
Axo: Tolerating Delay Faults in Real-Time Systems

Maaz Mohiuddin, Wajeb Saab, Simon Bliudze, Jean-Yves Le Boudec
School of Computer Science and Communication Systems

École Polytechnique Fédérale de Lausanne, Switzerland
{firstname.lastname}@epfl.ch

Abstract—We address delay faults: faults that cause a software
component to take more time for completing an action than a
given deadline. Such faults are particularly of interest in real-
time mission-critical control applications that use general-purpose
computing platforms to compute setpoints. A violation of real-
time constraints associated with setpoints can result in failure.
Existing benign and Byzantine fault-tolerance architectures do
not tolerate delay faults. We discuss the challenges involved in
tolerating such faults. Then, we list the requirements on the real-
time systems that pave the way for our solution: Axo. We describe
how Axo masks delay faults, and we conclude with open issues.

I. INTRODUCTION

Real-time control applications (RTCAs) for electrical grids
[1], [2], autonomous vehicles [3], and manufacturing processes
[4] are among the many examples that use software-based
controllers such as cRIO (from National Instruments), DAP
server (from Alstom), and MGC600 (from ABB). Many of
these applications are mission-critical: their failure can lead to
serious damage.

In addition to the controller, the RTCA has sensors that
report the state of the controlled process to the controller. The
controller uses these measurements to compute setpoints. The
computed setpoints are received by the process agents (PAs)
that implement them through the actuators.

The setpoints are subject to strict real-time constraints. That
is, they must be implemented within a deadline that, henceforth
referred to as a validity horizon (τ ), depends on the specifics
of the RTCA and varies from tens of milliseconds [1] to a
few hundred milliseconds [2]. Hence, a sufficiently large delay
incurred by the controller due to software and/or hardware
faults, or a delay in the transmission of the setpoint due to the
network, can result in failure of the RTCA. Such faults are
termed delay faults.

Tolerating delay faults involves masking any delays in
the controller or the network from the PA, so that the PA
continues to receive setpoints within a bounded delay. Delay
faults fall under the category of Byzantine faults and are thus
not tolerated by existing benign fault-tolerance architectures.

Also, all existing Byzantine fault-tolerance (BFT) architec-
tures consider only the correctness of the setpoint, not the tim-
ing aspects. Furthermore, they hold a consensus between the
replicas, which cannot guarantee termination within bounded
delay in asynchronous systems, as shown by [5]. Therefore,
though a BFT implementation can guarantee safety, it will be
at the expense of availability. Therefore, safety needs to be
provided without consensus. Lastly, BFT architectures require
at least 2f + 1 replicas for f faults [6].

Below, in Section II, we identify the prerequisites on an
RTCA for tolerating delay faults. In Section III, we introduce
Axo, a fault-tolerance architecture addressing delay faults,
and describe the fault masking mechanism of Axo and the
associated assumptions on the RTCA. In Sections IV and V,
we present early results and open issues, respectively.

II. PREREQUISITES TO TOLERATING DELAY FAULTS

To mask delay faults, i.e., faults causing the setpoint to
be delayed by more than a validity horizon (τ ), the first
requirement is for the RTCA to provide the knowledge of τ
to the fault-tolerance layer. This can be statically configured
with a prior understanding of the application in question.

Evaluating the delay at the PAs requires the controller and
the PAs to have a common notion of time. This is achieved
through GPS- or network-based time synchronization (e.g.,
PTP, NTP) that most real-time systems already have.

Evaluating the delay pre-supposes knowledge of the first
time at which a setpoint was valid (t0). Setpoints received
at t > t0 + τ are considered invalid. However, obtaining t0 is
non-trivial: if recording t0 is a part of the setpoint computation,
then delays in the computation cannot be masked.

III. AXO

Axo uses active replication of the controller in order to
mask delay faults and requires f+1 replicas to mask f faults.
Besides requiring fewer replicas than BFT, Axo also has the
advantage of minimal delay being incurred by a correct replica.

Fig. 1: Replication with Axo

As discussed in Section II, the RTCA is expected to
have the notion of a validity horizon τ and to adopt a time
synchronization protocol with a known accuracy δs.

In addition to the aforementioned prerequisites, Axo re-
quires the PAs to handle duplicate setpoints received from
controller replicas. The ability to handle duplicates is usually
the case for RTCAs that use absolute, rather than differen-
tial, setpoints. For example, an electric-grid controller would
instruct a battery agent that was injecting 8 kW to set the
injected power to 10 kW rather than to increase it by 2 kW.



Last, we assume that the RTCA controller can be instru-
mented so as to record a timestamp (tc) immediately before
the computation of a setpoint, in a way that can be described
by Algorithm 1.

Algorithm 1: Model of a controller to which Axo applies
1 while true do
2 tc ← current time;
3 if ready to compute then
4 send tc to Axo;
5 compute and issue setpoint(s);
6 end
7 end

As mentioned in Section II, t0 is needed to evaluate the
delay, and obtaining t0 is non-trivial in the presence of delay
faults. In Algorithm 1, lines 2 and 4 are added to the controller
in order to obtain a tc < t0. Note that tc is recorded before
the condition ready to compute is verified. As we show in the
full version of the work, obtaining tc in this way allows Axo
to mask all delay faults.

Axo is implemented as a separate fault-tolerance layer, with
a tagger at each of the controller replicas and a masker at each
PA, as shown in Figure 1. The tagger receives timestamps (tc)
from the controller and intercepts any setpoints issued by the
controller to a PA. The tagger then sends to the masker of
the destination PA a message consisting of both the setpoint
and tc, along with other information required to recreate the
original packet. The masker receives these messages from the
tagger and forwards the setpoint to its PA only if the current
time is less than or equal to tc + τ − δs.

IV. EARLY RESULTS

We implemented a prototype of Axo for delay-fault mask-
ing. We tested its safety and availability with three controller
replicas: C1, C2 (both virtual machines) and C3 (physical
machine). We also had a PA that received the setpoints and
logged the delay. Our test-RTCA received measurements from
a sensor every 100 ms, and slept to simulate computation time
for a uniform random time between 2-7 ms when non-faulty
and 7-15 ms when faulty. The faults were bursty with a rate
of 1%. Here, the validity horizon is τ = 11 ms.

Time in ms
0 2 4 6 8 10 12

E
m

p
ir
ic

a
l C

D
F

0

0.2

0.4

0.6

0.8

1

Delay of C1
Delay of C2
Delay of C3
Delay of Axo

Fig. 2: Safety with Axo

Figure 2 shows the CDF of delays of C1, C2 and C3 at
the masker and of the net delay of Axo at the PA. The delay
at the PA is less than or equal to τ for all setpoints, thereby
demonstrating the safety of Axo. We also observe the added
benefit of active replication and Axo, as the delay of Axo is the
minimum of the delays of C1, C2, and C3, thereby improving
the real-time characteristics of the RTCA.

1

2

3
Number of faulty replicas (Computation delay > 7 ms)

1

2
Number of network faults (Network delay > 3 ms)

Simualtion Time (s)
4967 4968 4969 4970 4971 4972
0

1
Availability

Fig. 3: Availability with Axo

Figure 3 shows the availability for different setpoints as
a relation to the number of faults in the replicas and in the
network, for an extract of the simulation scenario. In this
experiment, a replica is considered faulty when its computation
delay exceeds 7 ms, and a network fault is said to occur when
the latency exceeds 3 ms. In the full version, we prove that
Axo guarantees availability when the sum of the number of
faulty replicas (f ) and the number of network faults (n) is
less than the number of replicas (g = 3), i.e., f + n < g,
which is indeed verified here (and more, we see that Axo is
available at certain instances when f + n ≥ 3).

V. CONCLUSION AND FUTURE WORK

We have discussed delay faults, a special class of Byzan-
tine faults, primarily of interest to real-time mission-critical
applications. We have presented the mechanism for masking
such faults with Axo. In the full version of the work, we
add the mechanisms for fault-detection and recovery. We also
formalize the delay-fault model, under which we prove safety,
availability and bounds on latency in masking, detection and
recovery. Lastly, we will validate the fault-tolerance properties
of Axo by testing it with Commelec [1], an RTCA for control
of electrical grids.

REFERENCES

[1] Andrey Bernstein, Lorenzo Reyes-Chamorro, Jean-Yves Le Boudec, and
Mario Paolone. A Composable Method for Real-Time Control of Active
Distribution Networks with Explicit Power Setpoints. Part I: Framework.
Electric Power Systems Research, 125:254–264, 2015.

[2] Konstantina Christakou, D-C Tomozei, J-Y Le Boudec, and Mario
Paolone. GECN: Primary Voltage Control for Active Distribution Net-
works via Real-Time Demand-Response. Smart Grid, IEEE Transactions
on, 5(2):622–631, 2014.

[3] Tan Yew Teck, Mandar Chitre, and Prahlad Vadakkepat. Hierarchical
Agent-Based Command and Control System for Autonomous Under-
water Vehicles. In Autonomous and Intelligent Systems (AIS), 2010
International Conference on, pages 1–6. IEEE, 2010.

[4] Paulo Leitão. Agent-Based Distributed Manufacturing Control: A State-
of-the-Art Survey. Engineering Applications of Artificial Intelligence,
22(7):979–991, 2009.

[5] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility
of Distributed Consensus with One Faulty Process. Journal of the ACM
(JACM), 32(2):374–382, 1985.

[6] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon
Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and
Klaus Stengel. CheapBFT: Resource-Efficient Byzantine Fault Tolerance.
In Proceedings of the 7th ACM european conference on Computer
Systems, pages 295–308. ACM, 2012.


	Introduction
	Prerequisites to tolerating delay faults
	Axo
	Early results
	Conclusion and Future Work
	References

