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Abstract
In recent years, the use of 3D digital content becomes widespread in various industrial
and scientific domains. However, content creation still remains a costly task as extensive
manual work is often required. As such, one of the core research topics in computer
graphics is to accelerate the content creation process.

In this dissertation, we investigate the benefit of utilizing shape structure in creating
different categories of digital content. To speed up the design process of 3D geometries,
instead of dealing with individual shape separately, we propose to process structured
variations, which are different models sharing certain key structural information. A
geometry processing framework of structured variations consists of the analysis of
structure from a collection of model variations, and the synthesis of novel shapes. We
propose algorithms for three common types of digital content in computer graphics,
which include facade textures, procedural modeling output, and 3D reconstruction point
clouds from multiview stereo or scanning.

There is a high demand in high quality and customized facade textures, especially in urban
design, 3D cities or games. We introduce a framework to create structured variations of
building facades via structure-aware editing. Our framework deals with irregular facade
layouts, which are common in practice.

To automatically create a large number of structured variations, a suitable technique
is procedural modeling, which generates models by means of computer programs or
procedures. However, the connection between the procedures and generated models is
not explicit and it is usually difficult to modify the underlying procedures to generate a
set of models customized to certain design intent. We present a framework which allows
a user to interactively manipulate the set of generated models.

Finally, a cost-effective method to generate digital content is to digitalize the real world.
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Nonetheless, the reconstructed point clouds are often noisy and contain missing data. We
analyze point clouds of buildings to detect structural relations amongst building elements
by means of template fitting. Once detected, these information can be used to improve
the reconstruction output or to synthesize novel models via structural-aware editing.

Key words: shape synthesis, shape analysis, facade texture, structure-aware editing,
procedural modeling, 3D reconstruction, template fitting
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Résumé
Au cours des dernières années, l’utilisation de contenu numérique 3D c’est généralisé dans
divers domaines industriels et scientifiques. Cependant, la création de contenu demeure
une tâche coûteuse due au vaste travail manuel souvent nécessaire. En tant que tel, l’un
des sujets de recherche de base en infographie est d’accélérer le processus de création de
contenu.

Dans cette thèse, nous étudions l’avantage d’utiliser la structure des formes dans la
création de différentes catégories de contenu numérique. Pour accélérer le processus
de conception de géométries 3D, au lieu de traiter séparément chaque forme, nous
proposons de traiter les variations structurées, qui sont différents modèles partageant
certaines informations structurelles clés. Un framework de traitement géométrique des
variations structurées se compose d’analyse de structure à partir d’une collection de
modèles de variations et la synthèse de nouvelles variations structurées. Nous proposons
des algorithmes pour trois types de contenu numérique en infographie, qui comprennent
les textures de façades, la modélisation procédurale et la reconstruction 3D de nuages de
points à partir de stéréo multiview ou de numérisation.

Il y a une forte demande de textures de façade personnalisées de haute qualité, en
particulier pour la conception urbaine, les villes ou les jeux 3D. Nous introduisons
un framework pour créer des variations structurées de façades de bâtiments via des
modifications prenant en compte la structure. Notre framework traite des dispositions de
façade irrégulière, qui sont courantes en pratique.

Pour créer automatiquement un grand nombre de variations structurées, une technique
adaptée est la modélisation procédurale, qui génère des modèles à l’aide de programmes
ou de procédures informatiques. Cependant, le lien entre les procédures et les modèles
générés n’est pas explicite et généralement il est difficile de modifier les procédures
sous-jacents afin de générer un ensemble de modèles personnalisés à l’intention d’un
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design spécifique. Nous présentons un framework qui permet à un utilisateur de manipuler
de manière interactive l’ensemble des modèles générés.

Finalement, une méthode rentable pour générer du contenu numérique est de numériser
le monde réel. Néanmoins, les nuages de points reconstruits sont souvent bruités et
contiennent des données manquantes. Nous analysons les nuages de points de bâtiments
pour détecter les relations structurelles entre les éléments de construction au moyen
d’ajustement de modèle. Une fois détectées, ces informations peuvent être utilisées pour
améliorer le résultat de la reconstruction ou de synthétiser de nouveaux modèles par
modification prenant en compte la structure.

Mots clefs : synthèse de forme, analyse de forme, texture de façades, édition prenant en
compte la structure, modélisation procédurale, reconstruction 3D, ajustement de modèle
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1 Introduction

1.1 Motivation

Content creation is an important research topic in computer graphics and 3D geometry
processing. High quality 3D shapes are needed in various industrial and scientific domains
such as games, movies, material science, bio-medicine, architecture, civil and mechanical
engineering. Recent advances in 3D acquisition and modeling techniques have been
significantly reducing the modeling workload. Nonetheless, the modeling task is still
notoriously non-trivial as it requires creativity, artistic talent and also technical skills in
using the softwares. In addition extensive manual processing is usually needed and this
leads to severe bottlenecks in content creation.

Recently, there is an increasing interest in creating collections of similar models such as
collections of furniture, airplanes, cars or buildings with the same architectural style.
These models can be used in modeling projects at different scales. For example, one
needs a large number of buildings to model a 3D city. At a small scale, instead of crafting
a model from scratch, the user can explore an existing shape collection to find a model
that best matches his or her objectives. To create a large collection of models, manual
modeling does not scale well. In this context, automatic and semi-automatic modeling
methods appear to be the more suitable approaches.

The fundamental goal of this thesis work is to develop computational tools to deal with
the complexity in content creation. We motivate our work by three common practices
in the context of creating high quality buildings for a realistic 3D city. As this task
requires a large number of models, to create each shape individually requires massive
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effort and is generally impossible in practice. Nonetheless, one can observe common
properties amongst different buildings such as similar facade layouts, facade elements or
architectural styles. As such, in the first practical approach, instead of modeling each
building from scratch, designers can follow the modeling-by-example paradigm and create
new buildings by modifying the existing ones while preserving certain characteristic
features. The second suitable approach is procedural modeling which aims to automatically
generate a huge shape collection by means of computer programs or procedures. In this
modeling scheme, generated models conform to certain global shape properties implicitly
encoded in the associated computer programs. Finally, one can also reconstruct the real
world, for example, by using image-based modeling or scanning techniques. However,
the output of this approach is often noisy and contains missing data. Post-processing of
3D reconstruction output, therefore, is usually needed to improve the modeling quality.
For instance, one can consolidate data from other similar buildings to fill up the missing
parts in one building. In all these practices, buildings are not treated individually but
considered as variations from the same model class. By processing those variations
together, information amongst them can be reused which accelerates the design process.

A core methodological component in this thesis is to investigate the notion of structure in
3D geometry. Structure is the high-level information in 3D shapes, which involves both
the arrangement and the relation between shape parts. Typically, models belonging to
the same class exhibit common structural information. For example, a set of chairs might
contain a large amount of geometric and topological variations, but the chair parts are
always arranged and connected in a certain way to serve their functionality. We define
structured variations in 3D geometries as a set of 3D models sharing some characteristic
structural information while still possessing a significant amount of geometric variety.

Most of the existing geometry processing frameworks often consider structure as ge-
ometric symmetries and regularities. Geometric symmetries are results of geometric
transformations such as translation, rotation, scaling or their combinations. Mathemati-
cal formalism based on the theory of transformation groups has been developed to process
such structural information [66]. Despite the mathematical elegance, geometric symme-
tries based on group theory are limited and do not cover a vast variety of interesting
structural information in practice (see Figure 1.1). A key contribution of this dissertation
is to investigate generalized structures for example irregular facade layouts or the partial
matching of parameters of pointed arches in a Gothic cathedral. We also investigate
implicit structures which are encoded directly in the design process. Specifically, in
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(a) (b) (c)

Figure 1.1 – Symmetry, irregular structure and implicit structure. (a) A translational
pattern of identical windows (orange). This geometric symmetry can be effectively
captured by the theory of transformation groups. (b) Irregular structure of windows at
the Ume̊a School of Architecture. Although the window locations seem to be random,
they are still arranged into rows and columns. We encode the irregular structures of
facade elements by using facade grids. (c) Airplanes generated by procedural modeling.
There exist a global implicit structure as the arrangement of wings, bodies and tails.

the rule-based procedural modeling paradigm, designers can implicitly enforce global
structures via the grammars that they provide. The grammars are then passed into
procedural generation engines, which, in their turn, generate shapes consistent to the
intended structures. As the connection between grammars and the resulting structures is
often non-obvious, one interesting question, with many practical applications, is how to
customize the global structures in generated procedural models without explicitly editing
the grammar rules.

We consider a structured variation processing framework as a means to accelerate content
creation. There are different components in this processing pipeline. For each type of
input data, one first need to identify the relevant types of structure and build a suitable
model to represent these structural relations. The analysis step takes as input a given set
of model variations and detect dominant structures amongst them. The synthesis step,
on the other hand, takes core model structures as input and generates novel geometries
while preserving these core structures.

Algorithms to process structured variations depends on the types of structures, which
in turn relates to input data. In this thesis, we explicitly look at three types of input
data for this processing pipeline, in specific, 1) building facade textures, 2) procedural
modeling production, and 3) multiview stereo and scanning point clouds. These are three
important types of data in computer graphics which play an important role especially
in the context of urban reconstruction. We next look at the importance and challenges
associated with these data in details.
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(a) (b)

(c)

Figure 1.3 – Using a probabilistic grammar capable of generating a variety of buildings
of different styles (a), by manipulating the generation output, we can design a city with
3 separate zones (financial, residential and downtown) where the house distributions are
different. (b) Top view of the city. (c) Front view of the city.

1.1.1 Building Facade Textures

Figure 1.2 – Ambiguity in structure-aware
editing. An exponentially large number of
structured variations of the input facade
(shown in red) can satisfy simple resizing
operation.

We first investigate the structured varia-
tions of facade textures. When creating
content in digital world, there is a huge
demand of high quality and customized
facade textures. Once generated, these
textures can be used in different applica-
tions, for example urban design, 3D cities
and games. As modeling customized fa-
cades from scratch is tedious and time con-
suming, our objective is to make use of
processing techniques in structured varia-
tions to facilitate this task. One critical
challenge is the ambiguity in structured
variations as there can be numerous options that satisfy user’s intent (see Figure 1.2).
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1.1.2 Procedural Modeling Production

We next consider the structured variations from procedural modeling. While procedural
modeling is great tool to automatically generate a large amount of structured variations,
it is difficult to explicit control the generation output, in specific, the space of procedural
models and the likelihood of a model being generated. A simple and interactive tool to
manipulate the generation output will benefit not only expert users but also casual users
who prefer to reuse existing grammars without directly editing them. In Figure 1.3 we
illustrate one practical use case of the system.

1.1.3 3D Reconstruction Data

Figure 1.4 – Structured variations from a
common base geometry (pointed arch).

Finally, we analyze patterns of structural
information in raw 3D point clouds ac-
quired by multi-view stereo or scanning.
We focus on ornate historic buildings which
often contain similar elements derived from
a common geometric base. For example, in
Gothic churches, one can observe windows
with similar arches but varying heights (see
Figure 1.4). To detect this type of infor-
mation, it requires a generalized concept
of structures. In addition, the noise and missing data in point clouds make this analysis
even more challenging.

1.2 Contributions

In the following we summarize the main contributions of this dissertation.

• We investigate the geometry processing pipeline for structured variations in three
types of common data in computer graphics: building facade textures, procedural
modeling output and 3D reconstruction point clouds.

• Using the notion of generalized facade grids, we present a system to encode various
symmetry, alignment and hierarchy relations among the elements of a facade. Our
systems allows an interactive editing process, during which the user can specify
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different grids for which our system proposes new configurations. Editing progresses
by selecting such grids and one of the proposed configurations.

• We process the implicit structures encoded in procedural modeling. We present
a framework that allows to interactively customize the generation likelihood of
procedural models to match the design objectives.

• We investigate a generalized concept of structures as the non-local coupling in
deformation parameters from a common base geometry. The framework utilizes
a coupled process between template matching and deformation analysis to detect
such generalized structures from raw measurement data acquired by multi-view
stereo or scanning.

1.3 Organization

The remainder of this dissertation is organized as follows.

Chapter 2, Related Work. This chapter provides an extensive review of existing work
related to the synthesis and analysis of structured variations, together with methods to
explore the space of variations.

Chapter 3, Structure-aware Facade Editing. This chapter focuses on the generation
of structured variations for building facades via a structure-aware editing framework. We
deal with both irregular facade structures as well as the ambiguity in editing outputs.

Chapter 4, Interactive Design of Probability Density Functions for Shape
Grammars. In this chapter, we motivate the benefits of manipulating the probability
density functions of shape grammars, i.e. the likelihood that a procedural model will
be generated when passing input grammar to a procedural engine. The chapter also
discusses the interactive framework which enables such task.

Chapter 5, Discovering Structured Variations via Template Matching. This
chapter covers generalized structures which are ubiquitous in ornate historic buildings.
In addition to exact replicas, there are building elements which are structured variations
from a common base geometry. To detect such structures from noisy and incomplete
3D data, the chapter introduces a novel methodology which abstracts the structures via
template deformations.
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Chapter 6, Conclusions. We summarize the key points of this dissertation and suggest
potential directions for future work.

This thesis contains material from three published papers by the author [15, 16, 11]. In
specific, Chapter 3 uses material from Reference [15], Chapter 4 from [16], and Chapter
5 from [11]. Some material from each of these papers has also been incorporated into
this introductory Chapter and Chapter 2.
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2 Related Work

In order to process shape variations belonging to the same 3D shape class, one option is
to analyze the geometries of that shape class to identify characteristics structures and
then synthesize novel shapes while maintaining these identified structural relations. Such
an approach belongs to the broad domain of structure-aware shape processing in computer
graphics. In addition, the designer can also follow the procedural modeling paradigm which
involves automatic generation of digital contents by means of an underlying procedure.
The characteristics structures of that 3D shape class can be encoded implicitly and
directly into the underlying procedure. As such, the work presented in this thesis can be
considered as a subset of these two larger domains in computer graphics, structure-aware
shape processing and procedural modeling. In this chapter, we begin with reviewing recent
work within these two domains which are related to this thesis.

2.1 Structure-aware Shape Processing

Shape structure, as defined in the Oxford dictionary, is the arrangement and the relation
between parts of a shape. This high-level information connects closely to the semantic
information and functionality of shapes. A typical structure-aware shape processing
framework consists of two phases: 1) an analysis step to identify structural information
from the input data, and 2) a synthesis process which utilizes the identified information
to manipulate the input shapes, or create new shapes. An example of this pipeline is the
seminal work by Gal et al. [27] which utilizes a two-step analyze-and-edit approach to
modify 3D objects. Due to the importance of shape structures, a variety of structure-
aware shape processing algorithms have been introduced to process different types of
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input data. In the scope of this thesis, we focus on algorithms for these two data types,
namely 1) 3D multiview stereo and scanning point clouds, and 2) 2D building facade
textures. A more detailed overview of algorithms for other data types can be found at
this survey [56].

2.1.1 Structure-aware Processing in 3D Reconstruction

To reconstruct existing physical objects, image-based multiview stereo and scanning are
among the most common approaches. However, the output of such approaches is often
incomplete and noisy, and rarely exposes the structure of the original models. Therefore,
post-processing of the raw reconstruction output is often needed to reveal high-level
structural information.

Template-based reconstruction. Physical models, especially man-made models and
buildings are often constructed from similar components due to economic and style
considerations. Thus, the use of templates appears as an obvious choice to analyze
and improve the 3D reconstruction output. In the context of urban reconstruction,
Dick et al. [19] propose a Bayesian model fitting method based on a “Lego kit” set
of parametric building blocks to reconstruct 3D architectural scenes from a sequence
of images. Priors on the parameters of the building blocks are predefined based on
architectural rules and building styles. Schindler et al. [73] introduce another model-
based approach to reconstruct CAD-like 3D building facades from images. This framework
includes the selection of suitable templates from a predefined template database and
the fitting of template parameters by reprojecting into the input images. Recently, Nan
et al. [63] automatically select and assemble 3D templates from a prebuilt template
library to reconstruct building details. For man-made models, using a set of primitive
shapes such as planes and cylinders, Schnabel et al. [74] reconstruct a closed mesh from
incomplete point clouds. The GlobFit system [44] proposes a primitive-based analyze
and reconstruct setting, where arrangements among primitives are discovered. Lafarge
et al. [39] have demonstrated a primitive-based hybrid MVS reconstruction approach
for large scale models. Kurz et al. [38] propose a template deformation approach that
preserves symmetry properties of templates while fitting a scanned object.

Symmetry analysis. Symmetry is ubiquitous in man-made environments and finding
symmetries in geometric data has received significant attention. Transformation-space
voting [54, 66] and spectral analysis [48] are among the common approaches proposed
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(see the survey by Mitra et al. [55]). The method of Pauly et al. [66] is only applicable for
detecting regular repetitions whereas in this thesis work we do not make any assumption
about the spatial arrangement of repeated structures. The method of Mitra et al. [54]
and Lipman et al. [48], on the other hand, focus on detection of exact/approximate
symmetries. In contrast, our goal is to detect structured variations between input
elements by discovering partial similarities across deformed templates. This is a problem
that has not been addressed by any of the previous methods.

Symmetry results in redundant measurements and thus has been effectively exploited in
the context of urban modeling to consolidate and improve noisy reconstructions [98, 29,
45, 93, 9]. Most of the proposed approaches, however, focus on detection of replicated
elements, often arranged as regular grids. In contrast, this thesis work focuses on detection
of full and partial element similarities with no assumption on their spatial arrangement.

Pattern detection. A common practice for detecting patterns is to employ the input
with a set of descriptors. Leifman et al. [43] segment a given surface into pattern and
non-pattern vertices using a combination of point feature and curvature histograms. Liu
et al. [49] detect periodic reliefs on triangle meshes based on the auto-correlation of
curvatures of the boundary points. Shechtman et al. [77] present local self-similarity
descriptors to match images based on self-similarity of color, edges, and repetition
patterns. In case of noisy and incomplete data, however, it is challenging to detect
reliable descriptors. Hence, we propose an iterative approach where element similarities
are abstracted by patterns in template deformations.

Co-analysis. Reconciling observations from multiple instances of data to extract reliable
information is common in the literature. Learned-Miller [40] jointly aligns a set of images
in a process called congealing. An affine transformation for each image in a stack is
computed to minimize the variance for each pixel location in the stack. Faktor et al. [24]
co-segment an object of interest in a given set of images by aggregating information
from corresponding image patches. In the context of visual element discovery, Doersch et
al. [20] use a discriminative clustering approach to detect distinctive image patches from
a large set of geotagged imagery. Similarly, we present a simultaneous analysis to detect
deformation patterns among a set of elements. We aggregate observations from multiple
deformable templates to extract reliable similarity patterns.
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2.1.2 Structure-aware Processing of Building Facades

Building facade is an important type of digital content in computer graphics, especially
in the context of urban modeling and reconstruction. High quality facade textures are
needed in a variety of applications, for example computer games, movies, urban planning,
virtual 3D cities and digital mapping. Typical facade structures include the arrangement
and the relations of facade elements, such as windows and doors. Although a facade
often contains repetitive elements, e.g. a series of identical windows, the overall facade
structure is in general irregular.

Facade parsing. Facade parsing is the process to detect and encode the structure in
facade data. Automatic facade parsing top-down approaches often assume prior knowledge
on facade models and fit the imagery cues to the models. For example, Koutsourakis et
al. [34] use a Markov Random Field to fit a hierarchical tree model to rectified facade
images. In a following up work, Teboul et at. [87] combine both top-down facade model
fitting with bottom up image segmentation. More advanced machine learning techniques,
such as reinforcement learning can be also used to improve the parsing results [88].
Semi-automatic facade parsing methods provide an alternative approach to explore the
structure of facades [60]. These methods focus on decomposing a facade into a hierarchy
of rectangular regions with vertical and horizontal splitting lines [59]. To effectively
handle irregular facade configurations, methods that decompose the input into a set of
1D sequence of elements [47] or facade layers [97] have been proposed. Lin et al. [47]
present a retargeting framework that changes the model topology by duplicating or
removing the extracted 1D sequences. Recently, Zhang et al. [97] introduce a method to
decompose a facade into different layers by maximizing the symmetry of the resulting
substructures. This decomposition then can be used for editing operations. Finally,
Lefebvre et al. [42] present a fully automatic method for extracting horizontal and vertical
strips from architectural textures based on self-similarities. A number of such strips
are reassembled to synthesize a new texture. However, this method does not explicitly
explore any structural and hierarchical relations between the facade elements that may
be desired to preserve.

2.2 Procedural Modeling

Procedural modeling is a long-standing active research topic with a wide range of
applications, for example, creating textures, modeling terrain, vegetations, buildings or
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city layouts. Different from traditional modeling techniques, the procedural modeling
paradigm does not store the output explicitly. Instead, the digital content is encoded
by compact procedures and only generated on demand. The underlying procedures
implicitly enforce global structures over generated shapes. In addition, by varying the
associated parameters, different geometries, for example a large number of buildings, can
be generated. In that sense, procedural modeling can be considered as an effective tool
for creating structured variations.

While there exist a variety of procedural methods, in this thesis, we focus on rule-based
procedural modeling, in particular shape grammars and L-systems. For more details
about other methods, we refer the audience to a recent survey [80].

Shape grammar. The original shape grammars were invented by George Stiny [82].
These shape grammars are defined in an analogy to phrasal grammars of linguistics [13].
A shape grammar is defined over an alphabet of shapes and generates complex shapes,
in the same fashion as a phrasal grammar generates strings of symbols from an alphabet
of symbols. Starting from the original start shape, a shape grammar uses shape rules
to transform all geometrically matched parts of the existing shape. This generation
strategy has been used to successfully generated a variety of designs, for example the
Palladian villa plans [84], the bungalows of Buffalo [22], or the Malagueria grammar [23].
The original shape grammars, however, are too complicated for most modeling tasks.
Therefore, most work in computer graphics is based on a simplified version of shape
grammars, set grammars [83]. Different from shape grammars, a set grammar works on
a combination of labelled shapes and in each step transform a labelled shape without
looking for geometric matching. In specific, a set grammar G consists of two sets of
shapes T (terminal shapes) and N (non-terminal shapes), and a set of shape rules R.
The shapes in T and N are n-dimensional geometries. Each shape rule in R transforms a
shape in T to one or multiple shapes in T ∪ N . Starting with a non-terminal shape, often
named axiom, the shapes are recursively replaced by applying rules in R until all the
shapes are terminal shapes. In comparison to the original shape grammars, set grammars
are easier for computer implementation [28] and recently several grammars have been
proposed especially for modeling streets and buildings, e.g. [65, 91, 57].

Parametric and stochastic shape grammar. To extend the modeling capability of
a shape grammar, one can associate each terminal and non-terminal shape with a set
of descriptive parameters. Examples of these parameters are the width and height of
building windows or the relative position of airplane wings. In addition, multiple shape
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rules can be associated with a shape to transform it in different ways. By randomly
choosing the parameters and the rules, shape variations can be generated.

CGA grammar. In the context of urban modeling, one of the most developed grammars
is the Computer Generated Architecture (CGA) grammar introduced by Müller et al. [57].
This grammar is specially designed for the procedural generation of buildings, and has
been integrated into a commercial software Esri CityEngine 1. The CGA grammar is
a shape grammar which is extended from the parametric context-free split grammar
previously proposed by Wonka et al. [91]. A shape (both terminal and non-terminal) in
this grammar is associated with an oriented bounding box called scope and optionally
some geometry located by this scope. Shape rules sequentially transforms existing shapes
to refine the model. CGA grammar also includes specialized operations to generate
buildings for example roof operation or occlusion handling. Although CGA grammars
have been successful in generating visually plausible buildings with various styles, there
are still some limitations associated. For example, it does not coordinate the rule
applications across multiple shapes e.g. to generate only one door in the ground floor.
CGA grammar does not handle rounded layout either. Some improved grammars have
been proposed, notably the Generalized Grammar (G2) [37], and CGA++ [75].

L-systems. L-systems are very similar to grammars but they use a parallel replacement
strategy instead of a sequential one. They have been successfully used for modeling
plants [68, 69] and have been extended to query and interact with their environment
during derivation to tackle more challenging plant modeling problems [70, 61]. Similar
to shape grammars, parametric and stochastic L-systems are also developed to enhance
the generation capability.

Inverse procedural modeling. Currently, high-quality grammars are predominately
written by hand. Inverse procedural modeling focuses on creating procedures from exam-
ple shapes which are then used to synthesize similar shapes. One approach is to analyze
the patterns from a set of training models and generate deterministic rules. For example,
parametric context-free L-systems for 2D vector images are automatically generated by
detecting similar elements such as curves and poly-lines and assigning corresponding sym-
bols to establish an L-system alphabet [81]. Partial symmetry in 3D geometry can be also
extracted to build a shape grammar, which is then used to create new model variations [6].
Another approach to induce shape grammars is based on Bayesian inference using a
minimum description length prior on the grammar structure [86, 52]. The grammar

1http://www.esri.com/software/cityengine
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structure can be optimized using randomized algorithms (such as Markov chain Monte
Carlo) with local moves including both rule splitting and rule merging operations. In
general, there is a trade-off between grammar complexity and expressiveness. Algorithms
that try to learn grammar structure or grammar parameters tend to build on very simple,
typically context-free grammars or only learn rule parameters [58, 79, 94].

Remarks. While procedural modeling methods, especially rule-based techniques, are
capable of compactly encoding global structural relations over the generated geometries,
these relations are often implicit and not obvious to designers. In addition, while
variations can be created by by parametric stochastic grammars, to obtain a set of shape
variations for particular design intent, it often requires tedious manual work in tuning
grammar parameters or editing the rules directly. One of the challenges in procedural
modeling is to provide intuitive control for designers.

2.3 Exploring Structured Variations

Another key task in processing structured variations is to explore the space of these
variations. This task falls into the domain of exploratory modeling in computer graphics.
An early inspiration for these efforts is the concept of design galleries introduced by
Marks et al. [51].

An important category of exploratory modeling efforts focus on exploring a pre-defined,
discrete design space such as a collection of websites [41] or 3D shapes [33]. Several papers
have proposed to use high-level feature attributes and utilized crowdsourcing tools to
learn the relevance of such attributes [64, 12]. Averkiou et al. [1] compute a hierarchical
embedding of a large shape collection. In addition to exploring the given shape collection,
they also compute the most dominant variation modes in this embedding as basis vectors.
They utilize these basis vectors to define an inverse mapping from the embedding to the
shape space and to generate new shapes. Our algorithm, on the other hand, operates on
large design spaces defined by production grammars or other generative processes.

One approach to explore large design spaces is to provide the users with a discrete set of
samples in an interactive framework. Samples can be generated by utilizing probabilistic
models [53] or evolutionary algorithms [95]. In another thread, researchers have proposed
to locally explore the design space in the neighborhood of an optimized sample with
respect to an energy function [89, 96, 18]. Bao et al. [4] have extended this idea to
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enable global exploration by extracting good pathways between different local spaces. In
the context of procedural modeling, Lienhard et al. [46] propose a strategy to sample a
procedural space to generate representative thumbnail images.

Several researchers have adopted a parametric model to explore large design spaces
assuming a direct mapping between the changes in the parameters and the output design.
For example, Kerr and Pellacini [32] have proposed to use sliders for the parameters
of the design space to help the users select different materials. Koyama et al. [36] fit
a goodness function by defining a goodness value on a set of discrete samples based
on crowdsource data and interpolating these values in the corresponding parameter
space using radial basis functions. Kovar and Gleicher [35] aim to construct the legal
space of PostScript drawings by requiring user feedback on a set of initial samples and
generate new samples by interpolation in the corresponding parameter space. Talton et
al. [85] explore parametric design spaces of trees and human shapes where they focus
on avoiding invalid shapes by defining a density function based on manually selected
valid models. Shapira et al. [76] present an exploratory interface for recoloring images
by parameterizing the design space using Gaussian Mixture Models. Brochu et al. [8]
present a Bayesian optimization approach to explore parametric animation spaces.

Remarks. This thesis work is inspired by these research efforts focusing on exploration
of large design spaces, in particular exploring the structured variations in building facades
and in the procedural production. One core challenge is ambiguity in structured variations
as there often exists multiple outputs that might match the design intent. In addition,
in procedural modeling, the procedural production is neither pre-generated nor can be
mapped into a parameter space. Thus, existing techniques cannot be applied to explore
the space of procedural models. We address these challenges in our work.
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3 SAFE: Structure-aware Facade
Editing

Figure 3.1 – Structure-aware facade editing. Using the notion of generalized grids, our
system encodes various symmetry, alignment, and hierarchy relations among the elements
of a facade. During incremental editing, the user can specify different grids (shown as
box abstractions) for which our system proposes new configurations. Editing progresses
by selecting such grids and one of the proposed configurations (shown in red).

In this chapter, we introduce a framework to synthesize structured variations for building
facades by editing input facade textures. Many man-made objects, in particular building
facades, exhibit dominant structural relations such as symmetry and regularity. When
editing these shapes, a common objective is to preserve these relations. However, often
there are numerous plausible editing results that all preserve the desired structural
relations of the input, creating ambiguity. We propose an interactive facade editing
framework that explores this structural ambiguity. We first analyze the input in a
semi-automatic manner to detect different groupings of the facade elements and the
relations among them. We then provide an incremental editing process where a set of
variations that preserve the detected relations in a particular grouping are generated at
each step. Starting from one input example, our system can quickly generate various
facade configurations.
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Chapter 3. SAFE: Structure-aware Facade Editing

3.1 Foreword

One of the long-standing problems in computer graphics is to provide artistic control for
content creation. Modeling of shapes is not trivial because it requires both artistic talent
and technical skill. The design process is time-consuming and error-prone as extensive
manual processing is often needed to obtain high-quality models. To address these
challenges, recent research efforts focus on the modeling-by-example paradigm, where
the goal is to modify an existing model to create new shapes while preserving certain
features of the original shape. Such a paradigm is particularly useful for modeling urban
spaces, since many applications (e.g. mapping and navigation, urban design, content
creation for entertainment) can benefit from a fast and easy design process.

Building facades often exhibit dominant structural relations such as symmetry and
regularity. When producing new shapes by editing a given example, these relations
should typically be preserved. However, this is a highly ambiguous process as there
are often multiple ways to maintain the structural relations that all result in plausible
output shapes. Amongst these shapes, there is no definitely correct output and the
desired solution depends on the intent of the user. Therefore, instead of committing to a
particular output based on certain heuristics, it is vital to be able to efficiently navigate
through alternative solutions.

In this chapter, we present an interactive framework for structure-preserving editing
of 2D building facades that enables exploration of the structural ambiguity during the
editing process. We assume as input an ortho-rectified facade image that has been
hierarchically segmented with vertical and horizontal splitting lines into rectangular
sub-regions. Certain sub-regions such as the windows and doors are semantic facade
elements and we preserve the arrangements of these elements during editing.

It is often desirable to edit a group of related elements together. For example, identical
windows arranged in a regular grid are typically expected to behave similarly. A row of
windows and the door separating them might act as a grid of nonidentical elements if
grouped together, making the insertion or deletion of either of the element types possible.
Often, there are multiple ways to group a set of elements and the particular grouping of
interest depends on the user intent. Thus, we provide a semi-automatic framework to
group the facade elements. Given a particular grouping, we support editing operations
such as insertion or resizing of elements, while propagating the edits to hierarchical
sub-elements.
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3.2. Contributions

Original

Topological Jump Spatial Optimization

Figure 3.2 – The proposed editing pipeline consist of two steps: The topological jump
step explores structural variations of the input facade by changing the number of facade
elements. Then, in the second step spatial configurations of the facade elements are
optimized to generate a plausible facade.

3.2 Contributions

Our main contribution is a novel incremental editing process that exposes shape ambigu-
ities by prompting the user with a set of alternative output shapes at each editing step.
A central feature of our approach is the ability to encode the structure of a facade as a
general group of elements that can be nested in a hierarchy. This avoids limitations of
most existing systems that restrict editing operations to regular grids only. We evaluate
our framework on building facades of varying complexity and demonstrate that a large
variety of plausible output shapes can easily be created from a single input example.

3.3 Overview

One of the core challenges in structure-aware editing is ambiguity: there are often multiple
consistent ways to maintain a set of structural relations. Simple operations, such as
resizing a facade, can quickly lead to a combinatorial explosion of possible solutions.
Many existing editing methods provide a single solution based on a set of heuristics that
try to anticipate the intent of the user. However, the user might initially only have a
vague idea of the desired output. In such a case, the final solution can be obtained in
an exploratory process by iterative refinement of intermediate results. Therefore, our
aim is to give access to a large space of possible solutions, while avoiding exposure to an
exponential set of variations. We achieve this goal with an incremental editing process
that prompts the user with a small set of variations at a time. The output is successively
refined by selecting one of these variations at each step.
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Chapter 3. SAFE: Structure-aware Facade Editing

We distinguish between two fundamental types of modifications to a facade: discrete
modifications that change the number of facade elements, e.g. inserting new elements or
removing existing elements, and continuous modifications that change the size of facade
elements, e.g. resizing a window. We propose an editing framework that enables such
modifications in a two-step approach. Discrete modifications of the input facade are
performed in the topological jump step, while continuous modifications are applied
to the resulting facade elements in the spatial optimization step to compensate for
the distortion introduced by the structural changes. This separation allows a stepwise
exploration of structural variations while the potential variations due to continuous
changes in size are ignored and expressed as constraints in the optimization. Note that
only the spatially optimized facade configurations are exposed to the user.

3.4 Representing Spatial and Structural Relations

In this section we present the data structures that capture spatial and structural relations
between facade elements. Such relations are preserved in the editing operations we
present. Facade parsing algorithms provide a method to decompose a facade into smaller
shapes by recursive subdivision. In the following we call this spatial subdivision structure
decomposition tree. By introducing parent-child relations between facade elements, this
data structure captures how changes in the size of a facade element induce changes at
its parent. Besides the spatial relations, facade elements exhibit structural relations,
e.g. the number of windows in one floor matches the number of windows in the second
floor, which might or might not be of the same kind. We introduce an additional data
structure (facade grids) to capture this information.

Spatial Decomposition: Decomposition Tree. Many facade parsing [59, 78] and
element classification [72, 88] algorithms result in a spatial decomposition of the input
data. This decomposition is usually represented as a tree with alternating splitting
directions. A node in the tree represents a facade shape associated with a rectangular
area. The root node (representing the whole facade) is recursively subdivided into smaller
rectangular shapes by splitting along the x or y directions. We store the direction of the
subdivision and its relative position with respect to the size of the node (split lines).

The resulting spatial decomposition exhibits properties that we exploit during the
optimization step to compute valid spatial configurations of new facade variations (see
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3.4. Representing Spatial and Structural Relations

Sec. 3.6). The total decomposition property allows us to express the size of a node in
terms of the size of its children. Specifically, if a node has x (y) splits, the width (height)
of this node is equal to the sum of the widths (heights) of its children, where as the node
and its children have identical heights (widths).

Several automatic or semi-automatic methods exist to define and detect splitting lines.
We refer the reader to the survey on urban reconstruction for a thorough review of this
topic [60]. Another source for such spatial decompositions are facade configurations
resulting from shape grammars that can be naturally transformed into decomposition
trees based on the grammar parsing tree of the grammar (such as [58]). We provide
examples using facade decompositions resulting from both methods.

Structural Relations: General Grids. We present a data structure to capture the
structure of the input facade and influence the resulting variations. Earlier attempts
consider structural information in terms of symmetries, repetitions, or regularity of
a model using one- or two-dimensional regular lattices (cf. [7, 66]). Although these
approaches can be applied to a wide range of models, they fail to encode potential links
between non-symmetric elements (e.g. non-regular element spacing) and cannot encode
hierarchical relations (e.g. a regular element itself consists of a regular configuration of
subelements).

Horizontal and vertical alignments are typically most important to define the structure of
building facades. We encode these alignments by a grid-like data structure. Grids provide
an intuitive way to specify structures in facades as well as the constraints between facade
elements. Elements that are part of the same grid are meant to behave similarly under
structural changes. Such relations are used in the following sections to constrain the
spatial optimization.

We employ a generic definition for these grids where grid elements are nodes of the facade
decomposition tree. These elements do not need to be similar, can be unevenly spaced
(Figure 3.3), and be part of more than one grid. A facade grid is defined as a group
of non-overlapping facade elements, which are arranged into columns and rows. The
user either manually selects elements that should be combined to a grid, which allows
arbitrary elements in a grid, or nodes similar to a selected element are identified based
on automatic symmetry detection methods [9]. This generic definition of facade grids
enables the grouping of different types of elements, and hence makes it possible to handle
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Chapter 3. SAFE: Structure-aware Facade Editing

facades without dominant repetitions (see Fig. 3.13).

(a) (b)

Figure 3.3 – (a) A general grid with different types of elements is shown. Dashed lines
connect phantom elements (circles) in the middle column. (b) The grid in red is a subgrid
of the blue grid, which in turn is a subgrid of the yellow grid.

Given a group of facade elements, we assign each of them a unique coordinate consisting
of a row and a column index. For column assignment, starting with the left-most element,
we consider the next element to belong to the same column as long as we observe a
vertical overlap between the elements. These elements form the first column. We repeat
this process for the remaining elements to obtain additonal columns. The assignment of
row indices is similar, starting with the top element. Our scheme does not require all
rows or columns to have the same number of elements. In the case of missing elements
we add a phantom element as a place holder without assigned geometry to obtain a
rectangular grid configuration (see Figure 3.3a).

Structures can be observed at different levels within a hierarchy, i.e. one structure can
be contained within another structure (see Figure 3.3b). We translate this hierarchical
relation into a hierarchy of facade grids. These hierarchical configurations are automati-
cally assigned if all elements of a grid are included in the subtree (of the decomposition
tree) of an element of another grid. The former grid is then called the subgrid of the
latter one.
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3.5. Discrete Modification – Topological Jump

3.5 Discrete Modification – Topological Jump

The objective of our incremental editing framework is to generate plausible facade
variations that preserve desired structural relations between facade elements. We enable
the user to select a set of facade grids at each editing step for which the algorithm will
suggest new configurations. Such selected grids are called active grids. When a grid is
selected, our framework enables automatic selection of other grids with identical element
types and counts. By selecting different active grids, the user specifies different structural
relations to be preserved at each editing step and explores the resulting variations. After
choosing one of the proposed variations, the user proceeds by changing the active grids
or analysing further extensions of the current active grids. In this section, we describe
how new facade configurations are generated by changing the number of elements in an
active grid by utilizing both structural and spatial information. Note that the size of the
elements in the new facade configuration are determined in the spatial optimization step
(see Section 3.6).

Once a grid is selected to be active, our method first examines the content of the grid
to determine its possible variations. Specifically, if the editing operation increases the
width (height) of the facade, the unique columns (rows) as potential insertion candidates
are identified. We call such unique columns (rows) the source columns (rows). Insertion
of any of the source columns (rows) in each possible location of the active grid results
in a potential variation presented to the user. In the following subsections, we describe
how discrete modifications to an active grid are performed. For convenience, we only
describe the case where an editing operation changes the width of a facade. Changes in
the height of the facade are handled in a similar fashion.

Structure-aware Insertion Operation. Insertion of a new grid column is performed
by insertion of each element in the column in a row-wise manner. Therefore, we first
describe how a grid element S which we call the source element is inserted between two
anchor elements Al and Ar. Often, grid elements such as windows are most prominent
elements adjoining less important non-grid elements such as walls. Thus, insertion of
a new grid element requires the duplication of the surrounding content of the anchors
to ensure that the source is embedded in a region similar to the neighborhood of the
anchors before the insertion (see Figure 3.4). Preserving such neighborhood relations
requires direct access to the neighborhood information of each grid element. While
the facade decomposition tree provides hierarchical decomposition links between the
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3.5. Discrete Modification – Topological Jump

facade elements, it does not provide direct access to the neighborhood information as
neighboring elements may be part of different subtrees depending on the order of the
subdivision operations. Instead, we encode the neighboring relations between facade
elements in a graph structure called the neighborhood graph.

A neighborhood graph G = (N, V, H) is a directed graph composed of a set of nodes N

where each node corresponds to a facade leaf shape in the facade decomposition tree.
A vertical edge ev = (ni, nj) ∈ V (horizontal edge eh = (ni, nj) ∈ H) directed from
ni to nj connects these two nodes if the corresponding facade shapes share a vertical
(horizontal) boundary and ni is below (to the left of) nj . The neighborhood graph
can be considered as a dual structure of the facade decomposition tree which provides
direct access to relative positions of the graph nodes. It is straightforward to build this
graph given a decomposition tree. Conversion of a neighborhood graph G to a facade
decomposition tree, on the other hand, is performed in a recursive manner. At each step
of the conversion, the longest sequence of vertically (or horizontally) connected nodes
C = {n0, ..., nk} is extracted such that all nodes {n0, ..., nk−1} have only one outgoing
edge and all nodes {n1, ..., nk} have only one incoming edge of the same type. Such a
sequence of nodes, called chain, are collapsed to a single node and a new parent shape is
added to the decomposition tree to represent the collapsed node. A chain is equivalent
to a set of sibling nodes in a facade decomposition tree. Thus, if G represents a valid
facade decomposition tree, it is ensured that a chain can be detected at each step. The
conversion process terminates when the whole graph is collapsed to a single node which
represents the root of the corresponding decomposition tree.

When inserting a source element S between the anchor elements Al and Ar, we duplicate
additional facade shapes and determine their spatial arrangement in the new facade
configuration by utilizing the neighborhood graph. Specifically, we build a neighborhood
graph G corresponding to the subtree of the facade decomposition tree rooted at the
common parent of Al and Ar, since this subtree contains all relevant elements. Insertion
of S is then carried out by constructing a new neighborhood graph G′ from G which
contains S. S is embedded in G′ in such a way that its neighborhood is similar to
those of Al and Ar in G. One naive approach to obtain G′ is to connect the source
S to all neighbors of Al and Ar. However, this often leads to an invalid graph, i.e. a
graph which does not represent a valid facade decomposition. For example, an element
might end up as both right and left neighbors of another element (see Figure 3.5). This
observation supports the intuition that S can be embedded in a neighborhood similar
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Chapter 3. SAFE: Structure-aware Facade Editing

to the neighborhood of both anchors only by duplicating some nodes in G. Therefore,
we propose an incremental solution that takes a valid neighborhood graph as input and
adds new edges one at a time while ensuring that the graph remains valid at each step.
Necessary nodes are automatically duplicated during this process. Once G′ is constructed,
we convert it back to a decomposition subtree to replace the original subtree. Next, we
describe the details of the incremental edge insertion process.

S

2

1

3Al Ar

S

2

1

3
Al

Ar

Figure 3.5 – Connecting the source S to all the neighbors of the anchors Al and Ar

results in a conflict: the loop (S, 2, 3) suggests that S is both to the left and right of 3.
(Vertical and horizontal edges are shown in black and red respectively.)

Incremental Edge Insertion. Given an initial neighborhood graph G including the
anchors Al and Ar, our goal is to insert the source S between the two anchors. To achieve
this goal, we incrementally construct a new neighborhood graph G′ by utilizing a pending
edge queue, Ep, consisting of the edges that need to be added to G′.

First, the edges in G that involve either Al or Ar are added to Ep while replacing
the respective anchor node with S (see Figure 3.4 a). Insertion of these edges in the
subsequent stages influences the neighborhood of S to be similar to the neighborhood
of the anchors. We then initialize G′ as the subgraph extracted from G consisting of
the longest sequence of horizontally connected nodes including Al and Ar. Any edge
of G that is not included in this subgraph is added to Ep (see Figure 3.4 b). Once Ep

is initialized, edges in Ep are inserted to G′ incrementally. Inserting an edge requires
an update of the neighborhood information to ensure a valid facade configuration at
any point during the process. Please note that a new edge in Ep becomes available for
insertion when at least one of the nodes it connects is present in the current graph.

Edge insertion starts with the pending horizontal edges, processing those involving S

first. Next, the pending vertical edges are processed. If a node is required to be vertically
connected to a sequence of horizontal nodes in G′, all such vertical edges are inserted
simultaneously (e.g. e(S, 6) and e(2′, 6) in Figure 3.4 c are inserted at once). The
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3.5. Discrete Modification – Topological Jump

algorithm continues by processing the remaining pending edges in a similar manner until
Ep is empty.

Once a pending edge is selected, its insertion is performed based on whether it involves
one or two nodes present in the current graph G′. Assume a horizontal edge e(ni, nj) is
selected that connects a new node ni to an existing node nj . Intuitively, insertion of such
an edge is equivalent to introducing a vertical split in the facade shape of nj to create a
tiny sub-shape and replacing this sub-shape with the facade shape of ni. In other words,
our goal is to correctly embed the new node ni between the nodes already present in
G′ with coherent horizontal and vertical relations. Thus, we first extract all incoming
horizontal edges of nj and relink them to ni (in Figure 3.6, e(1, 8) and e(2, 8) are relinked
to e(1, N) and e(2, N)). If such a relinked edge was present in the original graph G, we
add it to Ep so that this neighborhood information is not lost. We next establish the
vertical neighborhood relations of ni by connecting it to one of the above and one of the
below neighbors of nj . Specifically, we extract a set of nodes Mbelow that are connected
to nj with vertical incoming edges and a set of nodes Mabove that are connected to nj

with vertical outgoing edges. Since all nodes in Mbelow (or Mabove) are connected to nj

vertically, there is a horizontal path connecting all of them. We connect ni vertically to
the leftmost node along such a path (in Figure 3.6, vertical edges e(N, 4) and e(6, N) are
established).

The described procedure so far allows to insert an edge with a new node into G′ and
update the present edges to ensure a valid configuration. If at any point of this process,
an edge which has been previously added to G′ from Ep is required to be pushed back to
Ep, this insertion is discarded and we undo any update in G′ triggered by this insertion.
This ensures that no edge is inserted to G′ and pushed back to Ep continuously.
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Figure 3.6 – The edge e(N, 8) is inserted to the current neighborhood graph. Vertical
and horizontal edges are shown in black and red respectively.
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If the selected pending edge connects two existing nodes ni and nj in the current graph
G′, its insertion might result in a conflict. In order to avoid such conflicts, we duplicate
one of the edge nodes ni and insert the pending edge between the new duplicated node n′

i

and nj instead. This edge now connects a new node n′
i to the existing node nj and can

be added as described before. When a node is duplicated, all the edges of the original
node are copied and added to Ep. Note that if both nodes of a pending edge have already
been duplicated, we discard it to ensure that a node is duplicated at most once.

Coupled Insertion in Multiple Rows. In cases where anchor elements in different
rows of a facade grid have the same common parent, performing the column insertion
row-by-row will result in multiple duplications of certain facade shapes. To avoid such a
scenario, we perform the element insertion in these rows in a coupled fashion. We first
find the subtree rooted at the common parent of the identified rows and construct the
corresponding neighborhood graph G. Intuitively, we divide G into multiple subgraphs
where each subgraph consists of a single grid row. We insert source elements into
corresponding subgraphs and combine the updated subgraphs. In more detail, we extract
a set of subgraphs Gs = {G1, ..., Gm} where Gk represents the longest sequence of
horizontally connected nodes in G including the anchor elements in the corresponding
row rk. We then initialize a common pending edge queue Ep with any edge that is not
included in any subgraph in Gs. For each source element to be inserted, we also copy
the edges from the corresponding anchors and add to Ep. We then label the edges in Ep

to denote an order of insertion to the extracted subgraphs. Specifically, starting from
the top row G1, we define a node set Nk as the set of nodes in Gk and the unlabeled
nodes that are above any node in Gk+1. Edges that connect any two nodes in Nk are
labeled as lk. At the end of this grouping, a set of edges remain unlabeled which are the
vertical edges later used to connect the updated subgraphs in Gs. Next, starting from
the first row, the incremental edge insertion process described before is performed by
updating the corresponding subgraph of the row. The only notable difference is that
when updating the graph Gk, only the edges labeled lk are processed.

Once all rows are processed, Ep contains only the unlabeled edges. We use these edges
to combine the subgraphs in Gs into a common graph G′. A pair of vertical edges are
used to connect two subgraphs if they are not crossing. Edges e(x1, y1) and e(x2, y2) are
defined to be crossing if x1 is located to the left of x2 and y1 is to the right of y2. Once
all updated subgraphs are combined into G′, it is converted to a decomposition tree to
replace the original subtree.
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3.6 Continuous Modification – Spatial Optimization

In the topological jump step of our framework, new facade elements are added to the
spatial decomposition tree and the respective facade grids. This process violates the
total decomposition property (as described in Section 3.4) and thus requires an update
of the size of the resulting nodes (see Figure 3.2). The naive option to compute valid
sizes for the nodes is to propagate the change due to additional elements up to the
root node, effectively increasing the size to accommodate space for the new elements.
Further, changes in inner nodes need to be propagated down to the children, e.g. by
evenly distributing the size increment. While this re-establishes the total decomposition
property of the spatial data structure, the results often violate aesthetic properties such
as alignment and coherent size of similar elements (see Figure 3.7). To address this issue,
we propose an optimization scheme that minimizes the deviation from the original size of
the elements while respecting additional constraints relating the size and the alignment of
the elements in facade grids. We formulate this optimization as a quadratic programming
problem.

(a) (b)

Figure 3.7 – Simple propagation of changes along the decomposition tree (a) breaks align-
ments between facade elements, which can be preserved by our spatial optimization (b).

Our optimization process shares some similarities with the method of Bao et al. [3] with
one fundamental difference. We optimize for the size of all the facade shapes at once
while Bao et al. recursively solves for a sequence of 1D layout problems. The size of the
already processed facade shapes impose certain layout constraints for the subsequent
stages of their algorithm. Thus, backtracking is necessary if a solution cannot be found
at a certain step.
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Chapter 3. SAFE: Structure-aware Facade Editing

At the end of each editing step, we compute the new width and height of the facade shapes
by setting up two independent optimization problems respectively. In the following, we
describe how the new shape widths are computed. Computation of the shape heights is
performed similarly by interchanging width and height and x and y-splits.

Quadratic Programming. When computing new sizes of facade shapes, our goal is
to preserve the original sizes as close as possible. Thus, we define the quadratic objective
E(x) = ‖W(x − x∗)‖2, where x and x∗ respectively denote a vector of new and original
widths of the facade leaf shapes and W is a diagonal weight matrix. We weight the
changes in shape sizes by the inverse of their areas to allow larger shapes to deviate more.
We normalize the shape areas by dividing by the total facade area and cap the weights
at 10.0. We minimize E(x) for positive x subject to hierarchy constraints Ch, alignment
constraints Ca and symmetry constraints Cs as described next:

minimize
x

E(x)

subject to x > 0, Chx = 0, Cax = da, Csx = 0
(3.1)

Additional constraints specified by the user such as the target size and location of a
shape can be integrated into Equation 3.1 to provide additional interaction possibilities.

Hierarchy Constraints. We specify a hierarchical link between the size of a facade
shape and its children. For each leaf shape, we define a binary vector α with one non-zero
entry corresponding to the width, w, of the leaf in x, such that w = αT x. The width of
an internal node is then obtained from the binary vectors α of its children. Specifically,
if S has an x split, we obtain αs =

∑
i αci and ws = αT

s x. In case of a y split, however,
any two children ci and cj have the same width, αT

ci
x = αT

cj
x, equal to the width of S.

Thus, we set αs = αc0 , and for any pair of children (ci, ci+1), we represent the constraint
(αci − αci+1)T x = 0 as a row of Ch.

Shape Alignment. Facade elements that belong to the same grid need to preserve
their relative positions during the editing process. Therefore, we define constraints
relating the pairwise distances between neighboring grid elements. To quantify these
alignment constraints, we first associate each grid element S with an anchor point As.
In horizontal edits, for each column, we define three sets of points consisting of (i)
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the centers, (ii) midpoints of the left edge, and (iii) midpoints of the right edge of the
grid elements in the column. We use the point set with minimal variance in terms of
x-coordinates as the anchor point set. The shape alignment constraints preserve the
distance between the x-coordinates of these anchor points.

The x-coordinate, as, of the anchor point As of a shape S can be expressed in terms of
the x-coordinate, ls, of the left edge of S:

as = ls + εws, (3.2)

where ε = 0 if As is the midpoint of the left edge, ε = 0.5 if it is the shape center, and
ε = 1 if it is the midpoint of the right edge. Further, ls can be computed as:

ls = lp +
∑

si∈S
−
S

wsi , (3.3)

where lp is the x-coordinate of the left edge of the parent of S, S−
S is the set of siblings

in the facade decomposition tree located to the left of S. wsi denotes the width of such
sibling nodes. Setting lroot = 0, ls is computed as a linear combination of the widths of
the leaf nodes x: ls = βT

s x. By plugging this expression and wsi = αT
si

x into Equation 3.3
we obtain

βs = βp +
∑

si∈S
−
S

αsi . (3.4)

Finally, from Equation 3.2, we have

as = βT
s x + εαT

s x. (3.5)

We then express the alignment constraints between any two consecutive grid element Si

and Si+1 in a column in terms of the x coordinates of the corresponding anchor points:
asi − asi+1 = di,i+1, where di,i+1 is the original horizontal distance between Asi and Asi+1 .
This translates into (βsi + εαsi − βsi+1 − εαsi+1)T x = di,i+1 and is represented as a row
in the system Cax = da.

Shape Symmetry. Certain facade elements, either manually indicated by the user or
detected by automatic symmetry detection methods, are desired to have the same size.
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Chapter 3. SAFE: Structure-aware Facade Editing

We formulate this symmetry constraint between two such shapes Si and Sj using their α

vectors: (αsi − αsj )T x = 0.

Y-Split

Y-Split

Figure 3.8 – Variable reduction process: Yellow subtrees are collapsed as they do not
contain any node involved in a constraint (shown in red). Green subtrees are collapsed
as the parent node is subdivided into a set of leaf nodes with y splits. The leaf nodes in
the final tree are shown as dotted and are used as variables in the optimization process.

Variable Reduction. The widths of all the facade leaf shapes are considered as
variables in our optimization. However, we can reduce the number of variables by
analyzing the constrained nodes of the facade decomposition tree. Specifically, we
collapse the subtree rooted at a node ni if none of the remaining nodes in the subtree is
involved in a constraint (see Figure 3.8, yellow subtrees). In this case, we optimize only
for the width of ni and distribute the change in this width evenly to its descendants in
a recursive manner. Further reduction of the variables is possible considering the split
direction of the nodes. If a node ni is subdivided into a set of leaf nodes by a y split, all
of its children have a width equal to the width of ni. In this case, we collapse the subtree
rooted at ni and express any constraint involving its children in terms of the width of
ni (see Figure 3.8, green subtrees). We perform such node collapses iteratively until no
further collapse is possible reducing the number of variables significantly.

3.7 Evaluation

In this section we discuss the main features of our framework for several example editing
scenarios. For a larger collection of editing results, please refer to the video and the
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supplementary material of the corresponding publication [15]. Note that manually
specifying a general grid used in these examples takes around 20 seconds (see the
accompanying video). In the following results we show the final state of the active grids
selected at each editing step to highlight the changes to a facade (Figure 3.9, 3.11-3.13).

Data sets. The input to our framework is a hierarchically decomposed ortho-rectified
facade image. Such a decomposition can be obtained manually or in a semi-automatic
manner. We evaluate our method on facade images decomposed by the semi-automatic
approach of Musialski et al. [59]. We also create a shape grammar for rectified facade
images taken from online repositories using Esri CityEngine and convert this grammar
into a decomposition tree. We next describe the capabilities of our framework on these
input facades of varying structural complexity.
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3.7. Evaluation

(a) Input (b) Editing output

Figure 3.10 – The door of the facade, that spans the bottom two rows, is assigned to the
lower row, a phantom element (cyan) is added to the upper row.

Results. The input to our system is a hierarchical decomposition of a facade. However,
the editing operations are not restricted by the splitting levels of this decomposition.
Specifically, we allow facade elements that do not belong to the same parent element
to be grouped into a grid (see Figure 3.9, row 2). This enables to jointly edit elements
across different levels of the hierarchy and eliminates the dependency on the input
decomposition.

Our editing framework is incremental where at each editing step, the elements of active
grids are removed or duplicated. The elements of the remaining grids, on the other hand,
are only scaled to respect the new size of the facade. By activating different grids at each
step of this process, interesting variations of a facade can be generated, which is difficult
otherwise (see Figure 3.9).

In some facades, certain elements such as a door can span multiple rows (or columns) as
shown in Figure 3.10. When the elements in the rows spanned by the door are grouped
into a grid, we assign the door to one of these rows resulting in fewer grid elements in the
remaining row(s). In order to obtain a complete grid in such a case, we add a phantom
element to the rows with fewer elements. The phantom element acts as a placeholder
in the grid and can be duplicated or removed based on the editing operation. On the
other hand, if an element is required to be inserted between two grid elements of which
at least one is phantom, we simply discard this insertion (see Figure 3.9, last row).

An important feature of our framework is the support for hierarchical grids. The facade
shown in Figure 3.11 consists of a grid of windows each of which is composed of a sub-grid.
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Chapter 3. SAFE: Structure-aware Facade Editing

(a) Input (b) Variation 1

(c) Variation 2 (d) Variation 3

Figure 3.11 – Given the hierarchical grid structure, one can modify the main grid (yellow),
the sub-grids (green and cyan), or both.

When this facade is resized horizontally, one can change the inner sub-grids of the window
frames, add a new column of windows or perform both actions simultaneously. The user
can explore these options by activating or deactivating the sub-grids at each editing step.

A unique feature of our approach is the notion of general grids that enable the grouping
of different element types with varying spacings. For example, in Figure 3.12 one large
grid consisting of different window types has been built. When the facade is resized
in the vertical direction to trigger the addition of a row, any row of the grid can be
duplicated. Moreover, when a new column is inserted, the corresponding window types
are duplicated in each row. Even though the concept of general grids is capable of
handling irregularity, some facades as shown in Figure 3.13 exhibit no dominant grid

36



3.7. Evaluation

(a) Input (b) Editing output

Figure 3.12 – Different element types are grouped in a common active grid (in green)
and edited together.

(a) Input (b) Editing output

Figure 3.13 – Multiple small grids (colored) are activated to edit the facades that lack a
dominant grid structure.
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3.7. Evaluation

structure. Grouping all the elements in these facades results in a grid with many phantom
elements making it difficult to edit. However, editing can be performed by activating
multiple small grids and preserving these local structures simultaneously.

Comparison. In this section, we provide comparisons with the methods of Lin et
al. [47] and Zhang et al. [97]. We evaluate our method on two examples taken from
these works and generate a replica of the same target facade configuration. We also
generate additional variations to emphasize the differences between the methods (see
Figure 3.14). In the retargeting framework of Lin et al. [47], reshuffling of elements in
an extracted sequence is not supported. In contrast, we allow rows and columns to be
inserted at each possible position in an active grid (see how small and large balconies
in the red sequence are arranged in variation 2 in Figure 3.14). A major advantage of
the layered decomposition proposed by Zhang et al. [97] is the ability to move a layered
element to an arbitrary new position. We achieve similar editing results by duplicating
such an element at the target position and deleting the original. However, directly
moving around of elements might be more intuitive for the users. Interleaving grids of
different element types can be edited with the method of Zhang et al. [97] only if they
have been decomposed as different layers. In that case, the user also needs to specify
additional constraints to position such grids during editing. In our method, however,
such elements can be grouped into a general grid and edited easily. We also support
editing of hierarchical sub-structures (see how small and big window types are grouped
together in variation 2 in Figure 3.14 and edited together with their substructures).

Limitations. Even though our system is able to generate many variations of an input
facade, there are several limitations we would like to address in future work. The input
to our system is a decomposition of a facade with vertical and horizontal splitting lines.
Such a decomposition fails to provide a tight partitioning for other polygonal and arched
shapes. We represent these shapes with their axis-aligned bounding boxes. Integrating
non-axis aligned splits and curved shapes will provide more plausible results for certain
architecture styles with dominant curved structures.

In this work, we do not focus on smart texture synthesis, the texture of an edited facade
is synthesized by duplicating, cropping, and scaling the original texture. In presence of
occlusions and strong lighting variations, this results in visual artifacts. In the future,
we would like to incorporate more advanced texture synthesis methods to reduce such
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Chapter 3. SAFE: Structure-aware Facade Editing

artifacts.

3.8 Concluding Remarks

We have presented a novel structure-preserving facade editing framework. Our approach
gives direct access to shape ambiguities during editing, while avoiding the combinatorial
explosion of potential editing results through an incremental process. The concept
of generalized grids allows capturing both regular and irregular structures, including
hierarchical configurations, which greatly expands the set of possible shape manipulations.
We believe that this approach provides a novel perspective on structure-aware editing
that has potential for many other geometric design tasks.

There are several interesting avenues for future work. The input to our system is a
hierarchical decomposition of a facade. Conceptually it is possible to extend our method
to handle layered decompositions as proposed by Zhang et al. [97] by enabling the
grouping of elements at different layers into a common grid.

Although we only focused on 2D facade editing, our system can be extended to 3D by
recursively decomposing 3D buildings using axis-aligned cutting planes similar to [47].
Our current framework explores structural ambiguity by supporting incremental edits and
providing alternatives at each step in a sequential manner. However, defining a structural
similarity measure between variations of an input facade and recursively clustering these
variations based on this measure is an interesting research direction. Such a clustering
approach, especially if built upon some properties of human perception system such as
Gestalt rules [62], will enable to explore the design space more effectively. Finally, we
believe extending the principles of combining continuous and discrete changes as well
as neighborhood synthesis to 3D models with dominant axis-aligned structures, such as
furniture, is possible and interesting.

40



4 Interactive Design of Probabil-
ity Density Functions for Shape
Grammars

Figure 4.1 – (Left) Random models generated from a probabilistic building grammar.
Although these models are visually plausible, they do not comply with a design scenario
which also requires architectural plausibility, i.e. matching styles of ground floors,
upper floors, and roofs (B1, see Table 4.2). (Right) Our framework takes user specified
preference scores as input and learns a new model probability density function (pdf)
which samples models (with consistent style) proportionally to their predicted preference
scores. In this design scenario, office buildings received a higher preference score.
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Grammars

In the previous chapter, we discuss about the structure-aware editing approach to generate
structured variations. We will now investigate another modeling technique, the procedural
modeling paradigm, which is capable of automatically generating a huge collection of
shape variations conforming to a global structure e.g. buildings, trees, furniture, airplanes,
bikes, etc. Despite its powerful modeling capability of procedural modeling techniques, it
is difficult to control the generation output, in particular the space of generated models
and the generation likelihood of each model. This remains a core challenge in this
modeling paradigm.

We present a framework that enables a user to interactively design a probability density
function (pdf) over such a shape space and to sample models according to the designed
pdf. First, we propose a user interface that enables a user to quickly provide preference
scores for selected shapes and suggest sampling strategies to decide which models to
present to the user to evaluate. Second, we propose a novel kernel function to encode the
similarity between two procedural models. Third, we propose a framework to interpolate
user preference scores by combining multiple techniques: function factorization, Gaussian
process regression, auto-relevance detection, and l1 regularization. Fourth, we modify
the original grammars to generate models with a pdf proportional to the user preference
scores. Finally, we provide evaluations of our user interface and framework parameters
and a comparison to other exploratory modeling techniques using modeling tasks in
five example shape spaces: furniture, low-rise buildings, skyscrapers, airplanes, and
vegetation.

4.1 Foreword

Procedural modeling using grammars is a very effective tool to generate a large variety of
similar models. Grammars have been successfully used for modeling vegetation, buildings,
building interiors, streets, sea shells, furniture, feathers, etc. Even though grammars
are a great tool for modeling, generating good grammars is difficult and requires some
programming skills. After talking to many users of the procedural modeling software Esri
CityEngine , we can identify two groups of users of grammar-based procedural modeling.
Non-expert users such as architects, urban planners, and regular artists without training
in computer science, mainly use existing grammars, possibly with minor customizations.
Expert users, typically technical artists or computer scientists with some art background,
can generate new grammars from scratch. A common problem that both groups of users
face is the difficulty to control the distribution of models generated by a grammar. In
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our paper we use the term shape space to describe the set of all models that can be
generated by a grammar. Further, the probability density function (pdf) of a grammar
determines how likely a model is to be generated. We propose new interactive interfaces
and techniques to design the pdf of a given grammar, without editing the grammar rules
directly. To motivate our research we discuss three example workflows of non-expert and
expert users.

The goal of the first workflow is to generate a single interesting model. A user, e.g. an
architect, might like to navigate the shape space of a grammar to get a design idea for
a new building. Currently, the main solution is to randomly regenerate a model many
times. Following pioneering work in exploratory modeling, e.g. [51, 85], we would like to
give the user the ability to navigate the shape space by designing a suitable pdf with
high density in the neighborhood of the previously liked models.

The goal of the second workflow is to customize the pdf of an existing grammar (for
non-expert users) or to fine tune a grammar written by an expert user for large-scale
modeling, e.g. a complete city. For example, a user might want to control the distribution
of building heights, building styles, building functions (e.g. residential vs. commercial),
and the assets (meshes and textures) used for windows, doors, and ornaments. In simple
cases these distributions can be controlled by a single parameter in the grammar, but
in many cases the user will be interested in influencing aspects of the distribution that
involve more than one parameter. Due to the context-free nature of most shape grammars,
this is difficult to encode and would need major changes to the grammar rules. For
example, it requires some work to encode that tall buildings should be predominantly
gray and small buildings should be mainly brown.

The goal of the third workflow is to write a grammar that can generate a large variety
of models. An expert user might start with a deterministic grammar that is able to
generate a single high quality model. In a subsequent step, the user can introduce initial
randomness to generate some minor variations, most of them having high quality. As
the user adds more and more rules and randomness to the grammar, the probability of
generating low quality models increases due to the trade-off between model variety and
model quality. The reason for this degradation is again a limitation of context-free rules.
The rules make design choices without global context, and it is difficult to coordinate
design choices made by different rules. In Figure 4.1 we illustrate two example problems:
matching the style of ground floor and upper floors, and matching the roof style of a
building with its facade style. The price for having a large shape space to choose from
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will typically be a larger percentage of undesirable models. Our work enables an expert
user to focus on writing simpler rules encoding the structure of models and then using
our proposed framework to model a pdf that eliminates most undesirable models.

4.2 Contributions

In this chapter, we makes the following contributions to the state of the art:

• On the application side, we are the first to extend the concept of exploratory
modeling from selecting a single model to interactively designing a pdf for a
procedural shape space.

• On the user interface side, we propose strategies to display, sort, and sample models
to enable the user to quickly provide preference scores.

• On the technical side, we integrate concepts from machine learning with context-
free shape grammars. First, we propose a novel kernel function to encode the
similarity between two procedural models. Second, we propose a framework
to interpolate preference scores given by a user combining multiple techniques:
function factorization, Gaussian process regression, autorelevance detection, and l1

regularization. We show that our framework leads to better results than the kernel
density estimation framework proposed by Talton et al. [85]. Third, we propose
the first algorithm to automatically generate a new grammar that approximates
the target pdf well.

4.3 Overview

4.3.1 Framework Overview

The input to our framework is a shape grammar. The default values of the rule probabil-
ities and rule parameters defined by the grammar impose a default density function over
the procedural space S from which output shapes can be sampled. Our goal is to model
a new density function that reflects the user preferences as closely as possible and then
to generate a new grammar that samples shapes according to this new density function.

Our framework has the following major components: 1) A user interface that enables a
user to provide preference scores for selected models in the shape space of a given input
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grammar (see Section 4.4). 2) A regression algorithm that interpolates the user defined
preference scores (see Section 4.5). 3) An algorithm to generate new models according to
the derived pdf (see Section 4.6).

4.3.2 Definitions

We use attributed, stochastic, context-free shape grammars that generate models by
shape replacement. Each shape has a list of attributes and a label from the set of
non-terminal symbols NT or from the set of terminal symbols T . While the number of
attributes can vary depending on the grammar, we require at least the following: an
oriented bounding box, called scope, a polyhedral mesh that is transformed to fit inside
the scope, and a material identifier. We use an example grammar, called toy grammar,
shown at the end of this subsection to illustrate various concepts in this paper. Random
samples of this grammar are shown in Figure 4.2. A shape grammar is defined as a tuple:

G = 〈NT, T, ω, P, Θ〉, (4.1)

where ω ∈ NT is the starting symbol. The set of all symbols is denoted by SYM = NT ∪T .
P is a set of context-free rules of the form

idi probi : shapei → ShapeOpi, (4.2)

where shapei ∈ NT and ShapeOpi is a sequence of shape operations that generates
replacement shapes (succi1, . . . , succik) with succij ∈ SYM . The number j is called the
child index and it can be used to identify a particular shape among the k replacement

Figure 4.2 – Random samples of the toy grammar in Section 4.3.2.
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shapes. The probability of the rule being selected is probi so that the probabilities for
all rules that have shapei on the left hand side need to sum up to one. The rule id idi

is generated automatically and mainly used so we can refer to rules in the paper. The
parameter vector Θ includes all information about probabilistic choices available in the
grammar. These are a) the rule probabilities and b) all parameters of the distributions
used to sample random values in shape operations, e.g. the minimum and maximum
values of the uniform distributions to sample the heights h1 and h2 in the toy grammar.

There are quite a few details about how shape operations could be specified, but these
details are not important for the core contribution of the paper. In our examples we use
grammars that are compatible with CityEngine and we use shape operations that modify
the scope of a shape, e.g. via translation, rotation, and scaling, set the mesh of a shape
(see the i() operation in rules id2 to id4), split shapes into multiple smaller shapes, or
combine multiple shapes.

In the toy grammar the rule id1 stacks two shapes with height h1 and height h2 on top of
each other to yield a top shape and a bottom shape. The rules id2, id3, and id4 generate
either a box, cylinder, or star geometry with equal probability 1/3. id5 is an example for
a redundant rule. Finally id6 to id8 select a color for the generated geometry.

Toy Grammar
� �

1 NT = {MASS, MESH, MESH2}
2 T = {TerminalMesh}
3
4 attr h1 = rand(1, 5)
5 attr h2 = rand(1, 5)
6
7 id1 1 : ω → split(y) { h1: MASS | h2: MASS }
8 id2 1/3 : MASS → i(‘‘box’’) MESH
9 id3 1/3 : MASS → i(‘‘cylinder’’) MESH

10 id4 1/3 : MASS → i(‘‘star’’) MESH
11 id5 1 : MESH → MESH2
12 id6 1/3 : MESH2 → setMaterial(‘‘orange’’) TerminalMesh
13 id7 1/3 : MESH2 → setMaterial(‘‘blue’’) TerminalMesh
14 id8 1/3 : MESH2 → setMaterial(‘‘green’’) TerminalMesh

� �

This grammar already illustrates a limitation of context-free grammars. For example, it
is not possible to modify the parameter vector Θ to ensure that the bottom shape has the
color orange and the top shape has a random color. That requires changing the structure
of the grammar (the rules in P ) by duplicating and changing the rules id2 to id8. If
there were 5 shapes stacked on top of each other it would already become unmanageable
to encode the probabilities for various geometry and color combinations. Unfortunately,
any context-free grammar requires an exponential number of rules to encode general
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70 70 70

(a) (b) (c)

Figure 4.3 – Main components of the user interface. (a) Display: Models (sampled from
the current pdf) are shown with their predicted preference scores (orange) and prediction
uncertainties (blue, see Section 4.5.3). (b) Sorting: Models are sorted by the similarity
to the selected model (green). (c) Selection and assignment: Multiple models can be
selected and assigned the same preference score at once.

joint probability distributions of multiple variables. Nevertheless, we can automatically
generate context-free grammars approximating a given pdf. The grammar might be too
complex to be human readable, but it is compatible with existing derivation engines and
can be used for fast model generation.

4.4 User Interface

In the following we will describe the user interface and the interaction possibilities and
then give the details for the technical realization in Section 4.5. The main idea of the
user interface is to enable the users to provide simple feedback about their preferences
on a set of shapes and then use this feedback to compute a preference function that
can assign a preference score to each model in the procedural shape space. The density
function is the normalized preference function. Two important characteristics of the user
interface are how quickly a user can provide a preference score and how much knowledge
is gained by scoring the shown models.

The user interface is shown in Figure 4.3. Models sampled from the procedural space
are scaled and organized in one or two regular grids. Our framework not only predicts
the preference score of each model but also can estimate the prediction uncertainty (see
Section 4.5.3). Thus, for each model we optionally show its predicted preference score by
an orange bar (in the range 0-100) and the uncertainty of the prediction in blue. Note
that the range of scores will be normalized later so that only the ratio between scores is
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important and not their absolute values.

The user can choose how many models are shown in the grid(s). We typically use smaller
grids, e.g. 4 × 4, to rate models and larger grids, e.g. 10 × 10, to check the results. The
user can also zoom and pan to see individual models in more detail.

Further, the user can decide how the models are generated to populate the grid. There
are five choices: a) uniform, b) grammar, c) density function, d) uncertainty, and e)
already ranked. Uniform sampling selects candidates that are as dissimilar as possible
using furthest point sampling among a set of candidates generated by the grammar. The
grammar option simply samples models using the pdf of the original grammar. When the
user selects the density function option we sample one grid from a pdf that is proportional
to the preference function and a second grid to sample from the complementary pdf
(100 minus the preference score and then normalized). Showing these two grids helps
us to identify models that are undesirable, but have a predicted high preference value
and models that are desirable, but have a predicted low preference value. The option d)
allows sampling models according to their prediction uncertainty. The last option e) is
used to review already ranked models to check for mistakes.

The user can also choose different sorting strategies. The models in the grid can be sorted
according to their preference score, randomly, or according to an individual feature (see
Section 4.5.1 for a description of features). The user can also select a set of models and
sort the remaining models according to the highest similarity score when comparing to
the selected models. The user is able to use standard selection techniques to provide
preference scores for selected models. After changing scores for one or more models
the user can trigger an update to re-estimate the density function and resample models
shown in the visualization. This process is repeated until the user is satisfied with the
modeled density function.

More complex density functions can be modeled as the normalized product of individual
preference functions, also called factors. Typically, these factors describe the users
preference about particular aspects of the shapes in the shape space. For example, for
the simple grammar in Figure 4.2 the user might want to specify her preference for the
color and the geometry of the models separately. To enable the user to work with factors,
we provide options to create, delete, and name preference functions (factors). Further,
the user can set an active preference function to indicate which preference function she
wants to work with.
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4.5 Learning the Probability Density Function

The user interface described in the previous section enables the user to assign preference
scores to selected models of the shape space. We now describe our technical solution to
obtain a probability density function for the complete shape space using the following
steps: 1) We map procedural models into a feature space (see Section 4.5.1) in which
we assume preference scores are smoothly varying. 2) We define an overall preference
function (see Section 4.5.2) by combining individual preference functions (factors). 3) We
use a non-linear regression technique to interpolate the user preference scores specified
for a set of models to the rest of the shape space. In this part we explain the regression
model, the regularization, and the estimation of hyperparameters of the kernel function
using automatic relevance detection (see Section 4.5.3).

4.5.1 Features

Finding a good function that maps a procedural model m to a feature space X is a
challenging problem. We initially experimented with geometric features, but realized
that such features need to be specifically designed for each grammar separately. For
parametric models, e.g. Talton et al. [85], one can simply use the model parameters as
features directly and obtain good results. While grammar parameters have been used as
features previously [79], this approach only works for simple grammars where all models
have the same structure. For more interesting grammars, each generated model can
be encoded by its derivation tree so that the fundamental problem of feature design
is to encode the discriminative properties of the derivation tree (see Figure 4.4 for an
example).

The feature mapping scheme in our framework is inspired from the tree kernel in natural
language processing [14]. In specific, we count the number of occurrences of each potential
tree path in the derivation tree and use these numbers to map the procedural model to
the feature space. A path in the derivation tree is identified by the sequence of edges.
We label each tree edge by a tuple consisting of the associated rule and the child index
(see Section 4.3.2). For example, for the derivation tree in Fig. 4.4 we can observe a
path (〈id1, 2〉, 〈id4, 1〉). For a detailed discussion of this mapping scheme, we refer the
audience to the corresponding publication [16]. In Figure 4.4 we show the extraction of
selected features from a derivation tree.
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Figure 4.4 – Feature mapping. A model m generated from the toy grammar is shown
together with its derivation tree. We show selected features as possible tree paths with
effective length 2 (p2) and the mapping of the shown model into feature space Φ(m). The
mapping assigns a value v if the corresponding path exists v times in the derivation tree.

Since there can be a large number of uniquely identifiable paths, we need to select a
useful subset of such paths. We make the important observation that rule sequences of
different lengths have varying discriminating power. While shorter sequences are capable
of distinguishing models via the presence of more general properties (e.g. an orange
box versus an orange cylinder), longer sequences separate more specific models (e.g. an
orange box on the bottom versus an orange box on top). After analyzing many useful
preference functions, we concluded that most basic concepts can be explained by short
paths. Therefore, we start out using only paths of up to length k. We then gradually add
longer paths as features if the current feature set becomes incapable of discriminating
shapes that are assigned different preference scores by the user or the user requests more
complex features. In Figure 4.8 we evaluate the effect of this maximum path length k.
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4.5.2 Preference Function Factorization

In our system we allow the user to either model a single global preference function or
to model the preference function as a product of individual preference functions, called
factors. The idea of using multiple preference functions is that the user might want to
specify preferences about particular aspects of the models instead of the models as a
whole. Examples for factors would be the preference for certain materials, roof shapes,
mass models, or window styles. A similar concept, visual attributes, has been employed
in computer vision for various tasks such as object recognition [25].

As an example, consider the following two factors for the toy grammar from Section 4.3.2.
1) Color : The user prefers models that have the same color for the bottom and the top
mesh with preference 100 for orange and 50 for green and blue. 2) Geometry: The user is
interested in mass models where the bottom mesh is a box with preference 100, a cylinder
with preference 50, and a star with preference 0. In Figure 4.5 we show preference scores
for the individual preference functions (factors) as well as their combination. A factor
can involve one or multiple features. Most importantly, in most cases the sets of features
necessary to evaluate different factors are not identical. This is what makes learning
with individual factors more efficient compared to specifying a single preference function.

Specifically, let m be a procedural shape which can be mapped into a D-dimensional
feature space X by Φ(m) = x = [x1, x2, . . . xD]T (in the rest of the paper we will use m

and x interchangeably). We model the user preference function, u(m) = u(x), in this
space as the product of K factors:

u(x) =
K∏

i=1
ui(x). (4.3)

To train a factor ui, the user provides preference scores for a set of models, considering
only the corresponding semantic aspects of that factor. We then interpolate these scores
to the rest of the shape space. We accomplish this task by using a kernel-based Bayesian
regression technique called Gaussian Process Regression (GPR).

4.5.3 Gaussian Process Regression

GPR assumes a Gaussian Process prior over the preference function ui. Thus, any finite
set of n observations [ui(m1), . . . , ui(mn)]T can be considered as an n-dimensional point
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Figure 4.5 – A factorized preference function for the toy grammar. Two factors are
trained separately and later combined to obtain the overall preference function. The
factors are described in the text.

sampled from an n-variate Gaussian distribution. This method can work well with small
training sets, which is necessary for our active learning framework where we expect
reasonable results starting from the first iteration. For a more detailed discussion of
GPR, we refer the reader to the work of Rasmussen and Williams [71].

Similar to parameterizing a Gaussian distribution by its mean and the covariance matrix,
a Gaussian Process prior over ui is specified by a mean function indicating the prior bias
of ui and a kernel function k(m, m′) which specifies how similar ui(m) and ui(m′) are.
In our framework, we assume a zero-mean Gaussian Process prior and learn the kernel
function from user input. This initially assumes that all models are not wanted, an
assumption that was successfully employed in similar contexts, e.g. music ranking [67].

Prediction. Given a set of n models m = [m1, m2, . . . , mn]T and the corresponding
user preference scores, ui = [ui(m1), ui(m2), . . . , ui(mn)]T , our goal is to predict the
preference ui(m∗) of any other model m∗.

Assuming ui(m) has a zero-mean Gaussian Process prior with the kernel function k(m, m′),
[ui, ui(m∗)]T has a joint (n+1)-variate zero mean Gaussian distribution with the following
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covariance matrix:

Cn+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

k(m1, m1) . . . k(m1, mn) k(m1, m∗)
...

k(mn, m1) . . . k(mn, mn) k(mn, m∗)
k(m∗, m1) . . . k(m∗, mn) k(m∗, m∗)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The conditional distribution p(ui(m∗)|ui) is also a Gaussian distribution, which leads to
a closed form solution for ui(m∗) defined at the mean of this distribution as:

ui(m∗) = kT C−1
n ui, (4.4)

where Cn is the top-left n × n block of Cn+1 and

k =

⎡
⎢⎢⎢⎣

k(m1, m∗)
...

k(mN , m∗)

⎤
⎥⎥⎥⎦ .

In addition to predicting ui(m∗), GPR also provides the prediction uncertainty which
measures the confidence of the prediction. This uncertainty is defined as the variance of
p(ui(m∗)|ui) and calculated as follows:

σ2(m∗) = k(m∗, m∗) − kT C−1
n k. (4.5)

We utilize the variance values in our sampling strategy based on prediction uncertainty
(see Section 4.4) to determine the models presented to the user.

Kernel function. Given a kernel function, we interpolate the user preference scores
from a set of shapes to the procedural space using GPR. The choice of the kernel function
heavily influences the results of this regression process. Instead of using a fixed kernel
function, we propose to use a family of parametrized kernel functions and learn the kernel
parameters from user input.

To encode the similarity between procedural models m and m′, we use an anisotropic
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Figure 4.6 – Auto-relevance detection (ARD). We assign preference scores for the 16
models on the left to train the “Color” factor of the toy grammar (Section 4.5.2). Then
we take the green box model highlighted by a red rectangle and create a lot of variations
by changing the heights h1 and h2. The plots on the right show the predicted preference
scores for h1 and h2 varying from 1 to 5. The preference scores learned with ARD are
shown in orange and without ARD in cyan. As the orange lines remain almost constant
when h1 and h2 change, this suggests that those two parameters are irrelevant to the
preference scores.

kernel function k defined over the D-dimensional feature space X as:

k(m, m′) = θ0 exp
(

− 1
2

D∑
d=1

θd(xd − x′
d)2

)
+ β−1δmm′ , (4.6)

where xd and x′
d are the features of m and m′ respectively. β−1δmm′ is a small added

noise to ensure positive-definite covariance matrix where δmm′ is the Kronecker delta.
The kernel hyperparameters θd, d ∈ [1, D] are adapted every time a new user preference
score is specified. They are feature weights indicating the relevance of the corresponding
features. Intuitively, features with small weights do not have a high influence on the
preference scores. We learn these parameters by automatic relevance detection via
maximizing the likelihood of the training data as explained next.

Automatic relevance detection. Typically, the influence of a feature depends on
the preference function a user wants to model. Thus, instead of assigning a fixed θd

to each feature, we adapt the hyperparameters of the kernel function based on user
input. Additionally, our goal is to discard the irrelevant features by assigning them a
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0-weight. We achieve this goal by optimizing for the hyperparameters θ = (θ0, θ1, . . . θD)
that maximize the log likelihood of the training samples:

log p(ui|θ, m) = −1
2

log |Cn| − 1
2

uiT C−1
n ui − n

2
log(2π). (4.7)

In order to avoid overfitting, we add a Lasso regularization term and minimize the
following energy function:

E(θ) = − log p(ui|θ, m) + λ
D∑

d=1
|θd|. (4.8)

We define the hyperparameters to be non-negative, leading to |θd| = θd. Instead of
defining constraints to avoid negative θd, we optimize for log(θd) using the Conjugate
Gradient method. The additional Lasso term also favors as few non-zero hyperparameters
as possible resulting in the assignment of 0-weights to irrelevant features.

When training two attributes of the toy grammar (see Section 4.5.2), the block heights (h1

and h2) are irrelevant to the preference scores. This can be detected by our framework,
as illustrated in Figure 4.6.

4.6 Generating Models According to a Probability Density
Function

After learning the preference function u(m), the next step is to generate procedural
models with a pdf proportional to u(m). We provide three options for this task including
1) Parameter learning: modifying the grammar parameters without changing the rule
structure. 2) Structure learning: generating a new context-free grammar by changing
both rule structure and rule parameters. 3) Rejection sampling: standard rejection
sampling [5] as a post-process on generated models.

Parameter learning is very simple, but not very flexible. Thus the learned pdf does
not match the target pdf well in most cases. Rejection sampling produces results
exactly according to the target pdf, but it is slow and not compatible with existing
grammar derivation engines. Structure learning is the default solution of our framework.
It approximates u(m) well and sampling can be done by the computed context-free
grammar directly.
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Parameter learning. This approach keeps the rule structure of the input grammar
and only modifies rule parameters, specifically rule probabilities. We use the standard
histogram-based estimation of rule probabilities of probabilistic context-free grammars
(c.f. [30]). This naive solution does not perform well as shown in Table 4.3. The main
problem is that it ignores the dependency between rule choices. For example, the choice
of table bases may depend on how many legs this table has.

Structure learning. We propose this second option to deal with the aforementioned
drawback. We use a splitting operation to split the original grammar and then train a
mixture of grammars. While this generates a context-free grammar with more rules, it
gives us the flexibility to encode conditional dependencies between rule choices.

We propose to use a splitting operation that is inspired by the concept of parent annotation
in natural language processing [30]. The splitting operation splits a symbol in the original
grammar into multiple different symbols by indexing it with the parent edge labels (see
Section 4.5.1). The splitting operation therefore changes rules where the symbol appears
on the right hand side and it duplicates all rules having the original symbol as left
hand side. For example, in Figure 4.13 a V-shape block at the ground level of the
Skyscraper grammar can obtain a different symbol from a V-shape block in the upper
level. The splitting operation does not change the shape space, but it increases the
degrees of freedom to manipulate its pdf. Recursively splitting every symbol in the
original grammar leads to an exponential growth in the number of rules. Thus, we only
split the symbols involved in the relevant features detected by the learning process in
Section 4.5.3.

After performing the described splitting operations we train a new grammar G′ as the
combination of K component grammars G′

i. (K is determined by the algorithm described
later.) In this mixture, a component grammar G′

i is selected with a probability αi:

αi : G′ → G′
i.

We start with a training set T = (m1, m2, . . . mN ) sampled from the target pdf u(m)
(using rejection sampling). We then find a set of hyperparameters η consisting of αi

and the grammar parameters of G′
i to maximize the log likelihood of the training set

L(T : G′) =
∑N

i=1 log p(mi|G′). The value of p(m|G′) for generating a model m using G′
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is a weighted combination of the pdfs from all component grammars G′
i:

p(m|G′) =
K∑

i=1
αip(m|G′

i). (4.9)

Similar to learning Gaussian Mixture Models (GMMs), we optimize for η using an
Expectation-Maximization approach. Both E-step and M-step are identical to those
in the GMM case, except that in the M-step, we train grammar parameters instead of
Gaussian parameters. In particular, in the E-step, we find the affinity of G′

k to each
model mn. This affinity measures how likely mn has been generated from G′

k

wkn = p(G′
k|mn, η) =

αkp(mn|G′
k)∑K

i=1 αip(mn|G′
i)

. (4.10)

In the M-step, we first calculate the sum of affinity of each component grammar Nk =∑N
n=1 wkn. This affinity sum can be considered as the effective number of models that

have been generated from G′
k. We can then update the mixture weights as follow:

αnew
k =

Nk

N
. (4.11)

To initialize the grammar mixture, we cluster the training set T using the kernel function
learned previously, and train one grammar for each cluster using the aforementioned
histogram-based method. To compute the clustering, we build a neighborhood graph,
where two models are connected if their pairwise difference is smaller than a threshold.
The pairwise difference between models is derived from the learned kernel. The threshold
is set to 0.001 of the maximum difference. We then iteratively look for the model with
the most neighbors, put it together will all its neighbors in a new cluster, and remove all
elements of the new cluster from the graph.

Splitting symbols and clustering the training set significantly reduces the number of rules
in our design scenarios. Nonetheless, for an artificially designed worst case preference
function, an exponential growth of rules (see Section 4.3.2) cannot be avoided.

Rejection sampling. This algorithm does not compute a new grammar, but instead
modifies the sampling as a post-process. For each generated model m, we calculate
its generation pdf p(m) by multiplying the associated rule probabilities and the pdf of
parameters of shape operations (e.g. floor height). This model is accepted with the rate
u(m)

Cp(m) , where the constant C is the upper bound of u(m)
p(m) found empirically by sampling a
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large amount of models in a preprocessing step. Since rejection sampling is a post-process,
it can be used in conjunction with the original grammar, as well as grammars generated
by parameter learning or structure learning.

4.7 Evaluation

Example grammars. We designed four grammars for our tests: Furniture, Building,
Skyscraper, and Airplane. To compare to previous work we also use the Weber &
Penn parametric tree model implemented in Arbaro1. Table 4.1 shows some statistics
describing the complexity of the grammars and the parametric model.

NΘ NSYM NP

Furniture 50 38 75
Building 26 80 122

Skyscraper 39 27 61
Airplane 8 44 26

Tree 73 N/A N/A

Table 4.1 – The table shows the number of parameters (NΘ), the number of symbols
(NSYM ) and the number of rules (NP ) for our input grammars and the parametric tree
model.

Implementation. Our framework is implemented in C++ and we used a MacBook Pro
with Intel i7 2.6 Ghz CPU for our tests.

Design scenarios. We generate a set of design scenarios with varying complexity
shown in Table 4.2. For each scenario, we define the ground truth pdf by labeling a
pre-generated set of up to 5000 models. In order to validate our results, we use Jensen-
Shannon divergence (also known as information radius) [50] to compare the density
functions designed using our interface and the ground truth density functions. We
additionally measure the correlation between these two density functions and provide the
correlation scores in Appendix B. These values are computed based on the pre-sampled
models.

We show the outputs of our design scenarios for the Skyscraper grammar in Figure 4.13,
the Airplane grammar in Figure 4.14, and the Furniture and the Building grammar in

1http://arbaro.sourceforge.net
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Preference scores
F1 Valid tables with one leg (70), two legs (20) and four legs (10), non-standing

tables (0)
F2 Round top & light wood tables (60), rectangular top & dark wood tables (40),

others (0)
F3 Valid tables with steel materials (70) and wooden materials (30), non-standing

tables (0)
F4 Valid tables with round top (70) and rectangular top (30), non-standing tables

(0)
B1 Building styles: office (40), R1 (20), R2 (20), R3 (20), mixed styles (0)
B2 Big building (5-6 floors)& L-shape (50), small building (2-3 floors) & rectangular

shape (50), others (0)
B3 Building shapes: L-shape (60), rectangular shape (40), others (0)
B4 Building size: big building (80), small building (20), others (0)
T1 Plausible tree (100), non-plausible tree (0)
S1 Skyscrapers with all rectangular blocks (60), V-blocks (20), cylindrical blocks

(20), mixture of block types (0)
S2 Skyscrapers with rectangular base (100), cylindrical base (50), V-base (0)
A1 Old-style airplanes (Biplane or Fokker) (100), modern airplanes (commercial,

transport and jet fighter) (50), airplanes with non-matching components (0)

Table 4.2 – Design scenarios for Furniture (Fi), Building (Bi), Skyscraper (Si), Airplane
(A1) and Weber & Penn trees (T1). Valid tables are tables that stand by themselves. For
aesthetic reasons, we also require legs and bases to match. Building styles are defined
as follows. Office: glass windows, glass door and flat roof. R1: residential blocks with
bright wall colors, Paris-like windows, ground floor shops. R2: residential blocks with
simple windows and doors. R3: residential blocks with old-style windows and doors.
Example models with their preference scores are given in Appendix A.

Figure 4.12. Each design task is represented by a 4 × 4 grid of models sampled from the
designed density function. Bigger grids of size 10 × 10 can be found in Appendix B.

Evaluation of the user interface. We provide multiple tests to evaluate the per-
formance of our framework. In the first test, we evaluate the four different sampling
strategies (see Section 4.4) used to sample the models to display. The results in Fig-
ure 4.7 (a-b) empirically show that sampling from the current pdf gives good convergence
rate and we choose this as the default strategy. We next evaluate the effect of the batch
size, i.e. the number of models a user ranks (see Figure 4.7 (c-d)). In each step, we
show two grids of size n × n, one sampled from the current pdf and the other from the
complementary pdf, query for the preference scores, recompute the pdf and then resample
the models to show in the grids. There are two aspects we consider when choosing a
batch size. First, the learning efficiency: we can see from our experiments that smaller
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Figure 4.7 – (a) - (b) Comparison of different sampling strategies for the factor F1 (a) and
B1 (b): sampling randomly (red), uniformly (green), by prediction uncertainty (orange)
and based on the current pdf (cyan). (c) - (d) Comparison of sampling batch size for the
factor F1 (c) and B1 (d) when using two grids sampled from the current pdf and the
complementary pdf of size n × n. Note that these curves start at different points due to
different numbers of training data inserted in the first iteration.

batch sizes lead to more informative samples. Second, the user interface speed: in our
interface, the user can quickly rank multiple models without recomputing the pdf (using
a combination of sorting and selection). This favors larger batch sizes. Considering both
aspects, we propose that showing two 4 × 4 grids to the user is a good trade-off. In
the third test, we show the benefit of factorizing the preference function. We compare
a factorized preference function and non-factorized preference function in Figure 4.11.
Using a factorized preference score leads to much better convergence.

Evaluation of the feature design. In Figure 4.8 we evaluate the parameter k (path
length) (see Section 4.5.1) on the Furniture grammar (Figure 4.8a, scenario F4) and the
Skyscraper grammar (Figure 4.8b, scenario S2). For each scenario, we obtain 4 sets of
features associated with paths in the production trees with maximum lengths of 1, 2, 3
and 4. While the convergence does not vary significantly in F4, the set of features with
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Figure 4.8 – Convergence of the pdf learning process when using sets of features associated
with different maximum path lengths. We evaluate the convergence rate on the Furniture
grammar (scenario F4, (a)) and the Skyscraper grammar (scenario S2, (b)). The feature
sets with maximum path length 1 are shown in red, length 2 in orange, length 3 in cyan
and length 4 in black.

maximum length 4 (black) slows down the convergence in comparison to our proposed
scheme (maximum length 2, orange). Note that the feature set of maximum length 1
(red) is not sufficient to learn the scenario S2.

Evaluation of framework parameters. We also show an evaluation of the noise level
of the kernel function (Figure 4.9a) and the weight for Lasso regularization (Figure 4.9b).
We empirically select the noise level of 0.01 and a weight of 0.1 for Lasso regularization.
Our results are generated based on these parameters.
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Figure 4.9 – (a) Evaluation of noise levels of the kernel function on the design scenario
F1. Excessive noise (black) or limited noise (red) both result in undesirable convergence
rate. (b) Evaluation of the lasso regularization factor λ on the design scenario B3. A
suitable amount of lasso regularization improves the convergence in comparison to no
regularization (red).
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Evaluation of generation strategies. Finally, in Table 4.3, we evaluate the perfor-
mance of parameter learning and structure learning by comparing the JS divergence scores
of their learned pdfs with the target pdf for all design scenarios. By modifying only the
grammar parameters, parameter learning cannot approximate the target pdf well (around
0.20 divergence score). Much better results can be achieved with structure learning. One
exception is B3, where the design scenario involves only one rule, which is simple enough
to achieve by parameter learning. Nonetheless, structure learning performs equivalently
well. To separately evaluate the effect of the split operation in structure learning, we
train a mixture of original grammars (without any previous splitting operations). We
perform this test on the design scenario S2 and observe a JS score of 0.18096 compared
to 0.0816 for a full implementation of structure learning. This low-quality output is
expected as S2 requires paths of effective length 2 as features to describe the geometry
of the ground block.

F1 F2 F3 F4 S1 S2
Original 0.32824 0.44492 0.28037 0.28969 0.24646 0.31335
P-Learning 0.21976 0.25386 0.16915 0.18537 0.08854 0.19631
S-Learning 0.06850 0.06678 0.07820 0.08400 0.00090 0.08162

B1 B2 B3 B4 A1
Original 0.34923 0.34829 0.09858 0.11973 0.21040
P-Learning 0.10541 0.28129 0.00710 0.12177 0.16748
S-Learning 0.06661 0.08254 0.00712 0.07774 0.06269

Table 4.3 – JS divergence score w.r.t the target pdf to compare parameter learning
(P-Learning) and structure learning (S-Learning). The design scenarios (F1-F4, S1, S2,
B1-B4, A1) are described in Table 4.2. Structure learning achieves significantly lower
divergence scores. The JS scores from the original grammars (Original) are also included
as a baseline for comparison.

Comparison to kernel density estimation. Figure 4.10 compares our framework
to a kernel density estimation method based on Talton et al. [85] using the same number
of training examples. We modify the original kernel density estimation used by Talton
et al. to account for models having different preference scores by using these scores as
weights. This reduces the amount of training examples needed by the original method.
Still, we can observe a better convergence using our framework. In Figure 4.11 (b-d)
and Figure 4.14 we compare the convergence of our method and Talton et al.’s method
for different design scenarios of our grammars. In the Furniture grammar (F1), our
framework needs 245 models to achieve a divergence score of 0.01 while the density
estimation requires 438 models. The convergence rate is clearly better with our method
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Figure 4.10 – (a) Weber & Penn trees with random parameters are often undesirable
(red). Both Kernel Density Estimation [85](b) and our method (c) can bias the model
distribution towards good tree samples. In verification with the ground truth using
Jensen-Shannon divergence, our method (orange) converges faster than Talton et al.’s
method (cyan).

in the Building grammar (B1), the Skyscraper grammar (S1), and the Airplane grammar
(A1). One practical difference between our framework and Talton et al. is that we can
directly give feedback about models we do not want (by giving a preference score of 0).
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Figure 4.11 – (a) Benefit of factorizing the preference function. Training two factors F3
and F4 separately (orange) gives a better convergence than training their combination
(cyan). (b - d) Our method (orange) converges faster than Talton et al.’s method (cyan)
in the Furniture (F1) (b), Building (B1) (c) and Skyscraper (S1) (d) grammars.
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Figure 4.13 – (a) Random samples of the Skyscraper grammar. (b) Design scenario S1.
(c) Design scenario S2. See Table 4.2 for the descriptions of S1 and S2. While S1 can be
achieved using our initial set of features (random parameters of the shape operations,
counts of the occurrence of shape labels in the derivation tree, and counts of paths,
with effective length 1 in the derivation tree), S2 requires paths of length 2 as features.
Jensen-Shannon divergence (S1 - blue, S2 - orange) are shown to evaluate the goodness
of fit.
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Figure 4.14 – (a) Random samples of the Airplane grammar. (b) Design scenario A1 (see
Table 4.2). The JS divergence plot compares our method (orange) and Talton et al.’s
method (cyan).
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4.8. Limitation and Future Work

Scene Modeling. We also show a complete scene generated using our Building gram-
mar (See Figure 4.15). We separate the city into three regions and model a different
density function for each region. The parcels for placing the buildings and the streets
are given.

4.8 Limitation and Future Work

4.8.1 Limitations

There are several limitations of our framework.

First, our system starts sampling models using the pdf of the original grammar. As a
result, models having very low initial probability are unlikely to be sampled.

Second, in some design scenarios which involve discontinuities in the preference scores of
continuous variables, our framework cannot learn the pdfs exactly with a finite number
of training samples. Two examples are given in Figure 4.16. This is a typical problem
in Gaussian Process Regression as one cannot represent exactly a discontinuity using a
finite number of gaussians. Nonetheless, our framework can learn these scenarios when
the variables are discretized.
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Figure 4.16 – We compare the learning accuracy of scenarios associated with continuous
variables (orange) and discrete variables (with 100 discrete values each, cyan). We
generate a box with three variables width, depth and height which take random values
from 1.0 to 10.0. In (a), the scenario involves one variable (all boxes with height <
5.0 are preferred). In (b), the scenario requires a non-linear combination of these three
variables (all boxes with volume < 125.0 are preferred). For continuous variables, it will
require infinite number of training samples to learn the pdfs exactly. Nonetheless, our
framework can learn these two scenarios with discrete variables.
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Figure 4.17 – We design an additional scenario for the Skyscraper grammar which requires
the feature set with maximum path length 4. In this scenario only skyscrapers with 3
blocks are preferred and the preference score depends on the window color of the top
block, in particular, skyscrapers with black windows in the top block receive a score
of 50, green windows 30, blue windows 20 and other colors 0. The slow convergence is
observed due to the size of the feature set.

The next limitation concerns the convergence of complex design scenarios involving
features associated with long tree paths. Figure 4.17 shows a slow convergence rate
associated with a new design scenario of the Skyscraper grammar which requires a large
feature set (maximum path length 4).

Finally, as our features only contain branches in the production tree, our framework
cannot handle complicated scenarios which require subtrees of the production tree as
features. For example, in the Skyscraper grammar, one may prefer skyscrapers with
a black cylinder block above a green box block but not a blue box block. As window
colors and block geometries are in different branches, feature sets with only tree branches
are not sufficient for this situation. Simply adding subtree features to our framework
might not be a solution as this increases the number of features exponentially. This
example also illustrates the fact that the success of the regression depends on how the
initial grammar is written. We leave further improvement in our feature design for future
research.

4.8.2 Future work

In future work we would like to extend our approach to the analysis of large shape
repositories. While current approaches mainly use probabilistic models to encode shape
variations (e.g. [31]), we believe that it is more useful to use grammars and probabilistic
models in combination. Grammars are great to encode variations in model topology (i.e.
how parts are combined) and probabilistic models are great to encode part variations
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and part compatibility. Further, we would like to extend our framework to learn
spatial distributions. For example, we could try to learn the distribution of residential,
commercial, and industrial areas in a city or the distribution of tree species in a forest.

4.9 Concluding Remarks

In this chapter, we have presented a framework that enables a user to interactively design
a probability density function for a shape grammar and to generate models according
to the designed pdf. We thereby extended existing exploratory modeling tools that
are suitable to select a single model from a shape space to modeling a distribution of
shapes. We proposed a user interface to display, sort, and sample models to enable a
user to quickly assign preference scores. To propagate user assigned preference scores
to the complete procedural shape space, we proposed a novel kernel function to encode
the similarity between two procedural models. This kernel function is then used for
Gaussian process regression with auto-relevance detection and l1 regularization. Finally,
we introduced a structure learning method to automatically generate a new context-free
grammar which approximates the learned pdf well. Our approach can benefit both non-
expert and professional users to more effectively design with procedural and parametric
models.
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5 Discovering Structured Variations
via Template Matching

detected similarities

original 
template

instances discovered
by our algorithm(initial) (final)

pairwise element smoothness

initial MVS reconstruction

fitted template instances

Figure 5.1 – Given a 3D acquisition of a building (e.g. MVS reconstruction) and a
set of deformable templates, we present an iterative coupled template matching and
deformation analysis to detect element similarities. From an initial pairwise element
similarity matrix, we optimize to reveal element clusters as shown in the final similarity
matrix. We show the selected templates (in green) and the similarities detected across
the instances of these templates matching to each element cluster (indicated by green in
the graph).

While Chapter 3 and Chapter 4 investigate algorithms to synthesize shape variations, this
Chapter is dedicated to the analysis part of the geometry processing pipeline for structured
variations. Understanding patterns of variation from raw measurement data remains a
central goal of shape analysis. Such an understanding reveals which elements are repeated,
or how elements can be derived as structured variations from a common base element.
We investigate this problem in the context of 3D acquisitions of buildings. Utilizing a set
of template models, we discover geometric similarities across a set of building elements.
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Each template is equipped with a deformation model that defines variations of a base
geometry. Central to our algorithm is a simultaneous template matching and deformation
analysis that detects patterns across building elements by extracting similarities in the
deformation modes of their matching templates. We demonstrate that such an analysis
can successfully detect structured variations even for noisy and incomplete data.

5.1 Foreword

Many applications involving digital cities, such as mapping and navigation, heavily
depend on 3D models of buildings. One way to create such content is to digitize
real world scenes using different 3D acquisition technologies such as multi-view stereo
reconstruction (MVS) or 3D scanning. However, many challenges arising from lighting
variations, occlusions, specular surfaces still remain unsolved, and often result in noisy
and partial reconstructions.

A possible approach to provide effective priors to augment reconstruction algorithms is to
explore similarity patterns among building elements. However, it is extremely challenging
to recover such patterns from noisy and incomplete raw acquisitions such as MVS or 3D
scan data. In this chapter, we present an algorithm to discover element similarities by
directly analyzing the given raw acquisitions.

We focus on detecting two types of element similarities that are common in urban scenes.
Given a common base geometry and a structure-preserving deformation model, some
elements are derived via identical deformation parameters and thus exhibit full similarity.
Some elements, on the other hand, share only a subset of the deformation parameters
and thus exhibit partial similarity. Such elements demonstrate structured variations
of the base geometry, e.g. windows of Gothic style with identical arch but varying
height. In order to capture this general notion of similarity, we propose to utilize a set
of template models of common element types. Each template acts as a base geometry
and its variations can be obtained by deforming the template. As such, we equip each
template with a suitable structure-aware deformation model that defines a rich set of
structured variations from the base geometry. Given such a set of templates together
with the deformation model, we abstract element similarities by similarities in template
deformations.

Robust template fitting is necessary to reliably detect element similarities. However,
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noise and outliers in raw reconstructions unfortunately prohibit this. One way to improve
template fitting is to propagate information across similar elements. However, neither
the template deformations nor element similarities are known upfront, which results in a
“chicken-and-egg” situation. Nonetheless, we find out that, by iterating between these two
processes, the robustness of template fitting and and the accuracy of similarity detection
(via analyzing the template deformations) is simultaneously improved. Hence, for each
template, we analyze the template deformations to discover the subset of deformation
parameters that are similar across multiple elements matching to this template. We
repeat the template deformation across these elements by enforcing such parameters to
stay similar.

5.2 Contributions

Our key contribution is to extract similarity patterns among a set of input elements
by utilizing deformable templates. Such patterns not only reveal replicated elements,
but also expose structured variations among elements that are derived from the same
base geometry. Central to our analysis is the coupling of template fitting across multiple
elements via the extracted deformation parameters. In contrast to prior work which
focuses on individual template fitting, this coupling enables our algorithm to handle
challenging datasets with significant amount of noise and missing data.

5.3 Overview

We present a template matching and deformation algorithm to analyze structured
variations between building elements. Our algorithm operates on a 3D reconstruction
(MVS or scan) of a building where an element, e.g. a window, constitutes the subset of
the input reconstruction falling inside its bounding box. To facilitate the analysis, we use
a set of template models of typical element types such as windows. We associate each
template with a set of deformation parameters that define its structured variations (see
Figure 5.4). For each of the input elements, we identify the best matching template and
compute the best fitting deformation of this template, which we call a template instance.
A key feature of the proposed algorithm is to reveal geometric similarities among the
elements by detecting patterns in the deformation parameters of their matching template
instances.
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Figure 5.2 – (a) In case of perfect input data, elements that are exact replicas of the
same geometry are matched with the same deformed instance of the regular template T
and mapped to a single point in the associated 2D template deformation space. Loose
clusters (dotted ellipses) are formed by elements with partial similarities, i.e. same width
or height. (b) Clear clusters in the deformation space cannot be observed with the
presence of noise and missing data. Similarity matrices computed using the pairwise
element distances in the deformation space reveal this behavior. The bars on the left
and bottom of the matrices identify the elements.

We motivate our proposed framework by a toy example of 2D shapes given in Figure 5.2.
The scene contains 8 rectangles and our goal is to detect shapes that are exact replicas
and shapes that share partial similarities i.e. same width or same height. We consider
both perfect input data in Figure 5.2a and simulated noisy and partial data in Figure 5.2b.
We use a rectangular template T and deform T to match the input shapes by scaling
its width and height. Each deformed template instance is mapped into a 2D template
deformation space, and we calculate the pairwise similarity between template instances
based on the Euclidean distance in this space.

In case of perfect input data, elements which are exact replicas (rectangles with the
same color) are matched to the same template instance. Elements which share partial
similarities are matched to different template instances. However, deformation parameters
(i.e. width or height) defining these instances are partially the same. As such, an intuitive
approach to detect full and partial similarities between input elements is to deform the
template independently to each element, and then detect patterns across deformation
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5.3. Overview

parameters.

However, in case of real data (see Figure 5.2b), due to noise and partial data, even
elements that are exact replicas are often matched to different instances of the same
template. Similar elements then map to scattered points in the template deformation
space which makes the aforementioned naive solution fail. To address this issue, we
propose to analyze the input elements simultaneously.

Figure 5.3 illustrates main stages of our framework. We begin by deforming a set of
templates to fit the given elements. We combine observations from template deformations
to map each element to a common subspace representation. Intuitively, similar elements
are expected to map to nearby points in this subspace resulting in small pairwise element
distances. Using these distances as constraints, we consistently label each element with a
deformed template instance. For each template, we discover the subset of its parameters
that are similar across elements matching to different instances of the template. We
repeat template deformation by coupling these parameters, i.e. enforcing them to stay
similar. This iterative process consolidates information across similar elements and
progressively brings them closer in the common subspace, which then reveals better
clusters of elements (see Figure 5.12). We would like to emphasize that, this analysis is
independent of the choice of the template deformation model.
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5.4. Simultaneous Template Matching & Deformation

5.4 Simultaneous Template Matching & Deformation

Given a set of elements S := {si} and a set of templates T := {Tj}, our goal is to detect
the full and partial similarities between si by analyzing the template deformation. As
illustrated in Figure 5.3, central to our framework is the iteration amongst four stages: 1)
template deformation, 2) subspace analysis, 3) MRF labeling, and 4) similarity detection.
Our analysis is independent of the chosen deformation model and a collection of the
deformations models used in our experiments will be presented in Section 5.5. In the
following, we briefly cover the main points of our algorithm. For more details, we refer
the audience to the corresponding publication [11].

5.4.1 Template Deformation

In the first stage, we deform each template Tj to fill all the elements in S by minimizing
the following energy:

min
dj

∑
si∈S

Efit(Tj , di
j , si) + wsimEsim. (5.1)

Here, di
j represents the deformation parameters of T i

j , i.e. the instance of Tj that best
fits si. dj is a vector of deformation parameters constructed by concatenating di

j for each
element si. The first term measures how well the template fits each element individually
while the second term minimizes the difference between the deformation parameters of
Tj detected as being similar across multiple elements. Efit(Tj , di

j , si) is defined based on
the chosen deformation model (see Section 5.5). As the element similarities are initially
unknown, we set Esim = 0 in the first iteration. This energy component will be updated
with new similarities revealed in each iteration.

5.4.2 Subspace Analysis

Each template provides some measurement about the similarity amongst input elements
by analyzing the deformation parameters of that template. The objective of this stage is
to combine individual measurement from each template to extract consistent similarity
information.

In particular, to capture the similarity observation form each template Tj , we associate
it with a graph Gj = (N, Ej) composed of a set of nodes N where each node represents
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Chapter 5. Discovering Structured Variations via Template Matching

one input element, and a set of weighted edges Ej . An edge eik connecting two nodes
representing input elements si and sk is weighted by

wik = Ce−‖di
j−dk

j ‖2
, (5.2)

where C is a scaling factor.

We then combine information from all graphs Gj by adopting the subspace analysis
approach of Dong et al. [21]. This method first computes a subspace representation
of each graph using the corresponding graph Laplacian. Multiple subspaces are then
combined into a single representative subspace U by constructing a common graph
Laplacian. U maps each element to a low dimensional space and the Euclidean distance
in this space will be used as the consistent pairwise distance between input elements in
the subsequent step.

5.4.3 Element Labeling

Our objective in this stage is to label each si with the tuple (T i, di) where T i is the best
fit template and di is the deformation parameter from T i to si. This tuple defines a
matching instance for the corresponding element. Once this labeling is established, the
similarities are revealed by matching parameters in di.

We first find a set L of potential labels. Each label (T i, di) consists of a discrete
template choice and continuous deformation parameters. One can discretize the space of
deformation parameters by sparsely sampling it to obtain a discrete set of labels. However,
such discretizing process does not guarantee the matching instance to geometrically fit
to the element. We instead utilize the set of deformation parameters obtained in the
template deformation stage to construct the potential labels. The label set is then
constructed as L = {(Tj , di

j)}.

We impose smoothness assumption on the labeling process so that similar elements will
be assigned similar labels. The element pairwise distance is already obtained from the
previous stage. We calculate the label pairwise distance as the Euclidean distance between
the deformation parameters if the two labels belong to the same template. For labels
from different templates, the pairwise distance is assigned with a fixed value.

We formulate the labeling problem as a Markov Random Field (MRF) optimization [17]
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5.4. Simultaneous Template Matching & Deformation

with the label set L constructed above. We minimize an energy consisting of the data,
the smoothness, and the label costs as follow:

∑
si

Ed(si, Li) + ws

∑
si,sk

Es(si, sk, Li, Lk) +
∑
Tj

λTj EL. (5.3)

The data term Ed(si, Li) measures the fitness between the deformed template instance
associated with a label to a element. It is defined as the average distance between the
closest point correspondences established between the deformed template instance and
the element. The smoothness term Es(si, sk, Li, Lk) enforces consistent labeling based on
the element pairwise distance and the label pairwise distance described above. The last
term in Equation 5.3 penalizes each unique template that appears in the final labeling.
Specifically, we group the candidate labels coming from the same templates into subsets
and a fixed label cost EL (equal to 1/5th of the average data cost in our experiments) is
induced if at least one label is used from such a subset. The indicator variable λTj is set
to 1 if an instance of the template Tj appears in the final labeling.

Due to noise and partial data, replicated elements initially often map to different labels.
The smoothness term progressively enforces these elements to be assigned to the same
label and thus brings them closer. This leads to the formation of red blocks in the
pairwise smoothness matrices in the final iterations of our algorithm (see Figure 5.9). If
there are similar templates, similar elements might get assigned to instances of different
templates. The label cost favors the use of as few unique templates as possible and thus
enables a consistent labeling. Both smoothness and label costs enforce the selection of
fewer templates. Hence, elements that exhibit variations of a base geometry are matched
to different instances of the same template (see Table 5.1).

5.4.4 Similarity Detection

Once each element is labeled with a matching template instance, we evaluate the labels
to extract a set of similarity relations R = {r} among the elements. In particular, for
each pair of elements si and sk which are labeled with two labels (T j , di) and (T j , dk)
belonging to the sample template, we define the relation r = (si, sk, cj , Tj). The vector
cj is a binary vector of size equal to the number of deformation parameters of Tj which
encodes the matching between entries of di and dk. In specific, if the difference between
two corresponding entries of di and dk is smaller than a pre-defined threshold, we set
the corresponding entry of cj to one. The threshold is set to 0.5% of the maximum
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diagonal length of the element bounding boxes. Such coupled parameters indicate partial
similarities between si and sk with respect to template Tj . A vector cj consisting of
all ones (cj = 1) indicates that si and sk are exact replicas. In this case, we define an
additional relation for these elements for all other templates with cj = 1.

In subsequent iterations of our algorithm, we enforce the coupled parameters to stay simi-
lar during the template deformation. To do so, we update the Esim term in Equation (5.1)
as follow:

Esim =
∑

(r)∈R

Edist(r). (5.4)

Here, the term Edist(r) = cT
j (di

j − dk
j )2 for r = (si, sk, cj , Tj) penaltizes the difference

between the coupled deformation parameters of the new instances of Tj that fit si and
sk. With the new deformation parameters, we repeat the labeling process as described
above. The iterative process terminates when there is no change in the final labeling.

5.4.5 Extension to Large Template Sets

When performing the proposed coupled analysis, it is possible to consider every template-
element pair for deformation, especially if the number of utilized templates is low.
However, as the size of the template set grows, a pre-organization of the templates
becomes necessary. This organization not only reduces computational complexity but
also provides high-level relations among the templates that can be used to guide the
template matching process.

In our experiments, we propose a simple strategy to group the templates based on their
deformation capabilities (see Section 5.6). Given a grouping of the templates, we first
identify the best fitting group for each element by aligning the bounding boxes of each
template-element pair via a similarity transformation and compute the fitting error. We
select the template group with the minimum average of such fitting errors. For each
element, we deform templates only in its matching group. Each group of templates are
thus deformed only to a subset of the elements and we perform the subspace analysis
independently for each such subset. For every pair of elements mapped to the same
subspace, we compute a pairwise smoothness weight as explained before. Any pair of
elements mapped to different subspaces are assigned a smoothness weight of 0. During
labeling optimization, we construct a common candidate label set for all the elements
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original 
template

instances

C C C C 4C

C

CC

C

4C

parametric column instances

Figure 5.4 – For the template T equipped with the i-Wires deformation model, we
illustrate various instances (T 0, ..., T 3) with different parameters of the detected feature
wires (shown in red). We also show several column instances generated by a parametric
model. Each instance is visualized as a point in the corresponding deformation space
using multi-dimensional scaling projection.

irrespective of their matching template groups. This enables an element to be possibly
matched to a template instance from a different group and thus recover from any error
that might have occurred during the initial group matching.

5.5 Template-Based Deformation

Given a deformation model, we have presented a template matching algorithm. We
evaluate this algorithm by adopting two deformation models suitable for architectural
data. For element types with dominant feature lines such as windows or doors we adopt
the structure-aware i-Wires deformation model [27]. We also demonstrate an example
of a parametric model on curved columns. Each deformation model defines the space
of structured variations for each base template. In Figure 5.4 we visualize structured
variations associated with a window using the i-Wires model and variations of a helical
column using the parametric column model. Some non-trivial structured variations such
as T 2 and C4 can be obtained by using this generalized concept of structure. We next
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Chapter 5. Discovering Structured Variations via Template Matching

provide a brief description of these deformation models.

i-Wires deformation model. In an offline pre-processing stage, we equip each template
with a set of feature wires extracted by the algorithm presented in [27]. These feature
wires are associated with “sharp” edges in the template mesh. They are compound wires
consisting of one or more parametric atomic subwires. In our system, we consider the
two types of atomic subwire: 1) straight line and 2) circular arc. We parametrize a
straight line by its length and direction and a circular arc by the center, the radius and
the arc opening angle. A wire is then parametrized by the combination of parameters of
its subwires. We also identify in this stage structural information of the template, such
as reflection symmetry or planarity of feature wires. All the structural information is
encoded as constraints between subwire parameters and will be preserved during the
deformation.

During the template deformation process, we optimize for the wire parameter to fit the
template wire features to the 3D line features of the point cloud. The 3D line features
are calculated by applying multiview stereo matching on 2D edges of input images [2].

Parametric deformation model. We use a parametric deformation model to demon-
strate our analysis on element types such as curved columns. Our parametric model
is based on a helical structure, i.e. a circle swept along a 3D helix curve. A variety of
columns can be generated by applying CSG operations, i.e. union or difference, to a set
of helixes. Each helical structure is characterized by the pitch, radius, and start angle of
its helix and the radius of its swept circle.

The parametric model we use to generate curved columns acts an abstract template
where each parametric column is an instance of this template. We begin our analysis by
first generating a set of concrete column instances given the input elements. We cut each
input element along its up direction and fit circles to the resulting outline curves. We
generate helical structures in a RANSAC-like fashion by finding groups of circles that
are related by the same pitch and thus are possibly swept along the same helix. We then
evaluate different combinations of such helicals, i.e. different number and different CSG
operations, to generate candidate columns fitting the element. Starting from this initial
set of parametric columns, our coupled analysis identifies the best fitting column instance
for each element. Column parameters are further optimized by coupling the parameters
of the individual helical structures of the column instances detected as similar.
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5.6. Evaluation

5.6 Evaluation

Datasets. We demonstrate our algorithm both on MVS data (we compute camera
parameters using the VisualSFM tool [92] and the dense reconstruction by PMVS [26])
and scans acquired with Microsoft Kinect (using the software Skanect 1).

Element selection. Our algorithm detects similarity patterns among a set of building
elements. Even though there exist automatic facade parsing methods exploiting the
presence of horizontal and vertical splitting lines and regular grids [60], we observe that
such methods fail to identify the elements of more complex architectural scenes. Instead,
we utilize a semi-automatic approach. For MVS reconstructions, we adopt the method of
Ceylan et al. [10] which requires the user to roughly mark an element of interest, e.g a
window frame, in only one of the input images and automatically detects its repetitions.
We revert to user input to mark any missing element in case of strong variation or large
occlusions. For scan data, we require the user to mark the elements in 3D by defining
their bounding boxes. Table 5.1 provides the number of user marked elements for each
of our examples. Note that although additional user input to cluster similar elements
may improve the results, this is not sufficient to detect partial similarities across the
clusters. Such similarities are difficult to manually specify as they may not be obvious
by visual inspection and require the user to mentally solve the template selection and
deformation problems simultaneously. Therefore, once elements are identified, we revert
to our automatic analysis with no use of prior information to detect both full and partial
element similarities.

Template set. Our template set consists of 60 models downloaded from the Digimation
Model Bank and Trimble 3D Warehouse (Figure 5.5). For computational efficiency, we
pre-organize the database into groups. We deform each pair of templates to fit the
other and define a pairwise distance equal to the maximum of the resulting fitting errors.
We then cluster the templates based on these pairwise distances. This simple strategy
successfully distinguishes between circular, arch, and rectangular windows but leads to
confusion between arch and triangle-top windows. We revert to user input to regroup the
few misclassified templates. We note that it is possible to propose a different organization
of the templates, e.g based on architecture style.

We also evaluate our algorithm using a parametric model that can generate helical
columns.

1http://skanect.occipital.com
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Figure 5.5 – Template database. Templates used for evaluation in Fig 5.7b are shown in
red.
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5.6.1 Performance on Synthetic Data

We evaluate our algorithm by changing the amount of variation across input elements,
the number of utilized templates, and the data quality. In order to assess each factor
independently, we perform evaluations on synthetic data using a fixed set of parameters.

Effect of element deformations. Our algorithm labels each input element with a
matching template instance by incorporating data and smoothness terms. While the
data term evaluates the individual label assignments, the smoothness term favors similar
labels for similar elements. Due to this coupling, the amount of variation among the
elements affects the final choice of labels. We illustrate this effect on a set of synthetic
elements created by gradually increasing the variation among them (see Figure 5.6).
When the template set includes a template capable of capturing all of these variations,

elements

templates

data term only

templates

data term only

with smoothness term

with smoothness term

data term only

with smoothness term
templates

(a)

(b)

(c)

Figure 5.6 – The amount of variation among the elements affects the final choice of
template instances. For different sets of templates (with feature wires shown in red)
and elements, we show the selected template instances based on data term only and
additionally considering the smoothness term.
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all elements are labeled with different instances of this template (Figure 5.6a), i.e. the
smoothness term has no effect. When we remove this template, however, none of the
remaining templates is capable of perfectly capturing the element variations. We first
consider the first six elements, where four of them prefer the first template based on the
data term only. Even though the fifth and sixth elements prefer the second template
based on the data term, the smoothness term enforces them to pick labels from the first
template (Figure 5.6b). We then add two more elements that also prefer the second
template individually. This is perceived as a strong indication that the second template
is also a likely assignment. Thus the last three elements are now assigned to labels from
the second template (Figure 5.6c).

Effect of number of templates. Since templates deform similarly to fit similar
elements, each template contributes to detection of element similarities. We illustrate
this on a synthetic house model with two types of windows showing variation in height
and width (see Figure 5.7). We run our algorithm using an increasing template set size
of 1, 10 (selected templates are highlighted in Figure 5.5), and 60 (organized as four
groups). In each case, we show the pairwise element smoothness weights in color-coded
matrices. For each block of identical elements, the side color bars denote the color of
the corresponding matching template instance. We show the partial similarities detected
between such instances in a graph by highlighting the coupled parts of templates in
green.

We observe that even a single template is capable of distinguishing the variation among
the elements resulting in the selection of four distinct template instances (Figure 5.7a).
With additional templates, the two window types are identified resulting in the selection
of two instances of each template (Figure 5.7b). When using a grouping among the
templates (Figure 5.7c), the two type of window elements are initially matched to different
template groups resulting in no smoothness relation between them, i.e. blue blocks in
the corresponding smoothness matrix. With a single rectangular template, however, the
similarity between the height of the triangle-top and long arch windows is reflected as a
reasonably high smoothness weight, i.e. orange block in the corresponding matrix.

Effect of data quality. The input data quality has a direct impact on template defor-
mations. We compare the performance of our algorithm on synthetic data (Figure 5.7c)
and a MVS reconstruction obtained from the rendered images of the model (Figure 5.8).
We observe two main sources of error that potentially influence our results. First, due to
the challenges in correspondence search or limited sensor resolution, 3D reconstructions
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Chapter 5. Discovering Structured Variations via Template Matching

exhibit a general degradation in data quality which might lead to failure in capturing
fine details. Even though our algorithm selects the same templates as in the ground
truth case, it fails to capture the subtle variation in the width of the two instances of
triangle-top windows (Figure 5.8a). Second, factors such as large occlusions result in
local degradation in data quality. Thus, when we place a large tree model in front of the
house, we cannot recover the correct template assignments for the windows occluded by
this tree (Figure 5.8b).

(a) (b)

Figure 5.8 – We evaluate our algorithm on MVS reconstructions obtained from rendered
images of a synthetic model. Due to loss of fine details, we cannot recover the subtle
variation in width of the triangle-top windows in blue (a) and the occlusion by a large
tree results in wrong template assignments for some elements (b).

5.6.2 Performance on Real Data

We evaluate our algorithm on various real datasets with different style and varying
complexity (Figure 5.1, 5.3, 5.9, and 5.10). Table 5.1 shows the statistics of our
algorithm on each dataset.

Performance on MVS output. In our evaluations, we mainly focus on challenging
MVS output that suffers from significant amount of noise and missing data.

Our algorithm successfully discovers both full and partial similarities between elements.
Due to noise and missing data, such similarities are difficult to capture with traditional
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Ni Ns Ne Td Tc Ti

Dataset 1 120 7 32 8 3 7
Dataset 2 60 3 39 10 2 3
Dataset 3 160 8 32 12 4 10
Dataset 4 299 10 99 22 7 9
Dataset 5 70 13 25 7 5 9
Dataset 6 129 6 57 13 3 4
Dataset 7 126 7 17 7 4 8
Dataset 8 - 36 36 - - 10

Table 5.1 – The table shows the number of input images (Ni), the number of user selected
elements (Ns), the total number of detected elements (Ne), the numbers of templates
selected by the independent analysis (Td) and with the coupled analysis (Tc), and the
total number of template instances discovered (Ti). Note that for Dataset 8 we use a
parametric model considered as a single template.

methods. In particular, in Dataset 1, 30 windows out of 32 building elements in total are
assigned as structured variations of the same template (see Figure 5.1) whereas template
fitting for each element individually results in the selection of 5 different templates
(Figure 5.12). The detected structured variations for other MVS datasets are shown in
Figure 5.9.
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Figure 5.9 – For each data set, we show the smoothness matrices in the first (top left)
and final (bottom left) iterations of our algorithm. Color bars at the sides of the matrices
denote the color of the matching template instances of the corresponding block of identical
elements. Partial similarities detected between different element blocks are shown on the
corresponding templates in green. We denote the elements matched to wrong template
instances with dotted circles. Please refer to Table 5.1 for details.
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Performance on scan data. We also evaluate our algorithm on a scan of an indoor
scene containing curved columns (see Figure 5.10) using a parametric deformation model.
This deformation model captures the properties of the individual helical structures each
column is composed of. Starting from a candidate set of columns fitted individually to
each element, we discover similarities across these individual helical structures by our
simultaneous template deformation framework: identical, reflected (i.e. with opposite
rotation direction), and sharing the same pitch angle only. We also apply our algorithm
to analyze the window elements in the MVS reconstruction of the same scene (obtained
from 400 images) and detect that they are identical.

To evaluate the robustness of our algorithm, we have synthetically added noise to this
dataset and re-performed our analysis (see Figure 5.11). Even though some of the fine
details are not captured due to noise, our analysis is stable and recovers the expected
similarity patterns.

smoothness weights 
       (iteration 1)

7 instances selected

same same pitch only

Figure 5.11 – We synthetically add noise to the input scan by uniformly disturbing each
vertex in the range [−4d, 4d] where d is the average local sample spacing. The smoothness
matrices computed in the first and final iterations of our algorithm for the same set of
elements as in Figure 5.10 are shown together with the detected similarities (solid color
edges).

Comparison to naive clustering. Due to noise and partial data, an independent
analysis of each element often results in the selection of different templates for elements

92



5.6. Evaluation

   naive selection of 
best fitting templates

template instances selected 
          by our algorithm

   clustering with individual 
      template deformations

   clustering with coupled
    template deformations

  input
images

  selected
 template

(a)

(b)

  selected
templates

  selected
 template

Figure 5.12 – (a) Individual template fitting for a set of elements results in the selection of
5 different templates whereas our algorithm assigns the elements to 5 different instances
of the same template. (b) Given a template selection, we visualize each element in the
low-dimensional deformation space of the template (replicated elements are shown in
same color) using the deformation parameters obtained by individual fitting vs. our
algorithm. The clusters generated by the k-means (k = 5) algorithm are indicated by
different symbols. Note how clusters on the left span different template instances and
lead to misclassification.

that are derived from the same base geometry (Figure 5.12a, left). Even if we annotate
the correct template selection, replicated elements are mapped to scattered points in
the template deformation space. Thus, standard clustering algorithms such as k-means
fail to identify the correct element clusters (Figure 5.12b, left). Our iterative analysis,
however, progressively consolidates observations across similar elements and reveals
distinct element clusters (Figure 5.12b, right). For this dataset, compared to ground
truth clustering by visual inspection, the clustering of our algorithm achieves a mutual
information score [90] of 0.876 with one mislabeled element whereas the clustering based
on independent analysis has a score of 0.468.
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template deformation of 
Kurz et al. [KWW*14]

coupled template
deformation

Figure 5.13 – Given the correct template selection, the template deformation model of
Kurz et al. [38] maps replicated elements to scattered points as a result of individual
fitting. Our simultaneous analysis, on the other hand, forms tight clusters. The method
of Kurz et al. provides a free-form deformation. Thus, we parameterize the deformed
templates by the width and height of their bounding boxes.

Comparison to Kurz et al. [38]. For the dataset shown in Figure 5.12, we also
evaluate the method of Kurz et al. [38]. This method presents a template deformation
model that explicitly considers the symmetric features of the templates. Even with such
an advanced deformation model, independent template fitting for each element maps the
replicated elements to scattered points (Figure 5.13, left) whereas our analysis successfully
produces tight clusters (Figure 5.13, right). Note that the method of Kurz et al. is
complementary to our analysis since it can be used as the input template deformation
model.

Effect of parameters. Our analysis involves a small set of parameters that are listed
in Table 5.2. For most of these parameters we use the default values introduced in
Section 5.4 in all of our evaluations. The only parameter that requires adjustment is
ws, the weight of the smoothness term involved in the MRF optimization. An inherent
challenge in analyzing raw data measurements as obtained from MVS or scanning is to
distinguish noise from fine details. Our algorithm solves a labeling problem consisting of
data and smoothness terms to reflect this tradeoff. A lower ws helps to capture high
frequency details in case of reliable data. In case of noisy and partial data, e.g., MVS

MVS data scan data
wsim (Eq. 5.1) 10 10
EL (Eq. 5.3) 1/5th of avg. data cost 1/5th of avg. data cost
ws (Eq. 5.3) 0.1 0

Table 5.2 – The table shows the parameters involved in our analysis and their values
used in our evaluations.
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data, however, the data term becomes unreliable and a higher ws allows consolidating
observations across multiple elements. In our evaluations, we set ws = 0.1 for all the
MVS examples. We disable the smoothness term for the scan data since the data quality
is reliable and there are subtle variations across the elements we would like to capture
(e.g. the dark and light green columns in Figure 5.10).

Performance evaluation. We run our experiments on a 2.8 GHz Intel Core i7 machine.
Our analysis is iterative where each iteration begins with the template deformation stage.
We group the template models based on their deformation capabilities and identify the
best matching group of each input element. For each element, we deform the templates
only in its matching group. Given n input elements and k templates in each template
group in average (15 in our evaluations), we perform O(nk) template deformations. We
then map the observations from the deformations to a common space using the subspace
analysis. This step is almost instantaneous and has negligible time complexity (700
milliseconds in average). We then perform the labeling optimization to label each input
element with a deformed template instance. We choose the best 3 fitting template
instances for each element to construct a label set of 3n labels. Given n elements and
3n labels, this step takes 80 seconds in average. Finally, the similarity detection step
extracts the coupled template parameters across the selected template instances. This
step also has negligible time complexity (80 milliseconds in average). For all of our
datasets, our analysis converges in 5 − 6 iterations. The computational complexity is
dominated by the template deformation step where the time spent for each deformation
depends on the choice of the deformation model.

Limitations. Due to limited sensor resolution, 3D reconstructions often fail to capture
fine details, e.g. in the substructures of the elements. Such missing details or the lack
of a more suitable template might result in selection of a template different than a
user-intended one. For Dataset 4, the closest template has been selected to capture the
two-arch structure of the windows shown in green (see Figure 5.9). For Dataset 8, we
have failed to capture the subtle details in the column shown by the blue rectangle and
our parametric model is not capable of generating the details on the column shown by
the green rectangle (see Figure 5.10).

Severe local degradations in data quality, e.g. due to large occlusions, prevent reliable
template deformation and is another source of failure for our algorithm. In our examples,
we indicate such failures by dotted ellipses (Figure 5.1 and 5.9). In Figure 5.14, we
demonstrate two challenging cases, where almost half of the indicated windows are
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Chapter 5. Discovering Structured Variations via Template Matching

occluded. Even though our algorithm identifies the correct template, it discovers the
wrong (shorter) instance.

without additional prior with additional prior

without additional prior with additional prior

Figure 5.14 – Our algorithm fails to match the windows indicated in orange to the correct
template instances due to large occlusions. It is possible to augment our analysis with
additional priors, e.g. incorporating smoothness constraints among elements arranged
in a grid, to resolve such failures. We show the element smoothness matrices with and
without use of such priors.

5.7 Concluding Remarks

We presented an algorithm to discover similarity patterns among a set of elements by
using deformable template models. Our template matching and deformation analysis
identifies the best fitting template instance of each element and detects patterns in the
deformation modes of these instances. Even though it is possible to incorporate additional
priors, we assumed no additional information to demonstrate the effectiveness of the
approach. Our approach is independent of the choice of the deformation model. Thus it
can be adopted to other problem settings by defining other context-specific templates.

In our evaluations, we utilized a simple template grouping strategy. Considering a more
sophisticated organization, e.g. a hierarchical grouping, is an interesting future direction.
Exploring additional priors, e.g. style-annotated templates, both in template organization
and deformation can aid tasks such as discovering similarities across different buildings.

Accompanying our algorithm with a deformation model that supports discrete parameters
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will enable to capture discrete changes among elements, e.g. in their substructures.

We have adopted a semi-automatic approach to identify the elements of a building. Learn-
ing common element deformations to enable automatic detection of building elements is
an interesting future direction.
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6 Conclusions

This thesis has presented algorithms to process structured variations for three common
types of data in computer graphics including 1) building facade textures, 2) procedural
modeling production, and 3) 3D reconstruction point clouds.

High quality facade textures are needed in various applications especially in the domain
of urban reconstruction. We designed algorithms to process structured variations in
building facades even with irregular structures. We used decomposition trees to represent
the spatial relations between facade elements. We additionally introduced generalized
grids to encode structural relations of the input facades. Different from earlier attempts
to capture structural information in terms of geometric symmetries and regularities,
generalized grids provide additional potential links between non-symmetric elements
with non-regular element spacing. We proposed specialized discrete and continuous
operations to modify facades while preserving the key spatial and structural relations.
While ambiguity is a core challenge in structure-aware editing pipelines, by means of
an iterative editing process, our framework gives access to a large design space while
avoiding exposure to an exponential set of alternative solutions.

We have shown that, it is possible to control the likelihood of a procedural model being
generated in a procedural modeling system by interactively designing probability density
functions for shape grammars. The system learns the pdf from users via active learning.
By means of the novel structure learning algorithm, our system automatically generates a
new context-free grammar to approximate the learned pdf. The proposed system enables
novel applications for both expert and casual procedural modelers, for example to explore
the space of procedural models, to fine tune the distributions of generated models or to
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effectively remove unwanted models out of the space of generated models. We believe
this system provides the basics for future research, especially in the domain of using
procedural modeling to generate high quality and customized structured variations.

While the above two frameworks focus more on the synthesis of structure variations,
we demonstrated an analysis framework to detect full and partial similarities between
semantic elements of 3D reconstruction output. We proposed a new formulation of
shape structure, which is the matching of deformation parameters from common base
geometries. By using templates as the common base geometries, and coupling between
template matching and deformation parameter analysis, the proposed system efficiently
reveals useful patterns of structured variations even from noisy point clouds with missing
data. Such analysis results can be used to improve the reconstruction results by means of
3D in-painting algorithms and structure-aware editing or provide suggestions for artists
to design similar models.

The central idea of this thesis work is that, instead of processing individual object
separately, analyzing and modeling structured variations is a good way to accelerate
the design process, especially in large scale projects such as modeling digital cities. The
ultimate goal of this research, therefore, is to inspire future research in reducing the
complexity in digital content creation by means of utilizing the concept of shape structure
and processing structured variations. There are certain advantages in combining the
analysis and synthesis step of structured variations. For instance, once detecting that
elements of building facade such as windows and doors are often arranged in a grid,
we can enforced a grid structure when synthesizing new facades. On the other hand,
understanding how new shapes are created, e.g. a facade can be resized by adding
new floors, we can update semantic priors, e.g. horizontal alignment in the analysis
step. While such combination is not yet demonstrated in this thesis, we believe the link
between analysis and synthesis can be a key methodological element which facilitates the
processing of structured variations in particular and content creation in general. Our
thesis work hopefully set the foundations for such integration in future research.
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A Furniture and Building Styles

In this appendix, we visualize the styles for furniture and buildings defined in Ta-
ble 4.2.
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1. Consistency of table legs and leg bases

One legged

Two legged

Four legged

Special types

2. Textures

Wooden textures

Steel textures

For tables with different number of legs, we list all consistent combinations 
of legs and leg bases.
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4. Building styles

Office R1 R2 R3

Mixed style

3. Table top styles

Rectangular top Round top
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B Procedural Models Sampled
According to the Designed PDFs

We provide 10 × 10 grids of models sampled from the designed density function for each
design task in Section 4.7. We also include correlation scores to evaluate the correlation
between the learned density function and the ground truth.
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70 20 10 0

Target preferences:
Valid tables with one leg (70), two legs (20) and four legs (10). Non-valid tables (0). 
A table is valid if the number of legs and the leg bases are consistent.

Example preference scores Correlation w.r.t. ground truth

Design scenario F1

0.5

1.0

0 600training size

co
r.
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70 70 30 0

Target preferences:
Wooden tables with light color and round top: 60. Wooden tables with dark color and 
rectangular top: 40. Others: 0.

Example preference scores Correlation w.r.t. ground truth

Design scenario F2

0.4

1.0

0 600training size

co
r.
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70 70 30 0

Target preferences:
Valid tables with steel textures (70) and wooden textures (30). Non-valid tables (0). 
A table is valid if the number of legs and the leg bases are consistent.

Example preference scores Correlation w.r.t. ground truth

Design scenario F3

0.5

1.0

0 600training size

co
r.
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70 70 30 0

Target preferences:
Valid tables with round top (70) and rectangular top (30). Non-valid tables (0). 
A table is valid if the number of legs and the leg bases are consistent.

Example preference scores Correlation w.r.t. ground truth

Design scenario F4

0.5

1.0

0 600training size

co
r.
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Combination F1 x F2
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Combination F3 x F4
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40 20 20 0

Target preferences:
Office: 40. Building style R1: 20. Building style R2: 20. Building style R3: 20. Mixed style: 0

Example preference scores Correlation w.r.t. ground truth

Design scenario B1

0.4

1.0

0 600training size

co
r.
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50 50 0

Target preferences:
Tall building (5 - 6 floors) and L-shape: 50. 
Short building (2 - 3 floors) and rectangular shape: 50. Others: 0

Example preference scores Correlation w.r.t. ground truth

Design scenario B2

0.4

1.0

0 600training size

co
r.

0
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60 40 40 0

Target preferences:
L-shape: 60. Rectangular shape: 40. Others: 0

Example preference scores Correlation w.r.t. ground truth

Design scenario B3

0.5

1.0

0 600training size

co
r.
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80 80 20

Target preferences:
Tall building (5 - 6 floors): 80. Short building (2 - 3 floors): 20

Example preference scores Correlation w.r.t. ground truth

Design scenario B4

0.5

1.0

0 600training size

co
r.

20
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Combination B1 x B2
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Combination B3 x B4
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100 100 0

Target preferences:
Plausible tree: 100. Non-plausible tree: 0

Example preference scores Correlation w.r.t. ground truth

Design scenario T1

0.5

1.0

0 600training size

co
r.

0
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60 20 20 0

Target preferences:
Skyscrapers with only rectangular block: 60. Skyscrapers with only cylindrical blocks: 20. 
Skyscrapers with only V-blocks: 20. Mixture of blocks: 0

Example preference scores Correlation w.r.t. ground truth

Design scenario S1

0.5

1.0

0 600training size

co
r.
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100 100 50

Target preferences:
Skyscrapers with rectangular base: 100, cylindrical base: 50, V-base: 0

Example preference scores Correlation w.r.t. ground truth

Design scenario S2

0.2

1.0

0 600training size

co
r.

0
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100 50 50

Target preferences:
Old-style airplanes: 100 
Modern airplanes (commercial, transport airplanes, jet fighter): 50 
Airplanes with mismatch components: 0

Example preference scores Correlation w.r.t. ground truth

Design scenario A1

0.5

1.0

0 600training size

co
r.

0
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Profile

Computer graphics researcher interested in 3D reconstruction and procedural modeling.

Education

Sep 2010 - Jan 2016
(expected)

Ph.D. in Computer Science
Computer Graphics and Geometry Laboratory (LGG)
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Nov 2014 - Jan 2015 Visiting Ph.D. Student
Visual Computing Center (VCC)
King Abdullah University of Science and Technology (KAUST), Saudi Arabia

Aug 2006 - May 2010 B.Eng. in Electrical and Electronic Engineering
Nanyang Technological University (NTU), Singapore

Work experience

Jun 2015 - Sep 2015 Software Engineering Intern, Google Inc.
Worked in a research project of Google Maps.

Jan 2011 - to date Research and Teaching Assistant, Computer Graphics and Geome-
try Laboratory (LGG), EPFL, Switzerland
Project: Computational Symmetry for Geometry Data Analysis and Design
Course taught: CS-440 Advanced computer graphics, CS-446 Digital 3D ge-
ometry processing, CS-341 Introduction to computer graphics
Other activities: Advising Bachelor’s and Master’s students on theses and
semester projects

Publications

Discovering structured variations via coupled template matching
Duygu Ceylan, Minh Dang, Niloy Mitra, Boris Neubert, Mark Pauly
Computer Graphics Forum 2015
Detecting similarities in noisy and incomplete 3D point clouds is extremely difficult. This system enables
that via the use of templates and progressively improves the detection quality by iterating between
similarity detection and template matching.
Potential use: use the detected similarities to improve the quality of 3D reconstruction.

Interactive design of probability density functions for shape grammars 1

Minh Dang, Stefan Lienhard, Duygu Ceylan, Boris Neubert, Peter Wonka, Mark Pauly
ACM Transactions on Graphics (SIGGRAPH Asia) 2015
While automatic mass generation of models (e.g. the generation of thousands of buildings) is enabled by
the procedural modeling paradigm, it is difficult to control. This framework makes procedural modeling
flexible and adapted to user preferences. The user preferences are learned by active learning.
Potential use: generate buildings for 3D cities.

1http://go.epfl.ch/proman
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SAFE: Structure-aware facade editing 2

Minh Dang, Duygu Ceylan, Boris Neubert, Mark Pauly
Computer Graphics Forum (EUROGRAPHICS) 2014
Edit building facades while preserving their structures. Handle facades with irregular structures.
Potential use: generate high quality textures for 3D cities.

A novel approach to remove redundant Gabor wavelets for family classification
Mohammad Ghahraman, Minh Dang, Wei-Yun Yau, Eam-Khwang Teoh
International Conference on Control, Automation, Robotics and Vision (ICARCV) 2010
Select relevant features from face images to spot family resemblance.
Potential use: reunite lost family members from images in social networks.

Professional skills

Technical skills: Computer Graphics, Procedural Modeling, 3D Reconstruction, Computa-
tional Geometry, Computer Vision, Machine Learning, Image Processing

Programming skills: Operating systems: Mac OS X, Linux, Windows
Languages: C/C++, Matlab, Python
Frameworks: OpenGL, OpenCV, OpenMesh, Qt, Ipopt, Gurobi

Professional tools: Adobe Photoshop | Illustrator | After Effects, Autodesk Maya, Esri
CityEngine

Language skills: Vietnamese (native), English (fluent)

Awards

Sep 2010 - Sep 2011 EDIC Fellowship (merit-based)
To finance the first year of Ph.D. program in EPFL

Aug 2008 - May 2009 NTU President Research Scholar
For participants of the Undergraduate Research Experience on Campus
(URECA)

Aug 2007 - May 2009 Dean’s List, Nanyang Technological University
Top 5% of the student cohort

Aug 2006 - May 2010 Singapore Scholarship (merit-based)
To finance the undergraduate study in Singapore

Other activities

Reviewer, SIGGRAPH Asia 2014, Pacific Graphics 2015, Computer & Graphics

Executive committee member, NTU Alumni Association in Europe

Hobbies: Kendo, Taekwondo, Hiking, Sailing

2http:/go.epfl.ch/safe-eg
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