

# Investigating the double scale length of limited plasmas with nonlinear simulations of the TCV Scrape-Off Layer



F. Nespoli<sup>1</sup>, B. Labit<sup>1</sup>, I. Furno<sup>1</sup>, F.D. Halpern<sup>1</sup>, P. Ricci<sup>1</sup>

<sup>1</sup>Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas, 1015 Lausanne, Switzerland 42<sup>nd</sup> European Physical Society Conference on Plasma Physics, Lisbon, Portugal 22<sup>nd</sup>—26<sup>th</sup> June 2015

#### SUMMARY

- Numerical simulations of the TCV Scrape-Off Layer (SOL) performed with GBS code [1]
- Simulation based on TCV discharge #49170. The heat flux shows a double scale length in the SOL, agree with experimental results in [2]. A poloidal asymmetry is observed.
- Non-ambipolar currents found inside the short scale length
- Strong velocity shear near the Last Closed Surface (LCFS)
- 3 more simulations are performed increasing the resistivity
- Heat flux profile in the main SOL flattens with resistivity

#### MOTIVATION

- Heat loads in inboard limited plasmas measured in TCV with IR thermography [2]
- Resulting **parallel heat fluxes** profile q<sub>||</sub>(r<sub>u</sub>) show **two scale lengths**:

 $\lambda_s \sim \text{mm close to LCFS}$ 

 $\lambda_{l} \sim 10 \lambda_{s}$  in the main SOL,

- According to this, previous [3] and similar [4,5] results, ITER first wall panels design has been changed [6]
- Underlying physics not well understood yet
- Numerical simulations performed to enhance understanding

## THE GBS CODE [1]

- Solves drift-reduced Braginskii equations in 3D
- Plasma turbulence determines both equilibrium profiles and fluctuations self-consistently
- Includes effects of finite aspect ratio, magnetic shear, ion temperature

#### SIMULATIONS OF TCV SOL

- Reference simulation based on TCV discharge #49170
- First GBS simulations of TCV with T<sub>i</sub> dynamics
- Plasma density  $n_{\rm e,0}$ =5·10<sup>18</sup> m<sup>-3</sup> and temperature  $T_{\rm e,0}$ =25 eV at the LCFS computed from Langmuir probe data (flush mounted on central column, acting as limiter), give:
  - simulation size  $\rho^* = \rho_s/R$ - normalized Spitzer resistivity  $v = e^2 n_e R / (m_i \sigma_{_{||}} c_s)$
- q<sub>edge</sub>=3.2 from LIUQE equilibrium reconstruction

## Differences:

- Limiter geometry (GBS, TCV)
- **B** and I<sub>p</sub> parallel in the experiment, antiparallel in the simulations



## Quantities of interest

- The simulations provide the evolution in  $(r,\vartheta,\phi)$  and time of plasma density  $n_e$ , electron and ion temperature T<sub>e</sub>,T<sub>i</sub>, electric potential φ, electron and ion parallel velocities v<sub>e</sub>, v<sub>i</sub> (all normalized)
- In the following, all quantities are averaged in time and toroidal direction φ
- Parallel heat flux computed as  $q_{\parallel} = \gamma_{sh} n_e \sqrt{\frac{T_e + Ti}{m_s}} T_e$
- $\gamma_{sh}$ =7 sheath power transmission factor
- Current density computed as  $j_{11} = e n_e (v_i v_e)$

[2] F. Nespoli et al., *J. Nucl. Mater.*, **463** (2015)

• To compare with experimental data limiter profiles are produced:

[1] P. Ricci et al., Plasma Phys. Controlled Fusion **54** (2012)

- upper limiter: average over  $\vartheta_i < \vartheta < \pi$
- lower limiter: average over  $-\pi < \vartheta < -\vartheta_I$

## WITH EXPERIMENT: HEAT FLUX



- Radial profiles well fitted by a sum of two exponentials  $q_{11}(r_u) = q_s e^{-\frac{r_u}{\lambda_s}} + q_l e^{-\frac{r_u}{\lambda_l}}$
- Heat flux profiles at the limiter are fitted up to r<sub>u</sub>=25 mm to avoid edge effects
- Fit with one exponential unsatisfactory
  - upper limiter:  $\lambda_s=2.7$  mm,  $\lambda_l=22.3$  mm
  - lower limiter:  $\lambda_s$ =3.7 mm,  $\lambda_l$ =25.3 mm
  - similar to values from IR thermography:  $\lambda_s$ =2.9 mm,  $\lambda_l$ =36.7 mm
- Fit every  $q_{\parallel}(r_u, \vartheta = const)$  profile
- Poloidal variation of fit parameters: for  $\theta > 0$  weaker narrow feature
- Probably due to **EXB**, mainly in the  $\vartheta > 0$  direction

# COMPARISON WITH **EXPERIMENT: CURRENTS**

- Electron currents are measured, using flush mounted Langmuir probes, to flow to the grounded limiter in the region  $r_{u} \leq \lambda_{s}$
- Same trend is recovered in the simulation for  $j_{\parallel}$ computed on the two limiter sides
- Correlation between non ambipolar current and narrow feature (already observed in COMPASS [7])



## VELOCITY SHEAR

- **EXB** velocity mainly in  $\vartheta > 0$  direction
- Velocity shear  $dv_{\vartheta}/dr$
- Strong for  $r_u \le \lambda_s$  , ~0 outside
- Probably helps to stabilize main SOL instabilities (interchange) steepening the gradients near the LCFS
- Theoretical explanation of the influence of a sheared flow on the narrow feature is in progress



# THE ROLE OF RESISTIVITY preliminary results

- Excess power in the SOL due to the narrow feature
- $\Delta P_{SOL} = 4\pi R_{LCFS} \frac{B_{\vartheta}}{B} \int_0^{\infty} [q_{\parallel}(r_u) q_{\parallel,main}(r_u)] dr_u = 4\pi R_{LCFS} \frac{B_{\vartheta}}{B} q_s \lambda_s$ Experimentally shown to decrease with resistivity [2]
- 3 additional simulations, where the normalized Spitzer resistivity  $\nu$  is increased by a factor 10, 20 ,40 (not converged due to time constraints)
- As  $\nu$  is increased, the profiles in the main SOL flatten
- Narrow feature still present



## OUTLOOK

- Quantitative comparison with experiments on the role of resistivity once a sufficient statistics is obtained
- More detailed analysis of stastical properties of n<sub>e</sub>, V<sub>pl</sub> fluctuations
- Comparison with LP data
- Simulation with q<sub>edge</sub>=5.2 ongoing
- More TCV experiments planned at the end of 2015 for the MST-1 campaign. In particular:
- He plasmas experiments

[6] M. Kocan et al., to *Nucl. Fusion* **55** (2015)

[7] R. Dejarnac et al., *J. Nucl. Mater.*, **463** (2015)



REFERENCES

federico.nespoli@epfl.ch

[3] G. Arnoux et al., *Nucl. Fusion* **53** (2013)

[4] J. Horacek et al., *J. Nucl. Mater.*, **463** (2015)

[5] P.C. Stangeby et al., *J. Nucl. Mater.*, **463** (2015)

