
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. P. Dillenbourg, président du jury
Prof. P. Fua, directeur de thèse

Dr F. Moreno-Noguer, rapporteur
Dr R. Sznitman, rapporteur

Prof. S. Süsstrunk, rapporteuse

Automated Reconstruction of Evolving Curvilinear Tree
Structures

THÈSE NO 6930 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 18 MARS 2016

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE VISION PAR ORDINATEUR

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2016

PAR

3U]HP\VãDZ�5DIDã�*â2:$&.,

Acknowledgements

I would like to thank my supervisor, Prof. Pascal Fua for providing me with

the opportunity to conduct scientific research in CVLab during these past

few years. I would also like to extend my thanks to the other members of

my defence committee: Prof. Pierre Dillenbourg, Prof. Sabine Süsstrunk,

Dr. Francesc Moreno-Noguer and Dr. Raphael Sznitman.

My special thanks go to my girlfriend, Magda, whose continuous support

allowed me to endure the most difficult times. I would also like to thank my

parents and all the other friends and relatives for being there when I needed

them.

Abstract

Curvilinear networks are prevalent in nature and span many di↵erent scales,

ranging from micron-scale neural structures in the brain to petameter-scale

dark-matter arbors binding massive galaxy clusters. Reliably reconstructing

them in an automated fashion is of great value in many di↵erent scientific

domains. However, it remains an open Computer Vision problem.

In this thesis we focus on automatically delineating curvilinear tree struc-

tures in images of the same object of interest taken at di↵erent time in-

stants. Unlike virtually all of the existing methods approaching the task of

tree structures delineation we process all the images at once. This is useful

in the more ambiguous regions and allows to reason for the tree structure

that fits best to all the acquired data. We propose two methods that utilize

this principle of temporal consistency to achieve results of higher quality

compared to single time instant methods.

The first, simpler method starts by building an overcomplete graph rep-

resentation of the final solution in all time instants while simultaneously

obtaining correspondences between image features across time. We then

define an objective function with a temporal consistency prior and recon-

struct the structures in all images at once by solving a mathematical op-

timization. The role of the prior is to encourage solutions where for two

consecutive time instants corresponding candidate edges are either both

retained or both rejected from the final solution.

The second multiple time instant method uses the same overcomplete graph

principle but handles the temporal consistency in a more robust way. In-

stead of focusing on the very local consistency of single edges of the overcom-

plete graph we propose a method for describing topological relationships.

This favors solutions whose connectivity is consistent over time. We show

that by making the temporal consistency more global we achieve additional

robustness to errors in the initial features matching step, which is shared

by both the approaches. In the end, this yields superior performance.

Furthermore, an added benefit of both our approaches is the ability to

automatically detect places where significant changes have occurred over

time, which is challenging when considering large amounts of data.

We also propose a simple single time instant method for delineating tree

structures. It computes a Minimum Spanning Arborescence of an initial

overcomplete graph and proceeds to optimally prune spurious branches.

This yields results of lower but still competitive quality compared to the

mathematical optimization based methods, while keeping low computa-

tional complexity.

Our methods can applied to both 2D and 3D data. We demonstrate their

performance in 3D on microscopy volumes of mouse brain and rat brain.

We also test them in 2D on time-lapse images of a growing runner bean and

aerial images of a road network.

Keywords: Computer vision, curvilinear networks, tubular structures,

automated reconstruction, temporal consistency, integer programming.

Résumé

Les réseaux curvilignes sont dominants dans la nature et présents à toutes

les échelles; leur étendue varie des structures neuronales de la taille du

micron, jusqu’aux ségments de la matière noire qui lient des groupes de

galaxies massifs. Les reconstruire avec précision de façon automatique est

d’une énorme valeur dans de multiples domaines scientifiques. Cependant

cela continue à être un problème ouvert de la Vision par ordinateur.

Dans cette thèse nous abordons le sujet de la délimitation automatique

des structures arborescentes curvilignes visibles dans plusieurs images d’un

même objet, mais prises à di↵érents moments. Contrairement à la plu-

part des méthodes approchant la question de la délimitation des structures

arborescentes, nous traitons toutes les images simultanément. Ceci est par-

ticulièrement utile dans les zones plus ambiguës et permet de créer une

structure arborescente qui s’accorde le mieux avec les données. Nous pro-

posons deux méthodes qui utilisent le principe de cohérence temporelle pour

obtenir des résultats de meilleure qualité que celles qui basent sur l’instance

unique.

Dans la première méthode, plus simple, nous commençons par construire

un graphe saturé de la solution finale à tout instant. Simultanément, nous

obtenons les correspondances entre les caractéristiques des images à travers

le temps. Nous définions une fonction-objectif avec un terme de cohérence

temporelle et reconstruisons ensuite les structures dans toutes les images

simultanément en résolvant une optimisation mathématique. Le rôle du

terme de cohérence temporelle est de favoriser les solutions où pour deux

instances consécutives, deux arrêtes potentielles sont soit toutes les deux

retenues, soit toutes les deux rejetées dans la solution finale.

La deuxième méthode d’instances multiples fait appel au même principe du

graphe saturé, mais gère la cohérence temporelle d’une manière plus robuste.

Au lieu de se focaliser sur la cohérence très locale des arrêtes singulières

du graphe saturé, nous proposons une méthode pour décrire des relations à

portée plus longue. Ceci favorise les solutions dont la topologie est cohérente

au cours du temps. Nous démontrons qu’en rendant la cohérence temporelle

plus globale, notre méthode est plus résistante face aux erreurs des premières

étapes de la reconnaissance des caractéristiques, qui est présente dans les

deux approches. Cette méthode donne donc une performance supérieure.

En outre, un ultérieur aspect bénéfique de nos deux approches, est la pos-

sibilité de détecter de façon automatique tout endroit où des changements

significatifs se produisent au cours du temps, ce qui facilite l’analyse d’un

grand nombre de données.

Nous proposons aussi une méthode simple d’instance unique pour délimiter

les structures arborescentes. Elle calcule une Arborescence Couvrante de

Poids Minimal d’un graphe saturé initial et élimine les branches indésirables.

Ceci donne des résultats de qualité inférieure, mais d’une valeur tout autant

compétitive, comparé aux méthodes basées sur l’optimisation mathématique,

tout en gardant une complexité basse.

Notre méthode peut être appliquée dans les données 2D et 3D. Nous démon-

trons leur e�cacité en 3D sur des volumes microscopiques de cerveaux de

souris et de rats. Nous les testons aussi en 2D sur des images séquentielles

d’un haricot qui germe, ainsi que sur des vues aériennes de réseaux routiers.

Mots-clés: Vision par ordinateur, réseaux curvilignes, structures tubu-

laires, reconstruction automatique, cohérence temporelle, programmation

linéaire en nombre entier

CONTENTS

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Applications . 2

1.2 Contributions . 6

1.3 Outline . 7

2 Related work 9

2.1 Manual and Semi-Automated Approaches 10

2.2 Automated Methods . 11

3 Single time instant methods 17

3.1 Tubular Graph . 17

3.2 Reconstructing Tree Structures from Tubular Graph 25

3.3 Experiments and Results . 33

4 Local Temporal Consistency 43

4.1 Approach . 44

4.2 Building Spatio-Temporal Graphs . 48

4.3 Finding Temporally Consistent Trees . 50

xi

CONTENTS

4.4 Experiments and Results . 54

5 Topological Temporal Consistency 59

5.1 Flow Variables and Temporal Consistency 59

5.2 Modeling Topological Consistency . 61

5.3 Augmenting the Objective Function . 64

5.4 Speeding Up the Computation . 67

5.5 Results . 68

6 Concluding Remarks 75

6.1 Summary and Contributions . 75

6.2 Limitations and Future Work . 77

7 Appendices 81

A Optimal Pruning of an Edge Pair Weighted Tree 81

B Tree Constraints in an Undirected Graph 84

References 87

xii

LIST OF FIGURES

1.1 Example curvilinear structures of scientific importance. 4

3.1 Tubular graph building algorithmic steps. 18

3.2 Scoring paths by classification vs Integration. 20

3.3 Feature extraction process. 22

3.4 Flowchart of the approach to extracting appearance features from tubular paths

of arbitrary length. 23

3.5 An example initial graph. 27

3.6 A Minimum Spanning Arborescence computed on the example graph. . 27

3.7 Optimal pruning vs naive pruning. 28

3.8 An optimally pruned Minimum Spanning Arborescence of the example

graph. 30

3.9 Flow variables in a directed graph. 34

3.10 An example Brainbow stack before and after pruning. 36

3.11 Another example Brainbow stack before and after pruning. 37

3.12 An example brightfield stack before pruning. 38

3.13 An example brightfield stack after pruning. 39

3.14 Another example brightfield stack before pruning. 40

3.15 Another example brightfield stack after pruning. 41

xiii

LIST OF FIGURES

4.1 Reconstruction and automatic change detection using a time-lapse se-

quence for growing runner bean. 44

4.2 Key steps of the local consistency algorithm. 46

4.3 Fine alignment and automatic change detection. 47

4.4 Simultaneous sampling and matching. 48

4.5 An example spatio-temporal graph. 51

4.6 Example results visualisation for the local consistency method. 55

4.7 One of the 3D volumes used for training the path classifier for the brain

datasets. 56

5.1 A small example graph illustrating the additional robustness of the topo-

logical consistency method. 60

5.2 Graphs illustrating situations considered to be temprorally consistent. . 62

5.3 Graphs illustrating situations considered to be temprorally inconsistent. 63

5.4 Road images used to train the path classifier for the aerial photographs

dataset. 68

5.5 Example results visualisation for the topological consistency method on

road data. 72

5.6 Example results visualisation for the topological consistency method on

brain data. 73

6.1 Example of a reconstruction error that could be avoided by imposing a

geometric prior. 78

6.2 Biconnected Components Decomposition. 79

7.1 Flow variables in an undirected graph. 86

xiv

LIST OF TABLES

2.1 Existing tools for reconstructing curvilinear structures 11

3.1 Experimental results for the pruned Minimum Spanning Arborescence

method. 36

4.1 Experimental results for the local consistency method. 57

5.1 Experimental results for the local and the topological consistency method. 71

xv

ONE

INTRODUCTION

Networks of curvilinear structures appear in many domains and reliably reconstructing

them from images remains an open Computer Vision problem. So far, it has mostly

been addressed in terms of modeling structures that have been captured at a specific

moment in time. However, these networks, be they made of axons and dendrites seen

in vivo in optical microscopy image stacks [32], blood vessels in retinal-scans [40], plant

branches in time-lapse imagery [11], or roads in aerial images taken at long intervals

[27], evolve over time. Modeling this evolution is of great scientific value to help un-

derstand underlying processes and analyzing the effects of biological [39] or geographic

environmental conditions [52]. More broadly and as shown in Fig. 1.1, curvilinear net-

works are prevalent in nature and span many different scales, ranging from micron-scale

neaural structures in the brain, through meter-scale road networks and all the way up

to petameter-scale dark-matter arbors binding massive galaxy clusters. Efficient and

robust methods for automatically delineating such structures could therefore accelerate

scientific research in many domains.

1

1. INTRODUCTION

1.1 Applications

The research presented here has been motivated by a number of applications, such as

those depicted by Fig. 1.1. We briefly review here the ones we had an opportunity to

directly work with. Others are presented to provide broader context.

1.1.1 Brain morphogenesis

One of the most promising domains of application for such a multi-frame modelling

approach is tracking the evolution of neural networks in the brain. It might allow for

better undestanding of the neuron forming and rewiring processes inside a brain during

morphogenesis and their effect on the skills and behaviour of an animal.

It has been theorized that the pattern and extent by which a neuron projects its

dendrites and axons maximizes its potential connectivity per given length of wire.

Wen et al. [74] demonstrated the explanatory power of this model on basal dendritic

arbors of pyramidal neurons. Individual cortical neurons have extensive axonal and

dendritic arbors and thus harbor a large repertoire of potential connections. Only a

small fraction of them, around 20%, are actual synapses [59]. As a result, a cortical

neuron could, in principle, switch to other synaptic partners and thereby change its own

or its partners receptive field through a small rewiring effort, e.g. simply by protruding

dendritic spines, axonal boutons or through small changes in the trajectory of terminal

branches. The capricious projection territories of dendrites and axons, which often

fall outside of the functional cortical column from which they originate [23], make it

difficult to predict the extent of structural rearrangement that is needed to support

changes in circuit function.

To investigate these issues, we have been colaborating with neuroscientists from

University of Geneva who are interested in the structural mechanisms and strategies

that cortical neurons use to change circuit function. They provided us with in vivo

2-photon laser scanning micrographs of mouse brains that they were taking in weekly

intervals in order to correlate structural and functional changes in the mouse cortex.

2

1.1 Applications

Images were taken through a permanently implanted cranial window, which allows for

tracking identified structures over months during which the mouse learns new tasks or

undergoes new experiences. An example image of that type is depicted by Fig. 1.1(a).

Annotating the structures and detecting changes in the microscopic images occurring

over time remains a bottleneck of studying the subject, which motivates the efforts to

automatize the process.

1.1.2 Tracing road networks over time

Road network detection can be used for several applications. One example is the devel-

opment of vision-based control strategies for unmanned aerial vehicles (UAVs), which

may enable complex autonomous missions in environments where typical navigation

systems like GPS are unavailable [28]. Another application is automated correction

and updating of geographic information systems (GIS) from aerial images, which in-

volves positionally correcting the existing roads location and generating hypotheses for

new roads [27]. Automatic road delineation is also useful for integrating geo-spatial

data coming from different sources. The easy accessibility of a wide range of such data

allows to answer many queries that could not be answered using only a single data

source. However, integrating information from all those sources is a challenging task

and Computer Vision based methods for road delineation may help to automate the

process [12].

We have used aerial photographs of the same region taken in long intervals of

time. One such photograph of the Geneva area is shown in Fig. 1.1(g). The task we

approached was to obtain more reliable results from multiple images that greatly differ

in appearance. A leading cause of such appearance changes are seasonal variations and

more specifically the extent of tree canopies, which create different occlusion patterns.

Another important factor is the fact that the images were taken at different times of

day, which produced different shading patterns. The changing conditions often affect

3

1. INTRODUCTION

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.1: Example curvilinear structures of scientific importance. (a) A maximum
intensity projection of a 2-photon micrograph of a rat brain. (b) A minimum intensity
projection of a brightfield micrograph of a rat brain. (c) A maximum intensity projection
of a micrograph of a rat brain. Neurons were genetically labelled with multiple, distinct
colours using the Brainbow technique [42]. (d) A confocal micrograph of blood vessels and
neurons. (e) An image of retinal vasculature obtained by a fundus camera. (f) A single
frame from a time-lapse video of a growing runner bean. (g) An aerial image of a road
network. (h) An image of the Ganges Delta taken by the Envisat Advanced Synthetic
Aperture Radar [1]. (i) A visualisation of dark matter distribution in the universe at the
present time produced by the Millennium Simulation [57].

4

1.1 Applications

different parts of the image and one might obtain more reliable results by looking at

the image evidence in the multiple time instants all at once.

1.1.3 Time-lapse videos of growing plants

Time-lapse imaging has been applied in agriculture for capturing the growth of plants.

It allows the creation of realistic plant development models. Modeling plant architec-

ture is an active research area and some empirical models have already achieved the

predictive value needed in practical applications [52]. However, the development of

well calibrated empirical models of specific plants remains a labor-intensive task and

construction of reliable mechanistic models is a current research problem. Computer

Vision techniques could accelerate the research by limiting the amount of manual labor.

Obtaining reliable models has a number of practical applications. It allows re-

search into optimal conditions, such as pruning and pinching, temperature and day

length manipulation, application of chemicals, to achieve desirable plant size, shape,

quality etc. In forestry it helps to identify optimal strategies for pruning and spacing

trees. It may also broaden the understanding of disease dynamics through simulation

of pathogen deposition and growth. Another application is the development of new

or more ecofriendly ways to biologically control weeds. It might also allow for bet-

ter management of pests by improving our knowledge of the action thresholds through

simulation of interactions between plant architecture, pesticide deposition, insect move-

ment and feeding, and compensatory growth of plants. In developmental biology, one

might also explore hypotheses relation physiology of plant development and information

in genes to integrated 3D structures.

We have obtained a time-lapse video of a growing runner bean in order to explore

this area of application and to prove that the presented multi-frame methods are indeed

generic in terms of the problem domain. An example frame from this video is presented

in Fig. 1.1(f).

5

1. INTRODUCTION

1.2 Contributions

The contributions of this thesis are as follows.

Simultaneous reconstruction at multiple time instants by enforcing lo-

cal temporal consistency. We present a method for reconstructing curvilinear tree

structures from multiple images of the same region of interest taken at different time

instants. Instead of solving in every image independently, we take a more global ap-

proach of processing all time instants at once while enforcing temporal consistency of

local corresponding areas. We start by building an overcomplete representation of the

final solution in all time instants while simultaneously obtaining correspondences be-

tween image features across time. We then solve a mathematical optimization while

intorducing a temporal consistency prior in the objective function. Its role is to encour-

age solutions where for two consecutive time instances corresponding short candidate

edges are either both retained or both rejected from the final solution. We demon-

strate that by doing so we can recover from some reconstruction errors by referring to

neighboring images for additional evidence.

Reconstructing tree structures in multiple time instants by enforcing

topological temporal consistency. We introduce a second, more robust way of re-

constructing tree structures in multiple images. Instead of focusing on the very local

consistency of single edges of the overcomplete graph we propose a method for describ-

ing relationships between spatially distant parts of a network in a specific time instant.

We then express topological similarity of the networks in consecutive time instants in

the form of a temporal consistency prior, which favors solutions whose topology is con-

sistent over time. We demonstrate that the method is in fact a generalization of its

local counterpart. We show that by making the temporal consistency more global we

achieve additional robustness to errors in the initial features matching step, which is

shared by both the approaches. In the end, this yields superior performance.

6

1.3 Outline

1.3 Outline

The remainder of the this thesis is organized as follows.

In Chapter 2, we present the state of the art in curvilinear structures delineation.

We cover mostly single time instant methods, as we are not aware of any competing

multi-frame ones that are currently published.

In Chapter 3, we give a detailed overview of a method directly related to the

ones proposed in this work. Understanding it is required to comprehend the key ideas

behind the ways of enforcing temporal consistency explained later on. It is a single

time instant method, for which we proposed a simplified but much faster version. It is

based on tree pruning and can produce delineations whose quality is only slightly less

than that of the original method. This is valuable when dealing with large stacks, for

which the original method tends to be very slow.

In Chapter 4, we present our local consistency mathematical optimization ap-

proach to curvilinear structures delineation in multiple time instants. We demonstrate

its performance on a simple time-lapse sequence of a growing runner bean and on se-

quences of 3D 2-photon laser scanning microscopy volumes of mouse brain taken at

different time instants.

In Chapter 5, we introduce our more advanced method for enforcing temporal con-

sistency between different time instants by applying the topological temporal prior. We

show that it is in fact a generalisation of its local counterpart and we exaplain in what

ways it brings more robustness. Again, we demonstrate its performance on sequences

of 3D microscopy volumes of mouse brain and also on a sequence of challenging road

network images of the same area taken at long time intervals with varying illumination

conditions and oclusion patterns.

Chapter 6 provides concluding remarks about the contributions of the presented

work, its failure modes and ideas for future work.

7

TWO

RELATED WORK

Even though imposing temporal consistency is well-known to increase the robustness

of video-based object tracking [37] or 3D body pose estimation [3, 53], we do not know

of any other automated delineation algorithm besides our own that exploits it when

working with time-lapse imagery.

The method of [39] explores sequences of confocal microscopy images of the brain

but it attempts to achieve a different goal. It does not try to improve robustness of

the tree structures reconstruction procedure by enforcing temporal consistency between

consecutive time instants. Instead, dendritic spines are traced individually. Only then

is spatial and structural information between two dendritic structures used to establish

correspondences. What is more it searches for correspondences only between the den-

dric spines, which makes it very domain-specific and not easily generalizable to other

domains of applicaiton.

In the absence of direct competitors, in this chapter we review briefly single time-

frame delineation methods. We first review the manual and semi-automated approaches.

We then proceed to describing automated methods which, depending on the search

mechanism they rely on, we divide into two categories, the faster but less robust local

search methods and the more robust but slower global ones.

9

2. RELATED WORK

2.1 Manual and Semi-Automated Approaches

Manual delineation tools require the cylindrical compartments to be sequentially pro-

vided by a user starting from the structure roots, such as soma for neural micrographs

or optic disc for fundus scans, and ending at branch tips [6, 7, 25, 47]. Since they tend

to be labor-intensive and time consuming, these tools are most often used for correcting

the reconstructions obtained by more automated ones.

Semi-automated techniques, on the other hand, use a tubularity measure to reduce

user input to a handful of carefully selected seed points to be manually specified. These

points are linked with paths that tightly follow high tubularity pixels or voxels. Most

methods employ an interactive and sequential procedure, where the user specifies one

seed point at a time and the algorithm constructs a high-tubularity path that links the

given seed to the current reconstruction [22, 43, 45, 47]. Other techniques include those

that prompt the user for a new seed only when the algorithm is stuck [58] or require

only the root and branch endpoints [6, 49, 50].

In Table 2.1, we list some of the existing software tools that implement these ap-

proaches. The table includes several key features such as the level of automation, the

type of outputs obtained and the ability to handle 3D stacks.

Tool Type Output Platf. Dim. Color Radii

AxonTracker [58] S T: Greedy tracking W 3D no no

Imaris [6] M/S/A T: Fast marching minimal path in

image space

M/W 2D/3D no yes

Farsight [68, 69] A T: Open-curve snake L/M/W 3D no yes

Geodesic-SNT [64] S T: Fast marching minimal path with

a color prior in scale space

L/M/W 2D/3D yes yes

HCA-Vision [67] S S W 2D no no

NeuriteTracer [51] A S: Thresholding and skeletonization L/M/W 2D no no

Neurolucida [44] S/A T W 2D/3D X yes

Neuromantic [47] M/S T: Dijkstra shortest path in image

space

W 2D/3D no yes

Neuron Morpho [7] M T L/M/W 2D/3D no no

NeuronGrowth [22] S T: Greedy tracking based on Hessian

eigenvector directions

L/M/W 2D+t no no

NeuronJ [45] S T: Dijkstra shortest path in image

space

L/M/W 2D no no

10

2.2 Automated Methods

Tool Type Output Platf. Dim. Color Radii

NeuronStudio [70] A T: Thresholding, skeletonization

and Rayburst sampling for radius

estimation

W 2D/3D no yes

NCTracer [14] A T: Voxel coding applied to binarized

stacks

W 3D no yes

Reconstruct [25] M/S T: Region growing W 2D/3D yes no

Simple Neurite Tracer

(SNT) [43]

S T: Bidirectional A* search L/M/W 3D no yes

TrakEM2 [10] M T (treeline object) L/M/W 2D/3D no no

TREES Toolbox [16] M/A T: Thresholding and skeletonization L/M/W 2D/3D no yes

Vaa3D [49, 50, 75] S, A T: Dijkstra shortest path in image

space

L/M/W 3D no yes

Table 2.1: Existing tools for reconstructing curvilinear structures. From left to right, the
columns list tool name with a reference, algorithm type (M: manual, S: semi-automated, A:
Automated), output type and short description of the algorithm (T: tracing=vector graphics,
S: segmentation=binary or label image), tubularity measure, supported platforms (L: Linux,
M: Apple Macintosh, W: Microsoft Windows), supported image dimensions, whether color
information is taken into account in the processing, whether radius estimates are automatically
produced. X denotes unknown.

2.2 Automated Methods

There has recently been a resurgence of interest in automated delineation techniques

because extracting curvilinear structures automatically and robustly is of fundamen-

tal relevance to many scientific disciplines. Similar to the semi-automated approaches,

most automated techniques rely on a tubularity measure to trace the curvilinear struc-

tures. However, they require only a single seed point, the root, to be specified for

each connected network in the image. These points can alternatively be automatically

generated by finding the local maxima of the tubularity measure or using separate de-

tection procedures, including optic disc and soma detectors. Starting from the roots,

they then grow branches that follow high tubularity paths in the image. Depending on

the search mechanism employed, existing algorithms can be categorized as either local

or global.

11

2. RELATED WORK

2.2.1 Local Search Methods

They make greedy decisions about which branches to retain based on local image

evidence. They include methods that segment and skeletonize the tubularity im-

age [36, 48, 51, 70, 71, 76], and active contour-based methods, which are initialized

from it [8, 14, 66]. Such methods have been shown to be effective and efficient when

a very good segmentation can be reliably obtained. In practice, however, they tend to

be prone to errors caused by noise and imaging artifatcs.

Another important class of local approaches involves explicitly delineating the curvi-

linear networks. It includes greedy tracking methods that start from a set of seed points

and incrementally grow branches by evaluating a tubularity measure [2, 4, 9, 13, 46, 77].

High tubularity paths are then iteratively added to the solution and their end points

are treated as the new seeds from which the process can be restarted. These techniques

are computationally efficient because the tubularity measure only needs to be evalu-

ated for a small subset of the image volume near the seeds. However, these approaches

typically require separate procedures to detect branching points. Furthermore, due to

their greedy nature, imaging artifacts and noise can produce local tracing errors that

propagate. This often results in large morphological mistakes, especially when there

are extended areas where image signal to noise ratio is poor.

2.2.2 Global Search Methods

They aim at greater robustness by optimizing a global objective function over a graph

of high-tubularity seed points [65] or superpixels [72]. Typically, they compute the

tubularity measure everywhere. Although this is more computationally demanding, it

can still be done efficiently in Fourier space or using GPUs [18, 34, 35]. Markov Chain

Monte Carlo algorithms, for instance, belong to this class [21, 60]. These methods

explore the search space efficiently by first sampling seed points and linking them,

and then iteratively adjusting their positions and connections so as to minimize their

objective function. However, while they produce smooth tree components in general,

12

2.2 Automated Methods

the algorithms presented in [21, 60] do not necessarily guarantee spatial connectedness

of these components.

By contrast, many other graph-based methods use the specified roots to guarantee

connectivity. They sample seed points and connect them by paths that follow local

maxima of the tubularity measure. This defines a graph whose vertices are the seeds

and edges are the paths linking them. The edges of the graph are assumed to form an

overcomplete representation of the underlying curvilinear structures and the final step

is to build a solution by selecting an optimal subset of these candidate edges.

Many existing approaches weigh the edges of this graph and solve a minimum-weight

tree problem. Algorithms that find a Minimum Spanning Tree (MST) [16, 26, 68, 79] or

a Shortest Path Tree (SPT) [49] belong to this class. Although efficient polynomial-time

algorithms exist for both SPT- and MST-based formulations, these approaches suffer

from the fact that they must span all seed points, including some that might be false

positives. As a result, they produce spurious branches when seed points that are not

part of the tree structure are mistakenly detected, which happens all too often in noisy

data. We have, however, explored the MST-based techniques and proposed an efficient

algorithm that first computes a Minimum Spaning Tree and then proceeds to pruning

the spurious branches. It can produce delineations whose quality is only slightly less

than that of the more computationally demanding methods described below. This is

valuable when dealing with large stacks, for which the more sophisticated methods tend

to be slow.

The k-Minimum Spanning Tree (k-MST) formulation [65] addressed the issue of

spurious branches by posing the problem as one of finding the minimum cost tree

that spans only an a priori unknown subset of k seed points. However, it relies on

a heuristic search algorithm and a dual objective function, one for searching and the

other for scoring, without guaranteeing the global optimality of the final reconstruction.

Furthermore, it requires an explicit optimization over the auxiliary variable k, which is

not relevant to the problem.

13

2. RELATED WORK

By contrast, the Integer Programming formulation introduced in [63] involves min-

imizing a single global objective function that allows for linking legitimate seed points

while rejecting spurious ones by finding the optimum solution to within a small user-

specified tolerance. It also introduces a robust Machine Learning method for classifying

tubular paths. Since no polynomial time algorithm is known for solving the resulting

problem, mathematical optimization techniques need to be employed to find the final

solution. The additional computational complexity is justified by the optimality guar-

antees. Furthermore, this mathematical optimization approach generalizes elegantly

into our temporal-consistency framework. For this reason we provide a more detailed

overview of the method in Chapter 3.

The very recent method of [62] can be viewed as a generalisation of [63]. It intro-

duces a similar Integer Programming formulation and attempts to solve the delineation

problem optimally. Unlike earlier approaches that assume a tree topology for the net-

works, it explicitly models the fact that the networks may contain loops, and can

reconstruct both cyclic and acyclic ones. In case of acyclic networks the proposed for-

mulation provides an additional level of robustness compared to [63]. The multiple time

instant approaches introduced in this thesis could be adapted to benefit from this ad-

ditional robustness. Since it is a very recent method, we discuss this in the Limitations

and Future Work section of Chapter 6.

All the MST and SPT approaches rely on local tubularity scores to weight the

graph edges. For example, global methods that rely on geodesic distances express this

cost as an integral of a function of the tubularity values [38, 79]. Similarly, active

contour-based methods typically define their energy terms as such integrals over the

paths [35, 68]. According to [65], because they involve averaging, such measures are

not particularly effective at ignoring paths that are mostly on the curvilinear structures

but also partially on the background. Moreover, because the scores are computed as

sums of values along the path, normalizing them so that paths of different lengths can

be appropriately compared is non-trivial. By contrast, the path classification approach

14

2.2 Automated Methods

introduced in [63] returns much more discriminative probabilistic costs, which can be

compared for paths of arbitrary length. We therefore incorporate it into all of the

algorithms presented in this thesis, as it is critical to obtaining good results on noisy

data.

15

THREE

SINGLE TIME INSTANT METHODS

In this chapter we focus on the typical scenario of delineating curvilinear structures

in single time instants. We first present the idea of a tubularity graph introduced

in [63], which is an important concept in the remainder of the thesis. We then present

two different methods to obtain the final reconstructions from the tubular graph. The

original method of [63] involves performing a mathematical optimization to solve the

delineation problem exactly. The multiple time instant methods described in the next

two chapters are directly related to it. Therefore, understanding it is required to

comprehend the key ideas behind the ways of enforcing temporal consistency explained

later on. We also present a simplified, faster version of this method. It can produce

delineations whose quality is only slightly less than that of the original method. This

is valuable when dealing with large stacks in scenarios where one can sacrifice a small

decrease in accuracy to obtain the delineation a lot faster.

3.1 Tubular Graph

We first briefly describe the tubularity graph of [63]. It provides a mathematical model

of the image data that is then processed to obtain the final results. The graph building

procedure consists of the following steps depicted by Fig. 3.1:

17

3. SINGLE TIME INSTANT METHODS

1. We compute a tubularity value at each image location xi and radius value ri,

which quantifies the likelihood that there exists a tubular structure of radius

ri, at location xi. Given an N -D image, this creates an (N + 1)-D scale-space

tubularity volume such as the one shown in Fig. 3.1(b).

2. We select regularly spaced high-tubularity points as seed points and connect pairs

of them that are within a given distance from each other. This results in a directed

tubular graph, such as the one of Fig. 3.1(c), which serves as an overcomplete

representation for the underlying curvilinear networks.

3. Having trained a path classifier using such graphs and ground-truth trees, we

assign probabilistic weights to pairs of consecutive edges of a given graph at

detection time as depicted by Fig. 3.1(d).

(a) (b) (c) (d)

Figure 3.1: Algorithmic steps. (a) A 2D aerial image of a suburban neighborhood.
(b) 3-D scale-space tubularity image. (c) Graph obtained by linking the seed points. They
are shown in red with the path centerlines overlaid in green. (d) The same graph with
probabilities assigned to edges using our path classification approach. Blue and transparent
denote low probabilities, red and opaque high ones. Note that only the paths lying on roads
appear in red.

18

3.1 Tubular Graph

3.1.1 Graph Construction

Let us now explain the graph construction procedure in more detail. We first compute

the Multi-Directional Oriented Flux tubularity measure introduced in [61]. This mea-

sure is used to assess if a voxel lies on a centerline of a filament at a given scale. Unlike

the Oriented Flux approach [35] that relies on a circular model of the cross-sections,

this measure allows for arbitrarily-shaped ones that are prevalent in biological imagery.

This is achieved by maximizing the image gradient flux along multiple directions and

radii, instead of only two with a unique radius. We then suppress non-maxima responses

around filament centerlines using the NMST algorithm [61], which helps remove some

artifacts from further consideration. More specifically, the NMST algorithm suppresses

voxels that are not local maxima in the plane that is perpendicular to a local orien-

tation estimate and within the circular neighborhood defined by their scale. It then

computes the MST of the tubularity measure and links pairs of connected components

in the non-maxima suppressed volume with the MST paths.

Next, we select maximum tubularity points in the resulting image and treat them

as graph vertices, or seeds, to be linked. They are selected greedily, at a minimal

distance of d to every point that was selected previously. Finally, we compute paths

linking every pair of seed points within a certain distance l(d) from each other using

the minimal path method in the scale space domain [38]. We take the geodesic tubular

path connecting vertices i and j to be

pij = argmin
γ

∫ 1

0

P (γ(s)) ds, (3.1)

where P is the negative exponential mapping of the tubularity measure, s ∈ [0, 1] is

the arc-length parameter and γ is a parametrized curve mapping s to a location in

R
N+1 [5]. The first N dimensions are spatial ones while the last one denotes the scale.

The minimization relies on the Runge-Kutta gradient descent algorithm on the geodesic

distance, which is computed using the Fast Marching algorithm [56].

19

3. SINGLE TIME INSTANT METHODS

(a) (b)

Figure 3.2: Scoring paths by classification vs Integration. (a) Tubular graph of Fig. 3.1(c)
with edge weights computed by integrating tubularity values along the paths instead of
using the path classification approach. We use the same color scheme as in Fig. 3.1(d) to
demonstrate how much less informative these weights are. (b) In microscopy stacks scor-
ing paths by summing tubularity values results in, from left to right, shortcuts, spurious
branches, and missing branches denoted by the red circles at the top. Using the classifica-
tion approach to scoring paths yields the right answer in all three cases, as shown in the
bottom row.

3.1.2 Path Classification

Once the graph has been built, a key component of the algorithm is an approach

to assigning weights to its edges, or more specifically pairs of consecutive edges. A

standard approach to computing such weights is to integrate a function of the tubularity

values along the paths, as in Eq. 3.1. However, as shown in Fig. 3.2(a), the resulting

estimates are often unreliable because a few very high values along the path might offset

low values and, as a result, fail to adequately penalize spurious branches and short-cuts.

Furthermore, it is often difficult to find an adequate balance between allowing paths

to deviate from a straight line and preventing them from meandering too much, which

results in errors such as those depicted by the top row of Fig. 3.2(b) when using them

to find the optimal subgraph.

20

3.1 Tubular Graph

In this section, we outline the path-classification approach of [63] to computing the

probability estimates that proves to be more reliable. More specifically, given a tubular

path computed as discussed in Section 3.1.1, we break it down into several segments

and compute one feature vector for each based on gradient histograms. We then use

an embedding approach [73] to compute fixed-size descriptors from the potentially

arbitrary number of feature vectors we obtain. Finally, we feed these descriptors to a

classifier and turn its output into a probability estimate.

As shown in the bottom row of Fig. 3.2(b), this approach penalizes paths that mostly

follow the tree structure but cross the background. Thus, it discourages shortcuts and

spurious branches, which the integration approach along the path fails to do.

In the remainder of this section, we describe the path features, embedding scheme,

and training data collection mechanism in more detail.

3.1.2.1 Histogram of Gradient Deviation Descriptors

Gradient orientation histograms have been successfully applied to detecting objects in

images and recognizing actions in videos [17, 24, 73]. In a typical setup, the image

is first divided into a grid of fixed-size blocks, called cells, and then for each cell, a

1-D histogram of orientated gradients (HOG) is formed from the pixel votes within it.

Histograms from neighboring cells are then combined and normalized to form features

invariant to local contrast changes. Finally, these features are fed into a classifier

to detect objects of interest. We adapt this strategy for tubular paths by defining

Histogram of Gradient Deviation (HGD) descriptors as follows.

Given a tubular path γ(s) such as the one depicted by Fig. 3.3, with s being the

curvilinear abscissa, let C(s) be the centerline and r(s) the corresponding radius map-

pings. We partition the path into equal-length overlapping segments γi(s) and, for each,

we compute histograms of angles between image gradients ∇I(x) and normal vectors

N(x) obtained from the points x ∈ γi(s) within the tubular segment. To ensure that

all the gradient information surrounding the path is captured, we enlarge the segments

21

3. SINGLE TIME INSTANT METHODS

Ψ(x)
∇I(x)

s

mmm((ss)/3

m(s)=β∗r(s)

Figure 3.3: Three aspects of the feature extraction process. An extended neighborhood
of points around the path centerline C(s) is defined as the envelope of cross-sectional circles
shown in black. This neighborhood is divided into R radius intervals highlighted by the
yellow, green and red tubes (here R = 3) and a histogram is created for each such interval.
A point x contributes a weighted vote to an angular bin according to the angle between
the normal N(x) and the image gradient ∇I(x) at that point.

by a margin m(s) = β ∗ r(s) proportional to the radius values. A fixed size margin is

not preferred to avoid biased interference of background gradients for thin paths.

Furthermore, to obtain a description of paths’ cross-sectional appearance profile,

we split its tubular segments into R equally spaced radius intervals as shown in Fig. 3.3

and create two histograms for each such interval. While the first histogram captures the

strength of the gradient field inside an interval, the second one captures its symmetry

about the segment centerline.

Given a point x ∈ γi(s), let C(sx) be the closest centerline point, and N(x) be

the normal ray vector from C(sx) to x, as illustrated by Fig. 3.3. Each such point

contributes a vote to a bin of the gradient-strength and gradient-symmetry histograms.

The bin is determined by the following equation:

Ψ(x)=

⎧⎨
⎩ angle(∇I(x),N(x)) , if ‖x− C(sx)‖ > ε

angle(∇I(x),Π(x)) , otherwise,
(3.2)

where Π(x) is the cross-sectional plane, which we use to compute the deviation angle

in the special case when x belongs to the centerline and the normal ray vector is not

defined. The votes are weighted by ‖∇I(x)‖ and
√

< −∇I(x),∇I(C(sx)−N(x)) > for

22

3.1 Tubular Graph

H1

H2

HM

V2

Embedding
V1

VN

Hi

Hl

x

x

x.Vk

x

.

x

.

.Vj

xx

x

x

x

x
x

dj

x
dk

d1

d2

dN

HGD BoW

...

Figure 3.4: Flowchart of the approach to extracting appearance features from tubular
paths of arbitrary length.

the gradient-strength and gradient-symmetry histograms respectively.

We compute the radius interval and the angular bin indices for a point x respectively

as min(R − 1, �R‖N(x)‖/(r(sx) + m(sx))�) and min(B − 1, �BΨ(x)/π�), where B is

the number of histogram bins. For each segment, this produces R pairs of histograms,

each one corresponding to a radius interval. Finally, we normalize each histogram by

the number of points that voted for it.

This yields a set of histograms for each segment, which we combine into a single

HGD descriptor.

3.1.3 Embedding

The above procedure produces an arbitrary number of HGD descriptors per path. To

derive a fixed-size descriptor from them, we first use a Bag-of-Words (BoW) approach to

compactly represent their feature space. The words of the BoW model are generated

during training by randomly sampling a predefined number of descriptors from the

training data. For a given path of arbitrary length, we then compute an embedding of

the path’s HGD descriptors into the codewords of the model. As illustrated in Fig. 3.4,

computing the embedding amounts to finding the minimum Euclidean distance from

the descriptors to each word in the model. The resulting feature vector of distances

has the same length as the number of elements in the BoW model.

23

3. SINGLE TIME INSTANT METHODS

To account for geometry and characterize paths that share a common section we

incorporate into these descriptors four geometry features, the maximum curvature along

the centerline curve C(s), its tortuosity, and normalized length along the z and the

scale axes defined in Section 3.1.1. For a path of length L in world coordinates and

distance d between its start and end points, these features are defined respectively as

argmax‖T′(s)‖, d/L, Δz/L and Δr/L, where Δz and Δr are the path lengths along

the z and the scale axes, and T(s) is the unit tangent vector depicted in Fig. 3.3.

3.1.3.1 Training

Given a set of training images {Ii}, the associated ground truth tracings {Hi} annotated
manually and tubular graphs {Gi} obtained using the method of Section 3.1.1, we

sample an equal number of positive and negative paths from each pair {Hi, Gi}. To

train the path classifier, we obtain positive samples by simply sampling the ground truth

delineations {Hi} associated with our training images. We obtain negative samples by

first randomly selecting candidate paths from a tubular graph Gi, and then attempting

to find matching paths in the corresponding ground truth Hi. The candidate paths

are considered as negatives if they satisfy certain incompatibility conditions, such as

having a small overlap with their respective matching ones.

More specifically, given a randomly selected candidate path pg of a graph Gi, we

find its matching ph by first finding the two centerline points in Hi that are closest

to the start and end points of pg in the world coordinates of the image Ii and then

extracting the shortest directed path ph connecting these points in Hi.

Let l(p) denote the centerline length of a path p, and lp1(p2) denote the length of

p2’s longest segment that is outside the volume enclosed by p1. We consider pg as a

negative example if it satisfies at least one of the following criteria:

1. max(lpg(ph), lph(pg)) is larger than a length threshold tl, which is taken to be the

minimum image spacing in our experiments.

24

3.2 Reconstructing Tree Structures from Tubular Graph

2. The ratio min(l(ph), l(pg))/max(l(ph), l(pg)) is smaller than a threshold, which

we set to 0.75. This is to detect if pg is meandering too much with respect to ph.

3. Volumetric intersection of ph and pg over their union is smaller than a threshold,

taken to be 0.5 in our experiments.

We label those negatives that partially overlap with the matching paths as hard-to-

classify examples, and those that do not overlap as easy-to-classify ones. In our exper-

iments, hard-to-classify examples constitute 99 percent of all the negative examples.

We choose the path lengths randomly from a probability distribution built from

the consecutive edge pair lengths of the graphs {Gi} in the training dataset. This

is achieved by first labeling the edge pairs as positive or negative using the above

procedure and then constructing two separate distributions, one for each class, using

the assigned labels.

Finally, at detection time, we run the path classifier on consecutive edge pairs and

assign to them the resulting probabilities of belonging to the underlying curvilinear

networks.

3.2 Reconstructing Tree Structures from Tubular Graph

In this section we first present an efficient, polynomial-time algorithm for obtaing the

final results from the overcomplete graph. It first computes a Minimum Spanning

Arborescence of the graph and then performs an optimal pruning. The algorithm does

not have optimality guarantees but it is valuable when dealing with large stacks in

scenarios where one would like to obtain results very fast. We then outline the original

Quadratic Mixed Integer Programming method of [63], which solves the delineation

task optimally.

25

3. SINGLE TIME INSTANT METHODS

3.2.1 Pruning a Minimum Spanning Arborescence

Let G = ({X = xi}, {Es = eij}) be the overcomplete directed tubular graph, with

vertices X and edges Es. Given the probabilities pijk produced by the path classifier

approach of [63] we would like to reason for the most probable solution to our problem.

Let {Y = yij} be the set of binary variables indicating the presence or absence of

specific edges in the final solution. More specifically, for every directed edge eij ∈ Es
we create a single binary variable yij whose value is equal to one if the edge is taken

taken in the solution or zero if it is left out of it. As shown later in this chapter, this

amounts to solving the following optimisation problem

y∗ = argmax
y∈Y

P (I,X , Es|Y = y) , (3.3)

= argmin
y∈Y

∑
eij ,ejk∈Es

wijkyijyjk, (3.4)

where wijk = − log
pijk

1−pijk
, pijk is the probability of edge pair (eij , ejk) being part of a

tubular structure, and Y is the set of all feasible trees with root xr.

Unfortunately, no polynomial-time algorithm is known for solving this edge-pair

weighted Minimum Arborescence problem. To obtain our solution fast we compute a

Minimum Spanning Arborescence instead, that is a Minimum Arborescence that spans

all vertices of the graph. As mentioned in Chapter 2, a common shortcoming of many

such spanning-based techniques is that they retain many spurious branches. Therefore,

the Minimum Spanning Arborescence serves as an initial solution that provides the

general topology and we proceed to prune it optimally.

Once again, in case of edge-pair weighted graphs there are no polynomial-time

algorithms available to compute a Minimum Spanning Arborescence. This is why we

alter the overcomplete graph by putting probabilities pij on edges instead of edge-

pairs. In such a setting the weight of any given tree is defined as
∑

eij∈Es wijyij , where

wij = − log
(

pij
1−pij

)
is a weight associated with edge eij . We use the ChuLiu/Edmonds’

26

3.2 Reconstructing Tree Structures from Tubular Graph

algorithm [15, 20] to compute our spanning solution. An example initial graph is

presented in Fig. 3.5 and its Minimum Spanning Arborescence is presented in Fig. 3.6.

Figure 3.5: An example initial graph with the bottom vertex being the root. The numbers
on the edges represent edge weights, that is, the negative log likelihood ratios.

Figure 3.6: A Minimum Spanning Arborescence computed on the example graph of
Fig. 3.5. Note that all of the vertices of the initial graph have been retained. The numbers
on the vertices represent the weights of the subtrees rooted at them. The number on the
root vertex represents the weight of the whole Minimum Spanning Arborescence, which is
equal to -6.

27

3. SINGLE TIME INSTANT METHODS

(a) (b) (c)

Figure 3.7: A simple illustration of why removing subtrees with all edge costs positive
is suboptimal: (a) - the initial graph, (b) - naive pruning result, (c) - optimal pruning
result. The numbers on vertices express costs of subtrees rooted at them. The red arrows
in (b) and (c) indicate the retained edges. As can be seen, the naive approach to pruning
improves the cost of the result from −2 to −4. However, this can be further impoved to
−7 by preforming the pruning in an optimal way.

3.2.1.1 Optimal pruning

Given an edge-weighted Minimum Spanning Arborescence, it is possible that one could

remove a number of edges from the tree and improve the overall score. A simple example

of such a situation would be a branch that terminates with a subtree whose edges all

have positive weights. Keeping them in the solution certainly does not make sense. An

obvious approach to pruning could then be to search for all possible subtrees with that

property and remove them from the solution. However, this could be suboptimal, as

pictured by Figure 3.7.

In order to retrieve the optimal pruning let us express cost c (xi) of the optimal

28

3.2 Reconstructing Tree Structures from Tubular Graph

subtree rooted at vertex xi as the following recursive equality.

c (xi) =
∑

xj∈C(xi)

min (wij + c (xj) , 0) , (3.5)

where C (xi) is the set of child vertices adjacent to xi. The intuition behind it is that

for a subtree rooted at xi we iterate through all its child nodes xj ∈ C (xi) and for

each one we decide whether it is worth taking it or not. In the former case, we add

the weight of the edge eij and the cost of the subtree rooted at xj to c (xi), which is

equivalent to adding to the optimal subtree rooted at xi the edge eij and the optimal

subtree rooted at xj . In the latter case, the edge is left out of the solution and the

contribution to the cost is equal to zero.

Equation 3.5 holds for all vertices in the tree including the root node. All the c (xi)

values can be computed recursively in this way starting from the root while labeling

the outgoing edges of each vertex as retainable or not. Once the edges are labelled, the

final solution can be taken as the largest connected set of retainable edges reachable

from the root. This leads to Algorithm 1. An optimal pruning of the example Minimum

Spanning Arborescence of Figure 3.6 is illustrated by Figure 3.8.

The main procedure of Algorithm 1 makes two separate passes through the initial

tree, one when calling get optimal cost(xr) and the other one when calling re-

trieve solution(xr). Each vertex and each edge is visited at most once during both

passes and so the computational complexity is O(|X |+ |Es|).
We refer to the presented method as MSA+Prune in the results section and

we demonstrate that it yields competitive results compared to other, more complex

methods.

In this section, we used edge weighted graphs for the sake of obtaining the re-

constructions in the initial Minimum Spanning Arborescence step in polynomial time.

However, given a specific edge-pair weighted tree it is possible to perform its opti-

mal pruning efficiently in a similary way. We describe the algorithm in Appendix A.

29

3. SINGLE TIME INSTANT METHODS

Even though no polynomial-time methods are known for finding a Minimum Spanning

Arborescence of an edge-pair weighted graph, the algorithm might still be useful for

refining the output of another method that does not guarantee optimality. In particu-

lar, it could be used together with the original optimization method of [63] described

below to obtain results of lower quality but in shorter time. One could terminate the

optimization procedure prematurely and use the pruning algorithm of Appendix A to

refine the reconstructions.

Figure 3.8: An optimally pruned edge-weighted Minimum Spanning Arborescence rooted
at the bottom vertex. The numbers on the edges represent edge weights and the numbers on
the vertices represent the optimal costs c (xi) of their subtrees. Edges marked as retainable
are represented by solid arrows. The remaining edges appear as dashed arrows. The red
edges constitute the optimal subtree. Note that not all retainable edges are in fact retained
in the final solution. Also, not all of the pruned edges have positive weights and not all of
the retained ones have negative ones. The weight of the optimal subtree is -13.

30

3.2 Reconstructing Tree Structures from Tubular Graph

Algorithm 1 Optimal edge-weighted tree pruning
for eij ∈ Es do

takeij ← 0
yij ← 0

end for
get optimal cost(xr)
retrieve solution(xr)

function get optimal cost(xi)
cost ← 0
for xj ∈ C(xi) do

b ← get optimal cost(xj) + wij

if b < 0 then
takeij ← 1
cost ← cost+ b

end if
end for
return cost

end function

procedure retrieve solution(xi)
for xj ∈ C(xi) do

if takeij = 1 then
yij ← 1
retrieve solution(xj)

end if
end for

end procedure

31

3. SINGLE TIME INSTANT METHODS

3.2.2 Global Optimization

We now outline the original mathematical optimization method of [63]. The graph

building procedure described in section 3.1 yields a tubular graph G = (X , Es) with

weights put on consecutive edge pairs. Finding the optimal solution tree amounts to

finding the most probable subset E ′
s ⊆ Es of edges that form a tree rooted at node xr.

This implies that there must be exactly one directed path from xr to every vertex in

that solution tree.

Formally, the problem is expressed with binary variables yij indicating whether the

edge eij is part of the solution. The resulting minimization scheme is the following.

y∗ = argmax
y∈Y

P (I,X , Es|Y = y) , (3.6)

= argmin
y∈Y

∑
eij ,ejk∈Es

wijkyijyjk, (3.7)

where wijk = − log
pijk

1−pijk
, pijk is the probability of edge pair (eij , ejk) being part of a

tubular structure, and Y is the set of all feasible trees with root xr.

To ensure that the solution is indeed a tree we adapt a set of constraints from [19].

We introduce a set F = {fm
ij } of variables called flow variables. Each of those corre-

sponds to one vertex-edge pair (xm, eij) ∈ X ×Es in the graph. If vertex xm is not part

of the solution tree, all the flow variables fm
ij are set to 0. If it is part of the solution

the value of fm
ij indicates whether the unique path from the root vertex xr to the target

vertex xm traverses the edge eij or not. In the first case it is set to 1 and the other to

0. This way, if the solution is a tree, there is a unit flow from the root to every target

vertex that is part of it. Fig. 3.9 depicts such a tree.

As shown in [19], the tree connectivity constraints can therefore be enforced by

minimizing the criterion of Eq. 3.7 subject to

32

3.3 Experiments and Results

∑
xj∈X\{xr}

fm
rj ≤ 1, ∀xm ∈ X \ {xr},

∑
xj∈X\{xk}

fm
jk ≤ 1, ∀xm ∈ X \ {xr},

∑
xj∈X\{xi,xr}

fm
ij −

∑
xj∈X\{xi,xm}

fm
ji = 0,

∀xm ∈ X \ {xr},
∀xi ∈ X \ {xr,xm},

fm
ij ≤ yij , ∀eij ∈ E , xm ∈ X \ {xr,xi,xj},

fm
im = yim, ∀eim ∈ E ,

fm
ij ≥ 0, ∀eij ∈ E , xm ∈ X \ {xr,xi},

yij ∈ {0, 1}, ∀eij ∈ E

(3.8)

During the optimization the edge variables are treated as integers and the flow

variables are treated as real numbers. However, in the end their values need to be

equal to zero or one. As shown in [19], explicitly constraining the edge variables yij

to be either zero or one is enough to achieve this goal. This is why the initial Integer

Program turns into a Qadratic Mixed Integer Program (QMIP). In the results section

we refer to the presented method as Arbor-IP.

We have developed a similar set of flow variable constraints for undirected graphs

in the hope that this would speed up the computation. Unfortunately, they turned

out to be slower on average. An outline of the undirected constraints can be found in

Appendix B.

3.3 Experiments and Results

We evaluated our pruning approach on micrographs acquired by targeting mice primary

visual cortex using the brainbow technique [41] so that each neuron has a distinct color.

We used one image stack for training and three for testing. We also used a set of six

image stacks acquired by brightfield microscopy from biocytin-stained rat brains. We

used three for training and three for testing.

33

3. SINGLE TIME INSTANT METHODS

Figure 3.9: Flows in a directed graph rooted at vertex r. The arrows represent directed
edges. Those that are part of the solution tree are shown as solid, the others as dashed.
Note that the solution does not necessarily have to span all the vertices. In this specific
case, vertices i and j do not belong to the tree. There are 11 vertices and 32 edges in this
graph, which gives a total of 32 edge indicator variables yij and 11 ·32 = 352 flow variables
fm
ij . For the example tree, we have fg

ra = fg
ac = fg

cg = 1, which creates the unit flow from
r to g. All the other fg

.. variables, such as fg
ca, are equal to 0. All the f i

.. and f j
.. variables

are also equal to 0.

We used a semi-automated delineation tool of [64] to obtain the ground truth trac-

ings. We built the tubular graphs using a seed selection distance of d = 20ΔI and a

seed linking distance of l(d) = 5d, where ΔI denotes the minimum voxel spacing.

3.3.1 Baselines

We compare our MSA+Prune approach, with the original Arbor-IP approach, the

Loopy-IP approach of [62], all of which compute an optimal solution according to

their respective cost functions and they are all based on the same path classifier idea.

We also include in our comparison the kMST approach of [65]. As mentioned in

Chapter 2, Loopy-IP can be viewed as a more robust generalization of Arbor-IP.

To demonstrate the importance of the pruning step, we also compare against a pure

Minimum Spanning Arborescence approach denoted by MSA.

3.3.2 DIADEM Metric

For quantitative evaluation we used the DIADEM metric [29], which outputs a single

number for comparing topological accuracy of a reconstructed tree against a ground

34

3.3 Experiments and Results

truth tree. The metric is a multi-step process that scores the connection between every

pair of nodes in the ground truth reconstruction based on whether or not the test

reconstruction captures that connection. Moreover, the importance of a connection

may be taken into account to reflect the global topological similarity of the trees. This

is done by weighting each connection by a chosen node attribute. In our case the weight

is the size of the subtree to which a connection leads in terms of terminal degree.

3.3.3 Results

The DIADEM scores are presented in Table 3.1. Example visualisations of the Min-

imum Spanning Arborescence results before and after the pruning procedure are pre-

sented in Figs. 3.10 through 3.15. In all cases many of the background edges have been

removed from the solutions and the final results look a lot cleaner. The diameters of

the reconstructed trees in the visualisations have been decreased for clarity.

As can be seen in Table 3.1 our MSA+Prune approach provides competitive

results compared to the other, more complicated methods. Most notably, it performs

very well compared to the original Arbor-IP method. It is also worth noting that

the pruning step plays an important role. The unpruned MSA method performs

consistently worse. The Loopy-IP method clearly performs best. It is a very recent

method and we include it here for the sake of completeness.

The key advantage of our MSA+Prune approach is the computational efficiency.

Given the initial overcomplete graph, one can find the initial Minimum Spanning Ar-

borescence in quadratic time and then perform the optimal pruning in linear time.

In the end, the computation time is of course negligible compared to the other, more

complex approaches. It can therefore be an alternative to the mathematical optimiza-

tion based Arbor-IP or even Loopy-IP when dealing with very large image stacks

in situations where a slight decrease in the quality of reconstructions is acceptable in

favor of speed.

35

3. SINGLE TIME INSTANT METHODS

BRBW1 BRBW2 BRBW3 BRF1 BRF2 BRF3
Loopy-IP [62] 0.65 0.56 0.66 0.76 0.50 0.80
MSA+Prune 0.46 0.40 0.49 0.44 0.37 0.55

MSA 0.33 0.29 0.25 0.25 0.22 0.26
Arbor-IP 0.44 0.32 0.45 0.59 0.32 0.71
kMST [65] 0.26 0.16 0.25 0.51 0.28 0.47

Table 3.1: DIADEM scores for the Brightfield and Brainbow datasets. Higher scores are
better.

(a)

(b)

Figure 3.10: An example Brainbow stack. (a) Minimum Spanning Arborescence before
pruning. (b) Minimum Spanning Arborescence after pruning.

36

3.3 Experiments and Results

(a)

(b)

Figure 3.11: Another example Brainbow stack. (a) Minimum Spanning Arborescence
before pruning. (b) Minimum Spanning Arborescence after pruning.

37

3. SINGLE TIME INSTANT METHODS

Figure 3.12: An example brightfield stack. Minimum Spanning Arborescence before
pruning.

38

3.3 Experiments and Results

Figure 3.13: The brightfield stack of Fig. 3.12. Minimum Spanning Arborescence after
pruning.

39

3. SINGLE TIME INSTANT METHODS

Figure 3.14: Another example brightfield stack. Minimum Spanning Arborescence before
pruning.

40

3.3 Experiments and Results

Figure 3.15: The brightfield stack of Fig. 3.14. Minimum Spanning Arborescence after
pruning.

41

FOUR

LOCAL TEMPORAL CONSISTENCY

In this chapter we propose an approach to reconstructing evolving tree structures si-

multaneously in a sequence of images taken at different time instants. In this way,

we can enforce temporal consistency over stable parts of the structure and reliably

detect changes elsewhere. This is in contrast to recovering the relevant structures in

each image individually and only then comparing them, which we will show to be less

effective.

In Chapter 3 we described the method of [63] whose initial step was to find a set of

uniformly distributed centerline points in a single image. Here, we find centerline points

that correspond to identical features across time instances by means of a Gaussian

Process Regression (GPR) model [54] and connect these temporal correspondences by

temporal edges. Combining those with spatial edges yields a spatio-temporal graph that

lets us incorporate into our objective function terms that enforce temporal consistency.

Conveniently, this optimization problem remains a QMIP that can be solved efficiently.

Fig. 4.1 illustrates our approach in a simple case.

Our contribution is therefore a novel approach to modeling trees over several images

simultaneously while enforcing temporal consistency. Not only is this more reliable than

doing so over individual images but has the added benefit of making it easy to spot

the regions that have significantly changed, which is tedious and hard to do for human

43

4. LOCAL TEMPORAL CONSISTENCY

(a) (b) (c) (g)

(d) (e) (f) (h)

Figure 4.1: Reconstruction and automatic change detection using a time-lapse sequence
for growing runner bean. (a, b, c) Original images. (d, e, f) Reconstructed trees in each
one of them. (g, h) The horizontal green lines represent correspondences obtained after
the fine alignment step.

operators. We demonstrate the power of our approach on a time-lapse sequence of a

growing bean plant and on sequences of in vivo two-photon micrographs of neuronal

networks.

4.1 Approach

For many tree structures that evolve over time, significant changes from one frame to

the next tend to be fairly localized, while the general topology and geometry remain

relatively stable up to minor local deformations. Consider, for example, a real-world

tree whose branches are growing over time. In images taken at sufficiently long time

intervals, there may be significant changes at the tips of existing branches while the

44

4.1 Approach

rest remains largely unchanged. The same principle applies in the case of the neuronal

network of Fig. 4.2 captured in vivo at intervals of a week. Most of the structure is

preserved over time, except for a few branches that have either grown to form new

connections, retracted or moved to new positions. To exploit the overall consistency

while allowing some degree of change, we propose the following approach.

Given N D-dimensional images I = {In}Nn=1 taken in sequence and showing an

evolving tree structure, our goal is to reconstruct trees in each individual image such

that they collectively form a temporally consistent sequence. By this, we mean that

branches do not appear or disappear randomly. First, we find corresponding points

across images and use them as nodes of a graph whose edges can either connect to

nodes within the same image or to other images. As in Chapter 3, the final set of trees

can then be reconstructed by solving a QMIP problem.

4.1.1 Reconstruction in all Images Simultaneously

Repeating the procedure described in Section 3.2.2 for each image In would yield N dis-

tinct trees that would be difficult to compare to other trees, as it is unlikely for their

nodes to be at the same locations in different images. To avoid this problem and to

enforce temporal consistency constraints, we modify the framework in two key ways.

First, we find temporally consistent nodes xn
i in all images by looking for local

maxima of tubularity in one image and then finding corresponding high-tubularity

points in the others. This lets us create temporal edges en1,n2
ij between node xn1

i found

in In1 and its matched node xn2
j in In2 .

Second, we build a spatio-temporal graph whose edges are both the spatial edges

as in Chapter 3 and temporal edges that connect nodes from one individual image to

another. In such a graph, minimizing an objective function that only considers the

spatial edges, as described in the previous subsection, would yield the same result as

before. However, we can use the temporal edges to add terms favoring edges persistent

between time instances, thus enforcing time consistency. Minimizing this extended

45

4. LOCAL TEMPORAL CONSISTENCY

(a) (b)

(c)

(d)

(e)

Figure 4.2: Key steps of the algorithm. (a) Maximum intensity projection of one of three
in vivo image-stacks of a neural network taken at one week intervals. (b) Corresponding
tubularity image. (c) Maxima of tubularity selected as graph nodes in two different stacks.
Those shown in green have been determined to correspond to the same location in both,
while those in red or blue appear in only one. (d) Connecting neighboring nodes by high-
tubularity paths produces a spatial graph in each image. High-quality paths are shown
as red while low quality ones appear as blue. (e) Connecting the corresponding vertices
across images turns the spatial graphs into a single spatio-temporal one and solving the
corresponding QMIP problem yields two temporally consistent sets of trees.

46

4.1 Approach

Figure 4.3: The reconstructed trees from the two time instants of Fig. 4.2(e) can be
deformed and superposed on each other, making the changes highlighted in red easy to
detect.

objective function can still be expressed as a Q-MIP. Our approach therefore goes

through the following steps:

1. Find graph nodes in individual images as tubularity maxima and corresponding

nodes, if any, in other images, as in Fig. 4.2(c).

2. Build a spatio-temporal graph such as the one depicted in Fig. 4.2(d) by linking

nodes both within images when they are close enough and across images when

they match. A more illustrative schematic representation of a spatio-temporal

graph can be seen in Fig. 4.5.

3. Solve an extended Q-MIP problem to find a set of temporally-consistent trees,

such as those of Fig. 4.2(e).

4. Align these trees spatially to identify places where substantial changes have oc-

curred, as can be seen in Fig.4.3.

In the following two sections, we first describe the construction of our spatio-temporal

graphs in more detail. We then define our Q-MIP problem and the corresponding

objective function.

47

4. LOCAL TEMPORAL CONSISTENCY
Im

ag
e
n
+
1

Im
ag

e
n

Initialization Iteration #1 Iteration #2 Iteration #3

Figure 4.4: Iterating until a stable correspondence set has been found. (Initialization)
A set of corresponding points with possible inconsistencies in the transformation model
is found in each image using high-tubularity locations and NCC. (Iteration #1) A set of
corresponding points (shown in green) with the highest tubularity likelihoods has been
selected, which are then used to instantiate a GPR that maps the remaining red points in
image n to the red locations in image n+ 1. The blue points in image n+ 1 that are close
enough to these red locations and correlate well with the original red points in image n are
taken to form new correspondences. (Iterations #2 and #3) They are added to the set of
correspondences, shown in green. The process is then repeated.

4.2 Building Spatio-Temporal Graphs

The first step in building our spatio-temporal graph is to find corresponding nodes

across images, such as those shown in Fig. 4.2(c). As discussed above, we assume that

there may be some non-linear deformation from one image to the next but that it is

smooth.

Finding an Initial Set of Correspondences We first use the Multi-Directional

Oriented Flux [61] filter to compute a tubularity measure in each image independently.

Then, for m = 1, . . . ,M iterations, we find the point xn
m that maximizes tubularity

across all images, where n refers to the image in which it was found. Then for each of

the remaining images I n̄ ∈ I\In, we compute the Normalized Cross Correlation (NCC)

score of a square or cubic patch centered on a point xn
m and a neighbourhood of locations

around xn̄
m. Within each evaluated neighbourhood, we associate the location xn̄

m with

48

4.2 Building Spatio-Temporal Graphs

the maximum computed NCC score provided it is above a given minimum threshold.

From this set, we keep all the consecutive pairs of points {xn′
m ↔ xn′+1

m }1≤n′≤N−1 as

correspondences, as illustrated by the green points of Fig. 4.2(c). Once computed,

the tubularity is set to zero in both the neighborhood of xn
m and that of the found

corresponding points. The procedure is then iterated until the tubularity of the selected

point xn
m is below a certain value.

Enforcing Geometric Consistency The procedure described above relies solely

on the NCC scores computed locally and does not guarantee that the displacements

of neighboring points are spatially consistent with each other. To enforce this and

to remove potential mismatches, we use Gaussian Processes Regression (GPR) [54] to

remove correspondences that are not consistent with a non-linear but locally smooth

deformation model. This step of the sampling procedure was designed by a colleague

of mine, Miguel Amável Pinheiro.

To find a geometrically consistent set of correspondences Sn between images In and

In+1, we first select from our correspondences a set S0
n = {xn

l ↔ xn+1
l }1≤l≤L of the L

points with the highest average local tubularity. In the example of Fig. 4.4 (Iteration

#1), the selected xn
l points are shown in green. We treat S0

n as being a reliable set

and use the GPR to estimate the mean and covariance of the location of a point xn in

In+1. This can be computed as

mS0
n
(xn) = k′Γ−1

S0
n
Xn+1

S0
n

, (4.1)

σ2
S0
n
(xn) = k(xn,xn) + β−1 − k′Γ−1

S0
n
k ,

where k is a kernel function that implicitly defines a mapping composed of an affine

and a non-linear transformation as in [55, 78], β−1 is a measurement noise variance,

ΓS0
n
is the L × L symmetric matrix with elements Γi,j = k(xn

i ,x
n
j) + β−1δi,j , k is the

vector [k(xn
1 ,x

n), . . . , k(xn
L,x

n)]T and Xn+1
S0
n

is the L×D matrix [xn+1
1 , . . . ,xn+1

L]T .

We then add all correspondences that are consistent with this GPR to S0
n, which

49

4. LOCAL TEMPORAL CONSISTENCY

is determined when the Mahalanobis distance between corresponding points xn+1 and

mS0
n
(xn) is sufficiently small. This gives us an augmented set of correspondences S1

n,

such as the one depicted by Fig. 4.4 (Iteration #2). We then repeat the process using

S1
n to compute the regression of Eq. 4.1 and iterate until the set stabilizes, typically

after 4 to 5 iterations, as shown in Fig. 4.4 (Iteration #3).

This is performed for each consecutive image pair, which yields sets of points in

each image X n = {xn
i } and sets of geometrically consistent correspondences Sn across

consecutive images.

Building the Graph We treat points in all the X n as nodes of our graph and cre-

ate two kinds of edges. As in the single-image case of Chapter 3, the spatial edges

En
s = {enij = (xn

i ,x
n
j)} correspond to edges connecting points within In and con-

secutive pairs of such edges are assigned an image-based probability of being part

of the final curvilinear structure. To these, we add temporal edges En
t = {en,n+1

ij =

(xn
i ,x

n+1
j) | (xn

i ↔ xn+1
j) ∈ Sn} that connect nodes in In and In+1 that belong to the

set Sn of geometrically consistent correspondences.

4.3 Finding Temporally Consistent Trees

Given a spatio-temporal graph G = (X , E), where X = {⋃N
n=1X n} and E = Es ∪ Et =

{⋃N
n=1 En

s }∪{⋃N−1
n=1 En

t } such as the one discussed in the previous section, our goal now

is to find a subgraph forming a set of trees that evolve consistently over time. For every

image in the sequence, the locations of the tree roots are provided by an operator and

are added to the set of graph nodes. An additional imaginary root xr is created and

connected to all these root nodes in all time instances. This way, reconstructing the

trees in all images can be achieved by finding the most likely arborescence rooted in

xr.

50

4.3 Finding Temporally Consistent Trees

Figure 4.5: An example spatio-temporal graph. The imaginary root vertex xr is presented
in gray at the bottom. Each of the three time points contain two manually annotated
physical roots marked in red and green. The vertices for which correspondences where
not found in adjacent time points are represented by white circles with dashed borders.
The other vertices are represented by coloured circles. The temporal edges Et are not
explicitely presented to avoid clutter. Instead, vertices for which correspondences were
found are marked with matching colours. The dotted arrows represent the imaginary edges
from xr to the physical roots. The double-sided arrows between vertices in each time point
represent the two oppositely directed spatial edges between neighbouring vertices. Spatial
edges that are part of the corresponding edges set Ēt are marked with solid lines. Other
spatial edges are marked with dashed lines.

4.3.1 Objective Function

Reconstructing the trees of interest means making a decision as to whether each edge of

the graph G should be part of the solution or not. To this end, we take Bayesian point

of view as in the QMIP method of Chapter 3. Let Yij ∈ {0, 1} be a binary random

variable denoting the presence or absence of the edge eij in the final solution and Y be

the set of all Yij variables. Our goal is to infer the most likely tree Y .

To obtain the most likely Y while enforcing temporal consistency between recon-

structions across time, we introduce a constant q that denotes the edge persistence

probability. That is, for a given pair of edges (enij , e
n+1
kl), we assume that the probabil-

ity of both edges being part, or not, of the final solution is equal to q. Conversely, the

probability that one of the edges is part of the solution while the other is not is equal to

1− q. And let us therefore denote Ēt = {(enij , en+1
kl)|enij , en+1

kl ∈ Es ∧ en,n+1
ik , en,n+1

jl ∈ Et}
be the set of all pairs of spacial edges in consecutive time frames whose endpoints are

connected with temporal edges.

51

4. LOCAL TEMPORAL CONSISTENCY

With this, describing the posterior distribution of Y given the spatial edges Es and

the temporal edges Et can then be expressed as

P (Y = y|I,X , Es, Et) ∝ P (I,X , Es|Y = y)P (Y = y|Et) , (4.2)

assuming that the image data and the spatial edges are conditionally independent of

the temporal edges given Y . We can then write

P (I,X , Es|Y = y) =
∏

en
ij ,e

n
jk∈Es

(
pijk

1− pijk

)yijyjk

, (4.3)

P (Y = y|Et) =
∏

(en
ij ,e

n+1
kl)∈Ēt

(
q

1− q

)2yijykl−yij−ykl

, (4.4)

where pijk is the probability that the edge pair (enij , e
n
jk) is a part of a tubular structure.

The derivation of the image term of Eq. 4.3 is exactly the same as that of the QMIP

method of Chapter 3. We model the prior term of Eq. 4.4 as a tree structured Bayesian

network that captures temporal relationships between edges in Ēt.

P (Y = y|Et)

=
∏

(enij ,e
n+1
kl)∈Ēt

P (Ykl = ykl|Yij = yij)
∏

enij∈E0

P (Yij = yij) (4.5)

∝
∏

(enij ,e
n+1
kl)∈Ēt

(
P (Ykl = ykl|Yij = 1)

P (Ykl = ykl|Yij = 0)

)yij

P (Ykl = ykl|Yij = 0) (4.6)

∝
∏

(enij ,e
n+1
kl)∈Ēt

(
P (Ykl = ykl|Yij = 1)

P (Ykl = ykl|Yij = 0)

)yij
(
P (Ykl = 1|Yij = 0)

P (Ykl = 0|Yij = 0)

)ykl

P (Ykl = 0|Yij = 0) (4.7)

∝
∏

(enij ,e
n+1
kl)∈Ēt

(
P (Ykl = 1|Yij = 1)

P (Ykl = 1|Yij = 0)

)yijykl
(
P (Ykl = 0|Yij = 1)

P (Ykl = 0|Yij = 0)

)yij(1−ykl)

(
P (Ykl = 1|Yij = 0)

P (Ykl = 0|Yij = 0)

)ykl

(4.8)

∝
∏

(enij ,e
n+1
kl)∈Ēt

(
q

1− q

)yijykl
(
1− q

q

)yij−yijykl
(
1− q

q

)ykl

(4.9)

∝
∏

(enij ,e
n+1
kl)∈Ēt

(
q

1− q

)2yijykl−yij−ykl

, (4.10)

52

4.3 Finding Temporally Consistent Trees

where E0 ⊂ ES denotes the set of spatial edges associated to the first image at n = 0.

We assume uniform prior for these edges and drop the P (Yij = yij) terms from Eq. 4.5.

Eq. 4.8 is obtained by simple algebraic manipulations and dropping the constant terms

that do not depend on the yij or ykl variables. Finally, we substitute the persis-

tent probabilities P (Ykl = 0|Yij = 0) and P (Ykl = 1|Yij = 1) with q, and probabilities

P (Ykl = 1|Yij = 0) and P (Ykl = 0|Yij = 1) with (1− q) in Eq. 4.9, and rearrange com-

mon terms in Eq. 4.10.

Note that finding a solution that maximizes the product of probabilities of Eq. 4.3

and Eq. 4.4 is equivalent to finding one that minimizes the sum of negative logarithms

of these probabilities. This leads to the maximum a posteriori problem of Eq. 4.11.

y∗ = argmax
y∈Y

P (I,X , Es|Y = y)P (Y = y|Et) ,

= argmin
y∈Y

∑
enij ,e

n
jk∈Es

wijkyijyjk

+
∑

(enij ,e
n+1
kl)∈Ēt

wp (2yijykl − yij − ykl) , (4.11)

where wijk = − log
pijk

1−pijk
, wp = − log q

1−q , and Y is the set of all feasible trees rooted

at xr.

Note that the temporal constant 0.5 ≤ q < 1 allows flexibility in the amount of time

consistency desired across time instances, i.e. higher values enforce more consistent

results. In the special case where q = 0.5 the persistence weight wp is equal to 0 and

the problem is reduced to that of Chapter 3.

4.3.2 Finding the Optimal Tree

To find a tree that minimizes the objective function defined above, we solve the

quadratic mixed integer program (Q-MIP), the same as in Chapter 3, applying a max-

flow min-cut formulation of the minimum arborescence problem using the Gurobi opti-

mization engine [31]. Note that in this formulation, the input graph must have directed

53

4. LOCAL TEMPORAL CONSISTENCY

edges in order to compute the flow of a given solution. Hence, as in the QMIP method

of Chapter 3, we treat each possible spatial edge pair (enij , e
n
jk) with associated weight

pijk, as a directed path and also give the opposite directed edge pair (enkj , e
n
ji) the

weight pijk. As a result, the solution is a directed tree with root node xr, connected to

a sub-tree in each image In, as depicted in Fig. 4.2(e).

4.3.3 Fine Alignment and Change Detection

After obtaining the final delineations in all time instants, the iterative GPR method

introduced in section 4.2 can be applied once again to perform fine alignment of the

solution trees and automatically detect possible changes. For every pair of consecutive

time instants In and In+1 we take the set of matching seedpoints retained in both

instants to be the initial reliable set of matchings S0
n. We also sample some additional

uniformly distributed points from the paths of the solution trees and treat them as

the candidate points for matching. We then iterate the GPR estimation and matching

until convergence. Sequences of points without correspondences are then detected as

potential differences between time instants.

4.4 Experiments and Results

We evaluated our method on 3D 2-photon images of axons in the brain of a mouse, and

on 2D time-lapse images of a growing runner bean. We used the DIADEM metric [29]

to quantify our results.

Throughout the experiments, we would suppress all tubularity values below 30% of

the highest observed value, and set the initial number of values in Sn to be L = 10.

In this section, we use q = 0.75 as our edge persistence probability and have observed

that the results are very similar for q in the range 0.65 to 0.8.

54

4.4 Experiments and Results

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Automated reconstruction in BR2 dataset. (a,b,c) Maximum intensity pro-
jections of the images. (d,e,f) Reconstructions with DIADEM scores of 0.8471, 0.6422 and
0.5248, respectively. Note that the DIADEM score penalizes heavily even the relatively
small errors in (f).

4.4.1 Change Detection in Plant Growing Time Lapse

We first tested our algorithm on a simple time lapse sequence of a growing runner bean.

We trained the path classifier using 20000 positive samples and 20000 negative samples,

extracted from six images from the sequence. These training images were selected at

random and we manually traced the tree in each one to produce positive samples.

Fig. 4.1 depicts example results. The branch structure is correctly reconstructed

and the important topological changes are automatically found. In Fig. 4.1(g) in par-

ticular, one can see that there is nonlinear deformation between the structures over

time. Initially the plant is partially bent and then straightens. Nonetheless, since the

GPR allows for nonlinearity, the correct correspondences between the tree structures

are found and the tree reconstructions and registration are achieved accurately.

4.4.2 Automatic Change Detection in Brain Circuits

We received large-scale 2-photon laser scanning microscopy images of a sparse set of

fluorescently labeled neurons in the neocortex of a rat. Images were taken through

55

4. LOCAL TEMPORAL CONSISTENCY

Figure 4.7: One of the 3D volumes used for training the path classifier for the brain
datasets. The manual annotation is shown in bright colors.

a permanently implanted cranial window, which allowed tracking specific structures

over months during which the rat learned new tasks or underwent new experiences.

We used four large image stacks, labeled 1 to 4, of the same area of the brain at four

different times. To train the path classifier, we selected a region from stacks 2 and 4,

asked an expert to manually annotate them, and sampled 20000 positive and 20000

negative paths. One of the two training stacks is depicted by Fig. 4.7. Three sequences

of smaller volumes were then selected from image stacks 1, 2 and 3 for testing. A single

test sequence consists of three volumes representing roughly the same brain area, each

one taken from a different stack. We will refer to them as BR1, BR2, and BR3.

For each volume in a dataset, we evaluated the reconstruction performance of our

approach when using either zero, one, or two additional time instances. When no

additional time instance is used, we simply pick regularly spaced high-tubularity points

for the vertices of the graph and our approach reduces to that of Chapter 3. Figs. 4.2

and 4.6 depict our results when using all three images simultaneously on DS1 and DS2,

respectively.

56

4.4 Experiments and Results

Single Pair Triplet

Image #1 0.0944 0.9473 0.9770
BR1 Image #2 0.1828 0.8720 0.8734

Image #3 0.2985 0.9413 0.9496

Image #1 0.2312 0.8471 0.8471
BR2 Image #2 0.1712 0.5475 0.6422

Image #3 0.0165 0.6236 0.5248

Image #1 0.3369 0.5507 0.7103
BR3 Image #2 0.3177 0.6819 0.6593

Image #3 0.2423 0.6905 0.6905

Table 4.1: Tree reconstruction DIADEM score [29] on our three datasets. These scores
were obtained using either single images without temporal consistency or image pairs and
triplets and enforcing time consistency.

In Table 4.1, we show the resulting DIADEM scores, which can range from 0.0 to 1.0

with 1.0 being best. That is in each entry of the table, we show the reconstruction score

obtained for each image when using a specific number of additional time instances to

reconstruct the neural structures. Note that our approach consistently produces more

reliable reconstructions than those obtained using a single instance.

57

FIVE

TOPOLOGICAL TEMPORAL CONSISTENCY

In the previous chapter we introduced a method for simultaneously delineating curvi-

linear tree structures in multiple time instants. We presented a way to enforce temporal

consistency between consecutive images and showed that such an approach may bring

about greater robustness. However, the method of enforcing temporal consistency ap-

plied there is somewhat local. The one we introduce here is able to enforce topological

consistency between time instants and we will show that this increases overall delin-

eation accuracy.

5.1 Flow Variables and Temporal Consistency

The starting point for our method will be the spatio-temporal graph G = (X , E), where
X = {⋃N

n=1X n} and E = Es ∪ Et = {⋃N
n=1 En

s } ∪ {⋃N−1
n=1 En

t }. We introduced it in

chapter 4 and we will reuse it in the current formulation. We still operate under

the assumption that for every image in the sequence the locations of the tree roots

are provided by an operator and are added to the set of graph nodes. We also add an

additional imaginary root xr and connect it to all these root nodes for all time instants.

In the previous chapter, temporal consistency was enforced by penalizing situations

in which binary variables associated to corresponding edges in different time frames

59

5. TOPOLOGICAL TEMPORAL CONSISTENCY

(a)

(b)

(c)

Figure 5.1: A small example graph with two time steps each one consisting of eight
vertices. The imaginary root is omitted for clarity. The root vertices in the two time steps
are labelled a, b and a′, b′ respectively. The solid circles represent vertices for which corre-
spondences have been succesfully established and the corresponding vertices are represented
with matching colours. The dashed circles represent vertices with no correspondences. (a)
The full graph. The edges that join two vertices with correspondences are represented with
solid lines. Other edges are represented with dashed lines. For clarity, every pair of edges
between two specific vertices is represented by a single double-sided arrow. (b), (c) Two ex-
ample solutions. While only the solution in (c) looks temporally consistent they would both
be considered consistent by the local consistency term due to the missing correspondences
between edges in the critical locations. The topological conistency term would penalise
solution (b) as the following flow variables are inconsistent: 1 = fe

ac �= fe′
a′c′ = 0,

0 = fe
bd �= fe′

b′d′ = 1, 0 = ff
ac �= ff ′

a′c′ = 1, 1 = ff
bd �= ff ′

b′d′ = 0.

had different values. More specifically, we introduced a persistence probability q. It

quantifies how likely it is for a pair of corresponding edges (enij , e
n+1
i′j′) ∈ Ēt to both be

part of the solution or to be both excluded from it, as opposed to one being included and

the other excluded. This yields additional terms that are added to the objective function

of Eq. 3.7. Even though it does bring some level of consistency between reconstructions

in consecutive images, it remains very localized. In the most ambiguous places of the

60

5.2 Modeling Topological Consistency

overcomplete graph where multiple connectivity patterns are possible, it relies heavily

on correspondences being present at crucial locations, which cannot be guaranteed as

illustrated by Fig. 5.1.

Here we show how to use the flow variables introduced in Section 3.2.2 to enforce

topological consistency. To this end, we first show that this topological consistency can

be expressed in terms of the flow variables introduced in Section 3.2.2. We then show

that it can be enforced probabilistically by adding a term that is a function of these

variables to the objective function of Eq. 3.7. In the results section we will demonstrate

that this improves performance.

5.2 Modeling Topological Consistency

Let us assume that we would like to encourage solutions where any two corresponding

vertices at two consecutive time instants are connected to the rest of the graph in a

consistent manner. In Chapter 4 this was done in a somewhat local way by penalizing

situations in which edges adjacent to the two corresponding vertices would be included

or left out of the solution inconsistently. By this we mean situations where one of the

edges is included in the solution and the other one left out of it, even though they both

correspond to the same physical path in the underlying image. Note, however, that we

do not forbid completely such situations to allow for potential changes over time.

We propose a more global, topological approach to achieving the same goal. For any

two corresponding vertices in consecutive images consider not only the edges adjacent

to them but all the edges in some larger neighbourhood around them. More specifically,

we would like to favour solutions in which the two paths from the imaginary root vertex

to each one of the two corresponding vertices both pass through corresponding edges

or neither one of them does. This way, we impose the temporal consistency of the

solution’s topology rather than only of its local connections.

Recall that temporal edges between vertices in consecutive time frames are one of the

outputs of our graph construction procedure, as described in Section 4.2. Let us assume

61

5. TOPOLOGICAL TEMPORAL CONSISTENCY

(a) (b)

(c) (d)

Figure 5.2: These four example graphs illustrate all possible temporal consistency sit-
uations for a pair of corresponding vertices (xm,xm′) and a pair of corresponding edges
(eij , ei′j′) in two consecutive time instants considered to be consistent in our approach.
Note that in the asymmetric case of (c) its respective reverse case was omitted for clarity.
A situation where there is no path from root vertex to xm and there exists a path from the
root vertex to xm′ that doesn’t pass through edge ei′j′ would also be considered consistent.

that for any spatially-connected pair of vertices xn
i , x

n
j in image In and another pair of

spatially connected vertices xn+1
i′ , xn+1

j′ in image In+1 the spatial edge enij corresponds

to the spatial edge en+1
i′j′ provided that (xn

i ↔ xn+1
i′), (xn

j ↔ xn+1
j′) ∈ Et. In other

62

5.2 Modeling Topological Consistency

(a) (b)

Figure 5.3: These two example graphs illustrate all possible temporal consistency sit-
uations for a pair of corresponding vertices (xm,xm′) and a pair of corresponding edges
(eij , ei′j′) in two consecutive time instants considered to be inconsistent in our approach.
Note that their respective reverse cases were omitted for clarity. For instance, in the case
of figure (a), the reverse situation where the path to xm′ passes through ei′j′ and the path
to xm doesn’t pass through eij would also be considered inconsistent.

words, if for two spatial edges in two consecutive images both endpoints of the one edge

correspond to the endpoints of the other edge according to Et then we assume that those

edges correspond to each other. This way, we define a set of corresponding edges Ēt. In
mathematical terms, we define a set Ēt = {(enij , en+1

kl)|enij , en+1
kl ∈ Es ∧ en,n+1

ik , en,n+1
jl ∈

Et} of edge correspondences.

Let xn
m and xn+1

m′ be two corresponding vertices in two consecutive images In and

In+1 (i.e. (xn
m ↔ xn+1

m′) ∈ Et). Let also enij and en+1
i′j′ be two corresponding edges in the

same two images, that is (enij , e
n+1
kl) ∈ Ēt. We consider xn

m and xn+1
m′ to be connected

to the imaginary root in a temporally consistent way with respect to enij and en+1
i′j′ if

any of the following four configurations arises:

c1) Both xn
m and xn+1

m′ are part of the solution and the paths connecting them to xr

traverse the edges enij and en+1
i′j′ respectively, which implies fm

ij = fm′
i′j′ = 1. (See

Fig. 5.2(a).)

63

5. TOPOLOGICAL TEMPORAL CONSISTENCY

c2) Both xn
m and xn+1

m′ are part of the solution and neither of the paths connecting

them to xr traverses the edges enij and en+1
i′j′ , which implies fm

ij = fm′
i′j′ = 0. (See

Fig. 5.2(b).)

c3) Exactly one of the vertices xn
m and xn+1

m′ is part of the solution but the path

connecting it to xr does not traverse the respective one of the corresponding

edges enij and en+1
i′j′ , which implies fm

ij = fm′
i′j′ = 0. (See Fig. 5.2(c).)

c4) Neither of the vertices xn
m and xn+1

m′ is part of the solution, which implies fm
ij =

fm′
i′j′ = 0. (See Fig. 5.2(d).)

We introduce a temporal consistency parameter q, the probability that any one of

these four situations holds. Conversely, with probability 1− q, one of the two following

inconsistent configurations may arise:

i1) Both xn
m and xn+1

m′ are part of the solution but only one of the paths connecting

them to xr traverses the respective one of the corresponding edges enij and en+1
i′j′ ,

which implies either fm
ij = 1, fm′

i′j′ = 0 or fm
ij = 0, fm′

i′j′ = 1. (See Fig. 5.3(a).)

i2) Exactly one of the vertices xn
m and xn+1

m′ is part of the solution and the path

connecting it to xr traverses the respective one of the corresponding edges enij

and en+1
i′j′ , which implies either fm

ij = 1, fm′
i′j′ = 0 or fm

ij = 0, fm′
i′j′ = 1. (See

Fig. 5.3(b).)

Therefore, q is a key parameter of our algorithm and we will discuss its influence in the

results section. Note that the list of the four consistent and two inconsistent cases is

an exhaustive one, i.e. it covers all possible cases; hence the q and 1− q probabilities.

5.3 Augmenting the Objective Function

As in Chapter 4, we assume that the image data I and the spatial edges Es are con-

ditionally independent of the temporal edges Et given Y and express the posterior

64

5.3 Augmenting the Objective Function

distribution of Y as

P (Y = y|I,X , Es, Et) ∝ P (I,X , Es|Y = y)P (Y = y|Et) . (5.1)

We can then write

P (I,X , Es|Y = y) =
∏

en
ij ,e

n
jk∈Es

(
pijk

1− pijk

)yijyjk

, (5.2)

P (Y = y|Et) =
∏

(xn
m,xn+1

m′)∈Et

∏
(en

ij ,e
n+1

i′j′)∈Ēt

(
q

1− q

)2fm
ij f

m′
i′j′−fm

ij −fm′
i′j′

, (5.3)

where pijk is the probability that the edge pair (enij , e
n
jk) is a part of a tubular structure.

The image term of Eq. 5.2 is exactly the same as in the method described in Chapter 4.

Following similar steps as in Chapter 4, we derive the prior term of Eq. 5.3.

P (Y = y|Et) =

=
∏

(xn
m,xn+1

m′)∈Et

∏
(enij ,e

n+1
i′j′)∈Ēt

P
(
Fm′
i′j′ = fm′

i′j′ |Fm
ij = fm

ij

) ∏
e0ij∈E0

P
(
F 0
ij = fm

ij

)
(5.4)

∝
∏

(xn
m,xn+1

m′)∈Et

∏
(enij ,e

n+1
i′j′)∈Ēt

⎛
⎝P

(
Fm′
i′j′ = fm′

i′j′ |Fm
ij = 1

)

P
(
Fm′
i′j′ = fm′

i′j′ |Fm
ij = 0

)
⎞
⎠

fm
ij

P
(
Fm′
i′j′ = fm′

i′j′ |Fm
ij = 0

)
(5.5)

∝
∏

(xn
m,xn+1

m′)∈Et

∏
(enij ,e

n+1
i′j′)∈Ēt

⎛
⎝P

(
Fm′
i′j′ = fm′

i′j′ |Fm
ij = 1

)

P
(
Fm′
i′j′ = fm′

i′j′ |Fm
ij = 0

)
⎞
⎠

fm
ij

⎛
⎝P

(
Fm′
i′j′ = 1|Fm

ij = 0
)

P
(
Fm′
i′j′ = 0|Fm

ij = 0
)
⎞
⎠

fm′
i′j′

P
(
Fm′
i′j′ = 0|Fm

ij = 0
)

(5.6)

∝
∏

(xn
m,xn+1

m′)∈Et

∏
(enij ,e

n+1
i′j′)∈Ēt

⎛
⎝P

(
Fm′
i′j′ = 1|Fm

ij = 1
)

P
(
Fm′
i′j′ = 1|Fm

ij = 0
)
⎞
⎠

fm
ij fm′

i′j′

(5.7)

⎛
⎝P

(
Fm′
i′j′ = 0|Fm

ij = 1
)

P
(
Fm′
i′j′ = 0|Fm

ij = 0
)
⎞
⎠

fm
ij (1−fm′

i′j′) ⎛
⎝P

(
Fm′
i′j′ = 1|Fm

ij = 0
)

P
(
Fm′
i′j′ = 0|Fm

ij = 0
)
⎞
⎠

fm′
i′j′

(5.8)

∝
∏

(xn
m,xn+1

m′)∈Et

∏
(enij ,e

n+1
i′j′)∈Ēt

(
q

1− q

)fm
ij fm′

i′j′
(
1− q

q

)fm
ij −fm

ij fm′
i′j′

(
1− q

q

)fm′
i′j′

(5.9)

65

5. TOPOLOGICAL TEMPORAL CONSISTENCY

∝
∏

(xn
m,xn+1

m′)∈Et

∏
(enij ,e

n+1
i′j′)∈Ēt

(
q

1− q

)2fm
ij fm′

i′j′−fm
ij −fm′

i′j′
, (5.10)

where E0 ⊂ ES denotes the set of spatial edges associated to the first image at n = 0.

We assume uniform prior for these edges and drop the P
(
F 0
ij = f0

ij

)
terms from Eq. 5.4.

Eq. 5.8 is obtained by simple algebraic manipulations and dropping the constant terms

that do not depend on the fm
ij or fm′

i′j′ variables. Finally, we substitute the persistent

probabilities P
(
Fm′
i′j′ = 0|Fm

ij = 0
)
and P

(
Fm′
i′j′ = 1|Fm

ij = 1
)
with q, and probabilities

P
(
Fm′
i′j′ = 1|Fm

ij = 0
)
and P

(
Fm′
i′j′ = 0|Fm

ij = 1
)
with (1− q) in Eq. 5.9, and rearrange

common terms in Eq. 5.10.

Once again, finding a solution that maximizes the product of probabilities of Eq. 5.2

and Eq. 5.3 is equivalent to finding one that minimizes the sum of negative logarithms

of these probabilities. This leads to the maximum a posteriori problem of Eq. 5.11.

y∗ = argmax
y∈Y

P (I,X , Es|Y = y)P (Y = y|Et) ,

= argmin
y∈Y

∑
enij ,e

n
jk∈Es

wijky
n
ijy

n
jk

+
∑

(xn
m,xn+1

m′)∈Et

∑
(enij ,e

n+1
i′j′)∈Ēt

wp

(
2fm

ij f
m′
i′j′ − fm

ij − fm′
i′j′

)
. (5.11)

where wijk = − log
pijk

1−pijk
, pijk is the probability of edge pair (enij , e

n
jk) being part of

a tubular structure, wp = − log q
1−q , and Y is the set of all feasible trees with root

xr. Note that the connectivity constraints are the same as before and can therefore

be imposed by performing the minimization under the linear constraints of Eqs. 3.8,

which are also expressed in terms of the the ynij and fm
il variables. The problem therefore

remains a QMIP.

In addition to being more global than the method of [30], this approach has the

added benefit of being able to handle cases where the sampling step returns a lot of

sample points that were not assigned correspondences in adjacent time steps. This is

especially important in areas crucial to the topology of the structure. In case of neurons

66

5.4 Speeding Up the Computation

in 3D brain images the most prevalent such case would be two branches crossing very

near to each other in the z dimension. In such a setting it is difficult to tell whether they

form an actual branching or not. A simple example illustrating this extra robustness

coming from our approach is shown in Fig. 5.1. The top subfigure presents a graph with

two time steps each one consisting of eight vertices with the imaginary root omitted

for clarity. The dashed circles represent vertices with no correspondences. The middle

and the bottom subfigure represent two different solutions. While only the one in the

bottom subfigure looks temporally consistent they would both be considered consistent

by the local consistency term due to the missing correspondences between edges in the

critical locations. The topological consistency term would penalize the solution in the

middle subfigure as several flow variables would be inconsistent.

In practice, for a given pair of corresponding vertices, it is neither beneficial nor

computationally efficient to include the flow consistency constraints for every pair of

corresponding edges. Imposing it for edges very distant from the vertex in question

might put too much weight on the persistency term as compared to the image term. It

would also produce a vast amount of quadratic terms in the cost function, which would

slow down the computation considerably. Instead, for a given pair of vertices xn
m and

xn+1
m′ we only take into consideration those edges whose distance from the vertex in

question is smaller than some predefined threshold r.

Note that, given the fifth constraint of Eqs. 3.8, the presented method might be

considered a generalization of the one presented in Chapter 4. Namely, in the extreme

case of r = 1 it is completely equivalent to it. Setting the distance parameter r to

values greater than one transforms the method into its more robust counterpart.

5.4 Speeding Up the Computation

The path from the imaginary root to any vertex xn
r of the spatio-temporal graph cannot

pass through edges residing at time steps different from In. Therefore, it is easy to

predict that all of the respective flow variables will be equal to zero for any valid

67

5. TOPOLOGICAL TEMPORAL CONSISTENCY

Figure 5.4: Road images used to train the path classifier for the aerial photographs
dataset. The manual annotation is shown in bright colors.

solution and it is unnecessary to introduce them at all. Removing them from the

problem together with any constraints that might involve them results in an equivalent

yet simpler optimization. This usually reduces the time and memory needed to solve

it and of course does not affect the quality of the solution.

5.5 Results

We evaluated our method on 3D 2-photon images of axons in the brain of a rat, such as

the ones used in the previous chapter. We also tested our approach on a road network

delineation task. We used a sequence of three aerial images of the same area taken at

three very different time instants. The appearance varies from one to the other due

to different illumination, different level of occlusion from trees captured in different

seasons etc. Six regions spanning those varying appearances were picked to train a

single classifier the same way as it was done for the brain images. Two of them can be

seen in Fig. 5.4. We also cropped one sequence of three images for testing.

68

5.5 Results

5.5.1 Overall Performance

In Table 5.1, we compare the results of reconstructing independently in each test image

of these datasets using the QMIP method of Chapter 3, of imposing local temporal

constraints as in Chapter 4, and of imposing topological temporal constraints as dis-

cussed in this chapter. To this end, we measure the quality of the reconstructions in

terms of the DIADEM metric [29]. It measures the similarity with the ground truth

in a way that is appropriate for trees and ranges from 0.0 to 1.0, with 1.0 being best.

To obtain these results, we set the persistence probability value q, introduced in sec-

tion 5.1, to 0.75 in all experiments. For values close to 0.5 the consistency term proved

to be completely outweighted by the image term and the temporal consistency would

not be enforced at all. Values close to 1 tended to prevent any differences between

the graphs in different time instants. This would sometimes cause ignoring the im-

age term and pruning some of the branches completely, as this of course results in a

highly time-consistent solution. Furthermore, high values of q tended to slow down the

optimization.

We present some representative results in Figs. 5.5 and 5.6. They illustrate that

both the local and the topological consistency methods favor reconstructions consistent

over time, with the topological one providing a higher level of temporal consistency.

Setting the range parameter to 4 instead of 1 also improves accuracy.

The range parameter for the topological consistency, also introduced in section 5.1,

was set to 4 in all experiments. This proved sufficient to improve robustness without

unduly increasing the computational complexity. High values of the range parameter

had a tendency to slow down the optimization and to give a very high weight to the

consistency prior. Similarily as in the case of high persistence probability values, this

would sometimes result in pruning some of the correctly delineated branches of the

overcomplete graph.

As can be seen in Table 5.1, enforcing local temporal consistency improves the

overall quality of the results and imposing topological consistency improves them even

69

5. TOPOLOGICAL TEMPORAL CONSISTENCY

more. However, the effect of consistency depends on the quality of the path classifier

weights. If the classifier provides reasonable scores more often than not, temporal

consistency propagates them. If it performs poorly, combining multiple weak solutions

might not help. It might even hurt by producing solutions that are consistently wrong.

We have also tested how removing the unnecessary flow variables, as described in

section 5.4, influences the computation time. Due to the non-deterministic nature of the

optimization procedure we performed each of the optimizations ten times and observed

consistent behaviour with only minor differences between specific runs. In the case of

the local consistency the computation time turned out to be consistently lower, reduced

for instance from 16s to 4s on one small example and from 510s to 248s on a bigger

one. In the case of the topological consistency the computation would also complete

around two to three times faster. However, it is worth noting that for one example

the optimization time raised from 2011s to 3172s after removing the unnecessary flow

variables.

70

5.5 Results

No
consistency

Local
consistency

Topological
consistency

Brain 1
V: 161 E: 450

Image #1 0.7722 0.7903 0.7903
Image #2 0.6890 0.6890 0.6746
Image #3 0.4761 0.4395 0.9185

Average score 0.6458 0.6396 0.7945

Computation time 9s 14s 17s

Brain 2
V: 108 E: 298

Image #1 0.6303 0.3654 0.6345
Image #2 0.4653 0.3433 0.5178
Image #3 0.5929 0.3374 0.6325

Average score 0.5628 0.3487 0.5949

Computation time 3s 4s 10s

Brain 3
V: 134 E: 328

Image #1 0.4964 0.5444 0.4242
Image #2 0.2437 0.5327 0.5884
Image #3 0.5200 0.5771 0.6766

Average score 0.4201 0.5514 0.5631

Computation time 3s 4s 5s

Brain 4
V: 200 E: 612

Image #1 0.3846 0.6000 0.5940
Image #2 0.5088 0.5272 0.5677
Image #3 0.5910 0.6118 0.6340

Average score 0.4948 0.5797 0.5986

Computation time 19s 23s 33s

Brain 5
V: 309 E: 958

Image #1 0.3713 0.3956 0.3952
Image #2 0.2439 0.2915 0.3687
Image #3 0.2060 0.2761 0.3134

Average score 0.2737 0.3211 0.3591

Computation time 83s 248s 3172s

Roads
V: 375 E: 1228

Image #1 0.2650 0.4630 0.4680
Image #2 0.3880 0.4000 0.4150
Image #3 0.3240 0.3330 0.4670

Average score 0.3257 0.3987 0.4500

Computation time 30027s 86400s∗ 86400s∗

Table 5.1: DIADEM scores [29] for the brain images datasets and the road images dataset.
The scores in the first column were obtained without temporal consistency, that is, by
using the QMIP method of Chapter 3. The scores in the second and the third column were
obtained by imposing local temporal consistency and topological temporal consistency,
respectively. The branch-and-bound algorithm used by the Gurobi optimization engine
is a non-deterministic one but the computation times change very little between different
runs. Therefore, the example computation times can be considered representative. In case
of the roads dataset the path classifier did not put very discriminative weights on the edge-
pairs of the initial graph, which resulted in very slow convergence. In case of this dataset,
for both the temporal-consistency methods the computation was terminated after 24 hours
and the best incumbent solution was used.

71

5. TOPOLOGICAL TEMPORAL CONSISTENCY

Figure 5.5: Example brain data results. The first row presents the input images. The
second row presents the ground truth. The third row presents the results computed with
no temporal consistency. The fourth and fifth rows present results with flow persistency
set to 0.75 and range parameter set to 1 and 4, respectively.

72

5.5 Results

Figure 5.6: Road data results. The first row presents the input images. The second
row presents the results computed with no temporal consistency. The third and fourth
rows present results with flow persistency set to 0.75 and range parameter set to 1 and 4,
respectively.

73

SIX

CONCLUDING REMARKS

In this work, we approached the problem of automatically delineating curvilinear tree

structures in 2D images and 3D image stacks. As pointed out in Chapter 1, such struc-

tures are prevalent in nature and span many different scales. Reliably reconstructing

them in an automated fashion is therefore of great value in many different scientific

domains. We focused mainly on situations where images of the same object of inter-

est taken at different time instants are available. Unlike virtually all of the existing

methods for automatic tree structures delineation, we took into account temporal con-

sistency constraints and looked at all the images at once to reason for the most plausible

solution.

In this chapter, we first outline the contributions of this thesis. We then proceed

to point out the limitations of the presented methods and discuss possible future work

directions.

6.1 Summary and Contributions

Prior to this thesis, virtually all of the existing methods could be described as single

time instant ones. Given a sequence of images of the same object of interest taken

at different time instants they would proceed to process them independently, one by

75

6. CONCLUDING REMARKS

one. In Chapter 5 we introduced a novel method that processes all images at once and

finds local and stable structures that are consistent over time, and which can be used

to disambiguate cases where individual time-instance reconstructions would fail. We

proposed a method for finding and matching corresponding centerline points throughout

the sequence. We then introduced the idea of a spatio-temporal graph that is able to

encode not only spatial information in single time instants but also correspondences

between edges across time. The novel mathematical optimization method, which is then

applied to the graph, introduces a temporal consistency prior that encourages solutions

where for two consecutive time instants corresponding candidate edges are either both

retained or both rejected from the final solution. We also provided experimental results

on 3D brain microscopy stacks to demostrate that the additional temporal information

brings about improvement in the quality of the results.

Chapter 5 provides a more global method for reconstructing tree structures from

sequences of images in a temporally consistent way. It uses the same spatio-temporal

graph principle. However, we introduced a novel, improved temporal consistency prior.

Instead of focusing on the very local consistency of single edges of the overcomplete

graph we proposed a method for describing topological relationships. This favors solu-

tions whose connectivity is consistent over time. We demonstrated experimentally that

introducing these topological relationships results in better final reconstructions. We

tested the approach both on 2D aerial road network photographs and 3D microscopy

stacks.

Additionally, we proposed a simple, single time instant algorithm for delineating tree

structures. It consists of computing a Minimum Spanning Arborescence as an initial,

background-contaminated solution and then optimally pruning the spurious branches.

Chapter 3 contains an outline of the algorithm and computational complexity analysis.

We showed that computing the reconstruction can be performed in polynomial time

and provided experimental validation on 3D microscopy stacks that proved that the

approach provides competitive results. This is valuable when dealing with very large

76

6.2 Limitations and Future Work

image stacks in situations where a slight decrease in the quality of reconstructions is

acceptable in favor of speed.

We also developed a novel set of constraints for computing a Minimum Tree from

an undirected graph, a problem closely related to delineating tree structures. It is

described in Appendix B. Suprisingly, and to the best of our knowledge, this problem

had not been solved before.

6.2 Limitations and Future Work

In this section we discuss the main failure modes and limitations of the presented

methods and discuss possible ways to overcome them in the future.

6.2.1 Loopy Reconstructions

In all methods presented in this thesis we assumed that the curvilinear structures of in-

terest were trees. In many cases, such as delineating neurons in the brain, which was the

main focus of our work, this is not a limitation at all. The assumption stems from the

natural properties of the imaged structures. However, reconstructing loopy networks

in multiple time instants may also be of scientific interest. For this reason, a promising

direction of future work would be to incorporate our temporal consistency ideas into

the framework of [62]. This framework is a generalization of the QMIP method outlined

in Chapter 3. It allows to choose between loopy and non-loopy reconstructions. This

would make our methods more generic. However, the method of [62] involves a more

complex optimization scheme, which would most likely pose computational efficiency

challenges.

6.2.2 Geometric prior

We do not make any explicit assumptions about the geometry of the reconstructed

tree structures. This sometimes results in reconstructions whose connectivity looks

unrealistic at some places. An example of such a situation is presented in Fig. 6.1.

77

6. CONCLUDING REMARKS

(a) (b)

Figure 6.1: Example of an error in reconstruction that could be avoided by imposing a
geometric prior. (a) The ground truth reconstruction. Two separate branches pass close
to each other. (b) The output of the QMIP method without temporal consistency. The
error in the connectivity would be easy to spot for the human eye even without looking at
the image data.

The fact that such errors are easy to spot for humans even without looking at the

image data suggest that some form of geometric prior included in the reconstruction

procedure could result in more accurate results. In the specific case of Fig. 6.1 it would

be beneficial to discourage solutions where one branch terminates almost exactly at a

branching point of a different one.

6.2.3 Speeding up the Optimization

One of the main drawbacks of the mathematical optimization methods for delineating

tree structures is the computational complexity of the optimization process. Therefore,

reducing this complexity is always a desirable line of research. In Chapter 3 we described

the so-called flow variables, which are employed to enforce the correct structure of the

solutions. To reduce the number of the flow variables and constraints related to them,

one could perform a Biconnected Components Decomposition [33] of the tubular graph.

This would allow to detect and eliminate unnecessary flow variables and constraints

and hopefully accelerate the optimization procedure. An example initial graph and its

Biconnected Components Decomposition are shown in Fig. 6.2. One needs to create a

flow variable for every vertex-edge pair only within specific biconnected components.

78

6.2 Limitations and Future Work

(a) (b)

Figure 6.2: Biconnected Components Decomposition. (a) An example initial graph. The
bottom vertex is the manually anotated root. Note that it is impossible to find a solution
where the path from the root vertex to the red vertex passes through the red edges. We
can therefore remove the respective flow variables from the program. (b) The Biconnected
Components Decomposition of the initial graph. The different biconnected components are
marked with different colours. It is now easy to determine which of the flow variables can
be removed from the program. An exhaustive set of flow variables needs to be introduced
only within a single biconnected component.

A number of flow variables and constraints also needs to be created for the so called

cut vertices, i.e. the vertices belonging to multiple components. It is worth noting

that some careful engineering would be required to express the topological consistency

approach using the reduced number of flow variables.

6.2.4 Path classifier

The multiple time instant methods introduced in this thesis rely on the path classifi-

cation approach outlined in Chapter 3. This results in two important considerations.

First of all, poor weights might result in the temporal consistency having an adverse

effect. The methods that we proposed attempt to reason for a better solution by

looking at all image data at once. However, if a given part of the structure of interest is

incorrectly classified in the majority of time instants, this incorrect interpretation will

be propagated to the other instants pushing them in the wrong direction.

79

6. CONCLUDING REMARKS

The second important problem is that the convergence speed of the mathematical

optimizations depends on how picky the classifier is. More informative probabilities

both on positive and negative edge-pairs of the spatio-temporal graph result in faster

convergence. Conversely, probabilities close to 0.5 tend to slow down the optimization

considerably. In our experience, this effect is strongest in settings where complex

background patterns can be observed, as in the case of aerial photographs of road

networks.

These two issues justify the need for additional research in order to create an im-

proved, more robust and more picky path classification method.

80

SEVEN

APPENDICES

A Optimal Pruning of an Edge Pair Weighted Tree

In Chapter 3 we introduced a simplified and very fast method for delineating tree

structures by building an overcomplete edge weighted graph, computing its Minimum

Spanning Arborescence and then optimally pruning spurious branches. The reason why

we decided to use an edge weighted graph is the fact that efficient methods exist for

retrieving a Minimum Spanning Arborescence in such a setting.

In this appendix we propose a similar algorithm for optimally pruning an edge-pair

weighted graph. Even though no polynomial time methods are known for finding a

Minimum Spanning Arborescence of such a graph, the algorithm might still be useful

for refining the output of another method that does not guarantee optimality. In

particular, it could be used together with the QMIP method of Chapter 3 to obtain

results of lower quality but in shorter time. One could terminate the optimization

procedure prematurely and use the pruning algorithm presented below to refine the

reconstructions.

Let us consider the edge-pair-weighted optimisation problem of Chapter 3. Let us

also consider that we are given a suboptimal solution y ∈ Y of the problem, i.e. a tree

weighted according to the cost function of Eq. 3.7. Similarily to the edge-weighted case

81

7. APPENDICES

we define the optimal cost of a subtree rooted at vertex xi as

{
c (xi) =

∑
xj∈N(xi)

min (wpij + c (xj) , 0) , ∀i �= r

c (xr) =
∑

xj∈N(xr)
min (c (xj) , 0) ,

(A.1)

where wpij is the weight of the edge-pair consisting of the edges epi, eij , the former of

which is the edge between the unique parent of vertex xi and the vertex xi itself. The

value c (xi) expressed by the first equation represents the cost of an optimal subtree

rooted at vertex xi including the weights of the edge-pairs for which xi is the middle

vertex. The second of the two equations defines the optimal subcost of a subtree rooted

at the actual root node xr, i.e. the optimal subcost of the whole tree. This leads us to

the method expressed in Algorithm 2.

As in Algorithm 1 of Chapter 3, the main procedure also makes two separate passes

through the initial tree, one when calling get optimal cost(xj) in a loop and the

other one when calling retrieve solution(xr). Each vertex and each edge is visited

at most once during both passes and so the computational complexity of Algorithm 2

is again O(|X |+ |Es|).

82

A Optimal Pruning of an Edge Pair Weighted Tree

Algorithm 2 Optimal edge-pair-weighted tree pruning
for eij ∈ Es do

takeij ← 0
yij ← 0

end for
for xj ∈ C(xr) do

b ← get optimal cost(xj)
if b < 0 then

takerj ← 1
end if

end for
retrieve solution(xr)

function get optimal cost(xi)
cost ← 0
for xj ∈ C(xi) do

p ← P (xi)
b ← get optimal cost(xj) + wpij

if b < 0 then
takeij ← 1
cost ← cost+ b

end if
end for
return cost

end function

procedure retrieve solution(xi)
for xj ∈ C(xi) do

if takeij = 1 then
yij ← 1
retrieve solution(xj)

end if
end for

end procedure

83

7. APPENDICES

B Tree Constraints in an Undirected Graph

In section 3.2.2 we presented the flow variable constraints adapted from [19] that are

part of the Quadratic Mixed Integer Program used to compute the Minimum Arbores-

cence from the initial overcomplete directed tubular graph. Their role is to ensure

that the final solution is indeed an arborescence. Recall that for every pair of sample

points (xi,xj) that are sufficiently close to each other we add two oppositely directed

edges. The only reason why we use directed edges is that the flow constraints of [19]

are defined on directed graphs.

In this appendix we present a novel set of constraints that can constrain solutions

to be trees while working with undirected graphs. Since such an undirected graph only

has half the number of edges compared to an equivalent directed one, we developed

the constraints in hope that they would accelerate the optimization procedure of the

original QMIP method of Chapter 3. Unfortunately, they turned out to be slower on

average.

B.1 The constraints

Let G = (X , Esu) be an undirected version of the tubular graph of Chapter 3. For any

pair of connected sample points (xi,xj) there exists only one undirected edge e{i,j}. Let

also y{i,j} be a binary undirected indicator variable whose value is equal to one if edge

e{i,j} is part of the solution and equal to zero if it is left out of the solution. Finally,

let f l
{i,j} be an undirected flow variable whose value is equal to one if the flow from the

root vertex to the terminal vertex xl passes through the edge e{i,j}, and is otherwise

equal to zero. An illustrative example of such a graph is presented in Fig. 7.1. It is an

undirected equivalent of the example directed graph of Fig. 3.9.

The flow constraints for an undirected graph can then be written as follows.

84

B Tree Constraints in an Undirected Graph

∑
xj∈δ(xr)

f l
{r,j} ≤ 1, ∀xl ∈ X \ {xr}, (B.1)

∑
xj∈δ(xl)

f l
{l,j} ≤ 1, ∀xl ∈ X \ {xr}, (B.2)

∑
xj∈δ(xi)

f l
{i,j} = 2cl,{i,j},

∀xl ∈ X \ {xr},
∀xi ∈ X \ {xr,xl}, (B.3)

cl,{i,j} ∈ {0, 1}, ∀xl ∈ X \ {xr},
∀xi ∈ X \ {xr,xl}, (B.4)

f l
{i,j} ≤ y{i,j}, ∀e{i,j} ∈ Esu, xl ∈ X \ {xr,xi,xj}, (B.5)

f i
{i,j} + f j

{i,j} = y{i,j}, ∀e{i,j} ∈ Esu, (B.6)

y{i,j} ∈ {0, 1}, ∀e{i,j} ∈ Esu, (B.7)

Constraints B.1 and B.2 are analogous to the first two constraints of Eqs. 3.8. Con-

straints B.3 and B.4 collectively ensure the conservation of flow. Constraint B.5 only

allows flows to pass through active edges. Constraint B.6 ensures that if edge e{i,j} is

active then exactly one of the unit flows terminating at xi and xj has to traverse e{i,j}.

Constraint B.7 restricts the edge indicator variables to binary values.

We have implemented the undirected constraints and employed them in the QMIP

method of Chapter 3. Experimenting with different examples we managed to con-

sistently reproduce exactly the same results as the ones obtained using the original

directed graphs, which confirms the correctness of the proposed constraints. As men-

tioned before, unfortunately they would cause the optimization procedure to take a

longer time to converge.

B.2 Directedness of the edges

Surprisingly, despite the fact that we defined the constraints on an undirected graph,

one can apply them to a graph where different weights are given to oppositely oriented

edges or edge-pairs. Even though we only have one indicator variable for any undirected

85

7. APPENDICES

edge e{i,j}, in any feasible solution it has a well defined direction. That direction can

be determined by looking at the flow variables f i
{i,j} and f j

{i,j}, at most one of which

can be equal to one.

Figure 7.1: Flows in an undirected graph rooted at vertex r. The segments represent
undirected edges. Those that are part of the solution tree are shown as solid, the others as
dashed. Note that the solution does not necessarily have to span all the vertices. In this
specific case, vertices i and j do not belong to the tree. There are 11 vertices and 16 edges
in this graph, which gives a total of 16 edge indicator variables y{i,j} and 11 ·16 = 176 flow
variables fm

{i,j}. For the example tree, we have fg
{r,a} = fg

{a,c} = fg
{c,g} = 1, which creates

the unit flow from r to g. All the other fg
.. variables are equal to 0. All the f i

.. and f j
..

variables are also equal to 0.

86

REFERENCES

[1] J. Aguttes, P. Ammendola, R. Baugh, U. Benz, L. Bianchi, R. Bird, K. Blitzer,

L. Borgarelli, F. Buscaglione, F. Caltagirone, et al. Space-based observation tech-

nology. 2000. 4

[2] K. Al-Kofahi, S. Lasek, D. Szarowski, C. Pace, G. Nagy, J. Turner, and B. Roysam.

Rapid Automated Three-Dimensional Tracing of Neurons from Confocal Image

Stacks. TITB, 6(2):171–187, 2002. 12

[3] M. Andriluka, S. Roth, and B. Schiele. Monocular 3D Pose Estimation and Track-

ing by Detection. In CVPR, 2010. 9

[4] E. Bas and D. Erdogmus. Principal Curves as Skeletons of Tubular Objects -

Locally Characterizing the Structures of Axons. Neur. Inf., 9(2-3):181–191, 2011.

12

[5] F. Benmansour and L. Cohen. Tubular Structure Segmentation Based on Minimal

Path Method and Anisotropic Enhancement. IJCV, 92(2):192–210, 2011. 19

[6] Bitplane. Imaris: 3D and 4D Real-Time Interactive Image Visualization, 2013.

http://www.bitplane.com/go/products/imaris/. 10

[7] K. M. Brown, D. E. Donohue, G. DAlessandro, and G. A. Ascoli. A cross-platform

freeware tool for digital reconstruction of neuronal arborizations from image stacks.

Neuroinformatics, 3(4):343–359, 2005. 10

87

REFERENCES

[8] H. Cai, X. Xu, J. Lu, J. Lichtman, S. Yung, and S. Wong. Repulsive Force Based

Snake Model to Segment and Track Neuronal Axons in 3D Microscopy Image

Stacks. NeuroImage, 32(4):1608–1620, August 2006. 12

[9] A. Can, H. Shen, J. Turner, H. Tanenbaum, and B. Roysam. Rapid Automated

Tracing and Feature Extraction from Retinal Fundus Images Using Direct Ex-

ploratory Algorithms. TITB, 3(2):125–138, June 1999. 12

[10] A. Cardona, S. Saalfeld, J. Schindelin, I. Arganda-Carreras, S. Preibisch, M. Lon-

gair, P. Tomancak, V. Hartenstein, and R. J. Douglas. TrakEM2 Software for

Neural Circuit Reconstruction. PLoS One, 7(6):38011, 2012. 11

[11] L. Chaerle, K. Hulsen, C. Hermans, R. J. Strasser, R. Valcke, M. Höfte, and

D. Van Der Straeten. Robotized time-lapse imaging to assess in-planta uptake

of phenylurea herbicides and their microbial degradation. Physiologia Plantarum,

118(4):613–619, 2003. 1

[12] C.-C. Chen, S. Thakkar, C. Knoblock, and C. Shahabi. Automatically annotating

and integrating spatial datasets. In Advances in Spatial and Temporal Databases,

pages 469–488. Springer, 2003. 3

[13] A. Choromanska, S. Chang, and R. Yuste. Automatic Reconstruction of Neural

Morphologies with Multi-Scale Graph-Based Tracking. Frontiers in Neural Cir-

cuits, 6(25), 2012. 12

[14] P. Chothani, V. Mehta, and A. Stepanyants. Automated Tracing of Neurites from

Light Microscopy Stacks of Images. Neur. Inf., 9:263–278, 2011. 11, 12

[15] Y. Chu and T. Liu. On Shortest Arborescence of a Directed Graph. Scientia

Sinica, 14(10):1396, 1965. 27

[16] H. Cuntz, F. Forstner, A. Borst, and M. Häusser. One Rule to Grow Them All:

A General Theory of Neuronal Branching and Its Practical Application. PLoS

Computational Biology, 6(8):1000877, 2010. 11, 13

88

REFERENCES

[17] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection.

In CVPR, 2005. 21

[18] L. Domanski, C. Sun, R. Hassan, P. Vallotton, and D. Wang. Linear Feature

Detection on GPUs. In DICTA, 2010. 12

[19] C. Duhamel, L. Gouveia, P. Moura, and M. Souza. Models and Heuristics for a

Minimum Arborescence Problem. Networks, 51(1):34–47, 2008. 32, 33, 84

[20] J. Edmonds. Optimum branchings. National Bureau of standards, 1968. 27

[21] D. Fan. Bayesian Inference of Vascular Structure from Retinal Images. PhD thesis,

Dept. of Computer Science, U. of Warwick, Coventry, UK, 2006. 12, 13

[22] Z. Fanti, F. F. De-Miguel, and M. E. Martinez-Perez. A Method for Semiautomatic

Tracing and Morphological Measuring of Neurite Outgrowth from DIC Sequences.

In Engineering in Medicine and Biology Society, pages 1196–1199, 2008. 10

[23] D. Feldmeyer. Excitatory neuronal connectivity in the barrel cortex. Frontiers in

neuroanatomy, 6, 2012. 2

[24] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object Detection

with Discriminatively Trained Part Based Models. PAMI, 2010. 21

[25] J. C. Fiala. Reconstruct: A Free Editor for Serial Section Microscopy. Journal of

microscopy, 218:52–61, 2005. 10, 11

[26] M. Fischler, J. Tenenbaum, and H. Wolf. Detection of Roads and Linear Struc-

tures in Low-Resolution Aerial Imagery Using a Multisource Knowledge Integra-

tion Technique. CVGIP, 15(3):201–223, March 1981. 13

[27] M. A. Fortier, D. Ziou, C. Armenakis, and S. Wang. Automated correction and

updating of roads from aerial ortho-images. In Proc. ISPRS, volume 33, pages

34–41, 2000. 1, 3

89

REFERENCES

[28] E. Frew, T. McGee, Z. Kim, X. Xiao, S. Jackson, M. Morimoto, S. Rathinam,

J. Padial, and R. Sengupta. Vision-based road-following using a small autonomous

aircraft. In Aerospace Conference, 2004. Proceedings. 2004 IEEE, volume 5, pages

3006–3015. IEEE, 2004. 3

[29] T. Gillette, K. Brown, and G. Ascoli. The Diadem Metric: Comparing Multiple

Reconstructions of the Same Neuron. Neur. Inf., 9:233–245, May 2011. 34, 54, 57,

69, 71

[30] P. Glowacki, M. Pinheiro, E. Turetken, R. Sznitman, D. Lebrecht, A. Holtmaat,

J. Kybic, and P. Fua. Reconstructing Evolving Tree Structures in Time Lapse

Sequences. In CVPR, 2014. 66

[31] Gurobi. Gurobi Optimizer, 2012. http://www.gurobi.com/. 53

[32] A. Holtmaat, J. Randall, and M. Canea. Optical Imaging of Structural and Func-

tional Synaptic Plasticity in Vivo. European Journal of Pharmacology, 2013. 1

[33] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient algorithms for graph manip-

ulation. Communications of the ACM, 16(6):372–378, 1973. 78

[34] M. Law and A. Chung. Three Dimensional Curvilinear Structure Detection Using

Optimally Oriented Flux. In ECCV, 2008. 12

[35] M. Law and A. Chung. An Oriented Flux Symmetry Based Active Contour Model

for Three Dimensional Vessel Segmentation. In ECCV, 2010. 12, 14, 19

[36] T. Lee, R. Kashyap, and C. Chu. Building Skeleton Models via 3D Medial Surface

Axis Thinning Algorithms. CVGIP, 56(6):462–478, 1994. 12

[37] V. Lepetit and P. Fua. Monocular Model-Based 3D Tracking of Rigid Objects: A

Survey. Now Publishers, September 2005. 9

[38] H. Li and A. Yezzi. Vessels as 4-D Curves: Global Minimal 4D Paths to Extract

3-D Tubular Surfaces and Centerlines. TMI, 26(9):1213–1223, 2007. 14, 19

90

REFERENCES

[39] Q. Li, Z. Deng, Y. Zhang, X. Zhou, U. V. Nagerl, and S. T. C. Wong. A Global Spa-

tial Similarity Optimization Scheme to Track Large Numbers of Dendritic Spines

in Time-Lapse Confocal Microscopy. TMI, 30(3):632–641, 2011. 1, 9

[40] Z. Li, S. Liu, R. Weinreb, J. Lindsey, M. Yu, L. Liu, C. Ye, Q. Cui, W. Yung,

C. Pang, D. Lam, and C. Leung. Tracking Dendritic Shrinkage of Retinal Ganglion

Cells After Acute Elevation of Intraocular Pressure. Invest Ophthalmol Vision

Science, 52(10):7205–12, 2011. 1

[41] J. Livet, T. Weissman, H. Kang, R. Draft, J. Lu, R. Bennis, J. Sanes, and J. Licht-

man. Transgenic Strategies for Combinatorial Expression of Fluorescent Proteins

in the Nervous System. Nature, 450(7166):56–62, 2007. 33

[42] J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R.

Sanes, and J. W. Lichtman. Transgenic strategies for combinatorial expression of

fluorescent proteins in the nervous system. Nature, 450(7166):56–62, 2007. 4

[43] M. Longair, D. A. Baker, and J. D. Armstrong. Simple Neurite Tracer: Open

Source Software for Reconstruction, Visualization and Analysis of Neuronal Pro-

cesses. Bioinf., 27(17):2453–2454, 2011. 10, 11

[44] MBF Bioscience. Neurolucida: Microscope Systems for Stereology and Neuron

Morphology, 2013. http://www.mbfbioscience.com/neurolucida/. 10

[45] E. Meijering, M. Jacob, J.-C. F. Sarria, P. Steiner, H. Hirling, and M. Unser.

Design and Validation of a Tool for Neurite Tracing and Analysis in Fluorescence

Microscopy Images. Cytometry Part A, 58A(2):167–176, April 2004. 10

[46] A. Mukherjee and A. Stepanyants. Automated Reconstruction of Neural Trees

Using Front Re-Initialization. In SPIE, 2012. 12

[47] D. R. Myatt, T. Hadlington, G. A. Ascoli, and S. J. Nasuto. Neuromantic - from

Semi Manual to Semi Automatic Reconstruction of Neuron Morphology. Frontiers

in Neuroinformatics, 6(4), 2012. 10

91

REFERENCES

[48] K. Palagyi and A. Kuba. A 3D 6-Subiteration Thinning Algorithm for Extracting

Medial Lines. PR, 19(7):613–627, 1998. 12

[49] H. Peng, F. Long, and G. Myers. Automatic 3D Neuron Tracing Using All-Path

Pruning. Bioinf., 27(13):239–247, 2011. 10, 11, 13

[50] H. Peng, Z. Ruan, D. Atasoy, and S. Sternson. Automatic Reconstruction of

3D Neuron Structures Using a Graph-Augmented Deformable Model. Bioinf.,

26(12):38–46, 2010. 10, 11

[51] M. Pool, J. Thiemann, A. Bar-Or, and A. E. Fournier. Neuritetracer: A Novel

Imagej Plugin for Automated Quantification of Neurite Outgrowth. Journal of

Neuroscience Methods, 168(1):134–139, 2008. 10, 12

[52] P. Prusinkiewicz. Modeling of Spatial Structure and Development of Plants: a

Review. Scientia Horticulturae, 74(1–2):113–149, 1998. 1, 5

[53] D. Ramanan, A. Forsyth, and A. Zisserman. Strike a Pose: Tracking People by

Finding Stylized Poses. In CVPR, 2005. 9

[54] C. E. Rasmussen and C. K. Williams. Gaussian Process for Machine Learning.

MIT Press, 2006. 43, 49

[55] E. Serradell, P. Glowacki, J. Kybic, F. Moreno, and P. Fua. Robust Non-Rigid

Registration of 2D and 3D Graphs. In CVPR, June 2012. 49

[56] J. A. Sethian. Level Set Methods and Fast Marching Methods Evolving Interfaces

in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials

Science. Cambridge University Press, 1999. 19

[57] V. Springel. The cosmological simulation code gadget-2. Monthly Notices of the

Royal Astronomical Society, 364(4):1105–1134, 2005. 4

92

REFERENCES

[58] R. Srinivasan, Q. Li, X. Zhou, J. Lu, J. Lichtman, and S. T. C. Wong. Reconstruc-

tion of the Neuromuscular Junction Connectome. Bioinformatics, 26(12):64–70,

2010. 10

[59] A. Stepanyants, P. R. Hof, and D. B. Chklovskii. Geometry and structural plas-

ticity of synaptic connectivity. Neuron, 34(2):275–288, 2002. 2

[60] K. Sun, N. Sang, and T. Zhang. Marked Point Process for Vascular Tree Extraction

on Angiogram. In CVPR, pages 467–478, 2007. 12, 13

[61] E. Turetken, C. Becker, P. Glowacki, F. Benmansour, and P. Fua. Detecting

Irregular Curvilinear Structures in Gray Scale and Color Imagery Using Multi-

Directional Oriented Flux. In ICCV, December 2013. 19, 48

[62] E. Türetken, F. Benmansour, B. Andres, H. Pfister, and P. Fua. Reconstructing

curvilinear networks using path classifiers and integer programming. Technical

report, Institute of Electrical and Electronics Engineers, 2015. 14, 34, 36, 77

[63] E. Turetken, F. Benmansour, and P. Fua. Automated Reconstruction of Tree

Structures Using Path Classifiers and Mixed Integer Programming. In CVPR,

June 2012. 14, 15, 17, 21, 25, 26, 30, 32, 43

[64] E. Turetken, F. Benmansour, and P. Fua. Semi-Automated Reconstruction of

Curvilinear Structures in Noisy 2D Images and 3D Image Stacks. Technical report,

EPFL-182839, 2013. 10, 34

[65] E. Turetken, G. Gonzalez, C. Blum, and P. Fua. Automated Reconstruction of

Dendritic and Axonal Trees by Global Optimization with Geometric Priors. Neur.

Inf., 9(2-3):279–302, 2011. 12, 13, 14, 34, 36

[66] Z. Vasilkoski and A. Stepanyants. Detection of the Optimal Neuron Traces in

Confocal Microscopy Images. Journal of Neuroscience Methods, 178(1):197–204,

2009. 12

93

REFERENCES

[67] D. Wang, R. Lagerstrom, C. Sun, L. Bishof, P. Valotton, and M. Götte. Hca-

Vision: Automated Neurite Outgrowth Analysis. Journal of Biomolecular Screen-

ing, 15(9):1165–1170, 2010. 10

[68] Y. Wang, A. Narayanaswamy, and B. Roysam. Novel 4D Open-Curve Active Con-

tour and Curve Completion Approach for Automated Tree Structure Extraction.

In CVPR, pages 1105–1112, 2011. 10, 13, 14

[69] Y. Wang, A. Narayanaswamy, C. Tsai, and B. Roysam. A Broadly Applicable 3D

Neuron Tracing Method Based on Open-Curve Snake. Neur. Inf., 9(2-3):193–217,

2011. 10

[70] S. Wearne, A. Rodriguez, D. Ehlenberger, A. Rocher, S. Henderson, and P. Hof.

New Techniques for Imaging, Digitization and Analysis of Three-Dimensional Neu-

ral Morphology on Multiple Scales. Neuroscience, 136(3):661–680, 2005. 11, 12

[71] C. Weaver, P. Hof, S. Wearne, and L. Brent. Automated Algorithms for Multiscale

Morphometry of Neuronal Dendrites. Neural Computation, 16(7):1353–1383, 2004.

12

[72] J. Wegner, J. Montoya-Zegarra, and K. Schindler. A Higher-Order CRF Model

for Road Network Extraction. In CVPR, 2013. 12

[73] D. Weinland, M. Ozuysal, and P. Fua. Making Action Recognition Robust to

Occlusions and Viewpoint Changes. In ECCV, 2010. 21

[74] Q. Wen, A. Stepanyants, G. N. Elston, A. Y. Grosberg, and D. B. Chklovskii.

Maximization of the connectivity repertoire as a statistical principle governing

the shapes of dendritic arbors. Proceedings of the National Academy of Sciences,

106(30):12536–12541, 2009. 2

[75] H. Xiao and H. Peng. APP2: Automatic Tracing of 3D Neuron Morphology

Based on Hierarchical Pruning of a Gray-Weighted Image Distance-Tree. Bioinf.,

29(11):1448–1454, 2013. 11

94

REFERENCES

[76] J. Xu, J. Wu, D. Feng, and Z. Cui. Dsa Image Blood Vessel Skeleton Extraction

Based on Anti-Concentration Diffusion and Level Set Method. Computational

Intelligence and Intelligent Systems, 51:188–198, 2009. 12

[77] T. Yedidya and R. Hartley. Tracking of Blood Vessels in Retinal Images Using

Kalman Filter. In DICTA, pages 52–58, 2008. 12

[78] X. Yu, J. Tian, and J. Liu. Transformation Model Estimation for Point Matching

via Gaussian Processes. In World Congress of Engineering, 2007. 49

[79] T. Zhao, J. Xie, F. Amat, N. Clack, P. Ahammad, H. Peng, F. Long, and E. Myers.

Automated Reconstruction of Neuronal Morphology Based on Local Geometrical

and Global Structural Models. Neur. Inf., 9:247–261, May 2011. 13, 14

95

Curriculum vitae

Przemysław Głowacki
+41 762 362 670
prz.glo@gmail.com

Strengths

• Computer vision and mathematical optimisation skills
• Very good knowledge of algorithmics and advanced data structures
• Strong background in mathematics (especially combinatorics and

geometry)

Education

2011 to date PhD in Computer Science at École polytechnique
fédérale de Lausanne, Switzerland in the Computer
Vision Laboratory

2006 – 2011 MSc in Computer Science at AGH University of Science
and Technology, Kraków, Poland

2009 – 2011 Mathematics and the Natural Sciences Studies -
specialisation: Physics at Jagiellonian University,
Kraków, Poland

2003 – 2006 Polish Certificate of Secondary Education,
5th Secondary School, Kraków, algorithmics profile

Technical skills

Programming languages: C/C++, Java, Python, Matlab
Version control systems: Git, SVN
Operating systems: Linux, Mac OS X, Windows

Projects

July - August
2010

Internship at National Physical Laboratory, London,
United Kingdom. Optimised software for controlling physics
experiments. The result is software that is simpler and
easier to maintain, while delivering the desired functionality.

July - September
2009

Internship at Rutherford Appleton Laboratory,
Oxfordshire, United Kingdom. Designed an image analysis
tool in Java. The tool allows for taking quick measurements
in images, accelerating data analysis in laser experiments.

Languages

Polish native language
English fluent, Cambridge Certificate of Proficiency in English, 2006
French conversational level
German conversational level

Publications

E. Serradell, P, Głowacki, J, Kybic, F. Moreno-Noguer, P. Fua, Robust Non-
Rigid Registration of 2D and 3D Graphs, Conference on Computer Vision and
Pattern Recognition, Providence, RI, USA, June 2012

E. Türetken, C. Becker, P. Głowacki, F. Benmansour, P. Fua, Detecting
Irregular Curvilinear Structures in Gray Scale and Color Imagery using
Multi-Directional Oriented Flux, International Conference on Computer Vision
(ICCV), Sydney, Australia, December, 2013

P. Głowacki, M. Pinheiro, E. Türetken, R, Sznitman, D. Lebrecht, J. Kybic, A.
Hotlmaat, P. Fua, Reconstructing Evolving Tree Structures in Time Lapse
Sequences, Conference on Computer Vision and Pattern Recognition (CVPR),
Columbus, OH, USA, 2014

E. Türetken, F. Benmansour, B. Andres, P. Głowacki, H. Pfister, P. Fua,
Reconstructing Curvilinear Networks using Path Classifiers and Integer
Programming, IEEE Transactions on Pattern Analysis and Machine Intelligence,
2015

P. Głowacki, M. Pinheiro, E. Türetken, D. Lebrecht, R. Sznitman, A. Holtmaat, J.
Kybic, P. Fua, Reconstructing Evolving Tree Structures in Time Lapse
Sequences by Enforcing Time-Consistency, Submitted to: IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2015

