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On-Board Relative Bearing Estimation
for Teams of Drones Using Sound

Meysam Basiri, Felix Schill, Pedro Lima, and Dario Floreano

Abstract—In a team of autonomous drones, individual
knowledge about the relative location of teammates is essential.
Existing relative positioning solutions for teams of small drones
mostly rely on external systems such as motion tracking cameras
or GPS satellites that might not always be accessible. In this let-
ter, we describe an onboard solution to measure the 3-D relative
direction between drones using sound as the main source of infor-
mation. First, we describe a method to measure the directions of
other robots from perceiving their engine sounds in the absence of
self-engine noise. We then extend the method to use active acous-
tic signaling to obtain the relative directions in the presence of
self-engine noise, to increase the detection range, and to discrim-
inate the identity of robots. Methods are evaluated in real world
experiments and a fully autonomous leader-following behavior is
illustrated with two drones using the proposed system.

Index Terms—Aerial Robotics, Swarms, Localization.

I. INTRODUCTION

T EAMS of drones have many potential applications, such
as, a rapidly deployable communication network for dis-

aster areas [1], sensing and mapping of chemical clouds [2],
searching for forest fires [3], aerial surveillance [4], aerial trans-
portation [5], building constructions [6] and detecting targets
of interest [7]. Rapid progress in the design and control of
multi-drone systems has been observed over the past years
[6], [8].

Relative positioning is the problem of gaining information
about the position of other robots by individuals in a robotic
group. This information is necessary for many different tasks
such as inter-robot collision avoidance [9] and formation con-
trol [10]. Due to the strict payload constraints of small drones,
there is a lack of technological possibilities that could provide
relative positioning without relying on any external systems.
Hence most solutions depend on an external positioning sys-
tem, such as motion tracking cameras or GPS satellites, and
a communication network to share the position of robots with
each other. Despite the good accuracy of such solutions they
are highly dependent on the availability of the external system.
Motion tracking cameras are impractical for use in unprepared
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or large environments and GPS signals might be unavailable,
such as in indoor or cluttered areas, or unreliable due to
jamming or spoofing.

An alternative approach to relative positioning is to directly
measure this information using on-board sensors. Onboard
solutions are mostly developed for ground robots in 2D using
sensors such as laser range scanners, infrared sensors and cam-
eras [11], [12]. 3D laser range scanners are expensive and
bulky instruments that are not suitable for small drones. A 3D
laser scanner with a limited field of view of 30x40 degrees
has been used in [13] on an outdoor helicopter with a pay-
load of 29kg. Mini laser range finders have been used by [14],
[15], for detection of large obstacles located directly in front
of a drone. However, due to their single point/planar detec-
tion ability they are not suitable for measuring position of other
robots in 3D. Radar-based systems, such as the Traffic Collision
Avoidance system (TCAS), are used for relative positioning
between commercial aircrafts. TCAS systems are not suitable
for drones as they are bulky and expensive. More recently,
advancements in radio communication modules with highly
accurate, synchronized clocks are used for the time-of-flight
range-only measurement in cooperative wireless sensor nodes
[16]. But so far, these modules have not been tested on mov-
ing drones. Doppler radar transducers with a total weight of
300 grams have been used in [17] to detect the relative bear-
ing of colliding obstacles. However, the small field of view
(30◦), low angular resolution (15◦) and small operating range
(10 meters) are some of the major drawbacks of this system.
Optical sensors have been shown effective for obstacle avoid-
ance and altitude control in drones [18]. Few works investigate
use of cameras on UAVs for measuring the relative direction of
large moving aircrafts relative to the background scene [19],
[20]. Limited field of view, high dependency on visual con-
trast and light conditions, failure when the target is stationary or
located on non-uniform or cluttered backgrounds, high compu-
tational demand for processing high resolution and high frame
rate images [20] are some of the drawbacks of this approach. To
the best of our knowledge, the only onboard relative position-
ing systems demonstrated on real drones are based on infra-red
(IR) sensors [21], [22] for indoor flying robots. The sensor suite
proposed by [22] has been shown to provide accurate range and
bearing up to 10 meters of range. It consist of a total of 208 IR
sensors and it has a weight of ≈ 400 g, a size of 50× 50 cm
and a power consumption of 10 watts, and thus not suitable for
small drones.

Sound-based relative positioning have mostly been used in
underwater robotic teams [23]. Sound is also used by many
birds and insects for relative positioning, such as flight calls
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of nocturnal migratory birds [24] and phonotaxis behaviour
in insects [25]. Sound-based relative positioning for teams of
drones could have several potential advantages. It would be
independent of illumination and visibility conditions and it
could operate at night time. It would rely on microphone sen-
sors, which are low cost, lightweight, small and passive sensors,
that are very suitable for small drones. Omnidirectional micro-
phones allow full 3D coverage needed for aerial robots. In
addition, since sound waves are capable of overcoming obsta-
cles it could provide information through foliage and overcome
occlusions by other robots. Furthermore, since the engine of
most flying platforms already produce sound in flight, this
sound could be exploited for passively obtaining the relative
position of team-mates and of other non-cooperative flying plat-
forms. This could be further exploited to detect and locate many
other interesting acoustic targets, such as the sound of a safety
whistle in a search and rescue mission [26].

This letter describes an onboard audio-based system that
allows individual drones in a team to measure the relative bear-
ing of other drones. This bearing information could be used
to achieve tasks such as collision avoidance [27], formation
control [28] and cooperative positioning [29]–[31]. Two solu-
tions are presented and separately validated. The first solution
(Section II) consists of passively monitoring the sound of the
engines of other drones. The second solution (Section III) intro-
duces active acoustic signaling (chirping) for improving the
performance. The two methods are validated with real robots
(Section IV) and an audio-based leader-following behavior is
demonstrated with two drones. Conclusions and future works
are discussed in Section V.

II. PASSIVE AUDIO-BASED SYSTEM

This section explains a passive onboard system to measure
the relative direction of other robots based entirely on the sound
of their engines. Exploiting the already available engine sounds
results in a highly energy-efficient solution. This method was
found to be suitable when there is either no self-engine noise
present, or when the self-engine noise is different, and it can
be separated from the target engine sound. This method could
potentially be employed in groups of fixed-wing drones, as they
can glide with their engines reduced or turned off, or in groups
of rotor-craft drones that can rest on ground or attach to ceilings
or walls, in order to listen to sound of their flying teammates.
Localizing the engine sound of distant robots in presence of
an engine with the same sound characteristics that is only few
centimeters away from the microphones, hence resulting in an
extremely low signal to noise ratio (SNR), is a challenging
problem that is beyond the scope of this work. Furthermore,
since the detection range for this system depends on the signal
to noise ratio, the suitability of this approach depends on the tar-
get sound levels and noise level of the environment. Note that
the active acoustic signaling method described in Section III
can obtain the relative directions in presence of self-engine
noise and is more robust to environment noises.

Figure 1 shows a block diagram with the main units of the
passive bearing measurement system. An explanation of each

Fig. 1. Schematic diagram of the proposed passive audio-based relative bearing
measurement system illustrating the main parts of the system.

Fig. 2. Pictures of the two drones used in this work, with the microphones
indicated by red circles. (a) small drone (440 grams) with a microphone array
(21 grams) used for outdoor experiments (b) pocketsize drone (31.4 grams)
with a microphone array (3.5 grams) used for indoor experiments.

unit is provided in this section. Some of the units are also used
in the active method.

A. Microphone Array

An onboard microphone array is used to simultaneously mea-
sure sound waves at different points in space. A minimum
number of four microphones, if not all placed on the same
plane, is required to compute the direction of sound sources
in 3D without ambiguity. This number is used here to minimize
the hardware and computational complexity. However, due to
the small size of these sensors, more sensors could be added to
increase the robustness. There are no strict constraints on the
sensor position or geometry of the array, making it suitable for
any shape of drone, and only the microphone positions rela-
tive to each other must be known with good accuracy. In this
work, we use two different types of array geometries, as shown
in Figure 2, where a flat triangular array with a total weight of
3.5 grams is used on a pocket-size drone for testing the pas-
sive method and a tetrahedral microphone array is used later
for testing the active method, providing approximately equal
performance in all directions [32]. The flat microphone array
results in an ambiguity whether the measured 3D-direction is
located above or below the array that is resolved by the drone
since it is measuring the directions while resting on a surface.

Sound waves are picked up by the microphones and are con-
verted into electric signals. These signals are then amplified and
filtered using basic analogue filters to remove unwanted noise.
Signals from all microphones are simultaneously sampled and
converted into digitized form with a sampling frequency Fs.
After a discrete sequence of N samples is obtained from every
microphone they are passed to the coherence measuring unit.
The length N of the sequence should be chosen as a trade-
off between the stability, obtained with large values of N , and
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the tracking speed. In this work, we use N = 1024 samples
to meet the low memory and computational power of common
micro-controllers.

B. Coherence Measuring Unit

The coherence measuring unit is based on the time difference
of arrival methods (TDOA) used in sound localization literature
[33]. This unit starts by measuring the similarity between every
pair of microphone signals, as a function of time delay τ applied
to one of them, using:

Rij (τ) = FFT−1

(
FFT (pi(n)) .FFT ∗ (pj(n))

W

)
(1)

where FFT is the N -point Fast Fourier Transform, FFT−1 is
the inverse FFT, FFT ∗ denotes the complex conjugate of the
FFT results, pi(n) is the digitized sequence of microphone i
with n = 1, . . . , N and τ is the correlation lag in samples. W
is the spectral weighting function for improving the similarity
analysis that is described later. Note that for W = 1, function
(1) is a general cross correlation that is computed in frequency
domain. Only the value of Rij (τ) for all the probable discrete
time delays in the range ±τmax is of interest and is stored for
further processing. The maximum time delay τmax is limited
to the sampling frequency Fs and the distance dm between the
two microphones:

τmax =
dm
c
Fs (2)

where c is the speed of sound. Investigating the similarity
degree only for a set of integer delays limits the resolution of the
coherence measurements, and hence the bearing measurements,
to the sampling frequency and the microphone baseline dis-
tance. In this work a sampling frequency of 40 kHz was used,
that allowed the digitization to be performed by the same micro-
controller performing the computations and avoid the need for
any additional hardware. A large microphone baseline of 18 cm
suitable for the size of our robots were also used. However, to
provide more resolution to the similarity measurements, a cubic
spline interpolation with a factor of 10 was performed on the
values of Rij (τ).

One limitation of using the general cross correlation method,
i.e. W = 1, for measuring the similarity is that results are
strongly dependent on the statistical properties of the sound
signal and it usually leads to wide cross correlation peaks. A
weighting function W can improve the robustness by perform-
ing frequency bin weighting. Many different weighting func-
tions are used in the literature [34]. The PHAT weighting [35]
is one of the most popular weighting functions showing robust
localization performance, particularly against reverberations:

WPHAT = |FFT (pi(n))| |FFT (pj(n))| (3)

PHAT whitens the cross-spectrum, giving equal contribution
to all frequencies, to rely only on phase information of the
signal leading to much sharper correlation peaks. One draw-
back of this method is that frequencies dominated by the noise
are also considered equally. A modified version of the PHAT

Fig. 3. Coherence measure Rij(τ) between signals of a microphone pair,
experiencing the sound of a drone in a room, computed using weighting func-
tion (4) and for different values of α. The solid vertical line indicates the true
time delay.

weighting was used here instead to only take into account the
frequency bandwidth where the sound is mostly present while
de-emphasizing the dominant frequencies.

W = χ (|FFT (pi(n))| |FFT (pj(n))|)α (4)

where

χ =

{
1 fmin < f < fmax

0 otherwise
(5)

fmin and fmax are the minimum and maximum frequencies of
the bandwidth. α is chosen between [0,1] and is used to control
the trade-off between full whitening and no whitening of fre-
quencies inside the defined range. The larger the values of α,
the sharper are the peaks in the resulting coherence measure-
ments. However, a large α could lead to less robustness in case
of low signal to noise ratios. A larger frequency range would
also result in sharper correlation peaks.

Figure 3 shows a comparison between PHAT weighting (α =
1), α = 0.8, α = 0.6, α = 0.4 and general cross correlation
(α = 0), using the entire frequency range, for a pair of micro-
phones experiencing sound of a pocket-size drone flying in a
room. The PHAT weighting results in an erroneous global peak
that does not correspond to the true bearing. This is because
the engine sound of drone is absent in a wide range of frequen-
cies and the noise in these frequencies are considered equally
in computing the coherence. This problem can be resolved by
reducing the value of α to put more emphasis on the dominant
frequency bins, with the expense of obtaining wider peaks.

For best performance, the values of α, fmin and fmax can be
selected based on the sound specifications. The instantaneous
frequency spectrum of the measured sound sequence could be
used to compute these values prior to measuring the coherence
using thresholding. The sound spectrum for when no robots are
present could be used as a good reference for obtaining the
values. Figure 4 shows the frequency spectrums of two sound
sequences, when “no drone” and when “a drone” was present
in a room. A suitable frequency range can be obtained from
comparing the two spectrums to find the range where the robot
sound is mostly present. Also since in the defined range there
are very few frequency bins that do not contain the sound of
the robot, α = 1 would be suitable to consider equally all of the
frequencies of this range.

The instantaneous frequency spectrum of the measured
sequences is also employed to detect the presence of robots
in the vicinity and to distinguish the sound of a robot from
other sound sources that might be present. For this, a template
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Fig. 4. Frequency spectrums of sound sequence in two cases of “no drone” and
“one drone” recorded inside a room’. This information can be used to find the
parameters of the proposed weighting function

of the robot’s sound frequency spectrum is stored in the mem-
ory and is continuously correlated with one of the microphone
signals, prior to the coherence measurements. A good correla-
tion, defined by a threshold found empirically, indicates that the
sound of the desired robot is present.

C. Relative Bearing Measurement Unit

Upon finding the similarity measures Rij from (1) for all
microphone pairs ij, a search for the most likely source direc-
tion

−→
b m is performed. This is the direction that maximizes the

sum of the coherence measurements from all pairs.

−→
b m = argmax

−→
b

∑
i,j

Rij(τ�bij) (6)

where τ�bij is the expected time delay if the source was in

the direction
−→
b , and is computed from the coordinates of

microphones i and j in the body reference frame.

τ�bij =
−→x ij .

−→
b

c
(7)

where −→x ij is a vector connecting microphone i to j and c is
the speed of sound. A spherical geodesic grid, defined on a unit
sphere, is used to search for the most likely source direction
among the set of all potential directions. Each grid point rep-
resents a direction vector

−→
b that starts at the origin and ends

at that grid point. For better resolution a weighted averaging
between the grid point with the highest coherence value and its
six adjacent points, based on their coherence values, is used as
the final estimated target direction.

D. Coherence Pruning Unit

The previous units described a method for locating the direc-
tion of a single neighboring robot by finding the direction with
the maximum coherence among all pairs. In the case of multi-
ple neighboring robots, this method will provide the direction of
the dominant sound source that is exhibiting the highest coher-
ence in the similarity measurements. For a homogeneous group
of drones with the same sound characteristics, the dominant
sound source will correspond to the nearest neighbor. However,
in practice, this might not always be the case as the engine
sounds are varying with throttle power. The Coherence prun-
ing unit is used to also obtain the bearing information of other
existing robots that are potentially masked behind the sound of
the dominant robot. Inspired by the work of [36], the idea is to

Fig. 5. Coherence measurement plots in an experiment with one perceiving
drone and two target rotorcraft drones, illustrating the pruning step

de-emphasize the effect of the dominant robot in the similarity
measurements to locate other robots with weaker coherences.

This unit initially uses Equation (7) to compute the time
delay τ�bmij , for every microphone pair, corresponding to the

obtained bearing measurement
−→
b m. This time delay is then

used to generate a pruning sequence Uij(τ) that is added to the
similarity measurements Rij(τ) to de-emphasize the existing
peak of the dominant source at time lag τ�bmij .

Ro
ij(τ) = Rij(τ) + Uij(τ) (8)

Uij(τ) =

{
B(τ) B(τ) > 0
0 B(τ) ≤ 0

B(τ) =
1

L

(
τ − τ�bmij

)2

−Rij(τ�bmij) τ ∈ [−τmax, τmax]

where B(τ) is a second order polynomial sequence and L is
a constant that defines the sharpness of this polynomial. The
value of L is chosen to produce a polynomial with approx-
imately equal sharpness as the coherence peaks. Figure 5
shows plots of a microphone pair’s coherence measurements
in an experiment with one perceiving drone and two target
drones, before and after the coherence pruning was preformed.
Note that the localized dominant sound source does not nec-
essarily correspond to the dominant peaks in the coherence
measurements, as shown in this Figure. The pruned coherence
measurements Ro

ij are then passed into the bearing measure-
ment unit to search again for the most probable sound direction.
This procedure is repeated similarly for locating other exist-
ing robots that might also be present. Experiments discussed
in Section IV-A show that up to two pruning iterations can be
performed to acquire an accurate direction for the three most
dominant target robots. A large drop in the precision is observed
after the third pruning iteration,i.e. for obtaining the direction of
the fourth dominant robot. However, in reality, since the dom-
inance of robots alter in time due to the change in the engine
sound and the movements of robots it is potentially possible to
track the direction of more robots throughout time with only
two pruning iterations and a memory based algorithm.

III. ACTIVE AUDIO-BASED SYSTEM

A passive audio-based relative bearing measurement sys-
tem, based on perceiving the engine-sound of robots, was
described in the previous section. Although this method has
many advantages, some drawbacks such as the no self-engine
noise constraint, the detection range depending on the target’s
sound level, instantaneous detection of up to three robots, and
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Fig. 6. Schematic diagram of the proposed relative positioning system illustrat-
ing main parts of the system.

not being able to identify robot identities motivated research for
a better solution. This section explains a method based on active
sound signaling where robots generate unique sounds to assist
each other in finding the relative bearing information despite
the loud self-engine noise.

Figure 6 shows the block diagram of the active audio-based
relative bearing measurement system. The system is divided
into two main parts of “Target robot” and “Perceiving robot”
states to illustrate the main units of the system at each state. In
the target robot state, the “Chirp Generator” of a robot gen-
erates unique chirp sound of predefined rate and frequency.
In the perceiving state, sound waves are picked up by an
onboard microphone array and are continuously checked by
the “Chirp Detection and Separation” unit for existence of
chirps in the sound mixture. When a full chirp is detected,
it is filtered out from the sound mixture and is passed to the
“Coherence Measuring” unit. The coherence measuring unit,
previously described in Section II-B, obtains a measure of sim-
ilarity between the chirps among all of the microphone pairs.
The frequency range used in the coherence measuring, defined
by fmin and fmax in Equation (5), is chosen as the minimum
and maximum frequencies of the perceived chirp. The value of
α = 1 is used to consider equally all the frequencies within the
chirp’s range of frequencies. The resulting coherence measure-
ments and the knowledge of the microphone array’s geometry is
then used by the Relative Bearing Measurement unit, explained
in Section II-C, to estimate a measure of the target’s direction.
A more detailed explanation of the units that were not explained
previously is presented here.

A. Chirp Generator

Piezoelectric transducers are simple, inexpensive and
lightweight devices, suitable to be used on drones, that generate
sound by converting electrical signals into mechanical vibra-
tions. A loud sound wave can be produced if the input signal
frequencies are close to the resonance frequency of the piezo
element. To generate a loud sound that is needed for achiev-
ing a long detection range, particularly suitable for outdoor
operations, and to avoid the problem of ambiguous bearing
measurements related with localization of narrowband sounds
[26], a piezo transducer is used on the robots to generate band
limited linear chirp signals.

The chirp generating unit of every target robot generates lin-
ear chirps with a predefined and unique chirp rate. Since an

Fig. 7. Spectrogram of an in-flight sound recording with one perceiving drone
and two chirping drones (One produced up-sweep chirps, 1.7 kHz to 4.7 kHz,
and the other produced down-sweep chirps, 4.7 kHz to 1.7 kHz).

entire chirp is used by the perceiving robots for computing
a single bearing measurement, the time interval between the
chirps can be chosen in accordance with the required measure-
ment rates. To generate continuous chirps, the frequency of the
input sine-wave signal to the piezoelectric element is varied in
time:

f(t) = Fstr +
Fend − Fstr

ΔT
mod

(
t

ΔT

)
(9)

where Fstr and Fend are the starting and ending frequencies
of the chirp that is chosen differently for every robot, and ΔT
is the chirp duration that is equal to the sampled sequence, i.e.
ΔT = N/Fs. For better detection against the self-engine noise
the chirp’s frequency range is chosen in the range where the
engine sound is less dominant, particularly in multi-kilohertz
range. Figure 7 shows the spectrogram of a sound recording,
performed with three drones, i.e. one perceiving drone and two
target drones chirping continuously.

B. Chirp Detection and Extraction

This unit is responsible for the detection and extraction of
a chirp in the perceived sound mixture. For this purpose, one
of the microphone signals are continuously checked to find
the existence of chirps in the sound mixture. The presence of
a chirp is detected by template matching, where a continuous
cross correlation of the sound mixture with the template of the
desired chirp determines the existence and the time segment
that contains the chirp.

After a chirp is detected, it is filtered out from other sounds
and overlapping chirps that might also be present in the selected
time segment. For this purpose, initially the time segment from
all of the microphone signals are passed through a band-pass
filter to remove the unwanted low and high frequency noises
that are outside the chirp’s frequency range (see Figure 8.b).
Furthermore, Fractional Fourier transform (FRFT) [37] is
used to remove noise within the frequency range of the chirp.
Unlike Fast Fourier transform (FFT), the FRFT provides a
compact representation of chirp signals, which makes it pos-
sible to remove the noise inside the same frequency region as
the chirp, that cannot be removed with traditional frequency
domain filters.

To represent the detected chirp in its most compact form,
the Fractional Fourier transform (FRFT) of the time window
containing the entire chirp is computed with an FRFT order of
α obtained by the following equation.

α =
2

π
ϕ =

2

π
tan−1

(
fs

Fend − Fstr

)
(10)
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Fig. 8. In-flight sound of a chirping drone recorded by a perceiving drone
in different steps of the chirp extraction procedure (a) Spectrogram of a
detected chirp (b)Spectrogram of the signal after band-pass filtering (c) FRFT
transform of the band-passed chirp and the corresponding passband region
(d) Spectrogram of the final filtered chirp.

where Fstr and Fend are the start and end frequencies of the
perceived chirp in Hertz and fs is the sampling frequency.
Equation (10) was derived from the geometrical relationship
between the chirp rate and FRFT order for time-frequency
discretized chirp signals provided by [38].

Upon computing the FRFT, the result contains an impulse-
shaped peak that corresponds to the desired chirp. This chirp is
then filtered out from other sounds, by only retaining the bin
with the highest peak along with its few nearby bins and setting
all other bins to zero (illustrated in Figure 8.c). The ratio of the
peak value to the mean value of all zeroed bins prior to zeroing
provides a good measure for the quality of the perceived chirp
and the reliability of the obtained bearing measurement. Finally,
the filtered chirp in the FRFT domain is transformed back to the
time domain by computing the inverse FRFT. Steps and result
of the chirp extraction procedure for a detected chirp in a real
world experiment with two flying drones, one chirping drone
and one observing drone, is illustrated in Figure 8.

IV. EXPERIMENTS AND RESULTS

Experiments were performed to test the proposed passive and
active systems on real drones. Two different types of drones
(Figure 2) were used in these experiments. A small embedded
circuit board, equipped with an Atmel AVR32 microcontroller,
was developed and used on the drones for sampling the micro-
phone signals and for the computations.

A. Passive System

The pocket size drones (Figure 2b) were used indoors to
test the passive method. In first experiments, a target drone
was flown manually inside an empty room, with dimensions
(6× 3.5× 3) meters, where a perceiving drone was resting on
the ground in the center of the room with engines off. A motion
tracking system was used for measuring the true robot posi-
tions and to compute the actual 3D relative bearings between

Fig. 9. Histogram of the angular error between the true and the measured 3D-
direction vectors along with the 2D distribution and histograms for the errors in
azimuth and elevation.

Fig. 10. Relative direction measurement error in experiments with multiple
targets. a) Two targets b) Three targets c) Four targets

robots. No other major sources of acoustic noise was present
inside the room, however, the sound of the cooling fans belong-
ing to the 8 tracking cameras and two computers were heard
clearly. Accurate bearing measurements were obtained despite
the relatively quiet engine of these robots. Figure 9 shows the
angular error between the measured and the true 3D-direction
vectors, computed with vector dot product, and a 2D represen-
tation of the error distribution using the azimuth and elevation
angles between the vectors. A root mean square error of 1.39
degrees was computed for the angular error.

Experiments were also performed to test the performance of
the system and the coherence pruning when experiencing sound
from multiple targets. Figure 10 shows box plots of the angular
error in the cases of two, three and four targets. In these plots,
the target number n is the target that is localized after n− 1
pruning iterations. In all experiments up to three targets were
localized with a good accuracy. However, the precision dropped
significantly after the third pruning step resulting in poor mea-
surements for the direction of the fourth target. The number of
existing targets did not have a major effect on the localization
for the first three dominant targets, with only a minor increase
in the number of outliers.

B. Active System

Outdoor experiments were performed with the drones shown
in (Figure 2a), to test the active system in presence of self
engine noise. An array of 4 microphones was used on a per-
ceiving robot and the target robots were equipped with a piezo
transducer. The array consisted of three microphones forming
a triangle of edge length 18cm, each placed between the pro-
pellers, and the fourth microphone was placed approximately
5.2cm under the center of the triangle. Although wind noise
is mostly present in the low frequencies (< 200 Hz) and is
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Fig. 11. Histograms for the angular, azimuth and elevation errors between the
GPS-based and the audio-based direction vectors, for two flying drones.

removed by the bandpass filter, but microphones were covered
with a small piece of foam to prevent potential signal clipping
due to strong winds.

Figure 11 illustrate the histogram of the angular difference
between the GPS based and audio-based relative bearing mea-
surements for an experiment where a perceiving drone was
flown in the vicinity of a continuously chirping and hovering
drone. Experiments showed the success of detection, filtering
and localizing the chirp sound of target robots in presence of
the self-engine noise. A detection range of ≈ 60 meters was
achieved in flight, however this range increased to about ≈ 150
meters if the perceiving robot rested on the ground with its
engines off.

Outdoor experiments for up to two target drones chirping
continuously with overlapping chirps (Figure 7) showed sim-
ilar performances. To test the performance in the case of more
than two overlapping chirps, experiments were conducted in
simulation. In these experiments a free-field sound-wave prop-
agation model was used to simulate the sound at the point of
a microphone from randomly positioned sources. The sound
received by a microphone was simulated by superimposing the
waves from all sources, based on the principle of superposi-
tion of sound waves. Every source generated a continuous chirp
sequence, with unique chirp rates but with equal chirp duration,
to ensure overlapping of all chirps. The chirp sequence for every
source was randomly started in every experiment to simulate the
fact that the chirp timing between robots are not synchronous
and that chirps from different robots could overlap at differ-
ent times. A microphone array with the same dimension as the
one on the real drone was used for the simulations. Experiments
showed that for large number of overlapping chirps some chirps
might not be detected or correctly localized. Figure 12 shows
the number of sources that were incorrectly localized for the
cases of 6, 8, 10, 12 and 14 overlapping chirps, each computed
from 100 experiment runs with random overlapping configura-
tions. Note that in practice it is possible to reduce the number of
overlapping chirps, by reducing the rate of chirping of robots,
or by using different piezos and spreading the chirps in different
frequency ranges.

In addition, a leader-follower motion coordination between
two drones was implemented to further test the onboard mea-
surement system. For this, a reactive proportional controller
was implemented on a drone to autonomously follow a chirping
drone based entirely on the instantaneous audio-based 3D bear-
ing measurements. The heading (i.e. yaw) of the follower was
directly controlled by the relative azimuth measurements to try
orient it towards the leader. While a pressure sensor was used to

Fig. 12. Number of incorrectly localized targets for the cases of 6,8,10, 12 and
14 targets with overlapping chirps

Fig. 13. Photo showing an instance of the audio-based leader-follower experi-
ments. Videos at http://lis.epfl.ch/ABSMAV

Fig. 14. GPS Path of drones for the leader-follower experiment.

maintain a fixed altitude, the speed of the follower was directly
controlled by the relative elevation measurements to try getting
closer to the target, i.e. Speed ∝ (90o − |elevationo|). Note
that this method requires the leader and follower to be on dif-
ferent altitudes, otherwise the follower can reach and collide
with the leader. Figure 13 shows an instance of the leader-
following experiment. Figure 14 shows the GPS path of the two
drones, illustrating the success of the fully autonomous follower
to follow the leader while using the 3D sound-based bearing
information.

V. CONCLUSIONS

This letter described an onboard system for measuring the
relative bearing among robots in a team of drones, where a pas-
sive and an active method was presented. Both methods used
a lightweight array of microphones to measure the direction
of sound. The passive method relied on the available engine
sound of robots and it showed a good accuracy in measur-
ing the direction of up to three drones in the absence of self
engine noises. The active method relied on perceiving acous-
tic chirps emitted by robots that allowed obtaining the relative
bearings in the presence of self-engine noise, to increase the
detection range and to discriminate the identity of robots. A
fully autonomous leader following behavior was demonstrated
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on real drones using the on-board audio-based system. Design
of new acoustic sensors, wind protectors and anti vibration
mounts more suitable for drones, research on self-engine noise
cancellation both at the mechanical and computational levels,
exploiting other acoustic cues such as intensity or Doppler shift
of frequency, integration of the audio based system with other
technologies such as vision or radio waves, and combining
the bearing measurements with predictions estimated from the
motion model of wirelessly-connected drones using a nonlinear
filtering framework, are some future work aiming at improving
relative positioning.
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