Test of the MF-CICC Conductor Designed for the 12 T Outsert Coil of the HFML 45 T Hybrid Magnet

A 45 T hybrid magnet is being built at the High Field Magnet Laboratory (HFML) of the Radboud University in Nijmegen, the Netherlands. The hybrid magnet consists of a 12 T Cable-in-Conduit-Conductor (CICC) Nb3Sn superconducting outsert, and a 33 T resistive insert magnet. To verify the CICC design, a thorough testing has been completed in the SULTAN facility at Swiss Plasma Center, EPFL in Villigen (Switzerland) for the medium grade conductor of the outsert. In two test campaigns the DC cable performance (current-sharing temperature, critical current), the AC loss and the conductor’s performance stability during cyclic loading and after one warm-up and cool-down cycle have been investigated. Two different cable layouts were tested – one with a very short twist pitch (STP) and the second one with a long twist pitch (LTP) cabling pattern. As both conductors were made of the same Nb3Sn strand and underwent the same heat treatment and sample preparation procedure, the effect of the twist-pitch on the AC loss and on the DC performance with respect to cyclic loading could be reliably evaluated. The test results show that both cable layouts are actually very robust. The cable could withstand 2000 load cycles and the warm-up cool-down cycle without any significant degradation of the DC performance, and even the overloading at BI product (field multiplied by current) approximately two times larger than those foreseen during magnet operation did not lead to a big performance change. Small differences between the STP and LTP options have been observed, indicating that the STP conductor withstands high electromagnetic loads better than the LTP one.

Published in:
IEEE Transactions on Applied Superconductivity, 1
Piscataway, Ieee-Inst Electrical Electronics Engineers Inc

 Record created 2016-03-08, last modified 2018-09-13

Rate this document:

Rate this document:
(Not yet reviewed)