nm projected pixel size
requires 50% fewer frames for an equivalent SNR and shows a 93% increase in SNR for the

same number of frames.
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Fig. 8. A comparison between the conventional approach and the approach described in
this paper a:example histograms of SOFI images calculated for different numbers of fluo-
rescence images using the 48 nm optical pixel size. Data calculated using the conventional
method is shown as a continuous line, the equivalent histogram using the method of optimal
weights as a dashed line. The optimal weights-based approach reaches a similar histogram
width (and quality) using fewer images. b:example SNR histograms of a SOFI image cal-
culated from 100 fluorescence images and using the 107 nm optical pixel size. The SNR of
the non-background peak is clearly higher for the optimal weights calculation.
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