
Modeling, Regression and Optimization

Dr. Julien Billeter
Laboratoire d’Automatique

Ecole Polytechnique Fédérale de Lausanne (EPFL)
julien.billeter@epfl.ch

MLS-S03 | 2015-2016

MLS-S03 – Process Design and Optimization 2

Table of Contents

1. Dynamic and static models
i. Formulation
ii. Solution of dynamic models (integration methods)
iii. Solution of nonlinear static models (Newton’s method)

2. Regression problems
i. Formulation
ii. Solution of linear regression problems
iii. Solution of nonlinear regression problems

(gradient-based methods)

3. Optimization problems
i. Formulation
ii. Solution by the method ‘first discretize, then optimize’

MLS-S03 – Process Design and Optimization 3

A Survival Kit of Linear Algebra (Vocabulary)

• Scalars (written in italics)
dimension (1)

• Vectors (written in lowercase boldface)
dimension () = -dim array (column vector)

• Matrices (written in UPPERCASE BOLDFACE)
dimension () = array of rows and columns

MLS-S03 – Process Design and Optimization 4

A Survival Kit of Linear Algebra (Grammar)

• Scalar multiplication αܞ or αۻ
• Transposition ୘ܞ or ۻ୘
• Addition ܝ + ܞ or ۼ+ۻ
• Vector and matrix multiplication ܝ୘ܞ or ۻ	ۼ
• Inverse (existence of the identity) ۻ૚ିۻ = ૚ିۻ	ۻ = ۷
• Rank rank ۻ
• Null space (or kernel) ker	ۻ ۻ = ૙
• Rank-nullity theorem dim ۻ = rank ۻ + nullity ۻ

MLS-S03 – Process Design and Optimization 5

1. Dynamic and Static Models: Definitions

• Physical/chemical models are based on laws of conservation

• States variables: mass, concentration, temperature…

• Dynamic models use balance equations of differential nature
(continuity equation, mole balances, heat balances) to
describe the evolution of states over time

• Static models use physical laws (state equations) of algebraic
nature (equilibrium relationships, rate expressions) to
describe state variables at one particular time

• Combinations of dynamic and static models usually form
physical/chemical models

MLS-S03 – Process Design and Optimization 6

1.1. Formulation of Dynamic Models

• Balance equations

• Conservation of mass
Lavoisier (F-Chemist, 1743 - guillotined in 1794)

– Balance equations: mass, volume, numbers of moles,
concentrations, mole/mass/volume fractions…

• Conservation of energy
Joule (UK-Physicist, 1707-1783)

– Balance equations: energy, temperature

MLS-S03 – Process Design and Optimization 7

1.1. Formulation of Static Models (State Equations)

• Gas: Ideal gas law (+ other derived state equations)
Avogadro (I-Physicist, 1776-1856), Clapeyron (F-Physicist, 1779-1864)

– Pressure, temperature, volume, amount of substance
• Liquid: Raoult’s and Henry’s laws (+ other derived equations)

Raoult (F-Physicist, 1830-1901), Henry (UK-Physicist, 1774-1836)

– Pressure, mole fraction/concentration, (volume, density)
• Chemical reaction: Kinetic rate law, Arrhenius/Eyring Equation

Arrhenius (S-Chemist, 1859-1901), Trautz (D-Chemist, 1880-1960),
Lewis (UK-Chemist, 1885-1956), Evans (UK-Chemist, 1904-1952), Eyring (US-Chemist,
1901-1981), Polanyi (UK-Mathematician, 1891-1976)

– Reaction rate, equilibrium constants
• Spectroscopy: Beer’s law

Bouguer (F-Physicist, 1698-1758), Lambert (CH-Math., 1728-1777), Beer (D-Chemist, 1825-1863)

– Absorbance, absorptivities, concentration

MLS-S03 – Process Design and Optimization 8

1.1. Method for Formulating a Problem

• Structure the problem (draw a sketch!)

• Write the equations (process/plant model)

• Identify the model parameters

• Validate the model (possible model mismatch?)

MLS-S03 – Process Design and Optimization 9

1.1. Example of Formulation

• Let consider a dynamic open reactor (with inlets and
outlets) with the reaction scheme:

• Formulate a dynamic model describing the total
mass, as well as the numbers of moles and
concentrations of all species ()

• Formulate a generic expression of a dynamic model
valid for all types of reactors using matrix notation

MLS-S03 – Process Design and Optimization 10

1.1. Expressions for Isothermal Chemical Reactors

• Numbers of molesܖሶ ݐ = ୘ܸۼ ݐ ܚ ೇ(೟)(೟)ܖ + ۱௜௡ܙ௜௡ ݐ − ೜೚ೠ೟ ೟ೇ ೟ ܖ ݐ ܖ , 0 = ଴ܖ
• Concentrations܋ሶ ݐ ≈ ܚ୘ۼ (ݐ)܋ + ۱௜௡ܙ೔೙ ೟ೇ ೟ − ∑ ೜೔೙,೔ ೟೛೔సభೇ ೟ ܋ ݐ , ܋ * 0 = ሶ܋଴܋ ݐ = ሶܖ ௧௏ ௧ 	, with ܸ ݐ = ೘(೟)ഐ(܋(೟)) ܋ , 0 = ଴܋
• Total massሶ݉ ݐ = diag ௪ۻ ୘	ܖሶ ݐ , ݉ 0 = ݉଴
• Total volumeሶܸ ݐ = ଵఘ(௧) ∑ ௜௡,௜ݍ	௜௡,௜ߩ ௣௜ୀଵݐ − ௢௨௧ݍ ݐ − ഐሶ(ݐ)ܸ (೟)ഐ(೟) , ܸ 0 = ଴ܸ
• Heat of reactionݍ ݐ = ܸ ݐ (−Δܐ௥)୘	ܚ ܖ ೟ೇ ೟ , discounted from all other thermal effects q 0 = 0
* : if (A1) the density is constant and (A2) the density of the inlet flows equals the density of the mixture

MLS-S03 – Process Design and Optimization 11

1.1. Expressions for non-Isothermal Chemical Reactors

• Numbers of molesܖሶ ݐ = ୘ܸۼ ݐ ܚ ܖ ೟ೇ ೟ , (ݐ)ܶ + ۱௜௡ܙ௜௡ ݐ − ೜೚ೠ೟ ೟ೇ ೟ ܖ ݐ ܖ , 0 = ଴ܖ
• Concentrations܋ሶ ݐ = ሶܖ ௧௏ ௧ 	, with ܸ ݐ = ೘(೟)ഐ(܋ ೟ ,೅(೟)) ܋ , 0 = ଴܋
• Total volumeሶܸ ݐ = ଵఘ(௧) ∑ ௜௡,௜ݍ	௜௡,௜ߩ ௣௜ୀଵݐ − ௢௨௧ݍ ݐ − ഐሶ(ݐ)ܸ (೟,೅(೟))ഐ(೟) , ܸ 0 = ଴ܸ
• Heat of reactionݍ ݐ = ܸ ݐ (−Δܐ௥)୘	ܚ ܖ ೟ೇ ೟ , (ݐ)ܶ , discounted from other thermal effects q 0 = 0
• Temperatureሶܶ ݐ = ௤ሶ ௧௠ ௧ 	௖೛(௧) , discounted from all other thermal effects T 0 = ଴ܶ

MLS-S03 – Process Design and Optimization 12

1.1. Exercise of Formulation

• Let consider a fed-batch reactor filled with ܣ and ܩ, and fed
with ܤ, whose reaction scheme is:

• Formulate a dynamic model describing the state variables ܖ ݐ and ܋ ݐ of all species using their generic matrix
expressions.

• What is the relation between the Mw’s of all the species?
What is the minimal number of Mw’s you need to know all of
them?

MLS-S03 – Process Design and Optimization 13

1.2. Integration of Dynamic Models

ሶܠ ݐ ≔ ݐ݀݀ ܠ ݐ 	= ܎ ,ݐ ܠ ݐ
• Most nonlinear 1st order ODEs are not integrable analytically

and require to be integrated numerically݀݀ݐ ܠ ݐ ≈ ܠ ݐ + ℎ − ܠ ℎݐ ⇒ ܠ ݐ + ℎ = ܠ ݐ + ℎ	܎ ,ݐ ܠ ݐ
• Numerical integration methods are explicit if ܎ is evaluated at ݐ

or implicit if ܎ is evaluated at ݐ + ℎ
• Integration methods are adaptative if ℎ is adapted over time

to keep the integration error under a certain threshold

• Methods: Euler’s methods, Runge-Kutta’s methods (RK)

MLS-S03 – Process Design and Optimization 14

1.2. Euler’s methods of integration

• Explicit Euler’s method *ܠ ݐ + ℎ = ܠ ݐ + ℎ	܎ ,ݐ ܠ ݐ
Since ܎ ,ݐ ܠ ݐ is estimated at ݐ, given ܠ at time ݐ allows
integrating this equation forward

• Implicit Euler’s methodܠ ݐ + ℎ = ܠ ݐ + ℎ	܎ ݐ + ℎ, ܠ ݐ + ℎ
If ܠ ݐ + ℎ cannot be factorized on the lhs, a numerical method
(see Chap.1.3) is used to solve this equation at each time ݐ + ℎ.

* Euler (CH-Mathematician, 1707-1783)

MLS-S03 – Process Design and Optimization 15

1.2. Runge-Kutta’s (RK) methods of integration

• Runge-Kutta’s general scheme *ܠ ݐ + ℎ = ܠ ݐ + ℎ	෍ ܾ௜	ܓ௜௦௜ୀଵܓ௜ = ܎ ݐ + ܿ௜ℎ, ܠ ݐ + ℎ෍ ܽ௜,௝௦௝ୀଵ ௝ℎܓ	 the step size, ݏ the number of stages, ܊ the ݏ-dim vector of weighting factors ∑ ܾ௜௦௝ୀଵ = 1 ܋	, the ݏ-dim vector of nodes, ۯ an ݏ-dim matrix of coefficients with ∑ ܽ௜,௝௦௝ୀଵ = ܿ௜ ,
i.e. the sum of each ݅th row of ۯ equals ܿ௜.

* Runge (D-Math., 1856-1927), Kutta (D-Math., 1867-1944)

MLS-S03 – Process Design and Optimization 16

1.2. Explicit 4 stages RK (RK4)

ܠ ݐ + ℎ = ܠ ݐ + ℎ	෍ ܾ௜	ܓ௜௦௜ୀଵ , =௜ܓ						 ܎ ݐ + ܿ௜ℎ, ܠ ݐ + ℎ෍ ܽ௜,௝௦௝ୀଵ ௝ܓ	
• RK4 explicit integration scheme:

ۯ = 0 0 0 0ଵଶ 0 0 00 ଵଶ 0 00 0 1 0 , ܊ =
ଵ଺ଵଷଵଷଵ଺
, ܋ = 0ଵଶଵଶ1ܠ ݐ + ℎ = ܠ ݐ + ℎ ଵ଺ +ଵܓ	 ଵଷ +ଶܓ	 ଵଷ +ଷܓ	 ଵ଺	ܓସ

with ଵܓ = ܎ ,ݐ ܠ ଶܓݐ = ܎ ݐ + భమ	ℎ, ܠ ݐ + ℎ	భమ	ܓଵ ଷܓ, = ݐ)܎ + భమ	ℎ, ܠ ݐ + ℎ	భమ	ܓଶ)ܓସ = ܎ ݐ + ℎ, ܠ ݐ + ℎ	ܓଷ

MLS-S03 – Process Design and Optimization 17

1.2. Implicit 2 stages RK (RK2)

ܠ ݐ + ℎ = ܠ ݐ + ℎ	෍ ܾ௜	ܓ௜௦௜ୀଵ , ௜ܓ = ܎ ݐ + ܿ௜ℎ, ܠ ݐ + ℎ෍ ܽ௜,௝௦௝ୀଵ ௝ܓ	
• RK2 implicit integration scheme (trapezoidal rule):ۯ = 0 0ଵଶ ଵଶ , ܊ = ଵଶଵଶ , ܋ = ܠ01 ݐ + ℎ = ܠ ݐ + ℎ భమ +ଵܓ	 భమ	ܓଶ [1]

with ଵܓ = ܎ ,ݐ ܠ ݐ ଶܓ[2] = ݐ)܎ + ℎ, ܠ ݐ + ℎ	భమ	ܓଵ + ℎ	భమ	ܓଶ) [3]

Using [1] to substitute ℎ	భమ	ܓଶ by ܠ ݐ + ℎ − ܠ ݐ − ℎ	భమ	ܓଵ in [3] yieldsܓଶ = ݐ)܎ + ℎ, ܠ ݐ + ℎ	ଵଶ	ܓଵ + ܠ ݐ + ℎ − ܠ ݐ − ℎ	ଵଶ	ܓଵ) = ݐ)܎ + ℎ, ܠ ݐ + ℎ ܠ(ݐ + ℎ = ܠ ݐ + ଵଶ	ℎ ܎ ,ݐ ܠ ݐ + ݐ)܎ + ℎ, ܠ ݐ + ℎ)

MLS-S03 – Process Design and Optimization 18

1.2. Explicit Adaptative RK45

ସܠ ݐ + ℎ = ܠ ݐ + ℎ ଶହଶଵ଺ +ଵܓ	 ଵ	ସ଴଼ଶ	ହ଺ହ +ଶܓ	 ଶ	ଵଽ଻ସ	ଵ଴ସ −ଷܓ	 ଵହ	ܓସܠହ ݐ + ℎ = ܠ ݐ + ℎ ଵ଺ଵଷହ +ଵܓ	 ଺	଺ହ଺ଵଶ	଼ଶହ +ଷܓ	 ଶ଼	ହ଺ଵହ଺	ସଷ଴ −ସܓ	 ଽହ଴ +ହܓ	 ଶହହ	ܓ଺
with ௜ܓ = ܎ ,ݐ ܠ ݐ given by	܋ and	ۯ of	the	RK45	methodࢿ௅்ா,ସହ ≔ ହܠ ݐ + ℎ − ସܠ ݐ + ℎ ௅்ா,ସହ,௥௘௟ࢿ , ≔ ఱܠಽ೅ಶ,రఱࢿ ௧ା௛

RK45-Fehlberg* Method: LTE = Local Truncation Error
1. Compute ସܠ ௜ݐ + ℎ and ܠହ ௜ݐ + ℎ
2. Compute ௅்ா,ସହࢿ and ࢿ௅்ா,ସହ,௥௘௟

a) ௠௜௡ࢿ ≤ ௅்ா,ସହࢿ ≤ ௠௔௫ࢿ ⇒ step is acceptable, ܠ ௜ݐ + ℎ = ସܠ ௜ݐ + ℎ , ௜ݐ + ℎ → ௜ݐ
b) ௅்ா,ସହࢿ < ௠௜௡ࢿ ⇒ step is too small, return to point 1. with ℎ ≔ min 2ℎ, ℎ௠௔௫
c) ௅்ா,ସହࢿ > ௠௔௫ࢿ ⇒ step is too large, return to point 1. with ℎ ≔ mܽݔ భమℎ, ℎ௠௜௡

* Fehlberg (D-Mathematician, 1911-1990)

MLS-S03 – Process Design and Optimization 19

1.2. Common Integration Problems

• Problem: Discontinuities due to sudden events

Solution: Integration by regions or use an events function

• Problem: Rates of different magnitude at different times

Solution: Use a variable step-size ODE solver

• Problem: Rates of different magnitude at the same time
(stiff problem)

Solution: Use a stiff ODE solver (implicit method)

MLS-S03 – Process Design and Optimization 20

1.2. MATLAB ODE solvers

• Explicit adaptative (variable stepsize) ODE solvers:
– ode45 RK45-Felhberg method
– ode23 RK23 method

• Implicit adaptative stiff ODE solvers:
– ode15s BDF methods *
– ode23t Trapezoidal method

• MATLAB ode solver call:
– [tout,yout] = ode45(@odefun,tspan,y0,options,...)

• MATLAB ode options call:
– options = odeset('name1',value1,'name2',value2)

* Backward Differention Formula (BDF):ࣩ(1)	: ܠ ݐ + ℎ = ܠ ݐ + ℎ	܎ ݐ + ℎ, ܠ ݐ + ℎ (Implicit Euler’s method!)ࣩ(2)	: ܠ ݐ + 2ℎ = ସଷ	ܠ ݐ + ℎ + ଵଷ ܠ ݐ + ଶଷ ℎ	܎ ݐ + 2ℎ, ܠ ݐ + 2ℎ
BDFs are stable up to ࣩ(6) only!

MLS-S03 – Process Design and Optimization 21

1.2. Exercise about Numerical Integration

• Let consider a fed-batch reactor filled with ܣ (and solvent)
and fed with ܤ during the 1st phase of the reaction, whose
scheme isR1: ܣ	 + ܤ → ଵݎ				,ܥ ݐ ≔ ݇ଵ ஺ܿ ݐ ܿ஻ :R2ݐ ܣ	 + ܥ → ଶݎ				,ܦ (ݐ) ≔ ݇ଶ ஺ܿ(ݐ)ܿ஼(ݐ)

• Formulate the dynamic model describing the state variables ܖ ݐ and ܋ ݐ of all species (including the solvent)
using the generic matrix expressions

• Derive an expression for the volume assuming the additivity
of volumes

• Integrate by regions this dynamic model using MATLAB ode45

MLS-S03 – Process Design and Optimization 22

1.3. Solution of Static Models

findܠ ௧ ܎			 ܠ ݐ = ૙
• This problem consists in finding the root of

• This problem has an analytical solution if is explicit in

• For implicit , an iterative method is required to find

MLS-S03 – Process Design and Optimization 23

1.3. Bisection method (double false position)

Method:
1. Start by selecting two endpoints ܽ ≔ ௜,଴, bݔ ≔ ௜,ଵ, whichݔ

bracket the rootݔ௜,௞ାଵ ≔ ܽ + ܾ2 , ∀݇ = 1, 2, …
2. Adjust ܽ or ܾ based on the following test:

a) ݂ ܽ ݂ ௜,௞ାଵݔ < 0	(opposite	signs) ⇒ ܾ ≔ ௜,௞ାଵݔ
b) > 0	 same	signs ⇒ ܽ ≔ ௜,௞ାଵݔ
c) = 0 ⇒ ௜,௞ାଵݔ is the root of ݂

Drawback: Estimation error is halved at each iteration
Order of convergence: 1 (linear)

MLS-S03 – Process Design and Optimization 24

1.3. Unidimensional Secant Method

Method (1 300 BC!):
1. Start with two initial points ݔ௜,଴ and ݔ௜,ଵ (bracketing the root) and

construct a line (secant) through the points {ݔ௜,଴, {(௜,଴ݔ)݂ and {ݔ௜,ଵ, ௜ݕwhose equation is ,{(௜,ଵݔ)݂ = ݂ ௜,ଵݔ + ݂ᇱ ௜,ଵݔ ௜ݔ − ௜,ଵݔ with ݂ᇱ ௜,ଵݔ ≈ ೑ ೣ೔,భ ష೑ ೣ೔,బೣ೔,భషೣ೔,బ (backward)

2. Find the zero of the secant, ݕ௜ = 0 ⟹ ௜ݔ = ௜,ଵݔ − ೑(ೣ೔,భ)೑ᇲ ೣ೔,భ .

3. ௜ݔ → ,௜,ଵݔ} ௜,ଶ, construct a line (secant) throughݔ {(௜,ଵݔ)݂ and ݔ௜,ଶ, (௜,ଶݔ)݂ and find its zero... Hence, the recurrent relation:ݔ௜,௞ାଵ = ௜,௞ݔ − ௙ ௫೔,ೖ௙ᇲ ௫೔,ೖ 	, ∀݇ = 1, 2,… 	with ݂ᇱ ௜,௞ݔ ≈ ௙ ௫೔,ೖ ି௙ ௫೔,ೖషభ௫೔,ೖି௫೔,ೖషభ

MLS-S03 – Process Design and Optimization 25

1.3. Multi-dimensional Secant Method

Method:

௞ାଵ ௜,௞ ା ௜,௞ ௜,௞

with ௞ ܎ ೖܠ ܎ି ೖషభܠೖିܠೖషభܠ (backward)

• Order of convergence: ଵା ହଶ ≈ 1.618 (less than quadratic!)

• The secant method does not check if two successive
estimates ܠ௞ and ܠ௞ିଵ bracket the root (source of failure);
Solution: use a double false position approach to guarantee
the bracketing of the root

• Pseudo-inverse of the Jacobian ۸ is ۸ା = (۸୘ ۸)ି૚ ۸୘

MLS-S03 – Process Design and Optimization 26

1.3. Unidimensional Newton-Raphson method

Newton-Raphson* Method:
1. Start with one initial guess ݔ௜,଴ and construct the tangent using a

truncated Taylor expansion, whose equation isݕ௜ = ݂ ௜,଴ݔ + ݂ᇱ ௜,଴ݔ ௜ݔ − ௜,଴ݔ with ݂ᇱ ௜,଴ݔ ≈ ೑ ೣ೔,బశഃೣ೔,బ ష೑ ೣ೔,బഃೣ೔,బ
(finite differences or analytical)

2. Find the zero of the tangent, ݕ௜ = 0 ⟹ ௜ݔ = ௜,ଵݔ − ೑(ೣ೔,బ)೑ᇲ ೣ೔,బ .

3. ௜,ଶݔ → ௜,ଵ, construct the tangentݔ and find its zero...
Hence, the recurrent relation:ݔ௜,௞ାଵ = ௜,௞ݔ − ௙ ௫೔,ೖ௙ᇲ ௫೔,ೖ 	, ∀݇ = 0, 1,… 	with ݂ᇱ ௜,௞ݔ ≈ ௙ ௫೔,ೖାఋ௫೔,ೖ ି௙ ௫೔,ೖఋ௫೔,ೖ

* Newton (UK-Math./Phys., 1643-1727), Raphson (UK-Mathematician, 1710-1761)
௜,௞ݔߜ ⟶ 0

MLS-S03 – Process Design and Optimization 27

1.3. Multi-dimensional Newton-Raphson method

Method: ௞ାଵܠ = ௜,௞ܠ − ۸ା ௜,௞ܠ ܎	 ௜,௞ܠ 	, ∀݇ = 0, 1, 2, …
with ۸ ௞ܠ ≔ ܎ ೖܠೖା઼ܠ ܎ି ೖܠೖ઼ܠ (finite differences or analytical solution)

• Order of convergence: 2 (quadratic!)

• The Newton-Raphson method is sensitive to the initial guess…

• Quasi-Newton methods: the Jacobian ۸ is only calculated for
the initial guess (not even always!) and updated algebraically
over the iterations (e.g. BFGS * algorithm)

* Broyden (UK-Math., 1933-2011), Fletcher (UK-Math., born in 1939),
Goldfarb (US-Math., born in 1949), Shanno (US-Math., born in 1936)

MLS-S03 – Process Design and Optimization 28

1.3. MATLAB Root finders

• Unidimensional root finder:
– fzero combination of bisection, secant and newton-raphson

• Multidimensional root finder
– None except if formulated as an optimization problem minܠ 	 (ܠ)܎

• MATLAB fzero call:
– [x,fval]=fzero(@fun,x0,options,...)

• MATLAB optim options call:
– options = optimset('name1',value1,'name2',value2)

MLS-S03 – Process Design and Optimization 29

2. Regression Problems

• Regression problems
Mathematical problems in which modeled data are fitted to
measured data by estimating the parameters (parameter estimation)
of a postulated model (model identification).

• Dichotomy of nested problems
Origin/cause: The model is identified simultaneously as the
model parameters are estimated
Consequence: in case of no good fit, is it a problem of parameter
estimation or of model identification (wrong postulated model)?

• Least squares problems
These problems are part of the family of quadratic problems of the
general form: minܠ 	భమ	ܠ౐۶	ܠ	ା	܎౐ܠ
QP problems: quadratic problems with linear equality/inequality constraints

MLS-S03 – Process Design and Optimization 30

2. Notion of Convex Set and Convex Function

• Convex Set:

• Convex function:

Courtesy of B. Chachuat

Courtesy of B. Chachuat

MLS-S03 – Process Design and Optimization 31

2. Necessary Conditions of Optimality (NCO)

• 1st order NCO: If ܠ∗ is a local minimum of a function ߶: ࣝ ⟶ ℝ, thenસ߶(ܠ∗) = ۸୘ ∗ܠ = ૙ ⟺ is a stationary point ∗ܠ

• 2nd order NCO: If ܠ∗ is a local minimum of ߶: ࣝ ⟶ ℝ, thenસଶ߶(ܠ∗) = ۶ ∗ܠ ≽ ૙		(positive semidefinite) 	
Positive semidefinitness: ۶ܞ = ܞૃ ⇒ ۶− ૃ۷ = ૙ ⇒ ݌ ૃ = det ۶ − ૃ۷ = 0	and	all	λᇱs	(eigenvalues) ≥ 0

• 1st and 2nd order NCO form sufficient conditions of optimality (SCO)
if ߶ is a convex function defined on a convex set ࣝ.

gradient Jacobian

MLS-S03 – Process Design and Optimization 32

2. Exercise on NCO’s

• Let considerݕ = ݂ ݔ = ହݔ4 − ସݔ8 − ଷݔ5 + ଶݔ10 + ݔ + 5on	the	domain	ݔ ∈ ࣝ = [−1, 2]
• Find analytically the stationary points of y = (ݔ)݂ using

– 1st NCO: find	ݔ∗	s. t. ܬ	 = ௗ௙(௫)ௗ௫ = 0
• Qualify the stationary points (minima/maxima) using

– 2nd NCO: find	ݔ∗	s. t. ܪ	 = ௗమ௙ ௫ௗమ௫ ≥ 0	 minimumfind	ݔ∗	s. t. ܪ	 = ௗమ௙ ௫ௗమ௫ ≤ 0	 maximum
• Is there another way to qualify the stationary points ?

MLS-S03 – Process Design and Optimization 33

2.1. Concept of Output Function

• An output function translates the values of the internal states
(numbers of moles/concentrations, not always directly
measurable) into indirect measured quantities (outputs).

• Typical indirect measurements are

– Spectroscopic measurements
absorbance, reflectance/scattering data (isothermal cond.)

– Calorimetric measurements
as heat-flow data (isothermal conditions) or
as heat-flow or temperature data (non-isothermal cond.)

– Other indirect measurements
as HPLC, GC, conductometric data, refraction index data…

MLS-S03 – Process Design and Optimization 34

2.1. Absorbance Data (Beer’s law)

• “The absorbance of a solution is proportional to the product of
its concentration and the distance light travels through it”
Beer (D-Chemist, 1825-1863), Lambert (CH-Math., 1728-1777),
Bouguer (F-Physicist, 1698-1758).

܇ = ۯ	۱
with ܪ)܇ ×ܹ) the absorbance at ܪ times and ܮ wavelength/wavenumbers, ۱ ܪ × ܵ = ୘܋ ଴ݐ ୘܋		; ଵݐ ;		… (ுݐ)୘܋	; the concentrations, andۯ ܵ ×ܹ = ℓ ܉ ଵݓ ܉		 ଶݓ 	… ܉		 ௅ݓ the absorptivities/pure spectra

Unit conversion: Abs ≔ −logଵ଴ Trans , with	Trans ≔ ூூబ

=
܇ ۱ ۯ

MLS-S03 – Process Design and Optimization 35

2.1. Calorimetric Data

• Calorimetric signal* under isothermal or non-
isothermal conditions

௩ ௥
with ܪ)ܙ × 1) the heat flow at ܪ times (univariate data), ܀௩ ܪ × ܴ = ܸ ଴ݐ ୘ܚ	 ଴ݐ ;	…	; 	ܸ ுݐ (ுݐ)୘ܚ	 the reaction ratesΔܐ௥ ܴ × 1 the reaction enthalpies

* discounted from all other thermal effects

MLS-S03 – Process Design and Optimization 36

2.1. Formulation of Linear Regression Problems

• A systems of linear equations can be written in matrix

ቐ ܽଵ,ଵݔଵ + ⋯+ ܽଵ,௡ݔ௡ = ଵݔ⋮ܽ௠,ଵ															⋮									⋱										⋮				ଵݕ + ⋯+ ܽ௠,௡ݔ௡ = ௡ݕ 				⟹ ܠ	ۯ				 = ܡ
with ۯ ݉ × ݊ , and ܠ ݊ × 1 the regressors and ܡ ݉ × 1 the regressands

• The number of solutions of this linear system is: ∞ when ݉ < ݊ underdetermined system1 ݉ = ݊	 determined system∞ ݉ > ݊	 overdetermined system

MLS-S03 – Process Design and Optimization 37

2.1. Exercise of Formulation

• Formulate a matrix equation for the following
linear system:ݔଵ + ଶݔ + ଷݔ = 			3					 ଵݔ1 − ଶݔ − ଷݔ = −1					 ଵݔ2 − ଶݔ + ଷݔ = 			1					 ଵݔ3 + ଶݔ − ଷݔ = 			0					 4

• How many solutions for the system of Eqs. 1 – 2?
• " " " " " " of Eqs. 1 – 3?
• " " " " " " of Eqs. 1 – 4?

MLS-S03 – Process Design and Optimization 38

2.1. Formulation of Nonlinear Regression Problems

• A nonlinear regression problem consists in
– Minimizing an objective function ߶() (or cost function)
– Expressing ߶	as a difference between measured & modeled quantities
– Postulating a dynamic model ܎௫,ௗ() and (possibly) a static model ܎௫,௦()
– Using an output (signal) model ܎௬()
– Adjusting model parameters ી such that ߶ is minimalીଵ∗ ીଶ∗ = arg 	min	ીభ,ીమ 		߶ ෤ܡ ݐ , ܡ ,ݐ ીଵ, ીଶ Objective functions. t. ሶܠ ݐ = ௫,ௗ܎ ܠ ݐ , ીଵ Dynamic modelܠ ݐ = ௫,௦܎ ܠ ݐ , ીଵ Static modelܡ ,ݐ ીଵ, ીଶ = ௬܎ ܠ ,ݐ ીଵ , ીଶ Output model

with ીଵ nonlinear parameters and ીଶ linear parameters

• Nonlinear problems have to be solved iteratively!

MLS-S03 – Process Design and Optimization 39

2.1. Linear versus Nonlinear Parameters

• Let be a function depending on a vector of
parameters ଵ ௜ ௝ ௡ ୘.௜ is a nonlinear parameter if

௜ ௜
௝ is a linear parameter if

௝ ௝

MLS-S03 – Process Design and Optimization 40

2.1. Exercise of Formulation

• Formulate a regression problem in the least-squares sense
for a batch reactor with the following reaction:ܣ → ܤ ⇄ ܥ

with (ݐ)ݎ = ݇ ஺ܿ ݐ and ܭ = ೎಴(೟)೎ಳ(೟)
Hint: there are 2 dynamic eqs. and 2 static equations!

• The content of the reactior is measured by absorbance
spectroscopy at 800, 900 and 1000 cm-1, with all the species
absorbing at these wavenumbers.

• How many nonlinear parameters in this problem?

• How many linear parameters in this problem?

MLS-S03 – Process Design and Optimization 41

2.2. Generalized Inverse of a Matrix

The inverse or generalized inverse only exists if is FULL RANK

– If ݊ < ݉: Left pseudo-inverse, s.t. ۯାۯ = ۷௡ା ୘௡×௡ ିଵ ୘
– If ݉ < ݊: Right pseudo-inverse, s.t. ۯ	ۯା = ۷௠ା ୘ ୘௠×௠ ିଵ
– If ݉ = ݊: Inverse ۯା = ଵିۯ (݊ × ݊), s.t. ۯ	ିۯଵ = ۯଵିۯ	 = ۷௡

MLS-S03 – Process Design and Optimization 42

2.2. Univariate Solution of Linear Regression Problems

with ܡ	 ݉ × 1 	ۯ , ݉ × ݊ and ܠ	 ݊ × 1
• If ݊ < ܡ୘ۯ ,݉ = ܠ	ۯ୘ۯ (normal equation) and the least-

squares solution is ܠ = ܡାۯ , since ۯାۯ	ܠ = ۷௡	ܠ (left pseudo-inverse)

• If ݊ = ݉, the unique solution is ܠ = ܡଵିۯ , since ିۯଵۯ	ܠ = ۷௡	ܠ

MLS-S03 – Process Design and Optimization 43

2.2. Multivariate Solution of Linear Regression Problems

with 	܇ ݉ × ݌ 	ۯ , ݉ × ݊ and ۰	 ݊ × ݌
• If ݊ < ܇୘ۯ ,݉ = ܆	ۯ୘ۯ (normal equation) and the least-squares

solution is ۰ = ܇ାۯ , since ۯାۯ	۰ = ۷௡	۰ (left pseudo-inverse)

• If ݊ < ۰୘	܇ ,݌ = ۰୘	۰	ۯ (normal equation) and the least-squares
solution is ۯ = ۰ା	܇ , since ۯ	۰	۰ା = ۷௡	ۯ (right pseudo-inverse)

• If ݊ = ݉, the unique solution for ۰ is ۰ = ܇ଵିۯ ,
since ିۯଵۯ	۰ = ۷௡	۰

• if ݊ = ۯ the unique solution for ,݌ is ۯ = ۰ିଵ	܇ ,
since ۯ	۰	۰ା = ۷௡	ۯ

MLS-S03 – Process Design and Optimization 44

2.2. Example of left and right pseudo-inverse

Let consider Beer’s law: ு×ௐ ு×ௌ ௌ×ௐ
• Under which condition can ۱ be computed in the least-

squares sense and what is its solution?

• Under which condition can ۱ be computed uniquely and
what is its solution?

• Under which condition can ۯ be computed in the least-
squares sense and what is its solution?

• Under which condition can ۯ be computed uniquely and
what is its solution?

MLS-S03 – Process Design and Optimization 45

2.2. MATLAB inverse and pseudo-inverse

• Inverse (square matrix A)
– inv(A)
– (A)^-1

• Pseudo-inverse (non-square matrix B)
– pinv(B) Left or right pseudo-inverse depending on the dimensions
– inv(B'*B)*B' or B'*inv(B*B')

• Linear regression by left-pseudo inverse (between Y and B)
– pinv(B)*Y
– B\Y

• Linear regression by right-pseudo inverse (between Y and B)
– Y*pinv(B)
– Y/B

MLS-S03 – Process Design and Optimization 46

2.2. Exercise: Compute Univariate Absorptivities

• Consider the following absorbance measurements at 800 cm-1

and the corresponding concentrations:

• Compute the absorptivities at 800 cm-1 of ܥ ,ܤ ,ܣ and .ܦ
– Can you solve this problem with measurements #1 to #3?
– Estimate the absorptivities with measurements #1 to #4 and #1 to #5.

ܡ
[-]

஺܋
[mol/L]

஻܋
[mol/L]

஼܋
[mol/L]

஽܋
[mol/L]

1 2.5 1 1 1 1

2 2.2 1 1 1 0

3 1.5 1 1 0 0

4 0.8 1 0 0 1

5 1.6 1 0 1 1

MLS-S03 – Process Design and Optimization 47

2.2. Exercise: Compute Multivariate Absorptivities

• Consider the following absorbance measurements at different
wavenumbers and the corresponding concentrations:

• Compute the pure component spectra of ܥ ,ܤ ,ܣ and .ܦ
– Can you solve this problem with measurements at times 0 to 2?
– Estimate the pure spectra with measurements at times 0 to 3 and 0 to 4.

ݐ	 ୡ୫షభ	଴଴଼ܡ
[-]

ୡ୫షభ	ହ଴଼ܡ
[-]

ୡ୫షభ	ଽ଴଴ܡ
[-]

ୡ୫షభ	ଽହ଴ܡ
[-]

(ݐ)஺܋
[L/mol]

(ݐ)஻܋
[L/mol]

(ݐ)஼܋
[L/mol]

(ݐ)஽܋
[L/mol]

0 1.000 0.350 0.150 0.150 1.00 0.50 0.00 0.00

1 1.200 0.630 0.250 0.170 0.80 0.70 0.20 0.00

2 0.960 0.660 0.360 0.190 0.60 0.50 0.30 0.10

3 0.700 0.665 0.495 0.230 0.40 0.30 0.35 0.25

4 0.410 0.610 0.670 0.300 0.20 0.10 0.30 0.50

MLS-S03 – Process Design and Optimization 48

2.2. Exercise: Compute Concentrations from Multivariate Data

• Consider the following absorbance measurements at different
wavenumbers and the corresponding absorptivities:

• Compute the concentrations of ܥ ,ܤ ,ܣ and .ܦ
– Can you solve this problem with measurements #1 to #3 only?
– Estimate the concentrations with measurements #1 to #4 and #1 to #5.

cmିଵ ܡ
[-]

஺܉
[L/mol]

஻܉
[L/mol]

஼܉
[L/mol]

஽܉
[L/mol]

1 800 0.650 0.5 0.1 0.1 0.1

2 850 1.450 1.0 0.5 0.1 0.1

3 900 1.525 0.5 1.0 0.5 0.1

4 950 1.100 0.1 0.5 1.0 0.5

5 1000 0.700 0.1 0.1 0.5 1.0

MLS-S03 – Process Design and Optimization 49

2.2. Exercise: Compute Reaction Enthalpies from Univariate Data

• Consider the following heat flow measurements and the
corresponding rates of reaction:

• Compute the enthalpies of reaction.
– Can you solve this problem with only measurement #1 only?
– Estimate the concentrations with measurements #1 to #2 and #1 to #3.

• Why is it impossible to compute the rates of reaction from heat
flow measurements and the knowledge of enthalpies of reaction?

ܙ
[W]

௩,ଵܚ
[mol/s]

௩,ଶܚ
[mol/s]

1 19,000 0.9 0.1

2 18,000 0.8 0.2

3 17,000 0.6 0.4

MLS-S03 – Process Design and Optimization 50

2.2. Curve Fitting

• Consider the following
data points:

• Find the best curves
that approximatesଵ and ଶ

ܠ ૚ܡ ૛ܡ
0.0 2.0460 1.4616

0.1 2.0269 2.4021

0.2 2.1111 2.1336

0.3 2.1432 2.7800

0.4 2.2335 3.0366

0.5 2.2173 3.8411

0.6 2.3010 4.2199

0.7 2.3666 5.2970

0.8 2.4330 6.2218

0.9 2.4963 7.4636

1.0 2.5026 7.9418

MLS-S03 – Process Design and Optimization 51

2.3. Reminder: Nonlinear Regression (Chapt. 2.1)

Problem: ી
ી ୘

౐(ી)ܚ (ી)ܚ
ી ୘ ી

MLS-S03 – Process Design and Optimization 52

2.3. Reminder: Meaning of the Gradient (Analysis)

• The gradient સ߶ ܠ = ۸୘ ܠ of a multi-variable function ߶(ܠ)
indicates the tangent at point ܠ.

• The gradient સ߶(ܠ) is a vector that points towards the
direction of an increase of the function ߶.

• Hence, following the opposite direction of the gradient,
namely −સ߶(ܠ), allows pointing towards a direction of
decreasing ߶.

• This is the mathematical basis of the steepest descent

method for minimizing a function, with ۸(ી) ≔ డܚ(ી)డી ܚ, the residuals and ી the adjustable parameters.

MLS-S03 – Process Design and Optimization 53

2.3. Steepest (Gradient) Descent Method

Method:
• Recurrence relation for finding the minimum of ௞ାଵ ௞ ௞ ௞ ௞ ௞ ୘ ௞
• The Gradient (Jacobian) direction does not give an

indication about the length of the step to apply.

• To correct that, the stepsize is adapted using the
parameter ௞ which is computed according a
Line Search Method (e.g. Goldstein-Armijo’s method)
to maximize the stepsize, while minimizing .

MLS-S03 – Process Design and Optimization 54

2.3. Minimizing using the 1st NCO (Chapt. 2)

• 1st order NCO: If ી∗ is a local minimum of ߶, thenસ߶(ી∗) = ۸୘ ી∗ = ૙ ⟺ ી∗ is a stationary point

• The 1st order NCO gives a method to find a fixed (stationary) point
of ߶	as follows:

– Make a truncated Taylor development of the residuals asܚ ી௞ + ઢી௞ = ܚ ી௞ + ۸ ી௞ ઢી௞ + ࣩ 2 with ۸(ી௞) ≔ డܚ ીೖడીೖ
– Minimizing ܚ ી௞ + ઢી௞ implies the stepsize:ઢી௞ = −۸ ી௞ ାܚ ી௞

which is Newton-Raphson applied to the residuals! (cf. Chapt. 1.3.)

MLS-S03 – Process Design and Optimization 55

2.3. Newton-Gauss method

Method:
• Recurrence relation for finding the minimum of ௞ାଵ ௞ ௞ ௞ ௞ ା ௞
• The Newton-Gauss stepsize is known to be usually

too long and the decrease in the residuals is not
always guaranteed.

• To correct that, the stepsize is usually adapted using a
Line Search Method to work at the highest stepsize,
while minimizing the residuals.

MLS-S03 – Process Design and Optimization 56

2.3. Levenberg-Marquardt Modification

• The Levenberg-Marquardt* modification allows switching
between Newton-Gauss and the steepest descent method

• Recurrence relation for finding the minimum of ߶ી௞ାଵ = ી௞ + ઢી௞		with		ઢી௞ = − ۶ ી௞ + ௞۷ߣ 	۸ ી௞ ୘ܚ(ી௞)
with ۶ ી௞ ≈ ۸ ી௞ ୘۸ ી௞ according to Newton-Gauss• ௞ߣ ≥ 0 is the Marquardt parameterߣ௞ = 0		 ⇒	Newton-Gauss, ߣ௞ → ∞ ⇒	Steepest Descent (shorter stepsize)• ௞ߣ is adapted according to heuristic arguments to avoid

divergence due to a bad choice of the initial guesses.
* Levenberg (US-Math., 1919-1973), Marquardt (US-Math., 1929-1997)

MLS-S03 – Process Design and Optimization 57

2.3. NGLM Algorithm

MLS-S03 – Process Design and Optimization 58

2.3. Elimination of Linear Parameters

• Certain output models can be written as a product of a function ܎௬,ીభ depending only on nonlinear parameters ીଵ and the linear
parameters ીଶ as:܇ ીଵ, ીଶ = ௬܎ ܠ ,ݐ ીଵ , ીଶ ≔ ௬,ીభ܎ ܠ ,ݐ ીଵ 	ીଶ

• For these output models, the linear parameters ીଶ can be
eliminated by linear regression using the measurements asી෡ଶ = ௬,ીభ܎ ܠ ,ݐ ીଵ ା܇෩ 		⇒ ܇ ીଵ = ௬,ીభ܎ ܠ ,ݐ ીଵ ௬,ીభ܎	 ܠ ,ݐ ીଵ ା܇෩

• Hence, the linear parameters disappear of the regression problem:ીଵ∗		ીଶ∗ = arg 	min	ીభ,ીమ 		߶ ,෩܇ ܇ ીଵ, ીଶ 	⇒ીଵ∗ = arg 	min	ીభ	 		߶ ,෩܇ ܇ ીଵ with ી෡ଶ∗ = ௬,ીభ܎ ܠ ,ݐ ીଵ∗ ା܇෩

MLS-S03 – Process Design and Optimization 59

2.3. Examples of Elimination of Linear Parameters

• Spectroscopic Data܇ ી, ۯ = ௬܎ ܋ ,ݐ ી , ۯ ≔ ۱ ી ۯ	
Elimination: ۯ෡ = ۱ ી ା܇෩ 		⇒ ܇ ી = ۱ ી 	۱ ી ା܇෩ી∗ = arg 	min	ી 		∑ ∑ ෤௜,௝ݕ) − ௜,௝)ଶௐ௝ୀଵு௜ୀଵ(ી)ݕ

with ۯ෡∗ = ۱ ી∗ ା܇෩
• Calorimetric Dataܙ ી, Δ۶௥ = ௬݂ ௩ܚ ,ݐ ી , Δ۶௥ ≔ ௩܀ ી −Δ۶௥

Elimination: Δ۶෡௥ = ௩܀− ી ାܙ෥ 		⇒ ܙ ી = ௩܀ ી ௩܀	 ી ାܙ෥ી∗ = arg 	min	ી 		∑ ෤௜ݍ) − ௜)ଶு௜ୀଵ(ી)ݍ
with Δ۶෡௥∗ = ௩܀− ી∗ ାܙ෥

MLS-S03 – Process Design and Optimization 60

2.3. Statistical Information provided by Gradient Methods

• Degree of Freedom: number of redundant information in the data
during the minimization݂݀ ≔ dim(܇, 1) · dim(܇, 2) − (dim ીଵ + dim ીଶ)

• Residual variance: variance of the residuals comparable to the variance
of the measurementsߪ௥ଶ ≔ ௦௦௤(ી∗)ௗ௙ = ܚ ી∗ ౐ܚ(ી∗)ௗ௙

• Variance-covariance matrix: indicates the variance in the fitted
parameters and their covariance with the other parameters઱ી∗ ≔ ௥ଶߪ 	۶ ી∗ ିଵ≈ 	௥ଶߪ 	۸ ી∗ ୘۸(ી∗) ିଵ

• Correlation matrix: variance-covariance matrix normalized to 1યી∗ ≔ ܊∗઱ી	܊ with ܊ = Diag diag ઱ી∗ଵ/ଶ ିଵ

MLS-S03 – Process Design and Optimization 61

2.3. MATLAB Nonlinear Optimizers

• Optimization of one variable
– fminbnd Minimum on an interval

• Optimization of several variables
– fminunc Unconstrained minimization
– fmincon Constrained minimization (not detailed here, see Chapter 3)

• MATLAB fminbnd:
– [x,fval,exitflag] = fminbnd(fun,x1,x2,options,...)
– options = optimset('name1',value1,'name2',value2)

• MATLAB fminunc:
– [x,fval,exitflag] = fminunc(fun,x0,options,...)
– options = optimoptions(SolverName,'name1',value1)

MLS-S03 – Process Design and Optimization 62

2.3. Exercise on Uni/Multivariate Regression

• Consider the last exercise of Chapter 1.2.

• Simulated Reality: Simulate noisy spectroscopic and
calorimetric measurements based on the reaction scheme.

• Fit the ‘measured’ spectroscopic data in the least squares
sense by adjusting the two rate constants. Estimate their
respective uncertainties and correlations. Eliminate the
pure component spectra and estimate them at the end.

• Fit the ‘measured’ calorimetric data in the least squares
sense by adjusting the two rate constants. Estimate their
respective uncertainties and correlations. Eliminate the
enthalpies of reaction and estimate them at the end.

MLS-S03 – Process Design and Optimization 63

3. Optimization Problems (OP)

• Optimization problems
Mathematical problems in which the optimum (min or max) of an
objective/cost function is found by adjusting decision variables (d.v., ܝ).

• Requirements
Optimization relies on the knowledge of a mathematical model and
model parameters (e.g. identified/estimated by regression)

• Constrained vs Unconstrained optimization
Optimization problems can be constrained (equality and inequality
constraints) or unconstrained

• Dynamic vs Static optimization
Optimization problems can be dynamic (dynamic model and dynamic
d.v., (ݐ)ܝ) or static (static model and static d.v., ܝ).

MLS-S03 – Process Design and Optimization 64

3. Solution of Dynamic Optimization Problems

Two approaches exist to solve dynamic optimization problems:

• First optimize, then discretize (difficult) ⇒ (ݐ)ܝ
First optimize the function ݂ of the decision variables (d.v., ܝ) among an
infinite set of functions (called a functional) on the entire time interval,
then discretize the time to compute the optimal ܝ.

• First discretize, then optimize (more common) ⇒ (௜ݐ)ܝ
First discretize the time and define a set of decision variables per
interval (ܝ(ݐ௜)), then optimize the problem and find the optimal
decision variables on all the intervals.

• Discretization methods (for first discretize, then optimize)
Decision variables can be piecewise constant (1 d.v./interval),
piecewise linear (2 d.v./interval), piecewise polynomial (3 d.v./interval)...

MLS-S03 – Process Design and Optimization 65

3.1. Formulation of Dynamic Optimization Problems

• A dynamic optimization problem consists in
– Minimizing an objective function ߶() (or cost function)
– Knowing a dynamic model ܎௫,ௗ() and (possibly) a static model ܎௫,௦ 
– Using an output (signal) model ܎௬()
– Defining equality ܐ() and inequality ܏()	constraints (if constrained)
– Defining bounds on the decision variables: ିܝ and ܝା
– Adjusting the decision variables (ݐ)ܝ such that ߶ is minimal(ݐ)∗ܝ = arg 	min	ܝ(௧) 		߶ ܡ (ݐ)ܝ Objective functions. t. ሶܠ ݐ = ௫,ௗ܎ ܠ ݐ , ,(ݐ)ܝ ી Dynamic modelܠ ݐ = ௫,௦܎ ܠ ݐ , ,(ݐ)ܝ ી Static modelܡ (ݐ)ܝ = ܠ)௬܎ ,ݐ (ݐ)ܝ) Output modelܡ)܏ ,ݐ (ݐ)ܝ) ≤ ૙ Inequality constraintsܡ)ܐ ,ݐ (ݐ)ܝ) = ૙ Equality constraintsିܝ ≤ (ݐ)ܝ ≤ ାܝ Bounds on ܝ

MLS-S03 – Process Design and Optimization 66

3.1. Reformulation with First Discretize, then Optimize

• The continuous decision variables (ݐ)ܝ of the dynamic
optimization problem are discretized on ܪ time intervals
using a discretization method (e.g. piecewise constant).
This reformulation transforms the ݊௨ decision variables (ݐ)ܝ
continuous in time into ݊௨ · ܪ decisions variables ܝ ௜ݐ ,݅ = 1,… discrete ,ܪ, in time.ܝ∗ ଵݐ , … , ∗ܝ ுݐ = arg 	min	ܝ ௧భ ܝ,…, ௧ಹ ∑ ߶ ܡ ு௜ୀଵ(௜ݐ)ܝ ௜ିଵݐ ≤ ݐ ≤ .௜sݐ t. ሶܠ ݐ = ௫,ௗ܎ ܠ ݐ , ,(௜ݐ)ܝ ીܠ ݐ = ௫,௦܎ ܠ ݐ , ,(௜ݐ)ܝ ીܡ (௜ݐ)ܝ = ܠ)௬܎ ,ݐ (௜ݐ)ܝ ܡ)܏((௜ݐ)ܝ) ≤ ૙ܡ)ܐ (௜ݐ)ܝ) = ૙ିܝ ≤ (௜ݐ)ܝ ≤ ାܝ

MLS-S03 – Process Design and Optimization 67

3.1. Formulation of Static Optimization Problems

• A static optimization problem consists in
– Minimizing an objective function ߶() (or cost function)
– Knowing a dynamic model ܎௫,ௗ() and (possibly) a static model ܎௫,௦ 
– Using an output (signal) model ܎௬()
– Defining equality ܐ() and inequality ܏()	constraints (if constrained)
– Defining bounds on the decision variables: ିܝ and ܝା
– Adjusting the decision variables ܝ such that ߶ is minimalܝ∗ = arg 	min	ܝ 		߶ ܡ ܝ Objective functions. t. ሶܠ ݐ = ௫,ௗ܎ ܠ ݐ , ,ܝ ી Dynamic modelܠ ݐ = ௫,௦܎ ܠ ݐ , ,ܝ ી Static model(ܝ)ܡ = ܠ)௬܎ ,ݐ ܝ) Output model((ܝ)ܡ)܏ ≤ ૙ Inequality constraints((ܝ)ܡ)ܐ = ૙ Equality constraintsିܝ ≤ ܝ ≤ ାܝ Bounds on ܝ

MLS-S03 – Process Design and Optimization 68

3.1. Unconstrained Optimization Problems

• Unconstrained dynamic optimization problemsܝ∗ ଵݐ , … , ∗ܝ ுݐ = arg 	min	ܝ ௧భ ܝ,…, ௧ಹ ∑ ߶ ܡ ܝ ௜ு௜ୀଵݐ ௜ିଵݐ		 ≤ ݐ ≤ .௜sݐ t. ሶܠ ݐ = ௫,ௗ܎ ܠ ݐ , ,(௜ݐ)ܝ ીܠ ݐ = ௫,௦܎ ܠ ݐ , ,(௜ݐ)ܝ ીܡ (௜ݐ)ܝ = ܠ)௬܎ ,ݐ (௜ݐ)ܝ)
• Unconstrained static optimization problemsܝ∗ = arg 	min	ܝ 		߶ ܡ .sܝ t. ሶܠ ݐ = ௫,ௗ܎ ܠ ݐ , ,ܝ ીܠ ݐ = ௫,௦܎ ܠ ݐ , ,ܝ ી(ܝ)ܡ = ܠ)௬܎ ,ݐ ܝ)

MLS-S03 – Process Design and Optimization 69

3.1. NCO’s for Unconstrained Optimization Problems

The NCO’s defined in Chapter 2 remain valid for
unconstrained optimization problems

• 1st order NCO: If ܝ∗ is a local minimum of a function ߶: ࣝ ⟶ ℝ, thenસ߶(ܝ∗) = ۸୘ ∗ܝ = ૙ ⟺ is a stationary point	∗ܝ

• 2nd order NCO: If ܝ∗ is a local minimum of ߶: ࣝ ⟶ ℝ, thenસଶ߶(ܝ∗) = ۶ ∗ܝ ≽ ૙		(positive semidefinite) 	
• 1st and 2nd order NCO form sufficient conditions of optimality (SCO)

if ߶ is a convex function defined on a convex set ࣝ.

gradient Jacobian

MLS-S03 – Process Design and Optimization 70

3.1. Constrained Optimization Problems

• Lagrange function , a.k.a. Lagrangian
 Dynamic optimization problemsℒ ܝ ଵݐ , … , ܝ ுݐ ≔ ∑ ߶ ܡ ,ݐ ܝ ௜ு௜ୀଵݐ +∑ ૅ௜୘܏ ܡ ,ݐ ܝ ௜ு௜ୀଵݐ +∑ ૄ௜୘ܐ ܡ ,ݐ ܝ ௜ு௜ୀଵݐ +∑ ૃା,௜୘ ܝ ௜ݐ − ାܝ +ு௜ୀଵ∑ ૃି,௜୘ ିܝ − ܝ ௜ு௜ୀଵݐ , with ݐ௜ିଵ ≤ ݐ ≤ ௜ݐ
 Static optimization problemsℒ ܝ ≔ ߶ ܡ ܝ + ૅ୘܏ ܡ ܝ + ૄ୘ܐ ܡ ܝ + ૃା୘ ܝ − ାܝ + ૃ୘ି(ିܝ − (ܝ
 ૅ	 ૅ௜ , ૄ	 ૄ௜ and ૃା, ૃି ૃା,௜, ૃି,௜ are the Lagrange multipliers

MLS-S03 – Process Design and Optimization 71

3.1. Active vs Inactive Constraints

• Inequality constraints

 Active ௜܏ ܡ ∗ܝ =! ૙ , ݅ ∈ ࣛ ∗ܝ ⇒ 	 ૅ௜ >! ૙
These constraints play a role in the minimum of ℒ(·)

 Inactive ௝܏ ܡ ∗ܝ <! ૙ , ݆ ∉ ࣛ ∗ܝ ⇒ 	 ௝ૅ =! ૙
These constraints do not play any role in the minimum of ℒ(·)

• Equality constraints are always active

 Alway active ܐ (∗ܝ)ܡ =! ૙ ⇒ 	 ૄ >! ૙
These constraints always play a role in the minimum of ℒ(·)

• Finding the minimum of ℒ(·) consists in following all the active
inequality constraints ܏௜, ݅ ∈ ࣛ ∗ܝ ,	and equality constraints ܐ

MLS-S03 – Process Design and Optimization 72

3.1. Interpretation of the Lagrange Multipliers

• The Lagrange multipliers represent the sensitivity of the
objective function with respect to a change in the
constraints. They indicate how much the optimal cost
would change, if the constraints were perturbed.

• Obviously, the Lagrange multipliers of inactive
constraints are zero because any change in the value of
these constraints keep the optimal value unchanged.

• In economics, the Lagrange multipliers are viewed as the
marginal costs of the constraints, and are referred to as
the shadow prices.

MLS-S03 – Process Design and Optimization 73

3.1. NCO’s for Constrained Optimization Problems

KKT conditions*:
• 1st order KKT: If ܝ∗ is a local minimum of a function ℒ: ࣝ ⟶ ℝ, then܏ ∗ܝ ≤ ૙, ܐ ∗ܝ = ૙ and ିܝ ≤ ∗ܝ ≤ ାܝ Primal feasibilityܒ ≔ డℒ ܝడ∗ܝ = డథ ܝడ∗ܝ + ૅ୘ డ܏ ܝడ∗ܝ + ૄ୘ డܐ ܝడ∗ܝ + ૃା୘ − ૃ୘ି = ૙ Dual feasibilityߥ௜, ,௜ߤ ௜ߣ ≥ 0 Dual feasibility ૅ୘܏ ∗ܝ = 0, ૄ୘ܐ ∗ܝ = 0, ૃା୘ ܝ − ାܝ = ૃ୘ି(ିܝ − (ܝ = ૙ Complementary slackness

• 2nd order KKT: If ܝ∗ is a local minimum of ℒ: ࣝ ⟶ ℝ, thenસଶℒ(ܝ∗) = ۶ ∗ܝ ≽ ૙		(positive semidefinite) 	
• KKT conditions are sufficient conditions if ߶ and ܏ are convex,

and ܐ are affine functions, all defined on a convex set ࣝ.
∗ Karush (US-Math., 1917-1997), Kuhn (US-Math., 1925-2014), Tucker (US-Math., 1905-1995)

MLS-S03 – Process Design and Optimization 74

3.1. Alternative 1st NCO for Constrained Problems

1st NCO:• డℒ ܝడ∗ܝ = ૙• డℒ డૅ∗ܝ = ૙• డℒ డૄ∗ܝ = ૙ Solve for the unknowns ܝ, ૅ, ૄ, ૃା and ૃି• డℒ డૃశ∗ܝ = ૙ ܝ݊ + ܏݊ + ܐ݊ + ܝ2݊ eqs with as many unknowns• డℒ డૃష∗ܝ = ૙
+ all 1st order KKT conditions to rule out contradictory solutions

MLS-S03 – Process Design and Optimization 75

3.1. Constraint Qualification (CQ)

Not every (local) minimum is a KKT point
(there might be more minima than KKT points)

but…

• Applying a Constraint Qualification (CQ) ensures that all (local)
minima satisfy the KKT conditions.

• Linear Independence Constraint Qualification (LICQ)
a point ܝ∗	is said to be a regular point if the gradients of the active
constraints are independent (= full rank)

• If LICQ applies, the Lagrange Multipliers are unique

• KKT are sufficient conditions if the objective function and the
active constraints are convex functions (as mentioned earlier)

MLS-S03 – Process Design and Optimization 76

3.1. Example: Unconstrained Optimization

• Let consider ߶ ݔ = ଷݔ14 + ଶݔ34 − ݔ32 − 2on	the	domain	ݔ ∈ ࣝ = [−5, 3]
• Find analytically the stationary points of ߶(ݔ) using

– 1st NCO: find	ݔ∗	s. t. ܬ	 = ௗథ(௫)ௗ௫ = 0
• Qualify the stationary points (minima/maxima) using

– 2nd NCO: find	ݔ∗	s. t. ܪ	 = ௗమథ ௫ௗమ௫ ≥ 0	 minimumfind	ݔ∗	s. t. ܪ	 = ௗమథ ௫ௗమ௫ ≤ 0	 maximum

MLS-S03 – Process Design and Optimization 77

3.1. Example: Constrained Optimization

• Let consider min௫భ,௫మ 	߶ ,ଵݔ ଶݔ = ଵଶݔ + .ଶଶsݔ t.	 ℎ ,ଵݔ ଶݔ ଶݔ+ଵݔ	: = 1݃ ,ଵݔ ଶݔ ଶݔ	: ≤ ܽ
• Find analytically the unconstrained minimum of

• Find analytically the minimum of constrained by

• Find analytically the minimum of constrained by
and , and discuss the influence of on the solution

MLS-S03 – Process Design and Optimization 78

3.2. Solving Optimization Problems (OP)

Simple static optimization:
1. Solution of optimization problems with explicit equality

constraints

2. Graphical solution of linear optimization problems with a
limited number of decision variables (max 3) and a limited
number of explicit constraints

Dynamic optimization and more complex static problems
• Solution obtained numerically
 Penalty function (reformulation in an unconstrained problem, no use of KKT’s)
 Interior point methods (reformulation in an unconstrained problem, no KKT’s)
 Newton-like methods (Sequential Quadratic Programming, SQP) (use of KKT’s)

MLS-S03 – Process Design and Optimization 79

3.2. OP with Explicit Equality Constraints

• If the equality constraints are explicit and independent, ݊௛
decision variables ܝ௛ can be replaced by the expression of their
equality constraint in the objective function ߶.

• The optimization problem is then reduced to finding݊ௗ = ݊௨ − ݊௛ decision variables ܝௗ that minimize ߶.

Before: After:ܝ∗ = arg 	min	ܝ 		߶ ܡ ܝ ∗ௗܝ = arg 	min	ܝ೏ 		߶ ܡ .ௗsܝ t. ܠ = ௫,௦܎ ,ܠ ,ܝ ી s. t. ܠ = ௫,௦܎ ,ܠ ,ௗܝ ી(ܝ)ܡ = ܠ)௬܎ ܝ) (ௗܝ)ܡ = ܠ)௬܎ ௗܝ ((ܝ)ܡ)ܐ(= ૙ ௛ܝ = ିܝ((ௗܝ)ܡ)	ௗܐ ≤ ܝ ≤ ାܝ ௗିܝ ≤ ௗܝ ≤ ௗା݊௨ܝ decision variables ܝ ݊௨ − ݊௛ decision variables ܝௗ

MLS-S03 – Process Design and Optimization 80

3.2. Example: OP with Explicit Equality Constraints

• Let consider

௫భ,௫మ ଵ ଶ ଵଶ ଶଶଵ ଶ
• Find analytically the minimum of constrained by

using to eliminate ଶ from .

• Let consider

௫భ,௫మ,,௫య ଵ ଶ ଵଶ ଶଶ ଷଶଵ ଶ
• Find analytically the minimum of constrained by

using the elimination of ଶ by .

MLS-S03 – Process Design and Optimization 81

3.2. Graphical Solution of Linear OP + Example

For linear optimization problems, the minimum
always lie in one of the vertices (corners) of the

feasible region.
Example: A manufacturer has to produce pants (ݔ) and jackets
(y). For materials, the manufacturer has 750 m2 of cotton and
1 000 m2 of polyester. Every pair of pants (1 unit) needs 1 m2 of
cotton and 2 m2 of polyester. Every jacket needs 1.5 m2 of
cotton and 1 m2 of polyester. The price of the pants is fixed at
50 $ and the jacket at 40 $. Note that, for obvious reasons, the
manufacturer must produce ݔ) > 0 and y > 0).

What is the number of pants and jackets that the manufacturer
must produce to obtain a maximum profit?

MLS-S03 – Process Design and Optimization 82

3.2. Penalty Function (shown for Static OP)

Original Constrained Optimization Problem:ܝ∗ = arg 	min	ܝ 		߶ ܡ .sܝ t ((ܝ)ܡ)܏ ≤ ૙((ܝ)ܡ)ܐ = ૙ିܝ ≤ ܝ ≤ ାܝ
Reformulated Unconstrained Optimization Problem:ܝ∗ = arg 	min	ܝ 		߶ ܡ ܝ + ߙ	ߤ ܡ ܝ
with the auxiliary function:ߙ ܡ ܝ 	≔ ∑ max 0, ݃௜((ܝ)ܡ) ଶ௡೒௜ୀଵ + ∑ ℎ௝((ܝ)ܡ) ଶ௡೓௝ୀଵ
more generally: ߙ ܡ ܝ 	≔ ∑ max 0, ݃௜((ܝ)ܡ) ௣௡೒௜ୀଵ + ∑ ℎ௝((ܝ)ܡ) ௣௡೓௝ୀଵ

MLS-S03 – Process Design and Optimization 83

3.2. Example: Penalty Function

• Let consider the problem of minimizing
, subject to .

• The obvious solution to this problem is ∗
with ∗ .

• Show that the solution of the Penalty problem
can be made arbitrarily close to the solution
of the original problem, by choosing the value
of the penalty parameter sufficiently large.

MLS-S03 – Process Design and Optimization 84

3.2. A Simple Algorithm for Penalty Function

• Define
• Choose an initial guess ଴
• Initialize ଴
• Define (increasing effect of the penalty)
• Set , then

1. Solve ௞ାଵ ܝ ௞
2. If ௞ ௞ାଵ , stop;

otherwise ௞ାଵ ௞, and
go back to Step 1.

MLS-S03 – Process Design and Optimization 85

3.2. Interior Point Methods (shown for Static OP)

Original Constrained Optimization Problem:ܝ∗ = arg 	min	ܝ 		߶ ܡ .sܝ t ((ܝ)ܡ)܏ ≤ ૙
Reformulated Unconstrained Optimization Problem:ܝ∗ = arg 	min	ܝ 		߶ ܡ ܝ + ܾ	ߤ ܡ ܝ
with the auxiliary function: ܾ ܡ ܝ 	≔ −∑ ଵ௚೔((ܝ)ܡ)௡೒௜ୀଵ
or as an alternative: ܾ ܡ ܝ 	≔ −∑ ln −݃௜ ܡ ௡೒௜ୀଵܝ
The auxiliary function represents a barrier function that enforces
staying within the feasible region, namely, ܏ ܡ ܝ < ૙

MLS-S03 – Process Design and Optimization 86

3.2. Example: Interior Point Methods

• Let consider the problem of minimizing
, subject to .

• The obvious solution to this problem is ∗
with ∗ .

• Show that the solution of the Barrier Function
can be made arbitrarily close to the solution
of the original problem, by choosing the value
of the barrier parameter sufficiently close to 0.

MLS-S03 – Process Design and Optimization 87

3.2. A Simple Algorithm for Interior Point Method

• Define
• Choose an initial guess ଴

in the feasible region ଴
• Initialize ଴
• Define (reducing effect of the barrier)
• Set , then

1. Solve ௞ାଵ ܝ ௞
2. If ௞ ௞ାଵ , stop;

otherwise ௞ାଵ ௞, and
go back to Step 1.

MLS-S03 – Process Design and Optimization 88

3.2. Lagrange Multipliers vs Penalty/Barrier Parameters

Penalty Function:

௜ డడܝ ௜ ଶ
Interior Point Method (Barrier Function):

௜ డడܝ ଵ௚೔((ܝ)ܡ)
Example:

Compute the Lagrange multiplier as a function of for
the previous example, both for the Penalty Function
and for the Barrier Function…

MLS-S03 – Process Design and Optimization 89

3.2. Sequential Quadratic Programming (SQP)

• An SQP is a Newton-like or Quasi-Newton Method that
uses the KKT conditions to minimize a quadratic
approximation of the Lagrange function subject to a
linear approximation of the constraints.

• Only the active inequality constraints (set) are of
interest since the inactive inequality constraints have no
influence on the objective function.

• For the sake of conciseness, the upper and lower
bounds are assumed to be treated as additional
inequality constraints: ି and ା

• For the sake of conciseness, (ܝ)ܡ will just be written as ܝ

MLS-S03 – Process Design and Optimization 90

3.2. SQP – Lagrange Function and KKT Conditions

The Lagrange Function is defined as:∗ ∗ࣛ ∗ ∗ ∗ࣛ,୘ ऋ ∗,୘
The KKT conditions imply:డడܝ ∗ ∗ࣛ ∗ డథ ܝడ∗ܝ డ܏ऋ ܝడ∗ܝ ∗ࣛ డܐ ܝడ∗ܝ ∗ ! ௡ೠడడૅࣛ ∗ ∗ࣛ ∗ ऋ ∗ ! ௡ࣛడడૄ ∗ ∗ࣛ ∗ ∗ ! ௡ഋ
This describes a system of ௨ ࣛ ఓ equations with as
many unknown ∗ ∗ࣛ ∗ .

MLS-S03 – Process Design and Optimization 91

3.2. SQP – Approximate the KKT Conditions

Quadratic approx. of , linear approx. of ऋ and :

• డడܝ ℒ ,∗ܝ ૅ∗ࣛ , ૄ∗ =! ૙௡ೠ ≈ డℒ ܝೖ,ૅࣛ,ೖ,ૄೖడܝ + డమℒ మܝೖ,ૅࣛ,ೖ,ૄೖడܝ ௞ାଵܝ − +௞ܝ డ܏ऋ ܝೖడܝ ૅࣛ,௞ାଵ − ૅࣛ,௞ + డܐ ܝೖడܝ ૄ௞ାଵ − ૄ௞• డడૅࣛ ℒ ,∗ܝ ૅ∗ࣛ , ૄ∗ =! ૙௡ࣛ ≈ ऋ܏ ௞ܝ + డ܏ऋ ܝೖడܝ ௞ାଵܝ − •௞ܝ డడૄ ℒ ,∗ܝ ૅ∗ࣛ , ૄ∗ =! ૙௡ഋ ≈ ܐ ௞ܝ + డܐ ܝೖడܝ ௞ାଵܝ − ௞ܝ

MLS-S03 – Process Design and Optimization 92

3.2. SQP – Define the Shift Vectors

Quadratic approx. of , linear approx. of ऋ and :߲ℒ ,௞ܝ ૅࣛ,௞, ૄ௞߲ܝ + ߲ଶℒ ,௞ܝ ૅࣛ,௞, ૄ௞߲ܝଶ ઢܝ௞ + ऋ܏߲ ܝ௞߲ܝ ઢૅࣛ,௞ + ܐ߲ ܝ௞߲ܝ ઢૄ௞ = ૙௡ೠ܏ऋ ௞ܝ + ऋ܏߲ ܝ௞߲ܝ ઢܝ௞ = ૙௡ࣛ																																																																																																	ܐ ௞ܝ + ܐ߲ ܝ௞߲ܝ ઢܝ௞ = ૙௡ഋ																																																																																																							
with ઢܝ௞ ≔ ௞ାଵܝ − ௞ܝ , ઢૅࣛ,௞ ≔ ૅࣛ,௞ାଵ − ૅࣛ,௞ ,ઢૄ௞ ≔ ૄ௞ାଵ − ૄ௞
Writing this system in matrix notation and passing the first

term of each equation on the rhs yields…

MLS-S03 – Process Design and Optimization 93

߲ଶℒ ,௞ܝ ૅࣛ,௞, ૄ௞߲ܝଶ ऋ܏߲ ௞ܝ ୘߲ܝ ܐ߲ ௞ܝ ୘߲܏߲ܝऋ ܝ௞߲ܝ ૙௡ࣛ×௡ࣛ ૙௡ࣛ×௡ഋ߲ܐ ܝ௞߲ܝ ૙௡ഋ×௡ࣛ ૙௡ഋ×௡ഋ
ઢܝ௞ઢૅࣛ,௞ઢૄ௞ = − ߲ℒ ,௞ܝ ૅࣛ,௞, ૄ௞߲܏ܝऋ ܐ௞ܝ ௞ܝ

Or using Hessian and Jacobian notation:۶ℒ ,௞ܝ ૅࣛ,௞, ૄ௞ ऋ܏۸ ௞ܝ ୘ ܐ۸ ௞ܝ ୘۸܏ऋ ௞ܝ ૙ ૙۸ܐ ௞ܝ ૙ ૙ऒ	(௡ೠା௡ࣛା௡ഋ×௡ೠା௡ࣛା௡ഋ)
ઢܝ௞ઢૅࣛ,௞ઢૄ௞ = − ۸ℒ ,௞ܝ ૅࣛ,௞, ૄ௞ ୘܏ऋ ܐ௞ܝ ௞ܝ

 Inverting matrix ऒ allows computing the shift vector…

3.2. SQP – Rewrite in Matrix Notation

MLS-S03 – Process Design and Optimization 94

• The shift vector can be calculated as:ઢܝ௞ઢૅࣛ,௞ઢૄ௞ = −ऒିଵ ۸ℒ ,௞ܝ ૅࣛ,௞, ૄ௞ ୘܏ऋ ܐ௞ܝ ௞ܝ
with

௞ାଵૅࣛ,௞ାଵૄ௞ାଵܝ = ௞ૅࣛ,௞ૄ௞ܝ + ઢܝ௞ઢૅࣛ,௞ઢૄ௞ (applying the shift vector)

and ऒ≔ ۶ℒ ,௞ܝ ૅࣛ,௞, ૄ௞ ऋ܏۸ ௞ܝ ୘ ܐ۸ ௞ܝ ୘۸܏ऋ ௞ܝ ૙ ૙۸ܐ ௞ܝ ૙ ૙
• In practice, a line search is required to reduce the length

of the shift vector (similarly to NG-method in Chapter 2.3.)
• How to efficiently compute ℒ and henceऒ? (BFGS method)

3.2. SQP – Compute the Shift Vectors (Newton’s step)

MLS-S03 – Process Design and Optimization 95

3.2. Hessian Estimation by BFGS

• The Hessian is usually time consuming to compute
via finite differences. That is why, the Hessian is
estimated using an algebraic expression based on a
line search and the knowledge of the Jacobian.

• The most commonly used method to estimate a
Hessian matrix is the BFGS* method:௞ାଵ ௞ ஻ிீௌ ௞ାଵ ௞ ௞ ௞ with ଴

so that ௞ାଵ ௞ାଵ
* Broyden (UK-Math., 1933-2011), Fletcher (UK-Math., born in 1939),

Goldfarb (US-Math, born in 1949), Shanno (US-Math., born in 1936)

MLS-S03 – Process Design and Optimization 96

3.2. MATLAB Nonlinear Optimizers for one variable

• Optimization of one variable
– fminbnd Minimum on an interval

• MATLAB fminbnd:
– [x,fval,exitflag] = fminbnd(fun,x1,x2,options,...)

• MATLAB optimset:
– options = optimset('name1',value1,'name2',value2)

MLS-S03 – Process Design and Optimization 97

3.2. MATLAB Nonlinear Optimizers for multiple variables

• Optimization of multiple variables
– fminunc Unconstrained minimization (see description in Chapter 2.3)
– fmincon Constrained minimization
– quadprog Constrained QP minimization

• MATLAB fmincon: ۯ	ܠ ≤ ܠ	௘௤ۯ ,܊ = ܊ܔ ,௘௤܊ ≤ ܠ ≤ ܊ܝ
– [x,fval,exitflag,output,lambda,J,H] =
fminunc(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,...)

• MATLAB quadprog: minܠ 		߶ ܠ = ଵଶܠ୘۶	ܠ + ܠ୘܎
– [x,fval,exitflag,output,lambda] =
quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options,...)

• MATLAB optimoptions:
– options = optimoptions(SolverName,'name1',value1)

MLS-S03 – Process Design and Optimization 98

3.2. Exercise: Static Optimization

• Consider the last exercise of Chapter 1.2.

• Dynamic model: Assume that the dynamic model is known from the
last exercise of Chapter 2.3.

• Find the optimal flowrate1 of species B in the 1st phase of reaction
so that the profit at the end of the batch is maximum2.

• Find the optimal flowrate1 of species B in the 1st phase of reaction
so that the profit at the end of the batch is maximum2 and
the concentration of side product C at the end is ≤ 0.6 mol/L.

• Verify with a response surface that the profit is maximum.

1. Physical limits: ݍ௜௡,஺ ∈ 0,10 L/ut;
2. Prices: A: -10, B: -20, C: 0, D: 50, Solvent: 0 (USD per mol/L)

MLS-S03 – Process Design and Optimization 99

3.2. Exercise: Dynamic Optimization

• Consider the last exercise of Chapter 1.2.

• Dynamic model: Assume that the dynamic model is known from the last
exercise of Chapter 2.3.

• Find the optimal flowrate profile1 of species B all along the reaction
so that the profit at the end of the batch is maximum2.

• Find the optimal flowrate profile1 of species B all along the reaction
so that the profit at the end of the batch is maximum2 and
the concentration of side product C at the end is less or equal to 0.6 mol/L.

• Find the optimal flowrate profile of species B all along the reaction
so that the profit at the end of the batch is maximum2 and
the concentrations of dosed B and side product C all along the reaction
are ≤ 0.2 and ≤ 0.6 mol/L, respectively.

1. Physical limits: ݍ௜௡,஺ ∈ 0,10 L/ut;
2. Prices: A: -10, B: -20, C: 0, D: 50, Solvent: 0 (USD per mol/L)

	Title and Table of Contents
	Linear Algebra Survival Kit
	Chapter 1 - Presentation
	Chapter 1
	Chapter 1.1
	Chapter 1.2
	Chapter 1.3

	Chapter 2 - Presentation
	Chapter 2
	Chapter 2.1
	Chapter 2.2
	Chapter 2.3

	Chapter 3 - Presentation
	Chapter 3
	Chapter 3.1
	Chapter 3.2

