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Abstract: This paper is aimed at addressing the need for physically accurate and computationally effective models for predicting the
response of shear-dominated reinforced concrete walls. The presented theory is based on a three-degree-of-freedom kinematic model
for the deformation patterns in walls with aspect ratios smaller than approximately 3. In the kinematic model, the wall is divided into
two parts—a rigid block and a fan of struts—by a diagonal crack. The mechanisms of shear resistance across this crack are modeled with
nonlinear springs to capture the prepeak and postpeak shear behavior of the member. The base section of the wall is also modeled to account
for yielding of the reinforcement and crushing of the concrete. It is shown that this approach captures well the global and local deformations
measured in a test specimen with detailed instrumentation. A more comprehensive validation of the theory is performed with 34 wall tests
from the literature. The obtained peak load experimental-to-predicted ratios have an average of 1.03 with a coefficient of variation of 11.6%,
while these values for the drift capacity are 0.99 and 16.4%. DOI: 10.1061/(ASCE)ST.1943-541X.0001489. © 2016 American Society of
Civil Engineers.
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Introduction

Many reinforced concrete (RC) wall structures were built before the
introduction of modern seismic design guidelines, and as a result
feature smaller lateral resistance than today’s seismic codes require.
Furthermore, many of these structures do not meet the current
capacity design requirements, and therefore are susceptible to
shear failures that limit their deformation capacity. However, to
determine if any retrofit measures to increase the lateral resistance
or ductility are necessary, the seismic behavior of the structure
should be assessed using methods that account explicitly for the
inelastic deformation capacity of the walls. Since walls expected
to develop brittle shear failures will likely require a more costly
retrofit than walls possessing certain ductility, it becomes very
important to be able to accurately predict the lateral drift at which
shear failure will occur. In addition, due to the time pressures that
engineers often find themselves at work, methods for predicting the

force-deformation characteristics of walls should be relatively
simple and computationally inexpensive.

The simplest approach to estimate the drift at shear failure of
walls is empirical expressions [ASCE/SEI 41-6 (ASCE 2007);
EC8-3 (CEN 2005); Biskinis and Fardis 2010]. However, as the
shear behavior of walls is affected by a large number of parameters,
such expressions are sensitive to the data sample on which they are
based. The empirical approach has also been used to develop
lumped plasticity models that account for the effects of shear
(Hidalgo et al. 2002). At the other end of the spectrum of complex-
ity are nonlinear finite or discrete element models, which use a
large number of degrees of freedom to discretize the deformed
shape of the member. These models require a significant amount
of time for modeling and computation as well as considerable
expertise to use safely. Researchers therefore have developed
simpler physical models such as strut-and-tie-based models
(Panagiotou et al. 2012), stringer panel models (Blaauwendraad
and Hoogenboom 1996), and fiber element models (Martinelli
2008). These approaches, however, still require significant discre-
tization of the member.

This paper presents a three-parameter kinematic theory (3PKT),
which uses only three degrees of freedom (DOFs) to describe the
deformation patterns of diagonally cracked walls with rectangular
sections. It originates from a two-parameter kinematic theory
(2PKT) for deep beams (Mihaylov et al. 2013), which is extended
in order to account for the shortening of the member caused by
axial forces. The 3PKT approach aims to capture in a time-efficient
way the complete prepeak and postpeak response of shear-
dominated walls, including the loss of axial load capacity. The
common characteristic of shear-dominated walls is the develop-
ment of major diagonal cracks. The model predicts the response
of such walls that fail either in shear along the diagonal cracks
or at the base section under the combined action of flexure and
shear. The failure along the diagonal cracks can occur either in
a brittle manner prior to yielding of the flexural reinforcement,
or in a more ductile manner after flexural yielding.
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Kinematics of Shear Walls

The approach presented here is based on the idea that the complete
deformation pattern of diagonally cracked cantilever walls can be
described by a kinematic model with only three DOFs. This idea
stems from measured deformed shapes of deep beams (Mihaylov
et al. 2010) and shear walls such as the test specimen shown in
Fig. 1 (wall VK3, Bimschas 2010). This specimen was subjected
to a constant vertical load N ¼ 1,300 kN and cyclic lateral dis-
placementsΔwith increasing amplitude. Fig. 1(b) depicts the crack
patterns of the wall at shear failure. The failure occurred at Δ ¼
42 mm along a wide diagonal crack with crushing of the concrete
in what will be referred to as the critical loading zone (CLZ). The
measured deformed shape of the wall at failure is shown in Fig. 1(c)
with a mesh of triangles, where the shadows of gray correspond to
the sum of the average principal strains jε1j þ jε2j in each triangle.
From this diagram, it can be seen that the deformations concen-
trated along the diagonal of the wall while the concrete block above
the diagonal cracks remained almost undeformed. Therefore, this
block is modeled as a rigid body with three DOFs and forms the
basis of a kinematic model for the entire wall.

Fig. 2 shows the proposed kinematic model for shear-dominated
cantilever walls. The first DOF of the model is the average tensile
strain in the flexural reinforcement (εt;avg) within the cracked zone
below the critical crack [Fig. 2(a)]. The length over which the
strains are averaged is denoted as lt. The critical shear crack is ap-
proximated with a straight line at an angle α1 with respect to the
vertical axis. It can be seen that strain εt;avg is associated with ro-
tation of the rigid block about point A by an angle εt;avglt=d, and
with deformations in the concrete below the critical crack. This bot-
tom part of the wall is modeled with a series of rigid radial struts
pinned at point A and connected to the tension reinforcement
(fan of struts). The rotation of each strut about point A is propor-
tional to the elongation of the reinforcement between the base of
the wall and the point where the strut connects to the reinforcement.

This deformation pattern can be associated with flexural defor-
mations.

The second DOF of the kinematic model is the horizontal
displacement Δc in the critical loading zone (CLZ) [Fig. 2(b)].
In this deformation pattern, the rigid block translates laterally while
the fan remains undeformed since εt;avg is zero. At the top of the
critical diagonal crack, displacement Δc develops over a transition
zone of length lk in which the flexural reinforcement is subjected to
double curvature. The kinematics related to DOF Δc can be asso-
ciated with shear deformations.

Degrees of freedom εt;avg and Δc are adopted from the 2PKT
for deep beams, while a third DOF is introduced for the modeling
of walls: the downward displacement Δcx in the CLZ [Fig. 2(c)].
Displacement Δcx is associated with rotation of the rigid block
about point B by an angle Δcx=d. This rotation can result in a con-
tact between the rigid block and the concrete below the critical
diagonal crack in the vicinity of the CLZ. It is apparent from
Fig. 2(c) that DOF Δcx is related to the action of the axial load
N, which drives the rigid block downwards.

When the deformation patterns associated with the three DOFs
are superimposed, they produce the complete deformed shape of
the wall shown in Fig. 1(d). The displacement of each point from
the wall with respect to the coordinate system x − z is expressed as
a sum of the displacements associated with each deformation pat-
tern. Based on small-displacement kinematics, it can be shown that
the displacements of the points of the rigid block are given by

δxðx; zÞ ¼
εt;avglt
d

ðh − zÞ þΔcx

d
ðh − d − zÞ ð1Þ

δzðx; zÞ ¼
�
εt;avglt
d

þΔcx

d

�
xþΔc ð2Þ

while the displacements in the fan below the critical diagonal crack
are (Mihaylov et al. 2013)
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Fig. 1. Deformation patterns in shear-dominated walls—specimen VK3 (data from Bimschas 2010): (a) wall properties; (b) crack pattern at failure;
(c) deformations at failure ×15 and 3PK model with fitted DOFs; (d) deformations at failure and 3PK model with predicted DOFs

© ASCE 04016041-2 J. Struct. Eng.

 J. Struct. Eng., 04016041 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
co

le
 P

ol
yt

ec
hn

iq
ue

 F
ed

er
al

e 
on

 0
3/

22
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



δxðx; zÞ ¼ εt;avgx ð3Þ

δzðx; zÞ ¼
εt;avgx2

h − z
ð4Þ

Note that the displacements in the fan depend only on DOF
εt;avg, which causes rotation of the radial struts about point A,
and therefore results in both vertical and horizontal displacements.

To complete the formulation of the kinematic model, it is nec-
essary to estimate the angle of the critical crack α1 and lengths lk
and lt. Angle α1 is obtained from a shear strength calculation
according to the AASHTO code provisions (AASHTO 2007; Bentz
et al. 2006). Since the steepest cracks in short walls typically propa-
gate along the diagonal of the wall, angle α1 should remain larger
than or equal to the angle α of the wall diagonal. Fig. 3 shows an-
gles α1 and α as well as the equations necessary to calculate lengths
lk and lt. Length lk is evaluated as the sum of the expressions for l0
and (lk − l0), where l0 is the portion of lk below the critical crack.
The expressions for l0 and (lk − l0) are derived by considering one
crack below and one above the critical diagonal crack, taking also
into account limits imposed by the wall height and the width of an
effective tension zone min½2.5ðh − dÞ; h=2�. The crack spacing
along the flexural reinforcement scr is estimated based on Model
Code 90 [MC90 (CEB-FIP 1990)] by considering the reinforce-
ment ratio ρl1 in the effective tension zone. The expression for
lt shown in the bottom of Fig. 3 stems directly from the diagram
in the figure. Fig. 3 also shows the geometry of the critical loading
zone (CLZ), which will be discussed later in the paper.

To check whether the assumed kinematics models well the de-
formations in shear-dominated walls, Eqs. (1)–(4) are applied to
specimen VK3 to compute the location of the vertices of the trian-
gles (grid points) from the measured deformed shape in Fig. 1(c).
The effective depth d of the wall section is calculated by consid-
ering the centroid of the longitudinal reinforcement in one-half of

the section (d ¼ 1,160 mm). The area of this reinforcement As ¼
4,220 mm2 is also the area of the flexural reinforcement in the kin-
ematic model. According to an AASHTO shear strength calcula-
tion, the angle of the critical crack is α1 ¼ 34.5° > α ¼ 25.8°.
This angle is shown in Fig. 1(b) together with the predicted
transition zone at the top of the critical crack. The three DOFs

(a)
(b)

(c)

(d)

Fig. 2. Three-parameter kinematic model for shear-dominated walls: (a) DOF εt;avg, Δc¼ Δcx ¼ 0; (b) DOFΔc, εt;avg¼ Δcx ¼ 0; (c) DOFΔcx,
Δc ¼ εt;avg ¼ 0; (d) combined deformed shape
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Fig. 3. Geometry of kinematic model

© ASCE 04016041-3 J. Struct. Eng.

 J. Struct. Eng., 04016041 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
co

le
 P

ol
yt

ec
hn

iq
ue

 F
ed

er
al

e 
on

 0
3/

22
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



of the kinematic model are determined such that the error of the
computed locations of the grid points above the critical crack is
minimized, resulting in εt;avg¼ 4.06 × 10−3, Δc ¼ 2.5 mm, and
Δcx ¼ 6.0 mm. The results obtained from Eqs. (1)–(4) for the
location of the grid points are shown in Fig. 1(c) with dots. It
can be seen that the kinematic model with only three DOFs cap-
tures well the measured displacement field of the wall.

In addition to the displacement field, the kinematic model can
also be used to estimate the width of the critical diagonal crack w
half-way along the crack. This width is obtained as the sum of the
widths associated with the three DOFs of the model

w ¼
�ðεt;minlkÞ
2 sinα1

h
d
þΔc cosα1 þ

Δcx

d

�
h

2 sinα1

− d sinα1

��
1

ncr
ð5Þ

where εt;min = strain in the flexural reinforcement within length
lk. The expression in the brackets is derived directly from the de-
formation patterns in Figs. 2(a–c) assuming a single dominant
diagonal crack. In members with sufficient web reinforcement,
however, this width will be distributed among several major cracks
as observed in specimen VK3 [Fig. 1(b)]. The number of these
cracks ncr can be estimated as lk=scr for walls with longitudinal
web reinforcement ρl;web ≥ 0.2% and 1 otherwise. The ratio
lk=scr is the number of cracks within the transition zone between
the fan and the rigid block on the flexural tension side of the sec-
tion. These cracks tend to merge into a single wide crack in the web
if they are not controlled by web reinforcement. Specimen VK3
had ρl;web of 1.23% and therefore ncr ¼ lk=scr ¼ 915=319≈ 3.
If for now it is assumed that εt;min ≈ 0.5εt;avg, and if the DOFs from
the previous comparison are substituted in Eq. (5), a crack width of
2.5 mm is obtained. This value corresponds reasonably well to the
measured widths of the critical diagonal cracks at shear failure,
which varied between 1.7 and 2.3 mm.

Despite these results, it should be noted that the assumptions
made in the development of the kinematic model impose certain

limits on its applicability. The model is suitable for walls with
rectangular sections subjected to single curvature (cantilever
walls) that develop major shear cracks. Therefore, failure modes
characterized by small stresses in the transverse reinforcement—
pure flexural failures, web crushing, or sliding shear failures at
the base of the wall—are not adequately captured by the kinematic
model. To set clear criteria for the applicability of the model, it will
be assumed that pure flexural failures and sliding shear failures
would not likely occur if the 3PKT approach predicts that the trans-
verse reinforcement yields before the flexural reinforcement. Since
web crushing failures are more likely to occur under high compres-
sion forces, the axial load ratio N=bhf 0

c should be smaller than 0.2.
The other limits of applicability of the model are as follows: (1) an
aspect ratio ≤ 3.0, to take into account that in slender walls the
assumption made for a rigid block above the critical crack is
not valid; (2) a wall-height-to-thickness ratio ≤ 25 to ensure against
out-of-plane instability (ACI 2011); (3) normal strength concrete
(f 0

c ≤ 60 MPa); (4) no lap-splices in the base section; and (5) no
diagonal shear reinforcement.

In its range of applicability, the three-parameter kinematic
model forms the basis of the three-parameter kinematic theory
(3PKT) for predicting the load-displacement response of RC walls.
The DOFs of the model will be predicted by combining the kin-
ematic equations with equilibrium equations and constitutive
relationships for the load-bearing mechanisms in the wall. Two po-
tential failure planes will be considered: the diagonal crack and the
horizontal section at the base. The modeling of the former failure
mode will be discussed first.

Forces Transferred across the Critical
Diagonal Crack

Fig. 4(a) shows a free-body diagram of the rigid block of the
kinematic model. The block interacts with the foundation through
the forces depicted at the tip of the CLZ and with the fan through

Fig. 4. Spring model representing the load-bearing mechanisms in shear walls: (a) rigid block above the critical diagonal crack; (b) fan below
the critical diagonal crack
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the forces across the critical diagonal crack. The latter forces in-
clude the aggregate interlock force Fci, the tension in the stirrups
Fs, the tension in the flexural reinforcement Ft;min, and the force
due to dowel action of the flexural reinforcement Fd. In the 3PKT,
these load-bearing mechanisms are modeled with nonlinear springs
across the critical crack. The locations where the springs are con-
nected on both sides of the crack are marked with solid dots. This
section outlines how to evaluate the deformations and the force-
deformation relationships of these springs, while the springs at
the tip of the CLZ are discussed in the next section. The deforma-
tions in the springs will be derived from the kinematic model as a
function of the three DOFs of the model.

The aggregate interlock spring Fci is located half-way along
the critical diagonal crack and is parallel to the crack. The defor-
mation of this spring Δci corresponds to the slip displacement be-
tween the crack faces and can be expressed as

Δci ¼ Δc sinα1 þΔcx cosα1 −Δci0 ≥ 0 ð6Þ

The first two terms of this equation are derived from the defor-
mation patterns in Figs. 2(b and c) (DOFs Δc and Δcx) while DOF
εt;avg does not contribute to the slip displacement. The third term of
the equation is the displacement of the end of spring Fci attached to
the fan [Fig. 4(b)]. More precisely, Δci0 is the shortening of the
bottom half of the top strut from the fan, which reduces the crack
slip. Displacement Δci0 and the other end displacements of the
springs attached to the fan will be referred to as offset displace-
ments and will be derived in section “Calculating the Fan.” The
slip displacementΔci and crack width w [Eq. (5)] are used to evalu-
ate the shear stress on the crack vci according to a contact density
model (CDM) proposed by Li et al. (1989). Stress vci is in turn used
to evaluate the aggregate interlock force Fci as follows:

Fci ¼ 0.18vciðΔci;wÞbd1= sinα1 ð7Þ

where quantity bd1= sinα1 = surface of the critical crack from the
base of the wall to the furthest layer of flexural reinforcement [see
dimensions b and d1 in Fig. 1(a)]. Factor 0.18 accounts for a sim-
plification made in the use of the contact density model. In addition
to shear stresses on the crack, the CDM accounts for compressive
stresses, which increase the aggregate interlock resistance. These
clamping stresses are neglected in the 3PKT; therefore, the shear
resistance obtained from the CDM is reduced by a factor of 0.18
adopted from Vecchio and Collins (1986). This factor was pro-
posed as the ratio of the shear capacity of the crack without clamp-
ing to the shear capacity of the crack with a maximum clamping
stress.

The second spring located half-way along the critical crack is
the spring representing the transverse reinforcement. The deforma-
tion of this spring is equal to the horizontal expansion of the web of
the wall at distance 0.5d1 cotα1 from the base

Δs ¼
�
εt;avglt
d

þΔcx

d

�
0.5d1 cotα1 þΔc −Δs0 ð8Þ

The last term in the expression is again the offset displacement
due to the deformations of the fan. The average strain in the stirrups
across the web is estimated as εv¼ Δs=ð0.9d1Þ and the stress in
the stirrups fv is calculated from this strain based on a bilinear
stress-strain relationship for the steel. Having obtained fv, the force
in the stirrups is calculated from

Fs ¼ Avfv ¼ ρvb · max½d1 cotα1 − 1.5lb1e

− l0ðd=d1Þ; 0.5d1 cotα1�fv ð9Þ

where the expression in the brackets is the height over which
the stirrups are activated by the expansion of the web (Mihaylov
et al. 2013). Quantity lb1e in Eq. (9) is the characteristic length
of the CLZ calculated from Eq. (12).

In addition to Fs, the other horizontal force acting across the
critical crack is the dowel action force Fd. This force develops
in the zone of transition between the fan and the rigid block where
the flexural reinforcement is subjected to double curvature. There-
fore, each of the nb bars with a total area As in this zone works as a
dowel of length lk. The deformation of the spring that models this
effect is equal to the relative horizontal displacement between the
ends of the dowels

Δd ¼
�
εt;avglt
d

þΔcx

d

�
lt þΔc −Δd0 ð10Þ

and the dowel force Fd is obtained by modeling the dowels as
fixed-fixed beams subjected to Δd

Fd ¼ nb
12Esπd4b
64l3k

Δd ≤ nbfy

�
1 −

�
Ft;min

fyAs

�
2
�
d3b
3lk

ð11Þ

The expression before Δd in Eq. (11) is the elastic stiffness
of the dowels in double curvature, while the upper limit on Fd cor-
responds to the formation of plastic hinges at the ends of the dow-
els. The expression in the square bracket accounts for the reduction
of the plastic moment capacity of the bar-dowels due to the tension
force in the dowels Ft;min. This tension is modeled with the last
spring across the critical crack [Fig. 4(a)]. The elongation of this
spring is Δt ¼ εt;avglt−Δt0 and the corresponding strain in the
reinforcement is εt;min¼ Δt=lk. The stress in the reinforcement
ft;min is obtained from strain εt;min by using a bilinear stress-strain
relationship for the steel, and force Ft;min is calculated as ft;minAs.
The load-deformation response of spring Ft;min as well as those of
the other three springs crossing the critical diagonal crack are
shown schematically in Fig. 5.

Critical Loading Zone

An important component of the 3PKT approach is the modeling
of the critical loading zone (CLZ). In Fig. 4(a), this zone is

Fci

ciΔ

ciΔw=0.5

ciΔw=1

ciΔw=2

Fs

sΔ

Fd

dΔ

Ft,min

tΔf t,min >fy

f t,min=0

f t,min=0.5fy
fyAs

fyvAv

fuAs

fuvAv

ulkΔ

uv0.9d1ε
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Transverse 
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reinforcement 

Fig. 5. Constitutive relations of springs across the critical diagonal
crack
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represented by five nonlinear springs that connect the rigid block
to the foundation. Springs FCLZ1 and FCLZ2 represent the compres-
sion in the concrete in the CLZ, springs Fcn and Fct model a
potential contact between the rigid block and the fan, and spring
Fsc models the vertical reinforcement in the CLZ.

Fig. 6(a) shows a photograph of a failed CLZ in a shear-critical
wall (specimen VK6) (Hannewald et al. 2013). This zone is bound
between the vertical edge of the wall and the critical diagonal crack
that extends to the base of the wall. It can be seen that the failure of
the CLZ occurred in a complex manner, resulting in the crushing of
the concrete under the combined action of normal and shear
stresses. It can also be seen that the longitudinal reinforcement
buckled due to insufficient confining reinforcement in the edge
zones of the wall. To model this complex behavior, it is first sug-
gested to approximate the shape of the CLZ with a circular
sector with a radius 3lb1e cosα centered at the corner of the wall
[see Fig. 6(b)]. The expression for the radius is adopted from the
2PKT for deep beams where the characteristic length lb1e is propor-
tional to the width of the column loading the beam (Mihaylov et al.
2013). In walls, the forces from the CLZ are defused into the foun-
dation; therefore, the characteristic length is less clearly defined
than in deep beams. For this reason, a simple expression for
lb1e is proposed based on comparisons with wall tests

lb1e ¼ 0.11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
≤ 370 mm ð12Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
= length of the diagonal of the wall (a = height of

the wall and h = depth of the wall’s section). Details about the
derivation of this expression are provided later in the paper

As evident from Fig. 6(b), the displacement of the tip of the
critical loading zoneΔCLZ relative to the rigid block has horizontal
and vertical components equal to DOFs Δc and Δcx, respectively.
This displacement is associated with compressive strains and
stresses in the concrete, as well as a reaction force FCLZ. In order
to estimate FCLZ, it is suggested to first assume a relationship
between the directions of ΔCLZ and FCLZ given by angles αΔ
and αF, respectively. This relationship should satisfy two require-
ments: (1) when αΔ equals α=2, αF should also equal α=2 as
required by symmetry; and (2) when ΔCLZ is horizontal
(αΔ ¼ 90°), FCLZ should be aligned with the diagonal of the wall
(αF ¼ α) as assumed in the modeling of deep beams. Based on
these two requirements, the following expression for angle αF is
proposed:

αF ¼ α − η ð13Þ

tan η ¼ tan
α
2
− 2sin2

α
2

�
tan

α
2
þ tanðαΔ − αÞ

�
ð14Þ

The average compressive strain in the CLZ in the direction of
force FCLZ is then calculated from

εCLZ ¼ ΔCLZ cosðαΔ − αFÞ
3lb1e cosα

ð15Þ

and the compressive stress fc;CLZ is obtained from εCLZ by using an
appropriate stress-strain relationship for the concrete (Popovics
1970). To account for nonuniform distribution of the stresses in
the CLZ, fc;CLZ is calculated as the average stress from zero strain
up to εCLZ. If the wall has edge zones confined with hoops, the
stress-strain relationship is modified to account for the confinement
effect based on the model proposed by Mander et al. (1988).
Finally, the reaction force FCLZ is calculated by integrating the
stress fc;CLZ at a distance lb1e from the tip of the CLZ, as in
the 2PKT for deep beams

FCLZ ¼ αlb1ebfc;CLZ ð16Þ

Force FCLZ and displacement ΔCLZ are projected on axes 1 and
2 in Fig. 6(b) to generate the load-displacement relationships of
springs FCLZ;1 and FCLZ;2. These relationships are shown in
Fig. 6(c) for two cases of inclination of ΔCLZ∶αΔ ¼ 90° and
αΔ ¼ α.

As mentioned previously, springs Fcn and Fct model a potential
contact between the rigid block and the fan in the vicinity of the
CLZ. From Fig. 6(b), it can be seen that such contact occurs when
angle αΔ becomes equal to α. Spring Fcn, which is normal to the
critical shear crack, is assigned a large constant stiffness in com-
pression and zero stiffness in tension. The stiffness in compression
is chosen to prevent any meaningful penetration of the rigid block
into the fan. Spring Fct models the friction force between the rigid
block and the fan, which is estimated as 0.7 times force Fcn.
Evidence of the friction forces can be seen in the photo in
Fig. 6(a), which shows spalling of the concrete on both sides of
the critical crack due to pressure on the crack. This effect occurs
at some distance from the base of the wall, but for the sake of
simplicity springs Fcn and Fct are placed at the tip of the CLZ.

The last contribution to the forces in the vicinity of the CLZ is
provided by the vertical reinforcing bars in the zone: spring Fsc.
The load-displacement response of this spring is obtained on the
basis of bars with the length lb1e. Therefore, the strain in the bars
is estimated asΔcx=lb1e and the stress in the bars is calculated from

(a) (b) (c)

Fig. 6. Critical loading zone (CLZ): (a) CLZ after failure—wall VK6; (b) model of the critical loading zone; (c) load-displacement response
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a bilinear stress-strain relationship for the steel. The stress in the
bars is multiplied by their cross-sectional area to obtain the force
in the spring Fcs. To account for buckling of the bars in a simple
manner, force Fcs becomes zero if the compressive strain in the
CLZ εCLZ exceeds the maximum of 0.004 and the strain at peak
stress of the concrete. The former strain limit corresponds to spall-
ing of the concrete cover (Priestley et al. 2007) while the latter limit
governs when the concrete in the CLZ is confined with hoops. It is
assumed that when the confined concrete reaches peak stress, the
hoops are yielding and the vertical bars are likely to buckle.

Overview of Solution Procedure

The solution procedure described in this section is used to compute
the position of the rigid block and the lateral load V when the wall
is subjected to axial load N and lateral displacement Δ. As shown
in Fig. 4, the rigid block is connected to nine nonlinear springs, and
the supports of springs Fci, Fs, Fd, and Ft;min displace by Δci0,
Δs0, Δd0, and Δt0 due to the deformations of the fan. If offset dis-
placements Δci0;Δs0;Δd0, and Δt0 are known, and if the springs
are linear, the system of rigid block and springs can be solved by
using the method of displacements. In this system, the offset
displacements can be treated as support settlements. The unknown
displacements of the method can be for example the DOFs of the
kinematic model. However, while these DOFs are suitable for the
formulation of the 3PKT, they are not convenient for the numerical
solution as they do not include the imposed displacementΔ. There-
fore, for the numerical solution, it is suggested to use DOFsΔ,Δcx,
and θ, where θ is the rotation of the rigid block about the point
of intersection of the lateral load and the compressive edge of
the wall [Fig. 4(a)]. The DOFs used for the formulation of the
3PKT can be expressed with Δ, Δcx, and θ as follows:

εt;avg ¼ ðθd −ΔcxÞ=lt ð17Þ

Δc ¼ Δ − θa ð18Þ

Taking the aforementioned into account, the following iterative
procedure based on the secant stiffness approach is proposed:
1. Calculate the geometry of the kinematic model using Fig. 3

and Eq. (12). To obtain angle α1, perform a shear strength cal-
culation according to the AASHTO code;

2. Choose Δ at which to perform calculations. The axial load
N is constant;

3. Assume initial values of the secant stiffness of the springs
Kiði ¼ 1 − 9Þ and displacement offsets Δci0;Δs0;Δd0;Δt0.
To speed up the calculations, it is recommended to use the final
values from the previous converged load stage. For the first
iteration of the first load stage, use the initial tangent stiffness
of the springs and Δci0¼ Δs0¼ Δd0¼ Δt0 ¼ 0;

4. Use the displacement method to calculate DOFs Δcx and θ of
the rigid block under Δ and N. Calculate DOFs Δc and εt;avg
from Eqs. (17) and (18);

5. Also from the displacement method, calculate the forces in the
springs crossing the critical diagonal crack Fci, Fs, Fd,
and Ft;min;

6. Solve the fan under imposed strain εt;avg and forces Fci, Fs, Fd
to obtain updated values of offsets Δci0;Δs0;Δd0, and Δt0.
Terminate the analysis if the fan fails at the base section
due to crushing of the concrete or rupture of the reinforcement.
This step is discussed in detail in the next section;

7. Use DOFs εt;avg;Δc;Δcx and offset displacements Δci0;
Δs0;Δd0;Δt0 to calculate the deformations of the springs

Δci;Δs;Δd;Δt;ΔCLZ1;ΔCLZ2;Δct;Δcn;Δsc based on the
kinematic model and the relationships derived in section
“Forces Transferred across the Critical Diagonal Crack.”
Calculate also the crack width w by using Eq. (5);

8. Use the deformations in the springs and w to calculate updated
spring forces Fci, Fs, Fd, Ft;min, FCLZ1, FCLZ2, Fct, Fcn, Fsc as
discussed in sections “Forces Transferred across the Critical
Diagonal Crack” and “Critical Loading Zone”;

9. Update the secant stiffness of the springs Ki ¼ Fi=Δi
(i ¼ 1 − 9), where Fi is the force in the ith spring and Δi
is the deformation of the spring;

10. Return to (4) with the new spring stiffnesses and repeat the
calculations until Ki converge to constant values; and

11. Compute the lateral load V from the horizontal equilibrium
of the rigid block by summing up the horizontal components
of the forces in the springs.

This procedure is repeated for different values of Δ to calculate
the complete V −Δ response of the wall. If V begins to decrease
under increasing Δ before the failure of the base section of the fan,
the wall is predicted to fail in shear along the critical diagonal crack.
Shear failure can either occur prior to or after yielding of the flexu-
ral reinforcement. If eventually the solution does not converge, this
will indicate that the wall is heavily damaged and cannot support
the vertical loadN. This procedure provides an overview of how the
3PKT equations can be solved by decoupling the calculations for
the rigid block and the fan. A more efficient detailed algorithm has
been implemented in a computer code and has been made available
for downloading (Mihaylov et al. 2015).

Calculating the Fan

To calculate the fan as required in step 6 of the calculation
procedure, it is necessary to consider the free-body diagram in
Fig. 4(b). According to this diagram, the fan is subjected to forces
Fci, Fs, Fd, and Ft;min across the critical diagonal crack which are
balanced by forces Fb and Ft;max at the base section of the wall. As
stated in the previous section, at each iteration the fan is solved
under forces Fci, Fs, Fd, and an imposed average strain along
the flexural reinforcement εt;avg. The solution is iterative and
can be summarized in the following steps:
1. Assume an initial value of the lever arm jd of forces Fb and

Ft;max (for example, jd ¼ 0.9d);
2. Use the moment equilibrium of the fan about the point of

application of force Fb to obtain the force difference ΔFt ¼
Ft;max − Ft;min and the corresponding stress difference Δft ¼
ΔFt=As in the flexural reinforcement;

3. Assume a value for the stress in the flexural reinforcement at
the base of the wall ft;max and calculate ft;min ¼ ft;max −Δft.
To obtain the complete stress profile ft along the flexural re-
inforcement, it is assumed that ft follows a parabolic variation
along length lt − lk (Paulay 1971) and remains constant within
lk as shown in Fig. 4(b). Note that the tangent to the parabola at
the base section is vertical;

4. From the stress profile ft, calculate the strain profile
εt by using a bilinear stress-strain relationship for the reinfor-
cement with unloading parallel to the initial loading branch.
Calculate the average strain in the reinforcement and compare
it to εt;avg. If the two strains differ, return to step 3 and adjust
the value of ft;max until the strains become equal. These cal-
culations can be performed efficiently by using the method of
bisection;

5. Calculate the force Fb from the horizontal and vertical equili-
brium of the fan, taking into account that Ft;min ¼ ft;minAs;
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6. Assume a value for the maximum compressive strain εb;max in
the base section of the fan [Fig. 4(b)]. This strain, together with
εt;max calculated in step 4, defines a linear strain profile across
the base section with a compression zone of depth c. Since the
shear force transferred through the compression zone of short
walls is significant, strains εb in this zone are assumed inclined
at the same angle θb as force Fb;

7. From strains εb, calculate stresses fb in the compression zone
by using an appropriate stress-strain relationship for uncon-
fined concrete (Popovics 1970) and bilinear stress-strain curve
for the reinforcement. To simplify the calculations, assume
that the reinforcement in the compression zone is uniformly
distributed based on the average ratio ρl ¼ 2As=bh. If strain
εb;max exceeds 0.004, the stresses in the reinforcement are ne-
glected due to the likelihood of cover spalling and buckling of
the reinforcing bars;

8. Integrate stresses fb across area ðc= cos θbÞb to obtain a com-
pressive force F 0

b, where (c= cos θb) is the depth of the com-
pression zone perpendicular to Fb. If force F 0

b differs from Fb
obtained in step 5, return to step 6 and adjust the value of εb;max
until F 0

b equals Fb. These calculations can also be performed
efficiently by using the method of bisection;

9. Based on the obtained stress profile fb, calculate an updated
value of the lever arm jd and return to step 1. Repeat the cal-
culations until jd converges to a constant value; and

10. Using the obtained strain profiles εt and εb in the fan, calculate
displacement offsets Δci0;Δs0;Δd0, and Δt0 based on the
kinematic assumptions made for the fan

Δci0 ¼ εb;max0.5d1= sinα1 ð19Þ

Δs0 ¼
0.5d1 cotα1

d

Z
0.5d1 cotα1

0

εtdl ð20Þ

Δd0 ¼
lt − lk
d

Z
lt−lk

0

εtdl ð21Þ

Δt0 ¼
Z

lt−lk
0

εtdl ð22Þ

where l = coordinate along the flexural reinforcement with an
origin at the base of the wall. These integrals are evaluated
numerically and the result is returned to the global iteration
procedure described in the previous section.

Finally, the solution procedure for the fan provides criteria for
failure of the base section of the wall due to excessive compressive
or tensile stresses. If force Fb is too large to be balanced by stresses
fb, the wall is predicted to fail with crushing of the concrete in the
compression zone under the combined action of flexure and shear.
Flexural failure due to rupture of the reinforcement is predicted if
tensile strain εt;max reaches 0.6εu, where εu is the strain at peak
stress of the steel obtained from a monotonic tension test (Priestley
et al. 2007).

Predicted Behavior of Wall VK3

In order to illustrate the effectiveness of the modeling assumptions
presented, the 3PKT approach is applied to specimen VK3.
Fig. 7(a) shows the measured hysteretic response of the wall in
terms of shear force versus lateral displacement. It can be immedi-
ately seen that this response has a plateau, which indicates yielding
of the flexural reinforcement in the base section of the wall. At a
lateral displacement of 42 mm, however, a brittle shear failure

(a) 

(b) 
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Fig. 7. Comparison of predicted and measured load-deformation
response—specimen VK3 (data from Bimschas 2010): (a) load-
displacement response; (b) components of shear resistance

=13.8 mm =21.0 mm

=42.0 mm 
 (shear failure)

=63.0 mm 
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Fig. 8. Experimental (triangles) and predicted (dots) deformed
shapes ×15—specimen VK3
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occurred along a diagonal crack, limiting the ductility of the wall.
The thick line in Fig. 7(a) is the predicted envelope of the response
of wall VK3. As the 3PKT is based on kinematics of cracked walls,
it is not suitable for predicting the initial elastic response prior to
cracking. For this reason, the initial linear branch of the force-
displacement curve is obtained from a Timoshenko beam model
with uncracked sectional properties. The initial branch is utilized
up to the intersection with the 3PKT curve. It can be seen that
the 3PKT approach combined with the elastic beam model capture

well the entire prepeak and postpeak response of specimen VK3.
It should be noted that one such analysis requires a straightforward
input (i.e., geometrical and material properties) and takes only
about 5–10 s to complete on a typical computer.

Fig. 7(b) shows the predicted components of shear resistance of
specimen VK3 and how they vary with increasing lateral displace-
ment. These shear forces are the horizontal components of the
spring forces in Fig. 4(a), where Vci corresponds to Fci, VCLZ

to FCLZ1 and FCLZ2, Vs to Fs, Vd to Fd, and Vcf to Fcn and

Table 1. Database of Wall Tests

Test
specimen

Geometry Reinforcement and concrete n ¼ Experiment 3PKT results

b
(mm)

h
(mm)

d
(mm) a=h ρlð%Þ

ρl;web
ð%Þ

fy
(MPa) ρvð%Þ

fyv
(MPa)

f 0
c

(MPa)
N=

ðbhf 0
cÞ

Vmax
(kN) δ0.8ð%Þ

l 0b1e
(mm)

lb1e
(mm)

Vmax;exp=
Vmax;pred

δ0.8;exp=
δ0.8;pred

VK1a 350 1,500 1,190 2.20 0.82 0.82 515 0.08 518 35.0 0.0707 729 1.90 355 370 1.03 0.89
VK3a 350 1,500 1,160 2.20 1.23 1.23 515 0.08 518 34.0 0.0728 879 1.35 310 370 1.00 0.82
VK6b 350 1,500 1,160 3.00 1.23 1.23 521 0.08 528 44.4 0.0558 666 2.24 370 370 1.01 0.99
VK7b 350 1,500 1,160 2.20 1.23 1.23 521 0.22 528 30.0 0.0825 903 2.25 370 370 1.02 1.16
72c 160 1,700 1,419 1.00 1.54 0.50 384 0.26 427 17.6 0.1136 825 0.95k 280 264 1.15 1.32
73c 160 1,700 1,419 1.00 1.54 0.50 384 0.26 427 21.2 0.0943 740 0.77k 260 264 0.95 1.02
74c 160 1,700 1,419 1.00 1.54 0.50 384 0.57 430 21.2 0.0943 830 0.89 220 264 0.93 0.79
75c 160 1,700 1,419 1.00 1.54 0.50 384 0.57 430 14.0 0.1429 825 l 260 264 1.05 —
82c 160 850 735 2.00 2.31 0.40 388 0.57 430 21.2 0.0943 328 l 250 209 0.97 —
83c 160 850 735 2.00 2.31 0.40 388 0.57 430 18.2 0.1099 340 l 270 209 1.01 —
S9d 100 1,180 885 1.12 0.99 0.99 560 0 — 29.2 0.0755 342 0.80k 240 195 1.17 1.10
S10d 100 1,180 1,004 1.12 2.91 1.00 513 0.98 496 31.0 0.0716 670 0.92k 250 195 1.12 1.01
SW4e 60 600 511 2.10 2.82 0.50 535 0.39 545 36.9 0 107 1.73 150 154 0.91 0.91
SW5e 60 600 545 2.10 3.01 0.47 500 0.31 400 31.8 0 113 0.95 150 154 0.96 0.94
SW6e 60 600 511 2.10 2.82 0.31 535 0.31 400 38.6 0 113 1.67 150 154 0.98 0.93
SW7e 60 600 545 2.10 3.01 0.47 500 0.39 545 32.0 0 127 1.77 170 154 1.05 1.19
SW8e 60 600 515 2.10 2.93 0.31 430 0.42 400 45.8 0 94.0 2.00k 180 154 0.92 1.04
SW9e 60 600 515 2.10 2.93 0.31 430 0.56 400 38.9 0 103 2.04 165 154 1.01 1.18
Wall2f 100 2,000 1,585 0.33 0.80 0.70 435 0.26 425 22.0 0 684 1.80 270 254 0.99 0.93
TW2g 152 1,219 1,071 2.00 2.84 0.61 477 0.61 443 48.6 0.0730 730 2.99 300 300 0.95 1.06
TW3g 152 1,219 1,064 1.50 1.31 0.33 472 0.33 516 48.8 0.0770 589 3.30 250 242 0.95 0.88
TW4g 152 1,219 1,057 1.50 2.54 0.73 476 0.73 443 55.8 0.0640 841 2.97 300 242 0.93 1.28
TW5g 152 1,219 1,064 1.50 2.46 0.61 476 0.61 443 57.5 0.0160 665 2.42 300 242 0.87 1.11
SW5h 203 3,050 2,290 0.33 1.00 1.00 462 1.00 462 29.7 0 3,230 1.37 350 353 1.39 0.74
SW6h 203 3,050 2,290 0.33 0.67 0.67 462 0.67 462 26.2 0 2,540 2.27 350 353 1.27 1.05
SW9h 203 3,050 2,290 0.54 1.50 1.50 462 0.67 462 29.7 0 2,820 1.18 460 370 1.12 0.91
SW10h 203 3,050 2,290 0.54 1.50 1.50 462 0.33 462 31.7 0 2,350 1.08 360 370 1.00 0.96
SW12i 70 750 573 1.10 2.68 2.45 470 1.10 520 47.9 0.100 340 l 140 123 1.18 —
SW15i 70 750 573 1.10 2.68 2.45 470 1.10 520 37.8 0.100 320 l 180 123 1.18 —
SW22i 65 650 499 2.12 2.86 2.51 470 0.82 520 44.9 0.100 150 l 220 167 1.03 —
SW26i 65 650 499 2.12 2.86 2.51 470 0.40 520 25.5 0 123 l 200 167 1.16 —
WR-0j 200 1,500 1,250 2.00 0.67 0.36 449 0.31 342 27.6 0.100 394 2.07 290 369 0.91 0.66
WR-10j 200 1,500 1,250 2.00 0.67 0.36 449 0.31 342 27.6 0.100 397 2.88 290 369 0.92 0.91
WR-200j 200 1,500 1,250 2.00 0.67 0.36 449 0.31 342 27.6 0.100 415 2.75 280 369 0.96 0.87
Average 1.03 0.99
COV 11.6% 16.4%

Note: Abbreviations TW2-TW5 correspond to the original names as follows: TW2 is RW-A20-P10-S63; TW3 is RW-A15-P10-S51; TW4 is RW-A15-P10-
S78; TW5 is RW-A15-P2.5-S64; δ0.8 = drift corresponding to a 20% drop of lateral resistance; l 0b1e = characteristic length of the CLZ, which results in the best
match between calculated and measured ultimate response; lb1e = characteristic length calculated from Eq. (12).
aBimschas (2010).
bHannewald et al. (2013).
cHirosawa (1975).
dMaier and Thürlimann (1985).
ePilakoutas and Elnashai (1995).
fWiradinata (1985).
gTran and Wallace (2012).
hLuna et al. (2015).
iLefas et al. (1990).
jOh et al. (2002).
kTest ended postpeak before the load dropped by 20%.
lTest ended approximately at peak load.

© ASCE 04016041-9 J. Struct. Eng.

 J. Struct. Eng., 04016041 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
co

le
 P

ol
yt

ec
hn

iq
ue

 F
ed

er
al

e 
on

 0
3/

22
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Fct. It can be seen that the transverse reinforcement is predicted
to yield at Δ of about 13 mm (component Vs) while flexural yield-
ing occurs at Δ of about 20 mm. Since the shear reinforcement is
predicted to yield first, this wall is in the range of applicability of
the 3PKT approach. The yielding of the flexural reinforcement is
predicted to coincide approximately with the beginning of crushing
in the critical loading zone (component VCLZ). As the shear carried
in the CLZ decreases, shear is redistributed to the aggregate
interlock mechanism Vci. This mechanism, however, is gradually
weakened by the widening of the critical diagonal crack. Eventu-
ally, the aggregate interlock breaks down and triggers the shear fail-
ure of the wall. The small drop of resistance atΔ of about 37 mm is
caused by the buckling of the compression reinforcement in the
CLZ (spring Fsc). Throughout the loading history, the rigid block
is predicted to remain in contact with the fan in the vicinity of the
CLZ, where this interaction is represented by the negative shear
component Vcf . It can also be seen that the dowel action Vd is pre-
dicted to have a negligible contribution to the response of specimen
VK3. The last point on the 3PKT curve corresponds to the displace-
ment at which the wall is predicted to lose its axial load-bearing
capacity.

As the three DOFs of the kinematic model are predicted
throughout the loading history, it is of interest to compare the pre-
dicted and measured deformed shapes of the wall at different dis-
placements Δ [Eqs. (1)–(4)]. Such a comparison at shear failure
(Δ ¼ 42 mm) is illustrated in Fig. 1(d). This figure also shows
the measured and predicted strains εt along the flexural reinforce-
ment. It can be seen that both the deformed shape and the reinforce-
ment strains are well captured by the 3PKT. Fig. 8 shows that
similarly good agreement is achieved also at smaller displacements
(Δ ¼ 13.8 mm and 21.0 mm). The deformed shape atΔ of 63 mm
in the same figure corresponds to the instance at which the wall is
predicted to lose its capacity to support the vertical load. This shape
is not compared to measured deformations since such were not
available; however, it can be seen that the vertical load is predicted
to drive the rigid block down as it has been observed in the test
(Bimschas 2010).

Characterization of the Length of CLZ

As mentioned earlier, Eq. (12) for the characteristic length of the
critical loading zone was derived based on comparisons with wall
tests. To collect as many tests as possible, existing databases and
experimental studies were searched in the literature. For instance,
the SERIES database containing 350 walls featuring different sec-
tion types and failure modes was used (Perus et al. 2013; SERIES
database 2013). The database was first filtered according to the
applicability criteria of the 3PKT, namely: (1) rectangular sections;
(2) single curvature bending; (3) N=bhf 0

c < 0.20; (4) a=h ≤ 3.0;
(5) a=b ≤ 25; (6) f 0

c ≤ 60 MPa; (7) no lap-splices in the base sec-
tion; and (8) no diagonal shear reinforcement. The load-displace-
ment response of each of the remaining 52 walls was computed
with the 3PKT approach, and the characteristic length of the
CLZ was varied until the best match was achieved between calcu-
lated and measured ultimate behavior. Since the kinematic model
applies only to shear-dominated walls, tests for which the 3PKT
predicted that the flexural reinforcement would yield before the
shear reinforcement were excluded from the comparisons. The
same procedure was also applied to two other databases (Lu et al.
2010; NEES database, Gulec and Whittaker 2009) and to more re-
cent tests from the literature (Luna et al. 2015). This resulted in a
total of 34 walls to which the model is applicable. Table 1 summa-
rizes the properties of the walls and lists the measured peak lateral

load Vmax and drift capacity δ0.8, where the latter is defined as the
drift at 20% loss of lateral resistance.

The ideal values of the characteristic lengths obtained from the
calibration of the model are shown in column l 0b1e of Table 1. These
lengths were plotted against different experimental variables, and a
clear correlation was found between l 0b1e and the length of the
diagonal of the walls. It can be seen from Fig. 9 that initially
l 0b1e increase almost linearly with

pða2 þ h2Þ, while for large walls
with

pða2 þ h2Þ > 3 m the trend becomes less than linear. Since
the available data for large walls are limited, the observed trend is
approximated with a straight line with a slope of 0.11 through the
origin of the plot, and an upper bound of 370 mm as shown with the
continuous line in the figure. The results from Eq. (12) for the walls
from the database are listed in column lb1e of Table 1. Even though
Eq. (12) approximates reasonably well the trend indicated by the
individual walls, it is recognized that further research is necessary
to better understand the factors governing the size of the CLZ.

Comparisons with Tests

The 3PKTapproach with the proposed expression for the character-
istic length of the CLZ was used to compute the complete load-
displacement response of the walls from the database. The results
for all 34 tests to which the model is applicable are shown in Fig. 10.
On the horizontal axis of the plots is the lateral drift δ ¼ Δ=a (%)
and on the vertical axis is the lateral load V (kN). The main proper-
ties of the walls are also summarized in the plots. Specimens
VK1-7 were tested up to axial load failure; therefore, the 3PKT
predictions correspond to the full prepeak and postpeak response
curves. For the other specimens, the analysis was stopped once it
reached a drop of lateral resistance comparable to that recorded in
the tests. The exceptions are walls SW8-9, TW2-5, SW22, and
WR0-WR20, which are predicted to fail due to crushing of the
compression zone or rupture of the reinforcement in the base sec-
tion. For these failure modes, the 3PKT does not predict the post-
peak response.

It can be seen from Fig. 10 that the 3PKT approach captured
reasonably well the response of most of the walls, except for walls
74, 82, 83, S9-10, TW5, SW5h, SW26, and WR-0. Significant
deviations in terms of stiffness, strength, and/or drift capacity
are observed for walls 82, 83, S9, TW5, SW5h, SW26, and
WR-0. Walls 82 and 83 are predicted to exhibit a sudden loss of
lateral resistance triggered by buckling of the compression
reinforcement. While this effect is modeled in a simple and
conservative manner in the 3PKT, a more complex model for

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

√ (a2 + h2), m

l b1
e, m

Eq.12 

lb1e’ 

Fig. 9. Characteristic length of the critical loading zone
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bar buckling may be necessary to improve the predictions. Speci-
men S9 had no stirrups and failed along a diagonal crack consistent
with the kinematic model. However, it is apparent from Fig. 10 that
Eq. (12) underestimates the size of the CLZ of this wall as the shear

strength of the wall is significantly underpredicted. Similarly
underestimated is the strength of test specimen SW5h, which also
exhibited a much lower stiffness than calculated with the 3PKT.
The authors of this test used code equations to predict the initial
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Fig. 10. Shear force (V, kN) versus lateral drift (δ ¼ Δ=a;%) response of walls; experimental results and 3PKT predictions
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stiffness, and they also concluded that the measured stiffness was
substantially lower than the predictions. Walls TW5 and SW26
were mostly controlled by flexure, and the 3PKT predictions show
that further research is necessary to extend the model to capture
both shear-dominated and flexure-dominated behavior. Wall
WR-0 had unconventional reinforcement consisting of two planes
of orthogonal bars without ties connecting the two planes. Speci-
mens WR-10 and WR-20 were identical to WR-0, but had conven-
tional confining reinforcement in the end zones of the section. It
can be seen from Fig. 10 that the 3PKT underestimated the drift
capacity of WR-0 but adequately captured the response of speci-
mens WR-10 and WR-20.

Accurate results were also obtained for the walls from the VK
series and most walls from the SWe, TW, and SWh series. For some
of the tests, the model predicted an almost bilinear behavior
(i.e., wall SW6) while the experiments showed a more gradual loss
of stiffness. This difference is explained with the fact that in the
model the flexural reinforcement As is lumped at its centroid; there-
fore, all bars are predicted to yield at the same time. In reality, the
reinforcement is distributed and yields gradually from the tension
edge of the section inwards. It is worth noting that the 3PKT ap-
proach adequately predicted the response of walls Wall2 and VK6,
where the former wall was very short with and a=h ratio of only
0.33, and the latter wall was at the limit of applicability of the 3PKT
with a=h of 3.0.

The experimental-to-predicted ratios for the peak load Vmax and
drift capacity δ0.8 of thewalls from the database are listed in Table 1.
The average ratio for the peak load is 1.03 with a coefficient of
variation (COV) of 11.6%, while the values for the drift capacity
are 0.99 and 16.4%. The Vmax;exp=Vmax;pred and δ0.8;max=δ0.8;pred
ratios are plotted in Fig. 11 as a function of the a=h ratio showing
almost no bias of the 3PKT predictions with respect to this ratio.
Similar observations were made when the experimental-to-
predicted ratios were plotted against the other experimental varia-
bles listed in Table 1. As these results are based on 34 tests, further
validation studies will be necessary as more experimental data
become available.

Conclusions

This paper presented a three-parameter kinematic theory (3PKT)
for predicting the force-deformation behavior of shear-dominated
RC walls, including the postpeak response and the loss of axial
load-bearing capacity. The 3PKT is based on a kinematic model
with three degrees of freedom (DOFs), which is an extension of
a two-parameter model for deep beams (Mihaylov et al. 2013). This
model describes the deformed shape of the member and links local

and global deformations, which is important for addressing perfor-
mance limits in the assessment of existing structures. The DOFs of
the kinematic model are predicted by combining the kinematic con-
ditions with equations for equilibrium and constitutive relation-
ships for the mechanisms of load resistance, which are modeled
as nonlinear springs. The 3PKT was applied to a test of a shear
critical wall and captured well its complete load-displacement re-
sponse, deformed shapes, and local deformations. Such an analysis
requires a straightforward input and takes only about 5–10 s to
complete on a typical computer. The 3PKT was also validated
by using a database of 34 walls with rectangular cross-sections
and aspect rations a=h varying between 0.33 and 3. It was shown
that the proposed approach captured well the response of approx-
imately 75% of the walls for which the model is applicable. The
experimental-to-predicted ratios for the peak load had an average
value of 1.03 with a COV of 11.6%, while the ratios for the drift
capacity had an average of 0.99 with a COVof 16.4%. Further re-
search is needed to extend the range of applicability of the 3PKT
and to better understand the factors influencing the size of the criti-
cal loading zone in walls.
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Notation

The following symbols are used in this paper:
As = one-half of total area of longitudinal reinforcement;
Av = area of transverse reinforcement resisting shear;
a = M=V—wall height subjected to shear;
ag = concrete maximum aggregate size;
b = width of wall cross-section;
c = depth of compression zone at base section;
d = effective depth of section;
d1 = distance from compressive edge of section to furthest

tension longitudinal bar;
db = diameter of main flexural reinforcement;
Fb = compression force at base of fan;

Fig. 11. Shear strength and drift capacity experimental-to-predicted ratios
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FCLZ = compression force in the concrete of CLZ;
Fcn;Fct = normal and tangential contact forces at the bottom

of critical diagonal crack;
Fci = aggregate interlock force;
Fd = dowel action force;
Fs = force in the stirrups;
Fsc = force in longitudinal reinforcement in CLZ;
Ft = force in longitudinal tension reinforcement As;
fb = stresses in compression zone in base section;
ft = stresses along longitudinal tension reinforcement;
f 0
c = concrete cylinder strength;

fc;CLZ = average compressive stress in CLZ;
fy = yield strength of longitudinal reinforcement;
fyv = yield strength of transverse reinforcement;
fu = strength of longitudinal reinforcement;
fuv = strength of transverse reinforcement;
fv = stress in transverse reinforcement;
h = depth of wall section;
jd = lever arm between Fb and Ft;max;
lb1e = characteristic length of CLZ;
lt = cracked length along longitudinal reinforcement;
lk = length of transition zone between fan and rigid

block;
l0 = portion of lk below the critical diagonal crack;
M = bending moment at the base of the wall;
N = axial load;
nb = number of bars corresponding to As;
ncr = number of major diagonal cracks;
scr = crack spacing in effective tension zone;
V = shear force and lateral load;

Vmax = peak shear force and peak lateral resistance;
vci = aggregate interlock shear stress;

w;Δci = crack width and crack slip;
α = angle of wall diagonal with respect to the vertical

axis;
α1 = angle of critical crack;
αΔ = angle of displacement at CLZ;
αF = angle of force FCLZ;
δ0.8 = lateral drift capacity;

δx; δz = x- and z-displacements of points from wall;
Δ = applied lateral displacement;
Δc = horizontal displacement at CLZ;
Δcx = vertical displacement at CLZ;
Δi = deformations of springs;
Δi0 = displacements of ends of springs attached to the fan

(offset displacements);
εb = strains across base section;

εCLZ = average strain in CLZ;
εt = strains along longitudinal tension reinforcement;

εt;minðmaxÞ = minimum (maximum) strain along longitudinal
tension reinforcement;

εt;avg = average strain along longitudinal tension
reinforcement;

εy = yield strain of longitudinal reinforcement;
εu = breaking strain of longitudinal reinforcement;
εuv = breaking strain of transverse reinforcement;
εv = strain in transverse reinforcement;
θ = rotation of rigid block;
θb = angle of force Fb with respect to the vertical

axis;
ρl = 2As=bh ratio of total longitudinal reinforcement;

ρl;web = ratio of longitudinal web reinforcement;
ρl1 = reinforcement ratio in effective tension zone; and
ρv = ratio of transverse reinforcement.
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