RF antennas as plasma monitors

<u>A. A. Howling¹*</u>, Ph. Guittienne², R. Jacquier¹, I. Furno¹

¹Centre de Recherches en Physique des Plasmas, EPFL, Lausanne, Switzerland

²Helyssen Sàrl, Switzerland

*Contact e-mail: <u>alan.howling@epfl.ch</u>

Frontiers in Low Temperature Plasma Diagnostics XI, 24-28 May 2015 Porquerolles Island, France

Outline of talk

- Review: RF antenna diagnostics
- Inductively-coupled plasma (ICP)
- Planar resonant RF antenna "new" device
- Partial inductance
- Complex image method "new" theory

"new" concept

• RF antenna ICP diagnostic

new to plasma

measure the change in primary impedance to deduce plasma conductivity (electron density and collision frequency)

Planar resonant network

Ph. Guittienne et al, Pl. Sources, Sci. Technol. 23, 015006 (2014)

Cylindrical (birdcage)

How to model inductive coupling with plasma?

Planar resonant network, N legs, (N-1) resonances

Mode impedance spectrum

...must consider mutual inductances

Loop and partial inductance – basic concepts "Inductance: Loop and Partial" by Clayton Paul (2010)

What is the self inductance *L* of a metal leg? Conventionally, (loop) inductance is only defined for a **closed** circuit

Consider a rectangular circuit:

Alternative view of inductance...

contribution to each segment of the closed loop partial inductance

$$L_i = \frac{\int_{c_i} \mathbf{A}_i \cdot d\mathbf{l}}{I}$$

Mutual partial inductances between antenna elements

Mutual inductance with the baseplate screen in vacuum (no plasma)

side view

Method of images:

Method of images

Planar resonant network – no plasma

mode frequencies calculated by a <u>matrix impedance model</u> <u>using partial inductances</u>

good agreement for mode frequencies in vacuum

Planar resonant network – with plasma

Induced current in a plasma

Induced current in a resistive ground return

By JOHN R. CARSON Bell Syst. Techn. J. 5, 539 (1926)

20

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Mutual inductance: infinite converging Fourier integrals

$$Z'_{12} = 4\omega \int_0^\infty (\sqrt{\mu^2 + i} - \mu) e^{-(h_1' + h_2')\mu} \cos x' \mu \, d\mu.$$

Dubanton at Electricité de France (1976), & co.: Complex image theory = real image current at a <u>complex depth</u>

Complex depth p = complex skin depth. Complex wavenumber = 1/p

complex mutual inductance also includes ohmic dissipation: $\mathbf{M}_{\mathbf{p}}^{\text{wire/plasma}} \approx \frac{\mu_0}{2\pi} l \left(\ln \left[\frac{l}{(h+\mathbf{p})} \right] - 1 \right)$

Fédérale de lausann

Complex image theory = real image current at complex depth... ...the magnetic field above the plasma is the same for both cases

Complex image theory is used in several domains (but not plasma)

- power transmission
- telecommunications
- geophysics
- microelectronics

Complex image method fits all 5 modes
using only 3 physical quantities:
1) distance; 2) electron density; 3) collisionality

skin depth depends on: $\sigma_{\rm pl} = \frac{\sigma_{\rm dc}}{1 + \mathbf{j}\omega/\nu_{\rm m}}$, where $\sigma_{\rm dc} = \frac{n_{\rm e}q_{\rm e}^2}{m_{\rm e}\nu_{\rm m}}$

Inductively-coupled antenna used as a diagnostic for plasma conductivity

FÉDÉRALE DE LAUSANNE

A hybrid resonant network antenna probe on a printed circuit board

... and a large area 15 kW antenna (1.2 m^2) for large area deposition, etching, packaging applications, etc

27

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne Measurement of probe Δf as a function of the RF power of the plasma source.

The computed relation between the electron density and Δf (complex image method and mutual inductance matrix).

FÉDÉRALE DE LAUSANNE

Conclusions

- Planar resonant antenna used as a plasma source
- Partial inductance method
- Complex image method
- Planar resonant antenna used as a plasma **sensor**
 - \clubsuit for plasma conductivity
 - \clubsuit general method for ICP

