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Abstract

In today’s digital world, sampling is at the heart of any signal acquisition device: the device
senses and stores analog signals at certain points in time or space and uses the samples later
for the representation of the signal, possibly after some post processing. Imaging devices are
ubiquitous examples that capture two-dimensional visual signals and store them as the pixels of
discrete images. The main concern is whether and how the pixels provide an exact or at least
a fair representation of the original visual signal in the continuous domain. This motivates the
design of exact reconstruction or approximation techniques for a target class of images. Such
techniques benefit different imaging tasks such as super-resolution, deblurring and compression.

This thesis focuses on the reconstruction of visual signals representing a shape over a back-
ground, from their samples. Shape images have only two different intensity values (0 and 1).
However, the filtering effect caused by the sampling kernel of imaging devices smooths out the
sharp transitions in the image and results in samples with varied intensity levels. To trace
back the shape boundaries, we need strategies to reconstruct the original bilevel image. But,
abrupt intensity changes along the shape boundaries as well as diverse shape geometries make
reconstruction of this class of signals very challenging.

Curvelets and their discrete domain counterparts – contourlets – have been proved as efficient
multiresolution representations for the class of shape images. This motivates the approximation
of shape images in the aforementioned domains. In the first part of this thesis, we study gener-
alized sampling and infinite-dimensional compressed sensing techniques to approximate a signal
in a domain that is known to provide a sparse or efficient representation for the signal, given its
samples in a different domain. We show that the generalized sampling scheme, due to its lin-
earity, is incapable of generating good approximation of shape images, especially from a limited
number of samples. The infinite-dimensional compressed sensing is a more promising approach
for recovering efficient signal representations in a domain. However, the concept of random
sampling in this scheme does not apply to the shape reconstruction problem.

Next, we propose a scheme for sampling and reconstruction of shape images with finite
rate of innovation (FRI). More specifically, we model the shape boundaries as a subset of an
algebraic curve with an implicit bivariate polynomial. We show that the image parameters
– i.e., the polynomial coefficients – are the solutions of a set of linear annihilation equations
with the coefficients being the image moments. We then replace conventional 2D moments with
more stable generalized moments that are adjusted to the given sampling kernel. This leads to
successful reconstruction of shape images with moderate complexities from samples generated
with realistic sampling kernels and in the presence of low to moderate noise levels.

The proposed FRI scheme falls short of reconstructing shape images with intricate geome-
tries from realistic samples. Our next contribution is a scheme for recovering shape images with
smooth boundaries from a set of samples. The reconstructed image is constrained to regenerate
the same samples (measurement consistency) as well as forming a bilevel image. We initially for-
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vi Abstract

mulate the reconstruction technique by minimizing the shape perimeter over the set of consistent
binary shapes. Next, we relax the non-convex shape constraint to transform the problem into
minimizing the total variation over consistent non-negative-valued images. We also introduce a
requirement – called reducibility – that guarantees equivalence between the two problems. We
illustrate that the reducibility property effectively sets a requirement on the minimum sampling
density. In this scheme, unlike FRI schemes, we do not constrain the boundary curves by any
specific model. Instead, we let the sampling kernel and the sample values decide for them. As a
result, there is less restriction on the achievable shape geometries.

In the last part of this thesis, we study a relevant problem in the Boolean domain: the Boolean
compressed sensing, also known as group testing problem. The problem is about recovering a
sparse Boolean vector from a few collective binary tests. We first study a formulation of this
problem as a binary linear program, which is NP hard in general. To overcome the computational
burden, we can relax the binary constraint on the variables and apply a rounding to the solution
of the relaxed linear program. We introduce a randomized algorithm to replace the rounding
procedure. We show that the proposed algorithm considerably improves the success rate with
only a slight increase in the computational cost.

Keywords: Algebraic curves, binary images, Cheeger sets, compressed sensing, generalized
moments, generalized sampling, group testing, image reconstruction, image sampling, linear
programming, measurement-consistency, randomized algorithms, shapes, signals with finite rate
of innovation (FRI), sparse representations, total variation.



Résumé

Dans le monde numérique actuel, l’échantillonnage est au cœur de tout appareil d’acquisition
de signal : l’appareil perçoit et enregistre les signaux analogiques à certains points dans le temps
ou l’espace et utilise ses échantillons plus tard pour la représentation du signal, éventuellement
après traitement. Les appareils d’imagerie sont des exemples omniprésents qui acquièrent des
signaux visuels bidimensionnels et qui les enregistrent en tant que pixels d’une image discrète. Le
problème principal est de savoir si, et comment, les pixels fournissent une représentation exacte ou
au moins acceptable du signal visuel original dans le domaine continu. Ceci motive la conception
de techniques de reconstruction exacte ou approximative pour une classe particulière d’images.
De telles techniques profitent à différentes tâches d’imagerie telles que la super-résolution, la
correction d’images floues et la compression.

Cette thèse se focalise sur la reconstruction de signaux visuels représentant une forme sur un
fond, à partir de ses échantillons. Les images de forme ont seulement deux valeurs d’intensité
différentes (0 et 1). Cependant, l’effet de filtrage induit par le noyau d’échantillonnage de l’ap-
pareil d’imagerie lisse les transitions abruptes dans l’image et crée des échantillons de niveaux
d’intensité variés. Pour retrouver les limites de la forme, nous avons besoin de stratégies pour
reconstruire l’image originale à deux niveaux d’intensité. Mais les changements abrupts d’inten-
sité le long de la ligne de démarcation de la forme ainsi que les diverses géométrie des formes
mettent au défi la reconstruction de cette classe de signaux.

Curvelets et leurs équivalents discrets – contourlets – se sont montrées être des représentations
en multi-résolution efficaces pour cette classe d’image de forme. Ceci motive l’approximation des
images de forme dans les domaines susmentionnés. Dans la première partie de cette thèse, nous
étudions l’échantillonnage généralisé et les techniques de détection compressée en dimension
infinie pour l’approximation d’un signal dans un domaine connu pour fournir une représentation
clairsemée ou efficace du signal, étant donné ses échantillons dans un domaine différent. Nous
montrons que l’approche de l’échantillonnage généralisé est incapable de générer une bonne
approximation, à cause de sa linéarité, en particulier à partir d’un nombre limité d’échantillons.
La détection compressée en dimension infinie est une approche plus prometteuse pour retrouver
les représentations efficaces de signaux dans un domaine. Cependant, le concept d’échantillonnage
aléatoire de cette technique ne s’applique pas au problème de reconstruction de forme.

Dans la suite, nous proposons une approche pour l’échantillonnage et la reconstruction
d’images de forme avec un taux d’innovation fini (TIF). Plus spécifiquement, nous modélisons
les limites de la forme comme un sous-ensemble de la courbe algébrique avec un polynôme à
deux variables implicites. Nous montrons que les paramètres de l’image – i.e., les coefficients
du polynôme – sont les solutions d’un ensemble d’équation d’annihilation linéaire dont les co-
efficients sont les moments de l’image. Nous remplaçons alors les moments 2D conventionnels
par les moments généralisés plus stables qui sont ajustés selon le noyau d’échantillonnage. Ceci
amène avec succès à la reconstruction d’image de forme avec une complexité modérée à partir
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viii Résumé

d’échantillons obtenus de noyaux d’échantillonnage réalistes et en présence de niveaux de bruit
faible à modéré.

La solution à TIF proposée échoue pour la reconstruction d’images de forme avec des géométries
compliquées depuis des échantillons réels. Notre contribution suivante est une solution pour re-
trouver les images de formes avec des contours lisses depuis un ensemble d’échantillons. L’image
reconstruite est contrainte de recréer les mêmes échantillons (cohérence de mesure) ainsi que de
former une image à deux niveaux d’intensité. Initialement, nous formulons la technique de recons-
truction en minimisant le périmètre de la forme sur un ensemble de formes binaires cohérentes.
Nous assouplissons ensuite la contrainte de forme non-convexe pour transformer le problème en
une minimisation de la variation totale sur les images cohérentes et à valeurs non-négatives.
Nous introduisons aussi une exigence – appelée réductibilité – qui garantit l’équivalence entre
les deux problèmes. Nous illustrons que la propriété de réductibilité met effectivement en place
une exigence sur la densité d’échantillonnage minimum. Dans cette approche, et à l’inverse des
approches à TIF, nous ne contraignons pas les courbes de contour à un modèle spécifique. Au
lieu de cela, nous laissons le choix au noyau d’échantillonnage et aux valeurs des échantillons.
Cela aboutit à une restriction moindre sur la géométrie des formes possibles.

Dans la dernière partie de cette thèse, nous étudions un problème pertinent dans le domaine
booléen : la détection compressée booléenne, aussi connue sous le nom de problème de tests de
groupe. Le problème consiste à retrouver un vecteur clairsemé booléen à partir de quelques essais
collectifs binaires. Nous étudions d’abord une formulation de ce problème comme un programme
linéaire binaire, qui est NP-dur en général. Pour surmonter ce poids de calcul, nous pouvons
assouplir la contrainte binaire sur les variables et appliquer un arrondi sur la solution du pro-
gramme linéaire assoupli. Nous introduisons un algorithme aléatoire qui remplace la procédure
d’arrondi. Nous montrons que l’algorithme améliore considérablement le taux de succès avec
seulement un léger accroissement du coût de calcul.

Mots-clés : algorithmes aléatoires, cohérence de mesure, courbes algébriques, détection com-
pressée, échantillonnage d’image, échantillonnage généralisé, ensemble de Cheeger, formes, images
binaires, moments généralisés, programmation linéaire, reconstruction d’image, représentations
clairsemées, signaux à taux d’innovation fini (TIF), test de groupe, variation totale.
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Chapter 1

Introduction

1.1 Motivation

Sampling is a key block of all digital imaging devices. To store and process the data, we

need to convert continuous domain visual signals I(x, y) into a sequence of numbers. In digital

cameras, the optical lens and the sensor array are responsible for the sampling procedure (Figure

1.1). The physics of the device imply that the measured sensor values di,j –pixel values of the

digital image– are samples of a filtered visual signal. The impulse response of the involved filter,

denoted by φ(x, y) = φ(−x,−y), is called the point spread function (PSF) and is determined by

the optical system. On the other hand, the sensor array controls the sampling grid and sampling

density 1
T . A similar model applies to other imaging devices such as magnetic resonance imaging

(MRI) machines and scanners, possibly with different type of sampling kernels and sampling

densities. In this sense, digital images D = [di,j ]{1≤i,j≤m} are discrete representations of signals

in the continuous world:

di,j =
1

T 2
φ(

x

T
,
y

T
) ∗ I(x, y) |(x,y)=(jT,iT ) =

∫∫
Ω

1

T 2
φ(

x

T
− j,

y

T
− i) I(x, y) dx dy, (1.1)

where Ω represents the signal (image) domain.

Discrete images facilitate the storage, processing and transmission of visual signals. Though,

they do not carry all the information of their continuous domain counterparts. For instance,

one can think of geometrical features such as boundaries or edges, which are the most important

perceptual information in an image and serve as descriptors in applications like object recognition,

1



2 Introduction

I(x,y )
φ(x,y )

dij

(iT,jT )

sensor arrayoptical lens

Figure 1.1: Sampling system implemented by a digital camera; the effect of the optical lens

and the sensor array on 2D visual signals can be modeled by filtering followed by sampling in

space.

image registration and video tracking. A given discrete image at a fixed resolution is unable to

accurately describe this information. The same reason is also responsible for the unpleasant

pixelated image that appears when zooming on the discrete image beyond a certain level.

On the other hand, having access to the continuous image provides us with advantages such

as resolution-invariant processing and representation of the image. One immediate consequence

is the unlimited zooming capability. Another consequence is that one can arbitrarily rotate a

continuous domain image while in the discrete domain, only a few rotation angles are allowed

without requiring a higher resolution (interpolation). The continuous domain image could also

be used for feature extraction and keypoint detection (e.g. in the SIFT algorithm). A number of

other related applications including segmentation, super-resolution and deblurring are mentioned

in [77, 120].

These arguments motivate the problem of recovering continuous domain visual signals from

their samples. The ideal case is when the discrete image can uniquely determine the continuous

domain counterpart. But even in the absence of this condition, the recovered image Ĩ(x, y) should

be able to regenerate the same samples. This requirement assures that we cannot discriminate

between the original and the recovered images, at least at the output of the sampling block.

Equivalently, the reconstruction error I − Ĩ between the original image and its approximation

is in the null space of the imaging process. A reconstruction of the original image that satisfies

this condition is called measurement consistent or consistent for short [109, 115, 116].

In this thesis, we study the problem of recovering measurement-consistent continuous domain

visual signals from a finite number of samples. Within the broad range of visual signals, we shall

focus only on the class of shapes over a fixed background. A shape is mathematically described

as the indicator function of a union of a finite number of connected subsets S over the image

domain

χS(x, y) =

{
1, if (x, y) ∈ S,
0, if (x, y) ∈ Ω \ S.

We consider shapes with arbitrary geometries and piecewise smooth boundaries. Examples of

shape images can be found among artworks such as woodcut prints, planar silhouettes and
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Figure 1.2: Cutout by Henri Matisse (1952) that can be classified as a shape image.

lithographs (Figure 1.2).

Shape images have only two different intensity values (0 and 1) but the filtering step of the

sampling process smooths out sharp intensity transitions and results in gray scale discrete images.

For a positive PSF with unit �1 norm∫∫
φ(x, y) dx dy = 1,

pixels of the discrete image shall take continuous values in the range [0, 1]. An example of a

shape image and its associated 10 × 10 discrete image is shown in Figure 1.3. We recall that

Figure 1.3b provides a pictorial representation of the 100 pixels in D and should not be mistaken

with a piecewise constant approximation of the original image.

In the consistent shape recovery problem, we look for sampling theories or approximation

techniques that reconstructs a shape image from a given set of gray-scale pixels. In either

case, we restrict the permissible solutions to the bilevel images which significantly adds to the

difficulty of the problem. The problem of measurement-consistent shape reconstruction appears

in applications where the aim is to exactly locate or describe objects in a scene; astronomical

imaging, quality monitoring in manufacturing, biomedical imaging and high-quality artwork

rendering are a few examples.

1.2 Related Work

The subject of this thesis can be related to several signal and image processing problems.

Perhaps the most relevant topics are signal approximation, sampling and image segmentation.

In the following, we briefly review related works under each of these categories, yet, we will take

a sampling point of view and put the emphasis on the reconstruction of measurement-consistent

shape images, in the rest of this thesis.

1.2.1 Signal approximation and sparse image representation

Consider the representation of a signal f(x) in a domain spanned by a set of basis functions

{φi(x)}∞i=0 and its dual basis {φ̃i(x)}∞i=0

f(x) =

∞∑
i=0

〈f, φ̃i〉φi(x).
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(a) (b)

Figure 1.3: Example of a bilevel image and its acquisition: (a) a shape image, and (b) pictorial

representation of 10× 10 measurements, generated with a bilinear B-spline sampling kernel.

An effective representation domain captures the essence of f(x) with few basis functions and

provides reliable signal approximations from a few coefficients

f(x) ≈ fn(x) =

n∑
i=0

〈f, φ̃i〉φi(x).

The traditional Fourier expansion yields an optimal representation for regular signals [81]. For

a discontinuous signal, however, the singularities have widespread effects throughout the Fourier

expansion. This causes the error of the Fourier approximation of the signal to decay very slowly.

In strong contrast, in the wavelet expansion, the energy associated with point singularities is

mostly concentrated in just a few big coefficients. In this sense, wavelets are optimal for ap-

proximating 1D signals with bounded variation. In higher dimensions, however, other kind of

singularities can be present. For example, edges in an image represent one-dimensional (1D)

singularities along different directions. Neither wavelet nor Fourier provide really efficient repre-

sentations for images.

An effective image representation has to deal with the intrinsic geometrical structure in

images –specifically, the directional singularities– with a few coefficients. Some of the efforts

towards such a representation can be found in the works of [23–26, 45, 46, 90]. In particular,

the curvelet transform [26], with multiscale elongated and rotated basis functions, is shown to

be optimal for functions in the continuous domain with singularities along continuously twice

differentiable (C2) curves. This transform has simple constructions in the continuous domain

but the implementation for digital images is very challenging. To overcome this problem, a

directional multiresolution contourlet transform was developed directly in the discrete domain

[45]. This transform is the result of iteratively applying a multiscale decomposition [20, 47] and

a directional filter bank [13] to the digital image and deals effectively with images having smooth

contours.

The curvelet and contourlet transforms loose their (near) optimality when the image is com-

posed of edges along irregular curves with bounded variations. These images can be optimally

approximated using the adaptive bandelet transform [82, 90]. The cost for this optimality is

adaptive basis functions which should be calculated individually for each image.
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Figure 1.4: Example of an FRI shape in the range of the parametric model (1.3). The figure

is taken from [88].

1.2.2 Image sampling and parametric models

The sampling problem is all about representing a continuous-time signal f(t) by a discrete

sequence of values fn, n ∈ Z such that the sequence uniquely defines the original signal f(t). The

classical Shannon sampling theory and its variations present sampling strategies for bandlimited

signals and more generally the class of signals living in a shift-invariant space [99, 114, 118].

Still, many crucial signals stay out of reach of this class. Among them are signals which can be

described with a finite number of parameters, hence called signals with finite rate of innovation

(FRI). In [119], a study of one-dimensional FRI signals was presented, where it was shown that

the discrete samples can lead to perfect signal recovery, although the signals are not bandlimited.

This work then evolved to include more general FRI signals such as piecewise polynomials [85,

119], streams of Diracs [15, 85, 119] and piecewise sinusoids [14] with sampling kernels of compact

support [51, 52] and noisy samples [85, 107].

Extension of sampling schemes to images is an essential but challenging problem. Because

of the sharp intensity transitions along edges, images are non-bandlimited. Also, the diverse

geometry of the edges in typical images excludes them from the known shift-invariant spaces.

Some preliminary efforts to generalize the FRI framework to images led to the sampling schemes

with adequate sampling kernels for step-edge images and polygonal shapes [41, 84, 100]. In a

recent work, an FRI-based sampling scheme is presented for images with more versatile edge

geometries [88]. The curves in this model are zero level sets of a mask function that is a linear

combination of a finite number of two-dimensional (2D) exponentials

C =
{
(x, y) ∈ [0, τx]× [0, τy] : μ(x, y) =

+K0∑
k=−K0

L0∑
l=−L0

ck,le
j 2πk

τx
x+j 2πl

τy
y
= 0
}
. (1.3)

Figure 1.4 displays an example of an FRI curve in this model. The curve parameters ck,l are

shown to satisfy an annihilation system of equations which could be solved directly, or more

robustly as a minimization problem.

1.2.3 Curve fitting and vectorised representations

Continuous domain shape recovery can also be viewed as fitting boundary curves to the

interpolated gray-scale image (high-resolution version of the measurements). Such methods

are widely known as segmentation techniques and fit deformable curves to gray-scale images.
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Different variational methods have been proposed for the image segmentation, mainly revolving

around the active contour algorithm [71] and the Mumford-Shah functional [87].

Active contours, also known as snakes, are one of the most successful variational models in

image segmentation and consist of evolving a contour towards the boundaries of the objects

in the image. Based on the curve model, these algorithms are divided into point snakes [71],

geodesic snakes [33, 71, 80] and parametric snakes [19, 63] and are mostly endowed with strong

theoretical properties and good numerical results. Yet, due to the non-convexity of the energy

functional, these algorithms are very sensitive to noise and initial conditions [17, 18, 43].

The Mumford-Shah functional is the other highly studied variational approach which aims

at finding the best approximation of the image as a piecewise constant/smooth function through

the minimization problem

min
I∈R2

λ

∫∫
Ω

(f − I)2 dx dy +

∫∫
Ω\C

|∇I|2 dx dy + αH1(C).

In the above equation, f : Ω → R represents the high-resolution observed image and C is the

discontinuity set of I. Also, H1(C) denotes the one-dimensional Hausdorff measure that weighs

the regularity of C. The first integral in the functional is called the fidelity term and the remaining

terms are the regularization terms. Again, this problem, in its original setting, is non-convex and

different approaches have been proposed to avoid its inherent difficulty [42, 111, 117]. A convex

relaxation of the piecewise constant Mumford-Shah functional was proposed in [91] leading to

high quality solutions. This work was extended to the piecewise smooth functional in [92, 104].

Finally, the combination of the two mentioned variational models in a single framework has

led to fast global minimization approaches for image segmentation [17, 18]. In all cases, the

segmentation problem is formulated by minimizing a functional that depends on the gray-scale

image and the model of the boundary curves, but does not take the PSF into account. As a

consequence, the resulting piecewise constant image is likely to fail the consistency requirements.

Vectorized image representation is another way of associating a continuous shape to a discrete

image. Although this representation was initially used for black and white images [98], it has been

recently extended to photographic images with color [89]. The continuous domain representation

could also be employed to improve the resolution of synthetic images. This application was

studied in [74] for enhancing the quality of pixel arts in old video games.

1.3 Thesis Outline and Contribution

In this thesis, we study the consistent shape recovery problem along each of the three cate-

gories of the previous subsection, with a consistent emphasis on a sampling perspective. In the

following, we present a summary of each chapter and its contributions.

Measurement-consistent signal approximation

The existence of (near) optimal transforms for piecewise constant images (specifically, shape

images) motivates the problem of calculating the representation coefficients in one of these do-

mains from the image samples. Obviously, we cannot calculate infinite number of coefficients

from a finite number of samples. Hence, we are limited to the n-term approximations of the sig-

nal for some integer n. The ideal case is when we calculate the n largest coefficients. These are

the subjects of the generalized sampling [1, 2] and the infinite-dimensional compressed sensing

theories [4] that we study in Chapter 2. Generalized sampling is a linear scheme that provides
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stable and quasi-optimal signal approximations in the representation domain, though with a

reduced level of measurement consistency. We see that this scheme is particularly useful when

the reconstruction domain, compared to the sampling domain, provides a substantially better

linear approximation rate for the signals in question, whereas most of the multiresolution rep-

resentations (such as wavelets and curvelets) owe their success to their fast decaying nonlinear

approximation error rates.

On the contrary, the infinite-dimensional compressed sensing is a nonlinear and probabilistic

approach that approximates the (semi) infinite-dimensional vector of coefficients by a sparse vec-

tor; it also retains the measurement consistency. We briefly study this theory and the balancing

property therein, which limits the range M and the minimum number m of required samples for

recovering nonlinear n-term signal approximations in some representation domain. Nonetheless,

we see that the requirement of uniform (or structured) random sampling in this theory does not

apply to the existing conventional imaging devices. All the studies of this section are carried out

in 1D domains.

Robust sampling schemes for shapes with algebraic boundaries

The sampling result of [88] was a great success towards developing sampling theories for

shape images with realistic geometries. Yet, the curve model considered in [88] (equation (1.3))

is novel and further investigation is needed to reveal its descriptive power –i.e., the range of

shape geometries and the number of free parameters for generating a given shape in the range.

In Chapter 3, we consider a new class of FRI bilevel images: every image in our model is the

restriction of χ{p≤0} to a closed domain (i.e., the image plane), where χ denotes the indicator

function and p is some real bivariate polynomial. This particularly means that the boundaries in

the image form a subset of an algebraic curve with the implicit polynomial p. Algebraic curves

create a rich parametric model for planar curves [10, 64, 121].

We develop linear annihilation equations for the shape parameters based on the shape mo-

ments and propose robust sampling strategies for this class of shapes. To this aim, we replace the

conventional 2D moments of the image by the new generalized moments which are less sensitive

to the noise and can be adapted to a given sampling kernel. We demonstrate the performance of

our algorithm in reconstructing shape images through various numerical experiments, including

low to moderate noise levels and a range of realistic sampling kernels.

Measurement-consistent shape reconstruction

A parametric shape model with a bounded number of parameters allows unique recovery of the

continuous domain image from a finite number of samples. Meanwhile, it admits a limited range

of shape geometries. Modeling a shape image with an involved geometry (like the one in Figure

1.2) with an algebraic curve demands either a large polynomial degree or piecewise approximation

of the shape contours with small-degree polynomials, both leading to computationally complex

reconstructions.

In Chapter 4, we propose a variational method to recover a measurement-consistent shape

image with minimum perimeter and C2 boundary curves. Our approach in this chapter is direct

in the sense that it is independent of the curve parametrization by avoiding the intermediate

curve fitting step. This enables us to deal with arbitrary topologies. Besides, the choice of

the PSF is arbitrary and does not need to satisfy any particular condition. In this regard, the

results of this chapter can be considered as a firm sampling framework for shapes with smooth

boundaries and arbitrary sampling kernels.



8 Introduction

We formulate the method as an optimization problem constrained by the measurements

(pixels), where the functional is the continuous domain total variation (TV). Ideally, we should

restrict the search domain to bilevel images. This leads to a non-convex problem which is

computationally intractable. Hence, we consider the convex relaxation in which the search is

over the set of all non-negative-valued images. Under a minimum resolution requirements (see

Definition 4.4 for an explicit explanation), we prove that all the solutions to the non-convex

problem are minimizers of the convex relaxation (Theorem 4.2). This allows us to recover

measurement-consistent shape images from a convex optimization problem.

Randomized recovery and boolean compressed sensing

In Chapter 5, we consider the problem of Boolean compressed sensing, which is also known as

group testing. The goal is to identify a small number of defective items among a large population

by grouping subset of items into a few different pools and detecting defective items based on

the results of the collective tests for each pool. This problem can be formulated as a binary

linear program, which is NP hard in general. To overcome the computational burden, it was

recently proposed to relax the binary constraint on the variables, and apply a rounding to the

solution of the relaxed linear program. In this chapter, we replace the rounding procedure by

a random assignment of binary values to the variables. We use the fractional solution of the

linear program as the probability of these assignments . We show that the proposed randomized

algorithm considerably improves the success rate with only a slight increase in computational

cost.

Finally, we conclude in Chapter 6 with a summary and a discussion of the future research

avenues.



Chapter 2

Signal Approximation

2.1 Motivation

Real-world signals are inherently analog or continuous domain but we often observe them

through digital measuring devices. A linear measuring process consists of sampling the signal

using certain sampling kernels. The samples βi = 〈f, φi〉, i = 1, 2, . . . of a continuous domain

signal f can be regarded as its coefficients in an infinite-dimensional sampling domain S =

span{φi}i∈N with a basis made of the sampling kernels. In general, an infinite number of samples

is required to precisely represent f . By adapting the sampling kernels to a specific type of signal,

it is possible to reduce the infinite dimensional representation to a finite one. However, in most

of the acquisition devices, the sampling kernels are limited by the physics of the device and are

rarely controllable. Therefore, it is very likely that a finite collection of samples captured by a

measuring device results in a poor approximation of the signal.

This is, for example, the case when we capture shape images with digital cameras. While the

continuous domain boundary curves are the dominant information of shape images, the curves

are hardly detectable in discrete images (Figures 2.1b and 2.1c). Adopting a continuous domain

model for images implies that the discrete image per se is not a valid representation of the original

image. Instead, the interpolation of pixel values (samples) with appropriate kernels generates

a legitimate approximation. When the interpolating kernels form a dual basis for the sampling

kernels, the approximation is equivalent to the orthogonal projection of the original image onto

a finite dimensional sampling space. Yet, this approximation might be a poor reconstruction of

the original shape image (Figures 2.1d and 2.1e).

One approach to reconstructing a satisfactory approximation of the signal is to represent it

in another domain R = span{ψj}j∈N

f =
∑
j∈N

αjψj (2.1)

that is proved to be efficient for the class of signals subject to the measurement. This means that

any signal f in this class has fast decaying or sparse coefficients {αj}j∈N in R and n-term linear

or non-linear approximations of f in R (formed by the n first or the n largest coefficients in (2.1),

respectively) rapidly converge to the signal. Subspaces spanned by wavelets are example domains

0. This chapter includes research conducted jointly with Löıc Baboulaz and Martin Vetterli [61].

9
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(a)

(b) (c)

(d) (e)

Figure 2.1: Projection of a shape image onto a finite-dimensional sampling space: Figures 2.1a

and 2.1b depict a shape image (displayed at resolution 1000 × 1000) and an enlarged section

thereof. Figure 2.1c shows the same enlarged section of a 200 × 200 discrete image, generated

with a biquadratic B-spline PSF. Figures 2.1d and 2.1e display the same enlarged sections of the

interpolated samples using the dual B-spline kernels (equivalent to the orthogonal projection to

the sampling subspace) before (PSNR=26.2294 dB) and after (PSNR=26.8698 dB) thresholding

at level 0.5, respectively. Also, consistency between the samples (discrete images) of the images

in 2.1d and 2.1e and the original samples are 122.4234 dB and 46.3432 dB, respectively.
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that provide optimal representations for piecewise continuous signals with pointwise singularities.

Also, curvelet [26] and contourlet [45] domains provide fast converging approximations for shape

images.

Finding the signal representation in a new domain requires having access to the signal values

at every point, while in our problem, we only access a finite number, say m, of the samples in

a different domain. This brings us to the following question: what is an appropriate way of

calculating the signal approximation in the new domain that preserves the domain efficiency in

representing the signal? In the following, we show one example of an ill-advised procedure that

causes false results.

Example 2.1

Consider the representation of an image I(x, y) in terms of some basis functions {ψi(x, y)}i∈N,

I(x, y) =
+∞∑
i=1

αiψi(x, y), (2.2)

and the nonlinear approximation of I(x, y) generated with the m largest terms in (2.2)

Îm(x, y) =
∑

i∈I αiψi(x, y),

I = {αi : |αi| ≥ |αj |, ∀j ∈ N, j �= i}, with |I| = m.

For a piecewise regular image with discontinuities along 1D curves (e.g. a shape image), the

error decay rate of the image approximation in the wavelet domain is limited to O(m−1) [81].

On the other hand, when I(x, y) is a piecewise C2 image with discontinuities along C2 curves,

the m-term contourlet approximation yields an error decay rate of O((logm)3m−2) [45, 81].

Because of the existence of discrete wavelet and contourlet transforms, it might be tempt-

ing to approximate a shape image in the wavelet and contourlet domains by applying the

discrete transforms to a discrete (sampled) version of the image. The plots in Figure 2.2

show the error decay rates of the naive approximations generated in this way from the dis-

crete image partially displayed in Figure 2.1c. We see that this approach generates results

that do not follow the theoretical error decay rates in the aforementioned domains. However,

we recall that these plots should, in no sense, be interpreted as the approximation error rates

of the continuous domain shape images.

The above example prompts us to study systematic techniques for calculating the coefficients

of a signal in a domain from its samples in a different domain. This problem is the subject of

consistent reconstruction that was first introduced in [115] and further improved in [56, 57, 116].

The consistent reconstruction method uses m samples in the sampling domain to calculate m

coefficients in the reconstruction domain. This problem has been recently revisited in [1, 2],

where it is argued that in general, m samples may not be enough to stably find m coefficients in

R. Also, a new generalized sampling approach is developed to stably recover n coefficients in R
from m samples in S, where usually the stable sampling rate m is larger than n [1–3].

In this chapter, we study consistent reconstruction and generalized sampling (GS) theories.

Motivated by the consistent shape reconstruction problem, we limit our study to the piecewise

constant (and mostly bilevel) signals in 1D. We will see that due to the linearity of GS, one should

expect considerably enhanced signal approximations only when R, compared to S, provides

faster-converging linear approximations of the signal. In other words, the decay rates of the
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(a)

Figure 2.2: Error decay rates of nonlinear approximations of the discrete image partially

represented in Figure 2.1c in the contourlet (pyramidal directional filter bank) and 2D discrete

wavelet domains.

linear (and not the nonlinear) approximations in R and S should be the reference for choosing

a reconstruction domain.

To recover signal approximations that benefit from the nonlinear approximation rates in R,

we should calculate a number, say n, of the largest signal coefficients, from a broad range, in R.

We study this problem in the context of infinite-dimensional compressed sensing [4], which is an

extension of compressed sensing (CS) ideas to the GS theory.

This chapter is organized as follows. In Section 2.2, we define the problem in details and

briefly review the GS approach. In Section 2.3, we apply the GS technique to the reconstruction of

piecewise constant signals in a number of experiments. We study infinite-dimensional compressed

sensing in Section 2.4 and discuss the optimal sampling rates in this theory. We conclude the

chapter in Section 2.5.

2.2 Generalized Sampling

2.2.1 Problem definition

Let f be an unknown signal in a Hilbert space 1 H and suppose that we have access to its

measurements

βi = 〈f, φi〉, i = 1, . . . ,m,

for a collection of sampling kernels {φi}mi=1 in H. Typically, the sampling kernels are linearly

independent and we can assume that they form a Riesz basis for the sampling space Sm =

1. For a complete account of Hilbert spaces and the concepts therein, we refer the readers to the books [81, 118].
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(a) (b)

Figure 2.3: (a) Representing a piecewise constant function in trems of a finite number (here,

512) of Fourier exponentials yields the Gibbs Oscillations around the discontinuity points. (b)

Representing a piecewise analytic function in terms of a finite number (here, 512) of Haar wavelets

results in an undesired staircase appearance.

span{φ1, . . . , φm} ⊂ H. Generally, infinitely many samples are needed to exactly describe f and

its approximation with a finite number of samples incurs an error ‖f − PSmf‖ that decays with

m, where PSf denotes the orthogonal projection of f onto S.
Consider the situation that either ‖f − PSmf‖ decays very slowly or the approximation of f

in Sm generates some undesired features. Examples of the latter are the Gibbs oscillations that

appear when representing a function with some discontinuities in terms of Fourier exponentials

or the staircase effect of the approximation of a (piecewise) analytic function in terms of Haar

wavelets (Figure 2.3).

One approach to improve the signal reconstruction is to represent it in terms of some new

kernels {ψj}j∈N that are more efficient in representing the signal, i.e., the error of signal ap-

proximations in Rn = span{ψ1, . . . ψn} decays more rapidly with m. The main challenge in

this problem is that, unlike typical scenarios, we do not have immediate access to the original

signal but we only observe it through its measurements β1, . . . , βm in a different domain and any

approximation f̂ of f in R has to be built upon the observed measurements. Accordingly, we

impose two requirements on the acceptable signal approximations f̂ :

– f̂ should be consistent with the available measurements, meaning that 〈f̂ , φi〉 = βi, i =

1, . . .m.

– The whole premise of approximating the signal in R is that we know R provides faster

converging representations for f . Hence, it is vital for f̂ to retain the same convergence

speed. Mathematically speaking, ‖f − f̂‖ and ‖f − PRn
f‖ should have the same decay

rates.

The above discussion brings up the following questions.

1. Given m samples β1, . . . βm, what is the maximum number of coefficients that we can

approximate in R such that ‖f − f̂‖ enjoys the same decay rate as ‖f − PRn
f‖?

2. How can we recover such a stable approximation of f in R?

The generalized sampling theory responds to these questions.
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Figure 2.4: Approximation of f in R from its samples in S. PRf is the best approximation of

f in R and f̂ is the consistent reconstruction.

2.2.2 Stable signal approximation and the generalized sampling theory

Assume that {φi}∞i=1 and {ψj}∞j=1 form Riesz bases for the sampling and reconstruction spaces

S,R ⊆ H, respectively. Let f =
∑∞

j=1 αjψj be the signal we wish to recover and suppose that

we have access to the infinite collection of samples

β1, β2, β3, ... (2.3)

The problem of recovering the best approximation of f in terms of {ψj}∞j=1 from the samples in

(2.3) is equivalent to seeking the best approximation of the coefficients α = [α1, α2, ...]
T from

measurements β = [β1, β2, ...]
T = Uα, with

U =

⎛⎜⎝ 〈ψ1, φ1〉 〈ψ2, φ1〉 . . .

〈ψ1, φ2〉 〈ψ2, φ2〉 . . .
...

...
. . .

⎞⎟⎠ . (2.4)

Before we proceed, we need to recap the following definitions from [1].

Definition 2.1

A mapping H → R : f �→ f̂ is called quasi-optimal if there exists a constant c > 0 such that

‖f − f̂‖ ≤ c‖f − PRf‖, ∀f ∈ H

where PRf is the orthogonal projection onto R.
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Figure 2.5: Generalized sampling reconstruction f̂ of f in R1 from samples in S2.

Definition 2.2

Let U and V be closed subspaces of H. The subspace angle θUV ∈ [0, π/2] between U and V

is given by

cos(θUV ) = inf
u∈U,‖u‖=1

‖PV u‖.

Definition 2.3

Let U and V be closed subspaces of H. A mapping WUV : H → U is an oblique projection

onto U along V if W2 = W and W(v) = 0, ∀v ∈ V .

Consider the linear operator P : H → H, given by

Pf =
∑
i∈N

〈f, φi〉φi.

When the set {φi}i∈N forms an orthonormal basis, P coincides with PS . Otherwise, it is a

well-defined, bounded and self-adjoint operator.

The consistent reconstruction of f is a point f̂ ∈ R that generates the same samples 〈f̂ , φi〉 =
βi, i = 1, 2, ..., and hence

f̂ ∈ R s.t. PS f̂ = PSf. (2.5)

When the two subspaces satisfyR⊕S⊥ = H, equation (2.5) has a unique solution f̂ =
∑

j∈N
αjφj

that can be found by solving the infinite-dimensional system of linear equations Uα = β [56, 57,

115]. The mapping H → R : f �→ f̂ is quasi-optimal and coincides with the oblique projection

WR,S⊥ . More specifically, it satisfies

‖f − PRf‖ ≤ ‖f −WR,S⊥f‖ ≤ 1

cos(θRS)
‖f − PRf‖.
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Figure 2.4 depicts the concept of consistent reconstruction in R
3.

Clearly in practice, we have access to a finite number of samples. Therefore, we must consider

truncations of this linear system and seek the first n coefficients αn of α. This is equivalent to

looking for the n-term linear approximation of f in R, i.e., f̂n =
∑n

j=1 αjψj .

We may think of solving this problem by taking m = n samples in S and considering the

consistency condition in the m-dimensional subspace Sm:

f̂ ∈ Rm s.t. 〈f̂ , φi〉 = βi, i = 1, . . . ,m. (2.6)

This approach has a stable solution only if

Rm ⊕ S⊥
m = H. (2.7)

The condition in (2.7) is equivalent to cos(θRmSm
) �= 0. In general, this condition may not hold

for an arbitrary m, even if the infinite-dimensional spaces satisfy R ⊕ S⊥ = H. Indeed, either

of cos(θRmSm
) ≥ cos(θRS) or cos(θRmSm

) ≤ cos(θRS) are possible and there is even no general

guarantee that cos(θRmSm
) stays away from zero as m → ∞ [2].

The generalized sampling approach to this problem is to decrease the number of coeffi-

cients n < m (equivalently, increase the number of samples m > n) such that the condition

cos(θRnSm
) �= 0 is met. In this case, the projection of Rn onto Sm is an n dimensional sub-

space PSm
(Rn) = span{PSm

ψj}nj=1. Now, we find an approximation of PRn
f by verifying the

consistency condition in this subspace [1]

f̂ ∈ Rn s.t. 〈f̂ ,PSmψj〉 = 〈f,PSmψj〉. (2.8)

Note that 〈f,PSm
ψj〉 = 〈PSm

f, ψj〉 can be derived from the samples.

In Figure 2.5, we explain the GS reconstruction through an example in R
3. In this example,

we find the approximation of f in R1 from two samples in S2. Note that since R1 is orthogonal

to S1 = span{φ1}, one sample of f in S1 is not sufficient for the stable approximation of f in R1.

This is while cos(θR1S2
) > 0 with S2 = span{φ1, φ2}. Consequently, we can find a quasi-optimal

representation of f in R1 from its samples in S2. The final reconstruction is an oblique projection

onto Rn along
[
PSm

(Rn)
]⊥

[1].

The solution of the GS equation in (2.8) is a stable approximation of f in Rn and it satisfies

‖f − PRn
f‖ ≤ ‖f − f̂‖ ≤ 1

cos(θRn,PSm (Rn))
‖f − PRn

f‖. (2.9)

Also, the coefficients of f̂ can be calculated as

αn = ((Um,n)∗Um,n)−1(Um,n)∗βm, (2.10)

where Um,n is the m × n subsection of U in (2.4). We remark that the generalized sampling

condition in (2.8) reduces to consistent reconstruction (2.6) when m = n. Extension of GS results

to frames and inverse problems can be found in [5].

For a fixed number n of desired coefficients in R, the stable sampling rate is the minimum

required number of samples that bounds the factor
(
cos(θRn,PSm (Rn))

)−1

in (2.9) between the

GS and the optimal reconstructions in Rn. One can employ the theorems in [1, 3] to numerically

calculate this factor for any pair Sm and Rn, by having access to Um,n and the Gram matrices
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of the basis functions {φi}mi=1 and {ψj}nj=1. However, analytic bounds should be calculated on

a case by case basis. For example, it is shown that for stable and accurate reconstruction of

polynomials of degree less than n (i.e., when Rn = Pn−1) from Fourier samples, the number of

samples should grow like m ∼ n2 [3]. Moreover, the stable sampling rates for the reconstruction

in the wavelet domains from Fourier samples scale linearly with the number of desired wavelet

coefficients [7]. The linear scaling of the stable sampling rate is preserved when both wavelet

and Fourier domains are lifted up to 2D by tensor products [6].

As a final remark in this section, we recall that the GS reconstruction in (2.8) does not

preserve full measurement consistency. A consistent and stable solution to the GS problem for

orthonormal sampling and reconstruction kernels is proposed in [93], which replaces the linear

reconstruction in (2.10) with a nonlinear basis pursuit problem.

2.3 Reconstruction of Piecewise Constant Signals

2.3.1 Error decay rates

In this section, we apply the GS technique to reconstruct piecewise constant signals from their

measurements in two different scenarios. First, we aim at investigating the quasi-optimality of

the GS reconstructions in the Fourier and wavelet domains. For this purpose, we invoke the error

decay rates for the approximation of discontinuous signals in these domains.

Theorem 2.1 ([81], Chapter 9)

Let f ∈ H = L2[0, 1] be a discontinuous signal with bounded variations, i.e.,

‖f‖V =

∫ 1

0

|ḟ(x)| dx < +∞,

where ḟ represents the derivative (in the distributional sense). Then, the errors of the n-term

linear and nonlinear approximations of f in the Fourier domain satisfy

eFl (n, f) = eFn (n, f) = O(‖f‖2V n−1).

Also, the wavelet approximation errors satisfy

eWl (n, f) = O(‖f‖2V n−1)

and

eWn (n, f) = O(‖f‖2V n−2).

In the first experiment, the sampling kernels are the linear B-spline wavelets and the reconstruc-

tion kernels are Fourier exponentials or Haar wavelets. In either case, the infinite-dimensional

sampling and reconstruction spaces span H = L2[0, 1] and hence, R⊕ S⊥ = H.

The experiment setup is as follows. We generate piecewise constant signals with 6 randomly

distributed discontinuity points and random levels. We set the number of reconstruction coeffi-

cients to n = 512. For the reconstruction in the Fourier domain, we take m = n. This results in

cos(θRn,PSm (Rn)) = 0.72 which assures that the error of the GS reconstruction is less than 1.4

times the optimal error. For the reconstruction in the Haar domain, we test m = n and m = 2n,
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(a) (b)

Figure 2.6: The n-term (a) linear and (b) nonlinear approximation errors of piecewise constant

signals in the Fourier and Haar wavelet domains. The plots compare error decay rates of the

GS approximations (calculated from m signal measurements generated with the linear B-spline

sampling kernels) and the original approximations (generated immediately from the signal).

which correspond to cos(θRn,PSm (Rn)) = 0.10 and cos(θRn,PSm (Rn)) = 0.86, respectively. We

solve (2.10) to find the (approximate) Fourier and wavelet coefficients. Finally, we compute

n-term linear and nonlinear approximations of f in both domains for 1 ≤ n ≤ 512.

Figure 2.6 displays the average linear and nonlinear approximation errors versus n for 10

realizations of the signal in a logarithmic scale. For comparison, we have also plotted the same

quantities using the Fourier and Haar coefficients that are calculated from the original signals.

The plots clearly confirm the theoretical error decay rates of Theorem 2.1.

A point that is worth noting here is that the (average) error of the final GS reconstructions

(using all the n = 512 coefficients) is less in the Fourier domain, even compared to the reconstruc-

tion in the Haar domain that exploits twice as many samples. This has two reasons: (1) In case

of including all the n coefficients, we obtain a linear approximation of the signal, for which the

order of the error with Fourier coefficients coincides with that of the wavelet coefficients. (2) The

disparity between a pair of sampling and reconstruction domains has an influence on the quality

of the signal approximations in the reconstruction domain. In the GS theory, this is encoded

in the angle between the two spaces, or more specifically, the factor
(
cos(θRn,PSm (Rn))

)−1

in

(2.9).

2.3.2 Reconstruction of binary signals

In the second experiment, we focus on the reconstruction of binary (bilevel) signals with

random discontinuity points in the Fourier and Haar wavelet domains. The conventional wisdom

suggests that the Haar domain provides better representations for bilevel signals. To investigate

this, we consider signal approximations in each of the two domains using m = 512 samples. We

additionally use GS to switch from one domain to another and calculate the quasi-optimal signal

approximations with n = m coefficients. Knowing a priori that the original signals are binary,
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Table 2.1: Approximation errors of bilevel signals in the Fourier and Haar domains

(avg. 100 trials)

Approximation domain Fourier Fourier (GS) Haar Haar (GS)

Before thresholding 0.0281 0.0306 0.0355 0.0391

After thresholding 0.0018 0.0191 0.0433 0.0433

we also apply a threshold to each of the signal approximations.

Figure 2.7 shows a bilevel signal and its immediate and quasi-optimal (using GS technique)

approximations in the Fourier F512 and Haar H512 domains. The reported approximation errors

‖f − f̂‖2 indicate that the orthogonal and quasi-optimal approximations of the signal in the

Fourier domain are superior to the signal reconstructions in the Haar wavelet domain. Moreover,

thresholding the signal approximations affects differently the results in the two domains: it

improves signal approximations in the Fourier domain while it worsens the ones in the Haar

domain. In Table 2.1, we summarize the average of the same approximation errors for 100

random bilevel signals with 4 discontinuities in the interval [0, 1]. The numbers in this table also

validate the same findings. Specifically, we observe that thresholding the Fourier approximations

recovers the exact bilevel signal in most cases.

2.4 Nonlinear Signal Approximation

The GS technique is a linear process which at best recovers n-term linear approximations

of a signal in a desired domain, where n ≤ m is ruled by the stable sampling rate between the

sampling and reconstruction domains. Thus, we should not expect considerably better signal

approximations if we switch between two domains with similar linear approximation rates, even

though the reconstruction domain offers a better nonlinear approximation rate 2. The recon-

struction of discontinuous signals in the Fourier and wavelet domains that we studied in the last

section was an example of this situation.

Usually, representation of a signal in a multiresolution domain R leads to a coefficient vec-

tor α that is sparse (or compressible) but the significant coefficients are spread along different

resolutions. As a result, the signal is effectively approximated by its largest coefficients in R,

whereas the first coefficients in α produce poor signal reconstructions. This motivates the ap-

proximation of the most significant signal coefficients in R from the available samples. Similar

to the finite-dimensional compressed sensing (CS) [29, 49], we are interested to take advantage

of the sparsity of coefficients to reduce the number of samples (equivalently, to recover larger

number of significant coefficients from a fixed budget of samples).

This problem can be considered as an infinite-dimensional variant of the CS problem where

the goal is to recover a sparse vector x from linear measurements y = Um×nx. It is shown that

if the sensing matrix Um×n has the so-called restricted isometry property (RIP) of order 2k, any

k-sparse vector x can be uniquely recovered from the measurements y = Um×nx [28], by solving

2. An exception is when the signals in question live in the finite-dimensional subspace Rn in which case we can
perfectly recover them in Rn. However, this scenario is better classified as signals with finite rate of innovation
[119].
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(a)

(b) (c)

(d) (e)

Figure 2.7: Example of a bilevel signal and its approximations in the Fourier and Haar wavelet

domains using 512 coefficients. (a) Bilevel signal with discontinuity points marked on the signal.

Error f − f̂ between the signal and (b) its orthogonal projection onto F512, (c) its orthogonal

projection onto H512, (d) its approximation in F512, calculated from 512 Haar wavelet coeffi-

cients, and (e) its approximation in H512, calculated from 512 Fourier coefficients, in the interval

[0.44, 0.54]. The corresponding errors ‖f−f̂‖2 before (after) thresholding are 0.0281 (0), 0.034304
(0.040594), 0.030381 (0.019136) and 0.037459 (0.040594), respectively.
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the basis pursuit problem

minx∈Rn ‖x‖1
s.t. y = Um×nx.

However, verifying the RIP condition for a matrix is computationally hard. In [27], Candès

and Romberg considered orthonormal matrices U = [ui,j ]n×n and they showed that in this case

the coherence

μ(U) = max
i,j

|ui,j |

can be used to determine the subsampling rate m.

The infinite-dimensional CS approach was recently introduced in [4] as an extension of the

CS ideas to GS. In this theory, a set of n-sparse coefficients in R with the support of nonzero

coefficients in {1, ..., N} for some large N ∈ N are recovered with high probability fromm samples

in S chosen uniformly at random from the range {1, ...,M} by solving the basis pursuit problem.

The subsampling rate m depends on the coherence of the underlying sensing matrix. In addition,

the parameters (N,n,M,m) should satisfy a balancing property.

The infinite-dimensional CS is a promising framework that allows us to obtain far better

approximations of signals and images, in the applications that the three ingredients (asymptotic)

sparsity, (asymptotic) incoherence and uniform or multilevel random subsampling are present.

In this section, we briefly study the theory and the balancing property in the infinite-dimensional

CS. We also study the change of m as a function of M for the Fourier and Haar wavelet domains

and discuss the optimum choices of sampling rate and support for limited choices of (N,n).

2.4.1 Infinite-dimensional compressed sensing

Let f denote a signal with a sparse representation f =
∑

j∈N
αjψj in a known domain R.

We can assume that the significant values of α belong to the range Δ ∈ {1, ..., N} for a large N .

In this case, we can perfectly recover f with the GS approach, if we have access to a sufficient

number of samples m ≥ N . But considering the order of N , having these many samples is

impractical. The infinite-dimensional CS approach in [4] exploits the sparsity of α to reduce the

number of samples. The price of the subsampling, however, is to trade the stable recovery in GS

with a probabilistic recovery.

Before recalling the main results in [4] for recovery of sparse or compressible signals in R, we

need to define the balancing property.

Definition 2.4 ([4])

Let U be the isometry matrix in (2.4). Then M and m satisfy the balancing property with

respect to U,N and n if

‖PNU∗PMUPN − PN‖ ≤
(
4
√

log2(4M
√
n/m)

)−1

,

max|Δ|=n,Δ⊂{1,...,N}‖PNP⊥
ΔU∗PMUPΔ‖mr ≤ 1

8
√
n
,

where ‖.‖mr and PN denote the maximum �2 norm among the rows of U and the projection

onto span{ej : j = 1, . . . , N}, respectively.
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The following theorem considers the case that the compressible coefficient vector α with the

support in {1, ..., N} can be decomposed as

α = α0 +α1,

where α0 is n-sparse and α1 has small �1 norm. Here, UM×N
Ω indicates the restriction of UM×N

to the rows indexed by Ω.

Theorem 2.2 ([4])

Let U be an isometry matrix with coherence μ(U). Let the coefficients α ∈ �1(N) in R
can be written as α = α0 + α1 with α0,α1 ∈ �1(N) and supp(α0) = Δ ⊂ {1, ..., N} and

supp(α1) = {1, ..., N}. Also, let ε > 0 and Ω ⊂ {1, ...,M} be chosen uniformly at random

with |Ω| = m. If β = Uα and α̂ is a minimizer of

inf
η∈�1(N)

‖η‖�1 s.t. UM×N
Ω ηN = βΩ, (2.13)

then with probability exceeding 1− ε we have

‖α̂−α‖ ≤ (
20M

m
+ 11 +

m

2M
)‖α1‖�1 ,

given that (N, |Δ|,M,m) satisfy the balancing property and m satisfies

m ≥ CMμ2(U)|Δ|(log(ε−1) + 1) log
(MN

√|Δ|
m

)
, (2.14)

for a universal constant C.

In case that α1 = 0 and α is a n-sparse vector with n = |Δ|, the equation (2.13) has a

unique solution that coincides with α with probability greater than 1− ε.

2.4.2 Optimal sampling rate

Theorem 2.2 indicates that a signal with a n-sparse representation in RN can be recovered

with high probability from m random samples in SM , if m fulfills the condition in (2.14) and

(N,n,M,m) satisfy the balancing property with respect to U . The condition (2.14) is a standard

requirement in CS with a simple structure that relates the subsampling rate m/M to the coher-

ence of U . On the other hand, it is not clear which values of (N,n,M,m) satisfy the balancing

property with respect to a given U and how changes in (N,n) affect the sampling rate m and

sampling support M . In other words, it is not clear what the subsampling gain of this setting is

with respect to the stable sampling rate of GS, for a given sparsity.

In this section, we investigate the balancing property when the underlying sampling and

reconstruction domains are formed by Fourier exponentials and Haar wavelet functions in L2[0, 1].

This special choice of basis functions has applications in the MRI problem [6, 7]. In our study

we consider the following more convenient but stronger variant of (2.12) [4]

‖PNU∗PMUPN − diag(PNU∗PMUPN )‖mr ≤ 1

8
√
n
. (2.15)

We use the following setup to find efficient sampling rates for fixed pairs of N and n. First, we

find all values of M in the range {n, n+1, ...,Mmax} such that the submatrix UM×N satisfies the
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(a)

(b)

Figure 2.8: The acceptable range of sampling rate m and sampling support M for samples in

the Fourier domain and sparse coefficients in the Haar domain, N = 200 and (a) n = 30, (b)

n = 40. The blue and red plots display the minimum values of m as a function of M that are

given by the balancing property and equation (2.14) with ε = 0.05, respectively. The dashed

lines show the stable sampling rates in GS. The green regions display the acceptable ranges of

(M,m).
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Figure 2.9: The acceptable range of sampling rate m and sampling support M for samples in

the Haar domain and sparse Fourier coefficients with N = 200 and n = 20.

constraint in (2.15). An ideal choice forMmax is to take it proportional to the stable sampling rate

corresponding to N . However, we will see that the specific choices of sampling and reconstruction

kernels in this section asks for considerably larger values M . We further point out that in general,

the maximum row norm in equation (2.15) does not change monotonically with M . Thus, we

should find the acceptable values of M by checking all numbers in {n, n+ 1, ...,Mmax}.
In the next step, for each verified M , we find the minimum m that satisfies (2.14) and the

first constraint in Definition 2.4. Finally, we accept the pair (M,m) if m < min(M,M1) where

M1 denotes the stable sampling rate in GS corresponding to N .

Figures 2.8a and 2.8b display the acceptable pairs (M,m) for N = 200,Mmax = 2000 and two

different sparsity values n = 30, 40, for sampling in Fourier and reconstruction in Haar domains.

Figure 2.9 depicts the same variables for n = 20, when the sampling and sparsity domains are

reversed. In these figures, the minimum values of m as a function of M satisfying the balancing

property and the equation (2.14) are indicated in blue and red, respectively. The error probability

is ε = 0.05. Also, the dashed lines display the stable sampling rates corresponding to N = 200.

The green region in each figure shows the acceptable range of (M,m). The figures indicate

that for a given setup, there are various pairs which provide high probability of reconstruction.

A counter intuitive result is that the required number of samples m does not necessarily decrease

as M increases. For fixed values of (N,n), the optimal sampling rate is determined by the point

that corresponds to the smallest m. For instance, Figure 2.9 shows that a signal with 20-sparse

Fourier coefficients in the range {1, ..., 200} can be recovered with probability greater than 0.95

from 58 samples that are chosen uniformly at random from the first 760 coefficients in the Haar

domain. This means that we get a large subsampling gain by solving the basis pursuit problem

in equation (2.13). On the other hand, Figure 2.8b illustrates that we do not get too much

subsampling gain by replacing the stable reconstruction in GS with the basis pursuit problem in

(2.13) for the specific values of the parameters in this plot.

For the specific pairs of sampling and reconstruction domains discussed here, the balancing



2.5 Conclusion 25

Table 2.2: The approximation errors for the wavelet coefficients (avg. 100 trials)

‖α− α̂‖�∞/‖α‖�∞ SNR

Noiseless coefficients 0.1024× 10−6 104 dB

Noisy coefficients 0.7921× 10−3 64.1 dB

property mostly leads to inappropriate sampling ranges or subsampling rates. On the contrary,

it has been shown [9, 93] that for Fourier samples and sparse coefficients in a sufficiently smooth

wavelet domain (specifically, when the wavelet and scaling functions are q times continuously

differentiable for q ≥ 2), the balancing property holds whenever

M = C .N .
(
log2(4NM

√
n/m)

)1/(4q−2)

.

For further details on this topic as well as the hacks for matrices with large coherence (asymptotic

incoherence and multilevel random subsampling), we refer the readers to the references [8, 9, 93].

2.4.3 Numerical experiments

In this section, we use the optimal values of (M,m) in Figure 2.8a to recover signals having

sparse representations in the wavelet domain from randomly chosen Fourier coefficients.

In the first experiment, we consider signals of the form

f(t) =

200∑
i=1

αiφi(t),

with only 20 nonzero coefficients, where {φi(t)}i∈N are Haar wavelets on [0, 1]. In the second

experiment we consider signals of the form

f(t) =

200∑
i=1

α0,iφi(t) +

200∑
i=1

α1,iφi(t),

where the coefficient vector [α0,1, ..., α0,200]
T is 20-sparse and [α1,1, ..., α1,200]

T has a small �1
norm. For each case, we take m = 144 Fourier samples chosen uniformly from the first 1280

Fourier coefficients and we recover the signal by finding the solution to (2.13). Table 2.2 summa-

rizes the approximation errors in the wavelet coefficients. The results in this table are averages

over 100 trials.

2.5 Conclusion

We studied the sampling problem of signals in Hilbert spaces that have efficient representa-

tions in a known domain. While an enforced set of sampling kernels is likely to yield poor signal

approximations, adapting the representation kernels to the signal can improve the approxima-

tions. GS scheme allows us to switch between the sampling and reconstruction domains. But,

the signal approximations within this framework, in the best case, enjoy linear approximation

rates of the reconstruction domain. To benefit from nonlinear approximation rates, we need
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an approach that calculates the most significant signal coefficients from the available samples.

Infinite-dimensional CS is a technique that approximates the few (n) largest signal coefficients

in a fixed range {1, ..., N} by adopting the random sampling approach of CS. Unlike the finite-

dimensional case, the sampling scheme involves a pair (M,m), where m samples are randomly

chosen among a size M subset of possible sampling kernels. The balancing property determines

the acceptable values of (N,n,M,m) for a pair of sampling and reconstruction domains.

Infinite-dimensional CS is a promising framework for recovering efficient signal approxima-

tions in the applications that the three ingredients asymptotic sparsity, asymptotic coherence and

random sampling are present. However, in many practical sensing devices such as conventional

digital cameras, the sampling pattern is fixed and it is impossible to ask for random sampling.

In the next chapters, we study nonlinear but deterministic approaches to the consistent shape

reconstruction problem.



Chapter 3

A Robust Sampling Scheme for
Shapes with Algebraic Boundaries

3.1 Introduction

The contours of a shape image can be described using various functions [73]. In this chapter,

we model the image contours with algebraic curves and develop sampling results for this class

of shape images. The reason for the choice of this model becomes evident shortly in the next

subsection.

3.1.1 Motivation

An algebraic curve is the zero level set of a finite degree bivariate polynomial. Algebraic curves

can be decomposed into a finite number of smooth arcs. Nevertheless, they are dense, in the

Hausdorff metric, among all smooth curves which means that every curve can be approximated

by a sequence of algebraic curves arbitrarily closely [66]. This characteristic makes them an

excellent candidate in modeling general image boundaries.

We call a subset of the 2D plane with an algebraic boundary curve an algebraic domain

and the restriction of it to the image plane an algebraic shape. According to a classical result

[70, 75], an algebraic domain of degree n can be uniquely determined from its set of 2D moments

of order less than or equal to n. But as stated in [86], ”there has been so far no constructive

way of passing from the given moments to the unique algebraic domain, or equivalently to the

defining polynomial”. In [86] and [67], the authors present an algorithm for the reconstruction of a

subset of bounded algebraic domains –called quadrature domains– from their moments. However,

moments are inherently very sensitive to noise and consequently, the suggested algorithm (as

noted by the authors) suffers from sever numerical instabilities.

Moments have been used as the standard descriptors of 2D shapes in [44, 94, 112]. Also, there

are some works on the exact calculation of moments of the shapes with parametric boundary

curves in terms of the curve parameters, through nonlinear equations. Examples are [101] for

polygonal shapes and [69] for shapes with wavelet and spline curves.

0. This chapter includes research conducted jointly with Arash Amini and Martin Vetterli [60].

27
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3.1.2 Contribution

In this chapter, we propose sampling and reconstruction techniques for algebraic shapes. We

first derive a set of linear annihilation equations for shape parameters with coefficients being

factors of 2D moments of the image. We prove that any solution of these equations will lead

to a polynomial that vanishes on the boundaries of the original shape. By employing sampling

kernels that reproduce polynomials like the well-known B-splines [113], we are able to calculate

the shape moments from the samples.

Moments are inherently very sensitive to the noise and the reason is that noise in the image

or the samples is boosted by polynomial factors before it contaminates the moments. The noise

sensitivity of the moments makes the reconstruction process numerically unstable and narrows

the choice of the sampling kernels to polynomial reproducing kernels. As a remedy to this

problem, we replace moments with some generalized moments that are still reproducible from

the samples but do not amplify the noise. This is achieved by multiplying the monomials in

the conventional moments with a function that is adjusted to the sampling kernel and decays at

the image borders. The benefits are threefold: (1) it relaxes the requirements on the sampling

kernels, (2) it produces annihilation equations that are robust at numerical precision, and (3) it

extends the results to images with unbounded boundaries.

In any sampling problem, consistency of the reconstruction with noiseless samples is a crucial

constraint [109, 115, 116]. It is also proved to be a strong tool for recovering bilevel images

in the absence of a parametric model [59]. In this work, we further improve the stability of

our reconstruction by enforcing measurement (or sample) consistency to the recovered algebraic

shape. This results in a reconstruction algorithm that is robust to moderate noise levels in the

samples.

The outline of this chapter is as follows. In Section 3.2, we first define the image model and

study algebraic curves in details. Then, we explicitly define the sampling problem. We derive

the annihilation equations for the shape parameters in Section 3.3 and present a perfect recon-

struction algorithm for the noiseless scenario. In Section 3.4, we develop a stable reconstruction

algorithm. For this purpose, we introduce the notion of generalized moments and present an

algorithm for generating the adequate generalized moments corresponding to the given sampling

kernel. Also, we prove that any solution of the annihilation equations formed from (generalized)

moments generates the original shape boundaries. We present some experimental results with

different curves in the noiseless and noisy scenarios in Section 3.5 and conclude in Section 3.6.

3.2 Sampling of Algebraic Shapes

3.2.1 Image model

Consider a bivariate polynomial of degree n with real coefficients ai,j

p(x, y) =
∑

0≤i,j, i+j≤n

ai,jx
iyj . (3.1)

The set of points {(x, y) ∈ R
2 : p(x, y) ≤ 0} defines an algebraic domain. The boundary of this

domain, defined by the zero level set of p, is an algebraic curve of degree n,

C = {(x, y) ∈ R
2 : p(x, y) = 0}.
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Figure 3.1: Algebraic domains of degree 4.

Let Ω denote a closed domain in R
2 modeling the image plane. Without loss of generality, we

take Ω = [−L,L]2 for some L ∈ Z
+. We define an algebraic shape in Ω as the binary image

I(x, y) = χ{(p(x,y)≤0}, (x, y) ∈ Ω. (3.2)

This means that the edges of I are contained in the algebraic curve C.
An algebraic shape of degree n is specified with

(
n+2
2

)
parameters (the coefficients in (3.1)).

In developing the annihilation equations of Section 3.3, we assume that the algebraic shapes have

closed boundaries. This restricts the polynomial degree to the even integers. We later remove

this assumption by introducing generalized moments in Section 3.4.

Typical examples of algebraic domains of degree 2 are circles and ellipses. Figure 3.1 displays

two algebraic domains of degree 4. We see in this figure that an algebraic domain of degree 4 can

have four disconnected components. The following remark asserts that this is an upper bound.

Remark 3.1 ([72])

An algebraic domain of degree n cannot have more than n disconnected closed components.

This remark is a consequence of Bezout’s theorem [121]. We will also make use of this theorem

in Section 3.4 to prove our result.

Theorem 3.1 (Bezout)

Two algebraic curves of degree n and m that do not share a common component intersect in

at most mn points.

Bezout’s theorem also provides us a handy tool to roughly estimate the degree of an algebraic

shape. Consider a shape image I with boundary C. C should have a degree of at least n if it

intersects a line (a first-degree polynomial) at n points or if it intersects an ellipse (a polynomial

of degree 2) at 2n points. This is illustrated with an example in Figure 3.2.

Algebraic curves have been studied and applied to data fitting and object recognition in

computer vision (e.g. [72, 106, 108]). This rather long history of application has revealed that

polynomials of modest degree (e.g. degree 4 with 15 parameters) have enough descriptive power

to generate a diverse range of curve geometries. Hence, in the rest of this chapter, we mostly

consider n ≤ 4. Nevertheless, all results remain valid for higher degree polynomials.
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Figure 3.2: An algebraic shape of degree at least 4.

3.2.2 Sampling

In a typical sampling setup (Figure 1.1), the image is first convolved with a 2D kernel and

then sampled at a uniform grid to generate the samples

dk,l =
1

T 2

∫∫
Ω

I(x, y)φ
( x
T

− k,
y

T
− l
)
dx dy.

In a noisy setup, the noise vector will be added to the measurements after spacial sampling. The

sampling kernel φ(x, y) is determined by the physics of the sampling device but in most cases it

can be considered as a separable kernel φ(x)φ(y). In the first part of this chapter, we consider

separable kernels that can reproduce polynomials up to some degree. φ(x) is a polynomial

reproducing kernel of degree N if there exist coefficients c
(i)
k such that [52]∑

k∈Z

c
(i)
k φ(x− k) = xi, i = 0, ...,N .

B-splines are well-known examples of polynomial reproducing kernels [113]. A zero order B-spline

β(0)(x) is defined as

β(0)(x) =

⎧⎨⎩
1, −0.5 < x < 0.5

0.5, |x| = 0.5

0, otherwise.

A B-spline of order m is obtained by convolving m+ 1 kernel β(0)(x)

β(m)(x) = β(0) ∗ β(0) ∗ ... ∗ β(0)︸ ︷︷ ︸
m+1 times

.

The first few B-spline kernels are displayed in Figure 3.3. The B-spline kernel β(m) can reproduce

monomials up to degree m and the corresponding coefficients are obtained as

c
(i)
k = 〈xi, β̃(m)(x− k)〉,

where β̃(m)(.) is the dual of β(m)(.) [113].

In any image sampling scenario, the question is whether and how we can reconstruct the

original image I(x, y) from a finite number of samples dk,l (Figure 3.4). In the next sections,

we present a technique for the reconstruction of the boundary curve C and hence the algebraic

shape I(x, y) from adequate noiseless or noisy samples dk,l.
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Figure 3.3: B-spline kernels of order 0 to 5.

(a) (b)

Figure 3.4: (a) An algebraic shape. (b) Samples generated with the tensor product of B-spline

kernels of order 6.

3.3 Reconstruction from Moments

For an exact reconstruction of an algebraic shape image, we should estimate its boundary –the

algebraic curve C– from the samples. In the sequel, we first derive some annihilating equations

for the curve parameters based on the shape moments. Then, we use the existing FRI techniques

[52] to calculate shape moments from the samples. The overall procedure is summarized in

Algorithm 3.1.
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Algorithm 3.1 Algebraic shape reconstruction from noiseless samples

Input: noiseless samples dk,l, degree n of the algebraic shape, polynomial reproducing coefficients

c
(i)
k of the sampling kernel.

Output: boundary curve C.
1: Calculate shape moments Mi,j from samples for any 0 ≤ i, j ≤ 3n/2, according to the

equation (3.11).

2: Form the annihilation equations (3.8) and (3.9) for any 0 ≤ r, s ≤ n/2 and put them into a

linear system of the form Ma = 0 .

3: Solve Ma = 0 for the polynomial coefficients a with the constraint a[0] = a0,0 = 1.

4: Form the polynomial p(x, y) from the coefficients in a according to (3.1).

5: Set C equal to the zero level set of p(x, y) inside Ω. =0

3.3.1 Annihilation equations

Consider a closed algebraic curve C inside the domain Ω and the corresponding shape image

I. We can rewrite I in equation (3.2) as

I(x, y) =

{
1, (x, y) ∈ Int(C)
0, otherwise,

where Int(C) denotes the closure of the interior of C. This equation explains that the partial

derivatives ∂I(x,y)
∂x and ∂I(x,y)

∂y vanish everywhere in Ω except possibly on C, where they behave

like the Dirac δ function. So, similar to the equation xδ(x) = 0, we conclude that

p(x, y)
∂I(x, y)

∂x
≡ 0, (3.3)

p(x, y)
∂I(x, y)

∂y
≡ 0, (3.4)

inside Ω.

We can multiply the above equations with xrys for any r, s ∈ Z
≥0 and integrate over the

domain to obtain the equations∫∫
Ω

xrysp(x, y)
∂I(x, y)

∂x
dx dy = 0, (3.5)∫∫

Ω

xrysp(x, y)
∂I(x, y)

∂y
dx dy = 0. (3.6)

By substituting p(x, y) from equation (3.1) in (3.5) and using integration by parts, we get

∑
0≤i,j
i+j≤n

(i+ r) ai,j

∫∫
Ω

x(i+r−1)y(j+s) I(x, y) dx dy = 0. (3.7)

In the derivation of (3.7), we also used the fact that C is a closed curve inside Ω and hence, I is

zero at the domain borders.

The integrals in equation (3.7) represent 2D moments of the image I

Mi,j =

∫∫
Ω

xiyj I(x, y) dx dy.
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Figure 3.5: The exponential growth rate of polynomial reproducing coefficients of the B-spline

kernel β(6)(x).

Hence, we can rewrite equation (3.7) as∑
0≤i,j, i+j≤n

(i+ r)Mi+r−1,j+s ai,j = 0. (3.8)

We can similarly modify equation (3.6) to derive the additional equation∑
0≤i,j, i+j≤n

(j + s)Mi+r,j+s−1 ai,j = 0. (3.9)

For any pair of (r, s), formula (3.8) and (3.9) give us two linear annihilation equations for

the
(
n+1
2

)
coefficients ai,j , in terms of the image moments. We get enough equations to build a

linear system of the form

Ma = 0 (3.10)

and derive the curve parameters, if we consider all pairs (r, s), 0 ≤ r, s ≤ n/2. This implies that

we require all image moments of degree up to 3n/2, i.e., Mi,j , 0 ≤ i, j ≤ 3n/2.

To avoid the trivial solution a = 0, we set the term corresponding to x0y0 to 1. We recall

that a scaling of the polynomial coefficients does not change its level sets. In Theorem 3.2, we

prove that the zero level set of the polynomial q(x, y) formed by any solution of (3.10) contains

C. This specifically means that although the system of equations in (3.10) might have a null

space with dimension larger than 1, any vector a in this null space generates a polynomial that

vanishes on the boundary of I. Hence, we can recover the boundary curve C and the algebraic

shape I from any solution of (3.10).

Finally, it remains to retrieve moments from the samples. Suppose that the kernel φ(x) can

reproduce polynomials up to degree 3n/2, with the corresponding coefficients c
(i)
k , i = 0, ..., 3n/2.
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The 2D moments of the image can be calculated as

Mi,j =

∫∫
Ω

xiyjI(x, y) dx dy

=

∫∫
Ω

∑
k∈Z

c
(i)
k φ(x− k)

∑
l∈Z

c
(j)
l φ(y − l) I(x, y) dx dy

=
∑
k∈Z

∑
l∈Z

c
(i)
k c

(j)
l

∫∫
Ω

φ(x− k)φ(y − l) I(x, y) dx dy

=
∑
k∈Z

∑
l∈Z

c
(i)
k c

(j)
l dk,l =

∑
k∈K

∑
l∈L

c
(i)
k c

(j)
l dk,l, (3.11)

where K and L indicate the set of indices k and l such that φ(x− k)φ(y − l) is nonzero over Ω.

3.3.2 Stability

Algorithm 3.1 restores the exact algebraic curve when it has access to the noiseless samples.

But it breaks down in the presence of noise. The reason is that the polynomial reproducing

coefficients c
(i)
k have the same growth rate as the polynomials, i.e., they grow like |k|i. (To

illustrate this, we show the polynomial reproducing coefficients c
(i)
k of a 1D 6th order B-spline

kernel for i = 0, .., 6 in Figure 3.5.) This specially implies that in equation (3.11), the weight of

samples that are away from the image center are considerably larger than the weight of the central

samples. But for images in our model, samples at the image borders mostly contain noise. This

transfers an amplified noise to the moments and results in severely degraded moments SNR. The

noise boosting effect becomes more critical as the order of moments grow. This makes Algorithm

3.1 unstable even at a sample SNR as high as 100 dB.

We recall that in the related works of [12] and [41], only the first order moments are required

as they focus on first degree polynomials (step edges). Hence, the aforementioned noise boosting

effect is not an issue.

In the next section, we introduce some generalized moments that have slower growth rates

and discard the noise at the image borders. Above all, they are still reproducible from the

samples generated with a wider range of sampling kernels.

3.4 Stable Recovery

The sampling scheme of Section 3.3 has some limitations: (i) the reconstruction algorithm

succeeds only in the absence of noise; (ii) the acceptable sampling kernels φ(·) are limited to

the ones that exactly reproduce polynomials; and (iii) the algebraic shapes should have closed

boundary curves. In this section, we modify Algorithm 3.1 in three steps to resolve these limi-

tations:

First and foremost, we introduce a fast decaying (or even compact-support) function g(x, y)

in the integrands of equations (3.5) and (3.6) to reduce the growth rate of polynomials, especially

at the borders of Ω. This translates into the annihilation equations as replacing moments with

some generalized moments. We prove in Theorem 3.2 that under noiseless samples, the resulting

annihilation equations restore the exact boundary curve of any algebraic shape. Our proof

is general and includes the case g(x, y) = 1 which leads to conventional moments. Next, we



3.4 Stable Recovery 35

describe the requirements for g(x, y) to ensure stable generalized moments and we propose an

optimization procedure for finding the best candidate g that pairs with a given sampling kernel.

Interestingly, the inclusion of g allows for extension of the image model to algebraic shapes with

open boundaries.

For our second step, we note that the image moments do not take full advantage of the

available samples. For instance, the samples allow for prediction of the sign of the implicit

polynomial on a subset of the sampling grid points and this prediction is fairly robust against

noise. To further improve the reconstruction, we enforce sign consistency of the polynomial with

the prediction of the available samples.

In our last step, we encourage full measurement consistency (not just sign) through bounded

changes in the coefficients of the implicit polynomial.

3.4.1 Annihilation equations with generalized moments

We developed the annihilation equations of Section 3.3.1 by multiplying equations (3.3) and

(3.4) with xrys. This caused the image moments to appear in the equations. To control the

growth rate of the polynomials and hence the moments, we replace xrys with g(x, y)xrys for an

appropriate function g.

Definition 3.1

For any bivariate function g(., .) and integers i, j ≥ 0, we call

M
g(x,y)
i,j =

∫ +∞

−∞

∫ +∞

−∞
xiyjg(x, y)I(x, y) dx dy.

a 2D generalized moment of I, associated with g.

Having separable sampling kernels, we also take g(x, y) to be separable of the form g(x, y) =

g(x)g(y). Though, the results can be similarly extended to the non-separable kernels. In the

following, we derive the new annihilation equations and discuss the requirements on g afterwards.

We multiply equations (3.3) and (3.4) with g(x)g(y)xrys and repeat similar steps as in Section

3.3.1 to obtain ∑
0≤i,j

i+j≤n

ai,j

∫∫
Ω

∂xr+ig(x)

∂x
ys+jg(y)I(x, y) dx dy = 0, (3.12)

∑
0≤i,j

i+j≤n

ai,j

∫∫
Ω

xr+ig(x)
∂ys+jg(y)

∂y
I(x, y) dx dy = 0. (3.13)

In Section 3.3, we had to assume that I is zero at the borders of the image plane in order to

use integration by parts. Here, we assume that g(·) is either zero outside (−L,L) or decays so

fast that the integral outside of this interval becomes negligible. This allows I to take non-zero

values at the borders of Ω; consequently, I can represent an unbounded shape.
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We can further simplify equations (3.12) and (3.13) and substitute the integrals with gener-

alized moments to get the new annihilation equations∑
0≤i,j

i+j≤n

(
(i+ r)M

g(x)g(y)
i+r−1,j+s +M

ġ(x)g(y)
i+r,j+s

)
ai,j = 0, (3.14)

∑
0≤i,j

i+j≤n

(
(j + s)M

g(x)g(y)
i+r,j+s−1 +M

g(x)ġ(y)
i+r,j+s

)
ai,j = 0, (3.15)

where ġ stands for the derivative of g. The above equations are valid for any 0 ≤ r, s. Note that

g = 1 restores the annihilation equations (3.8) and (3.9) when I represents a closed shape. In

Theorem 3.2, we state a unified result for recovery of algebraic shapes without singular edges 1

either from conventional annihilation equations or the generalizations in (3.14) and (3.15). The

proof of this theorem is provided in the appendix 2.

Theorem 3.2

Let I denote an algebraic shape of degree n defined on Ω without singular edges. Also, let

M
g(x)g(y)
i,j ,M

g(x)ġ(y)
i,j and M

ġ(x)g(y)
i,j denote the generalized moments of I (Definition 3.1) cor-

responding to a function g(·) for which I(x, y)g(x)g(y) vanishes outside Int(Ω) and g(x)g(y)

remains strictly positive inside Ω. If ã = [ãi,j ]i+j≤n �= 0 satisfies the annihilation equations

(3.14) and (3.15) for all 0 ≤ r, s, r + s ≤ 2n− 1, then, the zero level set of the polynomial

p̃(x, y) =
∑

0≤i,j, i+j≤n

ãi,jx
iyj

contains the boundaries (edges) of I.

Remark 3.2

Unique recovery of p(x, y) is not generally possible. Obviously, the zero level sets of p(x, y) and

2p(x, y) are the same, leading to the same algebraic shapes. However, there are less obvious

examples that prevent unique recovery: the zero level sets of both (x2 + y2 − 1)(x2 − 2x+2)

and (x2 + y2 − 1)(x2 + y2 + 2xy + 1) coincide with the unit circle, while the two bivariate

polynomials have the same degree. The important point in Theorem 3.2 is that the curve C
is uniquely determined, but possibly with a different implicit polynomial.

1. We call an edge singular if the image level does not change on either of its sides; for instance the image
associated with χ{(x−y)2≤0} has a singular edge at points with equal coordinates.

2. Shortly after arxiving the results of this chapter, we were informed about the recent work of [76] that
studies the problem of reconstructing algebraic shapes from their conventional 2D moments, which has some
parts in common with the content of this chapter. Specifically, it proposes the same set of annihilation equations
for recovering the polynomial coefficients and contains a result similar to Theorem 3.2, but with a substantially
different proof technique.
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(a)

(b)

(c)

Figure 3.6: B-spline kernels and their associated g’s for reproducing stable generalized moments

of order lass than or equal to 6. The indices (I) of the contributing kernels in equations (3.16)

and (3.17) and the minimum number of required samples (m) are (a) I = {−13,−12, . . . , 13}
and m = 27, (b) I = {−14,−13, . . . , 14} and m = 29, (c) I = {−20,−19, . . . , 20} and m = 41,

respectively.
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Remark 3.3

Theorem 3.2 requires that the coefficients of p̃(x, y) satisfy the annihilation equations (3.14)

and (3.15) for every 0 ≤ r+s ≤ 2n−1. This generates an over-determined system of the form

Ma = 0 with about 8 times more rows than columns. In our experiments, we have confirmed

successful recovery of algebraic curves from the annihilation equations corresponding to 0 ≤
r, s ≤ n/2 (yielding an almost balanced system). Our proof technique, however, falls short of

this stronger result.

Optimal generalized moments

The primary reason of introducing g(x)g(y) to the equations is to control the growth rate

of the monomials xrys, especially at the image borders. Ideally, the g(·) function in (3.12) and

(3.13) should be set such that g and ġ both vanish outside (−L,L). The faster they decay

near the borders of [−L,L], the more stable will be the annihilation equations (3.14) and (3.15).

However, the bottleneck in setting g(·) is the reproduction of moments from the samples. That

is the functions xig(x) and xiġ(x), i = 0, . . . , 3n
2 should be reproducible by the sampling kernel

φ(x), i.e., we need coefficients {c(i)k } and {c̃(i)k } that satisfy∑
k∈I

c
(i)
k φ(x− k) ≈ xig(x), (3.16)

∑
k∈I

c̃
(i)
k φ(x− k) ≈ xiġ(x). (3.17)

Here, I represents k values for which φ(x − k) has an effective support in [−L,L]; this ensures

that g(x) and ġ(x) vanish outside [−L,L].

For recovering an algebraic curve (domain) from samples using the generalized moment tech-

nique, we need to linearly combine the samples in correspondence to the coefficients {c(i)k } and

{c̃(i)k }. In other words, we never require the function g explicitly in practice. Consequently,

instead of looking for the best g function, we can search for coefficients {c(i)k } and {c̃(i)k } such

that ∑
k∈I

c
(i)
k φ(x− k) ≈ x

∑
k∈I

c
(i−1)
k φ(x− k), i ≥ 1,

∑
k∈I

c̃
(i)
k φ(x− k) ≈ x

∑
k∈I

c̃
(i−1)
k φ(x− k), i ≥ 1,

d

dx

∑
k∈I

c
(i)
k φ(x− k) ≈

∑
k∈I

(
i c

(i−1)
k + c̃

(i)
k

)
φ(x− k).
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To find such coefficients, we introduce the following objective function

G
(
{c(i)k }, {c̃(i)k }

)
=

3n/2∑
i=1

‖
∑
k∈I

(
c
(i)
k − xc

(i−1)
k

)
φ(x− k)‖2

+

3n/2∑
i=1

‖
∑
k∈I

(
c̃
(i)
k − xc̃

(i−1)
k

)
φ(x− k)‖2

+

3n/2∑
i=0

‖
∑
k∈I

c
(i)
k φ̇(x− k)−

∑
k∈I

(
ic

(i−1)
k + c̃

(i)
k

)
φ(x− k)‖2.

Next, we solve the quadratic program

min
c
(i)
k ,c̃

(i)
k

G
(
{c(i)k }, {c̃(i)k }

)
(3.18)

s.t.

⎧⎨⎩
∑

k∈I c
(0)
k φ(x− k) ≥ 0,

c
(0)
0 = 1 .

The equality constraint in the above minimization is to avoid the trivial zero solution and the

inequalities guarantee that g is non-negative. Although solving a quadratic program is compu-

tationally manageable, we have frequently observed that (3.18) is ill-conditioned 3 in the sense

that iterative methods are very slow in achieving the global solution, and usually terminate much

earlier than desired. This shortcoming could be improved by using a sufficiently good initializa-

tion. Furthermore, any set of coefficients which result in a small cost according to the objective

function could be used.

We recall that an implicit parameter in this problem is the size of the index set I. This

parameter also affects the modeling of Ω = [−L,L]2 and the minimum required sampling density

for this sampling kernel. In fact, by increasing the index set I the global cost in (3.18) can only

reduce. Thus, the larger the I, the lower the cost. However, larger I translates into more image

samples, and consequently more complexity.

For the B-spline kernels, we found surprisingly good candidates g that make the objective

function almost zero. Figure 3.6 shows the kernels β(6)(x), β(4)(x), β(2)(x) and their associated

g’s that reproduce stable generalized moments of order 6 or less. This implies that we can form

the annihilation equations and recover algebraic shapes of degree 4 even when the sampling kernel

is the tensor product of 2nd order B-splines. The cost is a larger number of required samples.

Our final remark concerns using an asymmetric function g(x, y) in the form of f(x)h(y) in

the annihilation equations, when φ(x) fails to generate both set of functions xig(x) and xiġ(x)

for a single g(x). In this case, we can multiply equations (3.3) and (3.4) with f(x)h(y)xrys and

3. Essentially, the source is the same as the one causing instability in Algorithm 3.1 except there is no noise
here: the error terms corresponding to different i’s in the objective function grow polynomially and this makes
the problem ill-conditioned.
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h(x)f(y)xrys, respectively and follow the same steps to obtain

∑
0≤i,j

i+j≤n

ai,j

∫∫
Ω

∂xr+if(x)

∂x
ys+jh(y)I(x, y) dx dy = 0,

∑
0≤i,j

i+j≤n

ai,j

∫∫
Ω

xr+ih(x)
∂ys+jf(y)

∂y
I(x, y) dx dy = 0.

We can calculate the integrals from the samples and obtain the polynomial coefficients ai,j by

solving the above equations, if we find two positive and compact-support functions f and h such

that ∑
k∈I

c
(i)
k φ(x− k) ≈ xih(x),

∑
k∈I

c̃
(i)
k φ(x− k) ≈ d

dx

(
xif(x)

)
, i = 0, . . . , 3n/2.

For finding c
(i)
k and c̃

(i)
k , (3.18) needs to be divided into two quadratic programs that accommodate

c
(i)
k and c̃

(i)
k separately, with the cost functions

H(c
(i)
k ) =

3n/2∑
i=1

‖
∑
k∈I

(
c
(i)
k − xc

(i−1)
k

)
φ(x− k)‖2

and

F(c̃
(i)
k ) =

3n/2∑
i=1

‖
∑
k∈I

(
c̃
(i)
k − xc̃

(i−1)
k

)
φ(x− k)‖2,

where φ(x) =
∫ x
0
φ(τ) dτ .

Patch-based recovery

Equations (3.16) and (3.17) show that g(x) and consequently g(x)g(y) have compact support.

This indicates that the generalized moments are computed from a finite window of the image

samples –namely, of size m ×m, where m amounts to the number of contributing kernels in I.
Having access to more samples, we can slide a m×m window over the image samples, calculate

2D moments and form the annihilation equations for each window. This results in a linear system

with more equations and improves the noise stability of the reconstruction.

There is only one issue requiring further attention: in the annihilation equations of each

window, the coordinates origin is taken at the window’s center (Figure 3.7). This means that

the variables of each set of annihilation equations are the coefficients of the polynomial in those

coordinates. Hence, we should compensate for the shifts in the coordinates before concatenating

the equations of different windows. For this purpose, we choose the reference coordinates as the

symmetry axes of the image plane. When the coordinates are shifted by (x0, y0), the polynomial
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Figure 3.7: A compact support function g(x, y) facilitates the calculation of 2D generalized

moments and the annihilation equations for different windows of the image samples. However,

the coordinate shifts between different windows should be compensated before concatenating the

equations in one system.

p(x, y) =
∑

0≤i,j,i+j≤n ai,jx
iyj in the original system shall be mapped to the polynomial

p̃(x, y) = p(x+ x0, y + y0)

=
∑

0≤i,j,i+j≤n

ai,j(x+ x0)
i(y + y0)

j

=
∑

0≤i,j,i+j≤n

ai,j

i∑
k=0

(
i

k

)
x
(i−k)
0

j∑
l=0

(
j

l

)
y
(j−l)
0 xkyl.

This reveals the mapping between the coefficients of p̃(x, y), denoted by bk,l, and ai,j ’s as

bk,l =
∑

k≤i,l≤j

i+j≤n

(
i

k

)(
j

l

)
x
(i−k)
0 y

(j−l)
0 ai,j ,

for any 0 ≤ k, l, k + l ≤ n. We can represent the above relations for all polynomial coefficients

simultaneously as

b = B(x0,y0)a, (3.19)

where B(x0,y0) is an upper triangular square matrix with diagonal entries equal to 1. This

allows us to relate the annihilation equations of a window centered at (x0, y0) to the polynomial

coefficients a in the reference coordinate system through the equation

M(x0,y0)b = M(x0,y0)B(x0,y0)a = 0.

In a nutshell, we should multiply the annihilation equations of different windows with the corre-

sponding matrix B(x0,y0) in equation (3.19) before concatenating them in a bigger system.
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3.4.2 Constraints on the sign of the polynomial

So far, we have built a system of equations in terms of the image parameters that is stable at

numerical precision. In the presence of noise, the annihilation equations are only approximately

singular. In this case, as a common practice, we consider the solution of the least squares

minimization problem

min
a

‖Ma‖22 (3.20)

s.t. a[0] = a0,0 = 1.

The least squares denoising works well at low noise levels, especially when M is a tall matrix.

Nevertheless, since algebraic curves are dense among continuous curves, distortion in the image

moments (originated from moderate noise levels in the samples) can lead to substantially different

solutions.

Recently, the Cadzow’s denoising algorithm [22] has been used for denoising of the annihilation

equations of 1D [15] and 2D [88] FRI signals. The common feature in these works that makes

denoising successful is having annihilation equations with a Toeplitz structure. Our system of

annihilation equations –although almost each element in M has a few duplicates– is not Toeplitz

and the Cadzow’s denoising algorithm does not help 4.

In our problem, the best reconstruction is an algebraic shape that is as consistent as possible

with the image samples (i.e., up to the samples SNR). Theoretically, this can be achieved with

a brute-force search over the space of image parameters. But this problem is nonconvex with

many parameters and hence, computationally intractable. In the rest of this section, we exploit

the local information provided by the samples to improve the reconstruction in the presence of

noise.

Sample values represent the area of the intersection of the corresponding kernels with the

interior of the shape in a weighted form. For example, dk,l = 1 (0) indicates that I(x, y) =

1 (0) everywhere in the support of φ(x − k, y − l) 5. We further incorporate the samples in our

reconstruction by interpreting them as the central points of the corresponding kernels lying inside

or outside the shape. More precisely, if dk,l is above 1 − ε for an ε < 0.5, we assume its center

to be inside the shape, i.e., I(k, l) = 1 or equivalently p(k, l) ≤ 0. Also, we take I(k, l) = 0 or

p(k, l) > 0, if dk,l < ε. Eventually, we constrain the solution of the least squares problem with

the inferred signs:

min
a

‖Ma‖22, (3.21)

s.t. Aina ≤ 0,

Aouta < 0,

where Ain and Aout encode respectively, the normal and sign-negated polynomial evaluation

matrices at central locations of the sampling kernels; Ain corresponds to locations with large

sample values, while Aout corresponds to locations with small sample values. The minimization

problem (3.21) can be solved with quadratic programming algorithms.

4. In our implementation of Cadzow’s algorithm, we observed that it converges to a rank deficient matrix with
the expected structure which stays very close to the noisy matrix M.

5. We assume that T = 1 and φ(x, y) has a unit integral.
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3.4.3 Measurement consistency

At moderate noise levels (sample SNRs around 25 dBs), the recovered curves from (3.21)

are close enough to the original boundaries to let us approximate the function mapping the

polynomial coefficients to the image samples with a 1st order Taylor expansion around the

correct coefficients. We exploit this assumption to improve the measurement consistency of the

reconstruction.

Let D denote the mapping from the polynomial coefficients into the samples of the algebraic

shape. For instance, if a∗ stands for the polynomial coefficients associated with an algebraic

curve, d∗ = D(a∗) represents the vector of noiseless image samples via the sampling kernel.

For a given set of noisy samples d̃∗, let acur be the solution to the sign consistency technique

in (3.21), which corresponds to dcur = D(acur). For moderate to low noise levels, we know that

acur is a good approximation of a∗. Thus, we use the linearization of D around acur (1st order

Taylor expansion) to write that

d∗ ≈ dcur +
( ∂

∂a
D(acur)

)
(a∗ − acur),

where ∂
∂aD(acur) is a matrix that relates the small input variations in D to its output around

the point acur. In practice, we find ∂
∂aD(acur) by numerically varying acur in all directions and

observing the corresponding d’s. Finally, we improve our current estimate of a∗ by

anew = acur +
( ∂

∂a
D(acur)

)−1

(d̃∗ − dcur).

In our algorithm, we apply few iterations of the above update rule. Each time we evaluate the

associated d vector and continue the iterations as long as this vector gets closer to d̃∗.

3.5 Experimental Results

We evaluate the performance of the proposed algorithm in different scenarios. We select

bounded algebraic shapes for most of the experiments. For this purpose, we restrict the polyno-

mial degree to even integers. But a randomly generated even degree polynomial very likely has

unbounded level sets. A full characterization as well as a model for the generation of bivariate

polynomials of degree 4 with bounded level sets was presented in [72] and [108]. We adopt this

model to generate shapes for our experiments.

3.5.1 Noiseless recovery

In the first experiment, we study reconstruction of algebraic shapes from noiseless samples.

Recalling the results of the last section, we expect to recover the exact image by solving the

least squares problem (3.20). Figure 3.8 displays perfect reconstruction of an algebraic shape of

degree 4, when the sampling kernel is the tensor product of the 6th order B-splines.

3.5.2 Recovery in the presence of noise

In this experiment, we aim at studying the effect of each step of the algorithm on the recon-

structed image from noisy samples. For this purpose, we consider two distinct algebraic shapes
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(a) (b) (c)

Figure 3.8: Exact reconstruction of algebraic shapes from noiseless samples. (a) An algebraic

shape of degree 4. (b) Noiseless samples (size 11 × 11), when the sampling kernel is φ(x, y) =

β(6)(x)β(6)(y). (c) Absolute difference between the original shape and the least squares solution.

of degree 4 with different levels of noise in their samples and we plot each stage of the recon-

struction (Figures 3.9 and 3.10). The samples of both images are generated with the sampling

kernel φ(x, y) = β(6)(x)β(6)(y) and the annihilation equations involve generalized moments cor-

responding to the function g(x) in Figure 3.6(a). We see that although the least squares solution

might be offbeat in presence of noise, the constraints on the sign of the polynomial substantially

restrain the solution and lead to satisfactory reconstructions at moderate signal to noise ratios

(SNRs).

3.5.3 Sampling kernel sensitivity

Earlier, we mentioned that a consequence of replacing conventional moments with generalized

moments is relaxing the restrictive polynomial-reproducing requirement on the sampling kernel.

Specifically, we worked out the reproducing coefficients for the B-spline kernels of order 2, 4,

and 6 that generate stable generalized moments of order less than or equal to 6 (see Figure 3.6).

This, for example, allows us to recover algebraic shapes of degree 4 from samples generated with

the sampling kernel φ(x, y) = β(2)(x)β(2)(y). In this experiment, we study the sensitivity of the

reconstruction to the choice of the kernel. Figure 3.11 displays the absolute difference between an

image and its reconstructions from samples generated with different sampling kernels and similar

signal-to-noise-ratios. The results are comparable irrespective of the choice of the sampling kernel

(note the expected difference in the sample sizes that calls for different noise realizations for the

three samples).

3.5.4 Unbounded algebraic shapes

Introducing generalized moments to the annihilation equations facilitated sampling and re-

construction of algebraic shapes with open boundaries (also referred as unbounded algebraic

shapes). This additionally allows the reconstruction to enjoy oversampling by forming annihila-

tion equations for each sample window, without caring about the image content of the window.

Figure 3.12 shows the reconstruction of an unbounded image from its noisy samples, where the
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(a)

(b) (c) (d)

Figure 3.9: Reconstruction from noisy samples. (a) Noisy samples of the shape in Figure 3.8(a)

with size 29×29 and SNR = 17 dB. (b) Absolute error of the least squares solution (PSNR = 13.7

dB). (c) Ablsoute error of the quadratic programming (equation (3.21)) recontsruction (PSNR

= 20.4 dB). (d) Absolute error of the output of the consistency improvement algorithm (PSNR

= 21.3 dB). SNR between the samples of the final reconstruction and the noisy samples (a) is

15.4 dB.
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(a) (b)

(c) (d) (e)

Figure 3.10: Reconstruction from noisy samples. (a) Original image. (b) Noisy samples of size

29×29 with SNR = 22 dB. (c) Absolute error of the least squares solution. (d) Absolute error of

the quadratic programming solution (PSNR = 21.0 dB). (e) Absolute error of the output of the

consistency improvement algorithm (PSNR = 22.8 dB). SNR between the samples of the final

reconstruction and the noisy samples (b) is 20.9 dB.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.11: Sensitivity of the reconstruction to the choice of the sampling kernel. (a) Algberaic

shape of degree 4. (b),(c),(d) Noisy samples (SNR = 27 dB) of size 33× 33, 31× 31 and 29× 29,

generated with B-spline kernels of degree 2, 4, and 6, respectively. (e),(f),(g) Absolute error of

the reconstructions from samples in (b),(c) and (d) with reconstruction PSNRs 22.2 dB, 23.2 dB

and 21.3 dB, respectively.
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(a) (b) (c)

Figure 3.12: (a) Unbounded algebraic shape of degree 4. (b) Noisy samples of size 39×39 with

SNR = 25 dB. (c) Absolute reconstruction error.

sampling kernel is the tensor product of 2nd order B-splines. The peak signal-to-noise ratio

(PSNR) of the reconstructed image is 20.1 dB and SNR between its samples and the origi-

nal noisy samples (sample consistency) is equal to 23.1 dB. These numbers clearly indicate the

success of our proposed algorithm for reconstructing unbounded shapes.

3.5.5 Overfitting

In the last two experiments, we address uncertainties in the image model. First, we study

the situation where we overestimate degree of an algebraic shape. Recalling Theorem 3.2 of the

previous section, we expect the recovered polynomial from the annihilation equations to vanish

on the boundaries of the original shape in the noiseless scenario. Figure 3.13 displays the results

when we approximate an ellipse with algebraic shapes of degree 4 from its noiseless and noisy

samples. Figures 3.13(c) and 3.13(f) show the least squares solutions for noiseless and noisy

samples, respectively. Both figures indicate that the boundaries of the recovered images contain

the boundary of the original ellipse. Equivalently, the recovered polynomials are factors of the

original polynomial of degree 2. The extra factors are resolved in the next steps of the algorithm,

resulting in exact reconstructions in both scenarios.

3.5.6 Algebraic shape approximation

Another type of uncertainty in the image model happens when the image boundary is not

an algebraic curve. Regarding the descriptive power of algebraic curves, we still expect to find

a good approximation of the image. To investigate this, we generated a shape with a Bézier

curve boundary with four control points and generated its 15 × 15-samples with 2nd order B-

spline sampling kernels. Then, we obtained the approximate algebraic shape from the noiseless

samples. The original image and the absolute error of its algebraic approximation are depicted

in Figure 3.14. We observe that the reconstructed curve is a rather accurate descriptor of the

original Bézier curve.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.13: Approximation of an ellipse with algebraic shapes of degree 4. (a) Original ellipse.

(b) Noiseless samples of size 27 × 27, generated with B-splines of degree 2. (c) Least squares

solution for noiseless samples. (d) Absolute error of the final reconstruction of the algorithm.

(e) Noisy samples with SNR = 22 dB. (f) Least squares solution for noisy samples. (g) Absolute

error of the final reconstruction from noisy samples.
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(a) (b) (c)

Figure 3.14: Approximation of non-annihilable curves with algebraic curves. (a) A shape with

a Bézier curve boundery. (b) 15 × 15 noiseless samples. (c) The absolute error between the

original shape and its approximation with an algebraic shape of degree 4. The reconstruction

PSNR is 19.8 dB.

3.6 Conclusion

Designing sampling schemes for images with arbitrary edge geometries is still a challenging

research problem. In this chapter, we proposed a sampling and reconstruction algorithm for

binary images with boundary curves that are zeros of an implicit bivariate polynomial. We

developed a set of linear annihilation equations from the image samples and proved that every

solution of the equations restores the image boundaries, in the noiseless scenario. The primary

equations involve 2D moments of the image. To make the reconstruction robust against noise, we

replaced conventional moments with generalized moments associated with a compact-support 2D

function that is paired with the given sampling kernel. This leads to a reconstruction algorithm

from more realistic samples and extends the model to images with open boundaries.

The image model we considered in this chapter is very rich and may be used for the approx-

imation of general shapes from their samples. Also, the idea of replacing conventional moments

with generalized moments might find applications in other image processing tasks which use

moments as the image descriptors.

3.7 Appendix Proof of Theorem 3.2

Proof We prove by contradiction. Assume the zero level set of p̃ does not fully include C; thus,
p(x, y) can be factorized as

p(x, y) = ζ(x, y)h(x, y),

where h(x, y) is coprime with p̃ and ζ, and has a non-trivial zero level set Ch. Meanwhile, the

zero level set Cζ of ζ(x, y) is included in that of p̃. Roughly speaking, h and ζ stand for parts

of C that are excluded and included in the zero level set of p̃, respectively. Further, let r(x, y)

be a polynomial with minimum degree such that 1h(x,y)≤0 = 1r(x,y)≤0. If h is irreducible, we

shall have r(x, y) = h(x, y), otherwise, r might be different from h. In either case, we have

deg r ≤ degh.
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The validity of annihilation equations (3.14) and (3.15) imply∫∫
Ω

g(x)g(y)xrysp̃(x, y)
∂I(x, y)

∂x
dxdy = 0

for all 0 ≤ r, s, r + s ≤ 2n− 1. By linearly combining these equalities, we conclude that∫∫
Ω

g(x)g(y)q(x, y)p̃(x, y)
∂I(x, y)

∂x
dxdy = 0 (3.22)

holds for any polynomial q(x, y) of degree no higher than 2n− 1. From this point on, we set q as

q(x, y) = p̃(x, y)
∂

∂x

(
ζ(x, y)r(x, y)

)
.

Because deg q ≤ deg p̃+ deg p− 1 = 2n− 1, this choice of q fulfills the degree constraint.

Let y∗ be such that the line y = y∗ intersects C. According to Bezout’s theorem, the number

of intersections m∗ shall be limited to n. We assume the intersections are at x ∈ {x∗
i }m

∗
i=1 and

conclude that

∂

∂x
I(x, y∗) =

m∗∑
i=1

si δ(x− x∗
i ), (3.23)

where δ(·) is the Dirac’s delta function and {si}i are sign values; si = 1 (si = −1) if p(x, y∗i ) is
positive (negative) at x = x∗

i − ε and negative (positive) at x = x∗
i + ε for small enough 0 < ε.

Hence,

−si = lim
ε→0+

sign

(
p(x∗

i + ε , y∗)− p(x∗
i − ε , y∗)

2ε

)
= lim

ε→0+
sign

((
ζ · r)(x∗

i + ε, y∗)− (ζ · r)(x∗
i − ε, y∗)

2ε

)
.

This shows that the value of ∂
∂x

(
ζ · r)(x, y) at (x∗

i , y
∗) is either 0 or has the opposite sign as si.

This implies that

si
∂
∂x

(
ζ · r)(x∗

i , y
∗) ≤ 0,

where equality happens only if ∂
∂x

(
ζ · r)(x∗

i , y
∗) = 0. By taking advantage of (3.23), we can

rewrite the inner integral in (3.22) as∫
g(x)g(y∗)q(x, y∗)p̃(x, y∗)

∂I(x, y∗)
∂x

dx

=

m∗∑
i=1

sig(x
∗
i )g(y

∗)q(x∗
i , y

∗)p̃(x∗
i , y

∗)

=
m∗∑
i=1

sig(x
∗
i )g(y

∗)
(
p̃(x∗

i , y
∗)
)2 ∂

∂x

(
ζ · r)(x∗

i , y
∗) ≤ 0.

Thus, for (3.22) to hold, q(x, y) needs to vanish at all points on C, and in particular, at points on

Ch. As h and p̃ are coprime, p̃(x, y) can vanish only on a finite number of points on Ch (Bezout’s
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theorem) . This forces the zero level set of ∂
∂x

(
ζ · r) to include Ch (inclusion of Ch except finitely

many points implies inclusion of the whole Ch).
For any (x∗, y∗) ∈ Ch, because of r(x∗, y∗) = h(x∗, y∗) = 0 we have that

∂
∂x

(
ζ · r)(x∗, y∗) = ζ(x∗, y∗) ∂

∂xr(x
∗, y∗).

Again, since h and ζ are coprime, ζ(x∗, y∗) = 0 can happen only for a finite number of points

(x∗, y∗) ∈ Ch. Therefore,
∂
∂xr(x

∗, y∗) = 0 should hold for all (x∗, y∗) ∈ Ch; i.e., the zero level set

of ∂
∂xr(x, y) includes the zero level set of r(x, y). This, however, contradicts our initial assumption

that r is a polynomial with minimum degree that satisfies this property. �



Chapter 4

Measurement-Consistent Shape
Reconstruction

4.1 Introduction

The operation of capturing continuous domain visual signals as discrete (digital) images is

not invertible in general. That is, the continuous domain signal cannot be exactly reconstructed

based on the discrete image, unless it satisfies certain constraints such as bandlimitedness or a

parametric model. In this chapter, we study the problem of recovering shape images with smooth

boundaries but otherwise arbitrary geometries from a set of gray-scale samples. Among the pos-

sibly many candidates, we look for the consistent shape with minimum perimeter. We formulate

this problem as a constrained optimization over the set of bilevel images, where the functional is

the continuous domain total variation (TV) and the constraints encode the consistency criteria.

The number of constraints in this problem equals the number of pixels. However, we demon-

strate that when a minimum-resolution requirement is satisfied, the multiple constraints can be

replaced with a single one formed by a properly chosen linear combination. This reduces the

problem to an equivalent TV minimization problem with a single constraint, which is known

in the literature as the Generalized Cheeger problem [68]. A generalized Cheeger set is a shape

with minimum perimeter and a fixed weighted integral. This equivalence allows us to apply

the existing results that relate the Cheeger solutions to the minimizers of its convex relaxation

[30, 68].

The outline of this chapter is as follows. We explicitly define the problem and the used no-

tations in Section 4.2. We continue by reviewing the concept of Cheeger sets and the existing

results in Section 4.3. In Section 4.4, we present the theoretical results that establish the equiv-

alence between the consistent shape reconstruction and its convex relaxation. We employ the

primal-dual algorithm of [104] for the numerical approximation of the solutions to the convex

minimization problem in Section 4.5. This algorithm enables us to study the performance of

the proposed shape recovery method of Section 4.4 through numerical experiments. Finally, we

conclude the chapter in Section 4.6.

0. This chapter includes research conducted jointly with Arash Amini, Löıc Baboulaz and Martin Vetterli [59].

53
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(a) (b) (c) (d)

Figure 4.1: Perimeter minimization prevents unnecessary details and extra connected compo-

nents to appear in the shape. In this figure, all shapes are consistent with the measurements in

(a) but the shapes in (c) and (d) have higher perimeters due to the extra details on the boundary

and an additional component, respectively.

4.2 Problem Definition

Let us fix the image domain as Ω = [0, 1]2 and let D = [di,j ]{1≤i,jm} represent the output of

an m×m-pixel digital camera with PSF φ(x, y) = φ(−x,−y) (equation (1.1)).

In the consistent image recovery problem, we wish to find an approximation Ĩ(x, y) of the

original image I(x, y) that regenerates the same measurement pixels. This ensures that I and Ĩ

are perceived as identical by the imaging device. Let k = (j − 1)m + i, 1 ≤ k ≤ m2 represent

the equivalent index of dij in the vertical raster scan of D. Also, let

fk(x, y) =
1

T 2
φ
( x
T

− �k/m� ,
y

T
− ((k mod m) + 1)

)
indicate the sampling kernel in (1.1) associated with dk. We denote by CΩ(D; f1, ..., fm2) the set

of all non-negative-valued images over the domain Ω that are consistent with D = [dk]1≤k≤m2 ,

CΩ(D; f1, ..., fm2) =
{
I ∈ BV (Ω), I ≥ 0 ;

∫∫
Ω

Ifk dx dy = dk, 1≤k≤m2

}
.

Here, BV (Ω) stands for the set of functions over Ω with bounded variation; i.e., all elements of

BV (Ω) have well-defined and finite total variation values.

Consistent image recovery is equivalent to finding an element of CΩ(D; f1, ..., fm2). In the

consistent shape recovery problem, we limit the permissible solutions to the shape characteristic

functions. Let S be a subset of Ω. We call S a shape if it is the union of a finite number of

connected subsets of Ω. In this case, we call χS in equation (1.2) a shape image.

The consistent shape reconstruction problem is equivalent to finding a shape image I =

χS(x, y) ∈ CΩ(D; f1, ..., fm2) for the set of m2 pixels 0 ≤ dk ≤ 1 in D. Among all possible

candidates, we are interested in shape images with minimum perimeter. This way we reject

shapes with extra connected components and excessive boundary details (see Figure 4.1).

Minimum-perimeter consistent shapes are the global minimizers of the following problem

inf
S⊆Ω

Per(S), (P0)

s.t. I = χS ∈ CΩ(D; f1, ..., fm2),
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where Per(S) is the perimeter of S. Problem (P0) is a variational non-convex problem and it

is prone to having many local minima. This makes it very likely that common gradient descent

methods get trapped in local minima. While in problems of this sort, global minimizers are

usually all reasonable solutions, the local minima can be blatantly false. In the next sections,

we show that if the discrete image D satisfies a resolution requirement defined in Definition

4.4, the minimum-perimeter consistent shapes are the minimizers of a convex relaxation of (P0).

Furthermore, we conjecture that under this condition, there is a unique minimum-perimeter

consistent shape which is also the unique solution of the convex problem. In the experimental

section, we present an algorithm for the recovery of this solution.

4.3 Cheeger Sets

An image is called consistent with the measurements if it complies with all the constraints

in (P0). Essentially, each pixel of the discrete image enters (P0) as a constraint, resulting in an

optimization with many constraints. In addition, we are also restricting the search domain to

bilevel images, which further complicates the minimization task. The simplest scenario of having

only one single pixel (measurement) is a well-studied topic known as the Cheeger problem. There

is already a rich literature regarding the existence, uniqueness properties, regularity (smoothness)

of the boundary and numerical evaluation of such sets for almost arbitrary kernels f . In this

section, we present a brief review of the Cheeger problem and related results upon which we build

our general multi-constraint minimization problem. The details for the latter will be discussed

in the next section.

The Cheeger problem can be directly extended to higher dimensions; however, for the purpose

of image recovery, we focus on 2D signals in this chapter. Let Ω be a subset of R2. The Cheeger

sets of Ω are defined as those S ⊂ Ω that minimize the ratio of the perimeter over the area,

Per(S)∫∫
S dx dy

. (4.1)

It is common to represent Per(S) in terms of the total variation of the shape image χS . For
this purpose we invoke the coarea formula that for a positive function u(x, y) : Ω → R

≥0 implies

that

TV (u) =

∫∫
Ω

|∇u| dx dy =

∫ ∞

0

Per
(
E(u;μ)

)
dμ,

where

E(u;μ) = {(x, y) ∈ Ω
∣∣∣ u(x, y) ≥ μ}

are the level-sets of u(x, y). This immediately indicates that Per(S) = TV (χS).
We can expand the definition of a Cheeger set by introducing two weight kernels in the

nominator and denominator of (4.1) [68]. Indeed, a generalized Cheeger set is a shape minimizer

of

inf
S⊂Ω, χS∈BV

∫∫
Ω
g|∇χS | dx dy∫∫
Ω
fχS dx dy

. (4.2)

Note that for f = g ≡ 1 we obtain the standard Cheeger sets. For a simple domain such as a

square, the Cheeger set is unique and has a certain shape but depending on the choice of the
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(a) (b)

Figure 4.2: Example of (a) a generalized Cheeger set, for the weight kernels g ≡ 1 and f as

displayed in (b).

weight kernels, generalized Cheeger sets can have very diverse shapes. Figure 4.2 displays an

example of a generalized Cheeger set for g ≡ 1 and f as in Figure 4.2b.

Except for special choices of f and g, the minimizer of (4.2) shall not be unique. Further-

more, the minimization in (4.2) is over a non-convex set, which is computationally intractable

in general. However, an interesting result by Strang in [102] (see also [30, 103]) shows that all

global minimizers of (4.2) (all Cheeger sets) are the level-sets of the solution(s) to

inf
I:Ω→R≥0

∫∫
Ω
g|∇I| dx dy∫∫
Ω
fI dx dy

.

Note that the search domain in the latter problem consists of all non-negative-valued images

(not necessarily bilevel), which is a convex set. The following statement of this result by [30] is

more aligned with our approach in the next section.

Theorem 4.1 ([30])

Let I be a minimizer of

inf
I∈BVΩ(f)

∫∫
Ω

g|∇I| dx dy, (4.3)

where

BVΩ(f) =
{
I ∈ BV (Ω), I ≥ 0 ;

∫∫
Ω

fI dx dy = 1
}
.

Then, for every μ ≥ 0 such that the level-set E(I;μ) is nonempty,

1∫∫
E(I;μ)

f dx dy
χE(I;μ)

is also a minimizer of (4.3).

In a nutshell, Theorem 4.1 states that the minimizer set of (4.3) is closed under level-set

evaluation; i.e., normalized (scaled) non-empty level-sets of a minimizer also belong to the set

of minimizers. This helps in finding a bilevel solution to (4.2), as finding any minimizer of the

convex problem (4.3) necessarily leads to (at least) a bilevel image.
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Another result proved in [30] indicates that the Cheeger sets are closed under set union.

This immediately establishes the existence of a unique maximal Cheeger set that contains all

the other ones [21]. Thus, we can remove the inherent ambiguity caused by non-uniqueness

of the solutions to (4.3) by searching for the maximal set. However, finding the maximal set

is not generally easy by considering the minimization of (4.3). A regularization technique is

proposed in [21] that applies asymptotically vanishing penalty terms to the cost function (4.3)

and achieves the maximal set at the limit of the minimizers. Based on this idea, a numerical

method is introduced in [31] that approximates the maximal Cheeger set on a finite grid. The

method is robust to discretization as the approximations converge point-wise to the continuous

domain Cheeger set when the grid resolution increases.

As a final note, we discuss the influence of the weight kernels f and g. In fact, Cheeger

sets consist of smooth C2 boundaries, irrespective of the choice of f and g [68]. Nevertheless,

it is known that the curvature of the boundaries is tightly controlled by these weight kernels.

Formally, at each boundary point we have that [68]

|κ| ≤ J (S) sup f + sup ‖∇g‖
inf g

where κ stands for the curvature and J (S) is the cost value of the Cheeger set determined by

the ratio in (4.2). As we set g ≡ 1 in the rest of the chapter, the effective bound on the curvature

simplifies to |κ| ≤ J (S) sup f . We will just briefly comment on employing a non-constant weight

kernel g in Section 4.6.

4.4 Consistent Shape Recovery

Let us consider the problem (P0) for the case where the measurement image D = [dk]1≤k≤m2

consists of more than one pixel. Similar to the single-measurement setting, non-convexity of the

problem is a computational barrier. Therefore, we opt to use a convex relaxation in the form of

inf
I∈CΩ(D; f1,...,fm2 )

∫∫
Ω

|∇I| dx dy. (P1)

By extending the search domain from binary (bilevel) shapes to all non-negative-valued im-

ages, the problem becomes convex. Nevertheless, due to multiple measurement constraints, this

scenario obviously deviates from the conventional Cheeger problem.

In Theorem 4.2 we show that under certain conditions, the minimization in (P1) constrained

by multiple measurements can be replaced with a similar minimization subject to a single con-

straint; i.e., we prove that (P1) could potentially have an equivalent Cheeger problem. In fact,

we use a wisely chosen linear combination of the measurements as the single measurement. The

interpretation of (P1) in form of a Cheeger problem automatically implies the existence of a

bilevel minimizer (e.g., the maximal Cheeger set) for (P1). Thus, all shape minimizers of (P0)

are also minimizers of the relaxed problem (P1). Further, it proves the existence and uniqueness

of a maximal consistent shape. In Theorem 4.3, we provide a simple test to verify whether a

minimizer of (P1) is the maximal shape. This helps us to validate a numerical solution obtained

via minimizing (P1)—which might not have a unique minimizer—as a binary consistent shape.

The mathematical requirements for the equivalence of (P1) with a Cheeger problem (existence

of a suitable linear combination of the measurements) is stated in Definition 4.4; essentially these
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requirements imply that the sampling density used for obtaining the measurement image needs

to be fine enough.

4.4.1 Promoting the use of total variation for shape recovery

Before presenting the theoretical results, we advocate the use of total variation in (P1) for the

reconstruction of bilevel images. The application of total variation in image processing goes back

to the work of Rudin, Osher and Fatemi (ROF) [96] for restoring a piecewise smooth function I

from its blurred and noisy version I0

I0 = AI + n,

where A is a linear operator (modeling, for instance, the blur in the image) and n is a random

noise. The approach proposed in [96] consists in solving the following constrained minimization

problem

min

∫∫
Ω

|∇I|,

s.t.

∫∫
Ω

AI =

∫∫
Ω

I0 and

∫∫
Ω

|AI − I0|2 = σ2,

where σ is the standard deviation of noise. Using Lagrange multipliers, this problem was linked

to the unconstrained problem

min

∫∫
Ω

|∇I| +
λ

2
‖AI − I0‖22

for a given multiplier λ [36]. Besides, it was shown that this approach is well suited to the

reconstruction of nearly piecewise constant (also called as blocky) images and not other images

[36, 48].

Further studies revealed that the ROF model preserves the geometry of images but not the

contrast, in the presence of noise [105], while replacing the �2 norm of the data fidelity term with

the �1 norm makes the algorithm robust to both the contrast and geometry perturbations [38].

Specifically, it was shown that the convex minimization problem

min

∫∫
Ω

|∇I| + λ‖I − χS̃‖1

is equivalent to the non-convex shape denoising

min
S

Per(S) + λ|S�S̃|,

where S̃ is a noisy (with perturbed geometry) shape and � denotes the symmetric set difference

A�B = (A−B) ∪B −A) [35, 38].

Related results have been also established for the two-phase piecewise constant segmentation

of a gray-scale image Ĩ(x, y) : Ω → [0, 1], where the aim is to find the best approximation of

Ĩ(x, y) among all bilevel functions. This can be formulated with the functional

MS
(
S, c1, c2

)
= Per(S) + λ

∫∫
S
(Ĩ(x, y)− c1)

2 + λ

∫∫
Ω\S

(Ĩ(x, y)− c2)
2,
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in which S represents the interface between the two values c1 and c2 in the two-phase approxi-

mation of Ĩ(x, y). Then, the segmentation is carried out by the minimization problem

min
S⊂Ω,c1,c2∈R

MS
(
S, c1, c2

)
.

An interesting result in [39] asserts that for any given c1, c2 ∈ R, every non-empty level set of

the solution of the convex relaxation

min
0≤I(x,y)≤1

∫∫
Ω

|∇I|+ λ

∫∫
Ω

{
(Ĩ(x, y)− c1)

2 − (Ĩ(x, y)− c2)
2
}
I(x, y)

forms a global minimizer for MS
(
S, c1, c2

)
.

Finally, we would like to mention the immediate application of the Cheeger results in 3D

shape modeling and reconstruction [110].

4.4.2 Theoretical results

We start by defining the maximal consistent shape.

Definition 4.1

A maximal consistent shape with minimum perimeter, or MCSMP in short, is a solution to

(P0) whose support contains the support of all other minimizers of (P0).

Note that a MCSMP does not always exist. In general, the support union of two minimizers

of (P0) does not necessarily generate a minimizer by scaling. It is evident by this fact that the

claimed equivalent Cheeger problem plays a crucial role in our results. In Definition 4.4 below

we will describe the sufficient conditions that enable us to associate (P0) or (P1) to a Cheeger

problem.

Before stating Definition 4.4, we introduce a few notations used in the rest of this section.

As we need to linearly combine the measurement constraints, we represent the n-dimensional

coefficient set for the convex combinations by Δn:

Δn �
{
(λ1, . . . , λn) ∈ R

n
∣∣∣ 0 ≤ λi,

n∑
i=1

λi = 1
}
.

For non-negative-valued images, a zero measurement can only happen when the image van-

ishes over the support of the corresponding sampling kernel. Thus, we can exclude the support

region from our search domain.

Definition 4.2

For the measurements D = [dk]1≤k≤m2 corresponding to the pixels 0 ≤ dk ≤ 1 and sampling

kernels f1, . . . , fm2 , let ρ denote the number of non-zero pixels and

A = {i ∣∣ di > 0} = {a1, . . . , aρ}

stand for the index set of active pixels. We define the reduced domain Ωr by

Ωr = Ωr(D; f1, . . . , fm2) = Ω \ ∪
i ∈ {1, . . . ,m2} \A

supp(fi).
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Definition 4.3

For the measurements D = [dk]1≤k≤m2 , sampling kernels f1, . . . , fm2 , and a vector λ ∈ Δρ,

we define the reduced kernel fλ : Ωr �→ R
≥0 by

fλ =
( ρ∑

k=1

λkfak

)
/
( ρ∑

k=1

λkdak

)
.

Here, ρ, Ωr, and ak are as defined in Definition 4.2.

Now, we are prepared to state the Cheeger problem equivalence requirements.

Definition 4.4

As before, letD = [dk]1≤k≤m2 be the measurements captured by sampling kernels f1, . . . , fm2

with 0 ≤ di, leading to ρ, A, and Ωr as in Definition 4.2. For an arbitrary λ ∈ Δρ, we define

Iλ = αχS to be the solution of (4.3) corresponding to the maximal Cheeger set S with fλ,

when the domain is restricted to Ωr. We call (D; f1, . . . , fm2) reducible if A can be partitioned

into K1 and K2 such that

1. ∀ k ∈ K1, λ ∈ Δρ, λk = 0 :
∫∫

Ωr
Iλfk dx dy < dk,

2. ∀ k ∈ K2, λ ∈ Δρ :
∫∫

Ωr
Iλfk dx dy ≤ dk.

It was explained earlier that the measurements di obtained from a binary shape through

normalized sampling kernels satisfy 0 ≤ di ≤ 1. The requirements in Definition 4.4 simply

indicate that the maximal Cheeger solution corresponding to any convex combination of the

kernels except a given one, should result in a strictly smaller measurement observed by the

excluded kernel. Intuitively, we expect the Cheeger solution to have less contribution over the

support of the excluded kernel. However, there are some exceptions; imagine the case where

the support of a 3× 3 block of measurement kernels completely coincide with the interior of the

binary shape. Thus, we shall have a block of all-one measurements. Now, it is likely that the

maximal Cheeger set corresponding to a linear combination of the 8 surrounding kernels (but

missing the middle one) using symmetric weights fully covers the support of the kernel in the

middle. Hence, measuring this solution via the middle kernel results in di = 1, instead of being

strictly less than 1. The partitions K1 and K2 in Definition 4.4 are introduced to distinguish

between the ordinary (K1) and exceptional (K2) cases. We postpone further discussion and

clarifications about this definition to Section 4.4.3.

Theorem 4.2

Let (D; f1, . . . , fm2) be reducible according to Definition 4.4. Then, all solutions of the non-

convex problem (P0) are included in the minimizers of its convex relaxation (P1). Moreover,

the solution set of (P1) contains a unique MCSMP.

Our proof of Theorem 4.2 relies on the following lemma, the proof of which is provided in

the appendix.
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Lemma 4.1

For a given dimension n and a set {dk}nk=1 ⊂ R, let K1,K2 be a partition of {1, . . . , n}, with
the possibility of K1 = ∅ or K2 = ∅, and let v : Δn �→ R

n be a continuous function that

satisfies

1. ∀λ ∈ Δn : λT · v(λ) =∑n
k=1 λkdk,

2. ∀ k ∈ K1, λ ∈ Δn
λk=0

: vk(λ) < dk.

3. ∀ k ∈ K2, λ ∈ Δn : vk(λ) ≤ dk

Then, there exists λ∗ ∈ Δn such that v(λ∗) = [d1, . . . , dn]
T .

Proof of Theorem 4.2. The main ingredient of the proof is to show that under reducibility

condition, (P0) and (P1) can be associated with a Cheeger problem. To show this, first note that

CΩ(D; f1, ..., fm2) is essentially the same as CΩr(Dr; fa1 , . . . , faρ), where ρ, A, Ωr are defined in

Definition 4.2 and Dr = [dk]k∈A. In addition, for all λ ∈ Δρ, we have that

CΩr(Dr; fa1 , . . . , faρ) ⊆ CΩr(1; f
λ) = BVΩr(f

λ).

Therefore, any minimizer of (4.3) that falls inside CΩr
(Dr; fa1

, . . . , faρ
) is also a minimizer of

(P1). Besides, if (P1) and (4.3) have a common minimizer, then, all the solutions of (P1) shall

be among the solutions of (4.3). This is indeed, what we aim to prove.

Let Iλ be the maximal Cheeger set solution of (4.3) on Ωr corresponding to the weight kernel

fλ. Consider the function

v(λ) �
[ ∫∫

Ωr

Iλfa1
, . . . ,

∫∫
Ωr

Iλfaρ

]T
.

We demonstrate that v(·) satisfies the conditions of Lemma 4.1. The first condition directly

follows from

1 =

∫∫
Ωr

Iλfλ =
1∑ρ

k=1 λkdak

∫∫
Ωr

Iλ
ρ∑

k=1

λkfak
.

The reducibility property of (Dr; fa1
, . . . , faρ

) also establishes Conditions (2) and (3) of Lemma

4.1. Consequently, there exists λ∗ ∈ Δρ such that

vk(λ
∗) =

∫∫
Ωr

Iλ
∗
fak

dx dy = dak
, 1 ≤ k ≤ ρ.

This means that the bilevel maximal Cheeger solution Iλ
∗
, which minimizes (4.3), is also consis-

tent with the measurements DA. Hence, Iλ
∗
is also a minimizer of (P1) as well as (P0); i.e., the

three problems (4.3) with fλ∗
over Ωr, (P1) and (P0) share a minimizer. This proves the first

part of the claim.

As for the second part, note that all minimizing shapes of (P0) are Cheeger solutions of (4.3).

Thus, their support should be included in the support of the maximal Cheeger solution Iλ
∗
. In

words, Iλ
∗
is a MCSMP. �

Theorem 4.2 states that under reducibility, the solution set of (P1) is guaranteed to contain a

MCSMP. Although we believe that the MCSMP is the unique solution of (P1) under reducibility,

it is yet to be proven. However, we introduce a test in Theorem 4.3 to verify whether an obtained
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solution to (P1) is the MCSMP. This test helps us in simulation results, where we implement a

minimization technique and eventually obtain a solution with a numerical precision. First, it is

difficult to make sure whether the result is precisely bilevel, and second, even if it is bilevel, is it

the MCSMP?

Theorem 4.3

Let (D; f1, . . . , fm2) with di = 1 for some i be reducible (at least one measurement equal

to one). If the point values of a solution to (P1) never exceed 1, then, this solution is the

MCSMP and it is binary (non-zero values are all 1).

Proof. Let I(x, y) ≤ 1 be a solution to (P1), and let i be the index of a measurement equal to 1,

i.e., di = 1. By comparing I(x, y) ≤ 1 and di = 1, we conclude that for all (x, y) ∈ supp(fi) we

should have I(x, y) = 1 (the kernels are normalized). If I is the MCSMP, as it takes the value

1, it needs to be binary and the proof is complete. Therefore, let us assume the MCSMP to be

Ĩ �= I. As previously shown, the support of Ĩ contains the support of I, which obviously contains

the support of fi. As Ĩ is constant over its support and is also consistent with measurement di,

we should have that Ĩ(x, y) = 1 for all (x, y) ∈ supp(fi). Thus, Ĩ is binary. However, this implies

that I never exceeds Ĩ at any point, while they generate the same set of measurements. In turn,

this suggests that I cannot be less than Ĩ on a set of non-zero measure. In other words, I and Ĩ

are essentially equal at all points. �
For recovering a binary shape from discrete measurements, we infer the following: when the

sampling density is high enough to provide the reducibility condition for the measurements, the

studied convex problem is potentially able to return a consistent binary shape with minimum

perimeter. Besides, the boundary of the output shall be a C2 curve.

Remark 4.1

The reducibility requirement is a sufficient condition for the claims of Theorem 4.2 and 4.3

to hold. However, it is by no means a necessary condition. In fact, we have experimentally

found cases for which the claims hold, while the reducibility requirement is not fulfilled.

4.4.3 The sampling density requirement

Earlier, we claimed that the reducibility condition in Definition 4.4 is effectively a requirement

on the minimum sampling density. Here, we illustrate this intuition by some examples.

First, we consider the sampling of the shape in Figure 4.3a over a 3× 3-pixel grid, employing

the bilinear B-spline sampling kernel depicted in Figure 4.3b. This generates the measurements

D =

⎡⎣0.5634 0.0523 0.5750

0.8996 0.9016 0.8882

0.5247 0.8817 0.5097

⎤⎦ .
Particularly, we focus on the d4 measurement pixel (or d12 in the usual matrix indexing format).

It is evident that the value of this measurement is considerably lower than its neighboring mea-

surement pixels. Intuitively, this sharp transition violates the resolution requirement. Now, we

check the reducibility condition: let us exclude the d4 pixel and apply equal weights for a con-

vex combination of the remaining measurements, i.e., λ = [1, 1, 1, 0, 1, 1, 1, 1, 1]/8 ∈ Δ9. Figure

4.3c depicts the reduced sampling kernel fλ, and Figure 4.3d shows the corresponding maximal
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(a) (b)

(c) (d)

Figure 4.3: Violation of the reducibility criterion due to the low sampling density. (a) shows the

original binary image over a 3× 3 sampling grid. This generates the measurement d4 = 0.0523,

when the sampling kernels are the shifts of the bilinear B-spline kernel in (b). (c) shows the

reduced sampling kernel fλ corresponding to λ = [1, 1, 1, 0, 1, 1, 1, 1, 1]/8, that results in the

Cheeger solution (d) with levels 0 and 0.9577 (reproducing the larger measurement d4 = 0.5247).
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(a) (b)

(c) (d)

Figure 4.4: The measurements of shapes with internal holes never satisfy the reducibility

requirement, no matter how high is the measurement density, unless the original domain is

replaced with the reduced domain. (a) A binary shape image with an internal hole, (b) the

corresponding 10 × 10 measurements, with d55 = d56 = d65 = d66 = 0, (c) reduced kernel fλ,

with equal contributions from the 20 kernels associated with pixels on the borders of the central

6× 6 sub-grid, and (d) the maximal Cheeger solution with levels 0 and 0.9891.

Cheeger solution. Although d4 did not contribute in this Cheeger solution, we observe substan-

tial leakage over its region from the neighboring pixels. Thus, (D, f1, . . . , f9) is not reducible.

Oftentimes, sharp transitions between neighboring pixel values indicate lack of sufficient density

for sampling the boundary curve of the shape (possibly, parts with high curvature). Similarly,

the reducibility condition prevents the value of a pixel dropping substantially below its neighbors.

One of the shortcomings of reformulating (P1) as (4.3) using a single reduced kernel fλ is that

the Cheeger solution never admits a hole. Figure 4.4 provides a pictorial explanation. Here, we

would like to recover the shape image in Figure 4.4a from its discrete measurements on a 10×10

grid. The hole causes four vanishing middle pixels (Figure 4.4b), which make it obvious that the

shape content is 0 in the middle. We now consider a reduced kernel by linearly combining (with

equal weights) only the 20 kernels associated with the pixels on the perimeter of the central 6×6

sub-grid (Figure 4.4c). As claimed, the Cheeger solution to (4.3) depicted in Figure 4.4d has no

holes and completely covers the middle part. This seems to violate the reducibility condition, no

matter how high we set the sampling density. However, note that we remove the 0 pixels from

the domain in Definition 4.4. Therefore, the Cheeger solution over the reduced domain is forced

to have a hole, although it is not considered as hole with respect to the reduced domain.

The reducibility condition in Definition 4.4 is a useful guarantee for recovering a shape image.
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However, verifying it for a given set of measurements and sampling kernels is a combinatorial

problem in general. For the purpose of illustration, we investigate the simple case with 2 × 2

measurement pixels. Let D =

[
d1 d3
d2 d4

]
with elements in [0, 1] represent the measurement

matrix. Without loss of generality, we assume that d4 = ρ ≤ 1 is the largest element. To verify

the reducibility condition, we need to exclude each pixel, apply an arbitrary convex combination

on the rest and check an inequality. As we can categorize d4 to the K2 set in Definition 4.4, the

inequalities when d4 is excluded are trivial. To verify other inequalities, note that we can scale

all measurements by the factor 1
ρ (or any other positive real). In fact, the scaling does not affect

the support set of the Cheeger solutions. Consequently, the reducibility condition for D, boils

down to a set of inequalities on each of d1

ρ , d2

ρ , d3

ρ in terms of the other two:

d1 > ρZ(
d2
ρ
,
d3
ρ
),

d2 > ρY (
d1
ρ
,
d3
ρ
),

d3 > ρY (
d1
ρ
,
d2
ρ
).

The symmetries of the problem indicate that the lower-bounds on d2 and d3 can be represented

using the same function (Y (·, ·)), and the lower-bound Z(·, ·) on d1 is symmetric with respect to

the two inputs. In Figures 4.5 and 4.6 we depict the functions Y, Z for two choices of the sampling

kernel, namely, the box-spline (Figure 4.5) with non-overlapping kernels and bilinear B-spline

kernels with 50% overlap (Figure 4.6). The overlap introduces correlation among the neighboring

pixels, which naturally leads to tighter regions for validity of the reducibility condition. This

is indicated by larger Y and Z values. For instance, the measurement set D =

[
0.576 0.72

0.216 0.216

]
is reducible under the box-spline sampling kernels, but not under the bilinear B-spline kernels.

This issue is explicitly explained in the following remark.

Remark 4.2

The involved notion of local smoothness in the reducibility requirement is relative to the sam-

pling kernel. For PSFs with wider supports, we expect more correlation among neighboring

samples, resulting in smoother local transitions. However, in the same way, the neighbor-

ing samples are likely to contribute in the support of an excluded sample when examining

the reducibility requirement. Therefore, the reducibility requirement for a wider PSF sets

stronger constraints on the variations among neighboring samples (i.e., smoothness of higher

degree/level). This explains that the reducibility requirement mainly depends on the sam-

pling density, rather than the PSF.

4.5 Numerical Experiments

In this section, we aim at numerically calculating the optimal solution(s) of the convex prob-

lem (P1). For this purpose, we restrict the simulations to the discrete setting. Below, we first

explain the equivalent problem in the discrete domain and then, present the simulation results.
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(a) (b) (c)

Figure 4.5: The approximate functions (b) Y and (c) Z for the characterization of reducible

measurements D2×2 when the kernels f1, f2, f3, f4 are shifts of the box-spline kernel in (a) cen-

tered at point (0.25, 0.75), (0.25, 0.25), (0.75, 0.75) and (0.75, 0.25), respectively.

(a) (b) (c)

Figure 4.6: The approximate functions (b) Y and (c) Z for the characterization of reducible

measurements D2×2 when the kernels f1, f2, f3, f4 are shifts of the bilinear B-spline kernel in (a)

centered at point (0.25, 0.75), (0.25, 0.25), (0.75, 0.75) and (0.75, 0.25), respectively.

4.5.1 Discrete formulation

For conducting computer simulations, we are limited to discrete scenarios. Therefore, we

discretize the domain Ω (and subsequently all the functions defined on Ω) with a finite step-size

h ∼ 1
N for some large integer N . This will approximate Ω and the continuous domain objects

I, f1, ..., fm2 by their pseudo samples at the 2D grid

{(ih, jh); i, j = 1, 2, ..., N}

resulting in R
N×N matrices. In the discretized version, we approximate the gradient operator

by evaluating the forward differences; for instance we approximate ∇I with an R
N×N×2 tensor

defined as

(∇I)i,j,k = (∇I)ki,j (4.4)
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where

(∇I)1i,j =

{
Ii+1,j − Ii,j if i < N,

0 if i = N,

(∇I)2i,j =

{
Ii,j+1 − Ii,j if j < N,

0 if j = N.
(4.5)

It is shown that in the asymptotic regime of N → ∞, the results obtained with the discretized

model converge to their continuous domain counterpart introduced in (P1) [34].

One of the standard approaches for solving the associated discrete minimization is the gra-

dient descent algorithm, which is rather slow in high dimensions (small step-size h). Recently,

the piecewise-smooth Mumford-Shah functional for image restoration has been relaxed and re-

formulated as a min-max problem. The latter formulation allows for its implementation via

primal-dual projection algorithms [92, 104]. These algorithms are fast and enjoy convergence

guarantees. In this chapter, we use the dual formulation of total variation [32, 34, 40] to cast

(P1) (with a general non-negative-valued weight kernel g) as the min-max problem

min
I∈C

∫∫
g |∇I| = min

I∈C
max
|ζ|2≤g

{∫∫
−I divζ

}
= min

I∈C
max
|ζ|2≤g

〈−I, divζ〉, (4.6)

with the dual variable ζ : Ω → R
2. Then, we apply a variation of the aforementioned primal-dual

algorithms to solve (4.6). Here, div stands for the divergence and is defined as the negative of

the gradient adjoint.

Each iteration of the obtained algorithm alternates between a gradient descent and a gradient

ascent on the primal and dual variables, respectively. In short, the update equations are as

follows:

ζ(k+1) = ProjB(g)(ζ
k + σk∇I

(k)
), (4.7)

I(k+1) = ProjCΩ(D;f1,...,fm2 )(I
(k) + τkdivζ

(k+1)), (4.8)

θk =
1√

1 + 4τk
, τk+1 = θkτk, σk+1 = σk/θk,

I
(k+1)

= I(k+1) + θk(I
(k+1) − I(k)),

where k represents the iteration index. Here, the notation ProjA(·) stands for the orthogonal

projection of the argument onto the set A and B(g) represents the ball with radius g in the space

of N ×N × 2 tensors:

B(g) =
{
u ∈ R

N×N×2 ;
√
u2
i,j,1 + u2

i,j,2 ≤ gi,j

}
.

Hence, ProjB(g)(·) in (4.7) scales only the points outside the ball B(g). In this chapter, we only

consider g ≡ 1; nevertheless, the algorithm works for general non-negative weight kernels g.

The more involved operator ProjCΩ(D;f1,...,fm2 )(I) in (4.8) projects I onto the set of non-

negative-valued matrices that are consistent with samples inD. To better explain this projection,

we use the notation vec(I) for the vector formed by concatenating all the columns of I. This
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way, the samples are represented by Fvec(I), where F is the m2 ×N2 matrix

F =

⎡⎢⎢⎣
(vec(f1))

T

(vec(f2))
T

. . .

(vec(fm2))T

⎤⎥⎥⎦ .
With this convention, projection onto the set of measurement consistent images returns the

solution to

argminvec(Ĩ) ‖vec(I)− vec(Ĩ)‖22
s.t. Fvec(Ĩ) = vec(D),

which admits the closed form

vec(Ĩ) = vec(I)− FT(FFT)−1
(
Fvec(I)− vec(D)

)
.

For separable sampling kernels, i.e. φ(x, y) = φ(x)φ(y), we can implement sampling along the

rows and columns separately using a matrix Fm×N as FIFT . In this case,

Ĩ = I − FT (FFT )−1
(
FIFT −D

)
(FFT )−1FT .

Finally, we find ProjCΩ(D;f1,...,fm2 )(I) by alternating the projections onto the set of measurement-

consistent and non-negative valued matrices, using the POCS algorithm [16].

The initial values I(0) and ζ(0) are arbitrary, with I
0
= I(0) and time steps τ0σ0‖∇‖2 < 1

[104]. By analogy (continuous setting), the divergence in (4.8) shall be the negated adjoint of

the discrete gradient used in (4.7). For the forward difference gradient in equations (4.4)-(4.5),

this leads to

(divζ)ij =

⎧⎨⎩
ζ1i,j − ζ1i−1,j if 1 < i < N,

ζ1i,j if i = 1,

−ζ1i−1,j if i = N,

+

⎧⎨⎩
ζ2i,j − ζ2i,j−1 if 1 < j < N,

ζ2i,j if j = 1,

−ζ2i,j−1 if j = N.

4.5.2 Simulation results

In the first experiment, we study the effect of the number of measurements on the recon-

structed images obtained with the proposed algorithm. Recalling the result of the previous

section, we expect the solution of (P1) to be binary, given adequate number of measurement

pixels. In this experiment, we employ a shape image with a parametric description, composed of

a semicircle laid on one side of an equilateral triangle (Figure 4.7a). This enables us to precisely

access and display the image at arbitrary fine resolutions as a reference. Figure 4.7a shows the

image at the resolution 2000 × 2000. Figs. 4.7b, 4.7c and 4.7d show the solutions of algorithm

(P1) with the same resolution applied to the measurement of sizes 40× 40, 50× 50 and 80× 80,

respectively. All measurements are generated with a box-spline kernel. The original shape has
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(a) (b) (c) (d)

Figure 4.7: The performance of algorithm (P1) in shape recovery: (a), (b), (c) and (d) show

the original shape image displayed with the resolution 2000× 2000 and its approximations using

40× 40, 50× 50 and 80× 80 measurements, respectively. Note that the reconstructed images are

binary only when the number of measurements is large enough.

non-smooth details around the corners and thus, to facilitate comparison, we enlarged the recon-

structed images around these areas. The results reveal that with lack of enough measurements,

the reconstructed images have more than two levels. It seems that the 80 × 80-pixel image

provides enough measurements to have a binary optimal solution for (P1).

Figure 4.8: The average MSE of the recovered binary images constrained by m ×m samples

of random circles with fixed radius for two radii r = 0.3 and r = 0.4.

In a similar experiment, we examine the performance of our algorithm in recovering circles

from different number of measurements. For this purpose, we run a Monte Carlo experiment by

generating 20 circles with fixed radius and random centers in the image plane. We then consider

outputs of the algorithm at resolution 600× 600 constrained with m×m analytic measurements

of the circles with box-spline PSFs and different values of m. Figure 4.8 shows the average

mean squared errors of the reconstructed images (after thresholding at level 0.5) versus m for

two different radii. The plots in this figure clearly indicate that the algorithm always perfectly
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Table 4.1: Quantitative evaluation of the proposed algorithm (numbers in dB)

shape in Figure 4.9a shape in Figure 4.9e

image measurement image measurement

PSNR PSNR PSNR PSNR

proposed
29.1507 58.3316 43.8839 63.3429

solution

linear
26.4397 41.4224 33.7172 49.1746

interpolation

recovers the circles from m×m measurements when m is greater than 10.

Next, we examine the solutions of (P1) to 200×200-pixel discrete images of the shapes depicted

in Figures 4.9a and 4.9e at resolution 1000 × 1000 (Figure 4.9e is taken from the middle part

of Figure 1.2). The sampling kernel for this experiment is the biquadratic B-spline. Figure 4.9

presents the same enlarged sections of the original shapes, the discrete images (just for a visual

comparison) and their reconstructions with the proposed algorithm. The figures demonstrate that

both reconstructed images are almost binary. Also, Table 4.1 shows the quantitative evaluation

of the reconstructed images. In this table, we also compare our results with the ones obtained

by the interpolation of the measurement images with the bilinear B-spline kernel, followed by a

thresholding at level 0.5. For a fair comparison, we also threshold our results to calculate the

PSNRs. The numbers in this table clearly indicate the success of our proposed algorithm for

consistent shape reconstruction.

For a given shape image, the resolution requirement in Definition 4.4 mainly depends on the

sampling grid, rather than the PSF. To examine this fact, we repeat the experiment in Figure

4.9 by regenerating a 200 × 200 discrete image from Figure 4.9a using a stretched biquadratic

B-spline sampling kernel with an effective support of 40 × 40 pixels. The result is the highly

blurred image in Figure 4.10a. Also, Figure 4.10b shows the enlarged section equivalent to Figure

4.9b. The quality of the reconstructed image in Figure 4.10c (PSNR = 33.8dB) confirms that

the sampling grid outweighs the choice of the PSF in determining the performance.

Finally in the last experiment, we study the performance of the proposed method in a setting

severely deficient in the number of measurements. For this purpose, we consider a recent image

by the New Horizons spacecraft in July 2015 from a moon of Pluto named Hydra. Figure 4.11a

depicts the received measurements. Although a high resolution imager is used, due to the long

distance of the spacecraft to Hydra compared to the size of Hydra, we observe a highly pixelated

image. According to the available data, the effective PSF width of the imager is around 1.5 pixels,

which we model by a dilated biquadratic B-spline. Figure 4.11b shows the output of the convex

program to the measurements by applying the approximate PSF. As the measurements are too

few, the reconstructed image is not bilevel (indeed, it is not unlikely to assume the image of

Hydra being binary from this distance). Nevertheless, it is interesting to note that the obtained

multi-level image is not far from the processed image released by NASA in Figure 4.11c.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: Consistent shape reconstruction with the proposed algorithm: Figs. 4.9a and 4.9e

display two shapes at the resolution 1000 × 1000 that will be approximated from 200 × 200

discrete images, generated with biquadratic B-spline sampling kernels. Figs. 4.9b, 4.9c and 4.9d

show the same enlarged sections of the original shape 4.9a, the corresponding discrete image and

reconstructed shape, respectively. Figs. 4.9f, 4.9g and 4.9h display the same for the shape in

Figure 4.9e.
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(a)

(b) (c)

Figure 4.10: Consistent shape reconstruction with the proposed algorithm from highly blurred

discrete images: Figure 4.10a shows a 200 × 200 discrete image corresponding to the shape in

Figure 4.9a, when the sampling kernels are shifts of an stretched biquadratic B-spline with an

effective support of 40 × 40 pixels. Figs. 4.10b and 4.10c show the same enlarged sections (as

in Figure 4.9b) of the measurement image and reconstructed shape, respectively. The recovered

image (without any thresholding) has a PSNR of 33.8096 dB with respect to the original shape

and a measurement PSNR of 75.0489 dB.
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(a) (b) (c)

Figure 4.11: Performance of the proposed method in a setting with limited measurements: the

measurement image in (a) is taken by the imager of the New Horizons space probe from Hydra.

Due to the deficiency of measurements, our reconstruction in (b) is not bilevel; yet it is a good

match to the processed image (c) released by NASA.

4.6 Conclusion

In this chapter, we studied the problem of reconstructing a continuous domain shape image

from the samples in a gray-scale discrete image. This is essentially equivalent to the interpolation

of pixels in a way that generates a binary image. We formulated this problem as a minimization

problem where the functional is the continuous domain total variation and the constraints encode

the sampling relation between the continuous domain image and the pixels of the discrete image.

When the search is over binary images, the minimizers will be shapes with minimum perimeter

and smooth boundaries that satisfy the measurements. However, the search over shape images

is computationally intractable. We introduced the reducibility condition on the samples of the

discrete image and proved that when it is satisfied, extending the search domain to the non-

negative-valued images would not omit any of the binary minimizers. The reducibility condition

essentially calls for smooth changes in the values of the neighboring pixels. From this perspective,

this is an intuitive requirement on the minimum sampling density that is needed for tracking

local changes in the shape boundaries.

We conjecture that under the reducibility condition, the convex problem has a unique binary

solution. Nevertheless, we introduced a test to verify whether an obtained solution to the convex

minimization problem is binary. This test is mainly useful in the numerical calculation of the

minimizers where the recovered solutions might not be precisely bilevel due to the numerical

precision.

Our approach in this chapter was based on minimization of the total variation, but all the

results remain valid if we use a weighted total variation. A carefully designed weighting kernel

might locally adjust the recovered shapes and lead to shapes with higher mean curvature.



74 Measurement-Consistent Shape Reconstruction

4.7 Appendix Proof of Lemma 4.1

In the following, we reserve the notation eni for the canonical basis of Rn:

eni �
[
0, . . . , 0, 1

ith
, 0, . . . , 0

]T ∈ R
n.

We prove the lemma by induction on n. We set the basis of the induction on n = 1. It is trivial

to check that Condition (1) for n = 1 implies the claim in this case. Next, by assuming the

validity of Lemma 4.1 for some n ≥ 1, we demonstrate the validity for n+ 1.

For the case K
(n+1)
1 = ∅, it is not difficult to see that λ = [ 1

n+1 , . . . ,
1

n+1 ]
T satisfies the

requirement. Here, Condition (1) implies that all the inequalities of Condition (3) are in fact

equalities. Hence, we focus on K
(n+1)
1 �= ∅. Without loss of generality, we assume that n + 1 ∈

K
(n+1)
1 . Next, we will try to reduce the (n+1)-dimensional problem into a similar n-dimensional

one with K
(n)
1 = K

(n+1)
1 \ {n+ 1} and K

(n)
2 = K

(n+1)
2 .

According to Condition (2), at λ = en+1
n+1 ∈ Δn+1 we have that

∀ i ∈ K
(n+1)
1 \ {n+ 1} : vi(e

n+1
n+1) < di.

If K
(n+1)
1 \{n+1} = ∅, set ε = 1

2 . Otherwise, set 0 < ε ≤ 1
2 such that for all i ∈ K

(n+1)
1 \{n+1}

and all λ ∈ Δn+1 with ‖λ − en+1
n+1‖ < ε (i.e., ε-neighborhood of en+1

n+1 inside Δn+1), we have

that vi(λ) < di. The existence of such ε follows from the continuity of v (and consequently vis).

Furthermore, Condition (3) implies vi(λ) ≤ di for all i ∈ K
(n+1)
2 and the same set of λ vectors.

In summary, we conclude the existence of 0 < ε ≤ 1
2 such that

∀ 1 ≤ i ≤ n, λ ∈ Δn+1, ‖λ− en+1
n+1‖ < ε : vi(λ) ≤ di.

By taking Condition (1) into account, we observe that

∀λ ∈ Δn+1, ‖λ− en+1
n+1‖ < ε : vn+1(λ) ≥ dn+1. (4.9)

In words, the value of vn+1 in a neighborhood of en+1
n+1 never drops below the desired value

dn+1. In contrast, the values of vn+1 on the facet of the simplex Δn+1 opposite to en+1
n+1 (λ ∈

Δn+1, λn+1 = 0) are strictly below dn+1 according to Condition (2). Since vn+1 is continuous, by

starting from any point on this facet and gradually moving towards en+1
n+1 on the line connecting

the two points, vn+1 will eventually attain the value dn+1. By considering the points on all

such lines that vn+1 attains the value dn+1 for the first time (when moving away from the facet

towards the vertex en+1
n+1), we shall have a manifold intersecting with all the facets except possibly

the studied one. To mathematically represent this manifold we employ the following definition:

∀ t ∈ Δn : β(t) � inf
{
β ∈ [0, 1]

∣∣∣ ∀ γ, β ≤ γ ≤ 1 :

vn+1

(
γ t1, . . . , γ tn, 1− γ

)
< dn+1

}
.

It is not difficult to apply the continuity of vn+1 to conclude the continuity of β(t) and the fact

that

∀ t ∈ Δn : vn+1

(
β(t)t1, . . . , β(t)tn, 1− β(t)

)
= dn+1. (4.10)
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Moreover, we invoke (4.9) to demonstrate that β(t) ≥ ε√
2
; i.e., β(t) is strictly positive for all

t ∈ Δn.

Now we are ready to reduce the dimension to n. For this purpose, we define the function

u : Δn �→ R
n as

∀ t = [t1, . . . , tn]
T ∈ Δn : (4.11)

u(t) �

⎡⎢⎢⎢⎣
v1

(
β(t)t1, . . . , β(t)tn, 1− β(t)

)
...

vn

(
β(t)t1, . . . , β(t)tn, 1− β(t)

)
⎤⎥⎥⎥⎦ =

⎡⎢⎣ u1(t)
...

un(t)

⎤⎥⎦ .
The continuity of u(t) directly follows from the continuity of v and β. To verify Condition (1)

for u note that
n∑

i=1

β(t)ti vi

(
β(t)t1, . . . , β(t)tn, 1− β(t)

)
+
(
1− β(t)

)
vn+1

(
β(t)t1, . . . , β(t)tn, 1− β(t)

)
︸ ︷︷ ︸

dn+1

=

n∑
i=1

β(t)ti di +
(
1− β(t)

)
dn+1

β(t)=0
=⇒

n∑
i=1

ti vi

(
β(t)t1, . . . , β(t)tn, 1− β(t)

)
︸ ︷︷ ︸

ui(t)

=

n∑
i=1

ti di.

Also, let t ∈ Δn be such that ti = 0 for some 1 ≤ i ≤ n. Recalling the definition of u, we

have that

ui(t) = vi(λ̃),

where

λ̃ =
[
β(t)t1, . . . , β(t)tn, 1− β(t)

]T
,

n+1∑
i=1

λ̃i =β(t)

n∑
i=1

ti︸ ︷︷ ︸
=1

+1− β(t) = 1 ⇒ λ̃ ∈ Δn+1.

As ti = 0 results in λ̃i = 0, the Conditions (1) and (3) directly carry over to the functions ui

with K
(n)
1 = K

(n+1)
1 \ {n+ 1} and K

(n)
2 = K

(n+1)
2 .

To sum up, u is a continuous function that satisfies Conditions (1)-(3). Therefore, we conclude

by the assumption of the induction that there exists t∗ ∈ Δn such that

u(t∗) = [d1, . . . , dn]
T .

Finally, by plugging this result into (4.11) and using (4.10), we obtain that

v
(
β(t∗)t∗1, . . . , β(t

∗)t∗n, 1− β(t∗)
)
= [d1, . . . , dn+1]

T .

�





Chapter 5

Randomized Recovery for Boolean
Compressed Sensing

5.1 Introduction

In the previous chapters, we have considered the problem of recovering a continuous-domain

binary signal from its measurements. We studied various solutions to this problem, ranging from

the compressed sensing standpoint of Section 2 to the convex relaxation approach of Section 4.

In this chapter, we study a similar inverse problem in the Boolean algebraic domain: the group

testing problem, also known as Boolean compressed sensing (CS) .

The group testing problem is about distinguishing a small number of defective items among

a large population by grouping subsets of items into a few different pools and detecting defective

items based on the results of the collective tests for each pool. Dorfman first introduced the

group testing for the blood screening of large groups [50]. The problem then found applications

in many other fields such as computational biology (e.g. DNA library screening), quality control,

data streams and machine learning [53, 79].

Group testing schemes can have an adaptive or a non-adaptive procedure. In the adaptive

schemes, the tests for the next stage depend on the results of previous stages. On the contrary,

in the non-adaptive group testing, the structure of tests does not change based on the previous

test outcomes (measurements). This allows the parallel implementation of different tests. In this

chapter, we only focus on non-adaptive group testing.

Consider a collection of n items participating in m tests and let the binary vector x ∈ {0, 1}n
indicate the state of the involved items. More specifically, x contains 1’s exactly in places

corresponding to the defective items. In typical scenarios, the number k of defective items is

very small compared to the number of participating items. Equivalently, x is a k-sparse vector

with ‖x‖�0 = k � n. The goal of the group testing problem is to identify the defective items

from the fewest possible measurements.

Let y ∈ {0, 1}m represent the outcome of the m measurements and γi denote the group of

0. This chapter includes research conducted jointly with Martin Vetterli [62].

77
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items contributing to the ith test. We can formulate the measurements as

y[i] =
∨
j∈γi

x[j], 1 ≤ i ≤ m, (5.1)

where ∨ is the Boolean OR operator. This equation explains that a measurement is positive if it

involves at least one defective item. We can integrate the equations in (5.1) into a single Boolean

matrix-vector product

y = Γ ∨ x, (5.2)

in which Γm×n is a Boolean matrix with rows and columns representing different pools and

items, respectively: Γi,j = 1 shows that the item j is part of the pool i. Note that ∨ in this

equation reminds that the summation is replaced by the OR operation.

In addition to the noiseless scenario, we may also consider the noisy-variant of the group

testing problem, in which the measurements may differ from the true results. We can model the

noisy measurements as

y = Γ ∨ x⊕ n, (5.3)

where ⊕ denotes XOR operation and n represents the Bernoulli distributed noise vector. In this

case, the estimation of defective items is more challenging and requires more measurements.

The formulations of the group testing problem in equations (5.2) and (5.3) are very similar

to the well-known problem of compressed sensing (CS) [28, 29, 49], where the goal is to estimate

a sparse vector from a small number of linear measurements. The major differences are that

the former is under a Boolean algebra and involves Bernoulli distributted noise while the latter

involves operations in the field of real numbers with Gaussian noise. Hence, the group testing

problem is sometimes referred to as Boolean compressed sensing [11, 65]. Moreover, a number

of solutions to this problem have parallels in CS; for example, the combinatorial basis pursuit

(CBP) and combinatorial orthogonal matching pursuit (COMP) algorithms in [37].

It was recently proposed to use relaxed linear programming (LP) to solve the group testing

problem [78]. The LP algorithm of [78] bypasses the binary constraints and solves a linear

problem. Then, the outcome undergoes rounding to recover a binary vector. Unfortunately, the

final result is often less sparse than the original vector. In this chapter, we replace the rounding

procedure with a random assignment of 1’s to the most likely defective entries; the probabilities

of the random assignments are determined by the solution of the linear program. We show that

the proposed algorithm considerably improves the success rate with only a slight increase in

computational cost. In this chapter, we only consider the noiseless measurement scenario. The

more involved case of noisy measurements is left as future work.

This chapter is organized as follows. In Section 5.2, we review the bounds on the number

of measurements that guarantee exact signal reconstruction in group testing. In Section 5.3,

we review the LP algorithm of [78] for the noiseless and noisy measurements. We present our

randomized algorithm in Section 5.4, accompanied with an analysis of the algorithm. The per-

formance comparison of the ordinary and randomized algorithms is presented in Section 5.5.

Finally, we conclude in Section 5.6.
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5.2 CS and Group Testing: Recovery Bounds

In CS, the goal is to recover a sparse vector x∗ ∈ R
n from a small number m � n of linear

measurements y = Ax∗. Combinatorial solutions to this problem solve the equation

min
x∈Rn

‖x‖�0 (5.4)

s.t. y = Ax,

where ‖x‖�0 is a pseudo-norm that counts the nonzero entries of x. Another possible solution for

CS can be obtained by substituting the non-convex �0 norm in (5.4) with the convex �1 norm.

This results in the basis pursuit algorithm

min
x∈Rn

‖x‖�1 (5.5)

s.t. y = Ax,

which can be solved efficiently with linear programming solvers. It is shown that if the sensing

matrix A has random independent and identically distributed (i.i.d.) Gaussian entries with

m = O
(
k log(n/k)

)
measurements, both equations in (5.4) and (5.5) recover the exact solution

x = x∗. The reason is that these matrices satisfy the so-called Restricted Isometry Property

(RIP), which ensures that different k-sparse vectors are mapped to different measurements.

In group testing, there are two types of matrices that ensure the identifiablity of k-sparse

binary vectors: k-separating and k-disjunct matrices [53, 54].

Definition 5.1

A binary matrix Γ is k-separating if Boolean sums of sets of k columns are all distinct.

Matrices with k-separating property ensure that different k-sparse vectors produce distinct mea-

surements and therefore, they guarantee recovery of a unique k-sparse solution. A stronger

notion is the k-disjunct property.

Definition 5.2

A binary matrix is called k-disjunct if the Boolean sum of any k columns does not contain

any other column.

Matrices that satisfy this property are desirable not only because they ensure identifiability

but they also lead to efficient decoding algorithms. Combinatorial constructions of k-disjunct

matrices were extensively developed in [54, 58].

A different approach to the group testing problem is based on probabilistic methods. In

[54, 55], the authors establish upper and lower bounds on the number of rows m for a matrix to

be k-disjunct. They show that in the noiseless scenario, m should scale as O
(

k2 logn
log k

)
for exact

recovery with worst-case input. Also, a study of the noisy counterpart of group testing problem

in equation (5.3) revealed that the number of measurements must scale as O
(

k2 logn
(1−q) log k

)
for a

worst-case error criterion, when the noise distribution is Bernoulli(q) [11].
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5.3 Recovery Algorithms

Several algorithms have been proposed for the recovery of defective items from measurements

in the group testing problem, most of which have parallels in CS. Examples are separate testing

of inputs (STI) algorithm [83], loopy belief propagation (LBP) decoder [97], CBP and COMP

algorithms [37], and the LP relaxation technique [78]. The last scheme has a simple structure,

yet it is more effective in recovering the exact solution compared to the other schemes [78]. This

algorithm parallels the LP relaxation of basis pursuit in CS.

In this section, we review the LP relaxation solution for the noiseless and noisy measurements.

First, we introduce some notations. Let I and J denote the index of positive and negative

measurements, respectively; i.e.,

I = {i| y[i] = 1}, J = {1, ...,m}\I.

Also, let ΓI and ΓJ denote the restriction of Γ to the rows indexed by I and J , respectively.

The LP relaxation technique is based on the observation that any boolean vector that satisfies

y = Γ ∨ x also complies with the linear equations ΓIx ≥ yI and ΓJx = 0. This leads to the

following Boolean linear programming formulation of the group testing problem

min ‖x‖�1 (5.6)

s.t. x ∈ {0, 1}n, ΓIx ≥ yI , ΓJx = 0,

where we used the equality ‖x‖�0 = ‖x‖�1 for Boolean vectors x. By relaxing the binary con-

straint on x, we obtain a tractable linear program

min ‖x‖�1 (5.7)

s.t. 0 ≤ x ≤ 1, ΓIx ≥ yI , ΓJx = 0.

In case of non-integral entries x[j] in the solution, we set them to 1.

In the noisy scenario, we might not find a boolean vector that satisfies the measurements

y = Γ ∨ x. In this case, we can use a slack vector ξ ∈ R
m to obtain a LP relaxation of group

testing in the the presence of noise:

min ‖x‖�1 + α‖ξ‖�1
s.t. 0 ≤ x ≤ 1, 0 ≤ ξ, ξI ≤ 1,

ΓIx+ ξI ≥ yI , ΓJx = ξJ .

5.4 Randomized Recovery

The LP algorithm in equation (5.7) provides the optimal solution x = x∗ if x∗ is k-sparse and

the matrix Γ is k-disjunct [78]. Otherwise, it may yield a non-integral solution with minimum

�1 norm and a large number of non-zero entries. Rounding the non-integral entries to 1 gives a

solution with a large number of defective items.

In this section, we propose a randomized LP algorithm (RLP) based on the LP relaxation

in (5.7). The new algorithm provides arbitrary small measurement error probability and sparser

solutions compared to the LP algorithm described above.
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Algorithm 5.1 Randomized linear programming for noiseless measurements

Input: y, Γ, ε.

Output: x̂ ∈ {0, 1}n such that y = Γ∨x̂ (with probability ≥ 1− ε).

1: Initialization:

2: x̂ ← 0, I = {i| y[i] = 1}, J = {i| y[i] = 0};
3: Set xp as the minimizer of (5.7);

4: for � := 1 to
⌈
log |I|

ε

⌉
do

5: Generate a vector x� according to the distribution x�[i] ∼ Bernoulli(xp[i]), i = 1, . . . , n;

6: x̂ ← x̂ ∨ x�;

7: if (Γ ∨ x̂ = y) then

8: Stop;

9: end if

10: end for=0

Let 0 ≤ xp ≤ 1 denote the fractional minimizer of (5.7). Instead of rounding the entries of xp,

we consider xp as a set of probabilities which we use to generate a Boolean vector x� according

to the distribution

x�[i] ∼ Bernoulli(xp[i]), i = 1, . . . , n.

Then, we set x̂ = x� and check whether the equality Γ ∨ x̂ = y holds. If not, we take a

new realization of x� and we set x̂ = x̂ ∨ x�. We repeat this procedure until x̂ satisfies the

measurements or we reach a certain number of iterations. Algorithm 5.1 summarizes the proposed

recovery method.

In the following, we prove that this algorithm recovers a Boolean vector that satisfies the

measurements with arbitrarily small error probability. Let JLP represent the minimum value of

(5.7). Also, let x̂ indicate the output of Algorithm 5.1 after 1 iteration. Then,

P (x̂[i] = 1) = xp[i], P (x̂[i] = 0) = 1− xp[i]

and

E(‖x̂‖�0) =
n∑

i=1

1 . xp[i] = JLP ≤ J, (5.8)

where E is the expected value and J is the optimal value of the Boolean group testing problem in

(5.6). Equation (5.8) shows that the expected number of defective items in x̂ is JLP . Therefore,

the average number of defective items of the output in Algorithm 5.1 after c =
⌈
log |I|

ε

⌉
iterations

is not larger than cJLP .

Proposition 5.1

The output vector x̂ of Algorithm 5.1 after c =
⌈
log |I|

ε

⌉
iterations coincides with the mea-

surements y with a probability greater than 1− ε, i.e.,

P (y = Γ ∨ x̂) > 1− ε.
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Proof The constraint ΓIx = 0 in (5.7) implies that the entries of xp corresponding to the items

that contribute to the pools with negative (or zero) test outcomes are set to 0. This ensures

the same items in x̂ are set to 0, or equivalently, the vector of test outcomes y contains the

measurements associated to x̂, i.e.,

y ≥ Γ ∨ x̂.

Therefore, we only need to calculate the probability of ΓI ∨ x̂ = yI or equivalently, ΓI x̂ ≥ yI .
Let i ∈ I and |γi| denote the number of items contributing to the ith pool with a positive

outcome. If x̂ denotes the output of Algorithm 5.1 after 1 iteration, we have

P (Γix̂ < y[i]) = P (Γix̂ = 0) =
∏
j∈γi

(1− xp[j]).

We can take the logarithm of the right hand side and apply Jensen’s inequality to the concave

function log(1− x) to get

∑
j∈γi

1

|γi| log(1− xp[j) ≤ log(1−
∑

j∈γi
xp[j]

|γi| )

=⇒
∏
j∈γi

(1− xp[j])
(a)

≤ (1− 1

|γi| )
|γi| ≤ 1

e
,

where (a) results from the fact that
∑

j∈γi
xp[j] =

∑n
j=1 Γijxp[j] ≥ 1. Therefore, after c itera-

tions, we have

P (Γix̂ = 0) ≤ (
1

e
)c.

Finally, from the union bound, we get

P (∃i ∈ I : Γix̂ = 0) ≤ |I| . (1
e
)

⌈
log

|I|
ε

⌉
≤ ε,

which proves that P (y = Γ ∨ x̂) > 1− ε. �

The LP algorithm in [78] can be regarded as a special case of our algorithm with infinite

iterations so that every x̂[i] that has a probability xp[i] larger than 0 is set to 1. Therefore, it

generates a less sparse binary vector compared to the output of Algorithm 5.1. We recall that

when y corresponds to a k-sparse vector x∗ and Γ is k-disjunct, equation (5.7) has a binary

solution and therefore, both algorithms recover the optimal solution x = x∗.

Link to the set covering problem

A related problem to the Boolean CS is the classical set covering problem. Given a set of

elements U = {1, . . . ,m} (called a universe) and n sets whose union comprises the universe,

the set covering problem is to identify the smallest number of sets whose union still contains all

elements of the universe. The Boolean CS problem can be modeled as set covering problem by

considering yI as the universe and columns of ΓI as different sets. In this regard, the randomized

LP method of this section parallels the solutions to the set covering problem [95].
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Figure 5.1: Probability of exact signal reconstruction in LP and RLP algorithms for n =

150, k = 4 and noiseless measurements. Averages over 100 trials.

Figure 5.2: Sparsity of the recovered signals in LP and RLP algorithms for n = 150, k = 4 and

noiseless measurements. Averages over 100 trials.

5.5 Simulation Results

In [78], the authors compare the performance of LP algorithm with a number of algorithms

such as CBP, COMP, LBP and STI. This comparison reveals that LP outperforms the other

algorithms in terms of the probability of exact recovery. We now present experimental results

comparing our randomized algorithm with LP. For better comparison, we follow the same exper-

imental setup as in [78].

In the first experiment, we study the probability of exact signal recovery and sparsity of

recovered signals in 100 random trials for different number m of measurements. We consider

Boolean vectors x ∈ {0, 1}n for n = 150 and 4 nonzero entries. For each value ofm ∈ {1, . . . , 120},
we generate a Boolean sensing matrix with 50% of its entries set to 1 and then, we calculate the

(noiseless) measurements. We compute the LP solutions as well as the results of RLP for three

different error probabilities ε = 0.1, 0.01 and 0.001. The results are shown in Figures 5.1 and

5.2. The plots in these figures show that our RLP algorithm outperforms LP in terms of both

the sparsity and the exact reconstruction probability.
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Figure 5.3: Computational complexity of RLP: the average number of iterations required for

generating a vector x̂ that coincides with measurements y. Averages over 100 trials for n = 150

and k = 4.

In the next experiment, we examine the computational complexity of RLP. For this purpose,

we run RLP until the recovered signal x̂ produces the same measurement vector y. The average

number of iterations is depicted in Figure 5.3 as a function of m, for the same setup as in

the previous experiment. This plot shows that the randomized LP algorithm requires only a

small number of iterations. Note that each iteration consists of generating a random Bernoulli

vector xl and the Boolean operations involved in Γ∨ x̂ and x̂∨x�. These results show that RLP

achieves a considerable performance improvement over LP with a slight increase in computational

complexity.

5.6 Conclusion

We considered the problem of Boolean CS, where the unknown variables x[i] are constrained

to be in {0, 1}. Although the measurement process is linear with respect to x[i], due to the

binary constraints, the linear program is NP hard [78]. We applied the relaxation x[i] ∈ [0, 1] in

the linear program and obtained fractional solutions. To map the fractional values onto binary

values, instead of the common rounding techniques, we considered a randomized approach; i.e.,

each value is randomly mapped to 0 or 1, with a probability determined by the fractional value.

The simulation results indicate that the randomized algorithm considerably outperforms the

previous methods with only a slight increase in computational cost.



Chapter 6

Conclusion and Future Work

A large part of this thesis was developed related to the problem of recovering continuous-

domain shape images from their samples. We considered a sampling model reflecting the physics

of imaging devices such as digital cameras with some degree of simplification. In this linear

model, the image pixels and the involved point spread function are represented by the samples

and the sampling kernels, respectively. Here, we briefly review the results and highlight some of

remaining challenges as potential future works.

1. Signal Approximation: Samples of a signal can be regarded as its coefficients in a do-

main spanned by the sampling kernels. When the sampling domain yields a poor signal

approximation, it might be helpful to switch the representation domain to the ones that

approximate the target class of signals more effectively. We studied this problem in the re-

cent frameworks of generalized sampling and infinite-dimensional compressed sensing. We

observed that the gain of generalized sampling, due to its linearity, is limited to the linear

approximation rates of the representation domain; hence, it is incapable of generating good

shape approximations from a limited number of samples. The infinite-dimensional com-

pressed sensing is a more promising approach for recovering efficient signal approximations

in a domain. But, we saw that a main ingredient in this approach is (uniform or structured)

random sampling that is not in harmony with our sampling model.

2. A Robust Sampling Scheme for Shapes with Algebraic Boundaries: We proposed

a sampling and reconstruction scheme for shape images with boundaries that form a subset

of an algebraic curve with an implicit bivariate polynomial. We showed that the image

parameters satisfy a set of linear annihilation equations with the coefficients being the image

85
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moments. To form these equations, we need to extract the moments from pixel values,

which in turn requires the sampling kernel to exactly reproduce polynomials. Further, the

process of converting pixels into moments is very sensitive to noise. To combat these two

limitations, we introduced positive and decaying weight functions within the definition of

moments (generalized moments). Indeed, the decay of the weight function improves the

stability of the method against noise. We also removed the constraint on the sampling

kernel by optimizing over the choice of the weight function. Besides, we reinforced the

resulting reconstruction technique by applying sign and measurement consistency.

In future work, we should consider the following problem:

– In this work, we introduced a fast decaying weight function g to prevent the blowup

of the elements of the moment matrix M and improve the stability of the algorithm.

Our approach was heuristic in the sense that we did not analyze how preventing the

blowup simply causes stability. A theorem stating how the error in the measurements

would impact the conditioning number of the matrix M and the reconstruction would

be enlightening.

– Among the interesting problems that are not addressed in this thesis and deserves

future investigation is the detection of occluded shapes. This problem arises in many

applications such as quality control and medical imaging. Oftentimes, the desired

objects have simple structures such as circles or ellipses and can be simply modeled

with low-degree polynomials. In a noiseless setting, our proposed algorithm succeeds

in detecting all the objects even the occluded ones. In a noisy setting, however, the

algorithm tries to merge the overlapping objects into a single shape with a higher

polynomial degree. By restricting the output of the algorithm to be decomposable

into low-order polynomials or follow a structure, one might be able to extend this

technique to noisy cases.

3. Measurement-Consistent Shape Reconstruction: Parametric image models with a

few parameters admit limited shape geometries. Also, increasing the number of parame-

ters usually complicates the sampling and reconstruction schemes. To address sampling

of shapes with arbitrary geometries, we formulated the reconstruction technique by min-

imizing the shape perimeter over the set of consistent binary images. We introduced a

sufficient requirement, called reducibility, on the pixel values that allowed us to transform

the problem into minimizing the total variation over consistent non-negative-valued im-

age. We also illustrated that the reducibility condition is an intuitive requirement on the

minimum sampling density.

In future work, we should consider the following problems:

– We established the equivalence between the non-convex problem and its convex re-

laxation by showing that under the reducibility condition, we can merge the multiple

constraints into a single one. This way, we reduced the problem to the well-known

Cheeger problem and we exploited the existing results there. We might get a more

relaxed condition on the pixel values if we bypass the link to the single-constraint

problem and directly prove the results for the multiple-constraints setting.

– The reducibility requirement on the pixel values guarantees that the relaxed mini-

mization problem has a binary solution: the consistent shape image with minimum
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perimeter. However, this might not be the exact solution. Investigating requirements

on the pixels that guarantee an exact solution would lead to an actual sampling theory

for shape images.

4. Randomized Recovery for Boolean Compressed Sensing: We further studied a

relevant problem in the Boolean algebra: the group testing problem, also known as Boolean

Compressed sensing. We revisited a linear programming formulation of the problem that

is based on relaxing the Boolean constraint on the variables accompanied by a rounding

of the basis pursuit solution. We replaced the rounding step by a random assignment of

0’s and 1’s to the variables, with a probability determined by the fractional solution of

the basis pursuit problem. We showed that the randomized algorithm outperforms the

previous methods with only a slight increase in the computational cost. In this thesis, we

only studied this problem in a noiseless setting. Extension of the randomized algorithm to

the noisy Boolean compressed sensing might be considered as future work.

Our final comment is regarding our model of shape images. In this thesis, we only considered

shape images with exactly two intensity values. However, many images in the real world are

just approximately binary and it would be very useful to extend the algorithms of this thesis to

this broader class of images. A potential result of this extension would be the segmentation of

non-binary continuous-domain images from their samples.
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[31] G. Carlier, M. Comte, and G. Peyré, “Approximation of maximal Cheeger sets by projec-

tion,” M2AN Math. Model. Numer. Anal., vol. 43, no. 1, pp. 139–150, Jan. 2009.

[32] J. L. Carter, “Dual methods for Total Variation-Based Image Restoration,” Ph.D. disser-

tation, University of California Los Angeles, 2001.

[33] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” Int. J. Comput. Vis.,

vol. 22, no. 1, pp. 61–79, Feb. 1997.

[34] A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math.

Imaging Vis., vol. 20, no. 1-2, pp. 89–97, 2004.

[35] ——, “Total variation minimization and a class of binary MRF models,” in Proc. Energy

Minim. Methods Comput. Vis. Pattern Recog. (EMMCVPR), pp. 136–152. Springer, 2005.

[36] A. Chambolle and P. L. Lions, “Image recovery via total variation minimization and related

problems,” Numer. Math., vol. 76, no. 2, pp. 167–188, Apr. 1997.

[37] C. L. Chan, P. H. Che, S. Jaggi, and V. Saligrama, “Non-adaptive probabilistic group

testing with noisy measurements: Near-optimal bounds with efficient algorithms,” in Proc.

IEEE Allerton Conf., pp. 1832–1839, Sep. 2011.

[38] T. F. Chan and E. Selim, “Aspects of total variation regularized l1 function approxima-

tion,” SIAM J. Appl. Math., vol. 65, no. 5, pp. 11 817–1837, Jul. 2005.

[39] T. F. Chan, E. Selim, and N. Mila, “Algorithms for finding global minimizers of image

segmentation and denoising models,” SIAM J. Appl. Math., vol. 66, no. 5, pp. 1632–1648,

Jun. 2006.

[40] T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-dual method for total

variation-based image restoration,” SIAM J. on Sci. Comput., vol. 20, no. 6, pp. 1964–

1977, 1999.

[41] C. Chen, P. Marziliano, and A. C. Kot, “2D finite rate of innovation reconstruction method

for step edge and polygon signals in the presence of noise,” IEEE Trans. Signal Process.,

vol. 60, no. 6, pp. 2851–2859, Jun. 2012.

[42] D. Cremers, F. Tischhauser, J. Weickert, and C. Schnorr, “Diffusion snakes: introducing

statistical shape knowledge into the Mumfords-Shah functional,” Int. J. Comput. Vis.,

vol. 50, no. 3, pp. 295–313, 2002.



92 Bibliography

[43] R. Delgado-Gonzalo, V. Uhlmann, D. Schmitter, and M. Unser, “Snakes on a plane: A

perfect snap for bioimage analysis,” IEEE Signal Process. Mag., vol. 32, no. 1, pp. 41–48,

Jan. 2015.

[44] R. Desai, R. Cheng, and H. D. Cheng, “Pattern recognition by local radial moments,” in

Proc. 12th IAPR Int. Conf. Pattern Recog. (ICPR), 1994.

[45] M. N. Do and M.Vetterli, “The contourlet transform: an efficient directional multiresolu-

tion image representation,” IEEE Trans. Image Process., vol. 14, no. 12, pp. 2091–2106,

Dec. 2005.

[46] M. N. Do and M. Vetterli, “The finite ridgelet transform for image representation,” IEEE

Trans. Image Process., vol. 12, no. 1, pp. 16–28, Jan. 2003.

[47] ——, “Framing pyramids,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2329–2342,

Sep. 2003.

[48] D. C. Dobson and F. Santosa, “Recovery of blocky images from noisy and blurred data,”

SIAM J. Appl. Math., vol. 56, no. 4, pp. 1181–1198, Aug. 1996.

[49] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–

1306, Apr. 2006.

[50] R. Dorfman, “The detection of defective members of large populations,” Ann. Math. Stat.,

vol. 14, no. 4, pp. 436–440, Dec. 1943.

[51] P. L. Dragotti, M. Vetterli, and T. Blu, “Exact sampling results for signals with finite

rate of innovation using Strang-Fix conditions and local kernels,” in Proc. IEEE Int. Conf.

Acoust. Speech, Signal Process. (ICASSP), vol. 4, pp. 233–236, Mar. 2005.

[52] ——, “Sampling moments and reconstructing signals of finite rate of innovation: Shannon

meets Strang-Fix,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 1741–1755, May 2007.

[53] D. Z. Du and F. K. Hwang, Pooling Designs and Nonadaptive Group Testing: Important

Tools for DNA Sequencing. World Scientific, 2006.

[54] A. G. Dyachkov and V. V. Rykov, “A survey of superimposed code theory,” Probl. Control

Inf. Theory, vol. 12, no. 4, pp. 1–13, 1983.

[55] A. G. Dyachkov, V. V. Rykov, and M. Rashad, “Bounds of the length of disjunct codes,”

Probl. Control Inf. Theory, vol. 11, pp. 7–13, 1982.

[56] Y. C. Eldar, “Sampling with arbitrary sampling and reconstruction spaces and oblique

dual frame vectors,” J. Fourier Anal. Appl., vol. 9, no. 1, pp. 77–96, Jan. 2003.

[57] Y. C. Eldar and T. Werther, “General framework for consistent sampling in Hilbert spaces,”

Int. J. Wavelets Multiresolut. Inf. Process., vol. 3, no. 3, pp. 347–359, 2005.

[58] P. Erdos, P. Frankl, and Z. Furedi, “Family of finite sets in which no set is covered by the

union of n others,” Israel J. Math., vol. 51, no. 1-2, pp. 79–89, Dec. 1985.

[59] M. Fatemi, A. Amini, L. Baboulaz, and M. Vetterli, “Shapes from pixels,” IEEE Trans.

Image Process., vol. 25, no. 3, pp. 1193–1206, Mar. 2016.



Bibliography 93

[60] M. Fatemi, A. Amini, and M. Vetterli, “Sampling and reconstruction of shapes with alge-

braic boundaries,” IEEE Trans. Sig. Process., 2015, submitted.

[61] M. Fatemi, L. Baboulaz, and M. Vetterli, “Optimal sampling rates in infinite-dimensional

compressed sensing,” in Proc. 10th Int. Conf. Sampling Theory Appl. (SampTA), pp. 260–

263, Jul. 2013.

[62] M. Fatemi and M. Vetterli, “Randomized recovery for Boolean compressed sensing,” in

Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 469–473, Jul. 2013.

[63] M. A. T. Figueiredo, J. M. N. Leitão, and A. K. Jain, “Unsupervised contour representation

and estimation using B-splines and a minimum description length criterion,” IEEE Trans.

Image Process., vol. 9, no. 6, pp. 1075–1087, Jun. 2000.

[64] W. Fulton, Algebraic Curves: An Introduction to Algebraic Geometry. Addison-Wesley,

1989.

[65] A. C. Gilbert, M. A. Iwen, and M. J. Strauss, “Group testing and sparse signal recovery,”

in Proc. Asilomar Conf. Signals Syst. Comp. Conf. Record, pp. 1059–1063, Oct. 2008.

[66] B. Gustafsson, “Quadrature identities and the Schottky double,” Acta. Appl. Math., vol. 1,

no. 209–240, 1983.

[67] B. Gustafsson, C. He, P. Milanfar, and M. Putinar, “Reconstructing planar domains from

their moments,” Inverse Probl., vol. 16, no. 4, pp. 1053–1070, 2000.

[68] I. R. Ionescu and T. Lachand-Robert, “Generalized Cheeger sets related to landslides,”

Calc. Var. Partial Differ. Equ., vol. 23, no. 2, pp. 227–249, Jun. 2005.

[69] M. Jacob, T. Blu, and M. Unser, “An exact method for computing the area moments of

wavelet and spline curves,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp.

633–642, Jun. 2001.

[70] S. Karlin and W. J. Studden, Tchebycheff Systems, with Applications in Analysis and

Statistics. New Yourk: Interscinece, 1966.

[71] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int. J. Comput.

Vis., vol. 1, no. 4, pp. 321–331, Jan. 1988.

[72] D. Keren, D. Cooper, and J. Subrahmonia, “Describing complicated objects by implicit

polynomials,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 1, pp. 38–53, Jan.

1994.

[73] V. V. Kindratenko, “On using functions to describe the shape,” J. Math. Imaging Vis.,

vol. 18, no. 3, pp. 225–245, May 2003.

[74] J. Kopf and D. Lischinski, “Depixelizing pixel art,” ACM Trans. Graphics, vol. 30, no. 4,

pp. 99:1–99:8, Jul. 2011.
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