
Call Graphs for Languages with Parametric Polymorphism

Dmitry Petrashko
EPFL

dmitry.petrashko@gmail.com

Vlad Ureche
EPFL

vlad.ureche@gmail.com

Ondřej Lhoták
University of Waterloo
olhotak@uwaterloo.ca

Abstract
The performance of contemporary object oriented languages de-
pends on optimizations such as devirtualization, inlining, and spe-
cialization, and these in turn depend on precise call graph analysis.
Existing call graph analyses do not take advantage of the informa-
tion provided by the rich type systems of contemporary languages,
in particular generic type arguments. Many existing approaches an-
alyze Java bytecode, in which generic types have been erased. This
paper shows that this discarded information is actually very useful
as the context in a context-sensitive analysis, where it significantly
improves precision and keeps the running time small. Specifically,
we propose and evaluate call graph construction algorithms in which
the contexts of a method are (i) the type arguments passed to its type
parameters, and (ii) the static types of the arguments passed to its
term parameters. The use of static types from the caller as context is
effective because it allows more precise dispatch of call sites inside
the callee.

Our evaluation indicates that the average number of contexts
required per method is small. We implement the analysis in the
Dotty compiler for Scala, and evaluate it on programs that use
the type-parametric Scala collections library and on the Dotty
compiler itself. The context-sensitive analysis runs 1.4x faster than
a context-insensitive one and discovers 20% more monomorphic
call sites at the same time. When applied to method specialization,
the imprecision in a context-insensitive call graph would require the
average method to be cloned 22 times, whereas the context-sensitive
call graph indicates a much more practical 1.00 to 1.50 clones per
method.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords keyword1, keyword2

1. Introduction
Modern programming languages support modularity and scalability
using abstraction facilities such as generic methods, interfaces and
abstract type members. Unfortunately, these abstractions incur im-
portant performance costs. To achieve good performance, language

[Copyright notice will appear here once ’preprint’ option is removed.]

implementations depend on compiler optimizations to eliminate ab-
stractions. When the code to be optimized spans multiple methods,
compilers first devirtualize, inline, or specialize the methods before
other optimizations can be applied. These initial transformations
require interprocedural information. A call site can be devirtualized
if it is monomorphic: it is known to dispatch to only one specific
method at run time. A method can be inlined into its caller after the
call site has been devirtualized. A method can be specialized if the
compiler has information about the values or types with which it
will be called. In this paper, we propose and evaluate a call graph
analysis that is especially effective for devirtualization, for special-
ization, and for both of these transformations applied together.

Analysis of call targets has long benefited from static types.
Class hierarchy analysis (Dean et al. 1995) relies entirely on the
static types of receivers to determine call targets. In propagation-
based points-to analysis for Java (which is used in precise call graph
construction algorithms), it has long been recognized that filtering
points-to sets using static type information is critical for precision
and efficiency (Lhoták and Hendren 2003).

Existing approaches to call graph construction do not take full
advantage of the information provided by the type systems of
modern programming languages. Most recent work in the context
of object oriented languages targets Java bytecode. When Java
programs are compiled to bytecode, generic type parameters and
arguments are erased, so they are not available to bytecode-based
analyses. In this paper, however, we show that this discarded type
information is actually very useful: it enables us to construct more
precise call graphs efficiently to enable devirtualization, and it
provides the information necessary for specialization.

An interprocedural analysis is context-sensitive if it analyzes
each method multiple times in different contexts. Ideally, the static
contexts are selected so that invocations of the method with dissimi-
lar run-time behaviours are abstracted by different analysis contexts,
enabling the analysis to focus on each behaviour precisely. In the
specific case of a call graph analysis, it is possible that a call site
dispatches to multiple target methods overall, but is monomorphic
in each specific analysis context. Unfortunately, in many analyses,
the number of contexts often grows very large. As a result, the anal-
ysis becomes expensive and its output large, which makes client
analyses expensive as well.

Our novel insight is that static type arguments, which have been
erased in most previous work, are actually very effective contexts
for call graph construction. Often, the static type of the receiver
at a call site is a type parameter of the method in which the call
site appears, or of the enclosing class of that method. Analyzing
the enclosing method separately for each argument type provides
static type information that is often precise enough to resolve the
call to a single target method (i.e., monomorphically). Moreover,
the number of contexts in which the average method needs to be
analyzed remains small. At a given call site (in a given context), only
one static type is passed as the argument for each type parameter,
so the number of contexts grows only when a type parameter is

1 2016/3/10

really used with different type arguments in multiple places in the
program.

Call graphs contain the information needed for devirtualization,
but building them with static types as context also provides the in-
formation needed for specialization. One common specialization
criterion is to create distinct implementations of polymorphic meth-
ods, and of methods in generic classes, for each type argument with
which the method or containing class is instantiated. The context-
sensitive call graph provides exactly the set of type arguments with
which each parameter may be instantiated, and this is the set of
specialized methods that need to be generated.

The context-sensitive call information is well suited to devir-
tualization after specialization has been applied. In particular, the
context-sensitive call graph may say that a call site is monomorphic,
but only in some specific context. Since the analysis contexts cor-
respond directly to the specialized method implementations, this is
exactly the information that is needed to know that a call site in a
specific specialized implementation can be devirtualized.

We intend our analyses to be included in production compilers,
rather than being limited to research prototypes. This is feasible
thanks to the efficiency and relative simplicity of the proposed
analyses. In our experiments, the context-sensitive analysis runs
faster than a baseline context-insensitive analysis thanks to its
higher precision.

The correctness of the approach does not depend on a closed-
world assumption about the analysis. If the program is later ex-
tended and new type arguments become possible, the generated
code falls back to the original, generic (unspecialized) version of
the method. Similarly, devirtualized or inlined monomorphic call
sites can contain fall-back calls to the original methods in case the
call site is invoked with an unexpected type at runtime.

Our use of static types as contexts is distinct from the dy-
namic type tags used as contexts in the “type-sensitive” analysis
of (Smaragdakis et al. 2011, 2014). That analysis traces the flow
of objects (abstracted by their dynamic type tags) from allocation
sites along dataflow paths through the program all the way to each
call site, and then analyzes the target of the call site in a separate
context for each possible dynamic type of the receiver (and option-
ally of the other arguments (Agesen 1995)). In contrast, the context
that we propose is formed from the static types of the receiver and
arguments that are available locally at the call site. Unlike dynamic
type tags, the static type does not need to be propagated from the
allocation site to the call site. Moreover, a given call site may be
reached by objects of many different runtime types, which gives
rise to many contexts for the target method in the “type-sensitive”
analysis. In contrast, only a single static type argument is passed
for each type parameter, so the number of contexts in our proposed
analysis remains small.

This paper makes the following contributions:
— The paper proposes two extensions to call graph construction

algorithms for Scala. In the first extension, we define the contexts
in which a method is analyzed using the actual (but static) type
arguments that are substituted for the generic type parameters of
the method. In the second extension, we further refine the contexts
by replacing the declared types of the method’s term parameters
with more precise subtypes, taken from the static types of actual
arguments. Different combinations of choices of possible subtypes
define distinct contexts. In the case of type class instances passed
using Scala’s implicit mechanism, our analysis can often specialize
the parameter type to a singleton type that represents one specific
instance of the type class.

— The paper presents experimental results showing that (i) the
proposed context-sensitive analyses are around 1.4x faster than a
context-insensitive analysis on substantial programs, (ii) the context-
sensitive analyses discover significantly more monomorphic call

sites, and (iii) the precision due to context-sensitivity reduces the
number of times that the average method would have to be special-
ized from 22 to a much more reasonable 1.00 to 1.50 times.

— The paper evaluates the application of the proposed analy-
ses to specialization of generic type arguments. Code specialized
automatically using the analysis results achieves the same runtime
performance as code specialized according to expert annotations
provided manually. Moreover, the automatic specialization gener-
ates substantially less bytecode than specialization guided by man-
ual annotations.

The rest of the paper is organized as follows. In Section 2, we
present an example program that motivates the need for specializa-
tion and therefore for precise call graphs. In Section 3, we provide a
background discussion of the current state-of-the-art call graph con-
struction algorithm for Scala, the TCAexpand-this analysis of (Ali et al.
2014). We define our context-sensitive analyses in Section 4. Sec-
tion 5 presents and discusses our experimental results. We discuss
related work in Section 6, and conclude in Section 7.

2. Motivation

1 i m p l i c i t d e f I t e r a b l e [T] (i m p l i c i t o rd : O r d e r i n g [T
]) : O r d e r i n g [I t e r a b l e [T]] =

2 new O r d e r i n g [I t e r a b l e [T]] {
3 d e f compare (x : I t e r a b l e [T] , y : I t e r a b l e [T]) :

I n t = {
4 v a l xe = x . i t e r a t o r
5 v a l ye = y . i t e r a t o r
6

7 w h i l e (xe . hasNext && ye . hasNext) {
8 v a l r e s = ord . compare (xe . n e x t () , ye . n e x t ())
9 i f (r e s ! = 0) r e t u r n r e s

10 }
11

12 Boolean . compare (xe . hasNext , ye . hasNext)
13 }
14 }

Listing 1. Running example from scala.math.Ordering.

We motivate the need for a more precise call graph abstrac-
tion using the example method in Listing 1. This method is taken
from the scala.math.Ordering class in the Scala standard library.
Given any ordering ord for the type T, the method implicitly gen-
erates a lexicographic ordering for the type Iterable[T]. Since
the compare method on Line 3 is called many times at run time, in
loops, it is beneficial to specialize and inline the call sites within
it as much as possible, especially those within the while loop on
Line 7. In particular, a high-performance code generator should
specialize the compare method for each value ord for which it is
generated.

A context-insensitive call graph will contain a path to the
compare method on Line 3 from the Arrays.sort method in
the Java standard library. Therefore, for every type T that is ever
sorted anywhere in the whole program, a sound analysis should
find that an object of every such type could reach the parameters x
and y of compare. In particular, in a large program, this is likely
to include most of the possible subtypes of Iterable. In the Scala
standard library, the trait Iterable has 214 concrete subtypes.

As a result, the calls to x.iterator and y.iterator on lines
4 and 5 will be highly polymorphic and infeasible to inline.

As a consequence, the sets of possible types of xe and ye will
be highly imprecise. There are 44 concrete subtypes of Iterator
in the Scala standard library.

Therefore, the calls to xe.hasNext and ye.hasNext on Line 7
will also be highly polymorphic and infeasible to inline, as well
as the calls to xe.next() and ye.next() on Line 8. The bodies

2 2016/3/10

TCAexpand-this
main main ∈ R

TCAexpand-this
new

“new C()” occurs in M
M ∈ R

C ∈ Σ̂

TCAexpand-this
call

call e.m(. . .) occurs in method M
C ∈ SubTypes(StaticType(e))

method M ′ has name m
method M ′ is a member of type C

M ∈ R C ∈ Σ̂

M ′ ∈ R
TCAexpand-this

abstract-call

call e.m(. . .) occurs in method M
StaticType(e) is an abstract type T

C ∈ SubTypes(expand(T))
method M ′ has name m

method M ′ is a member of type C
M ∈ R C ∈ Σ̂

M ′ ∈ R

TCAexpand-this
this-call

call D.this.m(. . .) occurs in method M
D is the declaring trait of M

C ∈ SubTypes(D)
method M ′ has name m

method M ′ is a member of type C
method M is a member of type C

M ∈ R C ∈ Σ̂

M ′ ∈ R
TCAexpand-this

local-call

call M ′(. . .) occurs in method M
M ′ is a local method inside some method M ′′

M ∈ R

M ′ ∈ R

Figure 1. Inference rules of TCAexpand-this from (Ali et al. 2014)

of these four methods are usually small, and are called for every
element of the iterables, so they need to be inlined to achieve good
performance.

Finally, the call to ord.compare on Line 8 is statically consid-
ered to be dispatched to every implementation of Ordering[T]
that reaches the ord parameter. Therefore, this call is also highly
polymorphic in a context-insensitive call graph.

15 d e f l e x i c o g r a p h i c S o r t [T] (a : I t e r a b l e [T]∗) (
i m p l i c i t o : O r d e r i n g [T]) = a . s o r t e d

16

17 l e x i c o g r a p h i c S o r t (” wor ld ” , ” H e l l o ”)

Listing 2. Example program that uses the compare method from
Listing 1.

Let us consider how the static polymorphism could be reduced
using context sensitivity (or, equivalently, specialization). We will
illustrate this with the example client program in Listing 2. The pro-
gram defines a generic method lexicographicSort that creates
a sorted list of values of type Iterable[T] by calling the sorted
method of SeqLike. The lexicographicSort method is called
with two strings on Line 17.

Type inference and implicit resolution in the early stages of the
Scala compiler desugar the program as shown in Listing 3.

One of the most serious impediments to good performance
of the compare method is the need to box and unbox values
of primitive Java types such as char. The bytecode version of
the Iterator.next method has a return type of Object. It is
incompatible with primitive types, so each char that it returns
must be boxed in a Character. Inside the compare method of
Ordering.Char, the Character must again be unboxed into a
char.

18 d e f l e x i c o g r a p h i c S o r t [T] (a : Seq [I t e r a b l e [T]]) (
i m p l i c i t o : O r d e r i n g [T]) = a . s o r t e d

19

20 l e x i c o g r a p h i c S o r t [Char] (
21 P r e d e f . wrapRefArray [WrappedS t r ing] (
22 new Array (
23 P r e d e f . w r a p S t r i n g (” wor ld ”) ,

24 P r e d e f . w r a p S t r i n g (” H e l l o ”)
25)
26)
27) (O r d e r i n g . Char)

Listing 3. Desugared version of example program from Listing 2.

Our first proposed improvement to the call graph is to analyze
the entire outer Iterable method from Listing 1 separately in
the context of each possible type argument with which the type
parameter T is instantiated. In this example, T is specialized to Char.
As a result, the type of xe and ye becomes Iterator[Char], and
the calls to xe.next() and ye.next() in Line 8 can be redirected
to versions of the methods that return a primitive Char without
boxing. Similarly, the type of ord becomes Ordering[Char],
so the call of ord.compare can be redirected to a version with
primitive Char parameters that do not need to be unboxed. Thus, all
of the boxing and unboxing can be removed from the while loop.

Our second proposed improvement is to analyze methods sep-
arately in the contexts of more precise types of their parameters
available at the call site. In our running example, we can deter-
mine that when T is Char, the compare method is only called
with a small number of concrete types of Iterables. In particu-
lar, we can analyze it specifically in the context in which both of
its parameters are of the type WrappedString that is returned by
Predef.wrapString. The calls to x.iterator and y.iterator
in Lines 4 and 5 become monomorphic, which enables the analysis
to give a precise type to xe and ye. As a result, the calls to hasNext
and next() become monomorphic as well. We can now rewrite the
known monomorphic calls to target specific static versions of
their target methods, which makes it easy for the Java JIT compiler
to inline and aggressively optimize them. The resulting optimized
code is a simple loop over the arrays underlying the implementa-
tions of the strings being compared, much like the loop that one
would write in C to compare two strings.

3. Background
The existing state-of-the-art in call graph construction for Scala is
the TCAexpand-this algorithm of (Ali et al. 2014). To enable compar-

3 2016/3/10

TCAtypes
main

(main, ∅) ∈ R
TCAtypes

new

“new C()” occurs in M
(M, . . .) ∈ R

C ∈ Σ̂

TCAtypes
call

call e.m [σ′] (. . .) occurs in method M

C ∈ SubTypes(StaticType(e)σ)

method M ′ has name m
method M ′ is a member of type C

(M,σ) ∈ R C ∈ Σ̂

(M ′, σ′σ|dom(σ′)) ∈ R
TCAtypes

abstract-call

call e.m [σ′] (. . .) occurs in method M

StaticType(e)σ is an abstract type T
C ∈ SubTypes(expand(T))
method M ′ has name m

method M ′ is a member of type C
(M,σ) ∈ R C ∈ Σ̂

(M,σ′σ|dom(σ′)) ∈ R

TCAtypes
this-call

call D.this.m [σ′] (. . .) occurs in method M
D is the declaring trait of M

C ∈ SubTypes(D)
method M ′ has name m

method M ′ is a member of type C
method M is a member of type C

(M,σ) ∈ R C ∈ Σ̂

(M ′, σ′σ|dom(σ′)) ∈ R
TCAtypes

local-call

call M ′ [σ′] (. . .) occurs in method M
M ′ is a local method inside some method M ′′

(M,σ) ∈ R

(M ′, σ′σ|dom(σ′)) ∈ R

Figure 2. Propagation of type arguments

ison of our results with previous work, we formulate our improve-
ments as extensions of this existing framework. In this section, we
present this baseline framework.

The main inference rules of the formulation are shown in Fig-
ure 1. The algorithm iterates the rules until a fixed point is reached,
using worklists to keep track of new facts and to determine which
rules need to be reevaluated. The set R keeps track of the methods
reachable from the entry points through the call graph constructed
so far. The set Σ̂ keeps track of the types of objects that may be
allocated in these reachable methods. The rule TCA

expand-this
main initial-

izes R with the main entry point. The rule TCA
expand-this
new finds object

instantiations in reachable methods and adds the types to Σ̂. The
rule TCA

types
call resolves a call site e.m(. . .) using the static type of

the receiver e to determine all possible target methods M ′. The rule
TCA

expand-this
abstract-call handles the specific case of a call site at which the

static type T of the receiver e is an abstract type. In this case, the
TCAexpand-this algorithm uses the function expand() to determine the
possible concrete types with which T could be instantiated. The
expand() function is computed by additional inference rules that
find all of the concrete types with which the abstract type T could
ever be instantiated. We do not show those rules here; for details,
refer to (Ali et al. 2014). The rule TCA

expand-this
this-call is a variation of

TCA
expand-this
call that is more precise in the specific case when the re-

ceiver of the call is the this pointer in the caller (i.e. the receiver
of the callee is the same object as the receiver of the caller). In
this case, the rule adds precision using the additional precondition
that the caller M must also be a member of some type C that the
callee M ′ is a member of. The rule TCA

expand-this
local-call handles calls to

local functions that are nested inside some other function rather
than being members of a class. This rule was not given explicitly
by (Ali et al. 2014), but we have added it here for completeness.
Calls to such functions do not have a receiver, and they are not
dispatched dynamically: the method specified at the call site is the
exact method that is executed.

4. Algorithms
4.1 TCAtypes: Propagation of type arguments
We now introduce the first extension to the TCA algorithm. The
main idea is to construct a context-sensitive call graph in which
each context for a given method is a substitution of concrete types
for the type parameters of that method. Specifically, the elements of
the set R, which were the reachable methods in TCA, now become
pairs of a reachable method and a type substitution. The inference
rules for the extended algorithm are shown in Figure 2. Changes
from the original algorithm are shaded .

The rule TCA
types
main pairs the main method with the empty substi-

tution ∅, since the entry point of the program has no type parameters.
The rule TCA

types
new iterates over all reachable method-substitution

pairs, ignores the substitution, and adds the types instantiated in
each reachable method to Σ̂, as in the original algorithm.

In the rule TCA
types
call , for each reachable pair (M,σ), where M

is a method and σ is a substitution, σ is applied to the static type
of the receiver e. We use the postfix notation StaticType(e)σ to
denote substitution application. From the actual type arguments
passed to the callee M ′ at the call site, we define the substitution
σ′ that replaces each type parameter of M ′ with the argument that
is passed for it. In the conclusion of the TCA

types
call rule, the caller’s

context substitution σ is composed with the call site substitution σ′.
As a result, if σ′ uses one of the type parameters of the caller, it will
be replaced using σ with the concrete type that it is instantiated
with in the specific caller context. We use the notation σ′σ to
denote substitution composition. We restrict the resulting composed
substitution to only the type parameters of M ′, formally dom(σ′).
We use the notation σ′σ|dom(σ′) to denote this restriction.

We apply the analogous modifications to the rules TCA
expand-this
this-call

and TCA
expand-this
abstract-call to obtain the new rules TCAtypes

this-call and TCA
types
abstract-call.

4 2016/3/10

Because the set of possible types is unbounded, the set of reach-
able methods paired with type substitutions could grow without
bound. This is demonstrated by the following example:

28 d e f foo [A] (a : L i s t [A] , d : I n t) : L i s t [] =
29 i f (d == 0) a
30 e l s e foo (a . z i p (a) , d − 1)

The method foo in context [A 7→ Int], calls foo in con-
text [A 7→ (Int, Int)], which calls foo in context [A 7→
((Int, Int), (Int, Int))], and so on. To ensure the termi-
nation of call graph construction, we define a limit for the number
of contexts under which each method is considered. If the limit is
exceeded, then instead of creating a new context (M, [Ni 7→ Ti]),
we loosen the precision of the last created context for the same
method (M, [Ni 7→ T′i]) by replacing each type in it with the least
upper bound of the type in the old context and the type in the new
context: (M, [Ni 7→ lub(Ti, T

′
i)]). The loosened context conser-

vatively overapproximates the types in both the old, last created
context for the method and the new context that we intended to
create.

We did not encounter any cases of such unbounded growth in
any of the benchmark programs that we evaluated.

4.2 Propagation of outer type parameters
In the previous section, the context of each method substituted
concrete types only for the direct type parameters of that method.
For even greater precision, we can extend the context with the
type parameters of the classes and methods that the method is
nested within. This can be achieved by transforming the code
before doing the analysis, using a transformation similar to lambda
lifting (Johnsson 1985), but applied to type parameters. Specifically,
whenever a class or method has some type parameter T that can
be implicitly used in methods nested within it, we add T as an
explicit type parameter to each of those nested methods, and pass
it explicitly at every call site. We illustrate the transformation with
the following example program, in which method bar is nested in
method foo, which is nested in class C:

31 c l a s s C[T] {
32 d e f foo [U] (t : T , u : U) = {
33 d e f b a r [V] (t : T , u : U, v : V) = { . . . }
34

35 b a r [Double] (t , u , 1 . 0)
36 }
37 }
38 (new C[I n t]) . foo [S t r i n g] (5 , ” ”)

The above program would be transformed as follows:

39 c l a s s C[T] {
40 d e f foo [T2 , U] (t : T2 , u : U) = {
41 d e f b a r [T3 , U2 , V] (t : T3 , u : U2 , v : V) = { . . . }
42

43 b a r [T2 , U, Double] (t , u , 1 . 0)
44 }
45 }
46 (new C[I n t]) . foo [I n t , S t r i n g] (5 , ” ”)

The type parameter T of class C has been explicitly added to the
methods foo and bar nested within it as T2 and T3. The type
parameter U of method foo has been explicitly added to the method
bar that is nested within it as U2.

Type parameters need to be passed explicitly when an outer
method calls an inner one. When a given type parameter comes
from a method in the original program, it is available at the call
site as an explicit parameter of the caller method in the transformed
program: for example, in the call of bar from foo, type parameters

T2 and U of foo are passed as arguments for the parameters T3 and
U2 of bar. When a given type parameter comes from a class in the
original program, it is also available at the call site as an argument
in the type of the receiver: for example, in the call to foo, the type
argument Int in the type C[Int] of the receiver determines the
type argument to be passed for the parameter T2 of foo.

Note that the erasure of both the original and the transformed
program is the same, so the runtime behavior is left unchanged.

In addition to type parameters, we also transform abstract type
members of each class in the same way, turning them into explicit
type parameters of all methods nested inside the class. Consider the
following program:

47 a b s t r a c t c l a s s B u f f e r {
48 t y p e U
49 t y p e T <: Seq [U]
50 d e f e l e m e n t s : T
51 d e f l e n g t h = e l e m e n t s . l e n g t h
52 }
53 c l a s s B u f f e r 1 2 3 {
54 t y p e U = I n t
55 t y p e T = L i s t [I n t]
56 d e f e l e m e n t s = L i s t (1 , 2 , 3)
57 }
58

59 B u f f e r 1 2 3 . l e n g t h ()

The program gets transformed to:

60 a b s t r a c t c l a s s B u f f e r {
61 t y p e U
62 t y p e T <: Seq [U]
63 d e f e l e m e n t s [U2 , T2<: Seq [U2]] : T2
64 d e f l e n g t h [U2 , T2<: Seq [U2]] = e l e m e n t s [U2 , T2

] . l e n g t h
65 }
66 c l a s s B u f f e r 1 2 3 {
67 t y p e U = I n t
68 t y p e T = L i s t [I n t]
69 d e f e l e m e n t s [U2 = I n t , T2 = L i s t [U2]] : T2 =

L i s t (1 , 2 , 3)
70 }
71

72 B u f f e r 1 2 3 . l e n g t h [B u f f e r 1 2 3 . U, B u f f e r 1 2 3 . T] ()

A consequence of this transformation is that the body of each
method refers only to type parameters defined on the method itself,
and does not refer to any type parameters or type members of
outer enclosing classes or methods. As a result, on the transformed
program, the substitution context defined in the previous section
now provides arguments for all the type parameters of each method,
including those that came indirectly from outer classes and methods
in the original program.

It is now easy to prove inductively that the range of every
substitution σ that ever appears in a pair in R consists only of
fully instantiated types (which do not contain any type parameters).
Suppose that this is true of the substitution context σ of a method
M that contains a call site e.m[σ′](). The only type variables used
in the argument substitution σ′ are the direct type parameters of M .
The context substitution σ provides fully instantiated types for all of
these type parameters. Therefore, when σ′ and σ are composed, the
range of the composed substitution contains only fully instantiated
types. It is this composed substitution with fully instantiated types
that becomes the new context for the target method called by the
call site.

Therefore, the static type of the receiver of a call, Static-
Type(e)σ, is never abstract after the caller-context substitution σ
has been applied to it. The rule TCA

types
abstract-call is thus never needed

5 2016/3/10

TCAtypes-terms
main

(main, ∅, Array[String]) ∈ R
TCAtypes-terms

new

“new C()” occurs in M
(M, . . . , . . .) ∈ R

C ∈ Σ̂

TCAtypes-terms
call

call e.m[σ′](args) occurs in method M
C ∈ SubTypes(StaticType(π , e)σ)

method M ′ has name m
method M ′ is a member of type C

(M,σ, π) ∈ R C ∈ Σ̂

π′ = (e :: args).map(arg ⇒ StaticType(π, arg)σ)

(M ′, σ′σ|dom(σ′), π
′) ∈ R

TCAtypes-terms
local-call

call M ′[σ′](args) occurs in method M
M ′ is a local method inside some method M ′′

(M,σ, π) ∈ R

π′ = args.map(arg ⇒ StaticType(π, arg)σ)

(M ′, σ′σ|dom(σ′), π
′) ∈ R

TCAtypes-terms
this-call

call D.this.m[σ′](args) occurs in method M
D is the declaring trait of M

C ∈ SubTypes(D)
method M ′ has name m

method M ′ is a member of type C
method M is a member of type C

(M,σ, π) ∈ R C ∈ Σ̂

π′ = (D.this :: args).map(arg ⇒ StaticType(π, arg)σ)

(M ′, σ′σ|dom(σ′), π
′) ∈ R

Figure 3. Propagation of term argument types

and can be removed from the algorithm, together with the rules for
computing the expand() sets for abstract types.

We have described the handling of outer parameters here as a
program transformation for clarity of presentation. For performance
reasons, our implementation does not explicitly transform the code
as described in this section. Instead, the analysis processes the
original code directly, taking into consideration the modifications
that would be made by the transformation as it reads the code. In
particular, in the implementation, the set Σ̂ contains pairs (σ,C),
where σ is the type substitution that was used in the context where
C was instantiated.

4.3 TCAtypes-terms: Propagation of term argument types
It is very common for the receiver at a call site to be one of the (term)
parameters of the method containing the call site. The implicit
receiver parameter this is the most common such receiver, but
other parameters are also common. As an example, consider the
following code:

73 d e f i n t e r n a l H a s h C o d e [T] (e l : T , n u l l R e p : O b j e c t) =
74 i f (e l ! = n u l l)
75 e l . hashCode
76 e l s e
77 n u l l R e p . hashCode
78

79 i n t e r n a l H a s h C o d e [I n t] (4 2 , ” n u l l ”)

The receivers el and nullRep of the calls to hashCode are both
parameters of internalHashCode. When the type of the receiver is
itself a type variable of the caller, the propagation of type arguments
that we have described above helps to resolve the call precisely.
In the example, the type of el is the type parameter T, which
the context substitution instantiates to Int, so we know that the
target of el.hashCode is the implementation of hashCode in Int.
However, in the call nullRep.hashCode, we need to assume that
the runtime type of the receiver nullRep could be any subtype of

Object. To further improve precision, the analysis can be extended
further to propagate the type of the argument from the call site of
internalHashCode, which is String, into the context in which
internalHashCode is analyzed. As a result, the analysis could
then determine that the call nullRep.hashCode calls only the
String implementation of hashCode.

To implement this precision improvement in our call graph
construction algorithm, we further extend the method contexts
contained in the set R. Each element of R becomes a triple that
contains a reachable methodM and a type parameter substitution σ
as before, and, in addition, a list π of more precise types for the term
parameters of M (including the implict this receiver parameter).

The inference rules for the extended algorithm are shown in Fig-
ure 3. Changes compared to Figure 2 are shaded . The StaticType
function is extended to take a list π of more precise parameter types.
If e is a parameter of M , then StaticType(π, e) returns the more
precise type of e given by π; otherwise it just returns the same static
type of e as in the previous analyses. We also extend StaticType to
map over a sequence of terms and return a sequence of their types.
The last premise of the TCA

types
call rule uses StaticType to get the pre-

cise types of the arguments passed at the call site. The substitution
σ is applied to these types. These precise types π′ are then included
in the context that is added to R in the conclusion of the rule.

5. Evaluation
We implemented the TCAexpand-this analysis of Ali et al. (2014) and
our two extensions TCAtypes and TCAtypes-terms on top of the Dotty
compiler1, a new compiler for the future evolution of the Scala
language. Although Dotty is not yet finished, it is not a research
prototype: it is intended to eventually replace the current nsc to
become the standard production-quality compiler for Scala. We
tested our implementation on the full test suite of Dotty, which
includes 1246 Scala programs. To the best of our knowledge, our

1 https://github.com/lampepfl/dotty

6 2016/3/10

Pr
og

ra
m

A
lg

or
ith

m

#
In

st
an

tia
te

d
cl

as
se

s

#
C

la
ss

es
w

ith
re

ac
ha

bl
e

m
et

ho
d

#
R

ea
ch

ab
le

m
et

ho
ds

#
R

ea
ch

ab
le

co
nt

ex
ts

#
M

ax
im

um
co

nt
ex

ts
pe

r
m

et
ho

d

#
D

is
co

ve
re

d
sp

ec
ia

liz
at

io
ns

C
od

e
gr

ow
th

fa
ct

or

%
m

on
om

or
ph

ic
ca

ll
si

te
s

%
bi

m
or

ph
ic

ca
ll

si
te

s

%
m

eg
am

or
ph

ic
ca

ll
si

te
s

R
un

ni
ng

tim
e,

se
co

nd
s

List creation
TCAexpand-this 149 64 207 207 1 3469 16.75 80.2 7.0 12.8 0.76
TCAtypes 117 33 90 90 1 90 1.00 93.0 4.7 2.3 1.30
TCAtypes-terms 117 31 83 101 2 83 1.00 95.4 2.3 2.3 1.32

List & Vector cre-
ation

TCAexpand-this 152 79 268 268 1 6358 24.73 73.4 4.1 22.4 1.89
TCAtypes 130 36 95 114 2 114 1.20 86.0 2.1 11.9 1.58
TCAtypes-terms 130 34 90 138 4 112 1.24 88.1 4.5 7.5 1.41

List create and
sort

TCAexpand-this 157 65 209 209 1 3919 18.75 77.6 6.4 16.0 0.77
TCAtypes 126 34 92 92 1 92 1.00 87.2 9.6 3.2 1.54
TCAtypes-terms 126 34 89 147 2 89 1.00 89.4 8.5 2.1 1.58

List & Vector cre-
ate and sort

TCAexpand-this 170 83 357 357 1 7725 21.64 72.4 2.4 25.2 2.30
TCAtypes 142 39 115 140 2 140 1.21 86.2 3.9 9.8 1.64
TCAtypes-terms 142 37 109 147 5 131 1.20 89.2 2.6 8.2 1.47

List create, sort
and print

TCAexpand-this 171 68 212 212 1 4146 19.56 78.6 4.1 17.4 1.29
TCAtypes 131 37 95 95 1 95 1.00 87.8 9.2 3.1 5.43
TCAtypes-terms 131 35 92 206 6 92 1.00 89.8 8.2 2.0 3.25

lexicographicSort
TCAexpand-this 182 88 293 293 1 5529 18.87 72.7 2.8 24.5 1.50
TCAtypes 134 41 102 104 2 104 1.01 86.6 7.7 5.6 5.91
TCAtypes-terms 134 41 98 231 3 102 1.04 89.1 6.5 4.4 4.08

Page rank
TCAexpand-this 229 92 341 341 1 12490 36.63 59.4 8.5 32.1 10.28
TCAtypes 145 50 127 173 3 173 1.36 77.4 7.6 15.1 11.22
TCAtypes-terms 145 45 118 293 5 165 1.40 85.9 9.9 4.3 6.24

Round robin
TCAexpand-this 189 76 252 252 1 6272 24.89 72.6 8.1 19.3 9.69
TCAtypes 147 46 130 174 1 174 1.34 87.9 8.1 4.0 8.79
TCAtypes-terms 147 44 123 310 3 165 1.34 87.9 8.9 3.2 3.91

Dotty type-
checker

TCAexpand-this 1028 822 10694 10694 1 45278 4.23 55.6 1.8 42.6 893.52
TCAtypes 832 695 9347 14011 4 14011 1.50 82.3 0.6 17.1 1071.71
TCAtypes-terms 832 629 8992 37992 43 13122 1.46 90.7 2.6 6.7 637.10

Table 1. Results of the TCAexpand-this, TCAtypes, and TCAtypes-terms analyses on the benchmark programs. The first two columns specify the
benchmark program and the analysis algorithm. The next three columns show the number of classes found to be instantiated, including their
superclasses, classes that have at least one reachable method, and methods reachable by the analysis. The following two columns show the
total number of reachable method contexts and the maximum number of such contexts per method. If every reachable method were specialized
for all of the type arguments that the analysis determines may flow to its type parameters, the next two columns show the total number of such
specialized methods that would be created and the factor by which this number is greater than the number of reachable methods in the original
program. The next three columns show the percentage of call sites found to be monomorphic, bimorphic, and megamorphic by each analysis.
For consistency, to enable comparisons between the three analyses, we take as the universe of all call sites only those in methods found to be
reachable by the most precise analysis, TCAtypes-terms. Otherwise, the results would be confounded by the fact that each analysis discovers a
different set of reachable methods and therefore a different set of reachable call sites. The final column gives the running time of the analysis.

analyses soundly handle the entire Scala language dialect supported
by Dotty, including Dotty-specific extensions to Scala such as trait
parameters2 and repeated by name parameters3.

The analysis runs after the type checker stage of Dotty. At this
stage, all expressions have their original, unerased and unsimpli-
fied Scala types. This means that our implementation correctly
handles types that may contain generic types and path dependent
types (Odersky 2014, §3.5). When the analysis requires subtyping
checks, we use the implementation of subtype testing included in
the Dotty compiler.

In this section we first evaluate the TCAtypes-terms analysis imple-
mented in Dotty and then show how it can be used for program
performance.

2 http://docs.scala-lang.org/sips/pending/trait-parameters.html
3 http://docs.scala-lang.org/sips/pending/repeated-byname.html

5.1 Analysis Evaluation
We evaluated our implementation on the nine Scala programs listed
in Table 1. The first six programs were selected to exercise the
Scala collections library, which is implemented in a very generic
style with multiple layers of abstraction. The collections library
is also highly megamorphic: for example, it contains 214 named
subclasses of Iterable. The next two benchmarks are moderately-
sized applications implemented in idiomatic Scala. The largest
benchmark is the parser and type checker of the Dotty compiler
itself. The Dotty compiler is still under development, and only
recently became able to bootstrap itself. More development of the
Dotty compiler is necessary before it can compile more mainstream
Scala applications.

To construct each call graph, we provided all of the dependencies
written in Scala as source code to the analysis. All Scala programs
also implicitly depend on the Java Standard Library, which is in the

7 2016/3/10

form of Java bytecode that our implementation does not analyze.
We made conservative assumptions about the effects of the Java
library, and used the Separate Compilation Assumption (Ali and
Lhoták 2012; Ali and Lhoták 2013) to construct a sound partial
call graph for the parts of the program that were written in Scala
and therefore available for analysis. The only methods of the Java
standard library called by any of our benchmark programs and their
Scala dependencies are the methods of the java.lang.Object
and java.lang.Comparable classes.

We ran all of our experiments on a machine with a quad core 2.8
GHz Intel i7-4980HQ CPU (running in 64-bit mode) and capped
available memory for experiments to 768 MB of RAM.

5.1.1 Research Questions
Our evaluation aims to answer the following Research Questions:

RQ1. How do the three analysis algorithms compare in terms of
the precision of the call graphs that they generate?

RQ2. Type and term argument propagation increase the size of
the set M by tracking methods multiple times with different type
and term arguments. How severe is the increase?

RQ3. How usable are the call graphs generated by the three
analysis algorithms for the purposes of specialization and inlining?

RQ4. How many call sites can the algorithms prove to be mono-
morphic?

RQ5. How does tracking of type and term arguments affect the
running time of the analysis?

5.1.2 Results
RQ1. Relative to TCAexpand-this, call graphs constructed by TCAtypes

have 22 % fewer reachable classes and 56% fewer reachable meth-
ods on average. The most significant cause of the precision improve-
ment was that TCAtypes precisely resolved calls on generic super
classes where TCAexpand-this was imprecise. For example, a call on a
Seq[T] could dispatch to both List[Int] and Vector[Double]
according to TCAexpand-this, but TCAtypes would analyze the call sep-
arately within the context of the two different type arguments.

On the Dotty typechecker, the TCAtypes call graph has 15 %
fewer reachable methods than the TCAexpand-this call graph. The
improvement is smaller because Dotty makes little use of the
generic collections in the standard library. For example, Dotty uses
its own custom tuned implementations of sets. Of 629 classes with
reachable methods, only 40 are from the standard library.

On average over all of the benchmark programs, TCAtypes-terms

further reduces the number of reachable methods by 5% compared
to TCAtypes.

The number of megamorphic call sites is, on average, 70% lower
with TCAtypes than with TCAexpand-this. TCAtypes-terms further reduces
the number of megamorphic call sites to 32% fewer than TCAtypes.

On the Dotty type checker, TCAtypes-terms reduces the number of
megamorphic call sites by 60 % compared to TCAtypes. The main
source of this improvement is apply methods, which implement
closures.

RQ2. We might expect that the number of reachable contexts
would grow as the amount of context sensitivity is increased. In
fact, due to the substantial improvement in precision and the de-
crease in the number of reachable methods, the average number of
reachable contexts is 53 % smaller in TCAtypes than in TCAexpand-this.
TCAtypes-terms does generate more reachable contexts than TCAtypes,
but generally still fewer than TCAexpand-this.

The Dotty typechecker is a special case in this regard. It has sub-
stantial amount of closures that are passed as arguments, with mul-
tiple different closures being passed to the same method. Tracking

all of these closures requires 4x as many reachable method contexts
in TCAtypes-terms as there are reachable methods in TCAexpand-this.

As we mentioned in Section 4.1, it is theoretically possible for
the number of contexts to grow without bound, and we must stop
generating new contexts after a fixed limit has been exceeded in
order for the analysis to terminate. We did not observe unbounded
growth in any of the benchmark programs. To determine how to
select the limit, we counted the maximum number of contexts for
any given reachable method for each benchmark. The maximum
number of contexts was 6 or less for all of the benchmarks, except
for the special case of the Dotty typechecker. It contains a function
track(String)(Closure) that is used to track how many times
a particular computation is performed. This function is called with
43 different closures, and term argument type propagation tracks all
of them as separate contexts. Aside from this function, only 5 other
functions in the Dotty typechecker are analyzed with more than 10
contexts.

RQ3. The call graphs generated by the three algorithms provide
information about the concrete type arguments with which each
type parameter in the program can be instantiated. Our intended
application is to specialize each generic method for each of the
type arguments that it may be called with. Methods that have been
specialized in this way can be easily inlined as an additional step,
either in a static optimizer or in a JIT compiler.

The type argument information provided by the context-insensitive
TCAexpand-this analysis is too imprecise to be practical for this appli-
cation. It indicates that each method should be specialized 22 times
on average.

Both of the context-sensitive analyses, TCAtypes and TCAtypes-terms,
provide much more usable information for specialization. They in-
dicate that on average methods need to be specialized 1.50 times.

RQ4. Our intended applications of call graphs, specialization and
inlining, apply to call sites that have only a single possible target
method (are monomorphic). The precision of many other analyses
such as points-to analysis and escape analysis benefits significantly
from precisely knowing the targets of virtual calls. We therefore
measure the ability of different algorithms to resolve each call site
to a unique target method.

Adding type propagation in TCAtypes substantially increases the
percentage of call sites that are statically monomorphic compared
to TCAexpand-this, by around 10 percentage points on small programs
and by around 20 percentage points on large programs. TCAtypes-terms

further increases monomorphic call sites by up to 8 percentage
points on the large programs.

RQ5. We might expect that the more precise context-sensitive
analyses require more time than TCAexpand-this. This is indeed the
case on some of the small programs that exercise the library:
TCAtypes takes up to 4x as long as TCAexpand-this. This is due to more
complex rules that require more work performed to process each
call site. However, on the three larger programs, TCAtypes takes on
average only 20% more time than TCAexpand-this, and TCAtypes-terms is
actually always faster than TCAexpand-this. This is explained by the
more precise (and therefore smaller) sets R and Σ̂ computed by
the context-sensitive algorithms. A major source of the speedup of
TCAtypes-terms over TCAtypes is that the implementation of substituting
a type for a type parameter that occurs inside a complicated type is
slow. In many cases, term argument type propagation can copy the
entire (already substituted type) faster than it would take to replace
the type parameters within it.

5.2 Application to Specialization
The evaluation so far has focused on the direct results of the
TCAtypes-terms analysis. In this section, we show how the analysis
improves the effectiveness of specialization.

8 2016/3/10

Generic classes and methods can be compiled to low-level code
in two general ways. A heterogeneous translation generates separate
copies of the generic code for every set of type arguments that its
type parameters can be instantiated with (Kennedy and Syme 2001;
Leroy 1992; Morrison et al. 1991). A homogeneous translation
generates a single copy in which each type parameter is erased
to a top type such as Object that can accommodate values of
any type (Bracha et al. 1998). The homogeneous approach has
poor performance. When values of primitive types flow into and
out of generic code, they must be boxed into freshly-allocated
objects and unboxed back to primitive types. On the other hand, the
heterogeneous translation depends on knowing the set of possible
type arguments. Furthermore, the number of combinations of type
arguments with which a class or method can be instantiated grows
exponentially with the number of type parameters, and can quickly
become impractical. For these reasons, the homogeneous translation
is used by Java, and it is the default in Scala, despite its negative
effect on performance.

Specialization is a technique that enables a heterogeneous trans-
lation of only selected classes or methods for only a selected subset
of type arguments (Goetz 2014; Dragos and Odersky 2009; Dra-
gos 2010). The Scala compiler allows the programmer to annotate
a type parameter of a class or method as @specialized. In this
case, the compiler generates 10 versions of the code, one for the
universal Object type, and one for each of the 9 primitive Scala
types. When the class or method has n type parameters annotated
as @specialized, the compiler generates 10n versions of the code.
The compiler also allows a more fine-grained annotation to spe-
cialize a type parameter only to a specified subset of the primitive
types. For example, the annotation @specialized(Int) would
cause two versions of the code to be generated, one for primitive
integers and the other for the universal Object type (in which all
other primitive types can be encoded using boxing). To make use
of these newly created code variants, the compiler rewrites each
generic class instantiation and each generic method call to refer to
the appropriate specialized version indicated by the type arguments.

Specialization produces significant speedups, sometimes in ex-
cess of 10x, because boxing and unboxing operations often end up
in hot loops. However, the increase in code size quickly becomes
impractical. Even a map data structure, which has two type param-
eters, requires 100 variants, which makes distribution infeasible. A
function type with two arguments and one return value requires
three type parameters, and therefore an unreasonable 1000 variants.

Miniboxing (Ureche et al. 2013) is an alternative implementation
of specialization that reduces the number of variants from 10n to
3n, where n is the number of type parameters. The miniboxing
implementation also provides warnings (“performance advisories”)
to notify the programmer about the code locations where boxing
and unboxing operations are inserted and to suggest annotations
that would eliminate them (Ureche et al. 2015). However, the
fundamental problems remain.

The problems with the current state of the art in specialization
for Scala can be summarized as follows. Because of the excessive
code growth, it is infeasible to apply specialization to all generic
type parameters. Therefore, the programmer must manually direct
the compiler by annotating the parameters to be specialized. Tuning
those annotations requires deep knowledge of the entire code base,
including dependent libraries. Manual annotations are error prone,
and missing an annotation can seriously harm performance. Further-
more, since different applications use a library in different ways, no
specific set of annotations of a library is ideal for all applications
that use it. For these reasons, programmers often err on the side of
adding too many annotations, which causes large increases in code
size.

To alleviate these problems, the TCAtypes analysis can infer the
specialization annotations automatically. In particular, the necessary
information is, for each generic class or method, the set of type ar-
gument instantiations of its type parameters. This set is exactly the
set of contexts explored by the TCAtypes analysis. Note that the infor-
mation is not generally obtainable from just a (context-insensitive)
call graph. The automatic inference of the specialization annota-
tions depends on the specific contexts that we have introduced in
the TCAtypes analysis.

Specialization guided by the TCAtypes analysis results is fully
correct in an open-world context. The specialization transformation
does not depend on any soundness assumptions about the specializa-
tion annotations, which are normally provided by the programmer.
If a type parameter is instantiated by a type argument that was not
included in the annotation, the generated code falls back to the
default universal Object-based implementation and its associated
boxing and unboxing. Therefore, unanalyzed code that passes type
arguments that the analysis is not aware of will still work correctly,
though it will understandably not enjoy the same performance im-
provement as the analyzed code.

To test the effectiveness of our analyses applied to special-
ization, we have reproduced the performance experiments from
the miniboxing paper (Ureche et al. 2013). The benchmarks are
adapted from two collection classes in the Scala standard library,
ArrayBuffer and (linked) List, and selected to cover code pat-
terns commonly used throughout the collection library. They cover
a wide range of scenarios: both contiguous and sparse memory
storage, custom equality checks, hash code computations, and
tight loops that can be further optimized by the JIT compiler (e.g.
ArrayBuffer.reverse). Each benchmark method is exercised by
a driver program that executes it on collections of 3 million integers.
This is the same setup as was used in the miniboxing paper.

To evaluate the automated inference of specialization annota-
tions, we used the following experimental setup. We first compiled
the benchmark programs with the dotty compiler and the TCAtypes

analysis. The type contexts found by the analysis were translated
into specialization annotations inserted into the code. The annotated
code was then compiled with the standard Scala compiler and evalu-
ated for performance. We used the standard Scala compiler for this
last step for consistency with the experiments in the miniboxing
paper, and because the porting of the specialization transformations
from the standard Scala compiler to dotty is still in progress. Once
the specialization feature is completely ported to dotty, the over-
all process can be implemented in a single compilation pass that
performs the analysis and applies the specializations.

We ran the benchmarks on a server machine with an 8-core In-
tel i7-4770 processor with the frequency fixed at 3GHz, running
the Oracle Java distribution 1.7.0-79 on the Ubuntu 12.04.5 LTS
operating system. We used the scalameter benchmarking frame-
work (Prokopec) version 0.7 as a harness: for each benchmark,
scalameter started the Java Virtual Machine (JVM) with 3GB of
memory, warmed up the benchmark code until it was compiled
by the HotSpot Just-in-time (JIT) C2 compiler, and then took 20
measurements. To minimize the noise, the process was repeated 10
times for each benchmark. This ensured the variability introduced
by the JIT compiler, the garbage collector (GC) and other processes
running on the server was reduced as much as possible.

The performance results are shown in Table 2 and Figure 4. The
“Erasure” results are for an unannotated program compiled without
any specialization. The “Specialization - Naive” results simulate
a fully heterogeneous translation by annotating every type param-
eter with @specialize, and using the implementation of special-
ization transformation in the standard Scala compiler to generate
specialized versions of the methods. The “Miniboxing” results do
the same using the miniboxing plugin. Finally, the “Specialization -

9 2016/3/10

ArrayBuffer.append ArrayBuffer.reverse ArrayBuffer.contains
Monomorphic Megamorphic Monomorphic Megamorphic Monomorphic Megamorphic

Erasure 36.0 34.6 12.1 12.3 2576.1 5844.5
Miniboxing 18.0 18.1 1.8 1.8 429.8 432.4
Specialization - Naive 12.6 12.6 1.8 1.8 409.5 412.3
Specialization - Call Graph 12.6 12.4 1.8 1.8 412.5 412.2

List creation List.hashCode List.contains
Monomorphic Megamorphic Monomorphic Megamorphic Monomorphic Megamorphic

Erasure 18.4 18.4 20.7 21.0 2716.7 2867.7
Miniboxing 14.7 14.9 19.4 19.7 2189.3 2140.1
Specialization - Naive 14.7 14.6 19.2 19.1 2181.1 2188.3
Specialization - Call Graph 14.6 14.6 19.2 19.7 2192.5 2214.2

Table 2. Benchmark running time, for 3 million elements. The time is reported in milliseconds. Lower is better.

 0

 0.5

 1

 1.5

 2

 2.5

ArrayBuffer.create ArrayBuffer.reverse ArrayBuffer.contains LinkedList.create LinkedList.hashCode LinkedList.contains

R
e
la

ti
v
e
 t

im
e

Benchmarked Operation

Erasure (Monomorphic)
Erasure (Megamorphic)

Miniboxing (Monomorphic)
Miniboxing (Megamorphic)

Specialization - Naive (Monomorphic)
Specialization - Naive (Megamorphic)

Specialization - Call Graph (Monomorphic)
Specialization - Call Graph (Megamorphic)

Figure 4. Graphical representation of the data in Table 2, in milliseconds. Lower is better.

Call Graph” results evaluate a program automatically annotated for
specialization using the TCAtypes analysis, and specialized by the
standard implementation in the Scala compiler.

The last three compilation strategies achieve the same improve-
ment in performance over the baseline “Erasure” configuration.

However, there is a stark difference in the size of the generated
bytecode. The total bytecode size for the two data structures is
shown in Table 3. Figure 5 shows the same data graphically. The
fully heterogeneous translation requires a prohibitive 11.8x increase
in the size of the code compared to the standard homogeneous
translation. Miniboxing reduces this overhead to a still substantial
4.3x. Automatic specialization using the TCAtypes analysis achieves
the same performance as these two techniques with a code size
increase of only 2.3x.

In fact, the code size increase can easily be reduced even fur-
ther by a tighter integration of the analysis and the specialization
transformation. In the current implementation of specialization, if
two or more type parameters are annotated, the compiler generates
specialized versions of the code for the cross product of the possi-
ble argument types. For example, if the keys and values of a map
can each be of type Int or Long, the compiler generates all four
combinations. However, the analysis could have more precise infor-
mation that indicates, for example, that only Map[Int,Int] and

Transformation Bytecode Size (Bytes)
Specialization - Naive 86146
Miniboxing 31372
Specialization - Call Graph 16458
Erasure 7291

Table 3. The bytecode size produced by specializing the Array-
Buffer and LinkedList classes with different approaches. Lower is
better.

Specialization - Naive

Miniboxing

Specialization - Call Graph

Erasure

 0 20 40 60 80 100

Bytecode size (KBytes)

Figure 5. Graphical representation of the data in Table 3, showing
the bytecode size in kilobytes. Lower is better.

Map[Long,Long] are every instantiated. Using this information,
the specialization transformation would generate only two versions
instead of four. However, the current annotation mechanism is not
expressive enough to encode this precise information that the analy-
sis does provide.

6. Related Work
We survey two separate areas of related work. First, we discuss the
main intended application of our analysis, specialization techniques
that have been proposed for Scala and similar languages. Second,
we discuss context sensitivity in call graph construction in general,
in various programming languages, and compare our analysis to
other related analyses.

6.1 Specialization Techniques
In the context of generating efficient Java bytecode from Scala pro-
grams, (Dragos 2010) observes that “compilation of polymorphic
code through type erasure gives compact code but performance on
primitive types is significantly hurt”. Consider the following method
foo:

10 2016/3/10

80 d e f foo [A] (a : A) = a
81

82 foo [I n t] (1)

This code is compiled as follows

83 d e f foo (a : O b j e c t) = a
84

85 foo (new I n t e g e r (1)) . a s I n s t a n c e O f [I n t e g e r] . v a l u e

Dragos proposes a specialization technique for Scala that requires
the programmer to mark methods to be specialized. The compiler
generates specialized versions of each such method for each primi-
tive type. If such a @specialized annotation were applied to the
foo method in our example, the compiler would generate the fol-
lowing code:

86 d e f foo (a : O b j e c t) = a
87 d e f f o o i (a : I n t) = a / / s y n t h e t i c c l o n e
88

89 f o o i (1)

The implementation conservatively generates clones for all 9 of
the primitive types in Scala, as well as the reference type (erased
to Object). For a method with n type parameters, 10n clones are
needed. This limits the use of specialization in Scala. For example,
the standard library type Function2 that represents a function with
two parameters has three type parameters (one for the type of each
parameter, and a third for the return type). Specializing Function2
would require 103 = 1000 clones, which is impractical.

Miniboxing (Ureche et al. 2013) is a technique that reduces the
number of clones required from 10n to 2n. It encodes all primitive
types into a single type, a 64-bit long, and uses a marker byte to
indicate the original type. For each type parameter, only two clones
are needed: one for primitive types (encoded as long), and one for
reference types (encoded as Object). This approach makes it viable
to mark as @miniboxed methods with up to 6 type parameters.

Wider use of miniboxing suggested that similar specialization
techniques can harm performance if specialized code is called
frequently from generic code and vice versa (Ureche et al. 2015).
Consider the following example.

90 d e f foo [A] (a : A) = a
91 d e f b a r [@miniboxed A] (a : A) = w h i l e (t r u e) foo (a)
92 d e f ba r1 [A] (a : A) = w h i l e (t r u e) foo (a)

In order to call the generic method foo, the specialized method
bar will need to box a in every iteration. In contrast, the value a
in the generic method bar1 will already be boxed before bar1 is
called, so it will not have to be boxed again in every iteration of the
loop. The miniboxing implementation tries to help users to solve
this problem by providing comprehensive warnings that suggest
possible changes to the code (Ureche et al. 2015).

Similar techniques are available as part of the .Net runtime (Kennedy
and Syme 2001) and are under development for Java as part of
Project Valhalla (Goetz 2014).

6.2 Call Graph Construction and Context Sensitivity
Context sensitivity has been studied extensively in call graphs for
dynamically typed functional languages (Shivers 1988). However,
because of Scala’s expressive static type system, call graph con-
struction algorithms for statically-typed languages are more closely
related. In object-oriented languages, call graph construction and
points-to analysis are interdependent, because virtual calls are re-
solved using the runtime type of the receiver object pointed to by
the call site.

For Java, the most thoroughly studied forms of context are
call strings (Shivers 1988) and object sensitivity (Milanova et al.

2002, 2005). Analyses using these forms of context sensitivity have
a high cost, and much work has been done to balance analysis
cost against the precision of the analysis results (Sridharan and
Bodı́k 2006; Xu and Rountev 2008; Xu et al. 2009; Yan et al.
2011; Bravenboer and Smaragdakis 2009; Smaragdakis et al. 2011;
Kastrinis and Smaragdakis 2013; Smaragdakis et al. 2014). In
Java, context sensitivity has been found to improve precision of
pointer information. On call graph precision, its effect is more
modest (Lhoták and Hendren 2006; Lhoták and Hendren 2008;
Smaragdakis et al. 2011, 2014), unless very sophisticated context
abstractions are used (Feng et al. 2015). In Scala, where use of
generic type parameters and abstract type members is pervasive,
our static-type-based context-sensitive analysis that can precisely
model these features significantly improves call graph precision.

The technique of using type arguments as context is most closely
related to the C# type analysis of (Sallenave and Ducournau 2012).
Their analysis adds type arguments as context to types of instanti-
ated objects (their analogue of the set Σ̂). In contrast, our analysis
adds context to reachable methods (the set R). The goal of their
analysis is to specialize the memory layout of objects, in contrast to
our goal of specializing method implementations. As we discussed
in Section 4.2, the transformation that propagates type parameters
from outer classes and methods into inner methods already gives
our analysis the precision that would be gained from adding context
to instantiated object types.

The technique of using term argument types as context is most
closely related to the Cartesian Product Algorithm (Agesen 1995)
and object sensitivity (Milanova et al. 2002, 2005). Both of these
techniques analyze a method in contexts determined by the runtime
types of their parameters (CPA) or of only their receiver (object
sensitivity). The key difference compared to our technique is that
these contexts are estimates of the dynamic type tags of the objects
that may flow to the parameters, while our contexts are the statically
declared types of the arguments at the call site of the method. This
difference is important for scalability. In the existing approaches,
the number of contexts grows with the number of types instantiated
anywhere in the program that flow to the parameters (raised to the
power of the number of parameters in the case of CPA). In our
approach, the number of contexts of a method is bounded by the
number of its call sites (although those call sites may themselves be
replicated in different contexts of the caller).

As we indicated in Section 3, our analysis is defined as an
extension of the context-insensitive Scala call graph construction
analysis of (Ali et al. 2014). Our implementation analyzes only
the Scala source code presented to the Dotty compiler, not any
of the Java bytecode that forms the rest of the complete program.
We use the Separate Compilation Assumption to construct a sound
partial call graph for the part of the program that is available for
analysis (Ali and Lhoták 2012; Ali and Lhoták 2013).

7. Conclusion
We presented several extensions to the TCAexpand-this algorithm of
(Ali et al. 2014) that both improve call graph precision and decrease
analysis time for non-trivial Scala programs. Our algorithms con-
sider type arguments and term argument types, and use them to
select more precise targets for virtual dispatch.

We implemented the algorithms in the context of the Dotty com-
piler and compared their precision and running time on a collection
of Scala programs. We have found that TCAtypes is significantly
more precise than TCAexpand-this, indicating that tracking type pa-
rameters would allow to greatly improve the precision for common
Scala code. Furthermore, we showed that TCAtypes-terms is slightly
more precise than TCAtypes, but is substantially faster, indicating
that tracking the static types of the arguments at each call site is

11 2016/3/10

beneficial. In particular, the call graphs generated by the context-
insensitive TCAexpand-this algorithm are too imprecise to be usable for
method specialization and inlining. The call graphs from both the
TCAtypes and TCAtypes-terms algorithms are very precise for this client
optimization: they would require specializing the average method
only 1.5 times in the worst case, and often much less.

Our work suggests that expressive type systems can not only
protect users from writing incorrect code, but could also be used to
gather more knowledge about the program to enable more perfor-
mance optimizations.

While our work was primarily focused on Scala, the ideas of our
work are applicable to other statically typed languages with generic
types. In particular, type and term propagation could be used to
improve call graph construction algorithms for Java, C#, C, Haskell,
Swift, and D.

References
O. Agesen. The Cartesian product algorithm. In ECOOP ’95, Object-

Oriented Programming: 9th European Conference, volume 952 of Lec-
ture Notes in Computer Science, pages 2–51, 1995.

K. Ali and O. Lhoták. Application-only call graph construction. In J. Noble,
editor, ECOOP 2012 - Object-Oriented Programming - 26th European
Conference, Beijing, China, June 11-16, 2012. Proceedings, volume 7313
of Lecture Notes in Computer Science, pages 688–712. Springer, 2012.
ISBN 978-3-642-31056-0.

K. Ali and O. Lhoták. Averroes: Whole-program analysis without the
whole program. In G. Castagna, editor, ECOOP 2013 - Object-Oriented
Programming - 27th European Conference, Montpellier, France, July
1-5, 2013. Proceedings, volume 7920 of Lecture Notes in Computer
Science, pages 378–400. Springer, 2013. ISBN 978-3-642-39037-1. doi:
10.1007/978-3-642-39038-8. URL http://dx.doi.org/10.1007/
978-3-642-39038-8.

K. Ali, M. Rapoport, O. Lhoták, J. Dolby, and F. Tip. Constructing call
graphs of scala programs. In R. Jones, editor, ECOOP 2014 – Object-
Oriented Programming, volume 8586 of Lecture Notes in Computer
Science, pages 54–79. Springer Berlin Heidelberg, 2014. ISBN 978-
3-662-44201-2.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the Fu-
ture Safe for the Past: Adding Genericity to the Java Programming Lan-
guage. In Proceedings of the 13th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA
’98, pages 183–200, New York, NY, USA, 1998. ACM. ISBN 1-58113-
005-8. doi: 10.1145/286936.286957. URL http://doi.acm.org/10.
1145/286936.286957.

M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of
sophisticated points-to analyses. In Proceedings of the 24th ACM SIG-
PLAN Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’09, pages 243–262, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-766-0. doi: 10.1145/1640089.1640108.
URL http://doi.acm.org/10.1145/1640089.1640108.

J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented pro-
grams using static class hierarchy analysis. In ECOOP ’95, Object-
Oriented Programming: 9th European Conference, volume 952 of Lec-
ture Notes in Computer Science, pages 77–101, 1995.

I. Dragos. Compiling Scala for Performance. PhD thesis, IC, Lausanne,
2010.

I. Dragos and M. Odersky. Compiling generics through user-directed type
specialization. In Proceedings of the 4th workshop on the Implemen-
tation, Compilation, Optimization of Object-Oriented Languages and
Programming Systems, pages 42–47. ACM, 2009.

Y. Feng, X. Wang, I. Dillig, and C. Lin. EXPLORER : query- and
demand-driven exploration of interprocedural control flow properties.
In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, part of SLASH 2015, Pittsburgh, PA, USA, October 25-
30, 2015, pages 520–534. ACM, 2015. doi: 10.1145/2814270.2814284.
URL http://doi.acm.org/10.1145/2814270.2814284.

B. Goetz. State of the Specialization, 2014. URL http://web.archive.
org/web/20140718191952/http://cr.openjdk.java.net/

~briangoetz/valhalla/specialization.html.

T. Johnsson. Lambda lifting: Transforming programs to recursive equations.
In Functional programming languages and computer architecture, pages
190–203. Springer, 1985.

G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity for points-
to analysis. In H. Boehm and C. Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 423–434. ACM,
2013. ISBN 9781-450-3201-4-6. doi: 10.1145/2462156.2462191. URL
http://dl.acm.org/citation.cfm?id=2491956.

A. Kennedy and D. Syme. Design and implementation of generics for the.
net common language runtime. In ACM SigPlan Notices, volume 36,
pages 1–12. ACM, 2001.

X. Leroy. Unboxed Objects and Polymorphic Typing. In Proceedings of the
19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’92, pages 177–188, New York, NY, USA, 1992.
ACM. ISBN 0-89791-453-8. doi: 10.1145/143165.143205. URL
http://doi.acm.org/10.1145/143165.143205.

O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In
G. Hedin, editor, Compiler Construction, 12th International Conference,
volume 2622 of LNCS, pages 153–169, Warsaw, Poland, Apr. 2003.
Springer.

O. Lhoták and L. Hendren. Context-sensitive points-to analysis: is it worth
it? In A. Mycroft and A. Zeller, editors, Compiler Construction, 15th
International Conference, volume 3923 of LNCS, pages 47–64, Vienna,
Mar. 2006. Springer.

O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a BDD-based implementation. ACM Trans.
Softw. Eng. Methodol., 18(1):1–53, 2008. ISSN 1049-331X. doi:
http://doi.acm.org/10.1145/1391984.1391987.

A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity
for points-to and side-effect analyses for Java. In Proceedings of the
2002 ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 1–11. ACM Press, 2002. ISBN 1-58113-562-9. doi:
http://doi.acm.org/10.1145/566172.566174.

A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity
for points-to analysis for Java. ACM Trans. Softw. Eng. Methodol., 14(1):
1–41, 2005. ISSN 1049-331X. doi: http://doi.acm.org/10.1145/1044834.
1044835.

R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An Ad
Hoc Approach to the Implementation of Polymorphism. ACM Trans.
Program. Lang. Syst., 13(3):342–371, July 1991. ISSN 0164-0925.
doi: 10.1145/117009.117017. URL http://doi.acm.org/10.1145/
117009.117017.

M. Odersky. The scala language specification v 2.9, 2014.

A. Prokopec. ScalaMeter. URL https://web.archive.org/web/
20160129115447/https://scalameter.github.io/.

O. Sallenave and R. Ducournau. Lightweight generics in embedded systems
through static analysis. In R. Wilhelm, H. Falk, and W. Yi, editors,
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems 2012, LCTES ’12, Beijing, China - June 12 - 13,
2012, pages 11–20. ACM, 2012. ISBN 9781-450-3121-2-7. doi: 10.
1145/2248418.2248421. URL http://dl.acm.org/citation.cfm?
id=2248418.

O. Shivers. Control flow analysis in scheme. In Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and
Implementation, pages 164–174. ACM Press, 1988. ISBN 0-89791-269-
1. doi: http://doi.acm.org/10.1145/53990.54007.

Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts well:
understanding object-sensitivity. In T. Ball and M. Sagiv, editors, Pro-
ceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, January 26-
28, 2011, pages 17–30. ACM, 2011. ISBN 9781-450-3049-0-0.

Y. Smaragdakis, G. Kastrinis, and G. Balatsouras. Introspective analysis:
context-sensitivity, across the board. In M. F. P. O’Boyle and K. Pingali,

12 2016/3/10

http://dx.doi.org/10.1007/978-3-642-39038-8
http://dx.doi.org/10.1007/978-3-642-39038-8
http://doi.acm.org/10.1145/286936.286957
http://doi.acm.org/10.1145/286936.286957
http://doi.acm.org/10.1145/1640089.1640108
http://doi.acm.org/10.1145/2814270.2814284
http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://web.archive.org/web/20140718191952/http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://dl.acm.org/citation.cfm?id=2491956
http://doi.acm.org/10.1145/143165.143205
http://doi.acm.org/10.1145/117009.117017
http://doi.acm.org/10.1145/117009.117017
https://web.archive.org/web/20160129115447/https://scalameter.github.io/
https://web.archive.org/web/20160129115447/https://scalameter.github.io/
http://dl.acm.org/citation.cfm?id=2248418
http://dl.acm.org/citation.cfm?id=2248418

editors, ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09
- 11, 2014, page 50. ACM, 2014. ISBN 9781-450-3278-4-8. doi: 10.
1145/2594291.2594320. URL http://dl.acm.org/citation.cfm?
id=2594291.

M. Sridharan and R. Bodı́k. Refinement-based context-sensitive points-to
analysis for Java. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 387–400, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-
320-4. doi: http://doi.acm.org/10.1145/1133981.1134027.

V. Ureche, C. Talau, and M. Odersky. Miniboxing: improving the speed
to code size tradeoff in parametric polymorphism translations. In ACM
SIGPLAN Notices, volume 48, pages 73–92. ACM, 2013.

V. Ureche, M. Stojanovic, R. Beguet, N. Stucki, and M. Odersky. Improving
the interoperation between generics translations. In Proceedings of the
Principles and Practices of Programming on The Java Platform, PPPJ
’15, pages 113–124, New York, NY, USA, 2015. ACM. ISBN 978-1-
4503-3712-0. doi: 10.1145/2807426.2807436. URL http://doi.acm.
org/10.1145/2807426.2807436.

G. Xu and A. Rountev. Merging equivalent contexts for scalable heap-
cloning-based context-sensitive points-to analysis. In ISSTA ’08: Pro-
ceedings of the 2008 International Symposium on Software Testing and
Analysis, pages 225–236, New York, NY, USA, 2008. ACM. ISBN 9781-
605-5805-0-0. doi: http://doi.acm.org/10.1145/1390630.1390658.

G. Xu, A. Rountev, and M. Sridharan. Scaling CFL-reachability-based
points-to analysis using context-sensitive must-not-alias analysis. In
S. Drossopoulou, editor, ECOOP 2009 - Object-Oriented Programming,
23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings,
volume 5653 of Lecture Notes in Computer Science, pages 98–122.
Springer, 2009. ISBN 978-3-642-03012-3.

D. Yan, G. H. Xu, and A. Rountev. Demand-driven context-sensitive alias
analysis for Java. In M. B. Dwyer and F. Tip, editors, Proceedings of the
20th International Symposium on Software Testing and Analysis, ISSTA
2011, Toronto, ON, Canada, July 17-21, 2011, pages 155–165. ACM,
2011. ISBN 9781-450-3056-2-4.

13 2016/3/10

http://dl.acm.org/citation.cfm?id=2594291
http://dl.acm.org/citation.cfm?id=2594291
http://doi.acm.org/10.1145/2807426.2807436
http://doi.acm.org/10.1145/2807426.2807436

	1 Introduction
	2 Motivation
	3 Background
	4 Algorithms
	4.1 TCAtypes: Propagation of type arguments
	4.2 Propagation of outer type parameters
	4.3 TCAtypes-terms: Propagation of term argument types

	5 Evaluation
	5.1 Analysis Evaluation
	5.1.1 Research Questions
	5.1.2 Results

	5.2 Application to Specialization

	6 Related Work
	6.1 Specialization Techniques
	6.2 Call Graph Construction and Context Sensitivity

	7 Conclusion

