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Abstract
In the last decade, drones became frequently used to provide eye-in-the-sky overview in the

outdoor environment. They are widely used for surveillance, mapping and exploring unknown

terrains. Their main advantage compared to the other types of robots is that they can fly above

obstacles and rough terrains and they can quickly cover large areas. These properties also

open a new application; drones could provide a multi-hop, line of sight communication for

groups of ground users.

The aim of this thesis is to develop a drone team that will establish wireless ad-hoc network

between users on the ground and distributively adapt links and spatial arrangement to the

requirements and motion of the ground users. For this application, we use lightweight, easy-

portable fixed wing drones. Such platforms can be easily and quickly deployed. Fixed wing

drones have higher forward speed and higher battery life than hovering platforms. On the

other hand, fixed wing drones have unicycle dynamics with constrained forward speed which

makes them unable to hover or perform sharp turns.

The first challenge consists in bridging unicycle dynamics of the fixed wing drones. Some

control strategies have been proposed and validated in simulations using the average distance

between the target and the drone as a performance metric. However, besides the distance

metric, energy expenditure of the flight also plays an important role in assessing the overall

performance of the flight. We propose a new methodology that introduces a new metric

(energy expenditure), we compare existing methods on a large set of target motion patterns

and present a comparison between the simulation and field experiments on proposed target

motion patterns. Using this new methodology we examine the performance of state-of-the-art

control strategies and based on simulations and field experiments we choose the strategy that

has the best performance according to our comparison criteria.

The second challenge consists in developing a formation control algorithm that will allow fixed

wing robots to provide a wide area coverage and to relay data in a wireless ad-hoc network. In

such applications fixed wing drones have to be able to regulate an inter-drone distance. Their

reduced maneuverability presents the main challenge to design a formation algorithm that will

regulate an inter-drone distance. To address this challenge, we present a distributed control
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Abstract

strategy that relies only on local information. Each drone has its own virtual agent, it follows

the virtual agent by performing previously evaluated and selected target tracking strategy, and

flocking interaction rules are implemented between virtual agents. It is shown in simulation

and in field experiments with a team of fixed wing drones that using this distributed formation

algorithm, drones can cover an area by creating an equilateral triangular lattice and regulate

communication link quality between neighboring drones.

The third challenge consists in allowing connectivity between independently moving ground

users using fixed wing drone team. We design two distributed control algorithms that change

drones’ spatial arrangement and interaction topology to maintain the connectivity. We pro-

pose a potential field based strategy which adapts distance between drones to shrink and

expand the fixed wing drones’ formation. In second approach, market-based adaptation,

drones distributively delete interaction links to expand the formation graph to a tree graph. In

simulations and field experiments we show that our proposed strategies successfully maintain

independently moving ground users connected.

Overall, this thesis presents synthesis of distributed algorithms for fixed wing drones to estab-

lish and maintain wireless ad-hoc communication networks.

Key words: communication networks, fixed-wing drones, formation control, flocking, connec-

tivity maintenance, wireless ad-hoc network
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Résumé
Dans la dernière décennie, les drones sont utilisés souvent pour donner un aperçu aérien

de l’environnement extérieur. Ils sont largement utilisés pour la surveillance, la cartographie

et l’exploration des terrains inconnus. Leur avantage principal par rapport aux autres types

des robots consiste dans le fait qu’ils peuvent voler au-dessus des obstacles et des terrains

accidentés ainsi qu’ils peuvent couvrir rapidement des zones vastes. Ces propriétés indiquent

également une nouvelle application : les drones pourraient fournir un multi-hop ainsi que la

ligne de la communication visuelle des groupes d’utilisateurs terrestres.

On pourrait imaginer un scénario dans lequel une couverture de réseau cellulaire est médiocre

ou l’infrastructure de communication est endommagée à cause des événements catastro-

phiques. Dans de tels cas, les utilisateurs terrestres pourraient bénéficier de leur propre réseau

de communication dédié qui ne dépend pas d’une infrastructure cellulaire rigide. Ces réseaux

des drones pourraient être déployés rapidement, pourraient fournir des voies de communi-

cation de haute qualité et adapter leur organisation spatiale du mouvement aux utilisateurs

terrestres. Ces exigences présentent des défis principaux abordés dans cette thèse.

L’objectif de cette thèse est de développer un ensemble des drones capable d’établir un réseau

sans fil ad hoc entre les utilisateurs terrestres et d’adapter les liens distributifs et l’arrangement

spatial aux exigences et au mouvement des utilisateurs terrestres. À cette fin, nous utilisons les

drones à voilure fixe portables et légers. Ces plateformes peuvent être facilement et rapidement

déployées. D’un côté, les drones à voilure fixe ont une plus grande vitesse d’avancement et

la vie de la batterie plus élevée que des plateformes planant. De l’autre côté, les drones à

voilure fixe ont une dynamique monocycle avec la vitesse d’avancement limitée qui les rend

incapables de planer ou d’effectuer des virages serrés.

Le premier défi consiste à contourner la dynamique monocycle restreignante des drones à

voilure fixe. Certaines stratégies de contrôle ont été proposées et validées dans des simulations

en se servant de la distance moyenne entre la cible et le drone en tant que métrique de

performance. Cependant, outre les paramètres de distance, la dépense énergétique du vol

joue également un rôle important dans l’évaluation de la performance globale de l’avion.

Nous proposons une nouvelle méthodologie qui introduit une nouvelle mesure (la dépense
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Résumé

énergétique). Nous comparons des méthodes existantes sur un grand échantillon des modèles

de mouvement des cibles et nous présentons la comparaison des modes du mouvement cible

proposées entre la simulation et les expériences sur le terrain. Grâce à cette nouvelle méthode,

nous examinons la performance des stratégies de contrôle de l’état de l’art. Sur la base des

simulations et des expériences sur le terrain, nous choisissons la stratégie qui a la meilleure

performance selon nos critères de comparaison.

Le deuxième défi consiste dans le développement d’un algorithme de contrôle de la formation

qui permettra aux robots à voilure fixe de fournir une couverture de zone large et de relayer les

données dans un réseau sans fil ad hoc. Dans de telles applications, les drones à voilure fixe

doivent être en mesure de régler leur distance mutuelle. Dans ce contexte, leur maniabilité

réduite présente le défi de concevoir un algorithme de formation capable de régler cette

distance. Pour relever ce défi, nous présentons une stratégie de contrôle distribué qui ne

repose que sur des informations locales. Chaque drone a son propre agent virtuel. Il suit

cet agent virtuel en effectuant la stratégie de poursuite des cibles préalablement évaluées

et sélectionnées. Les règles de flocage sont mises en œuvre dans les interactions des agents

virtuels. Nous montrons, dans la simulation et dans des expériences sur le terrain avec une

équipe de drones à voilure fixe, qu’en utilisant cet algorithme de formation distribué, les

drones peuvent couvrir une zone en créant un réseau triangulaire équilatéral et peuvent

maintenir des liens de communication de bonne qualité avec des drones voisins.

Le troisième défi consiste à permettre la connectivité indépendante entre les agents mobiles

terrestres à l’aide de l’équipe des drones à voilure fixe. Nous concevons deux algorithmes

de contrôle distribué qui changent l’arrangement spatial et la topologie de l’interaction des

drones afin de maintenir la connectivité. Nous proposons une stratégie en fonction du po-

tentiel de champ qui adapte la distance entre les drones pour serrer et étaler la formation

des drones à voilure fixe. Dans la deuxième approche, basée sur la logique du marché, les

drones suppriment distributivement des liens d’interaction pour développer le graphe de

formation en graphe d’arbre. Dans les simulations et les expériences sur le terrain, nous

montrons que nos stratégies proposées maintiennent avec succès les connexions entre les

utilisateurs terrestres indépendants.

Globalement, cette thèse présente la synthèse des algorithmes distribués pour les drones à

voilure fixe avec le but d’établir et de maintenir des réseaux de communication sans fil ad hoc.

Mots clefs : réseaux de communication, drones à voilure fixe, le contrôle de la formation, le

flocage, connectivité maintenace, réseau sans fil ad hoc
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1.1. Motivation and challenges

1.1 Motivation and challenges

Being connected to a global communication network has become one of the imperatives. In

many situations we require to receive information about our environment and we communi-

cate information to other users. We exchange bulky data such as voice and video messages and

we require good coverage and high throughput channels. Our communication devices, smart

phones and computers, are connected over wired networks, cellular, wireless and satellite

networks.

Such communication networks depend on rigid, heavy infrastructure. In highly populated,

urban areas the coverage of these networks is satisfying but in mountainous, unpopulated

areas coverage can be poor. In some cases communication infrastructure can be damaged.

Natural disasters, such as forest fires or earthquakes, can heavily damage power lines, network

beacons and disable communication channels. Particularly in these cases it is very important

that human users, especially rescuers, military and police can communicate, can collect and

share information.

Figure 1.1: Illustration of search and rescue scenario; rescuers use aerial wireless network to
communicate

To leverage these problems, there is a need to develop an easy-portable system that can be

quickly deployed to establish dedicated wireless network for ground users. In this thesis we

propose distributed fixed wing drone team which can be used to establish wireless ad-hoc
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network. Each drone in the team carries a wireless beacon and establishes connection with

its intermediate neighbors. Drone team adapts its shape and topology to the ground users

motion. The drones are lightweight and network can be established over large areas within

minutes.

Among different designs of flying platforms we choose to implement formation control and

connectivity maintenance algorithms on fixed-wing drones. Such platforms have higher

battery life, they are prone to the wind disturbances, quickly deployable and can cover larger

areas. These features have high importance in a fast and reliable disaster response. On

the other hand, compared to a hovering platform, a fixed wing drone has more constrained

kinematics. Fixed-wing drone cannot hover or perform sharp turns. This kinematics constraint

presents a challenge for control and collective flight of such drone teams.

Another challenge is to design a decentralized formation algorithm for nonholonomic fixed-

wing drones that will allow them to regulate distances to their neighbors. Fixed-wing drones

should also adapt their spatial arrangement to the motion of ground users, they should follow

their motion, expand and shrink to keep ground users connected at all times. Since it is not

easy to predict the motion of ground users, they are considered as independent agents and

drones need to adapt reactively to their motion.

Having these challenges, this thesis answers following research questions:

• What is the best way for fixed wing drones to follow slow moving ground agents?

• How can fixed wing drones fly in a formation in which they control distance to neigh-

boring drones?

• How can fixed wing drones fly in a formation in which they keep independently moving

ground agents connected in a wireless ad-hoc network?

1.2 State of the art

This thesis deals with problems of target tracking, formation control, area coverage and

communication maintenance in multi-drone systems. In this section, the most relevant

literature in the aforementioned fields is presented.
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1.2. State of the art

1.2.1 Bridging unicycle kinematics - target tracking

To follow slow moving target or to fly above some predefined area, fixed-wing drones need to

perform flight patterns to slow down their overall ground speed. Fixed-wing drone kinematics

can be modeled as Dubin’s vehicles, unicycle vehicles with fixed forward speed [28]. In general,

this problem can be defined as target tracking problem, where target moves slower than the

drone. The target can be a ground agent or a virtual agent. In many current control strategies

for target tracking, researchers assume that the trajectory of the ground agent is known at

least to some extent. Dynamic programming and model predictive control is proposed by

[63] and [47] to determine a control strategy to track a ground agent. The aim of this control

strategy is to minimize the drone to ground agent distance using a priori knowledge about

the ground agent motion. In [9] a grid-based Markov Decision Process (MDP) is proposed to

determine the optimal drone path offline for different target speeds. In [7] authors assume

that target is performing Brownian motion and design a stochastic control algorithm to track

the moving target. In some applications, the motion of the target is not easy to predict. In

these circumstances, control strategies rely solely on the current relative position and relative

orientation between the ground agent and the drone. In [31], authors propose Lyapunov

Guidance Vector Field (LGVF) strategy to follow a target performing orbital flight path. In

[71] authors propose Bearing-only strategy that relies only on the relative bearing between

the drone and the ground agent. In [51] authors propose oscillatory control to produce left-

right (sinusoidal like) flight path while following the ground agent. To assess target strategies

performance, in [89, 12] authors compare target tracking strategies in simulation experiments

using only distance between the ground agent and the drone as a measure of target tracking

performance. These comparison studies do not take into account energy expenditure of the

proposed strategies despite being one of the main aspects of drone missions.

1.2.2 Formation control of drones

To establish aerial communication networks and distributively adapt communication link

quality, drones need to fly in a formation and need to cover an area with their communication

sensors. In multi-agent systems, strategies that solve area coverage problem are based on a)

computational geometry based methods, b) gradient based and potential field based methods.

Methods based on the computational geometry [21, 48, 54, 16, 50, 72] propose an approach

to the area coverage problem where convergence can be mathematically proven and the

performance of the algorithm can be formally analyzed. These methods rely on the prior

knowledge about the environment shape, important environment sectors that need to be
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covered and information about all agents’ positions.

On the other hand, gradient and potential field based methods allow more reactive behaviors

and better adaptation to the changing environment. These strategies share a similar approach

with variations in defining cost functions [66, 74]. Methods also vary in mapping between

environment observations and potential fields and amount of prior knowledge that is needed

to achieve distributed coverage. We focus on methods that rely only on local observations and

do not require prior knowledge about agents’ motion.

A method that relies only on local interactions with the environment and neighboring agents

is proposed by Howard et. al. [41]. Agents are represented as virtual particles that are subject

to virtual forces. The forces repel agents from their neighbors and from obstacles in the

environment. Using this simple reactive rules authors managed to deploy ground robots

in unknown indoor environment and maximized the covered area. This strategy has been

formalized within the framework of physicomometics, introduced by Spears et. al. [75] The

main idea of the physicomimetics framework is to define a trajectory of each agent by the

sum of virtual forces acting on its virtual mass. Forces are based only on a relative position

between agent and the environment. Methodologies that rely on following a gradient of virtual

potential fields and virtual forces are less conservative in approach then methods that rely

on computational geometry and locational optimization. These methods are lightweight in

computation, based only on few simple rules. They allow purely reactive approach and are

based only on local information. However, these methods suffer from oscillations of energy

between agents that can sometimes lead to unstable behaviors.

To leverage the problem with oscillations and formation stability, we further examine theoreti-

cal findings in potential field based formation control. A theoretical approach to formation

control has been proposed by [38] where authors apply potential field control algorithms to

make single integrator agents to arrange themselves on a circle and keep equal distances to

each other. In this approach they showed that formation can be reached without oscillations

in the agent position. A particularly interested work was presented by Olfati-Saber [60]. He

proposed flocking algorithm [67] based on the bounded attraction/repulsion forces and con-

sensus on velocity and he proved that if point mass, holonomic agents follow this control

algorithm, their equilibrium formation will be an equilateral triangular lattice.

Since fixed-wing drones are highly nonoholonomic vehicles we examine the literature in

formation control of nonoholonomic vehicles. The literature is mostly focused on unicycle

vehicles, in which turn rate and speed control robot’s position and orientation. In [55] showed

6



1.2. State of the art

a theoretical framework for achieving circular formations of unicycles in which they keep

equal distance to each other. In [82], authors proposed a method to control the flock of

unicycle vehicles. They achieved stable flocking in which agents only aligned their speed

and could fly in the coherent flock. If speed of the unicycle vehicles is bounded, a formation

control problem becomes more challenging. In [58] authors proposed geodesic control to

control a flock of unicycle vehicles with a fixed forward speed. They only showed a velocity

alignment but they could not control a spatial arrangement of vehicles. In [46] authors showed

in simulation and mathematical proved leader-follower formation of two unicycles with unit

speed and they extended their approach for n vehicles. The drawback of their approach is

that the whole formation always has to have an unit speed. In all presented approaches, a

formation algorithm for a team of unicycle vehicles with fixed forward speed, in which they

can adapt distances to their neighbors and average team speed has not yet been proposed.

1.2.3 Connectivity maintenance

Communication maintenance strategies are divided in two main groups, strategies that require

global network properties, such as knowledge about network topology and strategies that rely

on local observations within agents neighborhood, such as neighbor positions and communi-

cation link properties. Methods that rely on global properties of the network are mainly based

on the graph theory [34] and they use mathematical formalisms such as a weighted Laplacian

matrix, a connectivity matrix, Fiedler values to examine connectivity properties and to design

control algorithms. The goal is to detect possible violations of the connectivity or to improve

communication quality. In [56] authors presented an approach which relies on estimates of

the network topology which provides the agent with a rough picture of the network structure.

Furthermore, they use gossip algorithms [15] and the distributed market-based control [19]

that allow link deletions without violating connectivity. This paper also investigates practical

issues with implementing this methodology on a real system of a homogeneous team of

ground robots. Similar approach was presented by Stump et. al. [79] in which authors devel-

oped an algorithm to control a team of robots to maintain the communication bridge between

stationary robot in the environment with obstacles. Their approach relies on calculating a

Fiedler value of the weighted Laplacian matrix which describes communication interactions

between all robots and they use a k-connectivity matrix to detect which robots can interact

through k or less intermediary robots. In approach presented by Cortez et. al. [22], authors are

defining motion constraints of agents in a heterogeneous group consisted of sensing agents

and relay nodes. By using distance based connectivity properties of the network, they define

the control of relay nodes to extend and maintain communication with sensing nodes. The
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main advantages of presented methods are the fact that they provide valuable insight in the

topology of the network and allow the usage of the known distributed search algorithms on

graphs to identify communication bottlenecks in the network. The main disadvantage is that

they rely on a global property of the network which requires extensive communication to

spread information about the topology to all agents in the network.

Strategies that rely on local measurements of the communication links quality are based on

the potential field based control or the gradient-based control. They use local observations

to derive potentials and gradient based control to guide the agents to stay connected with

their neighbors. Usually authors propose unbouned potential field functions to maintain a

communication link while performing formation control tasks. In [25], Dimarogonas et. al.

proposed a method to maintain all the links in already established communication network by

defining a bounded potential field function. The control scheme (i) maintains the edges of the

graph which were set in initial conditions and (ii) drives agents to a common, known position

in state space. In the paper proposed by Gil et. al. [33], the approach to maintain connectivity

using gradient based control and local measurements has been extended to a heterogenous

group of indoor flying robots and ground sensors. Flying robots are used in this method

to improve the communication quality between static ground nodes. Their cost function is

defined by Signal to Interference Ratio between neighboring robots and control algorithm

follows distributed gradient descent on the cost function. The approach is demonstrated in

reality using few static nodes and 3-5 quadrotors in an indoor experiment. Another application

of maintaining communication in heterogenous systems using a gradient based approach

is proposed by Hsieh et. al. [42]. Authors propose aerial-ground robots network where

both groups of robots perform a gradient based control to maintain communication. The

authors assume that the network topology of the ground robots is preserved throughout the

experiment. In [83], Tardioli et. al. used a virtual forces approach to maintain connectivity

between a fixed node and ground robots. They used spring forces model to maintain fixed

topology while performing an exploration task. These strategies are more suited in applications

where a network topology changes rapidly, in heterogeneous swarms where agents differ in

mobility and controllability and agents should react in a reactive mode to the changes in the

environment. A communication maintenance problem becomes extremely challenging if the

communication should be maintained between independently moving agents. Such problem

has been addressed in [32] where authors assume that they can only influence position of the

robotic relay nodes and cannot control the motion of sensing nodes. They collect the data

of all nodes in the network (position) and they calculate optimal position of robotic nodes

to keep sensor nodes connected. The drawback of this approach is that it is centralized and
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extremely computationally heavy approach.

1.3 Main contributions and thesis organization

This thesis proposes novel solutions for formation control and connectivity maintenance in

ground-aerial wireless networks. Taking into account constraints of fixed-wing robots and

independent motion of ground users we develop reactive formation algorithms in which

drones adapt distance to their neighbors, adapt communication link quality and change

topology to maintain connectivity between ground users. We validate all our algorithms in

simulation and on real drones.

Since fixed wing drones have to maintain a minimal forward speed to remain airborne, the

question is how to slow down these drones and how to make them follow slow moving targets.

Possible solutions could be to make them circle around the desired waypoints or to perform a

ribbon-like motion. The question is: which of these two strategies is better for our application

and what should be criteria to compare such strategies. Therefore, an evaluation methodology

for target tracking strategies is developed. A new measure, energy expenditure of the flight

is introduced. We select three strategies and compare them in low wind scenarios for three

types of target motion, both in simulation and in field experiments. In order to make a fair

comparison between these strategies that have different parameters, we run a multi-objective

optimization (MOO) experiment to find the optimal parameter configuration for each strategy

in the comparison experiments. The objectives to be optimized are the average distance to

the ground agent and the energy expenditure of the flight. Using this technique, we obtain

Pareto fronts for each strategy and each comparison case, and use them to examine whether

one strategy dominates the others when all strategies have optimal parameter settings. We

choose two extreme sets of control parameters and conduct field experiments to compare to

the simulation results. This resulted in an evaluation framework that allowed us to choose an

energy efficient strategy that is also robust in field experiments.

Second research question was to examine how can fixed wing drones fly in a formation in

which they can control distance to their neighbors. Existing approaches do not address the

formation control for nonholonomic unicycle robots with fixed forward speed for controlling

the distance between their neighbors. We propose a formation algorithm, where drones

rely on the local information communicated from their single hop (or direct) neighbors. To

guarantee that the forward speed of the drones are always greater than the stall speed, a virtual

agent is defined for every drone and drones are controlled to continuously follow and circle
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around their virtual agents. Drones emulate the motion of the virtual agent and follow it by

performing spiraling motion using Lyapunov Guidance Vector Field algorithm [31]. Formation

algorithm is then implemented between virtual agents. To map the formation of the virtual

agents to the formation of drones, drones also synchronize their phase angles. We test the

performance of our method in simulation and in field experiments.

As the third contribution, it is studied how fixed-wing drone formation serves as a connectivity

relay between independently moving ground agents. We proposed two approaches to solve

this problem. In the first approach, each drone receives information from independently

moving agents, and calculates desired distance that it should keep with its neighbors. This

potential field based method allows the network of flying robots to stretch and compress

to the motion of the independently moving ground agents. But such structure stretches

symmetrically and at some point if agents move far apart it will not be able to keep the

connectivity. Therefore, we propose another method in which drones negotiate which links

they should break in order to transform their interaction network to a tree graph. This method

requires more communication between agents but it also allows much longer multi-hop

communication links between independently moving agents.

The thesis consists of 5 chapters. In the first chapter, motivation, main challenges of this thesis

and literature review are presented . Second chapter deals with evaluation of target tracking

strategies to bridge unicycle dynamics of fixed-wing drones. In the third chapter, a formation

algorithm for distance adaptation and area coverage fixed wing robots is presented. Fourth

chapter introduces connectivity maintenance algorithms in ground-aerial swarms. In the fifth

chapter, the concluding remarks and future directions are given. In the Appendix, materials

used in field experiments and simulation and emulation platforms are described.

1.4 Publications

During the thesis work, following papers have been published:

• Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey, J. C., & Floreano, D.

(2011, September). Reynolds flocking in reality with fixed-wing robots: communica-

tion range vs. maximum turning rate. In Intelligent Robots and Systems (IROS), 2011

IEEE/RSJ International Conference on (pp. 5015-5020). IEEE.

• Varga, M., Zufferey, J. C., Heitz, G. H. M., & Floreano, D. (2015). Evaluation of control

strategies for fixed-wing drones following slow-moving ground agents. Robotics and
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2.1. Introduction

2.1 Introduction

Fixed wing drones have been extensively used to track moving targets on the ground [84, 26, 64].

Since the speed of the target is usually slower than the speed of the drone, drones have to

perform manoeuvres such as spiralling or sinusoidal motion along a target’s trajectory to

stay in the close vicinity of the target. When choosing the appropriate strategy, one is usually

concerned with how well the drone tracks the target. In [63, 47, 9] authors used the distance

between drone and ground agent positions as the performance metric they wished to optimize.

Energy performance of flight has not yet been included in any comparison of strategies,

despite the fact that it plays a major role in determining flight duration. Energy performance is

related to the type of trajectory that the drone performs while tracking a ground agent. While

a fixed wing drone performs sinusoidal or spiral like motion, it has to change the bank angle

to turn, which lowers the lift force. If we assume that the drone is performing level flight, to

maintain the altitude the drone has to apply an additional thrust to counteract the reduction

in the lift force. This additional thrust increases the energy consumption of the flight. Hence

by measuring the turn rate of the drone while performing level flight, the additional energy

required to perform a given manoeuvre is estimated.

Besides introducing a new metric, to improve the comparison of the strategies an experimental

method should be carefully designed to capture most of the differences in performance.

In the literature, strategies are usually compared in test cases where the target performs a

straight line motion pattern [89]. Such experimental design does not allow one to identify

whether the performance of the strategies varies with the change in the target motion patterns.

Furthermore, each control strategy that is being compared has different parameters that can

be tuned in order to modify the performance of the strategy. In [89, 71] authors set parameters

to fixed values before the experiment and they do not tune these parameters to the same

objectives. Lastly, comparisons proposed in the literature [89, 71, 12] are conducted only in

simulation. Usually simulation experiments cannot capture performance degradation due to

sensing and actuation noise from their simplified mathematical models.

In this chapter, we introduce a new measure: energy expenditure of the flight, and we propose a

new methodology to compare target tracking strategies. We choose to compare three strategies

following our experimental methodology. In the first strategy, the Lyapunov Guidance Vector

Field (LGVF) strategy proposed by [31], the drone follows a ground agent by performing an

orbital flight path. The second strategy, the Bearing-only strategy proposed by [71], relies only

on the relative bearing between the drone and the ground agent and the drone performs a
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combination of circular and straight fight paths. In the third strategy, the oscillatory control

strategy proposed by [51], the drone follows a left-right (sinusoidal like) flight path while

following the ground agent.

We design comparison experiments in low wind scenarios for three types of ground agent

motion patterns, both in simulation and in field experiments. Each strategy has one or

two control parameters that influence target tracking performance. In order to make a fair

comparison between these strategies that have different parameters, we run a multi-objective

optimization (MOO) experiment to find the optimal parameter configuration for each strategy

in the comparison experiments. The objectives to be optimized are the average distance to

the ground agent and the energy expenditure of the flight. Using this technique, we obtain

Pareto fronts for each strategy and each comparison case, and use them to examine whether

one strategy dominates the others when all strategies have optimal parameter settings. We

choose two extreme sets of control parameters and conduct field experiments to compare to

the simulation results.

2.2 Target tracking strategies

In this section an overview of target tracking strategies is presented. These target tracking

strategies will be later compared using our methodology.

2.2.1 Lyapunov Guidance Vector Field (LGVF) strategy

The LGVF strategy, proposed by [31], determines a commanded turn rate of the drone based

on the distance between the ground agent and the drone by constructing a circular vector field

around the position of the ground agent. The drone kinematic model relative to the motion of

the ground agent is given by:

ẋdr one = vcos(φ)− ẋg a

ẏdr one = v si n(φ)− ẏ g a

φ̇=ω

(2.1)

where v is drone forward speed, ω is drone turn rate, φ is drone orientation and [xg a , y g a]

is ground agent position. Drone velocity vector is calculated using Lyapunov vector field.

Lyapunov function is defined as:

V (r ) = (r 2 − r 2
d )2 (2.2)
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Figure 2.1: Illustration of the LGVF strategy (a) graphical interpretation of the LGVF strategy
(b) the drone’s trajectory while tracking the ground agent, va = 0.3vd

where r = ||pdr one −pg a || is L2 norm and rd is a desired vector field radius. The time derivative

of Lyapunov function V is nonpositive if desired drone relative velocity [ẋd , ẏd ] is chosen by a

guidance vector field given by:

⎡
⎣ẋd

ẏd

⎤
⎦=− −v

r (r 2 + r 2
d )

⎡
⎣(r 2 − r 2

d ) 2r rd

−2r rd (r 2 − r 2
d )

⎤
⎦

⎡
⎣xdr one

ydr one

⎤
⎦ (2.3)

The field guides the drone to perform a circular loitering pattern with radius rd if the ground

agent is still. On the other hand, if the ground agent starts to move, the vector field also moves

with the agent and guides the drone to perform an orbital motion along the trajectory of the

ground agent, as shown in Fig. 3.1.

2.2.2 Bearing-only strategy

The Bearing-only strategy, proposed by [71], determines commanded turn rate of the drone

using only the relative bearing between the ground agent and the drone. It utilizes a simple

control strategy using sliding mode control. If drone is ahead of the ground agent, it turns back

with the maximum turn rate. If the drone is behind the ground agent, it adjusts its heading

vector to align to the distance vector between drone and ground agent. Formally, if we define

a distance vector, d and a drone orientation vector as pr , then the control output (turn rate) is
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determined using following function:

|u| =
⎧⎨
⎩

ωmax f (d,pr ) if |d | �= 0

0 otherwise
(2.4)

Generally, function f(d,pr ), is defined as:

f (d,pr ) =

⎧⎪⎪⎨
⎪⎪⎩

0 β= 0

1 0 <β≤π

−1 π<β< 2π

(2.5)

where β is the angle between the distance vector and the drone orientation vector, always

measured counterclockwise from the distance vector. Graphical interpretation of the control

strategy, together with resulting behavior of the drone is shown in Fig. 2.2.
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Figure 2.2: Illustration of the Bearing-only strategy (a) graphical interpretation of the bearing-
only startegy (b) the drone’s trajectory while tracking the ground agent, va = 0.3vd

2.2.3 Oscillatory control strategy

The Oscillatory Control Strategy, introduced by [51], generates a sinusoidal (left-right) motion

of the drone along ground agent’s trajectory. To generate sinusoidal motion of the drone along
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2.2. Target tracking strategies

the ground agent’s trajectory, the desired turn rate is defined as a sinusoidal function given by:

u(t ) = Asi n(φ(t ))+B +C si n(2φ(t ))

φ̇(t ) =ω0 +kφ(φ(t )−φ0)
(2.6)

where ω0 is angular frequency of the desired turn rate and kΦ is phase gain.

The task of the tracking controller is to determine the parameters A,B ,C that will guide the

drone to align its average speed and position with the ground agent speed and position. The

center of oscillation (CO) of the drone’s trajectory is defined as an integral over the drone’s

trajectory. A virtual target is on the distance e from the CO and lies on the line which connects

drone’s position and CO.

A =−ke (e∗ −e)cos(α)−kv (vCO − va)

B = kαα+ vCO
si n(α)

e − va
si n(θ)

e

C = 0

(2.7)

where kv is a speed gain of the control law, vCO is velocity of the CO, α is angle between

CO and the target, measured from the virtual target and ke is the distance gain. We found

in preliminary simulation experiments that these two gains have a major influence on the

performance and convergence of the oscillatory tracking strategy. The principles of the

tracking law are depicted in Fig. 2.3.
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Figure 2.3: Illustration of the oscillatory strategy (a) graphical interpretation of the oscillatory
strategy (b) the drone’s trajectory while tracking the target, va = 0.3vd
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2.3 Evaluation method

In this section we describe the novel experimental methodology to evaluate the target tracking

strategies. We explain our choice of motion patterns and control parameters used to compare

the strategies in simulation and in reality.

2.3.1 Performance measures

In this study we compare strategies for diverse ground agent motion patterns. We compare

strategies on two measures: average distance to the ground agent and energy consumption.

Average distance is a commonly used measure in the literature to asses the performance of

target tracking strategies. This measure ηdi st ance shows how close, on average, the drone is to

the ground agent relative to its minimum turning radius. The measure is defined by averaging

the distance between the ground agent and the drone over the entire flight interval.

ηdi st ance =
∑Ns

n=1 ||pdr one −pg a ||
Ns

· 1

Rmi n
, T f li g ht = Ns ·Ts (2.8)

where pdr one is the drone’s position vector , pg a is the ground agent’s position vector, Rmi n is

the drone’s minimum turning radius, Ts is a sample time and Ns is the number of algorithm

iterations.

The second measure that we introduce in this study quantifies the energy consumption of

the drone when it is performing complex trajectories. In our energy model, we assume that

wind does not disturb the motion of the drone. When performing turns, the drone needs

an additional thrust to maintain the desired altitude. According to [78] the additional power

required while performing coordinated turns is proportional to the square of the turn rate.

The energy is determined by integrating the power over the flight interval:

Etur n =
∫T f li g ht

0
Ptur n(t )d t (2.9)

where Ptur n = f (ω2) is the propeller power required to perform the coordinated turn defined
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2.3. Evaluation method

as:

Ptur n = T · v

ηp
(2.10)

where ηp is the efficiency of the propeller, v is the forward speed of the drone, and T is

the thrust force. In order to determine the thrust force, T, we examine the aerodynamic

equilibrium, where the thrust force should be equal to the drag force to maintain constant

airspeed. Additionally, the lift component should be equal to the weight of the aircraft to

maintain altitude. The thrust force is a square function of the turn rate T (t) = f (ω2). The

relative energy consumption is defined as:

ηener g y =
(|Etur n −Estr ai g ht |)

Estr ai g ht
·100[%] (2.11)

where Estr ai g ht is the energy consumption of a level straight flight and Etur n is the energy

consumption of the drone while performing trajectory tracking.

2.3.2 Control parameter optimization

Tracking performance is influenced by the choice of the values of the control parameters. In

order to make a fair comparison we need to determine optimal control parameter values for

each strategy. We have two objectives, to minimize distance and energy measure. We use

multi-objective optimization and optimize the control parameters for each comparison case.

We choose standard a posteriori evolutionary algorithm, the NSGA II optimization algorithm

[24] to optimize the problem defined as:

Minimize ηdi st ance (x) and ηener g y (x)

subject to x ∈ [xmi n , xmax ]

(2.12)

where x is a range of control parameters for each strategy. We run each optimization exper-

iment for a population size of 100 and optimization is terminated when the spread of the

Pareto front over 100 generations is lower than 10e −4.

The choice of the parameter range is application driven. It is determined by a WIFI range
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Chapter 2. Aerial target tracking

that provides satisfying throughput for image transfer and by the range of visual overview

of the ground agent. In case of the LGVF strategy, an important control parameter is the

standoff radius rd : the distance that the drone should keep from the ground agent. We set

x = rd ∈ [Rmi n ,3Rmi n]. For the Bearing-only strategy, we can tune the maximum value of the

turn rate of the sliding mode controller as a control parameter. Therefore we set the range

of the optimization variable to x = ωmax ∈ [0.1 vd
Rmi n

, vd
Rmi n

]. For the Oscillatory strategy, we

have two control parameters: speed gain kv and distance gain ke . We set the range for those

parameters to kv ∈ [0.01,1] and ke ∈ [0.01,1].

2.3.3 Target motion patterns

For each control parameter we run simulation experiments for various motion patterns of

ground agents, and we measure the drone’s average distance and energy consumption. We

also define maximum distance between ground agent and the drone, which is defined by the

WiFi range. If the distance between the ground agent and the drone is greater than maximum

distance, drone does not receive position information from the ground agent and the ground

agent is considered as lost. Therefore, in simulation experiments, if the drone reaches distance

to the ground agent which is greater than the maximum distance to the ground agent, we

assign a maximum distance to this experiment in optimization algorithm. In Figure 2.4 we

present the repertoire of motion patterns used in these simulation experiments. Since the

range of potential motion patterns is large, we are restricting ourselves to motion patterns

that occur in the most prominent applications. We are therefore testing the performance of

the strategies when ground agents are moving in a straight line with speeds that are 0.1 to

0.9 times the maximum forward speed of the fixed wing drone (vd ). For the circular motion,

the turning radius is set to 5Rmi n , where Rmi n is the minimum turning radius of the drone.

We choose the turning radius of 5Rmi n which will allow us to repeat the field experiment

multiple times during one battery lifetime of the drone. Also, we choose the value which is in

between the turning radius of Rmi n (similar to the motion on the spot) and turning radius of

10Rmi n (similar to straight line motion). To examine the tracking performance in following

live subjects, we model ground agent behavior as a Levy walk [88] since in [87, 29] it has been

shown that some groups of animals (albatrosses, reindeer, fish, humans [68, 17] ) exhibit

Levy walking. We set the ground agent speed to a constant value in order to determine the

robustness of the strategies for different ground agent motion patterns. Secondly, we run

experiments in which we examine the strategy’s robustness when the ground agent speed is

increasing linearly. Simulation results presented in this figure are normalized to the minimum

turning radius of the drone, Rmi n and the forward speed of the drone, vd . We adopt a scale-
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less approach to highlight the generality of our results for any arbitrary unicycle vehicle with

limited turning curvature and fixed forward speed.

time

0.5vr

Target speedMotion pattern

time

0.5vr

Target speedMotion pattern

time

0.5vr

Target speedMotion pattern

Target speedMotion pattern

Target speedMotion pattern

Target speedMotion pattern

time

vr

time

vr

time

vr

a) straight motion, constant speed

c) circle motion, constant speed

e) Levy motion, constant speed

b) straight motion, variable speed

d) circle motion, variable speed

f) Levy motion, variable speed

Figure 2.4: Repertoire of ground agent motion patterns used in simulation, to determine the
optimal parameters of the target tracking strategies.

2.4 Experiments and results

We use Pareto fronts to examine the relative performance of the strategies in simulation. If a

Pareto front of one strategy dominates the Pareto front of the other strategies, we can conclude

that for a particular comparison case, that strategy performs better than the others for the
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optimal control parameters. Simulation experiments are used as a benchmark to select two

control parameter sets and test performance in the field tests. The outdoor experiments

consist of deploying a fixed wing drone above a test field with a radius of 300m from the launch

point of the drone Fig. (2.5b).

The technical properties of the platform are given in [52]. We use Swinglet platforms [80],

which have 80cm wing span, total mass less than 0.5kg and the flight time is around 30 minutes.

The control hardware is comprised of two parts: a low level autopilot that runs real-time low

level control, and a Gumstix Linux board that runs the target tracking strategy. Low level

controllers consist of several PID controllers in a 2-level cascade structure. The control inputs

to the low level controllers are the desired airspeed, altitude and turn rate, and the control

outputs are the thrust and the angle of the elevons (ailerons and elevator). The target tracking

control strategy sets the turn rate of the low level controllers Fig. (2.5a). Altitude and airspeed

are kept constant.

In each outdoor experiment, the drone tracks a ground agent whose trajectory is generated on

the platform during the flight. In field tests we run the experiments in 3 comparison cases:

a) a straight line motion with the speed of the ground agent set to va = 0.3vd , b) a curved

motion pattern with the radius of curvature set to rd = 5Rmi n and speed set to va = 0.3vd and

c) a Levy motion pattern with the speed set to va = 0.3vd . We run additional optimization

experiments in simulation for these comparison cases. We conduct experiments in two

extreme scenarios, a) we choose control parameters (among optimal parameters obtained

in the NSGA optimization) that give higher relevance to minimizing distance performance

and we also choose parameters that give higher relevance to minimizing the relative energy

consumption. The starting point of the ground agent is the same in each experiment and the

drone starts tracking from an arbitrary point that is within 30m from the initial ground agent

position. The choice of parameters for the outdoor experiments is determined by the size of

the testing field and is limited by the duration of the experiments.

2.4.1 Simulation results

This section presents the main results obtained in the simulation experiments on a kinematic

model of the fixed-wing drone, as well as the results of the outdoor experiments.

Figure 2.6 shows the Pareto fronts of the distance measure vs. energy measure for the proposed

strategies. Control parameters are set to the values obtained in the NSGA II optimization.

Results of distance and energy performance closer to the origin of the figure indicate that this
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a) Testbed (Flying platform + control hardware) b) Testing field

High level 
control

Target tracking
strategies

Low level 
control

PID control

API

Altitude

Air speed

Turn rate

Sensors

Gumstix Overo

Autopilot

Figure 2.5: Experimental setup a) controller system structure - low level control is running on
PIC microcontroller based platform and high-level control is running on Gumstix microcom-
puter. Both units are communicating over a serial link, and a dedicated API is programmed to
exchange control outputs and sensor information b) testing field

particular strategy has better performance. The LGVF strategy showed average performance

for straight and circular ground agent motion patterns and the best performance for Levy

motion patterns. In the LGVF strategy, a trajectory of the drone is guided by a smooth circular

vector field centered at ground agent’s position. This algorithm gives a commanded direction

of motion to the drone, which is subtracted from the current orientation of the drone. The

error between the current and commanded orientation of the drone is fed into a PD controller

to obtain turn rate for the drone. In this way, there are no abrupt changes in the turn rate

values and the drone smoothly changes the direction of motion. This results in better tracking

performance, according to both the energy and distance measures, than the Bearing only

strategy. This strategy shows the worst performance in all simulation test cases. The reason

for this discrepancy in performance can be explained by the “smoothness“ of control: the

Bearing-only strategy uses a sliding mode control to establish the desired direction of motion

of the drone to the desired turn rate. In this sliding mode control it can only switch between

two values of the turn rate. This leads to a poor energy performance.

The oscillatory strategy has the best performance for the straight and circular ground agent

motion patterns. This can be explained by the fact that the drone has to perform smaller bank

angles while tracking the ground agent with higher speeds. However, for Levy walk motion
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Chapter 2. Aerial target tracking

patterns, no optimal parameters were found during the optimization hence in Figure 2.6 c,f.

only results for LGVF and the Bearing only strategy are presented.

To better explain the results of the optimization algorithm for the oscillatory strategy, we run

additional simulation experiments to visualize for which pairs of control parameters: distance

gain ke and speed gain kv , the oscillatory strategy provides stable tracking behavior. Under

experiments with stable tracking we consider the experiments in which distance to the ground

agent is less than 10Rmi n , where Rmi n is the minimum turning radius of the drone. Similarly,

under experiments with non-stable tracking we consider the experiments in which distance

to the ground agent is more than 10Rmi n . We run the simulations for all ground agent motion

patterns for each combination of control parameters. In Figure 2.7 we show the combinations

of control parameters for which oscillatory control showed stable behavior (indicated by the

black dot).

It can be seen in the simulation results that the oscillatory strategy provides stable behavior

for most combinations of speed and distance gains only for straight line following and circular

patterns with constant speed (Fig. 2.7 a,b). In contrast, for circular and random ground agent

patterns with variable speed (Figure 2.7 d,e,f), the stability region is considerably reduced.

Although this strategy showed the best performance for straight and circular patterns, we

can observe that stability of the method is highly dependant on the ground agent trajectory.

We choose not to conduct further experiments for the oscillatory strategy due to the lack of

stability in simulation. It is to be expected that if the strategy is not robust in simulation, its

robustness will not improve in real experiments. For this reason, for outdoor experiments we

consider only the bearing-only and LGVF strategies.

2.4.2 Field results

We examine three comparison cases in the field in which the drone is following a circular,

straight and Levy motion pattern of the ground agent. The ground agent is moving with

constant speed equal to 30% of the drone’s forward speed. The results of the optimization

experiments for each comparison case are given in Figure 2.8. For each comparison case in

the field we choose two different optimal control parameter values and we run five runs for

each controller parameter value. The results of the flight experiments for the LGVF strategy

are presented in Figure 2.10 together with the drone trajectories presented in Figure 2.9. The

results from flight experiments support the results obtained in simulation, with a relative

deviation of less than 20%. This deviation is thought to occur due to the aerodynamic effects

and disturbances that were not modeled in the simplified simulation model.
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Figure 2.6: Results of the simulation experiments for the LGVF, Bearing-only and Oscillatory
strategy for diverse motion patterns of ground agents. The distance measure is the average
distance between the drone and the ground agent, normalized to the minimum turn radius of
the drone. The energy consumption measure is the relative energy consumption compared to
that of the level flight, given in %. The LGVF strategy outperforms the Bearing-only strategy
for all motion patterns. Oscillatory strategy performs the best for straight and circle motion
patterns. However, for Levy walk motion patterns, no optimal parameters were found during
optimization.
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Figure 2.7: Simulation results for the stability analysis of the oscillatory control strategy. The
set of parameters for which oscillatory strategy leads to stable behavior is plotted with black
dots. The strategy shows low robustness to variable ground agent motion patterns and speeds.
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Figure 2.8: Results of the optimization experiments for the field experiment comparison cases.
We choose two sets of parameters obtained in the optimization for our field experiments.
We choose parameters that give higher relevance to the energy performance objective and
parameters that give higher relevance to the distance objective (upper and lower ends of
Pareto fronts).

For the bearing-only approach we run experiments only for the first comparison case (straight

motion pattern of the ground agent with its speed set to va = 0.3vd ). The results in the field

show that bearing only strategy performs worse in field experiments than LGVF strategy,

which supports our conclusion from simulation experiments. The results are shown in figure

2.11. In this experiment a chattering phenomenon is observed. The suspected cause of this

phenomenon is the sliding mode control used in this strategy. The output of the bearing only

control is determined by the angle between the course vector of the drone and the vector that

points from the ground agent position to the drone position (distance vector). If the angle

between these two vectors is (0,π] the output of the controller is the maximum turn rate, ωmax .

If the angle between these two vectors is (π,2π] the output of the controller is −ωmax (Eq. 2.4,

Eq. 2.5). Under such sliding mode control, some chattering occurs due to the small variations

around zero angle between vectors, which causes large variations in the controller output.

In general, the phenomena of chattering in sliding mode control is a well known problem

that can be solved by adding a linear function in the sliding mode controller function [86].

Authors of the bearing-only strategy considered and solved the chattering problem in the

case when the angle between the distance vector and course of the drone is around zero.

When the angle between the distance vector and the course of the drone is close to π or −π, a

small disturbance in outdoor experiments can cause a change in the relative angle from −π
to π or vice versa. This sudden change, caused by a discontinuity in the value of the relative

angle between the distance vector and the course of the drone causes sudden changes in the

commanded turn rate from −ωmax to ωmax or vice versa. This causes an oscillation of the

output of the controller. These oscillations do not appear in simulations since we consider an

ideal kinematic model of the drone and do not take into the account many aerodynamic effects
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Figure 2.9: Drone trajectories obtained in outdoor experiments for three ground agent motion
patterns for LGVF strategy. The ground agent’s speed is set to 0.3vd . The starting point of the
ground agent trajectory is presented with a blue dot and the end point is presented with a
green dot.
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Figure 2.10: Results of outdoor flight tests for two sets of controller parameters for LGVF
strategy. Experimental results obtained with the first controller parameter set (higher relevance
to the energy performance objective) are within green rectangles and the results obtained with
the second control parameter set (higher relevance to the distance objective) are within blue
rectangles. The experimental results support the results from simulation using the simplified
platform model.
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Figure 2.11: Results of outdoor flight tests for bearing-only strategy compared to results of the
field experiments for LGVF strategy. The trajectory of the drone is shown in a). In b) we show
the results of three experiments in the field in which chattering did not disrupt significantly
the drone’s flight. The experimental results support the results from simulation using the
simplified platform model.
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Figure 2.12: Experimental results for the bearing-only strategy, a) controller output (turn rate)
b) angle between drone course and distance vector. In the outdoor experiments, the drone is
following a ground agent performing straight line motion, va = 0.3vd .
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and disturbances. Regardless of the control architecture of the autopilot, these oscillations

cause potentially unstable behavior. Unstable behavior was detected in tests in which the

drone was required to perform more aggressive maneuvers (higher bank angles). Therefore,

further tests on more aggressive trajectories were not conducted.

2.4.3 Robustness to wind - simulation experiments

Simulation experiments are conducted to examine the effect of wind in the LGVF and bearing-

only strategies, for four directions of wind and wind speeds ranging from 0.1−0.6 times of

the forward speed of the drone. The maximum wind speed is chosen based on the maximum

allowable wind for fixed wing platforms [13]. In these experiments we are interested in the

effect of wind so we set the ground agent motion to straight line motion with a low speed set

to 0.3vd .

0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

120

A
ve

ra
ge

 p
ro

xi
m

it
y 

[r
el

at
iv

e 
to

 n
o−

w
in

d]
[%

]

 

 

0

π/2

π

3π/2

0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

120

 

 

0

π/2

π

3π/2

a) LGVF strategy b) Bearing only strategy

Vw/Vr

A
ve

ra
ge

 p
ro

xi
m

it
y 

[r
el

at
iv

e 
to

 n
o−

w
in

d]
[%

]

Vw/Vr

Figure 2.13: Simulation results of experiments that examine robustness to constant wind. We
run experiments for four different orientations between target motion and wind direction. The
LGVF strategy shows better robustness to the constant wind than the bearing-only strategy

Results for the Bearing-only control and the LGVF control under various wind conditions are

presented in Figure 2.13. These results show that the Bearing-only control has stable behavior

in all wind conditions but the tracking error increases with higher wind speeds. In addition,

for higher wind speeds the deviation from the straight ground agent trajectory is more than

30% compared to the no wind case. In contrast, the LGVF strategy has better performance

under wind, with a deviation of less than 20% . We postulate that this is due to the control

algorithm’s ability to compensate for the wind disturbances.
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Chapter 2. Aerial target tracking

2.4.4 Robustness to wind - field experiments

The outdoor experiments in changing wind conditions are conducted for only the LGVF

strategy, which showed stable performance both in simulation and in field experiments

regardless of the ground agent motion pattern. The aim was to investigate the effectiveness of

the control strategy in handling wind in real experiments. We ran experiments for different

wind conditions, for low and high wind speed. Although wind conditions can be simulated

and robustness can be tested in simulation, in field experiments our aim is to determine

whether non-modeled aerodynamic effects have an influence on the performance in windy

conditions. We run a set of experiments in which we change the orientation of the target’s

straight motion pattern relative to the wind direction. For each target orientation we run 5

experiments.
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Figure 2.14: Results of outdoor experiments in varying wind conditions. Experiments in low
constant wind conditions (2 m/s) deviate less than 10% from the results obtained in simulation
for the same wind speed. Experiments in high wind conditions also show good agreement
with simulation results.

Figure 2.14 presents the results of mean relative distance to the target over the whole flight

time (normalized to the simulated no-wind case) for both extreme wind tests. Results suggest

that the LGVF strategy is robust to changing wind conditions. In the low-wind case (2m/s),

results match the values obtained in simulation. We use the mean distance and the standard

deviation to compare experimental results with simulation results. We can observe that the

deviation between simulation results and experimental results is within a few percent and

overall mean relative distance in experiments is lower than 5% which also endorses the fact

that the LGVF strategy is robust to constant wind. In the high wind case, the field experiments

for the LGVF strategy show good agreement with simulation experiments. The mean value
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2.5. Conclusion

of the relative distance to the target in the field experiments deviates from the simulation

experiments within a 5% range.

2.5 Conclusion

By using only a distance measure to assess the performance of the target tracking strategies,

we cannot reach conclusions about the energy performance of the strategies which plays an

important role in field applications. Introducing a new measure, energy expenditure, allows us

to identify not only which strategy will allow the drone to track the ground agent with minimal

distance but also which strategy will do so by using the least energy. We use a systematic

approach to perform a fair comparison of the strategies. We set parameters of the strategies

to the optimal values obtained in optimization, which had minimal energy and distance as

objectives, and then we compare the Pareto fronts obtained in the optimization to assess

which strategy performs the best.

Out of the three strategies compared in this study, results of the simulation and field exper-

iments showed that both good distance and energy performance can be achieved with the

Lyapunov Guidance Vector Field (LGVF) strategy. In Table 2.15 we show the results of our

comparison method for all ground agent motion patterns for simulation and field experi-

ments. We give grades for the performance of each strategy. If a strategy performs the best

according to our measure, it gets the maximum grade 3. If a strategy was not tested due to

the unstable behavior, the grade is not assigned (N/A). The LGVF strategy has the highest

cumulative grade, since its performance does not significantly change with variation in the

ground agent motion patterns and in field experiments. The bearing only control showed

good robustness to changing ground agent motion patterns but it showed problems with

chatter in the field experiments. We also noticed that the oscillatory control strategy, although

it outperformed other strategies for circular and straight line motion, failed in following the

ground agent performing a Levy walk motion pattern.

To conclude our comparison and examine the performance of the LGVF strategy in wind

conditions, we ran an additional set of experiments in windy conditions. We show results

of the comparison based on the distance measured in low and high wind conditions for the

LGVF strategy. In simulation and in field experiments we show that the LGVF compensates

wind disturbance well, the relative difference in distance measure compared to the no-wind

experiment is less than 20%. It also compensates wind disturbances better than the bearing

only strategy.
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 LGVF Bearing only Oscillatory 
         

Simulation 2 2 3 1 1 2 3 3 

Field exp. 3 3 3 2  N/A  N/A  N/A  N/A
 N/A

 N/A

Figure 2.15: Comparison table showing the performance of the strategies for diverse ground
agent motion patterns in simulation and field experiments. Grades are given according to the
performance metrics presented in the paper. The best performance is given grade 3, and the
worst grade 1. If a strategy is graded 0, it implies that the strategy showed unstable behavior.

By introducing a larger set of ground agent motion patterns into the experimental method we

were able to identify the strategies that were not robust to the different ground agent motion

patterns. By running field experiments in addition to simulation experiments we were able to

observe the chattering phenomena in the bearing only control which could not be detected in

simulation experiments.
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3 Formation control with fixed wing

drones
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3.1. Introduction

3.1 Introduction

There is an increasing interest in deploying teams of drones to achieve distributed sensing of

the environment and to establish an aerial wireless ad-hoc network to connect users on the

ground [13, 43, 39]. In such applications, drones are required to uniformly position themselves

to cover an area with their on-board sensors and to optimize communication performance

with other drones in the network. To achieve this, drones need to control their distance to

other drones. To achieve scalable performance and to be prone to the drone failures, drones

in the team should perform the mission in a decentralized and distributed way.

Drones that can hover, such as quadrotors and helicopters, are used either to distributively

adapt their mutual distance to optimize the coverage with on-board cameras [73] or adapt

their mutual distance based on the quality of the communication signal [33].

Compared to quadrotors and helicopters, fixed wing drones have higher coverage speed,

better robustness to wind disturbances and longer battery life [53]. Due to these properties,

fixed wing drones are more suitable for some outdoor applications where large areas should

be covered or communication should be relayed over large distances. Fixed-wing drones

have constrained kinematic properties, they cannot suddenly change direction due to the

limitations in the bank angle and they always need to maintain a forward speed in order to

remain airborne. Therefore, existing algorithms for formation control of hovering platforms

cannot be applied for fixed wing drones.

Existing literature on formation control of fixed wing drones is mostly focused on keeping the

formation of fixed wing drones connected and moving in the same direction. In [82], flocking

rules are presented that govern fixed wing like vehicles to move in a common direction without

adapting inter-vehicle distance. Similar velocity alignment in 3D is presented in [58]. In [6]

three fixed wing drones are flying in a triangular formation while following a path that is

known to each agent in the formation in advance.

In this chapter, a method for controlling the formation of a swarm of fixed wing drones from

arbitrary initial positions to a uniform formation with equal inter-robot distances is proposed.

Drones need to uniformly cover an area and keep communication link quality on a desired

level. Our aim is to deploy a swarm of fixed wing drones to cover an area with their on-board

cameras, collect aerial images and at the same time serve as aerial wireless network for ground

users.

In our formation algorithm, drones rely on the local information communicated from their
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Chapter 3. Formation control with fixed wing drones

single hop (or direct) neighbors. To guarantee that the forward speed of the drones are

always greater than the stall speed, a virtual agent is defined for every drone and drones are

controlled to continuously follow and circle around their virtual agents. Drones emulate

the motion of the virtual agent and follow it by performing spiraling motion using Lyapunov

Guidance Vector Field algorithm [31]. Formation algorithm is then implemented between

virtual agents. To map the formation of the virtual agents to the formation of drones, drones

also synchronize their phase angles. We test the performance of our method in simulation

and in field experiments.

3.2 Formation algorithm

This section presents the formation algorithm that allows fixed wing drones to uniformly cover

an area and keep communication link quality on a desired level. To achieve this, each drone

should regulate the distance to its neighbors.

3.2.1 Proposed method

Our method consists of three control modules: virtual agent following module, distance

control module and synchronization module. The virtual agent following module, controls

the drone to follow its virtual agent by performing an orbital flight path along virtual agent’s

trajectory. The orbital motion is designed by Lyapunov Guidance Vector Field (LGVF) approach

[31] which showed the best performance for target tracking in Chapter 2. The trajectory of

the flying robot while following a virtual agent, obtained in a field experiment is shown in the

Figure 3.1.

In distance control module, we implement a modified version of the flocking rules proposed by

Olfati-Saber [60]. Each drone calculates flocking rules for their virtual agents, with information

received from its interaction neighborhood defined as:

I dr one
i = {va j : ||pva

j −pva
i || < ki nt di j } (3.1)

where di j is the desired distance between drone i and drone j . The desired distance is limited

by the communication radius rc . Parameter ki nt should be set to a value greater and close

to 1(in our simulation we set ki nt = 1.2). If every point mass dynamics agent has the same

interaction range set by (3.1), it has been empirically shown in [60] that a flock of point mass

dynamics agents will converge to a uniform formation.
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Figure 3.1: a) Schematic Illustration of drone following virtual agent. b) Result from real world
experiment involving one fixed wing drone and a virtual agent, illustrating the motion of a
fixed wing drone flying at 10 ms-1 and following its virtual agent moving at 1 ms-1.

Output of the distance control module is the virtual agent’s control input, a force vector, ui

and is defined as:

ui = Fva
i = Fva

at tr /r epi
+Fva

al i g ni
+Fva

navi
(3.2)

where Fva
at tr /r epi

is the attraction/repulsion force, Fva
al i g ni

is the alignment force and Fva
navi

is

the navigation force, Figure 3.2.

Virtual agent is attracted towards the neighbors whose distance is greater than the desired

distance but is repelled from agents whose distance is less than the desired distance. This

interaction is defined by the attraction/repulsion force:

Fva
at tr /r epi

= ∑
j∈I dr one

i

φ(||pva
j −pva

i ||)δ(
||pva

j −pva
i ||

rc
)ni j (3.3)

where ni j = (p j−pi )
||p j−pi || is a unit vector along the direction of virtual agent j, φ(q) is a sigmoid
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Figure 3.2: Schematic illustration of the distance control module. Alignment, attraction/repul-
sion and navigation force are acting on the virtual agent.

function given by:

φ(q) = 1

2
((a +b)

q +c√
1+ (q +c)2

+ (a +b)) (3.4)

where a, b and c are tunable parameters that determine the value of attraction/repulsion force.

Parameters a and b are set to the maximum and minimum attraction/repulsion force value

and parameter c is set to the desired distance. Bump function δ(q) is used to smoothly set the

attraction/repulsion force to zero outside the communication radius, is defined as:

δ(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 q ∈ [0,h)
1
2 [1+cos(π q−h

1−q )] q ∈ [h,1)

0 other wi se

(3.5)

where h, h < rc is is the parameter that determines when the bump function will start to set
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the value to zero. Virtual agents align their headings by applying alignment force:

Fva
al i g ni

= ∑
j∈I dr one

i

(vva
j −vva

i ) (3.6)

In addition, a navigational force is applied on the virtual agents to keep them from splitting in

sub-flocks. Each drone in the formation knows the position and velocity of the navigational

point, pnp and vnp . The force is defined as:

Fva
navi

=− fσ(pva
i −pnp )− fσ(vva

i −vnp ) (3.7)

where fσ is a sigmoid defined as φ(q) (3.4) with parameters a and b set to maximum and

minimum navigational force value and parameter c = 0.

Previous two modules provided a method for generating a uniform formation between the

virtual agents of all drones. As illustrated in Figure 3.3, in order to obtain equal distance

between the drones themselves, drones are also required to synchronize their orientation with

their neighbors. The synchronization module controls the drone’s phase angle by controlling

the forward speed of the drone within the allowed interval. Based on the position of the

neighboring drones and their respective virtual agents, each drone can determine the phase

of its neighbors and compute the change on its forward speed to synchronize the phase angle

θ by:

Δvdr one
i = 1

N (C dr one
i )

∑
j∈C dr one

i

fσ(θ j −θi ) (3.8)

where N (C dr one
i ) is a number of communication neighbours of the dr onei , θi is a phase angle

of the dr onei . If the dr onei phase angle is less than dr one j phase angle, dr onei will increase

its forward speed to align its phase angle with its neighbor.When difference in phase angles

in the communication neighborhood of the dr onei is equal to zero, then the Δvdr one
i will be

also equal to zero and drones will all reach consensus in phase angle. The drone’s altitude is

controlled by the PID controller on the autopilot control level. The presented modules allow a

team of fixed wing drones to achieve a uniform formation with a desired inter robot distances.
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Phase angle

Figure 3.3: Drones need to synchronize their phase angle with their neighbors. They syn-
chronize their phase angles by altering their forward speed in a limited interval. In this way a
formation of drones is converging to the formation of their respective virtual agents.

3.2.2 Discussion on formation algorithm convergence

The convergence of the drones formation to an equilateral triangular lattice depends on the

stability properties of all three formation algorithm modules. In this section, the stability of

each module will be commented and analyzed. Flocking module drives the motion of the

virtual agent and provides input to the target following module. Since fixed wing drone can

only follow targets which move up to its maximum forward speed, we analyze whether this

constraint has impact on the algorithm convergence.

Firstly, collective properties of the virtual agents formation are analyzed, such as cohesiveness

of the formation and whether formation reaches an equilibrium. It is assumed that the

navigational point speed is equal to zero. For such analysis, a collective formation potential

and Laplacian matrix that encodes properties of the interaction graph should be defined. In

global coordinates, virtual agents’ collective dynamics applying interaction force (3.2) is given
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by:

ṗva = pva

v̇va =−ΔV (pva)−L(pva)vva + fnav (pva ,vva ,pnav ,vnav )
(3.9)

where V (pva) is a collective potential of the lattice, L(vva) is a Laplacian matrix of the interac-

tion graph, and fnav (pva ,vva ,pnav ,vnav ) is a navigation force. Formal analysis of convergence

is transferred to the formation motion frame. If pc and vc are center of mass and average

velocity of all virtual agents in the formation, then the position and velocity in the moving

frame are given by:

p̃va
i = pva

i −pc

ṽva
i = vva

i −vc

(3.10)

Then, the structural dynamics of the virtual agents formation is given by

˙̃vva = p̃va

˙̃pva =−ΔUλ(p̃va)−D(p̃va)ṽva
(3.11)

where Uλ is an aggregate potential function and D(x) is a damping matrix. The aggregate po-

tential function incorporates navigation force and attraction/repulsion force and the damping

matrix incorporates navigation force and alignment force. Having the structural dynamics

defined, following theorem proves stability of the virtual agent’s formation algorithm:

Theorem 1 (Olfati-Saber[60]) If we consider virtual agents applying interaction force proposed

by 3.2 and structural dynamics given by (3.11). If initial structural energy is finite and interaction

range satisfies r /d = 1+ε (ε� 1), where r is interaction radius and d is desired distance. If local

minimum of Uλ induces connected graph, then almost every solution of the structural dynamics

asymptotically converges to an equilibrium which is an equilateral triangular lattice.

A formal proof of this theorem is based on the formation energy analysis. It is shown that the

derivation of structural dynamics Hamiltonian is decreasing, which means that the formation

will reach an equilibrium at finite time. At the equilibrium every virtual agent has zero speed.

In the process of reaching equilibrium, virtual agents could maybe have speed which is higher

than maximum forward speed and fixed wing drones will not be able to follow them. If we

assume that maximum distance between virtual agents is always lower than communication

radius of drones, we can assume that in these cases there will be no fragmentation of the

formation due to the communication loss. The equilibrium point of the virtual agent vai is
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given by [xva
i , y va

i ].

The drone motion is controlled by Lyapunov guidance vector field defined by 2.3 in Chapter 2.

The Lyapunov function is used to define a stable vector field given by:

V (xdr one
i , ydr one

i ) = (r 2 − r 2
d )2 (3.12)

where r =
√

(xdr one
i −xva

i )2 + (ydr one
i − y va

i )2. The time derivative of Lyapunov function is

given by:

dV

d t
= −4αv0r (r 2 − r 2

d )2

r 2 + r 2
d

(3.13)

where v0 is forward speed of fixed wing drone and α> 0 is a control parameter. By substituting

r = rd it can be observed that the time derivative of the Lyapunov function is equal to zero. This

is equivalent to the case when drone performs circle motion around position of virtual agent.

Thus, vector field is globally stable to the circle around virtual point. This means that each

drone from any initial condition can converge to the orbital motion around the equilibrium

point of its virtual agent in finite time. Under the assumption that distance between any two

drones will be always smaller than rc , virtual agents will reach an equilibrium and their final

speed will be equal to zero. If a virtual agent’s equilibrium position is not in the infinity, then

each drone will converge to a stable circling around its virtual agent in finite time.

Since virtual agents converge to the lattice and drones converge to a stable circle around their

equilibrium points, the next step is to show whether drones will be able to synchronize their

phase. Drones synchronize their phase by altering their forward speed in the tight interval. In

the steady state, we showed that virtual agents reach their equilibrium positions, their speed is

zero and drones perform circular loitering motion around virtual agents’ position. By slightly

speeding up or slowing down their motion, drones can adjust their phase angle to the phase

angle of their neighbors by applying following control law:

Δvi = 1

N (C dr one
i )

∑
j∈C dr one

i

fσ(θ j −θi ) (3.14)

where fσ is a sigmoid function given by (3.4) with parameters a,b set to limit the Δvi . Forward

speed of the robot can be changed only in the interval [vst al l , vmax ]. If we define nominal
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forward speed v0, then:

v0 +Δvmax < vmax

v0 −Δvmax > vst al l

(3.15)

Therefore, parameters a,b are set to:

Δvmax = vmax − vst al l

2
(3.16)

Since drone performs circular motion, the forward speed change Δvi is related to the phase

angle change θ̇i as

Δvdr one
i = kθθ̇i (3.17)

where kθ is control gain. Then equation (3.14) can be written as:

θ̇i = 1

kθN (C dr one
i )

∑
j∈C dr one

i

fσ(θ j −θi ) (3.18)

The sygmoid function (3.18) is linearized in the interval ||(θi −θ j )|| <π and is given by:

θ̇i = Δvmax

kθN (C dr one
i )π

∑
j∈C dr one

i

(θ j −θi ) (3.19)

which represents a consensus algorithm. It has been shown in [61] that such algorithm will

converge to a consensus in which θi −θ j = 0 for every drone pair (i , j ).

Drones exchange information over wireless communication network. Virtual agents’ motion

depends on the received information from neighboring drones. This information is accessible

in discrete time steps, since communication channel bandwidth is limited and only finite

number of messages can be sent and received by neighboring agents. Therefore, it is necessary

to analyze the algorithm convergence in a discrete domain. In a discrete domain, virtual

agents motion is expressed as:

pva
i [k +1] = pva

i [k]+T vva
i [k]+ T 2

2 ui [k]

vva
i [k +1] = vva

i [k]+T ui [k]
(3.20)

where T is sample time and ui [k] is control input at k discrete time index. In discrete domain,
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virtual agent control input is defined as:

ui [k] = Fva
at tr /r epi

[k]+Fva
al i g ni

[k]+Fva
navi

[k] (3.21)

As we discussed in previous section, formation control law consists of pairwise potential

term, velocity consensus term and navigation rule which is a position consensus term. In the

literature there are only formal approaches to examine the stability of the consensus in double

integrator dynamics. The goal is to determine for which sample times the system will still be

stable. In [65] authors applied formal approach based on algebraic graph theory.The goal was

to define sample time T in relation to consensus gain that will keep the system stable. Similar

approach but using Lyapunov function was proposed in [40].

In our case, we examine control law which consist of consensus term and potential field term

which depends on distance between neighbors. Hence, it is not straightforward how to express

this system in linear form which could allow us to use algebraic graph theory and linear

algebra to analyze stability. Therefore, firstly we examine the performance in the simulation

for different sample times and give ideas and future directions for a formal proof. We run

simulations in Matlab for different sample times and we measure deviation from equilateral

triangular lattice, defined as:

Edev = 1

1+nl

∑
i , j∈I dr one

(
di j −dd

dd

)2

(3.22)

where nl is number of links in the lattice, di j is Euclidean distance between virtual agents i

and j and dd is desired distance between virtual agents.

In Figure 3.4, the mean deviation energy for different sample times is presented. It is observed

as sample times are increasing, and agents are exchanging less messages per second, the

formation stability is violated. To achieve stable equilateral triangular formation, agents should

exchange on average 10 messages per second. For theoretical analysis of this phenomenon,

we could adopt approach presented in [40]. A Lyapunov function of the formation should be

defined and the change of Lyapunov energy function could be examined for two discrete time

steps. This could provide an insight whether the energy of the system is decreasing for certain

range of sample times.

3.3 Experiments and results

This section presents simulation and field results of the proposed formation control algorithm.
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Figure 3.4: Deviation from equilateral triangular formation for different sample times. Mean
deviation energy and standard deviation is presented. For each sample time, experiment is
conducted in 50 trials. We observe that formation deviates from ideal equilateral lattice for
higher sample time values. To achieve stable coherent formation, agents should exchange on
average 10 messages per second.

3.3.1 Simulation experiments

Multiple experiments were performed in simulation and in field with real drones to test the

formation control algorithm for different inter-drone distances and different communication

link qualities. The performance of the formation algorithm is quantified using three measures.

As a performance criteria we introduce the distance measure between each pair of neighboring

drones averaged over the number of pairs. This measure gives us the notion on the quality

of adaptation to the user-defined inter-drone distance. In addition to distance measure, we

define formation energy deviation measure which identifies the formation deviation from

an ideal equilateral triangular lattice given by Eq. 3.22. Furthermore, we examine how well

drones adapt to the user-defined communication link quality, hence we measure the average

link quality in the formation. Finally, we measure the mean phase angle in the swarm to show

how fast drones synchronize their phase angles, how the synchronization degree affects the

distance and link quality adaptation algorithm.

Simulation experiments were conducted in a 2D simulator implemented in Matlab. The AVLib

Simulink library [57] and custom developed Simulink modules were used to simulate the

fixed wing drone’s and the motion of the virtual agents. We assume that drones are flying on
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the different altitudes since at this stage we do not implement collision avoidance algorithm.

Simulation parameters were tuned to best represent the eBee drone platform [2], that was used

throughout the real experiments. Drones fly at speeds in the interval [12,16]m/s and the turn

rate of the robot is also limited in the interval [−1,1]r ad/s, due to the limited bank angle of

the platform. We examine how do drones regulate the inter-drone distance in a formation and

whether they create equilateral triangular lattice. Drones get information from the user which

distance they should keep with their neighbors. Drones should keep inter-drone distance

of 30m then increase the distance to 50m, and decrease the distance to 30m. The desired

inter-drone distance profile is known to every drone in the formation. If drones are running as

shown in Figure 3.5a, average distance measure closely follows desired distance and formation

of the virtual agents is mapped on the formation of respective flying robots, Figure 3.5b. A

deviation between desired and average distance occurs only at the beginning of the formation

algorithm, since robots start the algorithm in a desynchronized state. The response time is

affected by the speed of convergence of virtual agents and speed of synchronization of the

drones. The response time to the commanded step signal is significantly shorter than the

average flight time of the fixed wing drone.

Figure 3.6 shows different phases of the formation change in a simulation experiment consist-

ing of 10 drones. Drones start from random positions and orientations in the radius of 20m

from the launching point. Each robot initializes the position of its virtual agent to the random

position within 10m from the launching point. The subfigure a) shows the state of the forma-

tion after the launching. Virtual agents start to organize in a uniform formation and drones

follow their motion. Drone’s phase angles are not synchronized, hence their arrangement

does not resemble to the arrangement of their virtual agents. In subfigure b), drones start to

synchronize their phases while they follow the motion of their virtual agents. The arrangement

in the virtual agents’ formation converges to uniform formation. In subfigure c) after 400s of

the adaptation, drones form a hexagonal structure that resembles to the formation of their

virtual agents. They also increase their inter agent distance while synchronizing their phases.

In the subfigure d), drones decrease their inter agent distance and still keep a hexagonal

formation.

3.3.2 Field experiments

Furthermore, to endorse our simulation results, we run field tests with 3 fixed wing drones.

Ebee fixed wing drones are equipped with an autopilot which takes care of autonomous take-

off, landing and low level control, and Gumstix microcomputer that runs communication
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Experiment is conducted with 10 drones. Drones regulate their distance based on the desired
distance, set by the user. a) Mean distance for the formation control b)Average phase angle
deviation. c) Lattice energy deviation
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Figure 3.6: Different phases in distance adaptation of the flying robot formation. Drones start
from random positions, synchronize their motion, form a uniform formation and increase/de-
crease inter-drone distance in a decentralized and distributed way.
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algorithm and formation control algorithm. Each drone was equipped with Linksys AE3000

USB dongle using 802.11n. To avoid interferences, the frequency was set to 5 GHz. Drones

established an ad-hoc wireless network and each drone sent message packets to its single hop

neighbors. A message packet consist of its GPS position, course angle, position and velocity of

its virtual agent.

Field experiments were conducted with 3 eBee fixed wing drones. States of all drones were

monitored at the ground control station running eMotion software [3]. Robots were au-

tonomously launched and they circle on their predefined home waypoint. User initiates

the experiment by sending a message from ground control station. Each drone has desired

distance stored in its memory. Figure 3.7 shows the aerial snapshot of the field experiment.

Figure 3.7: A snapshot of the field experiment showing 3 eBee drones, marked by dashed
circles, keeping the distance of 30m between their neighbors.

Figure 3.8 shows the path of three drones for two different sequences of a field experiment,

where a triangular formation of 30 meters and 50 meters is obtained. Drones are performing

circular trajectories around their respective virtual agents.

Figure 3.9 shows the performance measures, mean distance and phase angle for the field ex-

periment. We measure mean distance between each drone in the formation and between their

respective virtual agents. At the beginning of the experiment, drones are not synchronized,

virtual agents did not converge to their stable positions, hence there is a higher deviation in the

mean inter-drone distance from the user specified distance. As experiment progresses, drones

synchronize their phase and the deviation is within ±5m of the desired distance (30m). During
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Figure 3.8: The motion paths of 3 drones in field experiment in which they keep distance of a)
30m and b) 50m with their neighbors. Motion paths are plotted relative to the launching point
of the experiment (0,0) denoted by a black cross.

the drones transition from distance of 30m to distance of 50, drones do not desynchronize

significantly. The higher deviation between user specified distance of 50m and mean drone

distance in the interval [100,120s] can be explained by the fact that drones do not always follow

ideal circular trajectories (due to wind) and such deviations can occur despite the fact that

robots are synchronized.

3.4 Collision avoidance using altitude segregation

In multi-agent aerial swarms, an important problem to solve is a mid-air collision avoid-

ance. Potential collisions can cause damage of the drones and jeopardize the whole mission.

Aproaches proposed in literature are based on predictive optimization algorithms, negotia-

tion between agents, geometrical methods and probabilistic methods. Geometric collision

avoidance methods usually define collision conditions for conflict in the position space [62]

or in the velocity space [20, 5]. In probabilistic methods a probability of conflict is estimated

[49] and used to control the drone. In predictive control, an objective function is defined

respecting constraints such as command limits, limits on the displacement that a vehicle

can carry out [14]. In this thesis, we propose reactive collision avoidance based on altitude

segregation. Since the collision avoidance on the virtual agent level is guaranteed, we use a

level of synchronization of fixed wing drones to define consensus algorithm on the inter-drone

altitude.

54



3.4. Collision avoidance using altitude segregation

Time[s]
100 120 140 160 180 200

M
ea

n 
ph

as
e 

an
gl

e 
[d

eg
]

-150
-100
-50

0
50

100
150

Time[s]
100 120 140 160 180 200

D
is

ta
nc

e[
m

]

0

20

40

60

80

100

20 40 60 80

806040200

Mean MAV distance

User-specified distance

Mean VA distance

Figure 3.9: Mean distance and phase angle measurements for 3 drones in the field experiment.
The desired distance profile is stored in drones memory before the experiment.

3.4.1 Proposed method

In terms of virtual agents collision avoidance it has been shown in [60] that equilateral trian-

gular lattice can be created without agents collisions. When virtual agents create equilateral

lattice, we can guarantee that loitering centers of drone motion will be on the user-defined

distance.

In equilibrium case, if distance between virtual agents is greater than the drone loitering

radius, it can be guaranteed that the drone paths will be collision free. In the case when

distance between virtual agents is lower than the loitering radius, we should design collision

avoidance strategy. If drones’ phase angles are synchronized, we can guarantee that their 3D

distance will be limited by the virtual agent’s distance. In this case, drones can fly on the same

altitude and have a collision free paths. In the non-synchronized case, the distance between

drones can be lower than the virtual agent distance and collisions can occur. In this case,

drones should fly on the different altitudes. To achieve this, we employ consensus algorithm

on the altitude of the robots, based on the level of synchronization. The control input that

commands desired altitude for dr onei is given by:

Δhi = Kh
1

(n −1)π

∑
j∈C dr one

i

(θ j −θi ) (3.23)
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where n is number of drones within communication neighborhood.

3.4.2 Results

We run simulation experiment in which drones start flying on the same altitude and (x, y)

starting positions are randomly defined within the radius of 30m from the initial point (0,0).

In Figure 3.10 a maximum 3D distance between drones during the flight time is presented

for formation algorithm with collision avoidance. It is observed that if collision avoidance

algorithm is applied, the maximum 3D drone distance is always higher than 5m which is

defined as safety distance.
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Figure 3.10: Minimum drone 3D distance, drones run collision avoidance algorithm and
formation control algorithm in which they should keep 20m distance between their neighbors.
Drones loitering radius is 30m. The experiment is conducted in 100 simulation runs with 5
drones.

3.5 Use case: Communication link adaptation

In the simulation experiments we examine how do drone teams regulate inter-drone distance

and we measure how do they perform uniform coverage while making sure that communi-

cation link quality is above a predefined threshold value. The communication link quality is

modeled based on the data collected in outdoor experiments. In collaboration with ETHZ TIK

laboratory we ran experiments in which drones were flying away and towards each other, UDP
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Figure 3.11: Altitude profiles of all drones during one simulation experiment

traffic was set to high rate 80Mb/s and iperf UDP bandwidth measurement tool [1] was used

to measure Signal-to-Noise ratio (SNR) and Received-Signal Strength (RSSI). A polynomial

regression model was then used to represent the obtained data. Since experimental data is

noisy we superpose the white noise signal to the polynomial fit. The experimental data is

given in Figure 3.12

3.5.1 Characterization of wireless link quality

A choice of the strategy for communication maintenance and area coverage in aerial networks

highly depends on the technical properties of the mobile ad-hoc networks. Mobile ad-hoc

networks (MANETs) are formally defined as an autonomous system of mobile nodes connected

by wireless links which form a communication network modeled in a form of an arbitrary

communication graph. MANET is peer-to-peer, multi-hop network in which information is

flowing from a source to a destination node through intermediate nodes. A relative position,

orientation and velocity of the nodes has high influence on the communication bandwidth

and delays in delivering information from the source to the destination. In this section the

performance measures will be introduced together with the factors that influence degradation

of the communication performance in aerial and ground-aerial wireless ad-hoc networks.

In wireless networks, the information is carried by radio signals on typically 2.4 or 5 GHz

frequency. To determine and optimize the communication performance, measures as re-
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Figure 3.12: Link quality, RSSI and SNR measures obtained in field experiments with 2 fixed
wing drones.

ceived signal strength (RSSI) , Signal-To-Noise ratio (SNR), packet loss, throughput, Expected

Transmission Count (EXT) [23], Expected Transmission Time (ETT) [27] are usually included

in the cost functions. In ideal free space propagation, the power of the transmitted signal

drops with the square of the distance from the transmitter. The propagation of the signal is

spherical. In urban and suburban environments, due to effects of scattering, reflection and

diffraction from obstacles, the propagation models vary and depend on the specifications of

the terrain. Besides environment specifications, in MANETs the communication performance

also depends on the dynamics of the mobile nodes. Since we are considering fixed wing

robots with highly restricted kinematic properties, two studies experimentally assessed the

performance of the communication by measuring throughput and EXT/ETT in different flight

experiments. The first study by Jimenez-Pacheco et al. [45] was conducted on two flying fixed

wing robots and one static ground node in a single and multi-hop scenario for 802.11s mode

(a mode for mesh networks). The results show that throughput degrades with distance and

already around 100m from the ground station results show a big spread. There are many

results achieving throughput values close to the maximal value, but there are around 25% of

the results that had low throughput. It shows that there is a more complex dependency of the

throughput on the flight parameters of the fixed wing robot, not just the distance. They also

conducted the experiments to further investigate the dependency of the flying robot trajectory

on the throughput. They showed that after certain distance, link behaves better if the plane is

facing ground node then when it is flying away from it. This results could be explained by the

position of the antenna on the left wing of the robot which affects antenna radiation pattern.
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The second study conducted by Asadpour et. al. [8] was performed on the IEEE 802.11n

mode, to discover the effects in throughput between two mobile nodes. The authors showed

that communication in 802.11n mode performs poorly in highly mobile scenarios and that

throughput in a single hop case between 2 UAVs drops significantly below the theoretical

value. Their key conclusion is that 802.11n cannot cope with highly mobile wireless channels

since current wireless implementations do not take this phenomena into the account. There-

fore, flying networks would benefit of flying in a formation and keeping the constant spatial

arrangement of the network nodes.

3.5.2 Adaptation algorithm

Sometimes it is of interest to expand this formation uniformly to cover the maximum possible

area that can be achieved while having a desired link quality between the drones. To achieve

this, drones measure the communication link quality between their local neighbors and

increase their distance with them until they reach the desired link quality. The schematics of

the link quality adaptation control algorithm is given in Figure 3.13.

-

Measured link quality

User specified

link quality

Level of synchronisation

PI adaptation

layer

Inter-MAV

distance

Figure 3.13: Schematics of the link quality adaptation layer.

Every drone measures its current communication link quality with its neighboring drones,

compares it with a user-defined link quality and a controller outputs the desired distance that

drone needs to keep with its neighbors.

di j (k) = di j (k −1)+Δdi j (k) (3.24)

59



Chapter 3. Formation control with fixed wing drones

where Δdi j is defined as:

Δdi j (k) = Kad apt (qi jdesi r ed −qi jmeasur ed (k)) (3.25)

where qi j is the link quality measure between drone i and drone j and Kad apt is a tunable gain

that determines the speed of adaptation. In this use case we use two link quality measures,

signal to noise ratio (SNR) and received signal strength indicator (RSSI). Tunable gain is given

by:

Kad apt = 1−
∑

j∈C i (θi −θ j )

π(n −1)
(3.26)

where n is a number of robots within communication neighborhood of the drone i .

The speed of this control process is adapted to the state of the synchronization of each robot.

If robots have not synchronized their phase angles with their neighbors, then the gain of the

controller is continuously reduced to slow down the adaptation and to allow the robot to first

synchronize and then to adapt the distance.

3.5.3 Simulation results

In the second simulation experiment, we combine the formation algorithm with communica-

tion link adaptation layer. We show how does such algorithm adapt to the user specified link

quality between agents. The user requires from the swarm of drones to increase the distance

between neighboring drones until the communication link quality reaches a threshold, as

shown in Figure 3.14a,b. We measure average link quality between neighbors and compare it

with the link quality threshold set by the user. Since drones start the experiment in the non

synchronized state, adaptation layer measures the level of synchronization and decrease the

gain of the adaptation. In this way adaptation layer of each robot continuously regulates the

speed of adaptation and allows each robot first to synchronize with their neighbors and then to

adapt the link quality. We can observe that mean phase angle reduces to less than 10 degrees.

drones manage to increase their inter-drone distance in the the interval of 100s, which is still

significantly shorter than the flight time of the platform (45 min for eBee platforms).

3.6 Conclusion

In this chapter, a formation algorithm that allows fixed wing drones to regulate the distance

between their neighbors in a formation was presented. Drones can uniformly cover an area
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Figure 3.14: Fixed wing drones are adapting the quality of communication link between their
neighbors. The desired communication link quality is set by the user. We show that drones
are able to adapt the formation to achieve desired link quality. They run formation algorithm
combined with adaptation layer. Adaptation layer controls the speed of adaptation to the
desired link quality based on the level of synchronization between robots. If robots are not well
synchronized, adaptation layer will slow down the adaptation to allow them to synchronize
and then it will speed up the adaptation when robots reach desired level of synchronization.
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while keeping communication link quality above the threshold value.

We observed that drones are able to follow instructions given by the user to increase or

decrease distance only if they synchronize the phase angles with their neighbors. In this case,

robots distributively create the same formation as their respective virtual agents. A collision

avoidance algorithm is implemented and it is based on phase synchronization level and

altitude segregation. It was shown that drones successfully avoided collisions while deploying

in the formation.

In field experiments drones have to deal with asynchronous communication, delays in com-

munication and wind disturbances. Despite these challenges, drones are capable to create

desired formation and keep the desired distance between their neighbors.

Furthermore, it was shown that the method is well suited for maintaining uniform formation

and controlling the communication link quality. By adding an adaptation layer that controls

the dynamics of the synchronization of robots and dynamics of virtual agents, drones are able

to successfully adapt the communication link quality. Hence such formation algorithm can be

used in aerial ad-hoc wireless network where robots should adapt to the user requirements,

either to cover larger areas with flying beacons while keeping good communication links or to

increase the link quality if the transfer of a large amount of data (images or sound) is requested

by ground users.
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This chapter is based on following publications:

Varga, M, Basiri, M., Stovold, J., Heitz, G. & Floreano, D. Communication maintenance in drone

networks. Under submission.



4.1. Introduction

4.1 Introduction

Successful decentralized multi-drone operations rely on information exchange between

drones. Drones within an aerial team need to retrieve information about behaviors, position,

velocity and tasks of other drones. Some information, such as relative range and bearing can

be determined locally with on-board exteroceptive sensors [11, 10, 69]. In addition to that, the

detection range of on-board sensors is limited and communication network is needed to share

positioning information among all individuals. Furthermore, contextualized information such

as neighborhood sets or current tasks, need to be transferred by a communication network.

Therefore, to achieve some autonomous collective behaviors, drones need to be connected.

Teams of drones that are connected by a wireless network could also serve as aerial communi-

cation relays. Drone networks are relevant in search-and-rescue operations where mission

success depends on the communication infrastructure. Rescuers often need to share mission

plans between rescue teams. They also need to transfer bulky data such as images, video or

voice messages. Currently, rescue teams rely on GSM networks or hardly portable WiMAX

antennas. In mountains regions, signal coverage for such networks is poor due to terrain oc-

clusions. Search and rescue teams would benefit from their own drone network, which could

provide line of sight communication and relay nodes that fly above the obstacles. Further-

more, in disastrous situations such as massive earthquakes, fires or floods, communication

infrastructure can be heavily damaged. In such situations a network of drones can serve as

a rapidly deployable communication network allowing communication and monitoring the

area.

To stay connected, drones need to run distributed connectivity maintenance control algorithm.

The task of such algorithm is to derive a decentralized control input that takes into the account

the limited sensing range of each agent so that the communication graph remains connected.

It means that communication path between every two agents in the network always exists,

but initial links do not have to be necessarily maintained [25].

Connectivity maintenance methods can be divided in three groups, methods based on po-

tential fields control, graph theory methods and optimization methods. Potential field based

connectivity maintenance method uses local observations to derive potentials and gradient

based control to guide the agents to stay connected with their neighbors. In [25], Dimarogonas

et. al. proposed a method to maintain all the links in already established communication

network by defining a bounded potential field function. The control scheme (i) maintains

the edges of the graph which were set in initial conditions and (ii) drives agents to a com-
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mon, known position in state space. Another application of maintaining communication in

heterogeneous systems using a gradient based approach is proposed by Hsieh et. al. [42].

Authors propose aerial-ground robots network where both robot groups perform a gradient

based control to maintain communication. The authors assume that the ground robots net-

work topology is preserved throughout the experiment. In [83], Tardioli et. al. used a virtual

forces approach to maintain connectivity between a fixed node and moving ground robots.

They used spring forces model to maintain fixed topology while performing an exploration

task. Potential field based methods are more suited in applications where network topology

changes rapidly, in heterogeneous swarms where agents differ in mobility and controllability

and robots should react in a reactive mode to the changes in the environment.

Graph theory based methods rely on global properties of the network and they use mathemat-

ical formalisms such as a weighted Laplacian matrix and Fiedler values to derive next agent’s

actions. The goal is to define agent’s actions which will not violate network connectivity. In

[56] Michael et. al. presented an approach which relies on estimates of the network topology.

They use gossip algorithms [15] and the distributed market-based control [19] that allow link

deletions without violating connectivity. This paper also investigates practical issues with

implementing this methodology on a real system of homogeneous ground robots. Similar

approach was presented by Stump et. al. [79] in which authors developed an algorithm to

control a team of robots to maintain the communication bridge between stationary robot in

the environment with obstacles. Their approach relies on calculating a Fiedler value of the

weighted Laplacian matrix which describes communication interactions between all robots

and they use a k-connectivity matrix to detect which robots can interact through k or less

intermediary robots. In approach presented by Cortez et. al. [22], authors are defining motion

constraints of agents in a heterogeneous group consisted of sensing robots and relay nodes.

By using distance based connectivity properties of the network, they define the control of relay

nodes to extend and maintain communication with sensing robots. The main advantages of

the graph theory based methods is the fact that they provide valuable insight in the network

topology and allow the usage of known distributed search algorithms on graphs to identify

communication bottlenecks in the network.

In the paper proposed by Gil et. al. [33], authors use distributed optimization to maintain

connectivity. Quadrotor drones are used in this method to improve the communication quality

between static ground nodes. Their cost function is defined by Signal to Interference Ratio

between neighboring robots and control algorithm follows distributed gradient descent on

the cost function. This approach is demonstrated in reality using few static nodes and 3-5
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quadrotors in an indoor experiment.

In all presented approaches, authors assume that ground nodes are static or they are cooper-

ative and their motion can be controlled. However, in this work we address the problem of

connectivity maintenance between mobile users on the ground, where their motion cannot be

controlled. They are independently moving nodes. Similar problem has been addressed by Gil

et. al. [32]. Authors use centralized optimization algorithm to place relay nodes to maintain

connectivity with independently moving ground nodes. Algorithm assumes all agent positions

are updated in each time step. In contrast to the approach proposed by Gil et. al., we propose

two decentralized methods to solve connectivity maintenance problem between drones and

independently moving ground nodes.

The first method is based on formation control algorithm proposed in Chapter 3. Drones create

equilateral triangular lattice using only local information. Then, they move the formation’s

center of mass and adapt distances between neighbors based on the information they receive

from ground nodes. In the second method, drones also exchange their interaction topology

matrices and using graph theory methods break interaction links to transform the interaction

graph to a spanning tree. We implement methods in hardware in the loop emulator and test

the performance in field experiments. We compare methods for different number of ground

nodes.

This chapter is organized as follows: Section 4.2 introduces important mathematical concepts

used in this chapter. The first connectivity method, potential field based method is presented

in Section 4.3. In Section 4.4, we introduce second method based on market-based approach.

Finally, Sections 4.5 and 4.6 conclude the chapter by providing a conclusion and future work

on this topic.

4.2 Theoretical background

Theoretical framework in this chapter relies on the graph theory concepts. In this section,

the definitions which will be used throughout the chapter are presented. Similarly, as in the

previous formation control method, it is assumed that fixed-wing drones are controlled using

virtual agents approach and Lyapunov guidance vector field method. Therefore, we present

interaction rules between virtual agents and we assume that drones are following them by

performing orbital motion. Every virtual agent and ground agent is presented with one vertex

in the graph. The distinction is made between interaction and communication graph. An

interaction graph Gi nt is defined as the pair Gi nt = (V ,Ei nt ) where V is vertexes set and Ei nt is
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an edge set defined as:

Ei nt = {vi v j |vi ∈ I dr one
j , v j ∈ I dr one

i , i �= j } (4.1)

where I dr one
i , I dr one

j are interaction neighborhoods of drone i,j respectively. Analogously, a

communication graph Gcomm is defined as the pair Gcomm = (V ,Ecomm) where V represents a

vertexes set and Ecomm is an edges set defined as:

Ecomm = {vi v j |vi ∈C dr one
j , v j ∈C dr one

i , i �= j } (4.2)

where C dr one
i ,C dr one

j are communication neighborhoods of drone i and j.

Among diverse graph structures, tree graphs and graph cycles are relevant for the proposed

method. These structures are defined using properties of the graph paths. A path of grapg G

of length m is defined as a sequence of distinct vertices

v0, v1, ..., vm−1 (4.3)

such that any k ∈ 0,1, ..,m −1 vertices vk and vk+1 are adjacent.

If v0 and vm−1 are defined as end vertices and v1, ..., vm−2 as inner vertices then a path that

has all vertices distinct except the end vertices is called a cycle path. If a graph does not have

cycles it is called a forest. A subgraph of the forest graph is a tree graph. A tree is an undirected

graph in which every two vertices are connected with the path without cycles. For a tree graph

G , following properties follow:

• G is connected

• If one edge is added to the graph G it will form a cycle

• G becomes disconnected if only one edge is removed from the graph

• End vertices have degree 1 and inner vertices have degree 2.

• G has m-1 edges

End vertices of a tree graph are called leaves. A spanning tree of an undirected graph G is a

tree graph that contains all vertices of the graph G .

In our connectivity maintenance methods, ground nodes and virtual agents formation are

presented as interaction graphs. A communication network between ground nodes and
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drones is described as a communication graph between virtual agents and ground nodes.

Findings in the algebraic graph theory are used to analyze properties of these graphs. Algebraic

graph theory uses matrices to represent graphs and defines algebraic methods to analyze the

properties of these matrices. Moving from the combinatorial interpretation of a graph to an

algebraic interpretation, the dynamical properties of the graph can be analyzed.

A degree matrix is used to represent the number of neighbors for each vertex. It is defined as a

diagonal matrix:

Δ(G ) = Am,n =

⎛
⎜⎜⎜⎜⎜⎜⎝

d(v1) 0 · · · 0

0 d(v2) · · · 0
...

...
. . .

...

0 0 · · · d(vm−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.4)

Adjacency matrix is used to encode adjacency relationships in the graph. It is a symmetric and

quadratic matrix defined as:

[A(G )]i j =

⎧⎪⎨
⎪⎩

1 if vi v j ∈ E

0 otherwise
(4.5)

A Laplacian matrix is defined using degree matrix and adjacency matrix . It plays an important

role in dynamical analysis on graphs and in connectivity analysis. Laplacian matrix is given

by:

L(G ) =Δ(G )− A(G ) (4.6)

It is symmetric positive semi-definite matrix. This implies that its real eigenvalues can be

ordered as

λ1(G ) ≤λ2(G ) ≤ ·· · ≤λn(G ) (4.7)

From this follows one important result in algebraic graph theory:

Theorem 1 The graph G is connected if and only if λ2(G ) > 0.

Second smallest eigenvalue, λ2(G ) is also called Fiedler value in the literature and it measures

algebraic connectivity. If the graph is complete; there is one-hop path between every pair of

vertices, then algebraic connectivity is equal to number of vertices. Otherwise, if the graph is
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not connected, algebraic connectivity is less or equal to 0. This measure is used throughout

this chapter to show the level of connectivity while the drones are adapting to the motion of

ground nodes.

4.3 Potential field based method

As seen in Chapter 3, fixed wing drones fly in an equilateral triangular formation and change

distance to their neighbors based on the user requirements. If drones receive information

about position of other drones and ground nodes, they can locally decide which distance

they should maintain with their neighbors to keep the aerial-ground network connected. The

formation should be able to stretch and contract its shape and translate with the ground nodes

motion. To keep the lattice formation, drones implement interaction rules between virtual

agents, follow virtual agents and synchronize their phases.

4.3.1 Proposed method

In the potential field based method ground nodes send messages MSGg n which consist of:

MSGg n = {tsent ,pg n ,dr oneclosest } (4.8)

where tsent is a timestamp when the message is sent, pG A is a ground node current GPS

position and dr oneclosest is the closest drone to the ground node. Drones synchronize their

clocks using server time on the mission computer and ntp algorithm in the Linux operating

system implementation. The communication range of each agent in the team depends on

the technical properties fo the wireless dongle. In this thesis we use wireless dongles with

communication radius of 250m [70]. Ground nodes are passive agents in the team. This means

that each ground node sends and receives messages from drones within the communication

range and calculates the distance to the drones but does not send control commands to

drones.

Drones are active relay agents which fly in the formation and adapt to the position of the

ground nodes. They communicate both with other drones and ground nodes within their

communication range and send messages MSGdr one which consist of:

MSGdr one = {tsent ,pva , listva , listg n} (4.9)

where tsent is a timestamp when the message is sent, pva is a virtual agent current GPS position,
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listva is a list of all neighboring virtual agents and listg n is a list of all neighboring ground

nodes. Using this information each drone builds ground nodes position map and virtual agent

position map. The maps are updated in each control algorithm cycle or when a new message

is received from neighboring agents. In each update, current timestamp is compared with the

timestamp of the received message and map is updated with newer information. The virtual

agent and ground agents’ positions are deleted from the map if data is older than ter ase . In

this way, formation algorithm is robust to changing number of agents. The time threshold

ter ase is determined based on the highest measured delay in the wireless network.

In the potential field based method, drones have two roles. They can be paired with ground

nodes or they can be relay agents. Drones become paired when they receive the message

from the ground node in which dr oneclosest = dr onei d . It means that this drone is the closest

agent to the ground node. A drone can be paired only with one ground node. If drone is

already paired with the ground node and receives message from that ground node in which

dr oneclosest �=dr onei d , the drone becomes a relay node.

Interaction rules, attraction/repulsion, alignment and navigational forces are acting on the

virtual agents’ motion. Drones need to calculate the distance they need to keep with their

neighbors and navigation point which will determine the area where drones need to fly. Since

drones store position information in the virtual agents’ map and ground nodes positions in

the ground nodes’ map, they can analyze spatial arrangement of the virtual agents and ground

nodes. Virtual agents center of mass is defined as:

pva
cm = 1

n

∑
i∈va

(pva
i ) (4.10)

The maximum distance between any virtual agent and virtual agent’s center of mass is given

by:

d va
cm(k) = max(||pva

cm(k)−pva
i (k)||), ∀i ∈ va (4.11)

Similarly, the maximum distance between any ground agent and virtual agent’s center of mass

is given by:

d g n
cm(k) = max(||pva

cm(k)−pva
i (k)||), ∀i ∈ va (4.12)
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Then, the desired distance is calculated as:

d(k) = d(k −1)+KdΔd (4.13)

where Kd is adaptation gain and Δd is defined as

Δd(k) = d va
cm(k)−d g n

cm(k) (4.14)

The aerial flock will expand or contract by applying this rule. If ground nodes are translating

at the same time, robots need to apply navigational force which will make them follow the

ground nodes. Therefore drones apply navigational force given by:

Fva
navi

(k) =−c1 fσ(pva
i (k)−pg n

cm) (4.15)

where fσ is sigmoidal navigation function defined as 3.4, pg n
cm is the ground nodes center of

mass position and c1 is navigational constant. Navigational constant is tuned experimentally

to allow the drone formation to attract to the ground nodes center of mass and not to be

weaker than attraction/repulsion force. The attraction/repulsion force depends on the desired

distance and is defined as:

Fva
at t/r epi

(k) = ∑
j∈Ii

Φ(||pva
j (k)−pva

i )||−d(k))δ(
||pva

j (k)−pva
i (k)||

1.2∗d(k)
)ni j (4.16)

In addition to these rules, paired agent adds attraction force towards their ground nodes pairs,

given by:

Fva
at tr /g ni

(k) =−cg n fσ(pva
i (k)−pg n

j ) (4.17)

Then, the total force acting on the paired virtual agent is defined as:

Fva
i = Fva

at t/r epi
(k)+Fva

al i g ni
+Fva

navi
(k)+Fva

at tr /g ni
(k) (4.18)

To fly in a coherent lattice while adapting inter agent distance, each robot has to have at least

two neighbors in the interaction neighborhood. In this way drones keep triangular formations

with agents in their interaction neighborhood. Therefore, drones run the neighborhood

selection algorithm presented in Algorithm 1.
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Algorithm 1 Neighborhood selection

while si ze(messag eBu f f er )! = 0 do
j := messag e.I D ;
if ||pva

j −pva
i || < ki nt di j then

Add virtual agent to I m
i

else
Remove virtual agent from I m

i
end if
if C (I m

i ) = 0 then
Sort all va ∈C mm

i by distance
Add two closest va to I m

i
else

if C (I m
i ) = 0 then

Sort all va ∈C mm
i by distance

Add the closest va to I m
i

end if
end if

end while

4.3.2 Results

In simulation experiments we examine how drones adapt their formation to the motion of

ground nodes. Experiments are run in EMANE emulator described in Appendix A. Ground

node’s speed vg n is set to 1.5m/s, which is an average human walking speed [35, 44]. Starting

point coordinate is set to (0,0) in each experiment. Ground nodes and drones positions

are randomly initialized from uniform distribution within radius of 30m from the starting

point. Each drone uses UDP communication protocol, which implies that agents do not get

the acknowledgment whether the messages are received by their neighbors. Routing is not

implemented and agents broadcast their messages to their single-hop neighbors. Drones

broadcast 10 messages per second. At the beginning of the experiment, all agents create

complete communication graph and their clocks are synchronized. We run 10 emulator runs

per experiment.

There is a large number of possible ground nodes’ motion patterns. We choose to examine the

performance of the algorithm on two cases of ground nodes’ motion. Firstly, it is examined

how does aerial team follow ground nodes moving in the same direction. Each ground node’s

motion is given by:

v g n
x = v g ncos(φ)

v g n
y = v g nsin(φ)

φ=φ0 +U (−1,1) ·φnoi se

(4.19)
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where v g n = 1.5m/s is ground node’s speed, φ is ground node’s orientation and φnoi se =
10π/180 is maximum absolute value od uniform noise added to ground node’s orientation.

Secondly, it is examined how do drones adapt their shape if ground nodes move in separate

directions. Each ground node’s motion is given by:

v g n
x = v g ncos(φ)

v g n
y = v g nsin(φ)

φ= 2π
ng n

(ng n − I Dg n)+U (−1,1) ·φnoi se

(4.20)

where ng n is number of ground nodes, I Dg n is ground node’s id v g n = 1.5m/s is ground node’s

speed, φ is ground node’s orientation and φnoi se = 10π/180 is maximum absolute value od

uniform noise added to ground node’s orientation.

A performance measure is the distance between the center of mass of ground team and the

center of mass of aerial team. The center of mass of the aerial team is defined as a center of

mass of the virtual agents. In Figures 4.1 and 4.2 we show results from the experiment in which

drones translate their formation with the ground nodes. In the Figure 4.1 we show the center

of mass distance and it can be observed that drones’ formation follows the ground nodes with

the average error of less than 10m. Besides measuring the distance between centers of mass, it
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Figure 4.1: Distance between ground node’s center of mass and virtual agent’s center of mass.
The experiment is run in Emane emulator, 10 runs. Drones formation follows the ground
agens with average of 10m distance between centers of mass.

74



4.3. Potential field based method

is examined if drones are flying in a coherent formation while they follow ground nodes. The

Figure 4.2 shows results of a single emulation experiment. Tracks of drones, virtual agents and

ground agents and all agents’ positions in three time instances are shown. It can be observed

that virtual agents keep the formation coherent and follow by keeping equilateral triangular

formation. Drones are successfully following virtual agents and their phases are synchronized.

Hence, drones fly in the same formation as their respective virtual agents. We examine the
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Figure 4.2: Tracks of virtual agents, ground nodes and drones in a single emulation experiment.
Agents positions and drone positions are shown in three experiment time instances. Virtual
agents closely follow group of ground nodes, drones synchronize their phase and create the
same formation as their respective virtual agents.

same scenario in a field experiment. The field experiment setup consists of two humans

carrying ground nodes and four fixed wing eBee platforms following them. The experimental

setup is shown in the Figure 4.3.

Ground nodes consist of GPS sensor and WiFi module connected to a custom made extension

board. Extension board is needed to access serial ports of Gumstix Linux board. The peripheral

devices are connected with Linux Gumstix board. The communication algorithm runs on the

Gumstix board, and broadcasts communication messages to aerial team. Ebee fixed wing

drones are equipped with the same hardware as in the field experiments in Chapter 3.

The experiments starts by launching 4 eBee drones. After eBees settle in the equilateral

triangular lattice and synchronize their phases, ground nodes start to broadcast their position

and start to move in the same direction. Figure 4.4 shows the distance between centers of

mass. The distance measure in field experiments is well aligned with the result obtained in
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Figure 4.3: Tracks of virtual agents, ground nodes and drones in a single emulation experiment.
Agents positions and drone positions are shown in three experiment time instances. Virtual
agents closely follow group of ground nodes, drones synchronize their phase and create the
same formation as their respective virtual agents.

the emulations. The drones, ground nodes and virtual agents tracks are shown in Figure 4.5.

The field experiment results align well with the emulation experiments. The tracks show that

virtual agents follow ground users in the equilateral triangular formation and that drones are

following virtual agents in the same formation and synchronize their phases.

Secondly, it is examined how does aerial team keeps ground users connected if they walk in

separate directions. We run each emulation experiment until the connectivity of the ground-

aerial communication network is violated. Algebraic connectivity is a performance measure

of how well the network is connected and it is calculated as second smallest eigenvalue of the

Laplacian matrix.

Figure 4.6 shows algebraic connectivity of the ground-aerial team in relation to maximum

distance between any two ground nodes. It can be observed that as ground nodes are mov-

ing in the separate directions, maximum distance between ground nodes is increasing and

connectivity of the network is decreasing. If the algebraic connectivity is equal to the number

of agents in the connectivity graph, it means that the connectivity graph is complete, which

means that every agent has direct communication link with other agents in the network. The

connectivity in the network is maintained up to 750m with 10 drones and 5 ground nodes on

average which is three times higher than the single agent’s communication radius. Figure 4.7

shows consecutive snapshots of the virtual agents and ground nodes formation connected in a

connectivity graph Gconn . As ground nodes are moving apart, the number of the connectivity

graph edges decreases and the edges elongate. Virtual agents are symmetrically adapting the
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Figure 4.4: Distance between ground node’s center of mass and virtual agents center of mass
in field experiment. The experiment is run with four drones and two ground nodes. The drone
formation follows the ground agent formation with less than 10m distance between centers of
mass.
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Figure 4.5: Tracks of virtual agents, ground nodes and drones in a field experiments. The field
experiment results show that drones can successfully follow a group of ground nodes and
translate the formation.
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Figure 4.6: Algebraic connectivity of ground-aerial connectivity graph in relation to the maxi-
mum distance between any pair of ground nodes. As ground nodes are spreading, they move
apart, interaction links are elongating. Connectivity is maintained up to 750m which is three
times higher distance than communication radius.

equilateral triangular formation to the position of the ground nodes. In this way robots keep

the equal quality of the communication links, keep the spatial arrangement and uniformly

cover the area. In Fig 4.7d, one ground agent is connected with a single edge to the rest of the

network. Further motion of this node will violate the connectivity despite that other edges are

not fully elongated up to the sensing range.

In the field experiments, it is examined how drones spread their formation if ground nodes

move in separate directions. The size of the experimentation field is 150x150m. The experi-

ment starts in the center of the experimentation field. Drones run the control algorithm with

the same parameters as in the emulation experiment. Four fixed wing eBee platforms are

launched, they settle in the equilateral triangular formation with inter agent distance of 10m.

Two ground nodes move in the separate directions towards the testing field edges. Figure

4.8 shows consecutive snapshots of the field experiment. It can be observed that fixed wing

drones successfully adapt the inter-agent distance and spread to the ground nodes motion.

Drones synchronize their phases successfully and create equilateral triangular lattice. Virtual

agents are closely following ground nodes and adapting the formation shape. Information on

positions of all agents is successfully spread within the formation.

To examine performance with different numbers of ground nodes, we run additional set of
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Figure 4.7: Consecutive snapshots of the topology of ground-aerial connectivity graph. Virtual
agents are symmetrically adapting the inter-agent distances to spread the formation and adapt
to the motion of ground nodes.
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Figure 4.8: Field experiment with four drones and two ground nodes. Ground nodes move
apart to the edges of the testing field. Swarm of drones receives their positions and increases
inter-agent distance to spread the formation. Drones successfully synchronize their phases
and create equilateral triangular formation.
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emulation experiments. The drones number is kept constant to 10 drones. The number

of ground nodes is altered from 2 to 6 ground nodes. In Fig 4.9 it can be observed that

performance of the algorithm is almost invariant to the changing number of ground nodes. It

mostly depends on the number of drones involved. While stretching the network, drones try to

keep the equilateral triangular lattice and in that way they keep cycles in the interaction graph.

If cycles in the interaction graph could be broken and interaction graph could be expanded to

a tree graph, the coverage would be higher. This led us to develop the second communication

maintenance method which we present in following subsection.
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Figure 4.9: Maximum distance between any pair of ground nodes for different number of
ground agents. The drone number is fixed to 10. We show that performance of algorithm is
invariant on the number of ground agents, since links are expanding symmetrically.

4.4 Distributed market-based method

In the potential field based method, drones expand and translate equilateral triangular lattice

formation to adapt to the ground nodes’ motion. The interaction graph of such formation

consists of multiple triangles that create cycles within the graph. If some of the links in the

interaction graph are broken, such structures can be extended to tree graphs. Transforming

the interaction graph to a tree graph can significantly increase the maximum distance that the

aerial agents can cover.
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4.4.1 Proposed method

We propose a method that extends the potential field based method with link deletions and

heuristic rules that transform the equilateral triangular lattice to a tree graph. In addition,

links deletions are performed such that the ground nodes are the leaves of the tree interaction

graph.

A ground-aerial connectivity graph Gconn and ground-aerial interaction graph Gi nt consist

of two types of vertices, ground nodes vg a and virtual agents vva. We need to define a discrete

control input ud that adds and deletes links of the Gi nt and a continuous control input ui which

controls drones motion such that resulting interaction graph is a tree Gtr ee of the ground-aerial

interaction graph and all leaves of Gtr ee are ground nodes.

The link deletion in the interaction graph is a nontrivial task, since interaction link breakages

can lead to the formation fragmentation. Only virtual agents can break the interaction links

since ground nodes are only passive nodes that do not directly influence the control of the

aerial nodes. Virtual agents need an information about the topology of the interaction graph

to know whether certain link deletion will violate the connectivity of the interaction graph.

We modify the approach proposed by [90] based on market-based negotiations to delete

interaction links.

Each virtual agent i receives message MSGaucti on defined as:

MSGaucti on = {A j ,B j ,T j ,pva
j } (4.21)

which consists of a current interaction graph topology estimate A j , a received bids list B j

and a received token vector T j , V A j position pva j . Then V Ai merges its topology matrix Ti

with the received topology matrix T j . If agent j is not in the interaction neighborhood and it

satisfies the condition to enter the interaction neighborhood, link between agent i and agent j

is added to the topology matrix Ti .

Concurrently with the topology update automaton, agents are running auction automaton.

When the auction starts, V Ai calculates a safe neighbors set Si defined as:

Sdr onei = {va j |λ2(E (Gi nt )/vi v j ) > 0} (4.22)

Among the safe neighbors, agent V Ai chooses a link to delete and places a bid based on the
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equation:

[Bi ]i = ||pva
i −pva

j ||+ (||Gi nt ||2 · c) (4.23)

Virtual agent V Ai initializes token vector Ti = [0 0 · · · 1 · · · 0 0], sets its bid vector Bi and

enters the update phase of the auction automaton. A bid value depends on the distance

between virtual agent V Ai and its safe neighbor and a number of neighbors of virtual agent

V Ai . Therefore, agents who have more neighbors and longer links with safe neighbours will

have higher bids. In the update phase, agent receives messages from other agents, updates

bid list and token list. When agent receives messages from all agents in the network, and all

tokens are received, agent decides on the maximum bid from its bid list and deletes that link

from the topology matrix.

If agents apply this link deletion algorithm, the resulting ground aerial interaction graph will

be a tree graph but leaves of the graph can be both ground nodes and aerial agents. To achieve

a tree graph with ground nodes as leaves, we allow aerial agents to be in two states, a chain

state and a swarm state. If agent has more than ntog g le neighbors it is in the chain state and

if it has more than ntog g le neighbors, agent is in the swarm state. The value of ntog g le is

determined empirically and it is set to 5. This number depends on the total number of flying

agents in the interaction graph and it is set experimentally to the ntog g le = ndr ones/2. If agent

is in the swarm state its continuous control law is given by:

ui = Fva
at t/r epi

+Fva
al i g ni

+Fva
navi

(4.24)

If agent is in the chain state it moves towards the furthest neighbor, and velocity of the virtual

agent is directly controlled by:

ui = vchai n = 〈vi ,θi 〉, θi = arctan(p f ur thest −pva
i ) (4.25)

This behavior allows drones which are close to the ground nodes to move toward them as they

get further away. This will encourage the formation to stretch as stresses are imposed on the

formation by moving ground nodes.

4.4.2 Results

In simulation experiments we examine how virtual agents adapt their formation if ground

nodes spread radially from the starting point. The starting point coordinate is set to (0,0).
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Ground nodes perform motion patterns given by Eq. 4.20. Experiments are run in Netlogo sim-

ulator described in Appendix A. In each time step of the simulation, agents are synchronously

updating their communication and interaction neighborhoods. The information about the

topology of the communication and interaction graph spreads uniformly within one simula-

tion step. Ground nodes and virtual agents positions are randomly initialized from uniform

distribution within radius of 30m from the starting point.

Figure 4.10 shows algebraic connectivity of the ground-aerial team in relation to the maximum

distance between two ground nodes. As maximum distance between ground nodes is increas-

ing, the algebraic connectivity is decreasing because the number of link in the connectivity

graph is decreasing. The dynamics of the decrease is similar as for the potential field method

based approach (Figure 4.7). In the first iterations of the formation control, the interaction

graph becomes a spanning tree and it spreads as ground nodes are spreading. Up to the

communication graph elongation of 600m both potential field based approach and market

based approach have similar dynamics. It can be observed that using market-based approach,

drones can cover larger distances between ground nodes than in the potential field based

approach. The distance covered is around 1200m which is significantly larger than 750m

distance for potential field based method.
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Figure 4.10: Algebraic connectivity for the auction based method. The results are shown for 10
simulation experiments, with 10 drones and 5 ground agents. By changing topology of the
interaction graph, drones can extend the aerial network and cover larger distances between
ground nodes.
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Figure 4.11 shows consecutive snapshots of the connectivity maintenance experiment running

auction based method. As ground nodes are spreading, the number of the connectivity graph

edges decreases and the edges elongate. Virtual agents organize in the spanning tree and enter

the chain state. In this state they try to move towards their furthest neighbor. This causes

reactive links elongation, without prior knowledge of the positions of all other agents in the

interaction graph. As a result of this behavior, all agents are keeping equal distances between

their neighbors. Such configuration of the interaction graph will also allow that ground nodes

spread more than in the potential field approach.
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Figure 4.11: Consecutive snapshots of the simulation experiments for auction based method.
As ground nodes are moving apart, the interaction topology is transforming to a spanning tree,
and links elongate to stretch the network. Such interaction topology allows higher distances
between ground nodes then the equilateral triangular lattice topology.

To examine how the performance of the algorithm changes with the number of ground nodes

we run multiple experiment in which the number of ground agents is changed from 2 to 6

nodes and number of flying agents is kept constant at 10 agents. Figure 4.12 shows comparison

of potential field based method and auction based method for communication maintenance.
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On the x-axis we show number of agents in each experiment and on y-axis we show maximum

distance between any two ground nodes. Each experiment is performed 10 times. It can

be observed that auction based method performs significantly better than potential field

based method for teams with 2 and 3 ground agents. For the higher number of agents, the

auction method still performs better than potential field based method but the performance

is decreasing.

Number of ground agents

2 3 4 5 6

M
a
x
im

u
m

 g
ro

u
n

d
 a

g
en

t 
d

is
ta

n
ce

0

500

1000

1500

2000

2500

3000

Market-based approach

Potential field  based approach

Figure 4.12: Comparison between potential field based method and auction based method.

We run additional emulation experiment to observe how does the market based approach

perform if communication is not synchronous and if network topology updates are not syn-

chronous among all agents. We ran experiment in EMANE emulator with 4 flying agents and

two ground agents to observe whether flying team will extend to a line if ground nodes are far

apart. In Figure we show consecutive snapshots of emulation experiment with 4 drones and

two ground nodes.

We can observe that for 4 drones and two ground agents, the drone formation extends to the

chain and interaction links are deleted between drones. When we increase number of drones

in the network, we observed in multiple emulations that due to the asynchronous update

of the topology matrices, drones entered the state in which some drones did not have any

link to delete and did not place a bid while other drones had different topology matrix and

could place a bid. This led to the auction deadlock and interaction links could not be further

deleted. One possible solution to this problem would be to combine auction process with the
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Figure 4.13: Emulation experiment for auction based method with 4 drones and 2 ground
nodes. We show 4 consecutive snapshots a)3s b)66s c)83s and d)133s. In the first two snapshots,
drones are running potential field based method and stretching links of equilateral triangular
lattice. In the third snapshot, the auction starts, interaction links are deleted and drone
formation extends to a chain. In fourth snapshot, drones are in chain state, they are moving
towards furthest neighbour and gradually extending communication links.
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agreement on the topology. Agents should not place bids in current auction before they all

agree on the topology matrices.

4.5 Extensions

Potential field based method is invariant to growing number of ground nodes, its performance

depends on number of flying robots engaged in the mission. Furthermore, this method does

not require robots to negotiate to delete links, hence it is less demanding on the commu-

nication channel. Theoretically it can work also for larger groups of ground agents, larger

than number of flying agents because it depends on the center of mass of the ground node

formation and maximimum distance between center of mass and furthest ground node. Since

this method does not have the notion on the interaction topology, flying agents do not know

which links could be deleted and when to potentially spread the network beyond increasing

links in the equilateral triangular lattice.

Therefore we explore another method that allows flying robots to delete interaction links

and change the interaction topology to a spanning tree in which tree leaves are ground

agents. This method requires that each agent exchanges its neighborhood list with others

and calculate the overall topology of the network. Then agents negotiate over the network

using auction based approach to delete links that could extend the formation and will not

violate the connectivity of the interaction graph and cause fragmentation of the team. Such

method performs much better than potential field based method, in the case of small number

of ground agents compared to the number of flying nodes. There is also a theoretical number

of relation between flying nodes and ground robots for which this method can work. Beyond

this number it is not possible to create a tree with ground nodes as tree leaves.

There are two problems that still need to be solved and will be part of the future work on this

topic. Firstly, asynchronous updates of the topology should be addressed to prevent deadlocks

in the link deletion. Before agents place bids they should check whether they all participate in

the same auction and whether they all see the same topology.

These two methods can be merged to solve the scenario in which large group of ground agents

are moving in the field. We additionally analyze the ground node positions to determine

whether ground nodes organize in sub clusters. For that we run k-means algorithm and we

measure distance between each center. This distance can trigger switching between potential

field based method and market-based method.
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4.6 Conclusion

A solution to the problem of connectivity maintenance in ground-aerial team was presented.

A team of drones is adapting the topology of its interaction network to independent moving

ground nodes. Two methods were proposed, potential field based method and auction based

method. The potential field based method relies on the data collected from single hop neigh-

bors. Each agent updates it neighbors about the knowledge on his neighborhood and his

position. After few communication cycles, agents have a rough estimate of the position of all

agents in the network. This position map is then used to calculate the distance flying robots

should maintain in the equilateral triangular lattice. The interaction topology is changing in

the continuous domain, and we only change the distance agents keep with their neighbors

but drones still try to maintain equilateral triangular lattice. Such approach is good for main-

taining communication and covering the area at the same time with on-board cameras, it

is not sensitive to delays and asynchronous communication and works for larger groups of

ground agents. The second method, auction based method uses market based negotiation

approach to delete interaction topology links and to allow the flying network to stretch more

and allow longer multi-hop communication links between ground nodes. This approach relies

on the fast communication between agents, adds an additional information that should be

shared in the communication channel, it is not prone to the changing number of robots, and

works well for smaller number of ground nodes. The best solution would be a hybrid approach

which would consist of potential field based approach for smaller distances between agents,

detection step using data mining techniques such as k-means clustering which would detect

cluster of agents and their distances, and if distance between clusters is over the threshold,

agents start to delete some links to spread the network.
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5.1. Main accomplishments

5.1 Main accomplishments

Networked drone teams can be used for search and rescue, surveillance or to establish dedi-

cated wireless networks in urban environments. The main advantage of such drone teams is

that they can rapidly deploy, fly above the obstacles and obstructed terrains and provide line-

of-sight communication. In such teams, drones create wireless ad-hoc networks and adapt

their position to the ground users motion and to the desired link quality specifications. The

main objective of this thesis has been to develop networked fixed wing drone team that will

adapt its spatial arrangement to keep ground users connected in a wireless ad-hoc network.

In drone missions, energy consumption plays an important role. Fixed wing drone autonomy

is usually limited to 30-40 minutes of flight and energy-demanding behaviors can increase

the energy consumption up to 20%. In this thesis, a new measure, energy expenditure, was

introduced. Using this measure and multi-objective optimization, it was identified which

strategy will track the target with a minimal distance and a minimal energy expenditure.

Strategies are systematically compared in simulation and in field experiments. We showed that

orbital trajectory motion provides the best results both in simulation and field experiments,

and this strategy will be used to bridge nonholonomic constraints of fixed wing robots when

they fly in teams.

Furthermore, a formation algorithm that allows fixed wing drones to regulate distance be-

tween their neighbors was developed. The algorithm is based on flocking rules, virtual agent

following and fixed wing phase angles synchronization. Drones were able to adapt the dis-

tances to their neighbors both in simulation and field experiments where drones experienced

asynchronous communication and wind disturbances. By applying this formation control

algorithm, fixed wing drones were able to converge to an equilateral triangular lattice. In the

use case, it has been shown that this method is well suited for communication link adaptation.

The adaptation layer which controls the drones synchronization dynamics has been added

and drones were able to adjust their distance to achieve desired communication link quality.

Since fixed wing drones should serve as communication relays for mobile ground users, a

distributed connectivity maintenance methods was developed. Drone teams are adapting

their topology to the independently moving ground users. Two methods were presented,

potential field based method and distributed market-based approach. With potential based

method, drones maintain connectivity by locally deciding about desired distance they should

keep with their neighbors. Their decision is based on the the rough estimate of the ground

agents and drones position. The second method extends the potential field based method
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by deleting interaction links in the drone team to extend the formation and to cover larger

distances. We show that this extension enables longer multi-hop communication links for

ground users.

Strategies for communication maintenance and formation control are tested in field experi-

ments. Having real world constraints, such as asynchronous communication, message delays,

wind disturbances and unmodeled drone dynamics, the robustness of the algorithms was

shown and results aligned well with the results obtained in simulation.

5.2 Potential applications

Adaptive drone networks will allow quick deployment of dedicated communication networks

for ground users. Such networks could be used in many scenarios where communication links

are broken or communication should be improved. The communication loss mostly occurs in

disaster situations. Rescuers depend on reliable communication links to conduct successful

and fast rescue operations. They usually operate in foreign countries and have no access to the

cellular networks or the cellular network infrastructure is damaged. Such teams would benefit

of their dedicated drone network which is easily portable, can be quickly deployed and adapts

to their motion in the rescue field. In urban environments, communication infrastructure

can be also damaged or can be of poor quality. Telecommunication operators could use such

drone networks to replace some access points due to the infrastructure damages.

There is also a recent trend to provide Internet access to remote and unpopulated areas. In

such areas, cellular network infrastructure usually does not exist. In Google Loon project

[36] stratosphere balloons are used to allow Internet connectivity. Researchers in Facebook

Connectivity lab [30] explore technologies to provide Internet access in remote areas with low

cellular network coverage. The approach proposed in this thesis combined with decentralized

algorithms for long duration missions could also be used for such applications.

Fixed wing drones can carry cameras and provide aerial overview of the terrain. If drones fly

in teams in formations, the team camera coverage can be adapted to guarantee persistent

coverage. Using such drone teams can guarantee larger camera coverage than single robot

and hence can detect rare events. Constant event surveillance information can be streamed

and directly communicated to the users. This can be used for monitoring concerts or rapidly

changing urban environments.
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5.3 Future directions

In spite of the recent improvements in drones automation, there are still no commercially

available large scale drone systems on the market. With the drone industry expanding, it is

assumed that the single drone cost will decrease and drone teams will become affordable and

more present in future applications.

It is expected that drone teams stay in the air for longer period of time, sometimes even for

days, to perform surveillance and provide connected communication network. The battery

life of a single drone is still much lower compared to the mission duration. Therefore, it is

important to develop effective scheduling strategies for drone teams, that will allow drone

recharging without network quality disruption. This could be one promising research direction

for large scale drone systems.

The drone network should be also less dependent on the gps signal sent from ground users.

The drones in the network should be able to track the ground users with their cameras or

use ground user wireless signals to track their position. Tracking the wireless signal with

single drone has been proposed by [37, 18] and visual tracking has been proposed by [84].

Drone teams should merge received sensing data to perform better ground users localization

than with single drone. In addition, to improve the autonomy of drone teams, drones wind

compensation and aerodynamic properties should be improved to allow them to fly in rough

weather conditions.

The interaction between drone network and human users should not put high cognitive load

on human users since they should be able to concentrate on their primary tasks (for example,

search for the victims in search and rescue operations) [4, 59, 76]. Therefore, one promising

research direction would be to develop intuitive, gesture based control and monitoring of the

drone swarm.

One further development of collective drone systems could go in the line of integrating

distributed drone data acquisition with the cloud computing. Fixed wing drone teams which

distributively fly in a formation can upload their collected data to the cloud and partially

coordinate their actions. In such cases, cloud could serve as mission manager and provide

high level tasks to the swarm. They could connect to the cloud and upload their data on the

cloud and cloud mission manager could determine the next task for the drones based on the

received data and drone status.
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tal setup

A.1 Matlab and Netlogo simulator

We examine the performance of algorithms in multi-agent simulators built in Matlab and

Netlogo simulation environment. In simulations, drones are modeled as discrete Dubin’s

vehicles:

xdr one
i [k] = xdr one

i [k −1]+Td vdr one
i cos(φ[k −1])

ydr one
i [k] = ydr one

i [k −1]+Td vdr one
i si n(φ[k −1])

φi [k] =φi [k −1]+Tdω
dr one
i

(A.1)

Virtual agents and ground nodes are simulated as discrete point masses. Communication

range is defined as a circular field around the virtual agent position (for the simplicity, here we

neglect drone’s loitering radius).

In Matlab simulator, agents’ dynamics is simulated in multi-agent Simulink tool AV-lib [57].

Agents exchange data synchronously, by accessing joint information matrix. In this matrix,

information about agents’ position and speed is stored and each agent synchronously accesses

this information in discrete time steps Td .

To simulate negotiation algorithm in market-based connectivity maintenance algorithm, we

use Netlogo simulator. Matlab based simulator is effective if agents only exchange messages

with few numerical value. In the case of market-based approach, agents exchange their

neighborhood lists which becomes impractical in Matlab simulator. Therefore, we decided

to simulate this algorithm using Netlogo numerical simulator [85]. Netlogo’s programming

language is a member of Lisp family [77] and it supports agents and concurrency. Mobile

agents move over a grid of patches. All agents can interact with each other and perform tasks
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concurrently. The numerical part of the simulator is similar to the Matlab environment, but in

contrast to Matlab simulator, Netlogo has built in functions to send messages between agents

and it handles connectivity links automatically based on the distance between agents.

A.2 EMANE network emulator

Testing platforms for drone’s algorithms should be as close as possible to the field experiments.

Such advanced simulators allow thorough debugging before running field experiments. Fre-

quently, hardware-in-the-loop emulators are used to test the robot control algorithms. In

addition, there is a necessity to easily port the code from simulation environment to real

hardware.

In the case of networked robots, besides hardware and physics simulations, communication

network performance should be simulated. Communication network model is a layered

structure in which each layer takes care of specific aspects of the networking and feeds its

results to the subsequent layers [81].

Swarm emulator used in this thesis consists of three main modules, communication network

emulator EMANE, linux board emulator and drone and ground agents’ physics emulator. Such

emulation setup will allow us to detect failures in algorithm logics, non stable behaviors due

to communication delays, give us opportunity to analyze turn rate and forward speed signals

and provide realistic message exchange between drones.

Network emulator EMANE implements mobile network systems in a real-time. It models

link and physical network layer so that the software on higher network layers are subjected

to the same setup as in the field experiments. Furthermore, each Gumstix microcomputer

is represented in the emulation setup as virtual Linux container (LXC). Then these nodes

are connected on the MAC layer and physical layer over EMANE emulator. On each virtual

Gumstix node we run routing algorithm and UDP based message exchange between drones.

Drone motion is emulated in real time and drone positions are sent to the EMANE emulator

using Linux pipeline. The schematics of the emulation is given in Figure A.1.

A.3 Ebee fixed wing robots

EBee fixed wing drones, produced by Sensefly, are used in the field experiments in this thesis.

The flight autonomy of the Ebee drones is 45 minutes and they are powered with LiPo batteries.

The total drone weight is 450g and the wingspan is 96cm. Drones are built from EPP foam
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Figure A.1: Comparison of real hardware setup and emulation setup

with carbon structure and they have detachable wings, which makes them easily portable.

Drone’s altitude and turn rate is controlled by elevons, movable control surfaces that serve

both as elevator and aileron control surface [52]. Thrust force is produced by an electric motor

mounted at the end of the drone middle part. Drone’s maximum speed is 14 m/s and it can

resist wind speeds up to 10 m/s. This property makes them applicable in high wind conditions,

which especially relevant for search and rescue operations. The electronics is mounted in

the middle part of the robot ans is completely enclosed in the foam, which makes this drone

prone to humidity. The Ebee platfom is shown in Figure A.2.

Figure A.2: Ebee platform, wings can be detached from the main body and it can be folded for
easy transport.

A drone’s control hardware consists of the autopilot, a Gumstix microcomputer and an exten-

sion board. A built-in autopilot, developed by senseFly, controls drone’s attitude, airspeed and

altitude. Gumstix microcomputer is connected to the extension board and communicates

over serial link with the autopilot. An extension board, developed at LIS by Gergoire Heitz,

enables the user to access serial ports of the Gumstix microcomputer. A dedicated API library,

GAPI, was developed for this project to interface the autopilot and Gumstix microcomputer.

This library enables safe serial transfer of control commands from Gumstix to the autopilot
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and sensor data from the autopilot to the Gumstix microcomputer. The hardware schematics

is shown in Figure A.3. EBee drone is equipped with IMU unit and compass which provide

Figure A.3: Hardware setup consists of Gumstix Linux microcomputer and extension board
which has an access to the autopilot data and Gumstix ports.

attitude information. The GPS sensor provides global position and ground speed of the drone.

To measure wind speed and the drone’s airspeed, Ebee is equipped with a pitot tube. At the

bottom of the middle part, Ebee is equipped with an optic flow sensor. This sensor is used to

achieve save and precise autonomous linear landing.

Drones establish ad-hoc wireless communication network using usb wireless dongles. The

Linksys WiFi dongles are used and they operate in 5 GHz frequency range to prevent interfer-

ences with frequently used wireless networks in 2.4 GHz range. The dongles are set in 802.11n

operation mode.

During the experiment, drone’s states, position, battery level and speed is monitored on the

base computer station. Drones connect to the eMotion software [3] over long range XBee

communication and periodically send their information. This is crucial for safe operation,

since single operator can quickly detect failures or non stable behaviors and send commands

for drone’s safe landing.
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A.4 Field experiments setup

Field experiments start by switching on the drones and connecting them to the base computer.

Operator needs to connect to the Gumstix board of each drone using ssh protocol and examine

whether drone is connected to the drone network. When drone receives GPS signal and runs

safety checks it is ready to be launched. This procedure takes around 5 minutes. Drone’s

altitudes are separated by 10m to avoid collisions. Due to this, drones are launched in the

sequence, starting from the highest drone.

Launching is performed by slightly shaking the drone which signalizes to the autopilot to

switch on the engine. When the drone is ready to fly and the engine is on, the drone is thrown

in the air. Drones fly to the initial home waypoint and wait to start the collective behavior.

When all drones are launched, operator sends start signals to drones to start collective behavior

and Gumstix microcomputer takes over the control by sending desired turn rate, altitude and

airspeed to the drone’s autopilot. When the experiment is over, operator sends stop signal to

signalize the autopilot to take over the control and send drone to the initial home waypoint.

Then the land signal is launched and emotion calculates schedule for collective landing.

To allow safe operations, each drone has its safety radius, which is defined from the launching

spot. If drone hits the border of the safety radius, autopilot takes over the control and drone is

immediately returned to the home waypoint. Drones also measure wind speed and if measured

wind is higher than safety threshold, robots return to the home waypoint. Transitions between

different flight modes and abrupt changes of the turn rate and speed are smoothed out at the

autopilot level to prevent abrupt changes in the drone’s attitude.
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