
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. N. Geroliminis, président du jury
Prof. M. Bierlaire, directeur de thèse
Prof. S. P. Hoogendoorn, rapporteur

Prof. W. H. K. Lam, rapporteur
Prof. U. Weidmann, rapporteur

Modeling and estimation of pedestrian flows in train stations

THÈSE NO 6876 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 18 MARS 2016

À LA FACULTÉ DE L'ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT
LABORATOIRE TRANSPORT ET MOBILITÉ

PROGRAMME DOCTORAL EN GÉNIE CIVIL ET ENVIRONNEMENT 

Suisse
2016

PAR

Flurin Silvan HÄNSELER





Acknowledgements

First and foremost, I would like to thank my supervisor Michel Bierlaire.
This thesis would not have been possible without his guidance and vision,
as well as his incredible mentoring and support. He has always been there
when I needed his advice, for which I’m deeply grateful. We’ve had count-
less profoundly inspiring scientific discussions, as well as other enriching
moments while skiing, playing volleyball, hiking, or at conferences.

I am grateful to William H.K. Lam for welcoming me to the Hong
Kong Polytechnic University between July and December 2014. His great
intuition for compelling research, his genuine curiosity, and his scientific
experience and knowledge have made this stay – truly memorable already
for many other reasons – a very enriching one. I keep many fond memories
of my interaction with him and his group, which has given me insight in a
culture and lifestyle that is so different from the one that I grew up with. I
appreciated immensely these exchanges, which have shaped my perspective
of life far beyond research.

I would like to extend my heartfelt thanks to my current and former col-
leagues at EPFL for the warm and friendly atmosphere and their friendship.
Among them, I would like to particularly thank Antonin Danalet, Marija
Nikolić, Riccardo Scarinci, Bilal Farooq, as well as Anna Fernández, Bilge
Atasoy, Eva Kazagli, Stefan Binder, Tomáš Robenek, Matthieu de Lappar-
ent, Shadi Sharif, Yousef Maknoon and Prem Kumar, with whom I’ve been
directly involved in research, shared office, spent countless evenings and
weekends, or otherwise had a very pleasant interaction. This also holds for
Nicholas Molyneaux, Thomas Mühlematter and Gael Lederrey, with whom
I’ve been working particularly closely during their stay at the lab, and who
contributed greatly to this thesis and have become friends.

Beyond EPFL, I wish to thank various other researchers whose work,
knowledge or opinion has been a great influence. Among them, I would

i



ii Acknowledgements

like to mention Gunnar Flötteröd, Stefan Seer, as well as several people
from TU Delft, in particular Femke van Wageningen-Kessels, Jeroen van
den Heuvel and Winnie Daamen.

Besides Michel Bierlaire and William H.K. Lam, I would also like to
thank the other members of the jury for their time, and their valuable and
constructive input. The many comments by Serge Hoogendoorn, both re-
garding mathematical subtleties and fundamental aspects of the thesis,
have been most helpful. The remarks by Ulrich Weidmann have been
equally appreciated. I would also like to thank Nikolas Geroliminis for
his constant advice over the years, and for presiding the committee.

This thesis has been supported by the Swiss National Science Foun-
dation, as well as by the Swiss Federal Railways (SBB). Several people
have contributed to its successful outcome by bringing in practical expe-
rience and ‘field data’, in particular Nicolas Anken, Aurelius Bernet, Beat
Hürzeler, Herbert Kessler, Sonia Lavadinho, Michael Moos, Bonnie Qian,
Michael Schürch, Uri Schtalheim, Zina Singer, Oliver Specker, Michaël Thé-
mans, and Jasmin Thurau. Their contribution is greatly appreciated.

Lastly, I could not have come this far without the unconditional support
of Gemma, my family, and my closest circle of friends in Switzerland, Spain
and elsewhere in Europe. I am greatly indebted to all of them.

Lausanne, February 29, 2016 Flurin Hänseler



Abstract

This thesis addresses two modeling problems related to pedestrian flows
in train stations, namely that of estimating pedestrian origin-destination
demand in rail access facilities, and that of describing the propagation
of pedestrians in walking facilities. For both problems, a mathematical
framework is developed at the aggregate level, describing pedestrians in
terms of groups with the same departure time, origin and destination.

The proposed demand estimator is probabilistic and accounts for
within-day dynamics as well as for natural fluctuations across days. It is
inspired by estimation methodologies that are used in the context of vehic-
ular traffic. Critically, the proposed methodology takes the train timetable
and ridership data into account, significantly improving the accuracy of the
estimates. Other information sources, such as link flows or sales data, can
also be incorporated.

To describe the propagation of pedestrians, walkable space is consid-
ered as a network of pedestrian streams that interact locally. Based on
the continuum theory for pedestrian flow and the cell transmission model,
a computationally efficient model is obtained that can be used under a
wide range of traffic conditions. An optional extension allows considering
anisotropic flow, where the walking speed depends on the walking direction.
Such a formulation is advantageous in particular at high densities.

Throughout the thesis, a case study of Lausanne railway station is con-
sidered. A detailed discussion of the usage and level-of-service of its rail
access facilities is provided, underlining the performance and practical ap-
plicability of the proposed modeling framework.

The contribution of the thesis is fourfold. First, it provides a dedicated
estimation methodology for pedestrian OD demand in train stations. Sec-
ond, it proposes a novel macroscopic network loading model for congested
and multi-directional pedestrian flows. Third, it presents a detailed case

iii



iv Abstract

study of a Swiss train station, for which a rich data set is collected. Finally,
it applies the aforementioned modeling framework to that case study, and
provides practical guidance for its use in the planning and dimensioning of
rail access facilities.

Beyond train stations, the developed modeling framework can be read-
ily applied to various other pedestrian facilities, such as airports, shopping
malls, stadiums or urban walking areas. For instance, it may be used to
support the organization, planning and design of such facilities, to safely
and efficiently manage pedestrian flows using real-time monitoring and con-
trol, or to assess and optimize the safety both during normal use and in
case of emergency.

Keywords: Public transportation, pedestrian flow, demand estimation,
network loading, train station, infrastructure planning.

Résumé : Ce travail porte sur la modélisation des flux de piétons dans
les gares, et en particulier sur l’estimation de matrices origine-destination
et sur la modélisation des flux avec une approche continue. Les deux prob-
lèmes sont étudiés en détail pour le cas de la gare de Lausanne.

Zusammenfassung: Diese Arbeit befasst sich mit der Modellierung
von Fussgängerströmen in Bahnhöfen. Insbesondere wird die Schätzung
von Quelle-Ziel-Matrizen und die Modellierung von Strömen mittels eines
Kontinuum-Ansatzes diskutiert. Beide Probleme werden am Beispiel des
Bahnhofs Lausanne ausführlich erläutert.
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Chapter 1

Introduction

1.1 Motivation and objectives

There is a general need to better understand pedestrian flows in public
spaces. Notably, such knowledge is required for optimally planning and
designing pedestrian facilities, involving aspects like infrastructure dimen-
sioning or route signage. It is equally required for the management of
pedestrian flows, such as the real-time monitoring, prediction and control
of human crowds.

An optimal design and operation of pedestrian facilities aim at enabling
efficient, comfortable and safe pedestrian flows. Efficiency usually means
the minimization of walking times, but may also imply maximizing the
length of stay of customers in a shopping mall. Comfort can be measured
in terms of level-of-service indicators such as pedestrian density, or in terms
of ambient factors that take into account the aesthetics of a facility. Safety
involves aspects such as the rapid evacuation in case of emergency, the
risk-free mobility of disabled people, or the avoidance of injuries on train
platforms.

In pedestrian flow theory, a distinction is made between free-flow con-
ditions at low densities, and congested conditions at high densities. In
the free-flow regime, pedestrian flows are characterized by phenomena of
self-organization, such as spontaneous lane formation in conflicting traffic.
These yield a high flow performance even in multi-directional flow. In the
congested regime, self-organization breaks down and the friction between
pedestrians increases, incurring a significant drop in flow performance.

For optimal performance, a pedestrian facility should be operated in the

1



2 CHAPTER 1. INTRODUCTION

free-flow regime. This may be achieved by two ways. First, by ensuring
an infrastructure dimensioning that can cope with the expected pedestrian
demand without congestion. This option is feasible if pedestrian demand is
homogenous across time, and if providing enough infrastructural capacity
is economically viable. Second, by using a crowd management system that
actively avoids congestion. Crowd management systems may for instance
impose a limit on the inflow to a system, or reroute pedestrians away from
busy areas. This option is particularly interesting if important demand
peaks occur, such as during the simultaneous arrival of multiple large trains
in a train station.

For both infrastructure assessment and crowd management, the avail-
ability of an appropriate pedestrian dynamic model is critical to reach effi-
cient flow conditions. The development of such models has been the subject
of research since the early 1990s, demonstrating the importance of the issue.
A variety of pedestrian facilities have been considered, ranging from simple
crosswalks (Lam et al., 2002) to shopping areas (Lam and Cheung, 2000),
entire shopping districts (Borgers and Timmermans, 1986), metro stations
(Lee et al., 2001), train stations (Daamen, 2004), airports (Solak et al.,
2009; Lee et al., 2012), music festivals (Naini et al., 2011), university cam-
puses (Danalet et al., 2014), museums (Yoshimura et al., 2014), or religious
sites (Al-Gadhi and Mahmassani, 1990).

Among these facility types, rail access facilities are particularly relevant.
Rail access facilities provide pedestrian access to trains, and have been sub-
ject to a strong increase in demand due to population growth, increase in
mobility, and the installation of sales and service points within train sta-
tions (Nio, 2012). As a consequence, phenomena like congested walking
facilities, delays of trains due to overcrowded platforms, or safety violations
during boarding and alighting have emerged, putting the smooth operation
of entire public transportation systems at risk (Hoogendoorn and Daamen,
2004; Buchmüller and Weidmann, 2008; Jiang et al., 2009a). Understand-
ing these issues is challenging from a research point of view, and their
alleviation highly relevant both for economic welfare and for mitigating
climate change.
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In that context, the objectives of this dissertation are threefold.

1. To provide a detailed yet ‘operational’ model of the usage and
level-of-service of rail access facilities, describing when and where
pedestrian flows occur, how these flows are influenced by the train
timetable, whether congestion arises, and how the performance of a
train station is affected.

2. To collect, consolidate and analyze a rich set of data for a complex
train station including pedestrian flow counts, pedestrian trajectory
data, the train timetable and delay data, as well as ridership informa-
tion, and to explore this data in order to obtain an empirical under-
standing of pedestrian flows in train stations at a concrete example.

3. To provide an application of the developed modeling framework at
the example of the aforementioned case study, to assess the practical
applicability of the framework, and to provide practical guidance on
its use for the planning and dimensioning of pedestrian facilities in
further train stations.

Despite the growing importance of the field, the scientific literature
associated with these three aspects of pedestrian flows in rail access facilities
is still limited, and may be summarized as follows. A more detailed review
of the relevant literature is provided in subsequent chapters.

Models: Fundamentally, two model types may be distinguished. A
first type of models is concerned with the assessment of the usage of a
pedestrian facility, which are typically referred to as demand estimation
models. Activity-based models belong to that type. They consider de-
mand as the result of an underlying need to perform activities, such as
‘buying a ticket’, or ‘boarding a train’ (Hoogendoorn and Bovy, 2004).
Another approach consists in estimating demand at the scale of origin-
destination (OD) flows, such as ‘North entrance to Platform #5’. A
lower computational cost and reduced data requirements make such es-
timators of OD demand viable for real-time applications and long-term
prediction. A second type of models is referred to as pedestrian traffic as-
signment models, which are useful for assessing the level-of-service (LOS)

of pedestrian facilities. They typically consist of a route choice and a net-
work loading model. Route choice models assign OD demand to routes,
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typically using utility-based approaches (Borgers and Timmermans, 1986;
Cheung and Lam, 1998; Hoogendoorn and Bovy, 2004). Network loading
models describe the propagation of pedestrians along these routes. Even
though many such models have been presented in the literature, there is
still a lack of network loading models that are at the same time accurate
and computationally efficient (Duives et al., 2013).

The two model types, demand and assignment models, are complemen-
tary. For a given infrastructure and data, the demand model takes the
level-of-service as input and predicts the usage, whereas the assignment
model takes the usage as input, and predicts the level-of-service.

Data: Various forms of data have been collected in rail access facilities.
These range from density and speed measurements in walking facilities for
the estimation of density-speed relationships (Daly et al., 1991), record-
ings of train arrival and departure times for the estimation of train delays
(Higgins and Kozan, 1998), pedestrian flow measurements obtained from
CCTV networks (Ganansia et al., 2014), automated fare collection data
to study pedestrian arrival time distributions, route choice and waiting
times (van den Heuvel and Hoogenraad, 2014), or capacity measurements
of train doors to estimate access and egress times associated with public
transport vehicles (Fernández et al., 2015). In most cases, typically only a
single type of data is collected, i.e., cases in which multiple data types have
been collected for the same train station are rare.

Applications: In the literature, a large set of case studies involving
pedestrian flows in train stations are available. These concern light rail
and underground stations in Hong Kong (Lam et al., 1999; Lee et al.,
2001), train stations in Lisbon and Bern (Hoogendoorn and Daamen, 2004;
Rindsfüser and Klügl, 2007), a subway station in Paris (Kaakai et al.,
2007), as well as further examples from Vienna, Beijing and Amsterdam
(Seer et al., 2008; Jiang et al., 2009a; Starmans et al., 2014).

1.2 Contributions

Within the aforementioned literature, the main objective of this thesis is to
develop a modeling framework for the usage and level-of-service of pedes-
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trian facilities in train stations. Real data is collected and used for its
calibration and validation. The resulting framework can be directly ap-
plied for the planning and dimensioning of rail access facilities, and in the
long term for an active and passive management of pedestrian crowds.

The contributions of this thesis include

� the development of a dedicated demand estimation methodology for
pedestrian OD demand in rail access facilities, in particular taking
the train timetable into account;

� the development of a pedestrian network loading model that is capa-
ble of accurately describing multi-directional and congested flows in
large facilities and at low computational cost;

� the collection of a rich set of data for a large Swiss train station,
comprising multiple data sources for a single site;

� the application of the aforementioned models to that case study in
order to study their performance, and the formulation of a planning
guideline to facilitate their practical application.

Despite the focus on train stations, most of the developed methodologies
can also be applied to other pedestrian facilities, such as airports, museums,
or urban pedestrian areas. Specifically, the developed model framework can
be used to support the planning, organization, design and control of pedes-
trian facilities by (i) assessing new designs of stations, buildings, stadiums
and other facilities, (ii) testing operational schemes such as train timeta-
bles or flight schedules with respect to the expected pedestrian flows, (iii)
assessing evacuation plans for buildings, and (iv) implementing crowd man-
agement and control measures and strategies, including real-time solutions.

The main challenge in addressing these issues is to develop pedestrian
models that can reproduce and predict flow dynamics under a variety of
circumstances and conditions. In particular, this entails tackling research
challenges such as (i) the identification of key dynamics and phenomena
to be modeled, (ii) the choice of an appropriate theory to represent these
phenomena, (iii) their mathematical formulation, and finally (iv) the cali-
bration and validation of the developed models based on real data.
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1.3 Thesis structure

The remainder of this thesis is structured as described in the following.
Figure 1.1 provides a graphical representation of the structure.

Demand estimation

(Chap. 3)
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Figure 1.1: Thesis structure.

Chapter 2 provides a review of the literature associated with pedestrian
flows in rail access facilities, and a classification of data that is avail-
able in that context (see rectangles in Fig. 1.1). This data is useful to
calibrate (solid arrows) and validate (dashed arrows) the envisaged
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modeling framework. A case study of Lausanne railway station is
introduced, to which reference is made throughout the thesis.

Chapter 3 presents a framework for estimating pedestrian OD demand
within a train station (left shaded rectangle in Fig. 1.1). It takes into
account ridership data, and various direct and indirect indicators of
demand such as link flow counts, density measurements or survey
data. The problem is considered in discrete time and at the aggre-
gate level, i.e., for groups of pedestrians associated with the same
origin-destination pair and departure time interval. The formulation
is probabilistic, allowing to consider the stochasticity of demand. A
key element of the framework is the use of the train timetable, and
in particular of train arrival times, to better capture demand peaks.
A case study of Lausanne railway station shows that, compared to a
classical estimator that ignores the notion of a train timetable, the
gain in accuracy in terms of RMSE is between 20% and 50%.

Chapter 4 outlines a pedestrian traffic assignment model (right shaded
rectangle in Fig. 1.1), and presents in particular a novel macro-
scopic loading model for multi-directional, time-varying and con-
gested pedestrian flows. Walkable space is represented by a network
of streams that are each associated with an area in which they in-
teract. Due to its aggregate character, the model is computationally
cheap, which is advantageous for studying large-scale problems. Two
specifications are considered.

Isotropic density-speed relationship: A well-established isotropic
pedestrian density-speed relationship is used. Two case studies in-
volving Lausanne railway station and a Dutch bottleneck experiment
are presented. A comparison with the social force model and pedes-
trian tracking data shows a good performance of the proposed model
with respect to predictions of travel time and density.

Anisotropic density-speed relationship: A stream-based pedestrian
fundamental diagram is used that relates density and walking speed
in anisotropic flow. Unlike in the previous specification, the walking
speed in the direction of major flow may be higher than in the direc-
tion of minor flow if densities are high. The proposed model is applied
to two different case studies in Berlin and Hong Kong. The explicit
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modeling of anisotropy in walking speed significantly improves the
ability of the model to reproduce empirically observed travel times.

Chapter 5 applies the modeling framework developed in the previous two
chapters to assess the usage and level-of-service in rail access facilities
of Lausanne railway station (boxes at the bottom of Fig. 1.1). A de-
tailed discussion of origin-destination demand, network flows, density
maps and travel time distributions is provided. Moreover, the model-
ing framework is embedded in a six-step planning guideline that can
be used in the process of designing and optimizing rail access facil-
ities of new train stations, or those that need to be expanded. The
chapter is self-sufficient, and accessible to readers without a particular
knowledge of mathematics.

Chapter 6 summarizes the contributions of the thesis, provides further
practical recommendations, and outlines future research directions.



Chapter 2

Context and case study

2.1 Literature review

Questions related to the usage and level-of-service of rail access facilities
increasingly attract the attention of academic research.

In an early study, Daly et al. (1991) investigate the relationship between
speed and flow and between flow and travel time in various pedestrian fa-
cilities of London’s underground system. Lam and Cheung (2000) examine
several metro stations in Hong Kong. Differentiating by trip purpose, flow
capacities are evaluated and flow-travel time functions are calibrated. Com-
pared to the results from London, users of Hong Kong’s mass transit system
are found to be better at dealing with high levels of congestion, which is
attributed to the smaller physique of Asians and their higher tolerance to
invasion of space (Lee and Lam, 2003).

Lam et al. (1999) investigate the train dwelling time and the distribu-
tion of pedestrians on platforms in two stations of Hong Kong’s Light Rail
Transit system. A behavioral analysis reveals that people are less willing
to board a train if it is congested, and if the journey to be made is longer.
Also focusing on train platforms, Zhang et al. (2008) describe the process
of alighting and boarding in metro stations in Beijing. Pettersson (2011)
investigates the behavior of pedestrians on train platforms from an archi-
tect’s perspective. At the example of a Swedish and a Japanese case study,
the effect of signposts, availability of seats and entrances on the distribution
of pedestrians along the platform is investigated.

Recently, Ganansia et al. (2014) have studied the use of standard CCTV
networks for measuring pedestrian flows in train stations. Several case

9
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studies, including a TGV station and two subway stations in France and
Italy, are discussed. It is found that data obtained through such a system
is in principle useful for a continuous monitoring of the spatio-temporal
evolution of pedestrian flows, but also that an a posteriori ‘correction’ is
necessary whenever dense crowds need to be accurately measured. Us-
ing such camera-based data, Molyneaux et al. (2014) describe the flows
on platform access ways caused by alighting train passengers. Simi-
larly, van den Heuvel and Hoogenraad (2014) use automated fare collection
(AFC) data to investigate passenger arrival distributions.

Several studies have been dedicated to the understanding of route choice
behavior (Seneviratne and Morrall, 1985; Borgers and Timmermans,
1986). For the case of a metro station in Hong Kong, Cheung and Lam
(1998) investigate the route choice between escalators and stairways lead-
ing to a train platform. A relationship between flow and travel time is first
established. This characteristic relationship is then used in a choice model
to predict the percentage of escalator-users for ascending and descending
directions as a function of prevailing traffic conditions. By ‘shadowing’
passengers, Daamen et al. (2005) collect route choice data in two Dutch
train stations. Likewise, a route choice model is estimated, allowing to
predict the influence of level changes in walking routes on passenger route
choice behavior. Similar studies are provided by Srikukenthiran et al.
(2014), Stubenschrott et al. (2014) and Ton (2014), who consider railway
stations in Canada, Austria and the Netherlands, respectively.

Lee et al. (2001) provide one of the first model-based studies of pedes-
trian flows in train stations. For a major station in Hong Kong’s metro
system, origin-destination demand and travel times are collected using hu-
man observers. From this data, flow-travel time relationships are derived,
which are used in a network-based pedestrian flow model. Along the same
lines, Daamen (2004) develops a multitude of models for describing the pro-
cesses of queueing, boarding, alighting, waiting, walking as well as route
and activity choice.

Kaakai et al. (2007) develop a related model using a Petri net. They
consider both discrete processes such as the arrival and departure of trains,
as well as continuous processes such as the ‘fill-up’ of train platforms by
pedestrians awaiting a train, or pedestrian flows in walking facilities. The
model is applied to a French case study involving a train station with a
single platform. At the microscopic level, Xu et al. (2014) develop a model
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describing pedestrian behavior in a Chinese metro station. The framework
is entirely based on a queueing network, i.e., all processes including entering
the train station, passing ticket gates, walking and boarding are represented
by queues. The framework is applied to estimate the maximum service rate
of a metro station, as well as to determine the optimal inflow rate at the
entrance at which this capacity is attained.

There are several more studies of pedestrian flows in train stations that
concentrate on specific applications. Most of them pursue an agent-based
approach and describe various practical challenges such as the placement
of access gates in Lisbon (Hoogendoorn and Daamen, 2004), the re-design
of access ways in Bern (Rindsfüser and Klügl, 2007), the evacuation of a
metro station in Beijing (Jiang et al., 2009a), the modeling of waiting areas
in German train stations (Davidich et al., 2013), the design of a new station
in South Africa (Hermant, 2012), or, based on a macroscopic ‘pedestrian
transfer chain’, the assessment of an existing station in the Netherlands
(Starmans et al., 2014).

As for other transportation modes, assessment schemes for pedestrian
facilities exist that allow to quantify the quality and comfort of pedestrian
traffic. The corresponding literature is dominated by the seminal contribu-
tion by Fruin (1971), who proposes a density- and flow-based classification
of level-of-service (LOS) considering six service levels. Density-based LOS
indicators are useful both for walking and waiting areas, for which different
thresholds apply. Flow-based indicators are used for walkways, escalators
or stairways, and consider the specific flow, i.e., the flow per meter of
width. Several other assessment schemes have been proposed, typically
focusing on the integration of additional factors such as safety, aesthetics
and comfort, or taking the opinion of pedestrians into account (Polus et al.,
1983; Mōri and Tsukaguchi, 1987; Khisty, 1994). Due to their more diffi-
cult use, Fruin’s classical LOS classification schemes have mostly prevailed
in practice, even though minor modifications have been made that consider
national differences (Highway Capacity Manual, 2000; Brilon, 2001).

A detailed review of various methodologies that are useful for the es-
timation of pedestrian OD demand in the context of a railway station,
including estimators for transit networks, is provided in Chapter 3. Chap-
ter 4 provides a similar review for pedestrian traffic assignment models,
particularly focusing on network loading models. In Chapter 5, a brief
practical overview is given regarding how LOS assessment schemes can be
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used to optimize the design of rail access facilities.

2.2 Pedestrian data

Pedestrian traffic data is essential for the understanding of rail access facil-
ities in several ways, for instance to assess their safety, security, efficiency
and attractiveness (Bauer et al., 2009).

Obtaining pedestrian data is generally difficult. First, the placement
of sensors is challenging, as pedestrians can explore space freely, and are
not confined to lanes. Second, the detection of pedestrians is an intricate
task, as they can almost instantaneously stop or accelerate, and often travel
in groups. Pedestrians are by nature heterogeneous, and their appearance
depends on age, gender, or even trip purpose. Third, pedestrian traffic is
highly variable, and sensors are required to capture a large range of traffic
levels (U.S. Department of Transportation, 2013). Data availability is thus
often limited in terms of its spatial or temporal coverage, or in terms of
quality.

In the following, we provide a classification of data sources in five data
types, and discuss the importance of each data type for demand estimation
and LOS assessment. For a discussion of sensing technologies as well as
further practical guidance, we refer to the literature (Turner et al., 2007;
Bauer et al., 2009; U.S. Department of Transportation, 2013).

OD flow data: Origin-destination (OD) trip tables represent the number
of people traveling between each pair of origin and destination during pre-
defined time intervals. The definition of OD areas depends on the layout
of a train station, and may include platforms or platform sectors, shops,
as well as entrance/exit areas. No distinction between ‘intermediate’ and
‘final’ destinations is made. If a pedestrian visits multiple destinations in
a row, instead each intermediate trip is represented by an independent OD
pair. A pedestrian may thus be associated with multiple OD trips. These
OD trips are counted when the pedestrian leaves the respective origin.

OD flow data are obtained from pedestrian tracking systems, travel sur-
veys, electronic tickets, or passive ICT sensors such as Bluetooth and Wi-
Fi scanners (Versichele et al., 2012; Alahi et al., 2013b; Kim et al., 2015).
Due to their expensive collection, OD flow data are often not available for
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the entire network of interest (Bauer et al., 2009). Moreover, sampling is
typically an issue, as in practice only a subset of pedestrians may be suc-
cessfully detected. This holds in particular for ICT sensors, which capture
only pedestrians carrying a corresponding device. Moreover, the temporal
resolution is often low, with devices being detected only every couple of
minutes (Danalet, 2015).

OD flow data are of particular importance for OD demand estimation,
where they help to reduce the underdetermination that results if only indi-
rect indicators of demand, such as link flows, are available (Cascetta et al.,
1993). For LOS assessment, OD flows can also be useful if a traffic assign-
ment model is available that allows to estimate LOS indicators.

Link flow data: Pedestrian infrastructures are often represented as a
flow network, consisting of nodes and links. Links include in particular
walkways or walkway sections, stairways, or escalators. By convention, ‘link
flow’ refers to the inflow to a link, i.e., the flow that is measured at the origin
of a link. Link flow data may be obtained from turnstiles, camera-based
systems, infrared sensors or other detectors, including manual counting
(Lee et al., 2001; Ton, 2014; Kim et al., 2015). Compared to OD flow data,
the sensor technology for obtaining link flows are relatively mature, and
the counting precision is high (U.S. Department of Transportation, 2013).

For OD demand estimation, link flow data represents the most common
type of input data (Cascetta and Improta, 2002). The efficient placement of
sensors within a network is difficult, and widely discussed in the literature
(Gentili and Mirchandani, 2012; Viti et al., 2014).

There are two ways of using link flow data for LOS assessment. Di-
rectly, by computing the flow per meter of width, and by comparing that
to facility-specific thresholds (Fruin, 1971). For simple geometries, such
as straight corridors with a constant width, this may be appropriate. A
second way of using link flow data for LOS assessment is by using a traffic
assignment model, applying it to the link of interest. The traffic assignment
model then predicts densities and velocities, providing indirect information
about the expected level of congestion.

Traffic condition data: Traffic condition data include measurements of
density, walking speed, or travel times. Such observations are typically
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obtained from a pedestrian tracking system, or ICT sensors (Alahi et al.,
2013b; Montero et al., 2015).

For the estimation of pedestrian OD demand, traffic condition data can
be used as exogenous variables in the estimation process. For instance,
Montero et al. (2015) use observed travel times to approximate the travel
time distribution within a demand model. Alternatively, they can be used
to indirectly validate the OD demand estimates, if the latter are combined
with a traffic assignment model (see e.g. Djukic et al., 2015).

Traffic condition data are probably the most relevant source of informa-
tion for LOS assessment. The most widely used LOS indicators are directly
based on density and flow (Fruin, 1971).

Train timetable and ridership data: The train timetable has a signifi-
cant impact on the usage of pedestrian facilities, both in terms of accumu-
lation and in terms of flows. Fig. 2.1 provides a schematic representation of
the most relevant types of flows that are influenced by the train timetable,
namely boarding/alighting flows at train doors (solid arrows), as well as
exit and access flows on platform access ways (dashed and dotted, respec-
tively). A direct relationship between the train timetable and platform exit
flows is established in Chapter 3.

D C B A

boarding/alighting flows
platform exit flows

platform access flows

Figure 2.1: Train-induced flows on platforms and platform access ways.

If train delays are to be expected, the actual instead of the sched-
uled train timetable should be used. It may be obtained by observa-
tion, or from corresponding train delay models (Higgins and Kozan, 1998;
Goverde, 2007). Particularly railway networks during peak periods or
highly-interconnected timetables are prone to delays (Cule et al., 2011).
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The number of boarding and alighting passengers per train may be ob-
tained from door sensors, ticket sales, travel surveys, or approximated from
the train capacity (Zhang et al., 2008; Kim et al., 2015; Fernández et al.,
2015).

For OD demand estimation, the timetable and ridership information
can be used to improve the accuracy of the estimate, or to provide a priori
estimates when no other data is available. In terms of LOS assessment,
the number of boarding and alighting passengers is particularly useful for
the dimensioning of platforms, which in practice is typically done using
hydrodynamic models (Buchmüller and Weidmann, 2008).

Other demand data: Further information sources, such as sales or
survey data, are sometimes available (Seneviratne and Morrall, 1985;
Lee et al., 2001). These are typically useful for demand estimation, where
they help narrowing the solution space. Video footage or a photographic
documentation may be helpful for a qualitative level-of-service assessment
(Helbing et al., 2002). Practical knowledge by the station operator regard-
ing pedestrian dynamics, congested areas and the use of infrastructure in
general may be a useful source of information as well.

Infrastructure data: Knowledge of the infrastructural layout is a prereq-
uisite for both the estimation of demand and the level-of-service assessment.
This typically includes the topology of pedestrian facilities, the location of
access doors, ticket machines and shops, as well as the topology of the mon-
itoring system, such as the location of Wi-Fi and Bluetooth access points,
cameras, or counting systems.

The choice of sensors depends decisively on the desired information and
the available budget. There is no single sensing technique that fits all
purposes. Instead, often the simultaneous consideration of multiple data
sources yields the most reliable results. For instance, the combination of
Wi-Fi traces with a low temporal resolution and a strong sample bias with
accurate, but spatially isolated count data may provide a good understand-
ing of pedestrian flows. Further visual sensors may be helpful to assess
pedestrian densities, and to quantify the prevailing level-of-service. Chap-
ter 3 presents a framework of how multiple data sources can be combined
in a mathematically rigorous way.
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The cost of data collection depends on multiple factors, in particular
on the already existing infrastructure. For instance, if a dense network of
Wi-Fi antennas is already available, it may be relatively cheap to collect
Wi-Fi traces. If not, the installation of a power and data network, as well as
of the Wi-Fi antennas themselves, may incur a significant cost. For optical
sensors, such as tracking or count systems, the lighting conditions, height
of the ceiling, requirements for protection from bad weather or vandalism,
and many other factors may play a role.

2.3 Lausanne railway station

Throughout this thesis, reference is made to the train station of Lausanne,
which we have studied together with the Swiss Federal Railways (SBB)
between 2011 and 2015. Lausanne railway station is the largest node in the
railway network of Western Switzerland, serving 650 arriving and departing
trains on weekdays (Amacker, 2012). The station has reached capacity in
the year 2010, and a doubling of passenger demand is expected by 2030.
About AC 450,000 have been invested in a pedestrian tracking system to
monitor and understand pedestrian movements on central walkways, to
which this thesis has access. In total, AC 1.1 billion is spent between 2010
and 2020 to enlarge the station, preparing it for future growth.

Fig. 2.2 shows a schematic map of the station, encompassing nine rail-
way tracks for passenger traffic (thin dashed lines). At its heart are two
pedestrian underpasses (PUs), referred to as PU West and PU East (ver-
tical corridors). Platforms are shown as dotted areas. Solid lines repre-
sent the walking network of the pedestrian facilities, and dashed curves
represent corresponding network links that cannot be shown in the 2D
scheme. OD areas are represented by rectangles. Dark rectangles symbol-
ize entrance/exit areas as well as service points within the train station.
Rounded rectangles represent platform OD areas, i.e., platform sectors or
entire platforms. Pedestrian count sensors are represented by diamonds.
The shaded parts in the two pedestrian underpasses represent areas that
are covered by a pedestrian tracking system.

Using the classification presented in the previous section, the following
data sources are available:

OD flow data: Subroute flows are available for the two pedestrian under-
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Figure 2.2: Lausanne railway station.

passes, in which a tracking system consisting of 60 sensors is installed.
This sensor system allows to simultaneously track the trajectories
of pedestrians across space and time. Details of the installation, as
well as of the accuracy of observations, are described by Alahi et al.
(2013b).

Link flow data: Ten links of the pedestrian walking network, marked by
diamonds in Fig. 2.2, are equipped with sensors that provide directed
link counts with a resolution of one minute. To account for sensor sat-
uration, observations are post-processed using a quadratic correction
function (Ganansia et al., 2014).

Traffic condition data: Pedestrian trajectories obtained from the afore-
mentioned tracking system allow to compute the prevailing speed,
density and accumulation in pedestrian underpasses. Accumulation
is defined as the number of pedestrians present in an area at a given
point in time.

Train timetable and ridership data: The actual arrival and departure
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times and the assigned track are known for each train. An average
estimate of boarding and alighting volumes is available from ticket
sales data, within-train surveys, and infrared-based counts at train
doors (Anken et al., 2012). These estimates date back to the year
2010 and are increased by 15% to reach the estimated level of the year
2013, which is considered throughout this thesis (Gendre and Zulauf,
2010). The boarding and alighting volumes are considered as random
normal variables with a standard deviation equal to 19.2% of their
mean (Molyneaux et al., 2014).

Other demand data: For the sales points located in PU West (see
Fig. 2.2), an estimate of the number of customer visits is available.

Infrastructure data: Detailed building plans containing the dimensions
of all relevant pedestrian facilities, and the exact location of all parts
of the monitoring system are available.

The usage of pedestrian facilities in Lausanne railway station is subject
to recurring temporal patterns that are due to differences between week-
days/weekend, the day/night–rhythm, and a cyclic train timetable.

Fig. 2.3a shows the level of demand in the PUs over a typical working
week, as measured by the pedestrian tracking system for the period between
February 25 and May 19, 2013 (April 1 and 2 are excluded due to a sensor
malfunctioning). Standard deviations are around ±15, 000 pedestrians for
a typical working day.

The total number of pedestrian visits in the two pedestrian under-
passes of Lausanne railway station (PU West and East) is slightly below
120,000 ped/day on weekdays. This is in agreement with numbers reported
by SBB, according to which there are in total about 140,000 station users
per weekday, of which 98,000 are train users (Amacker, 2012). On Fri-
days, the station is busier than during the week due to weekly commuters
returning to their principal place of residence, as well as due to weekend
travelers. These additional passengers are spread around the evening peak
period. The pedestrian demand on Saturdays and Sundays on the other
hand is significantly lower. The shown pattern is similar to other ma-
jor train stations in Switzerland, including in particular Basel, Bern and
Zürich, which are serving up to four times as many passengers.
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Figure 2.3: Observed demand in Lausanne railway station (year 2013).

Fig. 2.3b shows the evolution of train passengers during the course of a
weekday. The shown data is obtained from semi-automatic travel surveys
conducted in the year 2010, increased by 15% to approximate the demand in
2013 (Anken et al., 2012). It is distinguished between outgoing passengers
(boarding), incoming passengers (alighting), and transfers, i.e., passengers
that change train in Lausanne.

Between 7:00 and 8:00, the alighting volume (6,871 ped) is higher than
the boarding volume (4,066 ped), whereas in the evening rush hour between
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17:00 and 18:00, the number of boardings is higher (3,161 vs. 5,937 ped).
According to these results, people come to Lausanne for work and leave the
city again in the evening. The morning peak hour is shorter and busier than
the evening peak hour, while the percentage of transfer passengers is just
below 10% and nearly constant during the day. The bi-modal distribution
of train passengers with a distinct peak in the morning and evening is typ-
ical for most train stations, with the exception of those that are primarily
used for timed events such as concerts, or for touristic purposes.

A further analysis of the morning peak hour shows that the ab-
solute peak over a weekday is reached between 07:35 and 7:50 (AM),
when several long distance trains arrive and depart in close succession
(Gendre and Zulauf, 2010). At this time of the day, more than 500 in-
coming users alight during a peak minute, whereas a few minutes later it
can be less than a hundred per minute (Alahi et al., 2013a).

In the remainder of the thesis, we consider the time period between
07:30 and 08:00. Data for a set of 10 ‘reference weekdays’ is available,
namely for January 22 and 23, February 6, 27 and 28, March 5, as well as
April 9, 10, 18 and 30, 2013. These dates represent a set of typical weekdays
(Tue, Wed, Thu) without major disruptions in the railway system, for
which all of the aforementioned data sources are available.

Fig. 2.4a shows the evolution of the number of tracked pedestrians that
enter one of the two pedestrian underpasses for this set of dates. Each
day is represented by a separate curve, illustrating the significant day-to-
day variability. The shaded area represents the standard deviation band,
defined by the area within the mean ± one standard deviation. As far as
the mean is considered, the demand fluctuates between less than 70 and
more than 500 ped/min, i.e., by almost an order of magnitude.

For the same period, Fig. 2.4b shows a box plot of the arrival times of
the ten trains with the largest alighting volumes, which typically amount
to 250 pedestrians or more. Early arrivals lead to a negative delay. It can
be seen that delays of more than 3 min are relatively rare in the studied
10-day reference set. Nevertheless, given that only undisrupted days are
considered, the day-to-day variability in train arrival times is remarkable.
A similar finding holds for the departure time of trains.

Fig. 2.5a shows a scatter plot of accumulation vs. travel time along
the main route in PU West, #1C → SW. The data points represent 1,745
pedestrians. The accumulation is measured when a person enters PU West.
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Figure 2.5: Travel times and walking speeds.

or general health may also play a role.



Chapter 3

Demand estimation

3.1 Introduction

Knowledge of pedestrian demand is a prerequisite for the analysis of pedes-
trian flows in train stations, be it for the design of infrastructure, the
optimization of operations such as the train-track assignment, or the real-
time management and control of pedestrian flows. Unless a comprehensive
pedestrian tracking system is available, pedestrian demand can only be
observed indirectly, for instance in the form of flows or densities. The
challenge then consists in establishing a relationship between pedestrian
demand that is unknown, and demand indicators that can be observed.
Especially if different types of observation data are available, this may be
an intricate task.

While pedestrian behavior in train stations generally attracts the atten-
tion of academic research, methodologies for estimating pedestrian demand
are still exceedingly rare. Many studies are solely based on theoretical de-
mand scenarios (Hoogendoorn and Daamen, 2004; Rindsfüser and Klügl,
2007; Davidich et al., 2013). Other studies rely on simple assumptions
to estimate demand (Kaakai et al., 2007; van den Heuvel and Hoogenraad,
2014), or consider train stations that serve only a single line (Lee et al.,
2001; Xu et al., 2014).

Several approaches to estimate pedestrian demand in train stations are
conceivable. Activity-based models, and methodologies focusing on pedes-
trian origin-destination (OD) demand are among the most promising ap-
proaches (see Chapter 1). Estimation methods for OD demand do not
require disaggregate data for their estimation, which in practice is rarely

23
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available. Moreover, they are less computationally expensive, making them
the primary choice for real-time applications, or for considering large esti-
mation problems. Thus, in the following the problem of estimating pedes-
trian demand in train stations is considered in terms of OD demand. For
further information regarding activity-based approaches, the reader is re-
ferred to the literature (Hoogendoorn and Bovy, 2004; Danalet, 2015).

The problem of estimating OD demand has a long history in the context
of road networks, for which link flow volumes and other indirect observa-
tions of demand are available (van Zuylen and Willumsen, 1980; Cascetta,
1984). Typically, an assignment map is assumed that relates observations
to OD volumes, such that the latter can be ‘reverse engineered’. This map
may be obtained via a dynamic traffic assignment (DTA) model, which can
also be developed in the context of pedestrian flows (see Chapter 4). The
problem of pedestrian OD demand estimation in train stations is thus in
principle amenable to ‘classical’ estimation techniques.

A key issue in OD demand estimation is the ratio between the num-
ber of unknowns and the number of independent observations, yielding an
intrinsically underdetermined problem. Various forms of exogenous infor-
mation, either in the form of a priori knowledge or structural assumptions,
are used to lead the calculation to a unique solution.

For static OD estimation, concepts like gravity (Casey, 1955), en-
tropy maximization (Wilson, 1970; Willumsen, 1981) or information min-
imization (van Zuylen and Willumsen, 1980) have been used in the con-
text of road traffic. In most cases, however, an a priori OD trip table
(Cascetta and Nguyen, 1988) is used. Other researchers make specific as-
sumptions on the structure of OD trip tables (Bierlaire and Toint, 1995)
or the covariance across measurements (Hazelton, 2003).

For dynamic problems, a common approach is to assume a dynamic
process for the evolution of demand, such as an autoregressive process
in the deviates from historical estimates (Ashok and Ben-Akiva, 2000;
Bierlaire and Crittin, 2004; Zhou and Mahmassani, 2007, again all in the
context of vehicular traffic). Recent approaches assume slowly evolv-
ing route split fractions in the framework of a ‘quasi-dynamic’ estimator
(Marzano et al., 2009; Cascetta et al., 2013), or reduce the dimensional-
ity of the estimation problem by applying principal component analysis
(Djukic et al., 2012).

Several researchers consider also the problem of OD demand estima-
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tion in transit networks, i.e., that of estimating the station-to-station
OD demand in a potentially multimodal transportation network. Early
approaches assume a constant average cost along routes (Nguyen et al.,
1988), whereas newer studies focus on schedule-based transit network mod-
els (Wong and Tong, 1998), of which some additionally consider passenger
overload delays (Lam et al., 2003) or data from ICT sensors (Montero et al.,
2015). These models can predict the evolution of in- and outflows at sta-
tions or the number of passengers in vehicles, but do not provide detailed
information on OD demand within a train station.

Pedestrian OD demand in train stations is particularly unsteady due
to arriving and departing trains that lead to demand ‘micro-patterns’. A
manifestation of these demand micro-patterns are the highly variable flows
on platform exit ways after train arrivals, or the fluctuating accumulation
of prospective train passengers on platforms prior to train departures. The
associated rapid and recurrent changes in demand are typical for the envi-
ronment of train stations, and largely influenced by the train timetable.

Acyclic schedules and unplanned delays make it difficult to use histor-
ical OD data, or any other of the aforementioned approaches for dealing
with underdetermination in the demand estimation process. This is where
we would like to make a contribution. In this chapter, we propose a dedi-
cated methodology for estimating pedestrian OD demand in train stations
in general, and we do so by integrating the train timetable and ridership
data in particular. The schedule of departing trains is considered in a tem-
porally aggregated way, i.e., the train-track assignment is used to compute
cumulative platform departure flows. The train arrival times are considered
explicitly.

The next section presents a methodological framework for estimating
pedestrian OD demand based on the notion of a train timetable, and an
example specification that is applicable to any suitable train station. Sec-
tion 3.3 then presents a case study based on that specification. Section 3.4
contains concluding remarks.

3.2 Methodological framework

A recapitulation of important variables introduced in this section is

provided in Appendix A.
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3.2.1 Notation

The time period of interest is divided into a set of discrete intervals T ,
where each interval τ ∈ T is of uniform length Δt.

Walkable space is represented by a directed graph G = (N ,L), where
N is the set of nodes ν ∈ N , and L the set of directed links λ ∈ L. Cer-
tain elements of pedestrian facilities, such as stairs or corridors, translate
naturally into links, and others naturally into nodes, like for instance en-
trance/exit points. For other elements, such as waiting halls or platforms,
a decomposition into areas can be made. An area α is associated with a
subnetwork (Nα,Lα) denoted by Gα. The set Nα contains all the nodes
corresponding to physical locations in the area, and Lα ⊂ L all links such
that their two incident nodes belong to Nα. Areas are allowed to overlap,
and their union is not required to cover the full network.

A network-type representation of space is adequate for demand estima-
tion, where computational efficiency is crucial and the walking behavior of
pedestrians is of secondary relevance. For most practical cases, defining
a walking network is straightforward, including multi-story buildings. At
the traffic assignment level, where a detailed understanding of pedestrian
dynamics in terms of the emergence and dissolution of congestion is re-
quired, a more detailed space representation may be more appropriate (see
Chapter 4).

#1 W

#2 W

#1 E

#2 E

#3/4 W #3/4 E

N

S

S1
S2

S3

Figure 3.1: Network topology at the example of a simple train station.
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Fig. 3.1 illustrates the proposed space representation. Railway tracks
are denoted by dashed lines. Levels are bridged by ramps and stairways,
which are denoted by standard floor plan symbols. Platform sectors are
represented by OD nodes shown as labeled rectangles with rounded corners.
They may be associated with one or a pair of railway tracks. Further OD
nodes are shown as labeled squares, which include sales or service points,
or exit/entrance areas. The pedestrian walking network is represented by
solid lines. The dotted path represents a sample pedestrian alighting from
a train and leaving the station to the north. Two count sensors, denoted by
S1 and S3, are represented by diamonds. S2 denotes an area-based sensor,
represented by the shaded area in the center of the figure.

Nodes through which pedestrians enter and leave the pedestrian network
are referred to as OD nodes, and their set is denoted by NOD ⊂ N .

We assume that the network is connected, i.e., any two OD nodes are
connected by at least one route. A route ρ is a sequence of links connecting
two OD nodes, ρ = (λ1, λ2, . . . ). A sequence of links that does not connect
two OD nodes is called a subroute. The set of routes and subroutes is
denoted by R and Rsub, respectively.

Each pedestrian is associated with a pair of OD nodes, denoted by κ ∈ K

where K is the set of OD pairs. In principle, it is possible to associate pedes-
trians with further attributes, such as behavior classes (Wong et al., 2005).
The necessary extension is straightforward, and useful if personal attributes
such as trip purpose, age or gender are available. In the interest of a more
readable notation, in this work a single-class formulation is considered.

The number of travelers associated with OD pair κ that depart during
time interval τ is represented by dκ,τ. We refer to this variable as demand.
Demand is by nature stochastic, i.e., it varies from day to day.

A set of demand indicators is derived from OD demand to facilitate the
formulation of the structural and measurement models. These include in
particular link flows and area accumulations. Flow is cumulative over a
time interval τ. Accumulation is defined as the time-mean average num-
ber of users in an area (Edie, 1963). Table 3.1 provides an overview of
these indicators. Further demand indicators are defined in Section 3.2.3 to
integrate specific data sources.

A set of trains Z is considered. For a train ζ ∈ Z, tarr
ζ and t

dep
ζ denote the

actual arrival and departure time in the train station. They are assumed
to follow a known random distribution that may be obtained empirically,
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Table 3.1: List of demand and demand indicators. The unit is ‘number of
pedestrians per unit of time’, unless stated otherwise.

d = [dκ,τ] Demand dκ,τ associated with OD pair κ and departure time interval τ,
and time-space expanded vector d of length |K||T |.

f = [fλ,τ] Flow fλ,τ entering link λ during time interval τ, and time-space ex-
panded vector f of length |L||T |.

a = [aα,τ] Time-mean average accumulation aα,τ on area α during time interval
τ, and time-space expanded vector a of length |A||T |.

eoff = [eoff
ζ ],

eon = [eon
ζ ]

Train exchange volumes associated with alighting, eoff
ζ , and boarding,

eon
ζ , of train ζ, and corresponding vectors eoff and eon of length |Z|.

The unit is ‘number of pedestrians’.

or computed by any suitable delay model. Each train is associated with
an alighting and boarding volume, referred to as train exchange volumes
and denoted by eoff

ζ and eon
ζ , respectively. The platform serving train ζ is

denoted by πζ. Each platform π ∈ P, with P the set of all platforms, is
associated with a set of OD nodes, NOD

π ⊂ NOD. The set of all platform
OD nodes is denoted by NP ⊂ N .

3.2.2 Illustration

The problem of estimating pedestrian OD demand in a train station may
be introduced from an intuitive point of view. Consider the pedestrian
described in Fig. 3.1 that alights from a train, and crosses the train station
to leave it on the northside. Information of that pedestrian is contained in
the alighting volume eoff

ζ of the feeding train ζ, in the flow counts of the
sensors S1 and S3 denoted by fS1,τ′ and fS3,τ′′′ , and in the accumulation of
the area monitored by sensor S2, aS2,τ′′ . This information should be used to
estimate the OD demand d#3/4E→N,τ, unless it is spared for its validation.

A critical step in that process is the quantification of the spatio-temporal
correlation between sensor and ridership data on one hand side, and the
OD demand estimate on the other. If the pedestrian has arrived at the
station during time interval τ, he may have been captured by sensor S3
during a later time step τ′′′ > τ. Clearly, it would be wrong to assume
τ = τ′ = τ′′ = τ′′′ in the above example. Likewise, if the pedestrian can
choose among multiple routes, as it may be the case in a more complex
network, he may not have been captured by a given sensor at all.
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To define the association between train-related information, sensor data
and OD demand, in the following a structural model and a measurement
model are combined within a demand estimation framework. The idea
consists in finding an estimate of OD demand that is in agreement with the
train timetable and ridership information, and consistent with the available
sensor data.

3.2.3 Data requirements

To distinguish between model estimates and actual observations, the latter
are marked by a hat (e.g. f̂). Often, such observations are not available for
the complete network, or only for certain time intervals. Vectors containing
a reduced set of variables are marked by a prime (e.g. f′), and a reduction
matrix Δ is defined that relates each of them to the corresponding full
vector (e.g. f′ = Δff). This notation is consistent with that proposed by
Cascetta et al. (1993) in the context of vehicular traffic.

For the estimation methodology, availability of the actual train
timetable, tarr

ζ and t
dep
ζ for each train ζ ∈ Z, and of the corresponding

exchange volumes êoff
ζ , êon

ζ is essential. Moreover, indirect observations of

demand, for instance in the form of link flows f̂′ or area accumulations
â′, are required. These observations need to be such that demand micro-
patterns of individual trains are captured, i.e., an aggregation in the order
of minutes is desirable. Availability of an a priori estimate of demand d̂′ is
useful to improve the estimation, but not required.

Example specification: To illustrate the demand estimation method-
ology, a concrete specification is elaborated. For that purpose, several
assumptions are made. The general estimation methodology is however
independent of these assumptions.

Assumption 1 (Data availability) Available are (i) the actual train

timetable, (ii) train exchange volumes, (iii) partial observations of link

flows, and (iv) cumulative origin and destination flows for selected OD

nodes (e.g. from sales data). For validation, (v) partial observations of

area accumulations, and (vi) flows along selected subroutes are avail-

able. No a priori estimate of demand is assumed available.
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To capture the format of these data sources, corresponding demand
indicators are defined in Table 3.2. The specification of these demand
indicators can be adapted based on the available data. For instance, if
Wi-Fi traces are available, partial route flows or route travel times may be
defined. The only requirement is that a mathematical relationship between
OD demand and these indicators can be established, which is discussed in
the following.

Table 3.2: Additional demand indicators.

fsub = [fsub
ρ,τ] Subroute flow esub

ρ,τ reaching subroute ρ during time interval τ,
and time-space expanded vector fsub of length |Rsub||T |. Its
unit is ‘number of pedestrians per unit time’.

fout,cum = [f
out,cum
ν ] Cumulative origin flow f

out,cum
ν emanating from OD node ν

during the time period T , and vector fout,cum of length |NOD|.
Its unit is ‘number of pedestrians’.

fin,cum = [f
in,cum
ν ] Cumulative destination flow f

in,cum
ν reaching OD node ν during

time period T , and vector fin,cum of length |NOD|. Its unit is
‘number of pedestrians’.

3.2.4 Structural model

The structural model describes the relationship among the various variables
involved in the framework. We consider two parts, namely a pedestrian
traffic assignment model, and a schedule-based model that considers the
arrivals and departures of trains.

Assignment model

A pre-specified aggregate network supply model, referred to as assignment
model, is assumed to exist. It is designed to derive the demand indicators
from a given demand, depending on a parameter vector y. If Σ(d;y) de-
notes the assignment model, and if Σ(·) is its output with respect to demand
indicator (·) and η(·) the corresponding structural error, the aforementioned
link flow and area accumulation vectors may be expressed as

f = Σf(d;y) + ηf, (3.1)

a = Σa(d;y) + ηa. (3.2)
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In this work, we assume the parameter vector y to be known a priori,
but note that it could also be estimated simultaneously with demand. Such
an approach incurs substantial computational cost, and is not commonly
pursued in the literature (Cascetta and Improta, 2002).

To implement Eq. (3.1) and Eq. (3.2), any suitable supply model may
be used. It can be a simple linear mapping, a commercial DTA model such
as PTV Viswalk or Legion for Aimsun, or the model proposed in Chapter 4.
Essential is that basic measures of pedestrian traffic like flow and density
are provided.

Internally, most assignment models perform two steps to obtain an
estimate of demand indicators. First, OD demand is mapped to route
flows by means of a route choice model. For a given OD pair and known
link and route attributes, it identifies the route that a traveler would
select. The choice of alternatives, and all attributes are assumed to be
known. A large number of route choice models are available for that pur-
pose, both in the context of road traffic (Dial, 1971; Cascetta et al., 1996;
Ben-Akiva and Bierlaire, 2003; Frejinger and Bierlaire, 2007), and in that
of pedestrian flow (e.g. Hoogendoorn et al., 2014, 2015). Second, a network
loading model is used to describe the propagation of pedestrians along the
routes. Chapter 4 of this thesis is dedicated to the development of such
a loading model. A large number of models is available in the literature
as well (e.g. Løvås, 1994; Helbing and Molnár, 1995; Blue and Adler, 2001;
Hughes, 2002; Antonini et al., 2006; Hänseler et al., 2014a). To represent
heterogeneity among pedestrians, route choice and network loading are
usually expressed by means of probability distributions.

Both route choice and network loading are subject to prevailing traffic
conditions, and thus mutually dependent. If the dependency on prevailing
traffic conditions is neglected, the relationship between demand and de-
rived indicators becomes linear (Cascetta and Improta, 2002). This holds
true for an uncongested network. Alternatively, if the traffic situation is
known a priori through direct measurements, an estimate of the assign-
ment maps may also be obtained without considering the demand (see the
aforementioned example by Montero et al., 2015).

If on the other hand a network is congested and link travel times are
unknown, a problem of circular dependence arises between the demand
estimation and the network supply model. One way of dealing with that
is by formulating a bi-level optimization problem that explicitly includes



32 CHAPTER 3. DEMAND ESTIMATION

traffic equilibrium conditions. Among the most popular studies pursu-
ing such an approach in the context of vehicular traffic are those by Fisk
(1988), Yang (1995) and Florian and Chen (1995). An alternative way to
consider the mutual dependency between the demand and supply model
is by using a fixed-point formulation, as done in the same context by
Cascetta and Postorino (2001) and Bierlaire and Crittin (2006).

Example specification: An assignment model for pedestrian walking
facilities in a train station with a low level of congestion is considered.
It consists of two independent models for route choice and network load-
ing. For the sake of simplicity, we consider an assignment that is demand-
independent.

Following Dial (1971), we adapt a probabilistic route choice model that
is suitable for traffic assignment and behaviorally accurate in the context
of pedestrian flows (Bierlaire and Robin, 2009).

Assumption 2 (Route choice) The route choice decision rule is given

by a logit model, where the cost of a route is equal to the sum of link

traversal times. The set of routes is finite and known.

While this specification of the route choice model is mathematically
convenient, it has some well-known shortcomings, such as the assumed
independence among alternatives. As routes overlap, more advanced mod-
els that take into account the correlation among routes may be used
instead (in the context of vehicular traffic, see Cascetta et al., 1996;
Frejinger and Bierlaire, 2007). Similarly, the choice set usually only in-
cludes ‘efficient’ routes that do not backtrack, i.e., routes where every link
has its upstream node closer to the origin than the downstream node (Dial,
1971). Under some circumstances, this may represent a questionable re-
striction, and other choice set generating methods may be more appropriate
(see e.g. Ben-Akiva et al., 1984; Frejinger et al., 2009, again in the context
of vehicular traffic). In particular, alternative route choice models should
be used if pedestrians are not ‘goal-oriented’, as is likely the case when a
prospective train user faces a lot of waiting time until departure. The ex-
ploration of corresponding models, and their impact on demand estimation,
is left for future research.

Following Mustafa and Ashaari (2015), we assume that the walk-
ing speed in pedestrian facilities of a train station with a low or
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medium level of congestion is normally distributed (LOS E or better,
Highway Capacity Manual, 2000, Exhibit 18-3).

Assumption 3 (Network loading) The propagation of pedestrians

along routes is described by a demand-invariant walking speed dis-

tribution fv(v).

The resulting mathematical specification of the assignment model is
provided in Appendix A. The relationship between route choice and net-
work loading is further discussed in Chapter 4, where pedestrian traffic
assignment is discussed in detail.

The impact of Assumption 3 on the accuracy of the OD demand esti-
mate is difficult to assess. Even in otherwise uncongested facilities, there
may be stairs, escalators or turnstiles where users experience delays. If
these delays are significant compared to the temporal resolution of the OD
demand estimator, a different specification of the network loading model
should be considered.

Schedule-based model

The schedule-based model establishes a relationship between OD demand
and train exchange volumes. It is based on the assumption that the alight-
ing volume of trains served by a specific platform is related to the demand
emanating from OD nodes representing that platform, and vice versa for
boarding volumes.

Pedestrian demand within a train station is associated with alighting
volumes by an assignment matrix H = [hζ,(κ,τ)] and a corresponding error
εoff such that

eoff = Hd+ εoff. (3.3)

The error εoff takes into account pedestrians that visit a platform e.g.
by mistake, or to accompany a passenger. The entry hζ,(κ,τ) represents the
proportion of pedestrians associated with OD pair κ and departure time
interval τ that have alighted from train ζ. It is high if the time interval τ

coincides with the idling time
[
tarr
ζ , t

dep
ζ

]
of train ζ on platform π, and if the

origin node νo
κ of OD pair κ is associated with the corresponding platform,

i.e., if νo
κ ∈ NOD

π . Otherwise, it is zero. Under the basic assumption that
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demand is distributed homogeneously within a demand interval, the entries
of the assignment matrix H are given by

hζ,(κ,τ) =

⎧⎨
⎩
∣∣∣[tarr

ζ , t
dep
ζ

]
∩ τ
∣∣∣ /|τ| if νo

κ ∈ NOD
π ,

0 otherwise,
(3.4)

where |τ′| represents the length of time interval τ′.
In principle, a similar approach may be used to relate OD demand to

boarding volumes. However, it is difficult to find a meaningful specifica-
tion of the corresponding assignment matrix. Prospective passengers often
arrive at the platform long before the scheduled departure, which may be
due to constraints imposed by the schedule of tertiary transport modes, or
a high risk aversion (van Hagen, 2011). We leave the development of an
appropriate arrival process, for instance based on a Poisson distribution,
for future research.

For now, boarding volumes may be considered in a temporally aggre-
gated way. We denote by fdep,cum

π the cumulative departure flow from plat-
form π during time period T , given by

fdep,cum
π =

∑
τ∈T

∑
ν∈NOD

π

∑
κ∈Kdest

ν

dκ,τ, (3.5)

where the set Kdest
ν contains all OD pairs with destination ν. The corre-

sponding vector fdep,cum = [fdep,cum
π ] is of length |P|.

If εχ represents a vector containing structural errors, the vector of cu-
mulative platform departure flows can also be expressed by summing over
the boarding volumes of the served trains, i.e.,

fdep,cum = χ(eon) + εχ, (3.6)

where χ = [χπ] is given by

χπ(eon) =
∑
ζ∈Zπ

eon
ζ , (3.7)

and where Zπ is the set of trains associated with platform π.
Eq. (3.6) provides no information about the distribution of demand

across time. Similarly, Eq. (3.3) may not provide significant temporal in-
formation unless the train idling times are of approximately the same length
as the discretization time intervals.
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Empirical relations between OD demand and exchange volumes may
instead be used to obtain such temporal information. This approach is
illustrated at the example of ‘train-induced arrival flows’, and further dis-
cussed in the specification below.

Let Larr
π denote the set of links representing the exit ways of platform π,

and φλ,τ(eoff;y) a model that predicts the cumulative flow on link λ ∈ Larr
P

during time interval τ based on the arrival times of trains and their alighting
volumes. If ϕ(eoff;y) = [φλ,τ] represents the corresponding time-space
expanded vector, it holds that

farr = ϕ(eoff;y) + εϕ, (3.8)

where εϕ denotes a structural error, and where the flow vector associated
with arrival links is given by

farr = Δarrf (3.9)

and where the reduction matrix Δarr is of size |Larr
P ||T | × |L||T |.

Eq. (3.8) can be used to complement, or to replace Eq. (3.3). If an
accurate empirical model is available, Eq. (3.3) does not provide much
additional information, and can be omitted. This is assumed to be the
case in the specification below. If on the other hand both Eq. (3.3) and
Eq. (3.8) are used, a strong correlation among their error terms is likely to
exist and needs to be explicitly considered.

Example specification: Our approach is inspired by Benmoussa et al.
(2011) and Lavadinho (2012).

Assumption 4 (Schedule-based model) Flows on platform exit ways

consist of independent ‘arrival flows’ induced by trains served by the

corresponding platform. These ‘train-induced arrival flows’ follow a

piecewise linear model, characterized by a lagged onset of flow after

the train arrival, and a constant flow thereafter until all passengers

have left the platform.

Assumption 4 allows to empirically predict the platform exit flows by
decomposing them into independent contributions of trains. Assume that
for a train ζ, the arrival flow rate at continuous time t on link λ ∈ Larr

P is
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given by φ̃ζ,λ(t; e
off
ζ , tarr

ζ ,y). The platform exit flow during time interval τ
on link λ ∈ Larr

π is then given by

φλ,τ =

∫
t∈τ

∑
ζ∈Zπ

φ̃ζ,λ(t; ê
off
ζ , tarr

ζ ,y) dt. (3.10)

Let f̃ζ = f̃π(e
off) denote the total exit flow rate associated with platform

π if train ζ ∈ Zπ with alighting volume eoff
ζ has arrived, and let Δtlag

ζ,λ be the
lag time representing the delay between the arrival of train ζ and the onset
of flow on link λ ∈ Larr

π . This lag may be due to the necessary walking
to reach the exit ways, or a delay in the opening of train doors after the
train has stopped. It may be modeled as a normally distributed random
variable, and assumed to depend on the platform only, i.e., Δtlag

ζ,λ = Δtlag
π ,

where π = πζ (Molyneaux et al., 2014).
Assuming that the total exit flow rate of platform π is shared according

to platform sector split fractions rsec
ζ,λ with

∑
λ∈Larr

π
rsec
ζ,λ = 1, the flow rate on

link λ associated with train ζ ∈ Zπ is given by

φ̃ζ,λ(t) =

⎧⎨
⎩rsec

ζ,λf̃ζ t ∈
(
tarr
ζ + Δt

lag
ζ,λ, t

arr
ζ + Δt

lag
ζ,λ + eoff

ζ /f̃ζ

)
,

0 otherwise.
(3.11)

Fig. 3.2 illustrates the cumulative arrival flow associated with Eq. (3.11).
The solid curve illustrates an observation from Lausanne railway station
(Molyneaux et al., 2014), and the dash-dotted curve a piecewise linear ap-
proximation.

The total platform exit flow rate f̃π(e
off) is assumed to depend linearly

on the alighting volume eoff at low values, and to reach saturation at a
platform-specific threshold ecrit

π . If qπ, bπ and cπ represent shape parame-
ters, the total exit flow rate on platform π is given by the stochastic model

f̃π(e
off) = f̃det

π (eoff) +N (0, qπ), (3.12)

where the deterministic part of the flow rate is specified as

f̃det
π (eoff) =

{
bπe

off + cπ if eoff ≤ ecrit
π ,

bπe
crit
π + cπ otherwise.

(3.13)

Eq. (3.11) and Eq. (3.12) may be specified based on stud-
ies by Weidmann (1992), Buchmüller and Weidmann (2008) and
Molyneaux et al. (2014). Alternatively, they can be calibrated on actual
data. An example of the latter is provided in Section 3.3.
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Figure 3.2: Model for train-induced arrival flows.

3.2.5 Measurement model

The measurement model links the structural model to a priori information
and measurements, which is required for the estimation of demand, and for
validating the obtained results.

For each data source, a random error term takes into account the un-
certainty it is afflicted with, and the aforementioned reduction matrices
account for the incomplete coverage of the data collection infrastructure,
i.e.,

d̂′ = Δdd+ω′
d, (3.14)

f̂′ = Δff+ω′
f, (3.15)

â′ = Δaa +ω′
a, (3.16)

ê′
on = Δoneon +ω′

on, (3.17)

ê′
off = Δoffeoff +ω′

off. (3.18)

The measurement errors ω(·) are generally correlated, both across time
and space. Temporal correlation occurs if a sensor is malfunctioning, or if
it reaches saturation. Spatial correlation is a concern if two sensors capture
similar information, for instance if they are placed nearby. For an efficient
statistical inference, these effects need to be taken into account by using an
appropriate covariance matrix, which is however often difficult to estimate.



38 CHAPTER 3. DEMAND ESTIMATION

Example specification: For the illustration of the model, the estimation
problem is reduced to a formulation that is linear in the unknown demand
vector.

The cumulative origin and destination flows are obtained by aggrega-
tion, i.e.,

fout,cum
ν =

∑
τ∈T

∑
κ∈Korig

ν

dκ,τ, (3.19)

fin,cum
ν =

∑
τ∈T

∑
κ∈Kdest

ν

dκ,τ, (3.20)

where νd
κ is the destination of OD pair κ, and where Korig

ν and Kdest
ν de-

note the set of OD pairs which originate and terminate at OD node ν,
respectively.

Assumption 5 (Measurement model) The distribution of train ex-

change volumes is a priori known, and used to pre-compute cumulative

platform departure as well as platform arrival flows.

It is unclear how sensitive the OD demand estimates are to Assump-
tion 5. For regular situations with accurate a priori estimates of train
exchange volumes, its impact is probably negligible. In case of a disruption
of train operations, however, the assumption would be unlikely to hold.

The measurement model is given by Eq. (3.15), as well as by

f̂′out,cum = Δoutfout,cum +ω′
out, (3.21)

f̂′in,cum = Δinfin,cum +ω′
in, (3.22)

ϕ̂ = Δarrf+ωϕ, (3.23)

χ̂ = fdep,cum +ωχ. (3.24)

Eq. (3.23) and Eq. (3.24) consider empirical estimates of platform arrival
and departure flows, ϕ̂ and χ̂, which are pre-computed based on the train
timetable and a priori known train exchange volumes.

3.2.6 Estimation problem

The estimation problem consists in finding the distribution of the OD de-
mand volumes d� such that (i) actual observations of demand indicators are
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reproduced at best, (ii) platform arrival and platform departure flows are
‘most consistent’ with empirical predictions based on the train timetable,
and (iii) the resulting estimate matches the historical one in case the esti-
mation problem is underdetermined.

In the most general case, these three objectives are captured by a joint
distance measure dist〈·〉. A statistically meaningful specification can be
found using pure likelihood methods, or within the Bayesian framework,
and depends on the assumptions that are made regarding the distribution
of the error terms (Hazelton, 2000).

Alternatively, if the cross-correlation across the three objectives is neg-
ligible, the joint distance measure can be replaced by three separate terms
distobs〈·〉, distsched〈·〉 and disthist〈·〉. The estimation problem reads then as

d�

y = arg mind≥0 distobs

〈⎛⎜⎜⎜⎝
ê′

on

ê′
off

f̂′

â′

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
e′

on

e′
off

f′

a′

⎞⎟⎟⎟⎠
〉

+ (3.25)

distsched

〈(
ϕ′

χ′

)
,

(
f′arr

f′dep,cum

)〉
+ disthist

〈
d̂′,d′

〉
.

While the distance measures in Eq. (3.25) are mutually independent, in-
ternally they may still consider complex error structures that, for instance
in the context of least squares, can be taken into account by inner weights.

When solving Eq. (3.25), it is critical not to rely on point estimates.
The demand vector d� is generally distributed, and follows a complex dis-
tribution that is insufficiently described by a single value such as its mean.
The distribution depends both on the variation of input variables, which
can be distributed themselves, and on the uncertainty involved in terms of
modeling and measurement errors.

To approximate the distribution of d�, Monte Carlo sampling may be
used. Demand on each day is assumed to represent independent random
variables that follow a joint distribution. This is valid as long as seasonal
effects are absent and no significant one-off events affect the network.

Example specification: As often done in practice, the correlation be-
tween error terms is neglected (Cascetta and Improta, 2002).
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Assumption 6 (Error terms) Each error term ω(·) follows an inde-

pendent, univariate normal distribution with zero mean.

Based on Assumptions 1–6, Eq. (3.25) reduces to a constrained, gen-
eralized least squares (GLS) problem both in the context of maximum
likelihood and Bayesian estimation (Cascetta et al., 1993). It consists in
finding

d�

y = arg mind≥0 wflow‖f̂
′ − f′‖22 +

wout‖f̂
′
out,cum − f′out,cum‖

2
2 +win‖f̂

′
in,cum − f′in,cum‖

2
2 +

warr‖ϕ̂− farr‖
2
2 +wdep‖χ̂− fdep,cum‖

2
2, (3.26)

where the parameters w(·) denote weights whose specification is discussed
below.

The first term on the RHS of Eq. (3.26) represents the distance between
the observed link flows and those predicted by the model (see Eq. 3.1, 3.15).
The terms on the second line consider the distance between model predic-
tion and survey data in terms of cumulative origin and destination flows
(Eq. 3.19, 3.21 and Eq. 3.20, 3.22). The two terms on the last line consider
the distance to the pre-computed train-induced arrival flows (Eq. 3.8, 3.10,
3.11, 3.23) and the cumulative platform departure flows (Eq. 3.5, 3.6, 3.24).

For optimal statistical efficiency, the weights w(·) are assumed equal to
the reciprocal of the variance of the corresponding error term, i.e., wflow =

1/Var(η′
f+ω′

f), wout = 1/Var(ω′
out), win = 1/Var(ω′

in), warr = 1/Var(ε′ϕ)
and wdep = 1/Var(ε′χ). In practice, these variances are unknown, and need
to be estimated (Cascetta and Improta, 2002).

An active set method (Lawson and Hanson, 1974; Bierlaire et al., 1991)
is used to solve the KKT conditions for the resulting non-negative least
squares problem, Eq. (3.26). If several optimal solutions exist, the one
with the lowest norm is selected, yielding a solution with maximum entropy
(Cascetta et al., 1993).

3.3 Case study

To demonstrate the applicability of the proposed framework, a case
study of Lausanne railway station is carried out. All code developed for
the implementation, including the assignment model, is freely available
(Hänseler and Molyneaux, 2015).
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3.3.1 Assessment

To assess the efficiency of the proposed framework, two estimators are com-
pared. A ‘base estimator’, representing a minimum norm solver taking into
account link flow data only, and a ‘full estimator’, that additionally con-
siders a ‘static’ and a ‘dynamic’ prior (see Fig. 3.3).

static prior

dynamic prior

travel surveys/
sales data

train timetable/
ridership data

demand estimator
link flow data

traffic assignment model

validation

OD flow data

area accumulation data

Figure 3.3: Scheme of the specification of the demand estimation framework.

The static prior includes cumulative origin and destination flows ob-
tained from sales and ridership data. The dynamic prior represents train-
induced arrival flows that are pre-computed based on the train timetable
and ridership data. OD flow data and traffic condition data are used for
validation. In a real context, once the specification is successfully validated,
these two data sources would also be integrated in the estimation process
to improve the quality of the estimate (dashed arrows in Fig. 3.3).

3.3.2 Parametrization

The pedestrian walking network of Lausanne railway station has a unique
shortest path between every OD pair. During peak periods, regular com-
muters constitute the largest user group, which are familiar with the fa-
cilities (Lavadinho, 2012; Ton, 2014). Following Lavadinho (2012), they
almost exclusively travel along these shortest paths, obviating the need for
a route choice model.

To describe the propagation of pedestrians along routes, the walking
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speed distribution proposed by Weidmann (1992),

v ∼ N (1.34 m/s, 0.34 m/s), (3.27)

is used. It holds for even walking areas; link lengths on inclined areas or
stairways need to be adjusted beforehand (Weidmann, 1992). The valid-
ity of speed distribution (3.27) has been empirically verified based on the
available trajectory recordings, which show no significant signs of demand-
supply interaction (see Section 2.3). In principle, the speed distribution
observed in the PUs of Lausanne railway station could be used (see Fig-
ure 2.5b). However, since no measurements are available for other walk-
ways or other facilities such as stairways, the parametrization proposed by
Weidmann (1992) is used.

The schedule-based model is parametrized empirically
(Molyneaux et al., 2014). Fig. 3.4 shows the total exit flow rates
observed for platform #3/4, as well as the corresponding model fit. At
low volumes, the flow rate increases linearly until a threshold is reached,
beyond which the flow rate remains constant. The solid curve denotes the
predicted flow rate according to Eq. (3.12), and the dashed lines the width
of the prediction band in terms of ± one standard deviation.

Two observations may be made. First, the length of a train, measured
in number of passenger cars, ncar, does not have a significant influence on
the flow rate. This is explicitly pointed out since the train length is shown
below to have a considerable influence on the platform sector split fractions
rsec
ζ,λ. Second, the flow rates are relatively high, such that the duration of flow

is typically below one minute (up to an alighting volume of 333 passengers),
and never exceeds 2 min.

Based on this specification, Fig. 3.5 shows the predicted exit flow for
platform #5/6 on April 10, 2013, as well as the corresponding observation.
The prediction is represented by a hexagonal lattice whose shading repre-
sents the time-dependent probability of the cumulative arrivals (Fig. 3.5a)
and of the arrival flow rate (Fig. 3.5b) to reach a given value represented by
the y-axis. These probabilities are obtained from 7500 Monte Carlo sam-
plings of Eq. (3.5), each representing a simulated observation. The scale of
the probability density plot is logarithmic and dimensionless. The alight-
ing volumes eoff

ζ of each train ζ are inferred from the historical ridership
data mentioned in Section 2.3. The actual observation is represented by a
solid line. A good agreement between observation and prediction is found,



3.3. CASE STUDY 43

0 200 400 600 800
0

200

400

600

alighting volume (ped)

flo
w

ra
te

(p
ed

/m
in

)

short trains (ncar = 4)
long trains (ncar ≥ 7)
prediction (Eq. 3.12)

Figure 3.4: Total platform exit flow rate f̂ on platform #3/4.

although the standard deviation band is relatively wide. This is due to the
high variation in alighting volumes across days.

The split fractions rsec
ζ,λ depend on various factors such as the length

of a train, its position along a platform, the distribution of passengers
within a train, as well as their immediate next destination. Fig. 3.6 shows
measurements from platform #3/4. The results are grouped by train length
and ordered by alighting volumes. For short trains with ncar = 4, mostly
the interior platform sectors B and C are used. This is the case particularly
if the alighting volume is low. For larger trains with ncar ≥ 7, the lateral
sectors absorb a larger share, and the influence of the alighting volume is
smaller.

In the framework of this study, two different specifications of the plat-
form sector split fractions for short trains (ncar = 4) and long trains
(ncar ≥ 7) are considered. For each case, a multivariate normal distri-
bution is developed, from which the train- and link-specific platform sector
split fractions rsec

ζ,λ can be drawn (Molyneaux et al., 2014).
The weights of demand indicators in Eq. (3.26) are determined based

on the premise that pedestrian trajectory recordings represent the truth.
Given the accuracy of the trajectory recordings, and their high spatial and
temporal resolution compared to the other data sources, this assumption
seems justifiable. It allows to estimate the variance of the errors associated





3.3. CASE STUDY 45

Nc = 4 = 7 = 8 = 9
80

40

0

40

80

W
es

t
↔E

as
t

(%
)

A
B
C
D

Figure 3.6: Split fractions of arrival flows across sectors on platform #3/4
grouped by train size and ordered by alighting volumes (increasing from left to
right).

which is sufficient to generate reproducible and numerically stable results.

3.3.3 Results

The temporal evolution of total demand in PU East and PU West is shown
in Fig. 3.7, in which the base and full estimator are compared to actual
observations. The expected values and the standard deviation bands are
shown. Both estimators are capable of following the overall trend. The base
estimator, however, tends to underestimate the peaks, and underestimates
the cumulative demand by more than 20%. The full estimate mostly repre-
sents an accurate guess of the peak amplitudes, and yields an error of less
than 4% for the overall demand. It performs between 40.8% (MAE) and
46.7% (RMSE) better than the base estimator. The estimated day-to-day
variability, as represented by the standard deviation band, is comparable to
the observed one (see Fig. 2.4a). A similar finding results by investigating
the accumulation in PU West and PU East, for which the improvements
for MAE and RMSE amount to 49.9% and 40.7%, respectively (no figure
shown). The lowest average accumulation of 56.6 pedestrians is reached
between 7:59 and 8:00, and the maximum of 261.5 pedestrians between
7:43 and 7:44.

The ability of the two estimators to reproduce platform exit flows can be
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A case study of the morning peak period in Lausanne railway station has
been presented. The obtained results are in good agreement with pedes-
trian tracking data that has been used for validation. A significant perfor-
mance gain has been shown to exist when the train timetable is used in
the estimation process. Moreover, spatial and temporal fluctuations, both
intra- and inter-day, have been investigated and are shown to be important,
justifying the use of a fully dynamic and probabilistic framework.

We can think of mainly two ways to extend the proposed framework. An
obvious way relates to its application to real-time problems, such as traffic
monitoring or crowd control. Another way is to focus on the improvement
of the presented model specification. Clearly, the empirical relationship be-
tween the train timetable and pedestrian movements can be strengthened,
or a demand-dependent network loading model could be integrated. This
may be a macroscopic model, or an agent-based microsimulator. Arguably
the most pressing issue, however, is the explicit consideration of correla-
tion among measurements, which could significantly improve the statistical
inference.



Chapter 4

Traffic assignment

4.1 Introduction

The goal of pedestrian traffic assignment models is to determine pedestrian
flows and crowd conditions that result from the mutual interaction among
demand and infrastructure. Their input is pedestrian demand, which may
for instance be obtained in the form of OD flows from the estimation
methodology described in Chapter 3. The outputs include traffic condi-
tions, such as travel times or prevailing walking speeds, or level-of-service
indicators such as density.

Traffic assignment models that take OD demand as input typically con-
sist of a route choice model, and of a network loading model. In the context
of pedestrian flows, the notion of a ‘route’ is less obvious than for vehicular
flows, where the concept of assignment models is inspired from. However,
at an aggregate level, pedestrian facilities may be approximated by a net-
work, and the concept of routes is useful to preliminarily assign pedestrians
to facilities. To capture pedestrian dynamics within them, most pedestrian
network loading models operate at a finer scale. The propagation of pedes-
trians is typically described along ‘paths’. Such paths may be defined as
trajectories in continuous space (e.g. Helbing and Molnár, 1995), sequences
of cells (Blue and Adler, 2001), ‘routes’ in a network with a finer discretiza-
tion (Asano et al., 2007), or described by continuous density distributions
(Hughes, 2002).

In terms of route choice, a common behavioral assumption is that
pedestrians choose the available route having the least cost between their
origin and destination. This cost generally incorporates various factors
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such as travel time, physical effort, or comfort. A large number of
route choice models have been developed, both in the context of ve-
hicular traffic (Dial, 1971; Cascetta et al., 1996), and in the context of
pedestrian flows (Seneviratne and Morrall, 1985; Cheung and Lam, 1998;
Hoogendoorn and Bovy, 2004). Pedestrian route choice is particularly com-
plex due to issues entailing scale (e.g. local vs. global route choice), context
(travel purpose, age, gender, facility type, weather, culture), its relation
with activity scheduling, habit, and other factors. However, data availabil-
ity is still limited, making research on the topic difficult.

In terms of network loading models, a multitude of suitable approaches
have been proposed as well. These range from the well-known social force
model (Helbing and Molnár, 1995) to cellular automata (Blue and Adler,
2001), queueing networks (Løvås, 1994), behavioral models (Robin et al.,
2009), activity choice models (Hoogendoorn and Bovy, 2004) or contin-
uum models (Hughes, 2002; Hoogendoorn et al., 2014). Despite this wide
availability of modeling approaches, a recent review has found that cur-
rent models are either computationally inefficient, or of questionable ac-
curacy (Duives et al., 2013). To close this gap, either a macroscopic or a
microscopic approach may be pursued. For complex settings involving a
large number of pedestrians, typically macroscopic models are preferable.
Besides computational advantages, they can be readily calibrated on real
data, and directly interact with aggregate demand estimation models (see
Chapter 3).

In the remainder of this chapter, the focus is on the development of an
accurate and computationally efficient network loading model. Accordingly,
it is assumed that pedestrian ‘route demand’ is known, i.e., that the OD
demand has already been assigned to routes by any of the aforementioned
route choice models. Interposing a route choice model between an OD
demand estimator and a network loading model is straightforward in a
pedestrian context, where route choice is widely assumed to be reactive,
i.e., independent of future traffic conditions (Jiang et al., 2009b).

The chapter is structured as follows. Section 4.2 provides an overview of
the literature on macroscopic network loading models, and a recapitulation
of recent findings from related empirical studies. Based on that review,
Section 4.3 presents a novel macroscopic model that is comparably accu-
rate and computationally cheap. Sections 4.4–4.7 present an operational
model specification, and discuss several case studies. Section 4.8 contains
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concluding remarks.

4.2 Literature review

The following review focuses on macroscopic approaches for the loading
of pedestrian networks, and specifically on continuum models and related
phenomenological models. For a comprehensive review of pedestrian flow
models including microscopic and hybrid models, the reader is referred to
Duives et al. (2013).

Continuum models interpret pedestrians as particles of flow that are
conserved. They formulate a set of partial differential equations (PDEs) in
which walking speed is typically determined by a fundamental diagram re-
lating pedestrian density and speed. Inspired by the kinematic wave theory,
it is assumed that the fundamental diagram also holds for non-stationary
traffic, implying that pedestrians adapt their speed instantaneously with
infinite acceleration.

One of the first continuum models for pedestrian movements has been
proposed by Al-Gadhi and Mahmassani (1990), who study circular move-
ments around religious stone monuments during the Hajj, a Muslim pil-
grimage to Makkah, Saudi Arabia. Their approach has been generalized by
Hughes (2002) in his seminal ‘continuum theory for the flow of pedestri-
ans’. This theory is a two-dimensional extension of the Lighthill–Whitham–
Richard (LWR) model that is used to approximate the traffic move-
ment on a uni-directional highway (Lighthill and Whitham, 1955; Richards,
1956). Hughes’ continuum theory allows for multi-commodity flow involv-
ing pedestrians with different walking directions and destinations. Several
discretization schemes have been proposed to illustrate such flows by means
of numerical examples (Xia et al., 2008; Huang et al., 2009; Jiang et al.,
2009b). Moreover, Colombo and Rosini (2005) and Goatin et al. (2009)
have extended the model to describe ‘overcompression’ during panic, i.e.,
the increase of pedestrian density beyond the jam density during extreme
situations.

Hoogendoorn et al. (2014, 2015) derive a continuum model from a mi-
croscopic pedestrian model. As for the previous models, pedestrian flow
is assumed in equilibrium by setting all acceleration terms to zero. A
closed-form expression for the walking speed is obtained by approximat-
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ing the density using a first-order Taylor series expansion. The model is
then specified such that a linear and isotropic density-speed relationship
results. Several numerical examples are considered using a two-dimensional
Godunov scheme (Lebacque, 1996; van Wageningen-Kessels et al., 2015a).

The above models have in common that they express a system of
PDEs that are solved numerically by discretization. The resulting solu-
tion schemes are similar to a group of models that are referred to as ‘phe-
nomenological’. Phenomenological models may provide a comparable level
of detail in terms of spatial and temporal dynamics, but they are not a
direct product of the discretization of a system of PDEs. Having said that,
they lend many ideas from such discretization schemes, in particular the
cell transmission model (CTM, Daganzo, 1994, 1995). Phenomenological
models leave more freedom to the modeler and are sometimes more ac-
curate, as the system of PDEs discussed previously do not represent any
physical law in the first place. Furthermore, they are typically less costly
to apply in practice.

Asano et al. (2007) have been first to propose a generalized CTM to
describe pedestrian flows. As used by Daganzo in the context of vehicular
traffic, an isotropic trapezoidal fundamental diagram is assumed in their
pedestrian cell transmission model. No framework for estimating ‘turning
proportions’ is provided. Instead, the fractions of pedestrians associated
with each walking direction are exogenously given, and the exact sequence
of cells that a pedestrian traverses must be known in advance. This can be
a severe constraint for the application of their model in practice.

Extended by a discrete potential field, Guo et al. (2011) present a re-
lated framework to study pedestrian route choice behavior and congestion
during evacuation. A specification of the exact sequence of cells for pedes-
trians is no longer required. However, their framework is only capable of
dealing with a trapezoidal fundamental diagram, which is shown for the
case of uni-directional flow. The use of a more general density-flow rela-
tionship, as it may be found in applications different from evacuation, is
not possible.

Most of the aforementioned models are difficult to apply to real case
studies, be it due to their computational cost (Xia et al., 2008; Huang et al.,
2009; Jiang et al., 2009b), or due to their focus on particular geometries
or extreme events (Al-Gadhi and Mahmassani, 1990; Asano et al., 2007;
Guo et al., 2011). Another limitation of a large majority of macroscopic
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pedestrian models is their reliance on isotropic density-speed relationships.
Only Al-Gadhi and Mahmassani (1990) and Jiang et al. (2009b) consider
a bi-directional fundamental diagram for two specific applications. Yet
pedestrian flow is in many cases multi-directional, and in particular under
congested conditions, ‘anisotropic’.

Anisotropy is the property of being direction-dependent, here of the
walking speed. In anisotropic pedestrian flow, the walking speed at
the same point in space may be different depending on the orienta-
tion of a pedestrian. This definition is consistent with that used in
material science or physics (e.g. Sayir et al., 2008). For an alternative
definition of anisotropy in the context of microscopic models, see e.g.
Hoogendoorn and Bovy (2002).

Compared to uni-directional flow, Navin and Wheeler (1969) observe in
an empirical study that counter-flow reduces walking speed by up to 14.5%
in case of a flow ratio of 10% : 90%, and by 4% in case of symmetric flow.
This is in qualitative agreement with findings by Lam et al. (2002) who
report that the maximum reduction in capacity is around 19% for the same
10% : 90% split ratio. Further studies of anisotropy have been conducted
by Zhang et al. (2012), Zhang and Seyfried (2014) as well as Wong et al.
(2010) and Xie and Wong (2015).

In this chapter, we develop a macroscopic pedestrian network loading
model that is based on an approximation to the continuum theory for pedes-
trian flow and a CTM-like discretization scheme. Specifically, we build on
the framework for multi-directional flows proposed by Asano et al. (2007)
and adapt the concept of cell-specific potentials proposed by Guo et al.
(2011). This yields a fast and accurate loading model for pedestrian flow.
Moreover, we overcome the assumption of isotropy by relying on a stream-
based formulation of a pedestrian fundamental diagram. This allows to
realistically describe congested multi-directional flow at the macroscopic
level. The resulting model is easily applicable to large and complex real-
world applications.

4.3 Model framework

Inspired by the cell transmission model (Daganzo, 1994), we consider a
discrete-time discrete-space model where each time interval τ ∈ T is of
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uniform length Δt.
As suggested by Løvås (1994), walkable space is represented by a di-

rected graph G = (N , Λ), where N represents the set of nodes ν ∈ N , and
Λ the set of directed streams λ ∈ Λ. The topology of the network depends
on the specific application, particularly the major prevailing movement di-
rections. Nodes through which pedestrian traffic is discharged and leaves
the network are referred to as origin/destination nodes, and their set is
denoted by NOD ⊆ N . While their typical position is at the border of a
walking facility, OD nodes can also be located in the interior if they rep-
resent an access way to e.g. an elevator or an escalator. Nodes have no
physical length.

A stream λ connects two nodes and has a fixed length Lλ > 0. It carries
pedestrians only in one direction. Streams are obtained by decomposing
the generally multi-directional flow. This decomposition depends on the
prevalent pedestrian flow, and the geometry of the walking facility. It is
assumed that a meaningful decomposition is known a priori. In the liter-
ature on empirical flow characterization, several decomposition strategies
are discussed (Nikolić and Bierlaire, 2014; Xie and Wong, 2015).

Walkable space is partitioned into a set of areas X . Every stream λ

is associated with an area ξ ∈ X , defining a space in which it interacts
with other streams. The surface size of an area ξ is denoted by Aξ, which
takes into account a potential presence of internal obstacles. Such obstacles
include any object that reduces the walkable space, such as a pillar or a
trash bin. No prior assumptions about the shape and size of areas are
necessary. The set of streams associated with area ξ is denoted by Λξ,
with Λξ ⊂ Λ and Λξ ∩Λξ′ = ∅ if ξ �= ξ′.

Fig. 4.1 illustrates the proposed space representation at the example
of a longitudinal corridor with an orthogonal space discretization. In this
illustration, multi-directional flow is decomposed into left-right as well as
diagonal movements, resulting in six distinct flow directions. Areas are
delimited by solid lines, streams represented by dashed lines, and nodes
by circles. Since streams are direction-specific, each dashed line in Fig. 4.1
represents two streams, one in each direction. Pedestrians may cross from
one area to another at any position along the joint boundary, and not
only through nodes. Likewise, when traversing areas, pedestrians are not
confined to the dashed lines, which only represent their direction of flow
conceptually. Origin/destination nodes at both ends of the corridor are
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represented by the two stars.

λ

ξ

ν

Figure 4.1: Illustration of space representation.

An orthogonal discretization as in Fig. 4.1 represents the most com-
mon specification for flow models relying on a fundamental diagram
(Treuille et al., 2006; Huang et al., 2009). The size of areas is typically
between 1 m2 and 10 m2. In this range, the model dynamics are found
to be approximately scale-invariant. Specifically, we have tested several
discretization meshes in that range at the example of the case studies
presented later in this chapter, with no significant changes in the result-
ing model dynamics and calibration parameters. For artificial test sce-
narios with abrupt changes in demand and density, this result may how-
ever not hold. The main alternatives to an orthogonal space discretiza-
tion are triangular or hexagonal grids (Guo et al., 2011; Chen et al., 2014;
van Wageningen-Kessels et al., 2015b). Even irregular discretization ge-
ometries may be envisaged if they better fit the infrastructural layout.

A route ρ is defined by a pair of origin and destination nodes (νρ
o, ν

ρ
d),

νρ
o, ν

ρ
d ∈ NOD, and a set of streams Λρ that connect them. The set Λρ may

be obtained by selecting streams individually, or by including all streams
that are associated with a set of areas. There can be several routes con-
necting the same pair of OD nodes. Each route starts and ends at an OD
node, but cannot contain any OD node in between. The set of all routes is
denoted by R.

Depending on the network G and the set of streams Λρ, multiple ‘stream
sequences’ may connect the origin and destination of a route ρ. Such stream
sequences are referred to as paths. To avoid their explicit enumeration, the
concept of a path is not explicitly used. Instead, the choice of a path within
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a route is considered by means of turning proportions that are computed
at every node. They may depend both on the route and the prevailing
traffic conditions. Depending on their specification, pedestrians may be
distributed across multiple paths within a route, or stick to a single one,
for instance the shortest path.

Pedestrians are organized in ‘packets’. A pedestrian packet � is char-
acterized by a route ρ�, a departure time interval τ�, and the number of
people X� that it contains. In contrast to the definition of a ‘pedestrian
type’ by Hughes (2002), a pedestrian packet is attributed a departure time
and a route, instead of only a destination. On the other hand, pedestrian
types in Hughes (2002) may differ with respect to their walking character-
istics, whereas pedestrian packets as defined in this work may not (for a
multi-commodity framework, see e.g. Cooper, 2014).

The set of all packets is denoted by L ⊂ R × T . The size X� of each
pedestrian packet � ∈ L is assumed to be known a priori, and the corre-
sponding demand vector is denoted by X = [X�]. Such information can
be inferred from a demand estimation framework in combination with a
suitable route choice model, as discussed previously.

A conservation principle with respect to the number of pedestrians on
each stream is combined with an empirical density-speed relationship for
calculating the flows between them. Within a stream, pedestrians are as-
sumed to be homogeneously distributed, and their movements are not mod-
eled explicitly. This concept is similar to that of the cell transmission model
(Daganzo, 1994), with the difference that it is formulated at the level of
streams instead of areas.

When pedestrian packets are propagated along the streams, they typ-
ically split up into fragments. In principle, these fragments can split in-
definitely, but they merge again such that there is at most one fragment
per packet in a stream. The state of the model at any time interval is de-
scribed by the distribution of the fragments on the network. The number
of pedestrians associated with packet � in stream λ during time interval
τ is denoted by M�

λ,τ and referred to as the corresponding ‘fragment size’.
The sum of all fragments in a stream λ during time interval τ is denoted
by Mλ,τ and referred to as the stream accumulation. The vector of stream
accumulations associated with area ξ and time interval τ is denoted by
Mξ,τ = [Mλ,τ], with λ ∈ Λξ.

Each stream λ during time interval τ is associated with a walking speed
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vλ,τ. The velocity vector of area ξ, vξ,τ = [vλ,τ], groups these stream speeds.
For each area ξ and time interval τ, a functional relationship between

the stream accumulation and velocity vectors is assumed to exist. This
relationship may for instance be a stream-based fundamental diagram. In
practice, time-invariant specifications are mostly used due to the difficulty
of calibrating time-dependent models.

If vf represents the ‘global’ free-flow walking speed, the stream velocity
vector associated with area ξ during time interval τ is expressed as

vξ,τ = vfFξ,τ(Mξ,τ), (4.1)

where Fξ,τ(Mξ,τ) represents the corresponding dimensionless density-speed
relationship. Eq. (4.1) describes the relationship between the accumulation
of each stream in an area, and the corresponding pedestrian stream speeds.
Several possible specifications, both isotropic and anisotropic, are provided
in Section 4.4.

The assumption of a fundamental diagram implies that pedestrians in-
stantaneously adapt their speed if a change in accumulation occurs. In
traffic flow theory, this is characteristic for first-order flow models. For
pedestrian models, such an assumption is particularly well suited, since
pedestrian can accelerate from standstill to free-flow walking speed almost
immediately and vice versa (Weidmann, 1992).

Regarding the functional form of the vectorial density-speed relation-
ship Fξ,τ(Mξ,τ), two assumptions are made. These are inspired by Hughes’
continuum theory for pedestrian flows (Hughes, 2002).

First, it is hypothesized that in an unoccupied area, the walking speed
in every stream must be larger than zero, but may not exceed the global
free-flow speed. If Fλ,τ represents the entry in Fξ,τ associated with stream
λ ∈ Λξ, this translates to

0 < Fλ,τ(0) ≤ 1 ∀ λ ∈ Λξ, ξ ∈ X , τ ∈ T , (4.2)

where 0 represents the null vector of length |Λξ|. The walking speed at zero
density can be lower than the global free-flow speed, which may be adequate
for instance in uneven terrain. It may however not be zero, excluding
phenomena like waiting. The resulting formulation therefore represents an
exclusive walking model like most macroscopic approaches in the literature.
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Second, the fundamental diagram is assumed to be monotonically de-
creasing, i.e.,

∂Fλ,τ

∂Mλ′,τ

≤ 0 ∀ λ, λ ′ ∈ Λξ, ξ ∈ X , τ ∈ T . (4.3)

The assumption of monotonicity is widely accepted under ‘normal’ condi-
tions (Daganzo, 1994; Hughes, 2002).

Some fundamental diagrams specify a jam density kjam, i.e., a density
at which all pedestrian movement halts. Equivalently, at the area level,
a storage capacity N

jam
ξ = kjamAξ may be considered, representing the

maximum number of pedestrians that can be present in an area at any
time. In that case, it is further required that

Fλ,τ(Mξ,τ) = 0 if Nξ,τ = N
jam
ξ , (4.4)

where Nξ,τ =
∑

λ∈Λξ
Mλ,τ denotes the total accumulation in area ξ during

time interval τ.
As discussed by Daganzo (1994), the time discretization has to be such

that pedestrians cannot traverse more than one stream in a single time
step. In numerical mathematics, this consideration is referred to as the
Courant–Friedrichs–Lewy (CFL) condition (Courant et al., 1967). It can
be expressed as

Δt ≤
Lλ

vf
, ∀ λ ∈ Λ. (4.5)

According to Eq. (4.5), the ratio of the shortest stream length and the
free-flow walking speed represents an upper bound for the time discretiza-
tion. For instance, for the space representation shown in Fig. 4.1, the
constraining length is that of the diagonal links, which are shorter than the
horizontal ones.

The actual choice of the time step Δt is not critical for the stability of
the model, but known to have an influence on numerical dispersion and
computational cost (van Wageningen-Kessels et al., 2015a). In practice,
it has been observed that such dispersion can even lead to more realistic
results (Lebacque, 1996). As such, the time step can be seen as a calibration
parameter. In this work, this possibility is not explored, and as in most
traffic flow studies, the bound defined in Eq. (4.5) is used to specify the
time step, i.e.,

Δt = min
λ∈Λ

{Lλ/vf} . (4.6)
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Given that pedestrian streams are uni-directional, the associated flow
is given by the hydrodynamic theory as the product of speed and density.
Specifically, for stream λ ∈ Λξ during time interval τ, the flow increment
during an infinitesimal time interval dt can be expressed as

dQλ,τ =
Mλ,τ

Lλ

vfFλ,τ(Mξ,τ)dt. (4.7)

Based on Eq. (4.6), and by defining the minimum stream length as
Lmin = minλ∈Λ Lλ, the cumulative hydrodynamic flow of stream λ during
time interval τ is given by

ΔQλ,τ =
Lmin

Lλ

Mλ,τFλ,τ(Mξ,τ). (4.8)

The cumulative hydrodynamic stream flow does not represent an actual
flow, but is a characteristic quantity from which further stream properties
can be calculated (Daganzo, 1994).

Due to properties (4.2) and (4.3), the function defined in Eq. (4.8) is
known to reach a maximum ΔQcrit

λ,τ at a characteristic accumulation Mcrit
λ,τ ,

referred to as the critical cumulative hydrodynamic flow and the critical
stream accumulation, respectively. For each stream and time interval, the
critical accumulation Mcrit

λ,τ divides the density-flow relationship (Eq. 4.8)
into a free-flow and a congested regime. In the free-flow regime, an infinites-
imal increase in accumulation leads to an increased cumulative hydrody-
namic flow. In the congested regime, inversely an increase in accumulation
leads to a decrease in pedestrian flow.

A diminishing flow with increasing density beyond a critical accumu-
lation is a characteristic property of most traffic networks. For multi-
directional flow, the main cause is friction between different pedestrian
streams that lead to degradation of traffic conditions. In uni-directional
flow, a ‘capacity drop’ may result from the faster-is-slower effect due to an
increasing ‘pedestrian pressure’ (Helbing, 2001). This is captured by the
fundamental diagram, which describes such effects implicitly.

The critical accumulation associated with stream λ during time interval
τ is computed by assuming that the accumulation of all other pedestrian
streams in the same area, M′

ξ,τ with λ′ ∈ Λξ and λ′ �= λ, are known, i.e.,

Mcrit
λ,τ = arg max

M≥0

MFλ,τ(M;M′
ξ,τ). (4.9)
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If the critical walking speed of stream λ during time interval τ is given
by vcrit

λ,τ = vfFλ,τ(M
crit
λ,τ ;M

′
ξ,τ), the critical cumulative hydrodynamic flow of

stream λ during time interval τ is given by

ΔQcrit
λ,τ =

Lmin

Lλ

Mcrit
λ,τ

vcrit
λ,τ

vf
. (4.10)

The cumulative hydrodynamic flow allows to determine an outflow ca-
pacity at the end of a stream, and an inflow capacity at the beginning
(Lebacque, 1996). The hydrodynamic outflow capacity can be thought of
as the maximum amount of pedestrians that could be sent to a next stream
in case of an unlimited supply. It is defined as equal to the cumulative hy-
drodynamic flow if the stream is in the free-flow regime, and set equal to
the critical cumulative hydrodynamic flow if it is in the congested regime.
The hydrodynamic outflow capacity of stream λ during time interval τ is
thus given by

ΔQout
λ,τ =

{
ΔQλ,τ if Mλ,τ ≤ Mcrit

λ,τ ,

ΔQcrit
λ,τ otherwise.

(4.11)

Likewise, the hydrodynamic inflow capacity can be considered as the
maximum amount of pedestrians that can be received by a stream in case
of an infinite traffic demand. It is equal to the critical cumulative hydro-
dynamic flow if the stream is in the free-flow regime, and set equal to the
cumulative hydrodynamic flow otherwise. This is, the cumulative hydro-
dynamic inflow capacity of stream λ′ during time interval τ is given by

ΔQin
λ′,τ =

{
ΔQcrit

λ′,τ if Mλ′,τ ≤ Mcrit
λ′,τ,

ΔQλ′,τ otherwise.
(4.12)

Eq. (4.11) and Eq. (4.12) are as defined in the cell transmission model
(Daganzo, 1994).

To propagate pedestrians from one stream to the next, route-specific
turning proportions at each node need to be known. They may be exoge-
nous, or computed by an en-route path choice model based on the prevail-
ing pedestrian traffic conditions. Assuming that all pedestrians embarked
on a given route have the same walking behavior, the turning proportion
corresponding to the stream sequence λ → λ′ for the ensemble of people
following route ρ that are in stream λ during time interval τ may be de-
noted by δ

ρ
λ→λ′,τ. Since pedestrians can only be sent to adjacent streams
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that are part of their route, it must hold that∑
λ′∈Θρ

λ

δ
ρ
λ→λ′,τ = 1, (4.13)

where Θ
ρ
λ denotes the set of streams that originate from the end of stream λ

and are part of route ρ. Typically, a potential field is assumed to exist from
which the turning proportions for local path choice can be inferred (Hughes,
2002; Guo et al., 2011). These turning proportions guide the pedestrians
along their route to their desired destination, taking the prevailing pedes-
trian traffic conditions into account. Depending on their specification, the
en-route path choice may resemble a diffusion model, a shortest path model,
or a mixture of both. In Section 4.4, a specification is provided that can
reproduce such walking behavior.

Following Daganzo (1994, 1995), the cumulative hydrodynamic inflow
and outflow capacity are used to define the receiving and sending capacity,
respectively. The receiving capacity of stream λ′ during time interval τ is
equal to the cumulative hydrodynamic inflow capacity

Rλ′,τ = ΔQin
λ′,τ, (4.14)

where a separate variable is defined for notational consistency with the
original CTM. Different from the original CTM, the receiving capacity is
stream- and not area-specific, and does not take the area storage capacity
N

jam
ξ into account. Instead, the storage capacity is considered at the area

level as described below.
The counterpart of the receiving capacity is the sending capacity. The

sending capacity from stream λ to stream λ′ ∈ Θ
ρ
λ for pedestrian packet �

during time interval τ is given by

S�
λ→λ′,τ = δ

ρ�
λ→λ′,τ min

{
M�

λ,τ,
M�

λ,τ

Mλ,τ

ΔQout
λ,τ

}
. (4.15)

The first term in the curly brackets ensures the conservation of pedestrian
flow, i.e., not more pedestrians may advance than are actually on the emit-
ting stream. The second term applies when the hydrodynamic outflow
capacity does not suffice to advance all pedestrians present on the stream
concerned. In that case, a demand-proportional supply distribution scheme
is applied to determine the fraction of each pedestrian packet that is part
of the sending capacity.
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Whenever demand exceeds supply, dispersion occurs, i.e., pedestrian
packets split up in several fragments across streams. Generally, dispersion
is present on all except the shortest stream, or whenever the prevailing
walking speed is lower than the global free-flow walking speed. From a
practical view point, dispersion can be seen as mimicking the presence
of slow and fast pedestrians. This is an interesting property for traffic
assignment, where estimates of walking time distributions are more useful
than simple point estimates.

If the sending capacities exceed the available receiving capacity, they
can only be accommodated partially. Let the candidate inflow to stream λ′

during time interval τ be given by

Sλ′,τ =
∑

λ′′∈Φρ

λ′

∑
�∈L

S�
λ′′→λ′,τ, (4.16)

where Φ
ρ
λ′ is the set of streams that terminate at the start node of stream

λ′ and are part of route ρ.
Taking the constraints at the stream level into account, the candidate

transition flow from stream λ to λ′ during time interval τ associated with
pedestrian packet � is expressed as

Y�
λ→λ′,τ =

{
S�
λ→λ′,τ if Sλ′,τ ≤ Rλ′,τ,

ζ�λ→λ′,τRλ′,τ otherwise.
(4.17)

If the candidate inflow to stream λ′ is inferior or equal to the corre-
sponding receiving capacity, the candidate transition flow is equal to the
sending capacity. Otherwise, the flow disperses and a demand-proportional
supply distribution scheme is applied (Asano et al., 2007), i.e.,

ζ�λ→λ′,τ =
S�
λ→λ′,τ

Sλ′,τ

. (4.18)

In principle, specifications different from Eq. (4.18) can be envisaged. A
variety of related models have been proposed in the literature dealing with
multi-legged junctions in road networks (Daganzo, 1995; Lebacque, 1996;
Jin and Zhang, 2003). Most of these approaches are however specific to
the case of vehicular traffic (such as strict first-in-first-out, FIFO), and not
directly applicable in the context of pedestrian flows.
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Finally, besides constraints at the stream level, also a storage constraint
at the area level should be considered if a jam density has been defined.
Let the candidate inflow to area ξ′ during time interval τ be given by

Yξ′,τ =
∑

λ′∈Λξ′

∑
λ′′∈Φλ′

∑
�∈L

Y�
λ′′→λ′,τ. (4.19)

The actual transition flow from stream λ to λ′ ∈ Λξ′ during time interval τ
associated with pedestrian packet � can then be expressed as

G�
λ→λ′,τ =

⎧⎨
⎩Y�

λ→λ′,τ if Yξ′,τ ≤ N
jam
ξ′ −Nξ′,τ,

η�
λ→λ′,τ

(
N

jam
ξ′ −Nξ′,τ

)
otherwise.

(4.20)

If the residual storage capacity at the area level is sufficient, all candidate
transition flows are accommodated. Otherwise, a demand-proportional
supply distribution is applied, i.e.,

η�
λ→λ′,τ =

Y�
λ→λ′,τ

Yξ′,τ

. (4.21)

If there is no storage capacity at the area level, it holds Njam
ξ → ∞, and

thus G�
λ→λ′,τ ≡ Y�

λ→λ′,τ. This is the case for the large class of fundamental
diagrams that do not define a jam density (see Nikolić et al., 2015, for an
overview).

For streams adjacent to origin/destination nodes, source and sink terms
need to be included. The generation term for stream λ : νλ

o → νλ
d during

time interval τ associated with pedestrian packet � is expressed as

W�
λ,τ =

⎧⎪⎪⎨
⎪⎪⎩
X� if νλ

o = νρ�
o , τ = τ�,

−M�
λ,τ if νλ

d = ν
ρ�
d ,

0 otherwise.

(4.22)

Source/sink areas are assumed to have infinite capacity. Newly added
pedestrians that are unable to advance to a next stream are retained in
their origin area until the pedestrian traffic situation allows them to do so.
Pedestrians reaching their destination are immediately cleared out. If an
exit capacity needs to be considered, this may be done by interposing an
area with a corresponding static capacity.

Once the transition flows and generation terms defined in Eq. (4.20)
and Eq. (4.22) are known, a flow balance equation allows to update the
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accumulation of each pedestrian packet in every stream using the difference
scheme

M�
λ,τ+1 = M�

λ,τ +
∑

λ′∈Φ
ρ�
λ

G�
λ′→λ,τ −

∑
λ′′∈Θ

ρ�
λ

G�
λ→λ′′,τ +W�

λ,τ. (4.23)

If the demand and the initial state of the system, i.e., the fragment size
of all pedestrian packets on all streams at τ = 0, are known, the propagation
of pedestrian packets along their routes can be computed by sequentially
applying Eq. (4.23) to all packets � ∈ L, streams λ ∈ Λ and time intervals
τ ∈ T .

Recursion (4.23) is independent of the processing order within a time
interval, i.e., the order in which streams are updated does not have an influ-
ence on the dynamics of the model (Daganzo, 1994). Moreover, Eq. (4.23)
guarantees the conservation of each packet and thus represents the discrete
counterpart of the continuity equation that is used in fluid dynamics.

In summary, the proposed model requires four types of exogenous in-
puts. These are (i) the route flow demand in the form of the set of pedes-
trian packets L, (ii) a network representation in the form of the set of
streams Λ and their associated areas X , (iii) a fundamental diagram, i.e., a
possibly anisotropic density-speed relationship, and (iv) an en-route path
choice model that provides the turning proportions at nodes. The first
may be obtained by a demand estimation model, or by direct observation.
The second is given by the infrastructure of interest. The third and fourth
input are discussed in the following section.

4.4 Model specification

A specification of the stream-based pedestrian density-speed relation-
ship and the turning proportions is provided in the following. Both
iso- and anisotropic density-speed relationships are considered. A Java
implementation of the resulting model specification is freely available
(Hänseler and Lederrey, 2015).
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4.4.1 Density-speed relationships

Isotropic specifications

One of the most widely used isotropic pedestrian density-speed relation-
ships is that of Weidmann (1992), who defines the isotropic walking speed
of any stream λ in area ξ as

vλ = vf

{
1− exp

[
−γ

(
Aξ

Nξ

−
1

kjam

)]}
. (4.24)

According to Weidmann (1992), the free-flow walking speed is estimated at
vf = 1.34m/s, the shape parameter at γ = 1.913m−2, and the jam density
at kjam = 5.4m−2. Specification (4.24) has been obtained from a literature
review, trying to describe different settings using a single relationship. As
such, it may not be the most realistic fundamental diagram for any specific
flow configuration, but one that is comparably general and applicable in
absence of anisotropy.

The critical stream accumulation Mcrit
λ associated with Eq. (4.24) cor-

responds to the root finding problem

1− exp

[
−γ

(
Aξ

Mcrit
λ +N′

λ,ξ

−
1

kjam

)](
1+ γ

Mcrit
λ Aξ(

Mcrit
λ +N′

λ,ξ

)2
)

= 0, (4.25)

where the accumulation of all but the current stream λ in area ξ, λ ∈ Λξ,
is given by

N′
λ,ξ =

∑
λ′∈Λξ

λ′ �=λ

Mλ′ . (4.26)

Eq. (4.25) is obtained by applying Eq. (4.9) to Eq. (4.24), i.e., by setting
to zero the first derivative of the hydrodynamic flow with respect to the
accumulation of the current stream.

An alternative is Drake’s one-dimensional road traffic model
(Drake et al., 1967), in which the speed of stream λ is given by

vλ = vf exp

(
−ϑ

(
Nξ

Aξ

)2
)
. (4.27)

Based on Eq. (4.9), the critical accumulation of pedestrian stream λ ∈ Λξ

associated with Eq. (4.27) can be expressed as

Mcrit
λ = −

N′
λ,ξ

2
+

√(
N′

λ,ξ

2

)2

+
A2

ξ

2ϑ
. (4.28)
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As a benchmark for the assessment of fundamental diagrams, a ‘zero-
model’ may additionally be considered, where the walking speed is constant
over space and time and given by

vλ = vf. (4.29)

For this specification, the critical stream accumulation is infinite, i.e.,
Mcrit

λ = ∞, and no congested traffic regime exists.

Anisotropic specification

To demonstrate the anisotropic features of the model, we propose a stream-
based pedestrian fundamental diagram (SbFD). It represents a generaliza-
tion of the formulation by Wong et al. (2010) to multiple streams that
interact in a pair-wise manner as described by Xie and Wong (2015). We
however do not directly use Xie and Wong’s approach, as it requires solving
a fixed-point problem, for which the existence and uniqueness of a solution
are not a priori guaranteed.

Let φλ,λ′ denote the intersection angle between streams λ and λ′ with
φλ,λ′ = 0 if λ = λ′, and let β and ϑ denote model parameters. We assume
that the walking speed of stream λ ∈ Λξ is given by

vλ = vf exp

(
−ϑ

(
Nξ

Aξ

)2
) ∏

λ′∈Λξ

exp

(
−β(1− cosφλ,λ′)

Mλ′

Aξ

)
. (4.30)

The critical stream accumulation associated with Eq. (4.30) is identical
to that of Drake’s one-dimensional traffic model, Eq. (4.28), of which it
represents an anisotropic generalization.

The first exponential term of Eq. (4.30) considers the isotropic reduc-
tion in walking speed induced by the overall accumulation in an area. A
large value of ϑ implies a strong reduction in walking speed with increas-
ing accumulation, and vice versa. The second term, i.e., the product of
exponentials, represents the combined reduction in walking speed due to
‘friction’ with other pedestrian streams, depending on their density and
the intersection angle. Similarly, a large value of β increases the magni-
tude of these anisotropic conflicting effects. Wong et al. (2010) estimate
vf at 1.034m/s and ϑ at 0.075m4, and Xie and Wong (2015) at 1.070m/s
and 0.065m4, respectively. For β, no parameter estimates are available in
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the literature. If it is set to zero, Drake’s isotropic fundamental diagram
results. In Appendix B, some properties of Eq. (4.30) are discussed, and
further explanation for the choice of the specification is provided.

For a rectangular space discretization, multi-directional flow is gen-
erally decomposed in 12 uni-directional streams connecting each pair of
area edges. There are eight distinct directions to cross an area, namely
left/right, up/down, and diagonally. In the subsequent case studies, ac-
cordingly there are up to eight directions of flow and up to 12 streams per
area (see Fig. 4.8b).

We note that other, more advanced anisotropic formulations of pedes-
trian fundamental diagrams can be envisaged. In multi-directional pedes-
trian flow, different behavioral regimes are likely to exist. For instance, for
the major stream, a leader-follower behavior may be predominant, while
for the minor stream, collision avoidance is more important. Both of these
mechanisms probably depend differently on the intersection angle. A case
distinction for acute, right and obtuse angles may be beneficial. The ex-
ploration of such advanced specifications is left for future research.

4.4.2 Turning proportions

It is assumed that a potential field exists from which local turning pro-
portions can be inferred. These turning proportions are traffic-dependent
and route-specific (Guo et al., 2011). Each stream λ is assigned a potential
P
ρ
λ,τ representing a generalized remaining distance along route ρ at traffic

conditions as they are prevalent during time interval τ. For any stream λ

that is not associated with route ρ, it is set to infinity.
In principle, various specifications including a linear attribution scheme

may be used to deduce turning proportions from stream potentials. In
the context of discrete choice theory (Ben-Akiva and Lerman, 1985), the
potential of a stream may be interpreted as its ‘utility’. Using a logit-type
model with weight μ, the turning proportion associated with the stream
sequence λ → λ′ and route ρ during time interval τ, with λ′ ∈ Θ

ρ
λ, can then

be calculated by

δ
ρ
λ→λ′,τ =

exp (−μP
ρ
λ′,τ)∑

λ′′∈Θρ
λ
exp (−μP

ρ
λ′′,τ)

. (4.31)

Since the calculation of turning proportions only involves potentials of ad-
jacent streams, the choice set does not overlap, and independence among
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choice alternatives may be assumed.
Specification (4.31) assumes that pedestrians rely solely on instanta-

neous information to make their path-choice decisions. No predictive infor-
mation is available to them, and travel cost to the respective destination is
minimized in a reactive manner (Hoogendoorn and Bovy, 2004).

Two specifications of the stream potential are considered in the fol-
lowing. They are not meant to describe pedestrian route choice in all its
details. For instance, they do not account for the influence of ambient
conditions, signage or other factors like habit, physical effort, or herding.
However, they are sufficient to illustrate the behavior and performance of
the model, which is the primary aim.

Speed- and shortest path-based potential

Inspired by Hughes (2002) and Guo et al. (2011), we consider a potential
that relies on a static floor field G

ρ
λ and a dynamic floor field Hλ,τ. The

route-specific static floor field G
ρ
λ is assumed to represent the remaining

distance from stream λ along route ρ, i.e., the minimum walking length
from and including stream λ to the end of route ρ (Dijkstra, 1959). By
convention, the static floor field decreases along a route and reaches zero
at the destination. The dynamic floor field Hλ,τ is assumed to be equal
to the prevailing normalized walking speed vλ,τ/vf of stream λ during time
interval τ. The rationale behind this choice is that pedestrians are expected
to give preference to streams in which they can walk at velocities closer to
the free-flow speed, similar to the concept of the desired velocity in the
social force model (Helbing and Molnár, 1995).

Based on these floor fields, each stream may be assigned a route-specific,
density-dependent potential

P
ρ
λ,τ = αG

ρ
λ − βHλ,τ, (4.32)

where the parameters α, β ∈ R
+ denote weights that can assume any posi-

tive value. Both floor fields as well as the corresponding weights are non-
dimensional. A large value of α means that pedestrians follow the shortest
path corresponding to their route very closely. Similarly, a high value of
β implies that pedestrians prefer less busy streams in which they can walk
as fast as possible.

The provided specification considers the two aspects of getting to the
destination on an ‘optimal path’ guided by a static floor field, yet avoiding



4.4. MODEL SPECIFICATION 69

streams of high density that are penalized by the dynamic floor field. Full
visibility with respect to the static floor field, and visibility of only the
neighboring streams with respect to the dynamic floor field is assumed. In
contrast to Hughes (2002), the aforementioned ‘optimal path’ is considered
by the shortest path in space, instead of the shortest path in time. This
explicitly allows reproducing queueing behavior, as people associated with
the same route ‘pile up’ along a distinct path in case of congestion.

Fastest path-based potential

While Specification (4.32) is flexible due to its independent weighting of
remaining distance and speed, in practice identifying these weights may be
difficult. Thus, additionally a potential field based on the shortest path
in time is considered, which only has a single weight. The potential Pρ

λ,τ

then represents the remaining walking time from and including stream λ at
pedestrian traffic conditions as they are prevalent during time interval τ,
i.e., the instantaneous remaining walking time from stream λ along route
ρ to its destination.

A strict pursuit of the shortest path implies that pedestrians have no
explicit queueing discipline. When passing a congested bottleneck, typi-
cally a semi-circle is formed upstream the entrance, instead of an orderly
queue.

4.4.3 Calibration

A pseudo maximum likelihood framework is used for the model calibration
(Besag, 1975; Gourieroux et al., 1984). The calibration is based on walking
times, which are comparatively easy to observe, yield a robust parametriza-
tion, and are an important output of a network loading model. Previously,
we have also investigated the use of other calibration measures, such as
density and local flows, or a combination thereof (Hänseler et al., 2014a).
The results have shown that a calibration based on travel times alone yields
an accurate parametrization, and greatly simplifies the estimation process
as compared to a multi-objective optimization problem. Besides, for some
of the case studies analyzed in the following, only demand and walking
time data are available anyway.

In the following, it is assumed that for each pedestrian i, the route ρi,
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the departure time t
dep
i and the walking time tti are known by observation

without measurement error. The observed walking time ttobs
i of pedestrian

i is considered as a draw from a random variable TT obs
i , whose distribution

fobs
i is unknown. In practice, knowledge of that distribution is not available,

except if the same experiment is run multiple times (Kretz et al., 2006).
Let fest

i (tt|X,θ) denote the walking time probability density of pedes-
trian i that is generated by the model for a demand X and a set of param-
eters θ. It is given by the walking time distribution of the corresponding
pedestrian packet �(i), with t

dep
i ∈ τ� and ρi = ρ�.

The pseudo log-likelihood to reproduce the walking time vector ttobs =

[ttobs
i ] for a sample of n pedestrians can then be expressed as

L̃(ttobs|X,θ) =

n∑
i=1

log
(
fest
i (ttobs

i |X,θ)
)
. (4.33)

The objective of the calibration is to find a parametrization θ such that the
pseudo likelihood of reproducing the observed walking times is maximized,
i.e.,

θ̂ = arg max L̃(ttobs|X,θ). (4.34)

Eq. (4.34) is referred to as the pseudo maximum likelihood estimator. It
differs from the actual maximum likelihood estimator in that any correla-
tion between measurements is neglected. There are generally two sources
of correlation, namely serial and spatial. Serial correlation is mostly an
issue if multiple measurements of the same pedestrian are considered. This
is not the case here, since only one walking time estimate per person is
available. Spatial correlation occurs if observations are dependent across
pedestrians. Such clustering is indeed present in that several pedestrians
may be associated with the same pedestrian packet, and thus be described
by the same estimated walking time distribution. This leads to an artificial
weighting of these distribution terms, which the pseudo likelihood does not
account for.

With decreasing packet sizes, the clustering effect vanishes. By changing
the space discretization, the time discretization changes through Eq. (4.6),
and indirectly the packet sizes can be influenced. In the case studies de-
scribed in the next section, the discretization is such that a large majority of
packets contain at most two or three pedestrians, and are of similar size. We
have tested different discretizations and found only a very small influence
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on the estimates (Lederrey, 2015). At least if packets are small, the role
of spatial correlation seems to be negligible, and the maximization of the
pseudo likelihood defined in Eq. (4.33) provides a consistent estimate of the
parameters. If large packets are present, other estimation techniques such
as indirect inference may be more appropriate (Gourieroux et al., 1993).

Even if it is unbiased, the pseudo likelihood estimator is less efficient
than the actual maximum likelihood estimator. Standard techniques for
statistical inference need in principle to be adapted for use in a pseudo like-
lihood setting. Specifically, the Cramér-Rao bound is generally not reached,
and the standard likelihood-ratio test does not apply, as the asymptotic dis-
tribution of the differences in pseudo log-likelihoods is not χ2-distributed
(Dodge, 2006). Following Hoogendoorn and Daamen (2007), and taking
into account the negligible role of clustering in the considered case studies,
we still provide standard variance estimates. We note however that their
significance in a pseudo likelihood framework is limited, and refer to the
literature for generalized approaches that should be used if pedestrian pack-
ets are large (Bai, 1999; Moreira, 2003). To assess the goodness-of-fit of a
specification, the Akaike information criterion (AIC) based on the pseudo
likelihood is reported. We have also computed the Bayesian information
criterion (BIC), and found that it agrees with the AIC on the preferred
model for each of the studied cases.

To solve Eq. (4.34), any globally convergent optimization method
such as simulated annealing or trust-region methods may be used
(Kirkpatrick et al., 1983; Powell, 2009).

4.5 Isotropic case studies

Two isotropic case studies are investigated, one involving multi-directional
flows at low density studied at the example of Lausanne railway station,
and one considering a uni-directional bottleneck experiment conducted in
the Netherlands. As model specification, the density-speed relationship
proposed by Weidmann (1992), Eq. (4.24), in combination with the speed-
and shortest path-based en-route path choice model, Eq. (4.32), is used.
The aim of these case studies is to establish the validity of the proposed
macroscopic model as such. In the next section, by means of two anisotropic
case studies, the performance of the various model specifications is inves-
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tigated and compared.
In the following analysis, a calibration routine different from that de-

scribed in Section 4.4.3 has been used. Instead of relying on a likelihood
framework, a least squares approach based on mean walking times has been
used, which is computationally less efficient and statistically less rigorous.
Having said this, no significant difference between the two calibration meth-
ods is expected, which is why no re-calibration using likelihood estimation
has been performed. The reader interested in further details is referred to
the original publication (Hänseler et al., 2014a).

The performance of the isotropic specification is evaluated with respect
to predictions of walking times and density levels. The obtained results
are compared with the ground truth that is available from tracking data.
Moreover, for the case study of Lausanne railway station, the model is ad-
ditionally compared to Viswalk (PTV, 2013, Version 5.40) that implements
the social force model (SFM; Helbing and Molnár, 1995), representing the
current state-of-the-art in microscopic modeling of walking behavior.

4.5.1 Lausanne railway station

The investigated site in Lausanne railway station comprises the pedestrian
underpass West (PU West) with an area of approximately 685 m2 (Fig. 4.2).
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Figure 4.2: PU West of Lausanne railway station.

PU West is discretized into 93 square areas with an edge length of
ΔL = 2.7 m. A potential influence of the space discretization on model
dynamics has been investigated, but has been found negligible as long as
the size of areas remains in the same order of magnitude.

For the calibration of the model, the north side of PU West (shaded area
in Fig. 4.2) is considered. Pedestrian tracking data collected in the time
period between 07:32 and 07:57 on April 9, 10, 18 and 30, 2013 is available.
A further data set, collected on January 22 of the same year, is considered
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for validation. While for the calibration only the North part of PU West
is considered, for the validation the complete pedestrian underpass is an-
alyzed. The validation concentrates on the peak period between 7:40 and
7:45, representing the busiest time interval of the day. Table 4.1 shows
the obtained parameter estimates. These are in agreement with values re-
ported by Weidmann (1992), particularly as far as the shape parameter
(γ = 1.95 m−2 vs. 1.913m−2) and the jam density (kjam = 5.88m−2 vs.
5.4m−2) are concerned. The free-flow speed is slightly lower (vf = 1.22m/s
vs. 1.34m/s), but the difference amounts to less than 10%. The result-
ing parametrization of the weights of the en-route path choice model is
discussed in Section 4.7.

Table 4.1: Calibration of isotropic case studies.

vf [m/s] γ [m−2] kc [m−2] α [-] β [-]

Weidmann (1992) 1.34 1.913 5.4 – –
Lausanne railway station 1.22 1.95 5.88 2.08 2.55
Dutch bottleneck experiment 1.76 1.77 5.47 4.50 0.05

For the comparison with the social force model, default parameters
of Viswalk are used, which are based on a calibration performed by
Johansson et al. (2007). Pedestrian demand is aggregated in 60-second
periods for Viswalk due to the lack of a suitable mechanism for using
a disaggregate origin-destination demand table as input. To account for
stochasticity, five simulation runs are performed and averaged. More runs
are not necessary, since only aggregated output is reported, which shows
little fluctuation across runs. For both the proposed macroscopic model
and the microscopic social force model, the time period between 07:37 and
07:47 is computed, but only results for the period between 07:40 and 07:45
are reported in order to remove a bias of an initially empty system.

Fig. 4.3 provides a comparison of route-specific walking times with a
temporal aggregation of 60 s. The resulting mean values are shown in a
histogram with a bin size of 5 s. The proposed model overestimates the
occurrence of long walking times, but otherwise shows a reasonable agree-
ment with trajectory data. The social force model seems to overestimate
small walking times and to underestimate the most frequently observed
walking times in the range between 35 and 55 s. Overall, the agreement
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Figure 4.3: Walking time distribution for PU West.

between the proposed model and trajectory data is better than for the so-
cial force model if the L2-norm is considered (114.4 vs. 181.6 s). Fig. 5.7 in
Section 5 additionally provides a comparison of walking times with a finer
discretization, underlining the good agreement between measurement and
model. In that section, also the ability of the proposed model to reproduce
density maps is investigated, concluding that the predictive power in terms
of densities is also satisfactory (see Hänseler et al., 2014a, for a comparison
to the social force model).

Another way of illustrating the model accuracy is by means of a scatter
plot of walking times. Fig. 4.4 shows observed versus predicted walking
times in PU West, again aggregated by routes and 60 s-intervals.

A majority of the walking time-pairs come to lie close to the 45◦ best-fit
line (dashed curve in Fig. 4.4). Specifically, for 74% of all observations, the
relative error amounts to less than 25%. For around 15% of all observa-
tions, the proposed model underestimates the walking time by more than
25% (see observations in the lower right half of Fig. 4.4). A reason for
this discrepancy is non-walking behavior of pedestrians, such as waiting or
purchasing a ticket. These activities are not considered by the pedestrian
walking model. Similarly, the proposed model fails at predicting very short
walking times corresponding to average velocities that are higher than the
free-flow speed.
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Figure 4.4: Walking time scatter plot for PU West (60 s aggregation; RMSE =
13.37, MAPE = 19.03%).

4.5.2 Bottleneck experiment

To assess the ability of the model to predict traffic-dependent varia-
tions in walking times, a congested, uni-directional scenario is considered.
Daamen and Hoogendoorn (2003) have performed various controlled walk-
ing experiments, including a bottleneck experiment in which saturated flow
conditions are reached. Their test site consists of a 10 m long corridor with
a width of 4 m, that is reduced to 1 m after a length of 5 m. Fig. 4.5 depicts
the studied layout, in which pedestrians are walking from left to right, i.e.,
from the wide side of the corridor to the small side.
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Figure 4.5: Experimental set-up used by Daamen and Hoogendoorn (2003) to
study the pedestrian flow through a bottleneck.

During the course of the experiment, which takes about 15 min, the in-
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flow is successively increased until a highly congested situation is reached,
and then again decreased. A total of about 80 pedestrians of both genders
and different age are available for the experiment. Due to its long dura-
tion, pedestrians re-enter the corridor multiple times, following a frequency
determined by a pedestrian traffic light. For a detailed description of the
case study, the reader is referred to Daamen and Hoogendoorn (2003).

Upstream of the bottleneck, the formation of a funnel is reported, i.e.,
pedestrians anticipate the narrowing of the corridor as indicated by the
sample trajectories in Fig. 4.5. This stands in contrast to some studies
in which the formation of a half-circle around the bottleneck entrance
is found (Helbing et al., 2001), or the full width of the corridor is used
(Tajima et al., 2001). This anticipatory behavior may be due to the char-
acter of the experiment. The repeated crossing of the same corridor leads
to a high familiarization with the setting, and presumably to a joint opti-
mization of the flow.

For the proposed macroscopic model, the walkable space is discretized
into square areas with a length of ΔL = 1 m. In the wide part of the
corridor, on each side four half areas are present (Fig. 4.5). Due to the
symmetry of the layout, these eight half-areas may be considered as four
communicating square areas, i.e., the half-areas are pair-wise merged such
that in each case one regular area results that is connected to all their joint
neighbors.

For the calibration, only trajectory recordings from the first half of the
experiment are used, keeping the remaining ones for validation. The ob-
tained parameter set is shown in Table 4.1. While the shape parameter
(γ = 1.77m−2) and the jam density (kjam = 5.47m−2) are again close to the
values of Weidmann (1992), the estimate of free-flow speed (vf = 1.76m/s)
is significantly higher. Fig. 4.6 shows the corresponding walking time scat-
ter plot, where a temporal aggregation of Δt = L/vf = 0.57 s is used
(aggregation by pedestrian packets). Data points used for calibration and
validation are shown separately.

A variation in walking time by a factor of 5, from 5 s to 25 s, is dis-
cernible. Since there is only a single route, this variation is solely caused
by changing traffic conditions. For a large majority of data points, the
proposed model is capable of reproducing traffic-induced delays in walking
times relatively well. The relative error is smaller than 25% in 75% of all
cases. For some pedestrian packets, the walking time is overestimated (up-
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Figure 4.6: Walking time scatter plot for the Dutch bottleneck experiment (ag-
gregation: Δt = 0.57 s; RMSEvalid = 3.15, MAPEvalid = 17.67%).

per left half of the plane). This may represent people that are particularly
good at avoiding the queue, e.g. by joining it laterally at the tip and thus
by overtaking other pedestrians.

4.6 Anisotropic case studies

To study the model behavior in case of anisotropy, two multi-directional,
congested case studies are considered. One is based on a set of pedes-
trian counter-flow experiments conducted in Hong Kong, China, and one
on a pedestrian cross-flow experiment in Berlin, Germany. The first is
particularly useful in that it explores a large range of pedestrian traffic
conditions, and the second in that it considers the walking behavior of a
typical student population in their daily environment. The focus here is on
the performance of the various density-speed relationships, which is inves-
tigated in combination with the fastest path-based floor field, representing
the simpler of the two specifications for the computation of the turning
proportions.
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4.6.1 Counter-flow experiments

Wong et al. (2010) provide a set of 89 controlled experiments in which two
pedestrian groups of varying size intersect at different angles. These exper-
iments were carried out in a sports hall in Hong Kong, and video footage is
available. Among the set of experiments, those with high densities and an
intersection angle of 180◦ yield the highest level of anisotropy (Wong et al.,
2010). Table 4.2 provides a list of the corresponding experiments, and
Fig. 4.7 describes the 3 m wide and 9 m long walking corridor for the con-
trolled experiments.

(a) Sample image extracted from experiment #85
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(b) Walkway configuration

Figure 4.7: Experimental setup of counter-flow experiments (Wong et al., 2010).

Each experiment is conducted once and lasts about 1 min. Pedestrians
associated with the major group wear blue hats, and those associated with
the minor group wear green hats. Due to a flat viewing angle and high
density, no automatic data processing is feasible. Instead, we have manually
extracted the departure and walking time of each pedestrian in the six
experiments of interest. The ratio of the pedestrian group sizes varies from
approximately 10:0, 9:1, 8:2, 7:3, 6:4 to 5:5, of which the first and last
experiment yield isotropic flows.
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Table 4.2: Observed walking speeds in counter-flow experiments.

Exp. major group minor group

#84 87 ped 1.08± 0.15 m/s – –
#85 79 1.19± 0.13 9 ped 0.80± 0.14 m/s
#86 68 0.90± 0.10 18 0.74± 0.15

#87 61 0.82± 0.06 26 0.67± 0.10

#88 53 0.83± 0.09 30 0.79± 0.15

#89 44 0.79± 0.10 44 0.79± 0.18

To evaluate the proposed model specifications, they are calibrated on
two experiments, and cross-validated on the remaining ones. We have
tested different compositions and sizes of the training and validation sets,
but the results do not change significantly. Importantly, the training set
should contain experiments with anisotropic walking behavior. In the fol-
lowing, experiments #85 and #87 are used for calibration, and experiments
#84, 86, 88 and 89 for validation. Table 4.3 shows the obtained parameter
values and the corresponding AIC values for four different density-speed
relationships. The number of observations available for each experiment
corresponds to the number of pedestrians involved, and is indicated in
brackets. The number of estimation parameters is two, three, four and
four for the Zero-, Drake-, Weidmann and SbFD-model, respectively.

Table 4.3: Results of calibration and validation on counter-flow experiments.

Zero-Model Drake SbFD Weidmann

AICcalib
85,87 (175 obs.) 837.7 754.0 704.5 729.4

vf [m/s] 1.166 ± 0.001 1.170± 0.001 1.115± 0.000 1.169 ± 0.001

μ [-] 1.43± 0.06 12.15 ± 0.29 10.18 ± 2.02 14.84 ± 0.30

ϑ [m4] 0.078± 0.000 0.001± 0.004

β [m2] 0.210 ± 0.005

γ [m-2] 4.92± 0.20

kjam [m-2] 6.58± 0.46

AICvalid
84 (87 obs.) 355.2 338.4 311.4 348.2

AICvalid
86 (86 obs.) 381.7 371.3 355.3 401.4

AICvalid
88 (83 obs.) 400.3 384.6 364.0 435.3

AICvalid
89 (88 obs.) 458.2 408.8 396.8 454.6
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The stream-based pedestrian fundamental diagram (SbFD) reaches a
better AIC value than the two other fundamental diagrams (Weidmann,
Drake), both as far as the training set and the validation experiments are
concerned. Interestingly, this not only holds for the anisotropic experi-
ments (#86, #88), but also for the uni-directional pedestrian flow exper-
iment (#84) and that with equal flow shares (#89). A look at the mean
walking times for the major and minor pedestrian groups in each experi-
ment corroborates that finding (see Table 4.4). The SbFD-model is able to
estimate walking times that are closer to the ones observed, in particular
for the minor group. This can also be seen from the significant reduction
in the squared error reported at the bottom of Table 4.4.

Table 4.4: Walking times for counter-flow validation experiments.

Exp. Groups ttobs [s] ttZero [s] ttDrake [s] ttSbFD [s] ttWeidmann [s]

#84 87 / 0 8.5 / - 9.5 / - 9.1 / - 8.1 / - 8.3 / -
#86 68 / 18 10.1 /12.7 9.5 / 9.5 10.0 / 10.8 9.4 / 12.5 8.8 / 9.5
#88 53 / 31 10.9 /11.8 9.5 / 9.5 10.0 / 10.6 10.3 /11.7 8.9 / 9.2
#89 44 / 44 11.8 /11.6 9.5 / 9.5 11.6 / 11.4 11.7 /11.6 9.7 / 9.9

L2-error (weighted, [s]) 21.4 / 23.4 9.0 / 10.5 7.9 / 0.7 22.3 / 23.3

In Table 4.3, the obtained estimates for the free-flow walking speed vary
between 1.115 m/s and 1.170 m/s with generally small errors. For the same
parameter, Wong et al. (2010) report a value of 1.034 m/s, which is slightly
lower. With the exception of the result for the zero-model (μ = 1.43), the
values obtained for the path choice parameter μ lie in the range between 10
and 15, which is relatively high as a comparison to the second case study
will show. A high value implies that pedestrians tend to stick to the fastest
path, which in an experiment like this is expected. A low value on the other
hand leads to dispersion, which explains the low estimate obtained by the
zero-model. Dispersion is the only way for the zero-model to reproduce a
distribution of walking times for a given route, since it does not take into
account any density-speed interaction.

The remaining parameters shown in Table 4.3 are in line with the lit-
erature, too. For the Drake-model, the obtained value of ϑ (0.078 m4)
is in good agreement with previous estimates by Wong et al. (2010) and
Xie and Wong (2015), reporting 0.075 m4 and 0.065 m4, respectively. The
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same parameter estimate for SbFD is significantly lower (ϑ = 0.001 m4)
since a significant reduction in walking speed at high densities is explained
by the friction with opposing pedestrian streams instead. This effect is
quantified by the parameter β, for which no comparison to the literature
exists. Regarding the Weidmann-specification, the values obtained for the
jam density and shape parameter, kjam = 6.58 m−2 and γ = 4.92 m−2, are
high compared to a European context, for which values of kjam = 5.4 m−2

and γ = 1.913 m−2 are reported (Weidmann, 1992). In the Hong Kong
experiment, pedestrians are apparently particularly tolerant towards high
densities, reducing their walking speed less with increasing density. This
is in line with observations from the video footage, and with observations
from previous researchers investigating differences in fundamental diagrams
across countries (Chattaraj et al., 2009).

4.6.2 Cross-flow experiment

Plaue et al. (2014) present a multi-directional pedestrian flow experiment
conducted in the entrance hall of a university building at TU Berlin, Ger-
many. Unlike in the previous example, pedestrians are not confined to
a pre-defined corridor, and not ‘conditioned’ from foregoing experiments.
The observed population consists primarily of students, of which many
carry backpacks, musical instruments, or wear heavy winter clothing. The
setting is video-recorded using three networked cameras, and trajectories of
pedestrians are extracted using a semi-automatic photogrammetric method.

In total, 142 pedestrians traverse the hall from left to right, and 83
pedestrians from top to bottom (see Fig. 4.8). They intersect at an angle of
roughly 90◦ in a region of about 25 m2. According to Plaue et al. (2014), the
maximum density amounts to 5 ped/m2 and the duration of the experiment
is 69 s. Fig. 4.8 shows a sample image of the experimental environment, as
well as of the modeling configuration of the walking area concerned. As can
be seen from Fig. 4.8b, the various entrance and exit zones are modeled by
six origin/destination nodes. Local obstacles, namely the two supporting
columns, are considered by an according reduction of the surface size of the
affected areas.

The various model parameters are calibrated on the full data set (see
Table 4.5). The number of observations corresponds to 225 measurements
of walking times. Considering the decrease in the AIC value as compared to
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(a) Sample image
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9 m

(b) Area configuration

Figure 4.8: Setting of cross-flow experiment at TU Berlin (Plaue et al., 2014).

the zero-model, all ‘non-trivial’ fundamental diagrams represent improve-
ments, with the anisotropic SbFD having the lowest AIC value overall.

Table 4.5: Results of calibration on cross-flow experiment.

Zero-Model Drake SbFD Weidmann

AIC 1160.0 1101.0 1062.6 1098.8

vf [m/s] 1.307 ± 0.005 1.308± 0.001 1.308± 0.006 1.332 ± 0.002

μ [-] 1.16 ± 0.03 1.39± 0.02 2.64 ± 0.41 2.05± 0.20

ϑ [m4] 0.139± 0.004 0.143± 0.004

β [m2] 0.300± 0.008

γ [m-2] 1.76± 0.15

kjam [m-2] 5.99± 0.61

The parameter estimates shown in Table 4.5 are in agreement with in-
tuitive expectations. The free-flow walking speeds are estimated between
1.307 m/s and 1.332 m/s, which is similar to previous studies from Europe
(e.g. 1.34 m/s according to Weidmann, 1992). The path choice parameter
lies in the range between 1.16 and 2.64, which is significantly lower than
that in the Hong Kong experiments. Pedestrians seem more willing to de-
viate from the fastest path, for instance to avoid zones of high density. The
entrance hall at TU Berlin leaves more room for such deviations than the
narrow corridor used in the Hong Kong experiments. The values obtained
for the remaining parameters are comparable to the ones found in the pre-
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vious case study. The sensitivity to density is however larger, as can be
seen from the higher values of ϑ and β, as well as the lower values of γ and
kjam. Besides differences in the experimental conditions, this is likely due
to the larger physique of Europeans and their lower tolerance to invasion
of space (Lam et al., 2002).

Of all parameters, the path choice parameter μ has the largest relative
standard deviation from the mean, referred to as the coefficient of variation
(CoV). For SbFD, the CoV of μ corresponds to 15.6%. In turn, the relative
standard deviation of the free-flow walking speed vf is the lowest with a
CoV of 0.5%. This is in agreement with our experience, according to which
identifying the optimal value of vf is relatively easy, whereas the calibration
of μ takes more computational time.

As for the isotropic case studies, walking time estimates are consid-
ered. Fig. 4.9 provides a scatter plot, comparing the observed walking time
of pedestrian i, ttobs

i , to the estimated walking time distribution of the
corresponding pedestrian packet �(i), as approximated by the mean tt

est
�(i)

(denoted by circles) and the standard deviation (error bars). For visual
guidance, a 45◦-reference line (dashed), as well as two isolines (dotted) rep-
resenting a deviation of Δt = ±5 s are shown. In the figure captions, the
squared error is given for each specification.

As expected, the zero-model (Fig. 4.9a) cannot reproduce the full range
of observed walking times, as they are simply proportional to the walked
path lengths. This can be seen by the horizontal ‘stripes’ that appear in the
scatter plot. Similarly, the Drake-specification (Fig. 4.9b) predicts walking
times that are confined to a relatively narrow band that does not represent
the bandwidth observed in reality. The Weidmann-specification (Fig. 4.9c)
is able to reproduce the full width, but with such significant scattering that
no improvement in the squared error as compared to the Drake-model is
achieved. The SbFD-specification (Fig. 4.9d) finally is able to reproduce
the observed width, and the squared error is significantly reduced. The
spreading is narrower than that for Weidmann, and the estimated walking
time distributions come to lie closer to the 45◦-reference line. Nevertheless,
the remaining scatter is still substantial. The observed stochasticity is likely
due to individual differences in walking behavior in presence of congestion,
ranging from a pro-active ‘sneaking through’ to a more passive ‘waiting for
a gap’, which may cause a large prediction uncertainty.

In relation to these scatter plots, Table 4.6 summarizes both the ob-



84 CHAPTER 4. TRAFFIC ASSIGNMENT

0 5 10 15 20 25
0

10

20

ttobs
i

tt
es

t
�(
i)

(a) Zero-Model (L2-error: 53.3 s)

0 5 10 15 20 25
0

10

20

ttobs
i

tt
es

t
�(
i)

(b) Drake (L2-error: 47.6 s)

0 5 10 15 20 25
0

10

20

ttobs
i

tt
es

t
�(
i)

(c) Weidmann (L2-error: 47.4 s)

0 5 10 15 20 25
0

10

20

ttobs
i

tt
es

t
�(
i)

(d) SbFD (L2-error: 39.2 s)

Figure 4.9: Scatter plot of walking times for Berlin case study.

served and estimated aggregate walking times for the two most frequently
used routes. Route ‘W→E’ (left to right) carries the major pedestrian
flow, and has a length of 9 m. Route ‘N → SE/SW’ (top to lateral nodes at
the bottom) carries the minor pedestrian flow, and is approximately 7 m
long. The observed average walking speed of the major stream amounts
to 0.72 m/s (= 9 m/12.4 s), whereas for the minor stream a walking speed
of 0.66 m/s (= 7 m/10.6 s) is observed, i.e., anisotropy is clearly present.
This anisotropy is not reproduced by neither the Drake- nor the Weidmann-
based specification, which both overestimate the walking time of the major
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nificantly higher. Cultural differences, as well as a lower average body size,
seem again the most probable causes.

In terms of the parametrization of the en-route path choice model, dif-
ferences between the iso- and anisotropic case studies are difficult to assess
due to the varying specification of the floor field. However, remarkable
differences within each pair of experiments exist. With respect to the
anisotropic experiments, it has already been noted that the participants
of the Hong Kong counter-flow experiment show a distinct shortest path-
behavior, which is not the case for the Berlin experiment. Related to the
isotropic experiments, Fig. 4.10 shows the quasi-stationary density distri-
bution obtained for an artificial bottleneck experiment that is useful to
illustrate the differences in the specification.

The shown corridor has a length of 22 areas and a width of 6 areas,
which at the bottleneck is reduced to two areas. During 100 time steps, the
corridor is loaded with a continuous inflow that corresponds to the amount
of pedestrians that can be contained by an area at jam density, X = Aξkjam.
The shown density maps correspond to the time step τ = 200, i.e., they
are taken 100 time steps after the continuous inflow has stopped. At this
stage, pedestrians gradually propagate downstream, but the dynamics of
the model are relatively slow.

0 0.2 ≥ 0.4

mξ,τ = Mξ,τ/(Aξkjam)

(a) α = 2.08, β = 2.55 (b) α = 4.50, β = 0.05

Figure 4.10: Flow patterns in a corridor with bottleneck.

Fig. 4.10a shows the density distribution that is obtained for the Lau-
sanne parametrization. Pedestrians take both the distance to destination
and local traffic conditions into account for local path choice. Upstream
of the bottleneck, all space is occupied. People act as if they were impa-
tient to pass the bottleneck, which is why a broad zone of high density
builds up in front of the bottleneck. At time step τ = 200, 47.9% of all
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pedestrians have arrived at the destination. Fig. 4.10b shows the density
distribution that results if the weights of the floor field are replaced by
those obtained from the Dutch bottleneck experiment. Pedestrians walk
along paths that ‘anticipate’ the bottleneck. Only a fraction of space is oc-
cupied, mostly along the shortest path. Slightly more pedestrians than in
the previous case have reached the destination at τ = 200, namely 48.6%.
This is the result of a high queueing discipline that manifests itself in the
form of a funnel. While the predicted behavior in the two cases is funda-
mentally different, it is in good agreement with the respective observations
(Daamen and Hoogendoorn, 2003; Lavadinho, 2012). The resulting density
distribution of two further cases, namely for a strict shortest path and a
Brownian diffusion case, may be found in the literature (Hänseler et al.,
2014a).

The successful calibration of both the fundamental diagrams and the
en-route path choice model is particularly encouraging since only the pedes-
trian demand and walking times are required, while typically their estima-
tion necessitates measurements of density and speed. For the calibration
of multi-directional fundamental diagrams, usually even trajectory data is
required, which is expensive to collect.

Besides the parameters, also the model outputs, in particular walking
times, are in agreement with empirical observations. While the ‘goodness’
of this agreement is hard to define, the comparison with the social force
model done at the example of Lausanne railway station shows that the
accuracy of the proposed model is equal if not superior in the case consid-
ered. With respect to the anisotropic extension of the model, the investi-
gated values of walking times and AIC consistently favor the stream-based
formulation of the pedestrian fundamental diagram, suggesting that this
approach significantly improves the quality of the model.

A further strength of the proposed model is its computational perfor-
mance. On a standard desktop machine, the anisotropic pedestrian flows
occurring in the Berlin case study can be computed for a given parameter
set in about one second, which is almost 100 times faster than real-time. In
contrast, commercial microscopic simulators operate typically at the speed
of real-time only.

Besides its accuracy and computational efficiency, a further advantage of
the proposed model is its relative ease of calibration, and the physical inter-
pretation of parameters it allows for. In particular, this facilitates the trans-
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ferability of parameters from one case study to another. If the proposed
model is to be used for practical applications based on the parametrization
obtained in this thesis, we suggest to use the specification obtained from
the Lausanne case study, representing a real-world example. The result-
ing isotropic fundamental diagram is shown in Fig. 5.5b in Chapter 5. In
case multi-directional flows at high density are present, anisotropy is likely
to occur, and instead the parametrization obtained from the Berlin case
study may be used. The corresponding specification of the stream-based
pedestrian fundamental diagram is illustrated by Fig. 4.11.
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Figure 4.11: Walking speed for bi-directional flow (SbFD, Berlin data).

The contour plot in Fig. 4.11 shows the expected walking speeds in a
counter-flow scenario for various total densities (represented by the x-axis),
and different density ratios (y-axis). Due to the symmetry of the problem,
only the speed of one stream is shown. At low densities, the difference in
speed between the two opposing streams is relatively small, independently
of the density ratio. The prevalent speeds are close to the free-flow speed.
At high total densities (≥ 1.5 ped/m2), the prevalent speed of the major
stream can be several times higher than that of the minor stream, and
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speeds are in general lower.
A limitation of the model is due to its exclusive consideration of

macroscopic walking, ignoring other activities such as waiting or phe-
nomena involving social interaction between individuals. For instance,
group walking patterns are known to significantly influence crowd dynam-
ics (Moussaïd et al., 2010). Similarly, non-walking facility elements such
as turnstiles or stairs cannot be described by the model.

A further criticism may relate to the fact that phenomena of self-
organization have not been reproduced by the proposed model spec-
ification. The spontaneous formation of lanes in counter-flow, or of
stripes in cross-flow is indeed well known, both empirically (Helbing et al.,
2001) and from modeling (Helbing and Molnár, 1995; Treuille et al., 2006;
Hoogendoorn et al., 2014). The question of whether macroscopic models
should be able to reproduce such patterns is however debatable. First, it
may be argued that empirically calibrated fundamental diagrams already
capture the influence of self-organization implicitly (Zhang et al., 2012).
Second, most macroscopic models are deterministic, whereas self-organized
flow patterns emerge spontaneously, and can hardly be predicted. For
instance, even for homogenous counter-flow in a simple corridor, the con-
figuration and position of lanes change over time, such that on average no
lanes may be discernible. Not predicting any spontaneous patterns of self-
organization, and accounting for their impact on flow implicitly, may thus
be preferable in a deterministic modeling context.

Overall, the proposed model seems highly useful for the planning and
design of congested walking facilities. Typically, the assessment of pedes-
trian infrastructures is based on aggregate quantities such as density and
specific flow (Fruin, 1971; Highway Capacity Manual, 2000). This informa-
tion is readily available from the model, allowing a quantitative prediction
of the expected level-of-service in pedestrian facilities (see Chapter 5). Due
to the performance of the model, a large number of infrastructure configu-
rations and complex walking networks can be evaluated in little time. Even
an automated optimization may be considered, using for instance an evo-
lutionary framework to ‘streamline’ the design of a facility (Helbing et al.,
2002). Besides, an application of the model within a DTA-framework or
for OD demand estimation seems interesting for further study, as it is one
of very few models that allow to generate reproducible and accurate walk-
ing time distributions in a single run and at low cost (Seer et al., 2008;
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Hänseler et al., 2015).

4.8 Concluding remarks

A dynamic network loading model for multi-directional and time-varying
pedestrian flows has been developed. By combining it with any suitable
route choice model from the literature, a powerful and computationally
efficient pedestrian traffic assignment model can be obtained.

Besides the development of an accurate macroscopic pedestrian flow
model as such, an important novelty lies in the explicit consideration of
anisotropy, which is achieved by using a stream-based fundamental diagram
for pedestrian traffic.

To assess the performance of the pedestrian network loading model,
several model specifications have been considered, and are evaluated at the
example of four real case studies, each elucidating different aspects of the
model. A detailed analysis shows that the proposed model is able to com-
pute walking time distributions and density maps that are in good agree-
ment with observed data. Moreover, the consideration of a stream-based
pedestrian fundamental diagram has been shown to significantly improve
the accuracy of the proposed model as far as anisotropic flows are con-
cerned.



Chapter 5

Application and practical

guidance

5.1 Introduction

In the following, the practical applicability of the previously developed
modeling framework is investigated. In particular, at the example of Lau-
sanne railway station, the estimation of demand and level-of-service are
discussed. The objective of this chapter is to provide guidance on the prac-
tical use of the framework for the organization, planning and design of train
stations. To reach readers that are not familiar with the previous chapters,
the main modeling ideas are first recapitulated in a qualitative way.

The chapter is structured as follows. In Section 5.2, the estimation
of pedestrian origin-destination demand is discussed, allowing to quantify
the current usage of pedestrian infrastructures in Lausanne railway station.
Section 5.3 considers the estimation of traffic conditions, which allows for
the assessment of the current level-of-service (LOS) in the same station.
Section 5.4 provides practical guidance for the use of these modeling tools
in the dimensioning of rail access facilities in general, covering all stages
of the planning process from the definition of the traffic concept of a train
station, via the prediction of demand and level-of-service, to the verification
of the dimensioning. Section 5.5 contains concluding remarks.

91
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5.2 Estimation of origin-destination demand

To obtain a comprehensive understanding of the usage of rail access fa-
cilities, several data sources have to be ‘combined’. An estimate of
OD demand is to be found that, when applied to the pedestrian net-
work of a train station, is most consistent with the corresponding train
timetable, historical surveys, and all other data sources that are available
(Cascetta and Improta, 2002). In the case of Lausanne railway station, all
the data sources described in Section 2.3 are used with the exception of
pedestrian trajectory data, which is considered for validation only.

To take the train timetable into account, we concentrate on platform
exit flows that are caused by alighting passengers of arriving trains. These
are known to cause demand ‘micro-peaks’ that are critical for the dimen-
sioning of rail access facilities (Hermant, 2012). Fig. 5.1 illustrates the
typical pattern of platform exit flows (solid line), as well as a correspond-
ing piecewise linear model that is derived from it (dash-dotted).
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Figure 5.1: Flow of alighting passengers on platform exit ways.

After the arrival of a train, a certain time elapses until the first pedes-
trians reach the platform exit ways. This may be due to the necessary
walking to reach the exit ways, or a delay in the opening of doors after
the train has stopped. Subsequently, a constant flow is established, whose
magnitude is limited by the capacity of the exit ways. This assumption
is based on empirical observations, showing that the exit ways typically
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represent the bottleneck in that situation (Benmoussa et al., 2011). De-
pending on the number of available exit ways, which often is determined
by the position and length of a train, the magnitude of the flow may be
different. Once all alighting passengers have left the access ways, the flow
reaches again zero.

Due to various random effects, such as natural fluctuations in the rid-
ership of a train, its position along a platform, or the distribution of pas-
sengers within a train, the parameters of the piece-wise linear model are
stochastic variables. The prediction of the model is then also stochastic,
and may be represented by a probability band. An example of such a pre-
diction band is shown in Fig. 3.5 in Chapter 3, where a good agreement
between prediction and observation is found.

If an appropriate specification of its parameters is available, this model
can be applied to estimate the arrival flows on any platform. In the case
of Lausanne railway station, such a parametrization is available, and train-
induced exit flows can be predicted for all platforms (Molyneaux et al.,
2014). These flows are used in the OD demand estimation framework, to-
gether with the available pedestrian counts and sales data. To associate the
different information sources over space and time, a Normal walking speed
distribution is assumed. The specifications for even walkways, inclined
areas and stairways proposed by Weidmann (1992) are used.

The OD demand is jointly estimated for the 10-day reference set de-
scribed in Section 2.3. The accuracy of the resulting estimates is discussed
in Chapter 3. By comparing observations and estimates of the demand in
the PUs, it is shown that despite the strong and rapid fluctuations, the
measured mean lies within the prediction band throughout the considered
time horizon. In particular, the differences between the prediction and
measurement for individual days are found to be smaller than the day-to-
day variability observed in measurements of tracking data. Thus, at least
for dimensioning purposes, the estimate of total demand can be considered
accurate. Similar findings hold for the estimation of accumulation or OD
flows. In all cases, the integration of the train timetable is essential to reach
such accuracy.

In Fig. 5.2, the estimated evolution of the total demand is provided,
showing the mean and the standard deviation band. Both the within-
day and the day-to-day variation (as indicated by the width of the de-
viation band) are significant. The average cumulative demand over the
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Figure 5.2: Estimated total demand during morning peak hour.

studied 30-min period amounts to 7,906 ped, representing about 8% of the
daily station throughput (Amacker, 2012). The highest average demand
is found between 7:39 and 7:40, where the overall demand rate amounts
to 557.3 ped/min. A quarter of an hour later, between 7:54 and 7:55, the
mean demand reaches a minimum of 112.0 ped/min. Within only a couple
of minutes, the average demand thus varies by almost a factor of 5. Such
a periodical concentration is characteristic for the Swiss railway network
that aims at bundling train arrivals and departures in order to minimize
the waiting time of transfer passengers (SBB-Infrastruktur, 2013).

To consider the spatial distribution of demand, the latter may be ag-
gregated over time. Fig. 5.3 shows a ‘Circos’ diagram of the average pedes-
trian OD demand (Krzywinski et al., 2009). Origin/destination areas are
grouped into ten centroids, representing the train platforms #1, #3/4,
#5/6, #7/8, #9 and #70, the entrances North and South, the passageway
to the metro, and a collection of shops. Light gray strips represent pedes-
trian flows emanating from train platforms, medium gray those originating
at the entrance ways North and South as well as at the interface to the
metro station, and dark gray strips pedestrian demand emanating from
one of the sales points.

Circos diagrams have originally been developed for studying genomes
(Krzywinski et al., 2009), but turn out to be a powerful instrument for con-
veying the spatial structure of pedestrian OD demand to practitioners and
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Figure 5.3: Pedestrian OD demand between 07:30 and 08:00. The origin of strips
are color-coded as train platforms (light gray), city/metro/bus (medium gray) and
shops (dark gray).

authorities. They provide quantitative information of flow between any two
centroids, which usually is difficult to represent in a single diagram. More-
over, the share of different user classes can be immediately perceived based
on the different shadings. During the considered time period, 44.1% of all
station visitors represent inbound passengers, 31.2% represent outbound
passengers, 16.4% are transfer passengers, and the remaining pedestrians
represent local users. These figures are different for each train station, and
change between the morning, evening and off-peak periods.

A further way of visualizing demand is by means of network flows.
Fig. 5.4 shows a map of the estimated minute-by-minute link flows for the
time period between 7:40 and 7:48 on April 30, 2013. Here, the demand
estimate of a specific day is chosen, as it allows to visualize the demand
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peaks caused by individual train arrivals and departures. The shading of
links represents the cumulative link flow over a minute in both directions.
The diameter of nodes represents the minute-by-minute origin flow.

Between 7:40 and 7:41, the arrival of IR 1712 from Sion at 7:38:57 is
discernible by the origin flow it creates on platform #5/6. In the time
period considered, this train is among those with the highest alighting
volumes. During 7:41 and 7:42, the arrival of IR 1606 from Neuchâtel on
track #4 can be seen by the trace it leaves in the pedestrian flow map.
Within less than a minute, IR 1710, IC 706 and IR 1407 arrive on platform
#7 at 7:42:24, platform #5 at 7:42:59, and on platform #3 at 7:43:18,
respectively. Especially the former two represent major lines (from Brig
and Zürich), causing large pedestrian movements. Their impact is visible
in Fig. 5.4d and 5.4e. After the last arrival of a train, IR 2517 from Geneva
arriving on platform #1 at 7:44:37, pedestrian flows decay, as can be seen
from Fig. 5.4g and 5.4h.

5.3 Level-of-service assessment

Despite its rich content of information, origin-destination demand reveals
little about expected traffic conditions. To assess the level-of-service, the
interaction between infrastructural supply and demand needs to be taken
into account.

For that purpose, the pedestrian traffic assignment model described in
Chapter 4 is useful. It is applied in the following to investigate density lev-
els in PU West, representing the busiest area in Lausanne railway station
(see Fig. 5.4). The aggregate nature of the model allows for a quick imple-
mentation, as well as for an accurate calibration and physical interpretation
of the obtained parameterization. These properties are useful for the pre-
sented level-of-service analysis, but become essential for planning, design
or crowd management applications, where a fast and accurate modeling of
pedestrian dynamics is key.

To obtain traffic conditions from the estimated OD demand, two steps
are necessary. First, a route choice model is required to assign OD demand
to route flows by specifying route split fractions. In PU West, only a single
route exists between each OD pair, and computing these fractions is trivial.
Second, a network loading model is needed to describe the propagation of
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Figure 5.4: Pedestrian flow map between 07:40 and 07:48 on April 30, 2013.
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into a free-flow and a congested regime, with the transition at a density of
1.86 ped/m2. An increase in density in the free-flow regime leads to an in-
crease in flow, whereas in the congested regime the opposite occurs. Such a
behavior is typical for transportation networks, and applies both to vehicles
and pedestrians (see e.g. Geroliminis and Daganzo, 2008). In practice, the
exact density at which the transition occurs may vary, particularly depend-
ing on the prevailing flow pattern. For instance, in multi-directional flow,
congested traffic conditions are typically reached at lower densities than in
uni-directional flow (see Chapter 4). The reported value of 1.86 ped/m2 is
thus of indicative value only.

For each area at given time intervals, the density is calculated, and
based on the fundamental diagram, the corresponding flow is computed.
The density in areas can be directly used to assess the perceived com-
fort and performance of a facility. The Highway Capacity Manual (HCM,
Highway Capacity Manual, 2000) distinguishes six levels of service, rang-
ing from LOS A (below 0.18 ped/m2, most favorable) to LOS F (above
1.33 ped/m2, least favorable).

Fig. 5.6 shows the resulting level-of-service maps for January 22, 2013.
For each time period of one minute, the model estimates and the corre-
sponding measurement from pedestrian tracking data are shown.

Visually, the proposed traffic assignment model is able to reproduce the
trend of the actual measurements. In the first time interval, the density
maps show a high level-of-service, which is then reduced during the fol-
lowing minutes, before it improves again in the last interval. There are
certain differences, for instance regarding the concentration of pedestrians
along the centerline of the corridor, which is less distinct in the model pre-
diction than in the measurement. An analysis of several days shows that
these differences between model prediction and measurement are relatively
small compared to the day-to-day variation. For the purposes considered
in this work, i.e., for an assessment of the level-of-service that is suffi-
cient for dimensioning, the estimates are considered accurate. Moreover,
a comparison to the social force model, which is the state-of-the-art in
microscopic pedestrian flow modeling, shows that the performance of the
proposed macroscopic model is equivalent or superior in the considered case
study (Hänseler et al., 2014a).

The highest pedestrian densities are observed between 7:41 and 7:43,
when various trains arrive. The level-of-service lies in the range between A
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Figure 5.7: Walking time distribution for PU West (Δt = 2.22 s).

5.4 Planning guidelines

In practice, the estimation of the current demand and level-of-service may
be of interest, but typically does not represent the primary objective. More
relevant is the consideration of future scenarios, which allow the assessment
and optimization of construction plans, and thus the dimensioning of in-
frastructure facilities.

The configuration and dimensioning of pedestrian facilities in train
stations is traditionally based on planning scenarios, such as ‘pas-
sengers on platform awaiting boarding’, ‘flow of alighting passen-
gers on platform exit ways’, or ‘transfer flows on pedestrian walk-
ways’ (Hoogendoorn and Daamen, 2004; Buchmüller and Weidmann, 2008;
Zhang et al., 2008). In structural engineering, such scenarios are referred
to as ‘load cases’. An infrastructure is checked for serviceability against all
the load cases it is likely to experience during its lifetime. In the context
of rail access facilities, the load cases typically consider the arrival or de-
parture of one or a few reference trains, and the resulting pedestrian OD
demand is estimated using rules of thumb. The dimensioning is then done
manually and separately for each facility element, such as stairways, ramps,
walkways or platforms.

By using a computational framework to estimate demand and level-of-
service, the planning process of rail access facilities can be enhanced. First,
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due to the explicit integration of the train timetable, the use of individual
load cases becomes obsolete. Second, the various facility elements can be
dimensioned jointly, which allows to investigate their mutual influence on
each other.

Based on our experience from Lausanne railway station, we sug-
gest in the following a six-step process that is useful for the planning
and dimensioning of pedestrian facilities in train stations, be it exist-
ing ones, or new stations. The approach is based on guidelines by
Buchmüller and Weidmann (2008). The differences consist in (i) the direct
consideration of the usage of a train station based on the timetable instead
of indirectly through load cases, (ii) the use of a computer-based OD de-
mand estimation framework instead of manual estimation techniques, and
(iii) the use of a pedestrian traffic assignment model that allows to simul-
taneously dimension multiple facility elements. For each of the six steps, a
short illustration at the example of Lausanne railway station is provided.
The process may be iterative.

I. Traffic concept of train station. In a first step, the planning horizon
is to be determined, as well as the corresponding operational concept for the
expected peak periods. This includes the train timetable or line frequency,
as well as the capacity and type of rolling stock. In Swiss train stations,
typically the morning peak period on working days is critical, and in rare
cases the evening peak hour. In particular cases, such as in touristic areas
or for stations close to stadiums, certain periods on weekends or after mass
events may be decisive for the dimensioning.

In a second step, a preliminary prediction of pedestrian OD demand
can be made. This typically requires an analysis of the status quo, which
serves to calibrate the demand estimator (see Chapter 3 and Section 5.2).
Unless sufficient information is available, a data collection campaign may
be required, involving for instance manual travel surveys, or the installation
of flow sensors.

In the case of the on-going expansion of Lausanne railway station, the
planning horizon is the year 2030, for which detailed information of the
train timetable and rolling stock is available. The demand is ‘expected to
double for interregional trains, and to triple for regional trains’ (Caillaud,
2011). To better understand the usage of the train station, a pedestrian
tracking system has been installed. An exploratory data analysis, discussed
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in Section 2.3, shows that the critical period occurs indeed in the morning.

II. Functional requirements. The desired level-of-service needs to be
specified, for instance for walkways, stairways, platforms or waiting areas.
Typically, one of the standard LOS schemes is used, which rely on density or
specific flow. In accordance with Swiss and US-norms (Weidmann, 1992;
Highway Capacity Manual, 2000), it is typically required that LOS B or
better be maintained for intervals of several minutes. During short intervals
of up to a minute, LOS D is accepted. At bottlenecks, locally LOS E is still
tolerated. Separate standards may apply under particular circumstances,
such as after mass events. Maximal walking times can also be set, either
based on a preliminary timetable that requires certain transfer times, or
based on considerations related to comfort. The particular needs of disabled
train users need to be taken into account, in accordance with the local
legislation.

The placement of service and sales points needs to be discussed. Access
to such facilities may increase the comfort and well-being of train station
users, but at the same time compromise pedestrian traffic. The effect of
the latter should be taken explicitly into account in the dimensioning of
pedestrian facilities, both as far as available space is used and additional
demand is induced. Generally, the more important a service, the higher its
priority in the allocation of space should be, however without violating the
pre-defined LOS standards.

In the case of Lausanne, maximum acceptable service levels are defined
for platforms, ramps, stairways and horizontal walkways. The density-
based LOS schemes specified in the Highway Capacity Manual (2000) are
used, with the thresholds as mentioned above (generally LOS B or better,
for short intervals LOS D, LOS E exceptionally at bottlenecks). For the
placement of sales and service points, the status quo is preserved.

III. Topology of pedestrian facilities. The network of pedestrian facil-
ities is to be developed. This process takes into account (i) the surroundings
of the train station, and in particular factors such as the connection to the
local transportation system, the local network of walkways, points of at-
traction in the vicinity of the station, and workplace locations; (ii) existing
buildings that are to be preserved, such as historical station halls or facili-
ties that do not require a structural extension; and (iii) the track topology,
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which is either the existing one, or imposed by the design of the future rail
network.

Subsequently, the type of facility elements and the connection between
them can be specified. For vertical level changes, a choice between stair-
ways, ramps, escalators, and elevators exists. Further facility elements that
need to be specified include horizontal walkways, waiting areas and plat-
forms. For each element, its position and characteristic dimensions (such
as the length for walkways) are to be determined.

Once the topology of pedestrian facilities is specified accordingly, a pre-
liminary assessment of walking distances may be made, verifying that the
required transfer times are met. This should include the specific needs
of people with reduced mobility. Generally, the topology should allow for
short and direct connections between facilities.

For the planned extension of Lausanne railway station, the topology
of pedestrian facilities is changed in that it incorporates a newly-built
metro station for local transit, it directly connects to a museum complex
to the northwest of the station, and in that it features three instead of two
transversal pedestrian underpasses.

IV. Demand Prediction. An estimate of pedestrian demand is required.
Using the framework discussed in Section 5.2, it can be obtained based on
the traffic concept of the train station and the topology of pedestrian fa-
cilities. In the estimation process, the impact of congestion on demand is
usually neglected. In principle, it would be possible to take that influence
into account. However, it requires a joint application of the demand es-
timator and the traffic assignment model, as well as a detailed layout of
facility elements, which is not available at this point. It would thus require
a merging of demand estimation and dimensioning (see step V. below),
which is cumbersome and rarely done in practice.

In the case of Lausanne, the influence of congestion is neglected in the
estimation of demand. To obtain a prediction for the year 2030, the planned
instead of the current timetable is used, and the ridership is increased based
on available forecasts.

V. Dimensioning. Based on the network topology, a detailed dimension-
ing of facility elements is to be made. In this process, a traffic assignment
model as described in Section 5.3 is useful. It quantitatively predicts the
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level-of-service that results for a given demand estimate as a function of
the facility layout.

Thanks to a joint consideration of pedestrian facilities, a consistent
layout is reached in which the dimensions are balanced across elements.
This is crucial for instance for cross-sections of adjacent facilities, such as
the width of walkways and stairways. In a second step, the placement of
travel services and furniture, such as ticket machines, information panels,
benches or mobile sales points can be considered. As a general rule, these
should not obstruct the main paths that connect facility elements.

In certain areas of railway stations that are only lightly loaded, a di-
mensioning based on the resulting level-of-service may be inappropriate.
Instead, standard values for cross-sections should be used. Correspond-
ing specifications are often provided by national authorities that seek a
minimum degree of comfort (Buchmüller and Weidmann, 2008).

In the case of Lausanne railway station, the development of the network
topology and the dimensioning has been a highly iterative process. Several
times, the number of pedestrian underpasses has been changed from two
to three and vice versa. In the beginning, our mandate consisted mainly in
determining an appropriate width of these transversal underpasses. How-
ever, it turned out that the main bottleneck is rather the connection be-
tween these transversal underpasses and lateral platform access ways. By
‘smoothing’ a previously rectangular layout, the level-of-service can be in-
creased more significantly than by simply enlarging the width of pedestrian
underpasses. This finding was only possible due to the joint consideration
of the underpasses and their platform access ramps, and due to a realistic
estimation of demand that yields multi-directional flow. In the literature,
a similar example of smoothing a rectangular bottleneck is discussed by
Helbing et al. (2001), who use an evolutionary algorithm to improve the
design of pedestrian facility elements.

VI. Verification. Evidence is to be provided that the dimensioning ful-
fills the specified functional requirements, including the desired level-of-
service. Due to legal requirements, such a verification typically needs to be
done manually. Significant differences in national legislations exist in how
such a verification is performed.

In the case of Lausanne railway station, we have provided recommenda-
tions regarding the dimensioning of the main walking facilities. However,
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we have not been involved in the finalization of the layout, nor in its legal
verification.

5.5 Concluding remarks

The framework for assessing the usage and level-of-service of rail access
facilities developed in the preceding chapters has been discussed at the
example of Lausanne railway station. Specifically, the methodology for
estimating pedestrian origin-destination demand from Chapter 3, and the
traffic assignment model for estimating the resulting level-of-service from
Chapter 4 have been illustrated. The complete modeling framework is
freely available (Hänseler et al., 2014b; Hänseler and Molyneaux, 2015).

The results from the case study have shown that dynamic OD demand,
level-of-service maps and travel time distributions can be accurately pre-
dicted. Required in that process are in particular the train timetable and
ridership information.

The modeling framework has been embedded in a six-step planning
process that is useful for practitioners and researchers confronted with the
task of designing rail access facilities for a new train station to build, or an
existing one to expand.

Besides planning applications, the framework can be used to develop
practical and policy recommendations for station design, route signage, or
even timetabling and train-track allocation. Its most natural application,
however, would be for crowd management, for which its aggregate nature,
accuracy and computational efficiency make it highly suitable.



Chapter 6

Concluding remarks

6.1 Main findings

A powerful framework for supporting the organization, planning, design
and operation of rail access facilities has been presented. It provides a
detailed, quantitative understanding of pedestrian flows in train stations,
as well as valuable insights for the improvement of pedestrian comfort and
safety. For instance, it can predict if safety or throughput issues occur,
or be used as a basis for the development of real-time crowd management
systems.

While the modeling framework has been developed with rail access fa-
cilities in mind, with little effort it may be adapted to other pedestrian
facilities such as metro stations, airports, shopping malls, museums, or ur-
ban walking areas. The underlying modeling principles, demand estimation
and traffic assignment, remain directly applicable.

All research objectives formulated in the introductory chapter have been
accomplished. The individual contributions of each chapter are listed in
the following.

Chapter 2 introduces a case study of Lausanne railway station, for which
a rich data set consisting of pedestrian trajectories, flow counts, train
delay data and ridership information has been collected.

An explorative data analysis reveals a demand pattern that is strongly
influenced by the train timetable, with distinct peaks during morning
and evening rush hours. The day-to-day variability is significant.

The case study is particularly interesting in that it represents a ‘typ-
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ical’ European train station with around 140,000 daily visitors, and
in that several unique data sets are available for the same site.

Chapter 3 presents a framework for estimating pedestrian origin-
destination demand in rail access facilities, taking various types of
data sources into account.

The framework captures within-day variation in demand, and natural
day-to-day fluctuations. Boarding and alighting volumes, as well as
train arrival times, are explicitly considered in the estimation process.

Besides the novel field of application, the consideration of the train
timetable represents a major contribution of the approach, which is
shown to yield a significant improvement in the estimation quality.

Chapter 4 proposes a pedestrian traffic assignment model, and in partic-
ular a network loading model for large, congested walking facilities.

The loading model builds on the continuum theory for pedestrian flow
(Hughes, 2002), and relies on a stream-based fundamental diagram to
reproduce multi-directional flow at high density.

Its applicability to anisotropic flow, a rigorous calibration on real
data, and a consistently high performance across several case studies,
are among the major contributions of the model.

Chapter 5 applies the developed modeling framework to study the usage
and level-of-service of rail access facilities in Lausanne railway station.

The resulting OD demand, density maps and travel time distribu-
tions are presented, and the practical applicability of the framework
is discussed and demonstrated.

Based on the experience gained, practical guidance for the model-
based planning and design of further rail access facilities is provided,
representing the main contribution of the chapter.

6.2 Practical recommendations

The proposed modeling framework considers both the problem of demand
estimation and traffic assignment in rail access facilities, allowing for a
comprehensive understanding of pedestrian flows in train stations. Detailed
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practical guidance has been provided for its use in the planning and design
of train stations (see Chapter 5). In the following, further recommendations
are provided that result from the experience gained in this thesis (see also
Helbing et al., 2005; Hoogendoorn, 2015).

The reason for a pedestrian facility to provide a poor level-of-service is
often rooted in one or a few facility elements. This may be a narrow access
door, stairway, or a congested walkway. Often such performance bottle-
necks can be eliminated at comparatively little cost, yielding a significant
gain in capacity and performance. It is thus worthwhile to start the analy-
sis of a pedestrian facility by focusing on potential bottlenecks, instead of
planning new facilities from scratch.

In multi-directional walking facilities, a separation of lanes may reduce
the friction among pedestrians, and contribute to more fluid traffic. This
can be achieved by the installation of columns along the centerline of a
corridor, or of a free-standing handrail on a stairway. As a consequence,
bi-directional flow is divided into separate uni-directional streams, with a
corresponding gain in efficiency (see Chapter 4). This measure is system-
atically applied in the metro stations of Hong Kong’s mass transit system,
where bi-directional walking facilities and a high traffic load are common.

Another recommendation regards the infrastructural optimization of
orifices, such as narrow passageways. Often, a streamlining of the entrance
to such bottlenecks allows to reduce turbulence, increasing capacity and
saving space without the need to remove the orifice as such (see Chapter 5).
In some situations, also the placement of an artificial obstacle upstream
the bottleneck, such as a pillar, may yield an improvement by reducing the
‘pedestrian pressure’ (Helbing et al., 2002).

Beyond infrastructural measures, changes in the operation of pedestrian
facilities can yield significant improvements as well. A key principle in
crowd management is the pursuit of ‘free-flow conditions’, i.e., of subcritical
pedestrian densities. Under such conditions, the performance of pedestrian
facilities is high, whereas under congested conditions, the flow performance
drops significantly.

Free-flow conditions may be reached in various ways. The simplest way
is by limiting the inflow to a congested facility, for instance by installing
access gates. The desired flow rate may be estimated using the traffic
assignment model presented in this work. An alternative consists in im-
proving the ‘load balancing’, by distributing pedestrian demand according
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to the capacity of facility elements. This may be done by means of route
guidance or information provision. In the context of a train station, also
the train timetable, train-track assignment, and train stopping positions
may be used to yield a balanced use of pedestrian facilities.

6.3 Future research directions

This thesis has been motivated by the general need to better understand
and manage pedestrian flows in public spaces. In that respect, the achieve-
ments discussed so far represent only a first step in a broader research
agenda. Further research may be organized along the three main dimen-
sions considered previously in this thesis: Models, data and applications.

Models: In terms of demand estimation, a major limitation of the pro-
posed approach lies in the assumed independence between OD trips. In a
train station, many pedestrians visit multiple destinations, such as ‘train
station hall’, ‘ticket office’ and ‘train platform’. A traditional origin-
destination representation of demand does not allow to correctly capture
the sequence of these destinations. To account for that, OD trips may be
generalized as activity chains, such as ‘enter train station’ → ‘buy ticket’→ ‘board train’. The resulting OD demand is then derived from the prior
decision to perform these activities, and the correlation among related OD
trips is explicitly considered (Danalet, 2015). Such an activity-based rep-
resentation of demand may be obtained at the aggregate level, associating
several pedestrians with a single activity chain, or at the disaggregate level,
where every pedestrian is explicitly represented and may be associated with
individual physical and behavioral characteristics. While an activity-based
approach is desirable to improve the demand estimation in train stations,
for other public spaces, it may be a necessity. For instance, in the case of
an airport, a large majority of pedestrians follow complex multi-destination
paths of the form ‘check-in’ → ‘baggage drop’ → ‘security’ → . . .→ ‘board-
ing’. Such activity chains cannot be realistically represented by means of
OD demand alone.

In terms of traffic assignment, an obvious limitation of the proposed
approach consists in the exclusive consideration of walking areas. In many
pedestrian facilities such as station halls, check-in areas or shopping malls,
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the main activity consists in waiting, queueing or shopping, but not in
walking. A straightforward extension of the corresponding network loading
model would consist in introducing the concept of desired speed, which may
attain zero when pedestrians are not meant to move (Helbing and Molnár,
1995). For microscopic models, extensions of walking models that consider
waiting behavior have already been considered, but are generally difficult to
calibrate (Davidich et al., 2013). The development of more versatile pedes-
trian traffic assignment models, both at the aggregate and the disaggregate
level, thus represents an interesting subject for future research.

The interaction between demand estimation and traffic assignment
models represents another important, but so far largely neglected aspect
in the modeling of pedestrian flows. Demand estimation and traffic as-
signment models are based on fundamentally different assumptions, and
ensuring consistency among them is crucial. It is trivial for applications
with a negligible interaction between pedestrian demand and infrastruc-
tural supply, as in the case of Lausanne railway station. The two models
are then independent. For congested spaces, on the other hand, it is com-
plex. In the context of vehicular traffic, various approaches have been
developed to deal with this complexity, such as ‘fixed-point’ formulations
(Bottom, 2000; Cascetta and Postorino, 2001). Ensuring consistency be-
tween demand and supply also in the context of congested pedestrian flows
seems of high scientific interest (Rabasco, 2014; Rojas-Lombarte, 2014).

Data: Generally, there is still a lack of pedestrian data from real sites.
The available data is often limited in terms of the range of traffic conditions
it captures, in terms of its spatial and temporal coverage, or in terms of
its quality. For instance, the data collected in Lausanne railway station
shows only weak features of demand-supply interaction, pedestrian counts
and trajectories are only recorded in main areas, and no socioeconomic
information is available.

Data obtained with new collection techniques, such as automated fare
collection data in transportation hubs, or Wi-Fi and Bluetooth traces from
accordingly equipped facilities, are expected to significantly improve our
understanding of pedestrian dynamics in public spaces. Besides collecting
more and better data in general, it is of particular importance to obtain
real data from pedestrian facilities with high densities. These include for
instance congested metro stations or densely populated urban areas. In
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such spaces, data collection is generally difficult due to infrastructural,
operational and legal restrictions, such as a lack of space for the placement
of sensors, a lack of reliable measurement techniques, or privacy concerns.

Additionally, establishing real-time data collection systems represents
an interesting endeavor for future research. Availability of such systems
would allow exploring aspects such as the real-time monitoring and control
of pedestrian flows, and in the long term, it would likely help improving
the efficiency, safety and comfort of pedestrian spaces.

Applications: The modeling framework presented in this thesis can be
directly applied to the planning and dimensioning of rail access facilities.
Applications regarding the operational optimization of rail access facilities,
such as of the train-track assignment in the context of pedestrian flows,
may be directly derived from it.

Applications involving a direct management of pedestrians, commonly
referred to as ‘crowd management systems’, can also be envisaged. Similar
to dynamic traffic management systems (DTMS) that have gained tremen-
dous popularity in the context of road networks, crowd management sys-
tems enable a ‘smarter’ use of infrastructures by coordinating pedestrian
trips. The cost of such ‘intelligent’ approaches is often significantly lower
than that of traditional solutions that focus on an increase in static ca-
pacity alone. Their field of application includes besides train stations and
airports also sport stadiums, music halls, or other facilities that host a large
number of people.

In a first step, passive crowd management systems may be developed,
focusing on the monitoring of pedestrian flows. These are useful to un-
derstand the current state of a pedestrian network in terms of demand,
densities, walking speeds or level-of-service. They may also be used for
short-term prediction, serving as decision-aid tools that help anticipating
and preventing dangerous crowd conditions. An important prerequisite
for their use is a surveillance system composed of powerful data collection
techniques, as in the case of Lausanne railway station. In the ‘era of big
data’, such systems are expected to become increasingly available.

In a second step, active crowd management systems can be developed.
Pedestrian flows may for instance be controlled by a dynamic route guid-
ance system that stimulates the use of access ways and platform areas that
are less congested (Pettersson, 2011). The inflow to already congested fa-
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cilities may even be directly limited by constraining the flow at entrance
gates (Xu et al., 2014). Both can be useful to avoid the overloading of fa-
cilities, which, as in vehicular networks, is known to sharply reduce their
performance.

In the long term, such crowd management systems are expected to
improve pedestrian facilities in particular by reducing congestion and by
increasing their reliability. This thesis contributes significantly to their
development by providing two essential components, namely a demand es-
timation and a pedestrian traffic assignment model. At the same time, it
opens up completely new research dimensions, which quickly go beyond
classical engineering. For instance, if system-wide travel times are rig-
orously minimized, crowd management systems are likely to favor some
pedestrians over others. If this should be ‘allowed’, and to what extent
that would be ‘fair’ or ‘reasonable’, are interesting and delicate questions.
The path to successful and widely accepted crowd management systems will
without any doubt be difficult, but also highly rewarding and beneficial for
the safety and welfare of pedestrians in public spaces.





A. Demand estimation

Notation

Table 1: List of recurrent variables.

τ ∈ T , Δt time

G = (N ,L), NOD ⊂ N graph, OD nodes

ν ∈ N , λ ∈ L, α ∈ A node, link, area

ρ = (λ1, λ2, . . . ), ρ ∈ R route

κ ∈ K OD pair

ζ ∈ Z, tarrζ , t
dep
ζ train, arrival and departure time

π ∈ P platform

d = [dκ,τ] demand

f = [fλ,τ] flow

a = [aα,τ] accumulation

eon = [eon
ζ ], eoff = [eoff

ζ ] exchange volumes

Δ reduction matrix

Σ(d;y) assignment model

y parameter vector

χ = [χp], ϕ = [φλ,τ] schedule-based estimates

η, ε, ω errors

rsecζ,λ platform sector split ratio

w estimation weight

Assignment model for walking facilities

This section outlines an assignment model for walking facilities in an un-
congested train station. In accordance with Assumptions 2 and 3 in Sec-
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tion 3.2.4, the prevailing traffic conditions are demand-independent.

Route choice: The outcome of the route choice model is represented by
a route choice matrix R(y) = [r(ρ,τ′),(κ,τ)] of size |R||T |×|K||T |. An element
r(ρ,τ′),(κ,τ)(y) denotes the probability that a pedestrian associated with OD
pair κ and departure time interval τ chooses route ρ during time interval
τ′. Route choice is instantaneous such that r(ρ,τ′),(κ,τ) = 0 if τ �= τ′.

The time to traverse link λ during time interval τ is denoted by
Δttrav

λ,τ (y). The travel time on route ρ during time interval τ is given by

Uρ,τ(y) = Vρ,τ +ψ, (1)

where ψ ∼ EV(0, ϑ) with ϑ a calibration parameter contained in y, and
where the sum of link travel times is given by

Vρ,τ(y) =
∑
λ∈ρ

Δttrav
λ,τ . (2)

For OD pair κ, the likelihood that a user chooses route ρ ∈ Rκ is given
by

r(ρ,τ),(κ,τ)(y) =
exp(−ϑVρ,τ)∑

ρ′∈Rκ
exp(−ϑVρ′,τ)

. (3)

Network loading: The network loading model defines mappings from
route flows to link flows and area accumulations. Table 2 defines the cor-
responding assignment matrices.

Table 2: List of considered network loading maps.

B = [b(λ,τ′),(ρ,τ)] The link flow assignment matrix B(y) is of size |Λ||T | × |R||T |.
The entry b(λ,τ′),(ρ,τ)(y) represents the probability that a pedes-
trian associated with route ρ and departure time interval τ

reaches link λ during time interval τ′.

C = [c(α,τ′),(ρ,τ)] The area accumulation assignment matrix C(y) is of size |A||T |×

|R||T |. The entry c(α,τ′),(ρ,τ)(y) denotes the expected contribu-
tion of a pedestrian associated with route ρ and departure time
interval τ to the accumulation of area α during time interval τ′.

Based on these definitions, we may write

Σf(d;y) = B(y)R(y)d, (4)
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and
Σa(d;y) = C(y)R(y)d, (5)

respectively.
Let the distance along a route ρ up to the beginning of link λ be de-

noted by �λρ. Furthermore, let the departure times of pedestrians within a
time interval be distributed uniformly, i.e., the distribution of continuous
departure time t for any route during a time interval τ is given by

hτ(t) =

{
1
Δt

if t ∈ τ,

0 otherwise.
(6)

Assuming that each pedestrian is walking at a constant speed, the proba-
bility for a person on route ρ that departs during time interval τ to arrive
on link λ during time interval τ′ is given by

b(λ,τ′),(ρ,τ) = Pr(t ∈ τ, t′ ∈ τ′|ρ, λ)

= Pr

(
t ∈ τ, v ∈

[
�λρ

t+τ′ − t
,

�λρ

t−τ′ − t

])
, (7)

where t−τ and t+τ represent the bounds of time interval τ, and where t and t′

represent the continuous departure and arrival time, respectively. For the
most common case that �λρ > 0 and τ′ > τ, we obtain

b(λ,τ′),(ρ,τ) =

∫ t+τ

t=t−τ

∫ �λρ/(t
−

τ′
−t)

v=�λρ/(t
+

τ′
−t)

fv(v)gτ(t) dv dt

=
1

Δt

∫ t+τ

t=t−τ

Fv

(
�λρ

t−τ′ − t

)
− Fv

(
�λρ

t+τ′ − t

)
dt, (8)

where Fv(v) denotes the cumulative distribution function corresponding to
fv(v). Similarly, if �λρ > 0 and τ = τ′, we obtain

b(λ,τ),(ρ,τ) = 1− Pr (t ∈ τ, t′ �∈ τ|ρ, λ)

= 1− Pr

(
t ∈ τ, v ∈

[
0,

�λρ

t+τ − t

])

= 1−
1

Δt

∫ t+τ

t=t−τ

Fv

(
�λρ

t+τ − t

)
− Fv(0) dt. (9)
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Thus, the probability that a user associated with route ρ and departure
time interval τ reaches link λ during time interval τ′ is given by

b(λ,τ′),(ρ,τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 if �λρ = 0, τ < τ′,

1 if �λρ = 0, τ = τ′,

Eq. (8) if �λρ > 0, τ < τ′,

Eq. (9) if �λρ > 0, τ = τ′.

(10)

The assignment fraction for area accumulations can be derived accord-
ingly. Let us consider an area α, and let us assume that each route enters
and leaves area α at most once. Let v be the constant, individual speed
of a person traveling along route ρ, �ρ,αin the distance along the route ρ to
the entrance of area α and �

ρ,α
out the corresponding distance to its exit. Con-

sequently, tin = �
ρ,α
in /v is the time after departure at which a person with

speed v enters area α and tout = �
ρ,α
out/v the corresponding time at which it

is exited. If a route ρ does not cross area α, then �
ρ,α
in = ∞. If we consider

a time interval [t−, t+] after departure, the expected sojourn time for this
person with constant speed v inside the area α within the interval is given
by

σ(v, �
ρ,α
in , �

ρ,α
out, t

−, t+) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t+ − �
ρ,α
in /v if t− ≤ �

ρ,α
in /v ≤ t+ ≤ �

ρ,α
out/v,

�
ρ,α
out/v − t− if �ρ,αin /v ≤ t− ≤ �

ρ,α
out/v ≤ t+,

t+ − t− if �ρ,αin /v ≤ t− ≤ t+ ≤ �
ρ,α
out/v,

(�ρ,αout − �
ρ,α
in )/v if t− ≤ �

ρ,α
in /v ≤ �

ρ,α
out/v ≤ t+,

0 otherwise.

(11)

In Eq. (11), the first line corresponds to the case where a person reaches the
area within the time interval, but does not exit it. The second line is the
inverse case. The third line represents the case where a person stays within
the area during the full time period. Finally, the fourth line represents the
case where a pedestrian enters and leaves the area during the period of
interest, and the fifth case the situation where a pedestrian is not present
in area α during the time interval at all.

Using Eq. (11), the expected contribution of a pedestrian traveling along
route ρ with departure time interval τ to the accumulation of area α during
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time interval τ′ is given by

c(α,τ′),(ρ,τ) =

∫ t+τ

t=t−τ

∫
∞

v=0

σ(v, �
ρ,α
in , �

ρ,α
out, t

−
τ′ − t, t+τ′ − t)

Δt
fv(v)hτ(t) dv dt

=
1

Δt2

∫
∞

v=0

fv(v)

∫ t+τ

t=t−τ

σ(v, �
ρ,α
in , �

ρ,α
out, t

−
τ′ − t, t+τ′ − t) dt dv. (12)

For an efficient implementation, we note that the assignment frac-
tions (10) and (12) are time-invariant, i.e., for Δτ = τ′ − τ it holds that

b(λ,τ′),(ρ,τ) = b(λ,Δτ),(ρ,0) and c(α,τ′),(ρ,τ) = c(α,Δτ),(ρ,0). (13)

To further reduce the cost involved in computing Eq. (10) and Eq. (12), a
maximum travel time TTmax is defined. If Δτ ≥ TTmax, it is assumed that
b(λ,Δτ),(ρ,0) = 0 ∀ λ, ρ and c(α,Δτ),(ρ,0) = 0 ∀α, ρ. The threshold TTmax is chosen
such that the error incurred by this numerical approximation is negligible.





B. Traffic assignment

Stream-based fundamental diagram

The stream-based fundamental diagram ‘SbFD’, defined by Eq. (4.30), be-
longs to a class of density-speed relationships for which the walking speed
of pedestrian stream λ can be expressed as

vλ = vfR
iso
ξ

∏
λ′∈Λ

exp(−γλ,λ′kλ′). (14)

In Eq. (14), the variable vf denotes the free-flow walking speed, Riso
ξ ∈ [0, 1]

an isotropic reduction factor, γλ,λ′ a parameter describing the friction of
stream λ′ on stream λ, and kλ′ the density of stream λ′ (defined as Mλ′/Aξ′

in the loading model, where Aξ′ is the size of area ξ′ with λ′ ∈ Λξ′).
The isotropic reduction factor Riso

ξ (kξ) is a function of the area density
kξ =

∑
λ∈Λ kλ. In agreement with the monotonicity assumption stated in

Eq. (4.3), it is required that

∂Riso
ξ

∂kξ

≤ 0. (15)

The parameter γλ,λ′ is assumed to be independent of the densities of streams
λ and λ′, as well as independent of the properties of any other stream.
Typically, γλ,λ′ is a function of the intersection angle ϕλ,λ′ between streams
λ and λ′. It is assumed that the pair-wise friction between parallel streams
is zero, i.e.,

γλ,λ′ = 0 if ϕλ,λ′ = 0. (16)

Stream-based fundamental diagrams that can be expressed in the form of
Eq. (14) and fulfill Eq. (16) are ‘self-consistent’. This property is illustrated
at an example. Consider a stream configuration as shown in Fig. B.1a,
where streams A, B′ and B′′ with kA, kB′, kB′′ �= 0 interact. In the
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A

B′

B′′

ϕB′,B′′ → 0

(a) Three streams

A B

kB = kB′ + kB′′

(b) Two streams

Figure B.1: Illustration of self-consistency.

limit case ϕB′,B′′ → 0, the resulting speeds are equivalent to those obtained
for the configuration shown in Fig. B.1b, where the streams B′ and B′′

are ‘merged’ to a single stream B such that kB = kB′ + kB′′ . This can be
verified by computing the resulting stream speeds for both configurations.
Assuming that ϕB′,B′′ = 0 and ϕA,B = ϕA,B′ , one obtains for stream A

vfR
iso
ξ exp(−γA,B′kB′) exp(−γA,B′′kB′′) = vfR

iso
ξ exp(−γA,BkB), (17)

where the LHS corresponds to Fig. B.1a, and the RHS to Fig. B.1b. Eq. (17)
holds true since γA,B = γA,B′ = γA,B′′ and kB = kB′ +kB′′. For stream B, one
obtains

vfR
iso
ξ exp(−γB′,AkA) exp(−γB′,B′′kB′′) = vfR

iso
ξ exp(−γB,AkA), (18)

which holds true since γB,A = γB′,A and γB′,B′′ = 0.
The self-consistency of fundamental diagrams associated with Eq. (14)

is notably due to the exponential form of the product terms, the linearity
of the exponent (−γλ,λ′kλ′) in kλ′ , its independence from any other stream
densities, and due to the assumed absence of inner friction as expressed
by Eq. (16). Self-consistency is desirable for theoretical reasons, but also
to avoid a recalibration of the model in case parallel streams are merged
(see Fig. B.1). Particular emphasis is given to that property as already in
the Berlin case study multiple parallel streams are present (see diagonal
streams in Fig. 4.8b). If only a small number of streams with distinct
angles are considered, self-consistency may be less relevant. For instance,
the specifications provided by Wong et al. (2010) and Xie and Wong (2015)
cannot be cast in the form of Eq. (14).

The SbFD defined in Eq. (4.30) results from Eq. (14) by setting
Riso
ξ = exp(−ϑk2

ξ) as well as γλ,λ′ = β(1−cos(ϕλ,λ′)). We have tested several
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specifications of the isotropic reduction term Riso
ξ , including those proposed

by Tregenza (1976) and Weidmann (1992), as well as a linear specification
(Older, 1968; Navin and Wheeler, 1969). This set of specifications is mo-
tivated by the findings of Nikolić et al. (2015). An analysis based on the
case studies discussed in Section 4.6 shows that the Drake-model performs
best (Fonseca, 2015). This is in line with the results by Wong et al. (2010)
and Xie and Wong (2015), who also use the Drake-model to specify the
isotropic reduction term.

Likewise, we have examined several specifications of the parameter γλ,λ′

that describes the dependency of the pair-wise stream friction on the inter-
section angle ϕλ,λ′ . A comparison with a linear and a piecewise linear model
shows that the chosen trigonometric specification yields the best perfor-
mance, at least as far as the AIC and BIC are concerned. The specification
γλ,λ′ = β(1−cos(ϕλ,λ′)) naturally respects Eq. (16), and it is symmetric with
respect to the 180◦-plane and 360◦-periodic. It implies that the friction be-
tween streams is maximal for head-on flow, and that the friction grows most
rapidly at an intersection angle of ϕ = 90◦, i.e., when the behavioral regime
changes from ‘leader-follower’ to ‘collision avoidance’ (Bierlaire and Robin,
2009). Within each of these behavioral regimes, the friction still grows with
an increasing intersection angle, but not as much as at the transitional an-
gle ϕ = 90◦, where the slope amounts to dγ/dϕ = β. Wong et al. (2010)
propose the same relationship to describe the γ–ϕ-dependency, whereas
Xie and Wong (2015) consider a specification that is not symmetric with
respect to the 180◦-plane.
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