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A Survival Kit of Linear Algebra (Vocabulary)

• Scalars (written in italics)
dimension (1 )

• Vectors (written in lowercase boldface)
dimension ( ) = -dim array (column vector)

• Matrices (written in UPPERCASE BOLDFACE)
dimension ( ) = array of rows and columns
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A Survival Kit of Linear Algebra (Grammar)

• Scalar multiplication α or α
• Transposition or 

• Addition + or +
• Vector and matrix multiplication or 	
• Inverse (existence of the identity) = 	 =
• Rank rank
• Null space (or kernel) 	ker =
• Rank-nullity theorem dim = rank + nullity
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1. Dynamic and Static Models: Definitions

• Physical/chemical models are based on laws of conservation

• States variables: mass, concentration, temperature… 

• Dynamic models use balance equations of differential nature 
(continuity equation, mole balances, heat balances) to 
describe the evolution of states over time

• Static models use physical laws (state equations) of algebraic 
nature (equilibrium relationships, rate expressions) to 
describe state variables at one particular time

• Combinations of dynamic and static models usually form 
physical/chemical models
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1.1. Formulation of Dynamic Models

• Balance equations

• Conservation of mass
Lavoisier (F-Chemist, 1743 - guillotined in 1794)

– Balance equations: mass, volume, numbers of moles, 
concentrations, mole/mass/volume fractions…

• Conservation of energy
Joule (UK-Physicist, 1707-1783)

– Balance equations: energy, temperature
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1.1. Formulation of Static Models (State Equations)

• Gas: Ideal gas law (+ other derived state equations)
Avogadro (I-Physicist, 1776-1856), Clapeyron (F-Physicist, 1779-1864)

– Pressure, temperature, volume, amount of substance
• Liquid: Raoult’s and Henry’s laws (+ other derived equations)

Raoult (F-Physicist, 1830-1901), Henry (UK-Physicist, 1774-1836)

– Pressure, mole fraction/concentration, (volume, density)
• Chemical reaction: Kinetic rate law, Arrhenius/Eyring Equation

Arrhenius (S-Chemist, 1859-1901), Trautz (D-Chemist, 1880-1960), 
Lewis (UK-Chemist, 1885-1956), Evans (UK-Chemist, 1904-1952), Eyring (US-Chemist, 
1901-1981), Polanyi (UK-Mathematician, 1891-1976)

– Reaction rate, equilibrium constants
• Spectroscopy: Beer’s law

Bouguer (F-Physicist, 1698-1758), Lambert (CH-Math., 1728-1777), Beer (D-Chemist, 1825-1863)

– Absorbance, absorptivities, concentration
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1.1. Method for Formulating a Problem

• Structure the problem (draw a sketch!)

• Write the equations (process/plant model)

• Identify the model parameters

• Validate the model (possible model mismatch?)
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1.1. Example of Formulation

• Let consider a dynamic open reactor (with inlets and 
outlets) with the reaction scheme:

• Formulate a dynamic model describing the total 
mass, as well as the numbers of moles and 
concentrations of all species ( )

• Formulate a generic expression of a dynamic model 
valid for all types of reactors using matrix notation
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1.1. Expressions for Isothermal Chemical Reactors

• Numbers of moles= ( )( ) + − ,  0 =
• Concentrations≈ ( ) + − ∑ , , *       0 == 	,   with  = ( )( ( )) ,                           0 =
• Total mass= diag 	 , 0 =
• Total volume= ( )∑ , 	 , − − ( ) ( )( ) , 0 =
• Heat of reaction= (−Δ ) 	 ,    discounted from all other thermal effects q 0 = 0
* : if (A1) the density is constant and (A2) the density of the inlet flows equals the density of the mixture
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1.1. Expressions for non-Isothermal Chemical Reactors

• Numbers of moles= , ( ) + − ,  0 =
• Concentrations= 	,   with  = ( )( , ( )) ,                           0 =
• Total volume= ( )∑ , 	 , − − ( ) ( , ( ))( ) , 0 =
• Heat of reaction= (−Δ ) 	 , ( ) , discounted from other thermal effects q 0 = 0
• Temperature= 	 ( ) ,      discounted from all other thermal effects T 0 =
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1.1. Exercise of Formulation

• Let consider a fed-batch reactor filled with and , and fed 
with , whose reaction scheme is:

• Formulate a dynamic model describing the state variables 
and of all species using their generic matrix 

expressions.

• What is the relation between the Mw’s of all the species?
What is the minimal number of Mw’s you need to know all of 
them?



MLS-S03 – Process Design and Optimization 13

1.2. Integration of Dynamic Models 

≔ 	= ,
• Most nonlinear 1st order ODEs are not integrable analytically 

and require to be integrated numerically≈ + ℎ −ℎ ⇒ + ℎ = + ℎ	 ,
• Numerical integration methods are explicit if is evaluated at 

or implicit if is evaluated at + ℎ
• Integration methods are adaptative if ℎ is adapted over time 

to keep the integration error under a certain threshold 

• Methods: Euler’s methods, Runge-Kutta’s methods (RK)



MLS-S03 – Process Design and Optimization 14

1.2. Euler’s methods of integration

• Explicit Euler’s method *+ ℎ = + ℎ	 ,
Since , is estimated at , given at time allows 
integrating this equation forward

• Implicit Euler’s method+ ℎ = + ℎ	 + ℎ, + ℎ
If + ℎ cannot be factorized on the lhs, a numerical method 
(see Chap.1.3) is used to solve this equation at each time + ℎ.

*  Euler (CH-Mathematician, 1707-1783)
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1.2. Runge-Kutta’s (RK) methods of integration

• Runge-Kutta’s general scheme *+ ℎ = + ℎ	 	= + ℎ, + ℎ , 	ℎ the step size, the number of stages, 
the -dim vector of weighting factors ∑ = 1 ,	
the -dim vector of nodes, 
an -dim matrix of coefficients with ∑ , = , 

i.e. the sum of each th row of equals .

*  Runge (D-Math., 1856-1927), Kutta (D-Math., 1867-1944)
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1.2. Explicit 4 stages RK (RK4)

+ ℎ = + ℎ	 	 , 						 = + ℎ, + ℎ , 	
• RK4 explicit integration scheme:

= 0 0 0 00 0 00 0 00 0 1 0 , = , = 0
1+ ℎ = + ℎ 	 + 	 + 	 + 	

with = ,= + 	ℎ, + ℎ	 	 ,= ( + 	ℎ, + ℎ	 	 )= + ℎ, + ℎ	
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1.2. Implicit 2 stages RK (RK2)

+ ℎ = + ℎ	 	 , = + ℎ, + ℎ , 	
• RK2 implicit integration scheme (trapezoidal rule):= 0 0 , = , = 01+ ℎ = + ℎ 	 + 	 [1]

with = , [2]= ( + ℎ, + ℎ	 	 + ℎ	 	 ) [3]

Using [1] to substitute ℎ	 	 by + ℎ − − ℎ	 	 in [3] yields= ( + ℎ, + ℎ	 	 + + ℎ − − ℎ	 	 ) = ( + ℎ, + ℎ )+ ℎ = + 	ℎ , + ( + ℎ, + ℎ )
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1.2. Explicit Adaptative RK45

+ ℎ = + ℎ 	 + 		 	 + 		 	 − 	+ ℎ = + ℎ 	 + 		 	 + 		 	 − 	 + 	
with = , given by	 and	 of	the	RK45	method, ≔ + ℎ − + ℎ  , , , ≔ ,

RK45-Fehlberg* Method: LTE = Local Truncation Error
1. Compute + ℎ and + ℎ
2. Compute , and , ,

a) ≤ , ≤ ⇒ step is acceptable, + ℎ = + ℎ , + ℎ →
b) , < ⇒ step is too small, return to point 1. with ℎ ≔ min 2ℎ, ℎ
c) , > ⇒ step is too large, return to point 1. with ℎ ≔ m ℎ, ℎ

* Fehlberg (D-Mathematician, 1911-1990)
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1.2. Common Integration Problems

• Problem: Discontinuities due to sudden events

Solution: Integration by regions or use an events function

• Problem: Rates of different magnitude at different times

Solution: Use a variable step-size ODE solver

• Problem: Rates of different magnitude at the same time
(stiff problem)

Solution: Use a stiff ODE solver (implicit method)
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1.2. MATLAB ODE solvers

• Explicit adaptative (variable stepsize) ODE solvers:
– ode45  RK45-Felhberg method
– ode23  RK23 method

• Implicit adaptative stiff ODE solvers:
– ode15s BDF methods *
– ode23t Trapezoidal method

• MATLAB ode solver call: 
– [tout,yout] = ode45(@odefun,tspan,y0,options,...)

• MATLAB ode options call:
– options = odeset('name1',value1,'name2',value2)

* Backward Differention Formula (BDF):(1)	: + ℎ = + ℎ	 + ℎ, + ℎ (Implicit Euler’s method!)(2)	: + 2ℎ = 	 + ℎ + + ℎ	 + 2ℎ, + 2ℎ
BDFs are stable up to (6) only!
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1.2. Exercise about Numerical Integration

• Let consider a fed-batch reactor filled with (and solvent) 
and fed with during the 1st phase of the reaction, whose 
scheme isR1: 	 + → ,				 ≔R2: 	 + → ,				 ( ) ≔ ( ) ( )

• Formulate the dynamic model describing the state variables 
and of all species (including the solvent) 

using the generic matrix expressions

• Derive an expression for the volume assuming the additivity 
of volumes

• Integrate by regions this dynamic model using MATLAB ode45
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1.3. Solution of Static Models 

find			 =
• This problem consists in finding the root of 

• This problem has an analytical solution if is explicit in 

• For implicit , an iterative method is required to find
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1.3. Bisection method (double false position)

Method:
1. Start by selecting two endpoints ≔ , , b ≔ , , which 

bracket the root

, ≔ +2 ,  ∀ = 1, 2, …
2. Adjust or based on the following test:

a) , < 0	(opposite	signs) ⇒ ≔ ,
b) > 0	 same	signs ⇒ ≔ ,
c) = 0 ⇒ , is the root of 

Drawback: Estimation error is halved at each iteration 
Order of convergence: 1 (linear)
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1.3. Unidimensional Secant Method

Method (1 300 BC!):
1. Start with two initial points , and , (bracketing the root) and 

construct a line (secant) through the points { , , ( , )} and { , , ( , )}, whose equation is= , + , − , with , ≈ , ,, , (backward)

2. Find the zero of the secant, = 0⟹ = , − ( , ), . 

3. → , , construct a line (secant) through { , , ( , )} and , , ( , ) and find its zero... Hence, the recurrent relation:

, = , − ,, 	,  ∀ = 1, 2,… 	with , ≈ , ,, ,  
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1.3. Multi-dimensional Secant Method

Method:

, , ,  

with   (backward) 

• Order of convergence: ≈ 1.618 (less than quadratic!)

• The secant method does not check if two successive 
estimates and bracket the root (source of failure);
Solution: use a double false position approach to guarantee 
the bracketing of the root

• Pseudo-inverse of the Jacobian is = ( )
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1.3. Unidimensional Newton-Raphson method

Newton-Raphson* Method:
1. Start with one initial guess , and construct the tangent using a   

truncated Taylor expansion, whose equation is= , + , − , with , ≈ , , ,,
(finite differences or analytical)

2. Find the zero of the tangent, = 0⟹ = , − ( , ), . 

3. , → , , construct the tangent and find its zero... 
Hence, the recurrent relation:

, = , − ,, 	,  ∀ = 0, 1,… 	with , ≈ , , ,,  

*    Newton (UK-Math./Phys., 1643-1727), Raphson (UK-Mathematician, 1710-1761)
, ⟶ 0
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1.3. Multi-dimensional Newton-Raphson method

Method: = , − , 	 , 	,  ∀ = 0, 1, 2, …
with ≔   (finite differences or analytical solution) 

• Order of convergence: 2 (quadratic!)

• The Newton-Raphson method is sensitive to the initial guess…

• Quasi-Newton methods: the Jacobian is only calculated for 
the initial guess (not even always!) and updated algebraically 
over the iterations (e.g. BFGS * algorithm)

*   Broyden (UK-Math., 1933-2011), Fletcher (UK-Math., born in 1939),
Goldfarb (US-Math., born in 1949), Shanno (US-Math., born in 1936)
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1.3. MATLAB Root finders

• Unidimensional root finder:
– fzero combination of bisection, secant and newton-raphson

• Multidimensional root finder
– None except if formulated as an optimization problem min 	 ( )

• MATLAB fzero call: 
– [x,fval]=fzero(@fun,x0,options,...)

• MATLAB optim options call:
– options = optimset('name1',value1,'name2',value2)
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2. Regression Problems

• Regression problems 
Mathematical problems in which modeled data are fitted to 
measured data by estimating the parameters (parameter estimation) 
of a postulated model (model identification).

• Dichotomy of nested problems
Origin/cause: The model is identified simultaneously as the 
model parameters are estimated
Consequence: in case of no good fit, is it a problem of parameter 
estimation or of model identification (wrong postulated model)?

• Least squares problems 
These problems are part of the family of quadratic problems of the 
general form: min	 	 	 	 	
QP problems: quadratic problems with linear equality/inequality constraints
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2. Notion of Convex Set and Convex Function

• Convex Set: 

• Convex function:

Courtesy of B. Chachuat

Courtesy of B. Chachuat



MLS-S03 – Process Design and Optimization 31

2. Necessary Conditions of Optimality (NCO)

• 1st order NCO: If ∗ is a local minimum of a function : ⟶ ℝ, then

( ∗) = ∗ = ⟺ ∗ is a stationary point

• 2nd order NCO: If ∗ is a local minimum of : ⟶ ℝ, then

( ∗) = ∗ ≽ 		(positive semidefinite) 	
Positive semidefinitness: = ⇒ − = ⇒ = det − = 0	and	all	λ s	(eigenvalues) ≥ 0

• 1st and 2nd order NCO form sufficient conditions of optimality (SCO) 
if is a convex function defined on a convex set .

gradient Jacobian



MLS-S03 – Process Design and Optimization 32

2. Exercise on NCO’s

• Let consider= = 4 − 8 − 5 + 10 + + 5on	the	domain	 ∈ = [−1, 2]
• Find analytically the stationary points of y = ( ) using

– 1st NCO: find	 ∗	s. t. 	 = ( ) = 0
• Qualify the stationary points (minima/maxima) using

– 2nd NCO: find	 ∗	s. t. 	 = ≥ 0	 minimumfind	 ∗	s. t. 	 = ≤ 0	 maximum
• Is there another way to qualify the stationary points ?
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2.1. Concept of Output Function 

• An output function translates the values of the internal states 
(numbers of moles/concentrations, not always directly
measurable) into indirect measured quantities (outputs).

• Typical indirect measurements are

– Spectroscopic measurements
absorbance, reflectance/scattering data (isothermal cond.)

– Calorimetric measurements
as heat-flow data (isothermal conditions) or 
as heat-flow or temperature data (non-isothermal cond.)

– Other indirect measurements
as HPLC, GC, conductometric data, refraction index data…
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2.1. Absorbance Data (Beer’s law)

• “The absorbance of a solution is proportional to the product of 
its concentration and the distance light travels through it”
Beer (D-Chemist, 1825-1863), Lambert (CH-Math., 1728-1777), 
Bouguer (F-Physicist, 1698-1758). 

= 	
with ( × ) the absorbance at times and wavelength/wavenumbers, × = ;		 ; 		… ;	 ( ) the concentrations, and× = ℓ 		 	… 		 the absorptivities/pure spectra

Unit conversion: Abs ≔ −log Trans , with	Trans ≔

=
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2.1. Calorimetric Data

• Calorimetric signal* under isothermal or non-
isothermal conditions

with ( × 1) the heat flow at times (univariate data), × = 	 ;	…	; 	 	 ( ) the reaction ratesΔ × 1 the reaction enthalpies

* discounted from all other thermal effects
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2.1. Formulation of Linear Regression Problems

• A systems of linear equations can be written in matrix, + ⋯+ , =				⋮										⋱									⋮															⋮, + ⋯+ , = 				⟹ 				 	 =
with × , and × 1 the regressors and × 1 the regressands

• The number of solutions of this linear system is: ∞ when < underdetermined system1 = 	 determined system∞ > 	 overdetermined system
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2.1. Exercise of Formulation

• Formulate a matrix equation for the following
linear system:+ + = 			3					 1− − = −1					 2− + = 			1					 3+ − = 			0					 4

• How many solutions for the system of Eqs. 1 – 2?
• "         "            "          "     "       "       of Eqs. 1 – 3?
• "         "            "          "     "       "       of Eqs. 1 – 4?
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2.1. Formulation of Nonlinear Regression Problems

• A nonlinear regression problem consists in 
– Minimizing an objective function () (or cost function) 
– Expressing 	as a difference between measured & modeled quantities
– Postulating a dynamic model , () and (possibly) a static model , ()
– Using an output (signal) model ()
– Adjusting model parameters such that is minimal∗ ∗ = arg 	min	, 		 , , , Objective functions. t. = , , Dynamic model= , , Static model, , = , , Output model

with nonlinear parameters and linear parameters

• Nonlinear problems have to be solved iteratively!
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2.1. Linear versus Nonlinear Parameters

• Let be a function depending on a vector of 
parameters .

is a nonlinear parameter if

is a linear parameter if
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2.1. Exercise of Formulation

• Formulate a regression problem in the least-squares sense
for a batch reactor with the following reaction:→ ⇄

with ( ) = and = ( )( )
Hint: there are 2 dynamic eqs. and 2 static equations!

• The content of the reactior is measured by absorbance 
spectroscopy at 800, 900 and 1000 cm-1, with all the species
absorbing at these wavenumbers.

• How many nonlinear parameters in this problem?

• How many linear parameters in this problem?
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2.2. Generalized Inverse of a Matrix

The inverse or generalized inverse only exists if is FULL RANK

– If < : Left pseudo-inverse, s.t. =
×

– If < : Right pseudo-inverse, s.t. 	 =
×

– If = : Inverse = ( × ), s.t. 	 = 	 =
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2.2. Univariate Solution of Linear Regression Problems

with 	 × 1 , 	 × and 	 × 1
• If < , = 	 (normal equation) and the least-

squares solution is = , since 	 = 	 (left pseudo-inverse)

• If = , the unique solution is = , since 	 = 	
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2.2. Multivariate Solution of Linear Regression Problems

with 	 × , 	 × and 	 ×
• If < , = 	 (normal equation) and the least-squares 

solution is = , since 	 = 	 (left pseudo-inverse)

• If < , 	 = 	 	 (normal equation) and the least-squares 
solution is = 	 , since 	 	 = 	 (right pseudo-inverse)

• If = , the unique solution for is = , 
since 	 = 	

• if = ,  the unique solution for is = 	 , 
since 	 	 = 	
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2.2. Example of left and right pseudo-inverse

Let consider Beer’s law: × × ×
• Under which condition can be computed in the least-

squares sense and what is its solution?

• Under which condition can be computed uniquely and 
what is its solution?

• Under which condition can be computed in the least-
squares sense and what is its solution?

• Under which condition can be computed uniquely and 
what is its solution?
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2.2. MATLAB inverse and pseudo-inverse

• Inverse (square matrix A)
– inv(A)
– (A)^-1

• Pseudo-inverse (non-square matrix B)
– pinv(B) Left or right pseudo-inverse depending on the dimensions
– inv(B'*B)*B' or B'*inv(B*B')

• Linear regression by left-pseudo inverse (between Y and B)
– pinv(B)*Y
– B\Y

• Linear regression by right-pseudo inverse (between Y and B)
– Y*pinv(B)
– Y/B
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2.2. Exercise: Compute Univariate Absorptivities

• Consider the following absorbance measurements at 800 cm-1

and the corresponding concentrations:

• Compute the absorptivities at 800 cm-1 of , , and .
– Can you solve this problem with measurements #1 to #3?
– Estimate the absorptivities with measurements #1 to #4 and #1 to #5.

# [-] [mol/L] [mol/L] [mol/L] [mol/L]

1 2.5 1 1 1 1

2 2.2 1 1 1 0

3 1.5 1 1 0 0

4 0.8 1 0 0 1

5 1.6 1 0 1 1
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2.2. Exercise: Compute Multivariate Absorptivities

• Consider the following absorbance measurements at different
wavenumbers and the corresponding concentrations:

• Compute the pure component spectra of , , and .
– Can you solve this problem with measurements at times 0 to 2?
– Estimate the pure spectra with measurements at times 0 to 3 and 0 to 4.

	 	
[-]

	
[-]

	
[-]

	
[-]

( )
[L/mol]

( )
[L/mol]

( )
[L/mol]

( )
[L/mol]

0 1.000 0.350 0.150 0.150 1.00 0.50 0.00 0.00

1 1.200 0.630 0.250 0.170 0.80 0.70 0.20 0.00

2 0.960 0.660 0.360 0.190 0.60 0.50 0.30 0.10

3 0.700 0.665 0.495 0.230 0.40 0.30 0.35 0.25

4 0.410 0.610 0.670 0.300 0.20 0.10 0.30 0.50
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2.2. Exercise: Compute Concentrations from Multivariate Data

• Consider the following absorbance measurements at different
wavenumbers and the corresponding absorptivities:

• Compute the concentrations of , , and .
– Can you solve this problem with measurements #1 to #3 only?
– Estimate the concentrations with measurements #1 to #4 and #1 to #5. 

# cm [-] [L/mol] [L/mol] [L/mol] [L/mol]

1 800 0.650 0.5 0.1 0.1 0.1

2 850 1.450 1.0 0.5 0.1 0.1

3 900 1.525 0.5 1.0 0.5 0.1

4 950 1.100 0.1 0.5 1.0 0.5

5 1000 0.700 0.1 0.1 0.5 1.0
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2.2. Exercise: Compute Reaction Enthalpies from Univariate Data

• Consider the following heat flow measurements and the 
corresponding rates of reaction:

• Compute the enthalpies of reaction.
– Can you solve this problem with only measurement #1 only?
– Estimate the concentrations with measurements #1 to #2 and #1 to #3.

• Why is it impossible to compute the rates of reaction from heat
flow measurements and the knowledge of enthalpies of reaction?

# [W]
,

[mol/s]
,

[mol/s]

1 19,000 0.9 0.1

2 18,000 0.8 0.2

3 17,000 0.6 0.4
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2.2. Curve Fitting

• Consider the following 
data points:

• Find the best curves
that approximates

and 

0.0 2.0460 1.4616

0.1 2.0269 2.4021

0.2 2.1111 2.1336

0.3 2.1432 2.7800

0.4 2.2335 3.0366

0.5 2.2173 3.8411

0.6 2.3010 4.2199

0.7 2.3666 5.2970

0.8 2.4330 6.2218

0.9 2.4963 7.4636

1.0 2.5026 7.9418
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2.3. Reminder: Nonlinear Regression (Chapt. 2.1)

Problem:

( ) ( )
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2.3. Reminder: Meaning of the Gradient (Analysis)

• The gradient = of a multi-variable function ( )
indicates the tangent at point .

• The gradient ( ) is a vector that points towards the 
direction of an increase of the function .

• Hence, following the opposite direction of the gradient, 
namely − ( ), allows pointing towards a direction of 
decreasing .

• This is the mathematical basis of the steepest descent 

method for minimizing a function, with ( ) ≔ ( ) ,

the residuals and the adjustable parameters.
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2.3. Steepest (Gradient) Descent Method

Method:
• Recurrence relation for finding the minimum of 

• The Gradient (Jacobian) direction does not give an 
indication about the length of the step to apply.

• To correct that, the stepsize is adapted using the 
parameter which is computed according a 
Line Search Method (e.g. Goldstein-Armijo’s method) 
to maximize the stepsize, while minimizing .
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2.3. Minimizing using the 1st NCO (Chapt. 2)

• 1st order NCO: If ∗ is a local minimum of , then

( ∗) = ∗ = ⟺ ∗ is a stationary point

• The 1st order NCO gives a method to find a fixed (stationary) point 
of 	as follows:

– Make a truncated Taylor development of the residuals as+ = + + 2 with  ( ) ≔
– Minimizing + implies the stepsize:= −

which is Newton-Raphson applied to the residuals! (cf. Chapt. 1.3.)
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2.3. Newton-Gauss method

Method:
• Recurrence relation for finding the minimum of 

• The Newton-Gauss stepsize is known to be usually 
too long and the decrease in the residuals is not 
always guaranteed.

• To correct that, the stepsize is usually adapted using a
Line Search Method to work at the highest stepsize, 
while minimizing the residuals.
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2.3. Levenberg-Marquardt Modification

• The Levenberg-Marquardt* modification allows switching 
between Newton-Gauss and the steepest descent method

• Recurrence relation for finding the minimum of = + 		with		 = − + 	 ( )
with ≈ according to Newton-Gauss• ≥ 0 is the Marquardt parameter= 0		 ⇒	Newton-Gauss, → ∞ ⇒	Steepest Descent (shorter stepsize)• is adapted according to heuristic arguments to avoid 

divergence due to a bad choice of the initial guesses.
* Levenberg (US-Math., 1919-1973), Marquardt (US-Math., 1929-1997) 
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2.3. NGLM Algorithm
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2.3. Elimination of Linear Parameters

• Certain output models can be written as a product of a function , depending only on nonlinear parameters and the linear 
parameters as:, = , , ≔ , , 	

• For these output models, the linear parameters can be 
eliminated by linear regression using the measurements as= , , 		⇒ = , , 	 , ,

• Hence, the linear parameters disappear of the regression problem:∗ 		 ∗ = arg 	min	, 		 , , 	⇒
∗ = arg 	min		 		 , with  ∗ = , , ∗
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2.3. Examples of Elimination of Linear Parameters

• Spectroscopic Data, = , , ≔ 	
Elimination: = 		⇒ = 	∗ = arg 	min			∑ ∑ ( , − ( ) , )

with ∗ = ∗
• Calorimetric Data, Δ = , , Δ ≔ −Δ

Elimination: Δ = − 		⇒  = 	∗ = arg 	min			∑ ( − ( ) )
with Δ ∗ = − ∗
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2.3. Statistical Information provided by Gradient Methods

• Degree of Freedom: number of redundant information in the data 
during the minimization≔ dim( , 1) · dim( , 2) − (dim + dim )

• Residual variance: variance of the residuals comparable to the variance 
of the measurements ≔ ( ∗) = ∗ ( ∗)

• Variance-covariance matrix: indicates the variance in the fitted 
parameters and their covariance with the other parameters

∗ ≔ 	 ∗ ≈ 	 	 ∗ ( ∗)
• Correlation matrix: variance-covariance matrix normalized to 1

∗ ≔ 	 ∗ with = Diag diag ∗/
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2.3. MATLAB Nonlinear Optimizers

• Optimization of one variable
– fminbnd Minimum on an interval

• Optimization of several variables
– fminunc Unconstrained minimization
– fmincon Constrained minimization (not detailed here, see Chapter 3)

• MATLAB fminbnd: 
– [x,fval,exitflag] = fminbnd(fun,x1,x2,options,...)
– options = optimset('name1',value1,'name2',value2)

• MATLAB fminunc: 
– [x,fval,exitflag] = fminunc(fun,x0,options,...)
– options = optimoptions(SolverName,'name1',value1)
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2.3. Exercise on Uni/Multivariate Regression

• Consider the last exercise of Chapter 1.2.

• Simulated Reality: Simulate noisy spectroscopic and 
calorimetric measurements based on the reaction scheme.

• Fit the ‘measured’ spectroscopic data in the least squares 
sense by adjusting the two rate constants. Estimate their 
respective uncertainties and correlations. Eliminate the 
pure component spectra and estimate them at the end.

• Fit the ‘measured’ calorimetric data in the least squares 
sense by adjusting the two rate constants. Estimate their 
respective uncertainties and correlations. Eliminate the 
enthalpies of reaction and estimate them at the end.
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3. Optimization Problems (OP)

• Optimization problems 
Mathematical problems in which the optimum (min or max) of an 
objective/cost function is found by adjusting decision variables (d.v., ).

• Requirements
Optimization relies on the knowledge of a mathematical model and 
model parameters (e.g. identified/estimated by regression)

• Constrained vs Unconstrained optimization
Optimization problems can be constrained (equality and inequality 
constraints) or unconstrained

• Dynamic vs Static optimization
Optimization problems can be dynamic (dynamic model and dynamic 
d.v., ( )) or static (static model and static d.v., ).
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3. Solution of Dynamic Optimization Problems

Two approaches exist to solve dynamic optimization problems:

• First optimize, then discretize (difficult) ⇒ ( )
First optimize the function of the decision variables (d.v., ) among an 
infinite set of functions (called a functional) on the entire time interval, 
then discretize the time to compute the optimal .

• First discretize, then optimize (more common) ⇒ ( )
First discretize the time and define a set of decision variables per 
interval ( ( )), then optimize the problem and find the optimal 
decision variables on all the intervals.

• Discretization methods (for first discretize, then optimize)
Decision variables can be piecewise constant (1 d.v./interval), 
piecewise linear (2 d.v./interval), piecewise polynomial (3 d.v./interval)...
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3.1. Formulation of Dynamic Optimization Problems

• A dynamic optimization problem consists in 
– Minimizing an objective function () (or cost function) 
– Knowing a dynamic model , () and (possibly) a static model , 
– Using an output (signal) model ()
– Defining equality () and inequality ()	constraints (if constrained)
– Defining bounds on the decision variables: and 
– Adjusting the decision variables ( ) such that is minimal∗( ) = arg 	min	( ) 		 ( ) Objective functions. t. = , , ( ), Dynamic model= , , ( ), Static model( ) = ( , ( ) ) Output model( , ( ) ) ≤ Inequality constraints( , ( ) ) = Equality constraints≤ ( ) ≤ Bounds on 



MLS-S03 – Process Design and Optimization 66

3.1. Reformulation with First Discretize, then Optimize

• The continuous decision variables ( ) of the dynamic 
optimization problem are discretized on time intervals 
using a discretization method (e.g. piecewise constant). 
This reformulation transforms the decision variables ( )
continuous in time into · decisions variables ,= 1,… , , discrete in time.∗ , … , ∗ = arg 	min	,…, ∑ ( ) ≤ ≤s. t. = , , ( ),= , , ( ),( ) = ( , ( ) )( ( ) ) ≤( ( ) ) =≤ ( ) ≤
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3.1. Formulation of Static Optimization Problems

• A static optimization problem consists in 
– Minimizing an objective function () (or cost function) 
– Knowing a dynamic model , () and (possibly) a static model , 
– Using an output (signal) model ()
– Defining equality () and inequality ()	constraints (if constrained)
– Defining bounds on the decision variables: and 
– Adjusting the decision variables such that is minimal∗ = arg 	min			 Objective functions. t. = , , , Dynamic model= , , , Static model( ) = ( , ) Output model( ( )) ≤ Inequality constraints( ( )) = Equality constraints≤ ≤ Bounds on 
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3.1. Unconstrained Optimization Problems

• Unconstrained dynamic optimization problems∗ , … , ∗ = arg 	min	,…, ∑ 		 ≤ ≤s. t. = , , ( ),= , , ( ),( ) = ( , ( ) )
• Unconstrained static optimization problems∗ = arg 	min			s. t. = , , ,= , , ,( ) = ( , )
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3.1. NCO’s for Unconstrained Optimization Problems

The NCO’s defined in Chapter 2 remain valid for 
unconstrained optimization problems

• 1st order NCO: If ∗ is a local minimum of a function : ⟶ ℝ, then

( ∗) = ∗ = ⟺ ∗	is a stationary point

• 2nd order NCO: If ∗ is a local minimum of : ⟶ ℝ, then

( ∗) = ∗ ≽ 		(positive semidefinite) 	
• 1st and 2nd order NCO form sufficient conditions of optimality (SCO) 

if is a convex function defined on a convex set .

gradient Jacobian
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3.1. Constrained Optimization Problems

• Lagrange function , a.k.a. Lagrangian
 Dynamic optimization problemsℒ ,… , ≔ ∑ , +∑ , +∑ , +∑ , − +∑ , − ,    with ≤ ≤
 Static optimization problemsℒ ≔ + + + − + ( − )
 	 , 	 and , , , , are the Lagrange multipliers
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3.1. Active vs Inactive Constraints

• Inequality constraints

 Active ∗ =! ,    ∈ ∗ ⇒ 	 >!
These constraints play a role in the minimum of ℒ(·)

 Inactive ∗ <! ,    ∉ ∗ ⇒ 	 =!
These constraints do not play any role in the minimum of ℒ(·)

• Equality constraints are always active

 Alway active ( ∗) =! ⇒ 	 >!
These constraints always play a role in the minimum of ℒ(·)

• Finding the minimum of ℒ(·) consists in following all the active 
inequality constraints , ∈ ∗ ,	and equality constraints 
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3.1. Interpretation of the Lagrange Multipliers

• The Lagrange multipliers represent the sensitivity of the 
objective function with respect to a change in the 
constraints. They indicate how much the optimal cost 
would change, if the constraints were perturbed.

• Obviously, the Lagrange multipliers of inactive 
constraints are zero because any change in the value of 
these constraints keep the optimal value unchanged. 

• In economics, the Lagrange multipliers are viewed as the 
marginal costs of the constraints, and are referred to as 
the shadow prices.
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3.1. NCO’s for Constrained Optimization Problems

KKT conditions*:
• 1st order KKT: If ∗ is a local minimum of a function ℒ: ⟶ ℝ, then∗ ≤ , ∗ = and ≤ ∗ ≤ Primal feasibility≔ ℒ ∗ = ∗ + ∗ + ∗ + − = Dual feasibility, , ≥ 0 Dual feasibility ∗ = 0, ∗ = 0, − = ( − ) = Complementary slackness

• 2nd order KKT: If ∗ is a local minimum of ℒ: ⟶ ℝ, thenℒ( ∗) = ∗ ≽ 		(positive semidefinite) 	
• KKT conditions are sufficient conditions if and are convex,

and are affine functions, all defined on a convex set . 
∗ Karush (US-Math., 1917-1997), Kuhn (US-Math., 1925-2014), Tucker (US-Math., 1905-1995)
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3.1. Alternative 1st NCO for Constrained Problems

1st NCO:• ℒ ∗ =• ℒ ∗ =• ℒ ∗ = Solve for the unknowns , , , and • ℒ ∗ = + + + 2 eqs with as many unknowns• ℒ ∗ =
+ all 1st order KKT conditions to rule out contradictory solutions
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3.1. Constraint Qualification (CQ)

Not every (local) minimum is a KKT point
(there might be more minima than KKT points)

but…

• Applying a Constraint Qualification (CQ) ensures that all (local) 
minima satisfy the KKT conditions.

• Linear Independence Constraint Qualification (LICQ)
a point ∗	is said to be a regular point if the gradients of the active 
constraints are independent (= full rank)  

• If LICQ applies, the Lagrange Multipliers are unique

• KKT are sufficient conditions if the objective function and the 
active constraints are convex functions (as mentioned earlier)
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3.1. Example: Unconstrained Optimization

• Let consider = 14 + 34 − 32 − 2on	the	domain	 ∈ = [−5, 3]
• Find analytically the stationary points of ( ) using

– 1st NCO: find	 ∗	s. t. 	 = ( ) = 0
• Qualify the stationary points (minima/maxima) using

– 2nd NCO: find	 ∗	s. t. 	 = ≥ 0	 minimumfind	 ∗	s. t. 	 = ≤ 0	 maximum



MLS-S03 – Process Design and Optimization 77

3.1. Example: Constrained Optimization

• Let consider min, 	 , = +s. t.	 ℎ , : 	 + = 1, :	 ≤
• Find analytically the unconstrained minimum of 

• Find analytically the minimum of constrained by 

• Find analytically the minimum of constrained by 
and , and discuss the influence of on the solution
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3.2. Solving Optimization Problems (OP)

Simple static optimization:
1. Solution of optimization problems with explicit equality 

constraints

2. Graphical solution of linear optimization problems with a 
limited number of decision variables (max 3) and a limited 
number of explicit constraints

Dynamic optimization and more complex static problems
• Solution obtained numerically
 Penalty function (reformulation in an unconstrained problem, no use of KKT’s)
 Interior point methods (reformulation in an unconstrained problem, no KKT’s)
 Newton-like methods (Sequential Quadratic Programming, SQP) (use of KKT’s)
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3.2. OP with Explicit Equality Constraints

• If the equality constraints are explicit and independent, 
decision variables can be replaced by the expression of their 
equality constraint in the objective function .

• The optimization problem is then reduced to finding= − decision variables that minimize .

Before: After:∗ = arg 	min			 ∗ = arg 	min			s. t. = , , , s. t. = , , ,( ) = ( ) ( ) = ( )( ( )) = = 	( ( ))≤ ≤ ≤ ≤
decision variables − decision variables 
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3.2. Example: OP with Explicit Equality Constraints

• Let consider

,
• Find analytically the minimum of constrained by 

using to eliminate from .

• Let consider

, ,,
• Find analytically the minimum of constrained by 

using the elimination of by .
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3.2. Graphical Solution of Linear OP + Example

For linear optimization problems, the minimum 
always lie in one of the vertices (corners) of the 

feasible region.
Example: A manufacturer has to produce pants ( ) and jackets
(y). For materials, the manufacturer has 750 m2 of cotton and
1 000 m2 of polyester. Every pair of pants (1 unit) needs 1 m2 of
cotton and 2 m2 of polyester. Every jacket needs 1.5 m2 of
cotton and 1 m2 of polyester. The price of the pants is fixed at
50 $ and the jacket at 40 $. Note that, for obvious reasons, the
manufacturer must produce ( > 0 and y > 0).

What is the number of pants and jackets that the manufacturer
must produce to obtain a maximum profit?
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3.2. Penalty Function (shown for Static OP)

Original Constrained Optimization Problem:∗ = arg 	min			s. t ( ( )) ≤( ( )) =≤ ≤
Reformulated Unconstrained Optimization Problem:∗ = arg 	min			 + 	
with the auxiliary function:	≔ ∑ max 0, ( ( )) + ∑ ℎ ( ( ))
more generally: 	≔ ∑ max 0, ( ( )) + ∑ ℎ ( ( ))
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3.2. Example: Penalty Function

• Let consider the problem of minimizing 
, subject to . 

• The obvious solution to this problem is ∗
with ∗ .

• Show that the solution of the Penalty problem
can be made arbitrarily close to the solution 
of the original problem, by choosing the value 
of the penalty parameter sufficiently large.
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3.2. A Simple Algorithm for Penalty Function

• Define 
• Choose an initial guess 
• Initialize 
• Define (increasing effect of the penalty)
• Set , then

1. Solve 

2. If , stop; 
otherwise , and 
go back to Step 1.
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3.2. Interior Point Methods (shown for Static OP)

Original Constrained Optimization Problem:∗ = arg 	min			s. t ( ( )) ≤
Reformulated Unconstrained Optimization Problem:∗ = arg 	min			 + 	
with the auxiliary function: 	≔ −∑ ( ( ))
or as an alternative: 	≔ −∑ ln −
The auxiliary function represents a barrier function that enforces
staying within the feasible region, namely, <
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3.2. Example: Interior Point Methods

• Let consider the problem of minimizing 
, subject to . 

• The obvious solution to this problem is ∗
with ∗ .

• Show that the solution of the Barrier Function 
can be made arbitrarily close to the solution 
of the original problem, by choosing the value 
of the barrier parameter sufficiently close to 0.
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3.2. A Simple Algorithm for Interior Point Method

• Define 
• Choose an initial guess 

in the feasible region 
• Initialize 
• Define (reducing effect of the barrier)
• Set , then

1. Solve 

2. If , stop; 
otherwise , and 
go back to Step 1.



MLS-S03 – Process Design and Optimization 88

3.2. Lagrange Multipliers vs Penalty/Barrier Parameters

Penalty Function:

Interior Point Method (Barrier Function):

( ( ))
Example:

Compute the Lagrange multiplier as a function of for 
the previous example, both for the Penalty Function 
and for the Barrier Function…
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3.2. Sequential Quadratic Programming (SQP)

• An SQP is a Newton-like or Quasi-Newton Method that 
uses the KKT conditions to minimize a quadratic 
approximation of the Lagrange function subject to a 
linear approximation of the constraints.

• Only the active inequality constraints (set ) are of 
interest since the inactive inequality constraints have no 
influence on the objective function.

• For the sake of conciseness, the upper and lower 
bounds are assumed to be treated as additional 
inequality constraints: and 

• For the sake of conciseness, ( ) will just be written as 
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3.2. SQP – Lagrange Function and KKT Conditions

The Lagrange Function is defined as:∗ ∗ ∗ ∗ ∗, ∗,
The KKT conditions imply:∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ !

∗ ∗ ∗ ∗ !
∗ ∗ ∗ ∗ !

This describes a system of equations with as 
many unknown ∗ ∗ ∗ . 
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3.2. SQP – Approximate the KKT Conditions 

Quadratic approx. of , linear approx. of and :

• ℒ ∗, ∗ , ∗ =! ≈ ℒ , , , + ℒ , , , −+ , − , + −• ℒ ∗, ∗ , ∗ =! ≈ + −• ℒ ∗, ∗ , ∗ =! ≈ + −
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3.2. SQP – Define the Shift Vectors

Quadratic approx. of , linear approx. of and :ℒ , , , + ℒ , , , + , + =  + = 																																																																																																	+  = 																																																																																																							
with ≔ − , , ≔ , − , ,≔ −
Writing this system in matrix notation and passing the first    

term of each equation on the rhs yields… 
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ℒ , , ,
× ×
× ×

, = − ℒ , , ,

Or using Hessian and Jacobian notation:

ℒ , , ,
	( × )

, = − ℒ , , ,
 Inverting matrix allows computing the shift vector…

3.2. SQP – Rewrite in Matrix Notation
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• The shift vector can be calculated as:

, = − ℒ , , ,
with , = , + , (applying the shift vector)

and ≔ ℒ , , ,
• In practice, a line search is required to reduce the length 

of the shift vector (similarly to NG-method in Chapter 2.3.)
• How to efficiently compute ℒ and hence ? (BFGS method)

3.2. SQP – Compute the Shift Vectors (Newton’s step)
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3.2. Hessian Estimation by BFGS

• The Hessian is usually time consuming to compute 
via finite differences. That is why, the Hessian is 
estimated using an algebraic expression based on a 
line search and the knowledge of the Jacobian.

• The most commonly used method to estimate a 
Hessian matrix is the BFGS* method:

with 

so that
* Broyden (UK-Math., 1933-2011), Fletcher (UK-Math., born in 1939), 

Goldfarb (US-Math, born in 1949), Shanno (US-Math., born in 1936)
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3.2. MATLAB Nonlinear Optimizers for one variable

• Optimization of one variable
– fminbnd Minimum on an interval

• MATLAB fminbnd: 
– [x,fval,exitflag] = fminbnd(fun,x1,x2,options,...)

• MATLAB optimset:
– options = optimset('name1',value1,'name2',value2)
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3.2. MATLAB Nonlinear Optimizers for multiple variables

• Optimization of multiple variables
– fminunc Unconstrained minimization (see description in Chapter 2.3)
– fmincon Constrained minimization
– quadprog Constrained QP minimization

• MATLAB fmincon: 	 ≤ , 	 = , ≤ ≤
– [x,fval,exitflag,output,lambda,J,H] = 
fminunc(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,...)

• MATLAB quadprog: min		 = 	 +
– [x,fval,exitflag,output,lambda] = 
quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options,...)

• MATLAB optimoptions: 
– options = optimoptions(SolverName,'name1',value1)
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3.2. Exercise: Static Optimization

• Consider the last exercise of Chapter 1.2.

• Dynamic model: Assume that the dynamic model is known from the 
last exercise of Chapter 2.3.

• Find the optimal flowrate1 of species B in the 1st phase of reaction
so that the profit at the end of the batch is maximum2.

• Find the optimal flowrate1 of species B in the 1st phase of reaction
so that the profit at the end of the batch is maximum2 and 
the concentration of side product C at the end is ≤ 0.6 mol/L.

• Verify with a response surface that the profit is maximum.

1. Physical limits: , ∈ 0,10 L/ut; 
2. Prices: A: -10, B: -20, C: 0, D: 50, Solvent: 0 (USD per mol/L)



MLS-S03 – Process Design and Optimization 99

3.2. Exercise: Dynamic Optimization

• Consider the last exercise of Chapter 1.2.

• Dynamic model: Assume that the dynamic model is known from the last 
exercise of Chapter 2.3.

• Find the optimal flowrate profile1 of species B all along the reaction
so that the profit at the end of the batch is maximum2.

• Find the optimal flowrate profile1 of species B all along the reaction
so that the profit at the end of the batch is maximum2 and 
the concentration of side product C at the end is less or equal to 0.6 mol/L.

• Find the optimal flowrate profile of species B all along the reaction
so that the profit at the end of the batch is maximum2 and 
the concentrations of dosed B and side product C all along the reaction
are ≤ 0.2 and ≤ 0.6 mol/L, respectively.

1. Physical limits: , ∈ 0,10 L/ut; 
2. Prices: A: -10, B: -20, C: 0, D: 50, Solvent: 0 (USD per mol/L)
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