Squall: Scalable Real-time Analytics

Aleksandar Vitorovic, Mohammed Elseidy, Khayyam Guliyev, Khue Vu Minh, Daniel Espino, Mohammad Dashli, Yannis Klonatos and Christoph Koch

\{firstname\}.\{lastname\}@epfl.ch
École Polytechnique Fédérale de Lausanne

ABSTRACT

Squall is a scalable online query engine that runs complex analytics in a cluster using skew-resilient, adaptive operators. Squall builds on state-of-the-art partitioning schemes and local algorithms, including some of our own. This paper presents the overview of Squall, including some novel join operators. The paper also presents lessons learned over the five years of working on this system, and outlines the plan for the proposed system demonstration.

1. INTRODUCTION

Online processing implies that results are incrementally built as the input arrives. Thus, each input tuple produces output and updates the system state necessary for processing subsequent inputs. Online processing is ubiquitous for many applications such as algorithmic trading, clickstream analysis and business intelligence (e.g., in order to reach a potential customer during the active session).

Existing open-source online systems (e.g., Twitter’s Storm [21], Spark Streaming [36], Flink [1]) focus on distribution primitives (e.g., communication patterns, fault tolerance) and low-level performance optimizations. However, these systems provide only vanilla database operators, such as hash-based equi-joins (and general UDFs), which do not perform well in the case of skew (see §3.1). On the other hand, some join partitioning schemes (e.g., [24]) are skew-resilient, but they are designed for offline processing, and thus, they are unable to adapt to changing data statistics (see §5).

In contrast, Squall is a system that puts together state-of-the-art partitioning schemes, local query operators, and techniques for scalable online query processing. We also build novel 2-way [13, 33] and multi-way schemes (Hybrid-Hypercube, see §3.1). Such a system allows us to leverage the effect of various design choices on the performance, and to seamlessly build efficient novel operators (see §3). Squall operators achieve skew-resilience, adaptivity and scalability.

Squall is an open-source project\(^2\) that has been developed for the last five years (mainly by the authors at EPFL, but also with external contributions). It has been available for several years, and it has attracted a community of users.

2. SYSTEM ARCHITECTURE

Squall is an online distributed query engine which achieves low latency and high throughput. It supports full-history (incremental view maintenance) and window (stream) semantics. Squall uses Storm [21] as a distribution and parallelization platform.

The overall system architecture is shown in Figure 1. Next, we give an overview of various Squall concepts.

User interface. Squall offers multiple interfaces: declarative (SQL), functional (a modern Scala collections API), interactive (Scala) and imperative (Java). Similarly to Hive which provides an SQL interface on top of Hadoop, Squall’s declarative interface offers running SQL over Storm. Squall’s functional interface provides for compositions of data transformations over streams. Squall also provides interactive interface built on top of the Scala REPL (ReadEvalPrint Loop) that allows a user to interactively construct query plans. For each of these three interfaces, Squall translates the user input to a logical query plan (see Figure 1). Finally, the imperative interface gives the user full control over the physical query plan.

Logical and Physical query plans. A logical Squall query plan is a DAG of relational algebra operators. A physical Squall query plan consists of a DAG of physical operators and their requested level of parallelism. An operator is specified by the partitioning scheme and local algorithm. To minimize the number of network hops, and thus maximize the performance, we co-locate the connected operators that use the same partitioning scheme. We denote a pipeline of co-located operators as a component. Figure 1 shows components as rounded rectangles in the example physical plan.

An example of a component is a join followed by a selection.

Operators. By combining different partitioning schemes and local join algorithms, Squall offers many join operators. We build novel join operators: adaptive 1-Bucket [13] and Equi-weight-histogram (EWH) join [33]. This paper also presents some novel multi-way joins (a multi-way join runs within asingle component, rather than using a pipeline of 2-way joins). Beside joins, Squall offers database operators such as selections, projections and aggregations. Squall provides both full-history and window semantics for its operators. It implements typical stream primitives, such as

\(^2\)https://github.com/epfldata/squall/

tumbling and sliding windows, by adding the window expiration logic on top of the full-history engine.

Query optimizer. Squall’s optimizer generates a physical plan from the logical plan. The optimizer maximizes throughput and minimizes both latency and the number of machines used. It starts from the data sources and adds the operators one after another, pushing selections and projections as close as possible to the data sources. Where possible, the optimizer co-locates operators to components to minimize network transfers. Further, it assigns the right parallelism to each component, such that a component is neither overloaded nor mostly idle. We refer to this as universal producer-consumer balance. The optimizer uses heuristics to find an optimal join order and component parallelism.

Online processing aspects. An online system must adapt to changing data statistics. Squall collects statistics and adjusts the operator’s partitioning scheme at run-time (see §5). Furthermore, it offers multiple partitioning schemes that achieve different levels of adaptivity for different skew types (e.g., data, temporal and join selectivity skew).

Distribution platform. Squall uses Storm [21] as a distribution platform, but our ideas are more widely applicable. In Storm, real-time computation is performed through topologies, which are analogous to MapReduce jobs. Storm executes a topology, which is a graph of spouts (data sources) and bolts (a bolt consumes streams and produces new ones). An edge in the topology graph is called stream grouping, and it represents partitioning of incoming tuples from a stream among the machines. Squall maps a physical query plan to a Storm topology, components to Storm spouts and bolts, and builds partitioning schemes using stream grouping.

Squall is a main-memory system. It also offers connectivity to BerkeleyDB [25], which spills tuples to disk when main memory is insufficient. However, throughput and latency are orders of magnitude better when only main-memory is used. Squall assumes a shared-nothing architecture.

3. NOVEL JOIN OPERATORS

We devise new join operators by wiring up state-of-the-art partitioning schemes and local join algorithms. We presented the partitioning schemes for 2-way joins of Squall in our previous work [13, 33]. This paper introduces multi-way joins in Squall. These joins can outperform the corresponding pipelines of 2-way joins as they avoid shuffling intermediate data, which can be very large [4, 37]. We also devise a novel multi-way join partitioning scheme that further enhances performance by taking into account skew degrees of different relation attributes. In addition, Squall has efficient local algorithms for online multi-way joins.

3.1 Partitioning schemes

Next, we describe partitioning schemes for multi-way joins, their skew resilience and supported join conditions. For detailed analysis, please consult our technical report [32].

Hash-Hypercube scheme [4] models the result space as a hypercube, where each axis corresponds to a join key domain. Each machine covers a unique portion of the hypercube space. Figure 2a illustrates this scheme for query $R(x, y) \bowtie S(y, z) \bowtie T(z, t)$. The scheme assigns an input tuple to machines by hashing on the tuple’s join keys and by replicating on the join keys from the other relations. For example, each R tuple is replicated to a “row” of machines with coordinates $(y, z) = (hash(y),

Figure 1: Squall architecture. An example query plan has selections (σ), projections (π), joins (\bowtie) and aggregations (π).
3.2 Important special cases

Star schema typically consists of one big fact table and several small dimension tables. Usually, in a distributed setting, the fact table is partitioned and dimension tables are replicated. Interestingly, both the Hash-Hypercube and Random-Hypercube schemes comply with this partitioning. Namely, due to relative relation sizes, these schemes yield $p \times 1 \cdots \times 1$ partitioning (p is the number of machines), which implies partitioning on one dimension and replication on other dimensions. The only difference is that the Hash-Hypercube scheme partitions the fact table on join keys, while the Random-Hypercube scheme randomly partitions the fact table.

Join among multiple relations on the same key appears often in practice. An example is TPC-H [2] Q9, which joins \texttt{LINEITEM}, \texttt{PARTSUPP} and \texttt{PART} on \texttt{partkey}. This allows execution of a multi-way join within the same component, without any replication. Interestingly, the Hash-Hypercube scheme yields the same partitioning, as it uses the join keys as the hypercube axes.

3.3 Local join algorithms

Online local joins typically work as follows: a new incoming tuple for a relation is joined with the stored tuples from the other relation(s), and stored for use by future tuples [13]. Existing local joins use indexes (hash or balanced binary tree) to improve performance. However, these joins are orders of magnitude slower than the state-of-the-art online local join, \texttt{DBToaster} [5]. The gap deepens with the increase in the number of relations in a multi-way join.

In brief, the main idea of DBToaster is to recursively maintain views for an n-way join. Instead of maintaining only the final result, DBToaster maintains all the intermediate $(n-1)$-, $(n-2)$-, ..., and 2-way joins. When a new tuple comes, DBToaster updates the intermediate relations, and produces the result by joining the tuple with the corresponding $(n-1)$-way materialized join. The savings come from the fact that DBToaster does not recompute the $(n-1)$-way join for each new tuple, as it would be the case if we use indexes only on the base relations. The savings grow with the increase in the number of relations n.

Figure 2: Partitioning schemes for $R(x, y) \bowtie S(y, z) \bowtie T(z, t)$. Uniform data (a), data-independent (b), skewed data (c, d).

(a) Hash-Hypercube. (b) Random-Hypercube.

(c) Hash-Hypercube with skew. (d) Hybrid-Hypercube.

- **Our Hybrid-Hypercube scheme.** Consider the same query $(R(x, y) \bowtie S(y, z) \bowtie T(z, t))$ on a non-uniform dataset. For example, assume that y has uniform distribution and that z has zipfian distribution (the skew parameter of 2) both in S and T. The Random-Hypercube scheme performs the same independently of skew ($L = 0.75H$, as before). The Hash-Hypercube scheme with the given data distribution is shown in Figure 2c. Due to skew, it performs only slightly better than the Random-Hypercube (the maximum load per machine is $L = |R|/8 + |S|/(8 \cdot 2) + |T|/2 \approx 0.69H$). Hash- and Random-Hypercube are designed only for the cases when either all or none of the relations is skew-free. We propose Hybrid-Hypercube, which uses hash partitioning for skew-free join keys, and random partitioning elsewhere. Random partitioning implies replication, so it is more costly than hash partitioning. That way, our scheme achieves skew resilience while minimizing tuple replication. Furthermore, in contrast to the Hash-Hypercube, the Hybrid-Hypercube supports non-equi joins (using random partitioning therein).

For instance, our scheme works without any change if we have an inequality join condition between S and T, bringing the same performance improvement compared to the Random-Hypercube as before. Thus, our scheme subsumes both the Hash- and Random-Hypercube.

The Hybrid-Hypercube scheme is illustrated in Figure 2d. R and S tuples are hashed on y and replicated in the selected “row” of machines. We can consider $R \bowtie S$ as a (replicated) hash join. We preserve correctness as we partition R and S using the same hash function, so the corresponding partitions from these relations are on the same set of machines. Whereas, each T tuple randomly picks a “column” of machines to be replicated on. Given that there are no skew on y and no functional dependencies between y and z (which is a common case), $hash(y)$ from R and S simulates random distribution with respect to T. Thus, we can consider $RS \bowtie T$ as a 1-Bucket join. We preserve correctness as follows. R and S tuples “meet” all the tuples from T, as each T tuple intersects each row on a single machine.

As a result, the maximum machine load in the Hybrid-Hypercube is $L = |R| + |S|/7 + |T|/9 \approx 0.36H$, which is $2.08\times$ and $1.92\times$ better than that of Random-Hypercube and Hash-Hypercube, respectively.
In contrast to Squall, existing parallel DBToaster [23] do not focus on skew resilience.

3.4 **HyLD operator: Hypercube scheme with Local DBToaster**

Squall seamlessly parallelizes the state-of-the-art local join (DBToaster) by using separation of concerns. In particular, the hypercube schemes ensure that each machine executes an independent portion of the join, so each output tuple is produced at exactly one machine. Thus, we can run a separate DBToaster instance on each machine. We call such an operator *Hypercube scheme with Local DBToaster* (HyLD). The HyLD operator combines network efficiency due to a hypercube scheme and CPU efficiency due to using DBToaster.

Choosing among hypercube schemes.

As shown in §3.1, random partitioning is expensive but skew-resilient, while hash partitioning is cheaper but prone to skew. To decide on the hypercube scheme, we need to know if a join key is skew-free or not. A good initial choice of a hypercube scheme saves us from future adaptations. Fortunately, in many cases, even in an online scenario, we know beforehand whether a join key is skew-free. In some cases we can infer this from the scheme. For example, an attribute with the uniqueness property (such as the primary key) cannot have skew. On the other hand, zipfian distributions are typical in many real-life datasets, including Internet packet traces, city sizes and word frequency in natural languages. An example is dealing with chain stores, where we know ahead of time that some stores (e.g., these ones in bigger cities) sell more items than other stores.

4. MULTI-WAY JOINS: GENERAL CASE

So far, we illustrated the hypercube schemes on a 3-way join (see §3.1). Next, we discuss how to find an optimal partitioning for a general join for each scheme. For each scheme, the optimal partitioning minimizes the load per machine, and thus, it also minimizes the total amount of replication. We are given p machines, where $p = p_1 \cdot p_2 \cdots p_k$. The machines are organized in a hypercube, where each dimension j is of size p_j.

Hash-Hypercube. Given relations R_i, where $i \in 1..k$, and hypercube dimension sizes $p_1 \times p_2 \times \cdots p_k$, the formula for load per machine is $\sum |R_i| / \prod_{j \in R_i} p_j$ [4]. In other words, the load from each relation is partitioned among dimensions that correspond to the join keys from that relation. In general, not each join key has a separate axis (equivalently, each join key corresponds to an axis, but some axes are of size 1, so we omit them from the dimensions).

Random-Hypercube. The problem formulation is similar as before, except that the number of hypercube dimensions is the same as the number of relations. More precisely, we want to minimize load per machine, which is equal to $\sum |R_i| / p_i$ [37]. As shown in [37], the optimal hypercube is the one that divides its dimensions into segments of equal size, that is, $|R_i| / p_1 \approx |R_2| / p_2 \approx \cdots \approx |R_k| / p_k$. For example, if we have 64 machines and R_1 is $4 \times$ bigger than R_2, the optimal partitioning (R_1, R_2) is 16×4. This partitioning implies the minimal load per machine and minimal communication cost.

Hybrid-Hypercube. In the 3-way join example from §3.1, the Hybrid-Hypercube saved one dimension compared to the Random-Hypercube, while still providing for skew resilience. In general, we can save more than one hypercube dimension. For example, if in $R(x, y) \bowtie S(y, z) \bowtie T(z, t) \bowtie U(t)$ only z has skew, the Random-Hypercube uses 4 dimensions, while the Hybrid-Hypercube uses only 2 dimensions.

To decide on dimensions and their sizes for a general multi-way join, we extend the optimization algorithm for the Hash-Hypercube. First, we rename join keys where skew occurs or where non-equi join is used\(^3\). Let us consider a query $R(x, y) \bowtie S(y, z) \bowtie T(z, t)$, which has join keys y and z (y and z are the dimensions in the Hash-Hypercube optimization algorithm). If z is skewed in T or if we have a join condition $S.z < T.z$, we rename the query to $R(x, y) \bowtie S(y, z) \bowtie T'(z', t)$, so that it has (y, z, z') dimensions in the optimization algorithm. Further, in the resulting partitioning scheme, we use random partitioning for the renamed attributes $(T.z' \text{ in this case})$. Interestingly, the fact that T on z' uses random rather than hash partitioning changes nothing in the formulas for the dimension sizes. This is because we care only about equal distribution of tuples among the rows/columns. It is irrelevant for the formulas whether we achieve this using randomization or a hash function on a uniform dataset. Thus, from the viewpoint of the Hash-Hypercube optimization algorithm, we can consider a non-equi join $R(x, y) \bowtie S(y, z) \bowtie T'(z', t)$ as an equi-join with dimensions (y, z, z').

The optimization algorithm typically returns a partitioning with only (y, z') dimensions, which corresponds to our Hybrid-Hypercube. However, this is a valid partitioning only if there is no functional dependencies between y and z in relation S. If this does not hold, we use the best partitioning with z being one of the dimensions. In this particular case (we have (y, z, z') dimensions), we do not achieve dimensionality reduction compared to the Random-Hypercube. Thus, we might fall back to Random-Hypercube (that is, use random partitioning for each (y, z, z') dimension), as it is fully resilient to any relation skew.

Let us consider a query which has one join key appearing in multiple places, such as $R(x) \bowtie S(x) \bowtie T(x)$. If only $T.x$ is skewed, we can use x variable for R and S and only rename $T.x$ to x'. That way, we create new dimensions only when necessary.

5. SKEW TYPES AND ADAPTIVITY

The data distribution in an online system can change, so Squall offers some adaptivity techniques.

Skew due to hash imperfections.

One may think that, in the case of uniform data distribution, hashing (both for aggregations and joins) always leads to even load distribution. However, there are two situations when this is not the case. The first one happens if the number of distinct keys is smaller than the operator parallelism. It causes some machines to be completely idle. Second, uneven load distribution becomes very likely when the number of distinct keys d and the operator parallelism p are the same, or when d is a bit bigger than p. For instance, if $d = 15$ and $p = 8$, the optimal scheme will assign no more than $\lceil 15/8 \rceil = 2$ keys for each machine. However, due to imperfections of hash functions, it is very likely that some machine will have

\(^3\)The renaming is used only in the optimization algorithm and the partitioning scheme. The local joins are unchanged.
3 keys, causing it to have severe performance degradations (1.5× higher maximum load per machine than in the optimal case). The situation is even worse when \(d = p \), as it becomes very likely that one machine is assigned 2 keys, while the optimum is 1 key per machine. The node, being assigned two times more work, becomes a bottleneck. This results in a largely suboptimal plan in terms of resource utilization, throughput and latency.

Unfortunately, this happens frequently in practice. For example, many TPC-H queries (e.g., Q4, Q5, Q12) have final aggregations with only up to 25 distinct values. There are also some queries in TPC-H that have small number of distinct keys for joins. For example, Q7 joins two \textit{NATION} tables, which have only 25 distinct values.

On the other hand, we typically know all the distinct values for attributes with low distinctness (e.g. possible values for ship priorities are predefined). Squall uses this information to achieve perfect load balancing. Before the execution starts, Squall creates a mapping from different keys to machines using a round robin partitioning.

Skew fluctuations. There is an important difference in adaptivity among hash, range and random partitionings. Hash partitioning uniformly partitions the data, and thus, it always yields bad performance in the presence of skew. For range partitioning, an online operator needs to periodically adjust to the data distribution changes. However, an adversary can change the data distribution right after the system adjusts the scheme, thus causing the scheme to always be highly suboptimal. The random partitioning avoids this problem as it randomly assigns tuples to machines, essentially removing any skew in data distribution.

Temporal skew. Having the exact data distribution, including the uniform distribution, might not suffice for skew resilience. For hash partitioning, in the case of sorted tuple arrival and moderate join key frequencies, only one machine will be active at a time, which is equivalent to sequential execution. We denote imbalance in load caused by tuple arrival order as temporal skew. Range partitioning is also prone to temporal skew. We observe similar behavior for random partitioning and sorted tuple arrival. In contrast, random partitioning performs the same independently of tuple arrival order, as the tuples are randomly distributed among the machines.

Thus, it is insufficient to capture only the data distribution. Rather, we also need to capture the temporal skew, which we do indirectly by monitoring the machine load\(^4\). To achieve good performance, Squall uses random partitioning schemes in the case of data or temporal skew.

Join selectivity fluctuations. Next, we explain how multi-way joins bring an additional adaptivity level compared to the pipeline of 2-way joins. The join selectivity for 2-way joins can vary at run-time, and some intermediate relations may grow very large. A possible response is adaptive join reordering [14]. In that case, we discard some intermediate relations (e.g., \(R \bowtie S \)) and rebuild new state for other intermediate relations (e.g., \(S \bowtie T \)) from scratch. This may have very adverse and hard to predict effects in an online system, including very large latencies for new incoming tuples.

On the other hand, multi-way joins maintain no intermediate relations. Thus, in contrast to a pipeline of 2-way joins, hypercube schemes inherently bring adaptivity to the join selectivity fluctuations (no need to change which intermediate relations are materialized).

Hypercube sizes. The optimal hypercube dimension sizes minimize replication, and thus, maximize performance. We determine the optimal sizes from the relative base relation sizes. Hence, a hypercube scheme needs to adapt to changing relation sizes. Squall implements an adaptive 1-Bucket join operator [13], which periodically adjusts the offline 1-Bucket partitioning scheme according to the current relation sizes. This operator minimizes state migration, offers a non-blocking migration algorithm, and provides optimality guarantees on data distribution and communication cost.

SAR principle. We introduce the SAR principle, which summarizes this section. To achieve skew-resilience and adaptivity for more skew types in an online system, partitioning schemes need to increase the input tuple replication. Namely, for 2-way joins, hash partitioning is prone to skew but requires no replication. Whereas, random partitioning is resilient to data and temporal skew and skew fluctuations, but it requires replication. A multi-way join brings adaptivity to join selectivity variations, but it requires higher replication than the corresponding pipeline of 2-way joins.

Fault tolerance. Squall uses the features of Storm to achieve fault tolerance. However, we can sometimes design a better FT strategy by taking into account peculiarities of the employed partitioning schemes. In fact, if the partitioning scheme replicates tuples, a failed node can recover its state from some of its peers rather than from a disk checkpoint. For example, in Figure 2b, if a machine with coordinates \(\{1, 1, 1\} \) fails, we can recover its state from any machine \(\{1, *, *\} \) (for \(R \)), \(\{*, 1, *\} \) (for \(S \)) and \(\{*, *, 1\} \) (for \(T \)). This improves performance, as network accesses are several times faster than disk accesses\(^5\). When RDMA is used, the performance improvements are even higher.

We can employ the same optimization even if the partitioning scheme only partially replicates the operator state. In that case, we achieve efficient fault tolerance without replicating the entire operator. Rather, we replicate only the parts of the operator state that are not already replicated by the partitioning scheme.

6. DEMONSTRATION SETUP

The demonstration exposes scalability and skew-resilience of Squall in high-data-rate analytics applications.

Google cluster monitoring data\(^6\) contains information about jobs (start and end time, status, etc.), tasks (events, resource usage) and machines (assignments, attributes). We put ourselves in the shoes of a large cluster administrator, who gets notified when a potential problem arises. An interesting multi-way join query is \textit{List the machines which often fail tasks belonging to production jobs}. Another interesting query is \textit{Measure the scheduling algorithm quality}. Schedulers assign jobs to machines to maximize “goodness” score [30], which includes the machine’s number of preempted or failed tasks, jobs distribution across the cluster etc. Computing the score involves joining multiple relations. We observe the scheduling algorithm quality by monitoring (in real-time) the score aggregated over jobs and machines.

\textbf{Demo.} As shown in Figures 3 and 4, we allow attendees to specify a query and to try different partitioning schemes,

\(^4\)This requires that the partitioning scheme reflects the actual data distribution.

\(^5\)https://gist.github.com/jboner/2841832

\(^6\)https://github.com/google/cluster-data
local joins and the parallelisms. To illustrate the effect of temporal skew, we also offer choosing among sorted and non-sorted datasets. With a button click, the attendees will run the specified query plan on an in-house cluster with 220 hardware threads. At run-time, they can continuously monitor the query results, performance metrics (throughput, latency, CPU utilization and memory consumption) and operators’ properties such as hypercube dimensions, replication factor and skew. The replication factor is the component’s number of input tuples divided by the total number of tuples produced by the immediate upstream components. We define skew degree as the division between the largest partition size and the average partition size.

Evaluating partitioning schemes. We allow attendees to compare hypercube schemes by monitoring the performance as a function of the operator’s replication factor and skew degree. For instance, the Random-Hypercube scheme achieves perfect load-balancing (no partition skew) but it replicates tuple (as we can observe from the replication factor). For each hypercube scheme, we identify scenarios (the number of relations, their sizes and skew degrees) where it performs the best. We also evaluate the effect of temporal skew to the performance of hash join and 1-Bucket join. The results validate the SAR principle and suggest that replication is ubiquitous for reliable load balancing.

CPU or network-bound? We aid attendees to find the bottleneck in online processing. To estimate the CPU share, we run the same query plan with different local joins. The attendees can also observe the correlation among the operator’s memory consumption and throughput. To estimate the network share, we define intermediate network factor as \(\frac{\sum_{\text{comp. tasks}} \text{input+output}}{\text{query input+output}} \). Then, we compare the performance among different query plans (of the same query) as a function of this factor.

7. RELATED WORK

Offline multi-way join schemes. The Hash-Hypercube [4] and Random-Hypercube [37] schemes, which we describe in detail in §3.1.4, are originally proposed for offline systems. (We showed that we can use these scheme in online systems as well, by periodically adjusting to the statistics collected so far [13].) Similarly, our Hybrid-Hypercube scheme is also directly applicable for offline processing. Our scheme advances state-of-the-art, as in contrast to the Hash-Hypercube it supports non-equi joins and is skew resilient, while incurring significantly smaller communication cost compared to the Random-Hypercube. The main insight of the Hybrid-Hypercube is to optimize the replication according to the relation skew degree and join conditions. Our Hybrid-Hypercube scheme only needs a skew degree for relations, which we estimate from a sample from each relation.

Chu et al. [10] propose an operator that combines the Hash-Hypercube partitioning scheme with a state-of-the-art offline local operator for cyclic joins. In contrast, we offer different hypercube schemes, and use state-of-the-art online local join operator for acyclic joins. Inspired by [10], in the future we plan to combine local online cyclic joins with our hypercube schemes. YSmart [16] studies partitioning schemes for subqueries consisting of both joins and aggregations. It recognizes subqueries that can be executed without any replication within a single MapReduce job.

BinHC [8] and SharesSkew [3] are partitioning schemes for multi-way joins that treat separately heavy hitters (the join keys with high multiplicity). The main idea is to use some variant of hash partitioning for light hitters and random partitioning for heavy hitters. These operators may achieve smaller load per machine compared to the Hybrid-Hypercube in the offline setting.

However, both BinHC [8] and SharesSkew [3] are restricted to equi-joins. In addition, these approaches might be suboptimal in an online scenario. They require detailed statistics about skew, that is, key frequencies. Although we can adjust the partitioning scheme according the statistics seen so far, the (relative) key frequencies repeatedly change over time. This implies frequent data migrations, which affects the performance. In contrast, the Hybrid-Hypercube requires only information about whether the relation is skewed or not (this information is used to decide on hash or range partitioning). This typically changes less frequently, causing smaller number of migration and better performance compared to the online counterparts of BinHC and SharesSkew.

Local online join algorithms. There is a significant body of work on local online 2-way join algorithms [35, 29, 27, 12, 22]. Symmetric hash join [35] requires that data fits in memory. Works [29, 27, 12, 22] address this issue by employing different strategies for spilling to disk. MJoin [31] generalizes XJoin [29] to multi-way joins, and focuses on strategies for spilling to disk. CACQ [20] and STAIs [11] execute multi-way joins using Eddies architecture [7], that is, they decide on per-tuple basis on an optimal join order. The main difference between DBToaster [5] that we use in Squall and these multi-way joins is as follows. First, these works [31, 20, 11] focus on equi-joins. Second, DBToaster materializes intermediate multi-way joins (2-way to \((n-1)\)-way joins) in order to avoid re-computation. In contrast, STAIs only partially avoids re-computation, as it materializes intermediate tuples that results from joining of only up to 2 relations. Finally, Squall is an extensible system, as we can combine any of these local join algorithms with our partitioning schemes.
Distributed online joins. BiStream [17] is a 2-way stream join operator that partitions each input relation on a separate set of machines. It focuses on scalability and elasticity, and it supports both equi- and non-equi joins. It uses hash partitioning (it sends an input tuple to two machines, one for storing the originating relation, and another for joining with the opposite relation) and random partitioning (an input tuple is randomly assigned to a machine of the originating relation, and sent to all the machines of the opposite relation). BiStream also proposes ContRand partitioning, which hashes an input tuple to a subgroup of machines. Within a subgroup, ContRand uses random partitioning. As BiStream always store a tuple on exactly one machine, it has smaller memory requirements than the 1-Bucket scheme [24]. However, when using random partitioning (for non-equi joins or for equi-joins with high skew), BiStream has higher communication cost that the 1-Bucket scheme [24]. Namely, BiStream sends a tuple to $p/2$ machines, while the 1-Bucket sends only to \sqrt{p} machines.

Distributed online joins: multiple hops. We next describe the line of work that execute multi-way joins using multiple network hops. CTR scheme [15] and PSP scheme [34] optimize tuple routing, providing for adaptive join ordering. These approaches have the following drawbacks. First, the intermediate state can be considerably large, causing high communication overhead, and potentially high latency for producing result tuples. Second, these approaches do not materialize intermediate tuples, and suffer from recomputation. In contrast, our HyLD operator solves both problems. It requires only one network hop to produce the result tuple, and it uses local DBToaster operator that allows reusing the previously computed intermediate results.

Distributed Eddies [28, 38] also provide for adaptive join ordering. They assume window semantics, tolerates information loss and do not study intra-operator adaptations (such as our Adaptive 1-Bucket scheme [13]). Distributed Eddies do not materialize intermediate results, as for small to moderately-sized windows intermediate results might not be frequently reused (when window expires, its intermediate results also expire). However, reusing intermediate results is especially important for large windows and full-history queries, and we focus on these scenarios.

Distributed online joins: single hop. Next, we present the multi-way join operators that require only one network hop, similarly to our hypercube schemes. ATR scheme [15] uses range partitioning (with some overlapping) on timestamp, so it replicates tuples less than the hypercube schemes. However, ATR executes the entire window on one machine, so it might not scale for large windows and fast incoming rates. Nowadays, online operators with large windows or full-history history semantics are very popular [9, 6]. We can extend Squall with ATR partitioning schemes to support small to moderate-sized window operators.

Flux [26] is an adaptive partitioning scheme, where the number of partitions is much higher than the number of machines. This scheme supports skew but assumes that none of the partitions, which are specified in the initialization, surpasses a machine capacity. As explained in [34], this is easily violated in online scenarios. Flux is originally proposed for single-input operators, but it can support some join conditions, such as equi-joins [18]. Liu et al. [18, 19] provide multi-way equi-join operators using Flux (and inheriting its drawbacks). Liu et al. [18, 19] does not consider partitioning schemes with replication, rather they focus on multi-way joins where all the relations use the same join key. This line of work offer moving operator states among the machines, as well as spilling to disk. In addition, it allows changing the join order at run-time, or even run-time changing a pipeline of 2-way joins to a single-hop multi-way join. However, it requires blocking of input streams while migrating state. This causes long stalls for operators with large state, which is unacceptable in online systems. In contrast, our Adaptive 1-Bucket [13] is a non-blocking scheme.

8. ACKNOWLEDGMENTS

This work was supported by ERC grant 279804.

9. REFERENCES

7To simplify the analysis, we compare the two schemes assuming that the relations are of equal sizes.

