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Intensifying the response of distributed optical
fibre sensors using 2D and 3D image restoration
Marcelo A. Soto1, Jaime A. Ramı́rez1 & Luc Thévenaz1

Distributed optical fibre sensors possess the unique capability of measuring the spatial and

temporal map of environmental quantities that can be of great interest for several field

applications. Although existing methods for performance enhancement have enabled

important progresses in the field, they do not take full advantage of all information present in

the measured data, still giving room for substantial improvement over the state-of-the-art.

Here we propose and experimentally demonstrate an approach for performance enhance-

ment that exploits the high level of similitude and redundancy contained on the multi-

dimensional information measured by distributed fibre sensors. Exploiting conventional image

and video processing, an unprecedented boost in signal-to-noise ratio and measurement

contrast is experimentally demonstrated. The method can be applied to any white-noise-

limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the

sensor performance with no hardware modification.
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D
istributed fibre sensors1,2 exploit specific optical effects
activated along optical fibres, to obtain a spatially
distributed profile of environmental quantities such as

temperature, strain, pressure, electromagnetic fields and so on.
This feature offers unique attributes and capabilities compared
with conventional discrete sensing methods1,2. Conventional
distributed fibre sensors can be classified in a wide range of types2

based on the nature of the exploited optical effect. There exist
types based on optical absorption, fluorescence, evanescent field
or interferometers, among others1,2; however, most of the
distributed sensors use natural scattering processes3,4 present in
optical fibres along with interrogating methods based on time-
domain5 or frequency-domain6 reflectometry. These are sensors
essentially based on Rayleigh scattering7–11, spontaneous
Raman scattering12–14 and spontaneous or stimulated Brillouin
scattering15–24. The spatial resolution of distributed sensors is
primarily determined by the bandwidth of the interrogating
signal, which is typically traded off with the power contrast in the
detected signal. Under an optimized configuration, the best
performance attained by any distributed sensor is ultimately
determined by the signal-to-noise ratio (SNR) of the measure-
ments16,24. Therefore, to ensure a given measurement quality
(defined by the measurand resolution), a minimum SNR has to be
secured in the system24,25. This imposes an important tradeoff
between spatial resolution and sensing range, which affects all
kinds of distributed fibre sensors1,2,25–27. Sensors with high
(that is, sharp) spatial resolution are inherently limited by the
short interaction time and low energy involved in the scattering
process (locally activated at each fibre position), enabling
measurements only along short ranges19,20 (typically below
1 km). On the other hand, sensors with metric resolution can
typically operate over many tens of kilometres of optical fibre. In
this case, the SNR and quality of the measurements are basically
limited by the onset of nonlinear effects28–32, which constraint
the maximum optical power launched into the sensing fibre, and
by the fibre attenuation, which leads to an exponentially decaying
sensor response and poor measurement contrast at the end of
long optical fibres24,25.

The clear understanding reached in recent years on the factors
ultimately limiting the sensor capabilities has motivated
researchers to propose and demonstrate specially designed
methods for performance enhancement33–54. Among several
advanced techniques, methods such as distributed Raman
amplification34–37, optical pulse coding38–43 or different signal
processing methods44–51 have resulted in implementations
outperforming classical standard configurations. Whereas each
of these methods can individually provide up to about 10–12 dB
SNR enhancement, a higher improvement can only be reached by
a proper combination of several of those techniques52–54, at the
cost of complex and expensive implementations.

Among several existing methods, signal processing techniques,
such as optical pulse coding38–43, wavelet transform44–48 and
Fourier transform49 have demonstrated to be very efficient tools
to remove noise. However, their exploitation for distributed
sensing has been restricted so far only to one-dimensional (1D)
arrays of data. Those techniques can be readily applied, for
instance, to Raman-distributed fibre sensors38,44, owing to the 1D
nature of the acquired data (corresponding to 1D traces of the
anti-Stokes, Rayleigh and Stokes backscattered light12–14). In the
case of Brillouin- and Rayleigh-based distributed sensors, in
which time and frequency are scanned, signal processing has been
used to denoise individual longitudinal traces (that is, at a fixed
scanned frequency) independently from each other39–41,45, the
measured local spectrum at each fibre location47 or the retrieved
measurand profile48. Although methods such as time–frequency
coding42,43 take advantage of the double scanning (fibre position

and pump–probe frequency detuning) required in Brillouin
sensing, the provided SNR enhancement is basically given by the
ability of the code to reduce noise in a 1D array of data. Indeed,
none of the existing methods for performance enhancement
exploit the redundancies and correlations contained in the
multidimensional domain of the measured information. This is
so far a feature of distributed fibre sensors that has been
completely unexplored in the state-of-the-art; however, as such
measurements contain repeated structures of information in a
multidimensional domain (time, frequency and position), they
can be smartly and efficiently exploited to improve the SNR of the
measurements.

In the following, we propose and experimentally demonstrate
an approach that exploits correlated patterns of information and
their high degree of redundancy for enhancing the measurement
quality and performance of distributed optical fibre sensors. In
particular, this approach makes use of image and video
enhancement processing for removing noise and increasing the
contrast of noisy measurements obtained by any kind of
distributed sensor. To the best of our knowledge, this is the first
time that such a multidimensional approach is used to restore
information and enhance the capabilities of distributed fibre
sensors. Here we demonstrate an unprecedented boost in SNR,
which can reach two orders of magnitude (that is, B20 dB SNR
enhancement), being equivalent or even superior to the use of
extensively complex hardware sophistications but at a minor
fraction of the cost. Any dB gained in SNR can be used to
improve the sensor performance, that is, to extend the range, to
sharpen the spatial resolution, to reduce the measurement time
(reducing the number of averages), or simply to improve the
measurand accuracy24. The technique can be applied to any
conventional or advanced sensor in which the acquired data can
be arranged in a two-dimensional (2D) or three-dimensional
(3D) data structure. This includes any possible configuration for
distributed fibre sensing based on, for example, faint long
gratings55, Rayleigh7–11, Raman12–14 or Brillouin15–24 scattering
(or any combination of them); however, the use of the method
can also be extended to any reflectometry-based technique for
fibre characterization5,6 as well as for quasi-distributed or
multiplexed sensors, such as arrays of fibre Bragg gratings56, in
which the measured information can be arranged in a 2D or 3D
data structure.

Results
2D image processing for sensor data restoration. We first tested
the proposed method on measurements obtained by a standard
Brillouin optical time-domain analyser15,16 (BOTDA), using the
proof-of-concept experimental setup shown in Fig. 1. For a 2-m
spatial resolution over a 50-km-long sensing fibre, the SNR
of the implemented system turns out to be optimized using a
125-MHz high-transimpedance photodetector57. Although this
high-transimpendance makes the system thermal-noise
dominated, this leads to an optimized electrical SNR57. To
provide a reliable demonstration of the technique proposed in
this study, noisy distributed measurements are intentionally
acquired using only four time-averaged traces per scanned
frequency (two averaged traces for each orthogonal polari-
zation). It is noteworthy that the acquisition procedure in
Brillouin sensors makes inherently use of a 2D data structure
M(z,Df) in the position z and frequency Df domains, from which
the environmental information is retrieved by detecting spectral
shifts of the peak gain frequency. Figure 2a shows the noisy 3D
map of the Brillouin gain spectrum (BGS) measured along the
sensing fibre for different pump–probe frequency offsets Df. In
this case we use a sampling rate of 5 ns per digital point in the
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analogue-to-digital converter, corresponding to a sampling
interval of 0.5 m per point (using for convenience the typical
time-to-position conversion based on the group velocity of light

in the fibre), whereas a spectral range of 200 MHz is scanned with
steps of 1 MHz. The measurement process therefore results in a
2D matrix M(z,Df) of 100,000� 200 data points containing the
local BGS at each sampled fibre location. Image processing58,59

here associates each acquired position–frequency pair (z,Df) to a
pixel (x,y) of a noisy digital image (illustrated in Fig. 2b), where x
and y are the spatial coordinates of the image. This image can be
represented by a two-variable function f(x,y) with values
belonging to a 1D space, such as in a greyscale image58,59 and
mapping the local Brillouin gain measured at a given position z
and frequency offset Df. For a better visual perception of the data,
a blue scale is chosen in Fig. 2, where pixels with darker tones
represent position–frequency pairs having higher Brillouin gain
(it is noteworthy that the scale is inverted when compared with
the traditional representation of monochrome images58,59).
A high level of redundancy in the signal amplitude associated
to given position–frequency pairs can be found along the entire
2D data structure M(z,Df); this actually becomes evident if we
consider that the same BGS (having a known spectral shape) is
repeatedly measured along the fibre, being only spectrally shifted
at positions where the local environmental conditions
change16,17. Although the fibre attenuation can alter the BGS
peak amplitude with distance, Fig. 2 shows that the matrix
M(z,Df) can still be decomposed into small 2D patches containing
several closely located longitudinal points having essentially the
same average amplitude.

To exploit the high level of similitude and redundancy present
in the 2D domain of the data, we here use two of the best-known
image denoising methods as proof-of-concept, to evaluate
the effectiveness of the proposed approach: the so-called
non-local means (NLM)59–63 and wavelet denoising (WD)64–67

(see Methods for details). Whereas the former method operates in
the spatial domain of the image, that is, making direct use of the
measured data points (raw data), the later method converts the
raw data into the wavelet domain (corresponding to a particular
representation of the spectral domain of the image),
where the components associated with noise are filtered out by
wavelet shrinkage using a hard thresholding function64–66.
Supplementary Fig. 1 shows the ‘denoised images’ resulting
after processing the raw measured data points. Although a simple
visual inspection of these images indicates a clear improvement in
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Figure 1 | Experimental setup of a basic BOTDA sensor. The light of a conventional distributed-feedback laser operating at 1,550 nm is split into distinct

branches to generate the pump and probe signals. In the upper branch, a high-extinction ratio (440 dB) electro-optic modulator (EOM), driven by a

microwave signal and operating in carrier-suppression mode, generates a two-sideband probe signal. A polarization switch is used to compensate for the

polarization-induced fading affecting the Brillouin gain along the fibre. The probe power launched into the fibre is set to � 6 dBm to avoid unwanted

spectral distortions resulting from non-local effects as reported in ref. 23. In the lower branch, a high on–off ratio (4 50 dB) pump pulse of 20 ns is

generated by a semiconductor optical amplifier (SOA) and then boosted by an erbium-doped fibre amplifier (EDFA) up to 100 mW (limit imposed by

modulation instability, as indicated in ref. 31). The sensing fibre is a 50-km-long standard single-mode fibre. On the receiver side, a narrowband (10 GHz)

fibre Bragg grating (FBG) is inserted to select the lower-frequency probe sideband, which is detected by a 125-MHz photoreceiver. Time-domain traces are

then collected using an acquisition card connected to a computer.
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Figure 2 | Measured BGS versus distance. (a) Three-dimensional map of

the measured BGS as a function of distance. Measurements are obtained

along a 50-km-long sensing fibre using a spatial resolution of 2 m, 4

temporal averages (2 averages per each orthogonal polarization state), a

sampling interval of 0.5 m, a spectral scanning range of 200 MHz and a

frequency step of 1 MHz. (b) Top view of the measured BGS, where pixels

with darker blue tones represent position-frequency pairs with higher

Brillouin gain. This image provides a visual representation of the noisy

measured data and depicts the ‘image’ to be enhanced by image

processing.
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the data quality (compared with Fig. 2b), we evaluate the
effectiveness of the denoising using an objective metric by
calculating the SNR of the time-domain trace obtained at the
peak Brillouin gain frequency24. To allow a fair comparison with
existing techniques, it is worth mentioning that we use here the
definition of SNR calculated to be proportional to the trace
amplitude, which means the ratio between the mean amplitude of
the measured local response and its standard deviation24,25,51–53,
contrarily to some works where the SNR is defined to be
proportional to the electrical power16,45,50.

Figure 3a,b compare the SNR of the raw noisy traces (blue
lines) and the ones obtained after denoising (red lines) with the
NLM and WD methods, respectively. Black dashed lines
correspond to the respective linear fitting (in dB scale) of the
SNR versus distance. Experimental results point out that the SNR
of 1.4 dB obtained at 50 km distance on the raw data can be
substantially boosted up to 15.2 and 15.6 dB by applying the NLM
and WD methods, respectively. It is noteworthy that those
values represent a remarkable SNR enhancement of 13.8 and
14.2 dB using each of the respective methods. Although the SNR

improvement provided by these two denoising methods is fairly
equivalent, we should mention that the computational complexity
of the NLM is normally much larger, especially in our
implementation (see Discussion section), giving a crucial
advantage to the WD, unless dedicated programming and
implementation are used for the NLM processing63. It is also
important to mention that although the Brillouin frequency shift
(BFS) of the sensing fibre is in this case longitudinally quite
uniform, the reported SNR improvement is obtained by the NLM
and WD methods using parameters that secure a spatial
resolution of 2 m, as described in the Methods and
demonstrated hereafter in Fig. 4.

The SNR enhancement demonstrated above has actually a
massive impact on the quality of the obtained BGS. Figure 3c,d
highlight the huge contrast enhancement in the BGS measure-
ments and the considerable noise reduction provided by image
processing. No relevant distortion can be observed in the BGS
obtained after processing. An accurate distributed BFS profile is
then obtained by fitting a quadratic curve to the BGS obtained at
each fibre location24. The ultimate impact of image processing on
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Figure 3 | Impact of 2D image processing on BOTDA measurements. The sensing performance enhancement provided by the 2D NLM (left) and 2D WD

(right) methods is evaluated by comparing the raw (blue curves) and processed (red curves) data. (a,b) SNR versus distance, showing that the raw SNR of

1.4 dB (obtained at 50 km distance with 2 m spatial resolution and 4 averaged traces) can be improved up to 15.2 and 15.6 dB with the NLM and 2D WD

methods, respectively. The black dashed lines show a linear fitting (in dB scale) of the SNR curves versus distance. (c,d) BGS measured near the far fibre

end, pointing out that a significant increase in the measurement contrast can be obtained by image processing. (e,f) Uncertainty on the determination of

the peak gain frequency versus distance, showing that the uncertainty of 4.8 MHz obtained in the raw data at 50 km can be significantly reduced down to

0.20 and 0.19 MHz with the NLM and 2D WD methods, respectively.
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the measurement quality turns evident when calculating the
standard deviation of the retrieved BFS. Figure 3e,f show that the
frequency uncertainty of 4.8 MHz obtained with the raw data at
50 km distance can be remarkably improved down to 0.20 and
0.19 MHz using the NLM and WD methods, respectively. These
values are actually in perfect agreement with the uncertainty
expected from the experimental SNR24 obtained after denoising.

To corroborate that the proposed technique does not actually
lead to a penalizing loss of information (for example, loss of
spatial resolution capabilities) and eliminates mostly the uncor-
related noise present in the measurements, it is essential to
demonstrate that the applied 2D processing does not excessively
blur the ‘denoised images’. For this purpose, a 2-m section of fibre
at 50 km distance is heated up to 40 �C, while the rest of the fibre
is kept at room temperature (27 �C). Figure 4a,b show the BFS
profiles around the hotspot location obtained from the raw and
denoised data for the NLM and WD methods. To accurately
assess the impact of image processing on the spatial resolution,
the sampling interval in this figure is reduced down to 0.2 m,
while a reference BFS profile of the hotspot (black dashed line in
the figures) is obtained using 4,000 averages and no processing,
thus providing a reliable reference profile with comparable SNR.
Results highlight the correct detection of the 2-m-long hotspot,
demonstrating that the applied processing has an imperceptible
impact on the spatial resolution even under low SNR conditions.
We should emphasize that this verification of the spatial
resolution is obtained with the same denoising parameters used
to process the raw data when estimating the SNR improvement
reported in Fig. 3a,b, and therefore they fully represent the spatial
resolution capabilities reached by the NLM and WD techniques
when enhancing the SNR by B14 dB. This clearly demonstrates

the benefits of the proposed method when, for instance,
compared with classical low-pass filtering techniques, which are
highly affected by the tradeoff between noise reduction and
spatial resolution. In contrast to low-pass filtering, the here-
proposed technique uses a nonlinear approach, in which no
explicit bandwidth notion is relevant; the amount of removed
noise depends exclusively on the frequency components of the
useful signal and their level of redundancy. The redundancy of
information increases the amplitude of the frequency components
inherent to the useful signal, while low-amplitude components
are assumed to be noise and removed by the processing. This
nonlinear denoising approach enables us to measure events with a
sharp spatial resolution (that is, maintaining high-frequency
components), while reducing significantly the noise (that is,
random and low-amplitude components present in the low and/
or high frequency range). Thus, fundamentally there is no
discernible bandwidth change between raw and processed data, as
proved by the hotspot measurements in Fig. 4a,b. More
quantitatively, if we consider the spatial resolution of 2 m and
the sampling interval of 0.5 m, a digital low-pass filter of
maximum four points could be used (equivalent to a four-point
moving average window). This leads to a 3-dB SNR improve-
ment, which is much lower than the 14-dB improvement here
demonstrated. Considering that the electrical bandwidth in the
system is 125 MHz, an electrical low-pass filter of 50 MHz
bandwidth could still be used to secure a spatial resolution of 2 m,
but this has also minor impact on the SNR. Figure 4c,d actually
confirm that the eliminated 2D component (obtained subtracting
the ‘denoised image’ from the original ‘noisy image’) is essentially
white noise, showing no specific features or patterns that could
indicate the elimination of relevant information.
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Figure 4 | Validation of the maintained spatial resolution. Impact of the 2D image processing technique on the spatial resolution of the implemented

BOTDA sensor, for the 2D NLM (left) and 2D WD (right) methods. (a,b) BFS profiles around a 2-m-long hotspot located near the far end of the sensing

fibre, for the NLM and WD methods, respectively. The black dashed lines show a reference BFS profile retrieved directly from measurements (that is, with

no image processing) acquired with a much larger number (4,000) of averaged traces. Results demonstrate that the applied image processing methods

have only an imperceptible impact on the spatial resolution of the sensor. (c,d) Two-dimensional representation of the noise component eliminated by 2D

NLM and 2D WD methods. These figures are obtained subtracting the ‘denoised images’ from the ‘original image’ (2D data matrix with the raw BOTDA

traces), in the case of a hotspot measurement. Results show only the fibre section where the hotspot is located, indicating that the eliminated noise

components do not contain any evidence of visual patterns or relevant information that could affect the proper hotspot detection.
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Extending the concept to video processing. The principle of
distributed fibre sensing assumes that the temporal evolution of
the measurand changes slowly compared with the acquisition
time. In the case of Brillouin and Rayleigh sensors, this leads to
consecutive 2D measurements containing highly correlated
information. Based on this feature, the concept proposed in this
study can be extended to the 3D case60–62, in which each
measurement (in the position–frequency domain) is assimilated
to a frame of a video sequence. This approach exploits not only
the redundancy found in the 2D domain of the measurements
but also in the temporal dimension, thus leading to a very
powerful tool for a better data restoration and noise removal in
distributed fibre sensing. Using the same setup reported in
Fig. 1, we acquire consecutive 2D data matrices M(z,Df) every
B42 s. Although this measurement time can be still reduced due
to the small averaging number (four averaged traces per scanned
frequency), the response time of the equipment used in
this lab demonstration eventually limited our minimum
acquisition time.

Considering that the temporal evolution of the measurand
might reduce the correlation existing between consecutive
measurements, the effectiveness of video processing60–62 is
experimentally verified under conditions in which the fibre
temperature changes during the measurement process. It is
important to bear in mind that if the measurands were completely
static (that is, showing no temporal variations), an excellent and
trivial solution to increase the SNR would be the use of a simple
(linear) temporal averaging of consecutive measurements.
However, owing to the dynamical nature of the environment,
such a kind of averaging leads to ‘blurred images’, resulting in loss
of information and details, as depicted in Supplementary Fig. 2
(see description in next paragraphs). Video processing here takes
into account the non-stationary characteristics of the data in the
temporal domain60–62.

Measurements are processed using a 3D NLM algorithm60–62

(see Methods). As in the 2D case, the 3D spatio-temporal NLM
method uses the self-similarity of an image, but the search for
repeated patterns is extended to several consecutive frames60–62.
Figure 5a shows the SNR of the trace measured at the peak gain
frequency for the raw (blue curve) and denoised (red curve) data
using the 3D NLM method60–62 based on ten consecutive
measurements (frames). The figure indicates that the raw
SNR of 1.4 dB obtained at 50 km distance can be increased
up to 22.1 dB using 3D NLM processing. This is 46.5 dB
improvement with respect to the 2D image processing reported
above and corresponds to a remarkable absolute SNR
enhancement of 20.7 dB. The benefits provided by this SNR
enhancement can be clearly observed in Fig. 5b, which
shows the BGS measured at 50 km distance obtained from the
raw and denoised data. Figure 5c highlights that the BFS
uncertainty of 4.85 MHz, obtained from the raw data, can be
significantly reduced down to 0.055 MHz with this 3D NLM
processing, being in good agreement with the attained SNR
enhancement24.

Supplementary Movie 1 shows the BFS profile along the last
metres of fibre measured when the temperature of a 2-m section
changes from 10 �C up to 40 �C (the rest of the fibre is at 27 �C).
As also shown in Fig. 5d and Supplementary Fig. 2, results
demonstrate that the retrieved BFS profiles present no observable
distortion of the hotspot, while negligible delay is observed
when compared with the temperature evolution retrieved from
the raw measurements. This represents a key advantage of
video processing when compared, for example, with linear
temporal averaging, which generally leads to delays in the
temporal evolution of the measurand, as demonstrated in
Supplementary Fig. 2.

Denoising 1D data using 2D image processing. In sensors
measuring only 1D data, such as Raman-distributed temperature
sensors, a 2D image can be formed considering time as a second
dimension when stacking successive sequential measurements. To
validate the proposed method in this case, we use a generic
Raman-distributed sensor scheme12–14, as depicted in Fig. 6.
Using a 9-km-long sensing fibre, a spatial resolution of 2 m and a
sampling interval of 0.5 m, we measure 1D time-domain traces of
the spontaneous Raman anti-Stokes and Stokes backscattered
components using 4,096 averages, within a measurement time of
B25 s. Traces are consecutively measured, while the temperature
of B10 m of fibre (at the end of the sensing range) is changed
from room temperature (B25 �C) up to 40 �C.

As suggested, we form two 2D images (one for the Stokes and
another for the anti-Stokes signal) stacking together consecutive
time-domain traces. Figure 7a,b provide 2D image representa-
tions of the evolution of consecutive Raman anti-Stokes and
Stokes traces within the last 200 m of fibre. The temperature
evolution affecting the anti-Stokes trace amplitude around
8.86 km is evident in Fig. 7a. Although the entire set of data
contained in those images could be used for denoising, a sliding
temporal window of 21 consecutive measurements is chosen here.
Thanks to this restricted temporal window, the processing
time is highly reduced without significantly compromising the
denoising capabilities of the method63. Thus, to remove noise
from a ‘current’ measurement, matrices MaS(z,t) and MS(z,t) of
18,000� 21 points (including the raw measurements of the
‘current’ and previous 20 anti-Stokes and Stokes traces) are
processed by the 2D NLM method. This procedure is
continuously repeated for each new measured trace and
independently for the Stokes and anti-Stokes signals. After
applying image denoising to the raw measurements, the ratio
anti-Stokes to Stokes is calculated at each fibre location, and by
following a standard calibration procedure the actual distributed
temperature profile is finally obtained12,13.

Figure 8a shows the temporal evolution of the measured
temperature within the hotspot section, whereas Fig. 8b shows the
measured temperature profile around the hotspot after the fibre
temperature reaches a stable temperature of 40 �C. Results
demonstrate that no loss of spatial resolution and no distortion
or delay in the temperature evolution are induced by the
processing. Figure 8c shows that the SNR of 26.2 dB obtained at
8.86 km distance with the raw data can be significantly improved
up to 39.8 dB after 2D NLM denoising. This corresponds to an
SNR enhancement of 13.6 dB, which leads to a temperature
resolution improvement from 0.5 �C (obtained from raw data at
the fibre end) down to 0.022 �C after NLM processing, as shown
in Fig. 8d.

Discussion
In this study, we have proposed and demonstrated the use of
image/video denoising techniques58–67 as an efficient approach to
enhance the SNR of distributed fibre sensors. To the best of our
knowledge, this is the first time that the high levels of correlation
and redundancy contained in the multidimensional domain of
the measurements obtained by distributed fibre sensors are
exploited for performance improvement. Compared with
state-of-the-art methods, the multidimensional processing
approach here proposed turns much more efficient than
applying known (1D) denoising algorithms44–51 simply
replicated in the different dimensions of interest. For instance,
the independent use of 1D processing to denoise time-domain
traces and then applied to the processed data in frequency
domain leads to denoised data points that do not benefit from the
similitude and redundancy that can only be found in a 2D or 3D
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data structure containing the entire measured information. For this
reason, the method here proposed offers exceptional denoising
capabilities when compared with state-of-the-art techniques33–54,
enabling a remarkable and unprecedented SNR enhancement,
boosting the sensor performance24 up to about two orders of
magnitude with no loss of relevant information at minor added
cost. This translates, for instance, into an unmatched 100-fold
improvement in the measurand accuracy of conventional
distributed sensors. Furthermore, this multidimensional
processing can be freely implemented on top of existing
sophisticated methods for performance improvement33–43 such
as optical pulse coding and/or distributed Raman amplification,
thus resulting in a fully additional SNR enhancement.

Although the Brillouin system used in this study as a proof-of-
concept is thermal-noise dominated, it is worth mentioning that
the efficiency of the proposed technique would be similar if shot
noise, spontaneous-signal beat noise (when using an erbium-
doped fibre amplifier in the receiver) or relative intensity noise
(RIN) had an impact on the measurements57. In fact, the largest
contribution to noise in those cases is given basically by the
continuous-wave probe power reaching the receiver25,57, whereas
the response of the BOTDA trace only corresponds to a very
small fraction of this continuous-wave level (typically 1% for 1 m
spatial resolution), having a negligible impact on the signal noise.
Such sources of noise can therefore as well be considered additive
and uniform along the fibre57. When RIN dominates, traces can
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be affected by noisy patterns that could partially impact on the
gained SNR of the non-local means and WD methods used in this
study; however, we should mention that there exists a vast variety
of image processing algorithms and some of them could be more
efficient for removing RIN. Further research on this subject is still
necessary and goes beyond the scope of this study. If Brillouin
time-domain traces are affected by stationary patterns, for
instance, when polarization fading are imperfectly compensated,
then image processing will consider those patterns as real signal,
leading to a non-uniform noise removal along the fibre. However,
as fading are proportional to the Brillouin gain, they would
eventually affect the noise removal along the first kilometres of
fibre, where the SNR is still high, and therefore under normal
operation conditions there should be no real detrimental effects at
long distances (low SNR region dominated by white noise) where
the benefit from image denoising is more crucial. Furthermore, if
slow-varying temporal instabilities affect the sensor operation, for
instance, due to thermal fluctuations, the effectiveness of the
denoising might also be reduced when the temporal dimension is
considered in the processing. This is because slow-varying
fluctuations and instabilities could be interpreted by image/
video processing as a correlated signal containing relevant
(that is, non-random) information, thus imposing an ultimate
limit to the estimated SNR improvement.

Although the concept proposed in this study has only been
demonstrated for BOTDA and Raman sensors, it is envisaged
that image/video processing can also be applied to improve
SNR of other sensors, such as Brillouin optical-time domain
reflectometers21, as well as schemes based on frequency domain18

and correlation domain19,20. Furthermore, the concept can also

be extended to Rayleigh-based sensors7–11, such as phase-
sensitive optical time-domain or frequency-domain reflecto-
meters for quasi-static strain and temperature sensing, where
image/video processing can be applied to the 2D data
matrix containing the calculated correlation spectrum versus
distance9–11. Although correlation noise could dominate the
correlation spectrum in that case, some dedicated image/video
processing algorithm could still provide an important
enhancement in the contrast of the main correlation peak. This
certainly requires a further study and goes beyond the main
scope of this study. In addition, the approach followed for
denoising 1D traces can also be applied to standard reflectometry
measurements5,6, including even more sophisticated methods for
fibre characterization.

An interesting aspect that should be highlighted is that the 3D
approach here proposed has proved to be very efficient when
dealing with the dynamical character of the measurements. This
is because video sequences are also inherently non-stationary60–62

and therefore conventional video processing can easily deal with
the motion of pixels among different frames. This, if properly
tackled and implemented for instance in a dedicated graphic
processing unit, could have interesting applications in dynamic
distributed sensing22. Nevertheless, we should clarify that video
denoising typically follow two different approaches: (i) the use of
methods with no motion compensation60–62 and (ii) the use of
methods with explicit motion compensation68–70. Whereas the
3D NLM60–62 used here as a proof-of-concept belongs to the first
group, there exist also several movie denoising techniques
belonging to the second category, such as the 3D WD68–70.
Further investigation can be still carried out to verify the effecti-
veness of methods based on explicit motion compensation68–70.
However, we should mention that the concept of calculating the
motion of pixels, that is, the trajectory of pixels through
consecutive frames, is already inherently incorporated in the 3D
NLM method60,61 and therefore already demonstrated in this
study.

It is also worth mentioning that the experimental results shown
in this study have been obtained by simple image/video denoising
implementations, where parameters have been selected by
following standard recommendations and fine empirical adjust-
ments to maximize the noise removal avoiding any loss of
relevant information. However, more dedicated strategies for
adjusting parameters could be still developed and further
investigated. For instance, the possibility for auto-tuning
parameters and adaptive window sizes to avoid oversmoothing
fast spatial and temporal changes of the measurand could also be
investigated.

The processing time of the method could also be further
investigated and improved. No special hardware has been here
used to optimize the processing time. Considering the large
number of acquired points in the demonstration sensors, the
implementation of a standard NLM algorithm turns out to be
computationally very demanding. Using a conventional computer
with a 3.5-GHz processor and 8 GB RAM, the 2D NLM
processing time of each matrix of 18,000� 21 points in the
implemented Raman sensor turns out to be about 1 s. On the
other hand, denoising the 2D data matrix of 100,000� 200 points
in the BOTDA sensor takes about 30 s: this is about one order of
magnitude larger than the time required by the WD, which
requires o1 s for processing the same data. Furthermore, the 3D
NLM denoising of the same matrix size, but considering ten
consecutive frames, is about 4 min. This time can however be
highly reduced following specific strategies62,63: for example,
using parallel computation to distribute the operations on several
processors. In fact, the NLM method is intrinsically well suited
for parallelization and multithreading63, making this kind of
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approach very efficient and straightforward. Much further
improvement can also be obtained if dedicated algorithms and
programming are used to implement image/video denoising in a
dedicated graphic processing unit installed in a sensor system.
This shows that we are just at the early stages of research, only
unveiling a part of the promising potential of these techniques.

Although in this study we demonstrate only the effectiveness of
image denoising methods, other techniques for image enhance-
ment58 (different from denoising) can also be employed to
increase the measurement quality of distributed fibre sensors
in some particular conditions or to spot particular events
in a massive data flow. This can be obtained using dedicated
algorithms58, for instance, to sharpen image details, increase the
dynamic range of particular features, restore blurring effects,
enhance contrast and edges, and several other approaches. Many
of those methods actually offer the possibility to recognize objects
or patterns, which could be very helpful for the detection
of special features that could be present in the measurand.
Blur-removing strategies could also be investigated to sharpen the
detection of small events, comparable to or potentially shorter
than the spatial resolution of the sensor.

Methods
Non-local means. This technique59–63 proposes an original paradigm in noise
reduction by taking advantage of the high degree of redundancy contained in the
2D or 3D data measured by a distributed fibre sensor. The method is based
on the use of sliding neighbourhoods or 2D patches, which correspond to sets of all
pixels j¼ (x,y) that surround a certain pixel at i ¼ ðx0; y0Þ within a window of a
predefined size. The similarity between two pixels i and j is performed by
comparing, not only the values f ið Þ ¼ f ðx0; y0Þ and f(j)¼ f(x,y) assigned to the
pixels but the entire 2D patches or neighbourhoods surrounding the pixels of
interest59,60. For this, a so-called similarity neighbourhood gi surrounding the pixel

i is defined and then compared with all other similarity neighbourhoods gj of the
same size existing in the entire 2D matrix containing the data provided by the
sensor.

The degree of similitude and redundancy in the data is evaluated in a patch-by-
patch basis by calculating the Euclidean distance59,60 ||f(gi)-f(gj)|| between all
values f(gi) and f(gj) within neighbourhoods gi and gj. It turns out that the
Euclidean distance is small when a high level of similitude exist between both
compared windows gi and gj, and therefore the highly similar values f(i) and f(j)
associated to both pixels i and j can be averaged to reduce noise59,60. More
specifically, to eliminate noise from a pixel i in the 2D data matrix, the value f(i)
associated to such a pixel is processed by the NLM method calculating the
following weighted average59,60:

NLM f ið Þf g ¼
X

8j2I

w i; jð Þ � f jð Þ; ð1Þ

where I is the entire domain of the image, f(j) corresponds to the value of the image
associated to the pixel j and w(i,j) are the weighting factors calculated as59,60

w i; jð Þ ¼ 1
Z ið Þ e

�jjf gið Þ� f ðgj Þjj2

h2 ; ð2Þ

where h is a smoothing control parameter and Z(i) is a normalization factor
defined so that the sum of all values of w(i,j), for a given pixel i, results to be equal
to one. It should be noted that the weighting factors w(i,j) are independent of the
geometry and only depend on the similarity of the data around pixels i and j. This
feature characterizes the method as non-local, as pixels j whose surroundings are
similar to the pixel i are associated to a higher weight w(i,j), regardless of the
relative (spatial) distance between the two pixels.

A strict condition for the processing is that the similarity window size must be
comparable to the smallest details in the image59,60, which in the context of
distributed fibre sensing is associated to the spatial resolution capabilities of the
sensor. Considering that all implemented and analysed systems in this study
(Brillouin and Raman sensors) have a spatial resolution of 2 m and a sampling
interval of 0.5 m, the similarity window has been chosen of size 3� 3. This size,
corresponding to three longitudinal data points (that is, 1.5 m long), is smaller than
the spatial resolution of the system, ensuring that the processing does not have any
detrimental impact on the real spatial resolution of the sensor.
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Figure 8 | Impact of 2D image processing on 1D Raman traces. The performance of the sensor and the impact of 2D image denoising is evaluated while

the temperature of 10 m at the end of the sensing fibre is slowly increased in time. Results obtained from the raw data (blue) are compared with the ones

obtained from the denoised data using the 2D NLM method (red curve), in which a moving window of 21 consecutive traces is considered. (a) Temporal

evolution of the measured temperature at the hotspot location; this result shows that image processing induces no delay or distortion in the measured

hotspot temperature. (b) Distributed temperature profile near the hotspot location, demonstrating that the denoising process produces no perceptible loss

of spatial resolution. (c) SNR versus distance, validating an SNR enhancement of 13.6 dB at the end of the sensing range. (d) Temperature resolution versus

distance, showing that the use of 2D NLM method can improve the temperature uncertainty from 0.5 �C down to 0.022 �C.
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On the other hand, the parameter h controls the level of blurring of the method
and its optimum value depends on the noise level of the data. Following the
recommendation given in ref. 59, h has been set to ten times the noise standard
deviation s. In the Brillouin gain data shown in Fig. 2, the noise standard deviation
is s¼ 7.2� 10� 4; thus h has been set to 7.2� 10� 3. In the case of the Raman
sensor implemented in this work, the noise standard deviation of data in Fig. 7 is
evaluated to be s¼ 6.9� 10� 4 and therefore h has been set to 6.9� 10� 3.

Furthermore, we should consider the large amount of data obtained by the
implemented sensors. For instance, in the case of the implemented BOTDA sensor
20 M points (that is, 20 Mpix) are acquired to cover 50 km of sensing fibre, sampled
every 0.5 m and scanning 200 frequencies, so that the calculation of equations (1)
and (2) turns out to be extremely demanding. To reduce the processing time, the
strategy proposed in ref. 59 is applied, in which a spatially constrained search
window is defined. This window is larger than the similarity window, but smaller
than the entire 2D matrix (image) so that the search for repeated patterns is only
restricted to the area covered by this search window. In practice, using a similarity
window of 3� 3 and h¼ 7.2� 10� 3, it is empirically observed that a satisfactory
noise removal is obtained at a reasonable computational cost when defining a
search window of 13� 13. Increasing this search area has only led to a marginal
SNR improvement, at the cost of a substantial increase in the processing time.

As in the 2D case, the 3D spatio-temporal NLM method60–62 uses the self-
similarity of an image to reduce the noise of a pixel ðx0; y0Þ by averaging weighed
image sections at coordinates (x,y) that have high level of similarity; however, in
this case the search for repeated patterns is also extended to several consecutive
frames60–62. As the spatial features of the acquired BOTDA data are maintained,
the same parameters as in the 2D case are used for video denoising, but with the
difference that the search for repeated patterns is extended to ten consecutive
measurements.

Finally, in the case of processing 1D data provided by the implemented Raman
distributed sensor, two 2D images (one for the Stokes and another for the
anti-Stokes component) are formed by stacking together consecutive time-domain
traces. A sliding search window of size 23� 23 is used for 2D NLM denoising.

Wavelet denoising. The method is based on the 2D discrete wavelet transform
(DWT) and a wavelet shrinkage strategy64–66, and has been applied only to
BOTDA measurements as a proof-of-concept. To eliminate noise using a 2D WD
approach, data provided by the BOTDA sensor are decomposed using the Mallat
algorithm67 into versions of sub-images containing different levels of details. After
testing many mother wavelets, the wavelet sym7 has been chosen because of the
better denoising capabilities obtained in this case, while the number of levels of
decomposition has been set to 5. By comparing the wavelet coefficients obtained in
the 2D DWT with a predefined threshold, wavelet shrinkage is then applied to the
wavelet coefficients using a hard thresholding strategy66. This means that all
wavelet coefficients having an amplitude below a given threshold are associated to
noise and set to zero, whereas high-amplitude coefficients are associated to useful
information provided by the sensor. Following the recommendation given in
ref. 59, in this case the threshold level has been set to three times the noise standard
deviation from which a small adjustment has been performed to optimize the
amount of removed noise. Thus, considering that the noise standard deviation is
s¼ 7.2� 10� 4 for the BOTDA measurements, the threshold value is set to
2.6� 10� 3 (E3.6s). The output 2D data matrix (considered as the ‘output image’)
is reconstructed from the result of this thresholding stage, using an inverse 2D
DWT procedure, which converts the data back to the spatial domain of the image.
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