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Thermodynamics is a funny subject.

The first time you go through it, you don’t understand it at all.

The second time you go through it, you think you understand it,

except for one or two small points.

The third time you go through it, you know you don’t understand it,

but by that time you are so used to it, it doesn’t bother you any more.

— Arnold Sommerfeld

Dedicated to my parents
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Abstract
Lattice vibrations are the microscopic mechanism responsible for a large, if not dominant,

contribution to heat transport in crystalline insulators. These vibrations are described in

terms of phonons, collective excitations (or quasiparticles) in the form of waves of atomic

displacements inside a crystal. Phonons are traditionally considered to be the quasiparticles

responsible for carrying heat through the material. Heat transport is considered as a flux of

a phonon gas, diffusing from hot areas (high phonon densities) to cold areas (low phonon

densities) in an attempt to reestablish equilibrium, with phonon collisions being the source

of heat flux dissipation. However, as dimensionality is reduced, the motion of phonons

stimulated by temperature perturbations becomes correlated and this gas-like picture of

thermal transport in terms of phonons becomes invalid.

In this Thesis, we lay out an interpretation of thermal transport in 2D materials based on

the Boltzmann transport equation in the form of collective excitations of phonons. These

collective phonon excitations give raise to complex phenomena, such as high thermal con-

ductivities, that are otherwise unexplained. As another example, collective excitations, at

variance with conventional diffusive transport, can induce wave-like heat propagation, or

second sound. This had been found only in a few exotic materials at cryogenic temperatures,

but is present instead routinely in 2Dmaterials at room temperature.

The correlated-phonon description of heat transfer can be rationalised by introducing a new

collective excitation, called ’relaxon’, which is defined as the eigenstate of the collision operator.

Whereas only oversimplifying assumptions endow phonons with well defined relaxation times

(the average interval of time between collisions), relaxons have always well defined relaxation

times and permit an exact description of thermal transport. The complex dynamic of heat

transport in 2D is thus greatly simplified and a kinetic gas theory of thermal transport still

applies, provided that the gas is not constituted by phonons, but by relaxons.

Our work on thermal transport is part of a larger effort, aiming at the creation of a database of

numerically computed properties of materials. The high-throughput production of simulated

properties is a challenging task, since it necessitates the understanding of a physicalmodel, but

it also needs to face amyriad of technicalities and problems that hinder the execution of a large

number of calculations. In order to allow the creation of computational materials databases,

we developed AiiDA, an open-source automated interactive infrastructure and database

for computational science. This platform tackles the problems of creation, management,

analysis and sharing of data and simulations, summarized in the pillars of Automation, Data,

Environment and Sharing. Automation is achieved by management of remote computational
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resources and the encoding of workflows, that allows the execution of complex sequences

of calculations. The tight coupling between automation and data storage, handled by the

platform, enables full reproducibility of the results and a suitable database design allows for

efficient data analysis tools. Sharing of scientific knowledge is addressed by providing tools

for distribution of data and of the underlying workflows that generated them, creating an

ecosystem for computational materials science.

Keywords: thermal conductivity, heat, transport, first principles, automation
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Riassunto
Le vibrazioni atomiche sono il principale meccanismo responsabile per il trasporto termico in

un cristallo dielettrico. Queste vibrazioni sono descritte in termini di fononi, cioè eccitazioni

collettive di atomi (o quasiparticelle) in forma di onde di vibrazioni atomiche nel cristallo.

Tradizionalmente i fononi sono considerati le quasiparticelle responsabili del trasporto di

calore in unmateriale, modellizzato come il flusso di un gas che diffonde da zone calde (ad

alta concentrazione di fononi) a fredde (a bassa concentrazione di fononi), nel tentativo di

ristabilire l’equilibrio termico attraverso collisioni tra quasiparticelle che dissipano il flusso di

calore. Tuttavia, riducendo la dimensionalità, il moto dei fononi stimolato da una perturba-

zione termica diventa correlato e non è più possibile descrivere il trasporto termico di fononi

come quello di un gas.

Nel corso di questa Tesi proporremo, usando l’equazione del trasporto di Boltzmann, un’inter-

pretazione del trasporto termico nei cristalli 2D in termini di eccitazioni collettive di fononi.

Queste possono dar luogo a fenomeni complessi, come conducibilità termiche elevate altri-

menti inspiegabili. Inoltre, possono propagare il calore in forma di onde termiche, a differenza

della più comune diffusione di calore, un fenomeno finora osservato solo in pochi materiali

esotici a temperature prossime allo zero assoluto, ma comune in materiali 2D a temperatura

ambiente.

Il trasporto termico può essere spiegato formalmente introducendo una nuova eccitazione

collettiva, il rilassone, definita dagli autostati dell’operatore di collisione. Al contrario dei

fononi, per i quali si possono definire tempi di rilassamento (cioè il tempomedio tra eventi

di collisione) solo entro certe approssimazioni, i rilassoni hanno tempi di rilassamento ben

definiti e permettono una descrizione esatta del trasporto termico. La dinamica del trasporto

termico può così essere semplificata, ottenendo una descrizione simile alla teoria cinetica del

trasporto nei gas, a patto di non utilizzare i fononi come il gas di eccitazioni rilevanti per il

trasporto termico, bensì i rilassoni.

Il nostro lavoro sul trasporto termico fa parte di un progetto più vasto, che punta a realizzare

una banca dati di proprietà di materiali calcolate numericamente. L’esecuzione su larga

scala di simulazioni è una sfida intricata, e richiede non solo la comprensione dei modelli

fisici, ma deve anche far fronte ad una miriade di problemi e tecnicismi che ostacolano il

calcolo di un grande numero di proprietà. Per permettere la creazione di una tale banca dati,

abbiamo sviluppato AiiDA, un’infrastruttura informatica per automatizzare la scienza com-

putazionale. Questa piattaforma è costruita attorno ai concetti chiave di creazione, gestione,

analisi e condivisione dei dati e delle simulazioni. L’automatizzazione viene realizzata con
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un controllo delle risorse computazionali remote e dalla scrittura programmatica di flussi di

lavoro che permettono l’esecuzione di una serie complessa di calcoli. La gestione condivisa di

automatizzazione e salvataggio dati permette la completa riproducibilità dei risultati, mentre

un’architettura adeguata della banca dati consente la realizzazione di strumenti per l’analisi

dati ad alte prestazioni. La condivisione della conoscienza scientifica è affrontata rilasciando

funzionalità per la distribuzione dei dati e dei flussi di lavoro che li hanno generati, creando

così un’ecosistema per la scienza computazionale dei materiali.

Parole chiave: conducibilità termica, calore, trasporto, principi primi, automazione
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Introduction

The development of contemporary hardware architectures is encountering enormous chal-

lenges in the thermal and energy management. The increasing device density in electronic

chips leads to the formation of hot spots, i.e. areas where the operating temperature grows so

high that causes damage or melting. In fact, dissipated heat fluxes have become so high that

contemporary CPUs are not designed anymore to maximise their computational power, but

rather to minimise the energy cost to solution. For these reasons thermal management is a

key factor to sustain the evolution of modern electronics.

Much work had been done in the 1950s-1960s to explain thermal transport in conventional

semiconductor crystals, such as silicon. This work set the foundations for the characterisation

of thermal conductivity, i.e. the capability of a material to conduct heat, and has constituted

the backbone to understand heat management in semiconductors in the following decades.

In the last few years, the study of heat transport found renewed interest [36, 46], driven by

the miniaturisation of microchips, novel experimental techniques, and the emergence of

two-dimensional (2D) materials. In particular, the highest thermal conductivity among known

materials has been measured in graphene [37]. Despite this, there is not, to-date, a universal

consensus on its precise value, with theoretical and experimental estimates varying by at least

an order of magnitude.

The large uncertainty in quantifying thermal conductivities of 2Dmaterials originates from

a different phenomenology for thermal transport that is not present in conventional bulk

crystals, but emerges when the relevant sizes are brought to the nanoscale, or when dimen-

sionality is reduced. Several assumptions, correct in bulk crystals, lose their validity in 2D.

At the same time, the computational capabilities of modern computers have made possible

to solve the Boltzmann transport equation with high accuracy and to abandon oversimplify-

ing approximations. Therefore, we are now in an ideal situation to reconsider the prevalent

approaches to thermal transport.

In dielectric crystals, lattice vibrations are responsible for the largest contribution to thermal

conductivity. However, analysing these and extracting the value of thermal conductivity is a

quite formidable task and in fact there is no universal theory of heat transport that holds at any

temperature or that can be solved taking into account all possible effects. In this Thesis we will

use exclusively the Boltzmann transport equation, which is a formalism that gives an excellent

1
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description of thermal transport around room temperature conditions, the most interesting

for applications. We will not discuss the limits of validity of the Boltzmann equation in this

Thesis, as it is a fairly broad and complex topic still subject of active research; we will just

mention that methods like the Green’s function approach have greater generality [80] (at the

price of substantially increased complexity). Luckily, the theory has proved in many cases

to be an adequate approximation and is one of the most useful theoretical frameworks for

interpreting thermal transport.

The vibrations of atoms in crystals are described in terms of phonons, collective excitations

of atoms describing waves of atomic displacements that propagate inside the crystal. The

dynamics of the phononwavepackets is the subject of investigation of the Boltzmann equation

and the knowledge of their populations allows the quantification of thermal conductivity.

Thermal transport is traditionally modeled according to the kinetic theory of gases: the hot

and cold areas of the crystals correspond to location of higher and lower densities of phonons

and the system evolves according to the second law of thermodynamics, trying to reestablish

a homogeneous density in an attempt of maximising the entropy. To each phonon is assigned

a specific heat (the energy necessary for changing the temperature by 1 degree), a velocity

and a mean free path (the average distance between phonon scattering events); the thermal

conductivity is related to the product of these three quantities. However, whereas the specific

heat and the velocity of phonons are well defined, the phonon mean free path is only an

approximated concept. The motion of phonons is correlated by the presence of scattering

events and it is not possible to identify a distance between phonon scatterings, since this

depends also on the many-body dynamics of phonons. Only within some approximations

it is possible to define a phonon mean free path. Although these approximations typically

hold in conventional 3D crystals, they fail in lower dimensionality or low temperatures, and

an improved description of thermal transport is needed.

In this Thesis we provide a novel interpretation for thermal transport that is based on collective

excitations of phonons. First we show that heat transport in low dimensional materials is

dominated by the presence of normal scattering events. These collisions preserve heat flux,

with heat being mostly shuttled between phonon modes. The correct correlated phonon

dynamics can only be described by going beyond the common approximation that describe

heat transport as being carried by single phonon excitations, and only the inclusion of collec-

tive phonon excitations allows a quantitative characterisation of thermal properties, e.g. the

extremely high thermal conductivity found in graphene. Correlated dynamics also leads to the

failure of Fourier’s law, which describes the relation between heat flux and the temperature

profile inside the material. A first failure is found when thermal conductivity depends on the

sample size, since the mean free paths of collective excitations are comparable with typical

crystal sizes. Moreover, collective excitations admit the propagation of heat in the form of heat

waves (second sound) rather than heat diffusion, a phenomenon that has been observed up

to now only in few exotic bulk crystals at cryogenic temperatures, but that instead we find

common in 2Dmaterials. Finally, we rationalise the collective behavior by introducing the

concept of relaxons, a new set of collective excitations that are eigenstates of the collisions

2
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operator. Thermal transport can then be described exactly using the kinetic theory of gas, with

the relevant gas for thermal excitations being made not by phonons, but by relaxons.

Many insights on thermal transport that are given in this Thesis have been possible only thanks

to computational experiments. Although increasing computational capabilities allow us to

solve physical models with improved accuracy, they can impose a myriad of problems and

technicalities when running simulations. As a result, most of the time is spent onmanaging

the computational effort and on handling data, rather than focusing on the scientific content.

This suggests the need for a dedicated software infrastructure that speeds up the productivity

of a researcher. The development of such platform is however technically challenging, as an

implementation must be flexible and general, while being also easy to use. In addition, a soft-

ware infrastructure should also tackle the problem of reproducibility of numerical simulations

(often missed in several publications) and facilitate the sharing of data. With this vision in

mind we developed the platform AiiDA, an open-source software that we tuned first to the

demands of materials science, and built around the pillars of automation, data, environment

and sharing. Many of the results presented in this Thesis have indeed been realized with AiiDA

workflows.

The Thesis will be structured as follows.

In Chapter 1 we briefly recall the definition of a crystal and the harmonic lattice, introducing

the concept of phonons. Phonons can nowadays be routinely computed from first principles

using density-functional perturbation theory, which has been used to compute all the lattice

properties of this Thesis; we report here the basic notions of this technique. We also show with

simple arguments drawn from statistical mechanics how we can obtain the distribution of

phonons at equilibrium.

Phonon scattering is introduced in Chapter 2. Wemainly focus on the role of three-phonon

processes and phonon-isotope scattering, that in most crystals at room temperature are the

most important sources of thermal resistivity. We also introduce the distinction between

normal and Umklapp scattering that will be used later in the analysis of the collective phonon

excitations.

In Chapter 3 we present the Boltzmann transport equation. This is the theoretical frame-

work that we will use to study phonons in out-of-equilibrium conditions and show how this

equation, combined with the scatterings probabilities, can be used to compute thermal con-

ductivity. Moreover, wewill also recall the variational interpretation of the Boltzmann equation

and the Matthiessen rule.

Chapter 4 focuses on approximations and algorithms for solving the Boltzmann transport

equation. First we summarize two common approaches, the single-mode relaxation time

approximation and the Callaway approximation. Secondly, we show three methods for solving

exactly the Boltzmann equation with iterative, variational and diagonalisationmethods. In

connection with the latter, we introduce the concept of relaxons.

3
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Surface effects are introduced in Chapter 5. We explain why surface scattering cannot be

treated at the same level of other intrinsic phonon processes and show how the thermal

conductivity of a finite sample can be computed in absence of intrinsic scattering or within

the single-mode relaxation time approximation.

We start presenting our numerical results in Chapter 6, where we show that the single-mode

relaxation time approximation is violated inmany layered and two-dimensionalmaterials, and

introduce the concept of collective phonon excitations. We show that normal scattering events

are dominant in 2Dmaterials at any temperature, at variance with 3D solids where this can

only happens at cryogenic temperatures. Under these conditionsm, hydrodynamic regimes

emerge and the Callaway model becomes a good approximation for thermal transport.

In Chapter 7 we discuss two cases in which Fourier’s law does not describe thermal transport.

The first case is found when the size of the sample becomes comparable or much smaller

than the mean free paths of the heat flux excitations, as it is often the case for the size of 2D

samples used in experiments. Another case is the response to temperature oscillations, and

we will see that collective excitations induce a response of thermal waves (also called second

sound), typically negligible in most materials at room temperature and instead common in

2Dmaterials.

The concept of relaxons is numerically investigated in Chapter 8, illustrating the relaxon

properties that can be obtained from the diagonalisation of the scattering matrix. We show

that Matthiessen’s rule is violated in 2Dmaterials and that the iterative method gives divergent

results for graphene at room temperature.

Finally, Chapter 9 contains an overview of the efforts in the automatisation of simulations. We

introduce the ADES model and the four pillars that a computational platform should meet in

order to be an effective tool in computational science; then we discuss their implementation

in the AiiDA platform we developed (www.aiida.net).
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1 Phonons

A Thesis about lattice thermal transport necessarily needs to start with an introduction on the

quantum theory of atomic vibrations in crystals. The characterising property of a crystal is

that atoms belonging to this material occupy an ordered lattice of positions in space. However,

the atoms in the crystal are not perfectly frozen and stand still at these positions; instead they

typically oscillate around their equilibrium positions. The temperature is in fact a measure of

the amplitude of the atomic vibrations: as temperature increases, so does the amplitude of the

atomic motion. A direct discussion of how each atom is moving is not practically viable, it is

instead muchmore convenient to introduce collective variables and study the displacement

of atoms in the form of waves, called phonons.

In this chapter, we will give a brief overview of phonon properties. The breadth of the topic is

such that extends beyond the purpose of this Thesis; we will simply present the main results

that are needed for the later developments on thermal transport. Fortunately, there are many

good books on the subject (Refs. [34, 132, 123] among the various) where the reader can find

complementary and additional discussions on phonons. We will start recalling in Section

1.1 the definition of a crystal lattice and its reciprocal lattice. In Section 1.2 we consider the

lattice Hamiltonian and solve it in the harmonic approximation, introducing the concept of a

phonon and its characteristic properties. The temperature is then introduced in Section 1.3,

explaining how the quantum numbers of phonons can be determined with the help of basic

statistical physics. Finally, we will briefly overview in Section 1.4 how the parameters entering

the lattice Hamiltonian (the force constants) can be computed using density functional theory,

a successfull theory that allows to get microscopic parameters with a favorable quality/cost

ratio and without the need for empirical parameters.

1.1 The crystal lattice and the reciprocal lattice

A crystal structure is a highly ordered arrangement of atoms. The space occupied by the crystal

can be partitioned in unit cells, which is a volume of the 3D space defined by three lattice

vectors (a1,a2,a3). A unit cell, if repeated throughout the space, is such that the complete

5



Chapter 1. Phonons

a1
a2 B2

Figure 1.1 – The crystal of graphene. The vectors ai are the lattice vectors defining the
periodically repeated unit cell (enclosed in lines), and the vectors B1 = (0,0) and B2 define the
position of the atoms in each unit cell.

crystal can be recovered. More precisely, we define the Bravais lattice as an infinite set of

points defined by the lattice vectors:

R l = l1a1+ l2a2+ l3a3 , (1.1)

where the three vectors ai , that do not lie in the same plane, are known as primitive vectors and

li are any integer. The original crystal can be recovered by placing one unit cell at each point of

the Bravais lattice. An important property of the Bravais lattice is the translational invariance,

that is, regardless of where one sets the origin of the reference system (R0), the crystal still

looks the same. On top of the Bravais lattice, which is merely a geometric construction, we

place atoms in the positions specified by the vectors:

R l +Bb , (1.2)

where b is a label over the basis of atoms, i.e. the atoms present in each unit cell whose

positions are identified by the basis vectors Bb .

In materials of lowered dimensionality, such as graphene in 2D, the same arguments of above

hold, but the vectors span only a 2D space and a3 is not needed anymore. As an example it is

easy to see that the crystal of graphene, of great interest for this Thesis, can be defined as (see

6



1.1. The crystal lattice and the reciprocal lattice

Figure 1.1):

a1 =
�
3a(1,0) , (1.3)

a2 =
�
3a(−1

2
,

�
3

2
) ,

B1 = a(0,0) ,

B2 = a(0,1) .

However, it should be pointed out that the choice of ai and B i is not unique, and several

equivalent choices exist to describe the same crystal.

A number of physical properties of a lattice, phonons included, are conveniently described

as waves of the form eik ·r . To this aim, it is convenient to build the reciprocal lattice, i.e. the

set of wave vectors that yield plane waves with a periodicity compatible with a given Bravais

lattice. Therefore, we try to find all vectors G such that

eiG ·(r+R) = eiG ·r , (1.4)

for any Bravais lattice vector R (we drop the labeling l for simplicity) or equivalently

eiG ·R = 1 . (1.5)

We don’t provide a constructive proof to find the vectors G , however we introduce three

reciprocal lattice vectors:

b1 = 2π
a2×a3

a1 · (a2×a3)
(1.6)

b2 = 2π
a3×a1

a1 · (a2×a3)

b3 = 2π
a1×a2

a1 · (a2×a3)
.

Since the vectors bi satisfy the relation

ai ·b j = 2πδi j , (1.7)

it can be shown that any reciprocal lattice vector G must be of the form

G = g1b1+ g2b2+ g3b3 , (1.8)

with gi any integer. Just like the direct lattice vectors ai define a unit cell in real space, so the

reciprocal lattice vectors bi define a cell in the reciprocal lattice.

We shall see that the atoms in the crystal move under the presence of a potential V (r ), r

being the position vector, which has itself the same periodicity of the underlying lattice:

V (r +R)=V (r ), for any lattice vector R . This constrain arises from the translational invariance

7



Chapter 1. Phonons

of the crystal. The non-interacting atommoving in a periodic potential are characterised by

the Bloch theorem [34]:

Theorem: The eigenstatesψ of a single-particle Hamiltonian H =− ħ2

2m∇2+V (r ), where V (r )=
V (r +R) for all R in a Bravais lattice, can be chosen so that associated to each ψ is a wave

vector q such that:

ψ(r +R)= eiq ·r ψ(r ) . (1.9)

The theorem naturally introduces the wave-vector q as a quantum number stemming from

the periodicity of the Hamiltonian. One can thus infer that rather than working in the direct

lattice, the system can be solved in the reciprocal lattice (the clear advantage of this operation

will be explained in the next section). To make this transformation, we start by considering a

Bravais lattice of finite size (practical constraints impose that we can only work with a finite

number of atoms), in which the integer number li appearing in Eq. 1.1 can only assume values

from 0 to Ni . Since we are interested in an infinite crystal, we reduce the finite size artifacts by

imposing the Born–Von Karman boundary conditions:

ψ(r +Niai )=ψ(r ), ∀i . (1.10)

It can be shown that the properties of the infinite crystal are recovered whenNi goes to infinity.

Therefore, we will always work (at least implicitely) with a crystal of finite size whose volume

is given by V =N1a1 · (N2a2×N3a3) and that contains N =N1N2N3 unit cells.

Combining the Bloch theorem with the boundary condition, we find:

ψq (r +Niai )= eiNi q ·a iψq (r ), ∀i , (1.11)

which requires:

eiNi q ·a i = 1 . (1.12)

This condition is very close to the one defining the reciprocal lattice. The only allowed values

of the wave vector q are:

q = n1

N1
b1+ n2

N2
b2+ n3

N3
b3 , (1.13)

where ni are any integer from 0 to Ni . Wave vectors defined by other values of ni are unneces-

sary, since the periodicity of the complex exponential will lead to terms already described by

the numbers in the chosen range. Therefore, all the eigenstates of the Hamiltonian are labeled

with a quantum number q that does not span an infinite range of values, but is instead limited

to the values inside the cell defined by the reciprocal lattice vectors. Actually, rather than

the cell defined by the vectors bi , it is customary to work with the Brillouin zone. Given the

reciprocal lattice, the Brillouin zone is built as the locus of points that are closer to the origin
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1.2. Harmonic approximation

b1

b2
K

M

Figure 1.2 – The reciprocal lattice vectors of a crystal of graphene b1 = 2π
a (

�
3
3 , 13 ), b2 = 2π

a (0, 23 ),
the corresponding hexagonal Brillouin zone and the high symmetry points relevant for phonon
properties.

of the reciprocal lattice than to any other reciprocal lattice points. For example, the Brillouin

zone of graphene is reported in Figure 1.2, together with the reciprocal lattice vectors.

The last two properties recalled in this section, useful for later, are two summations:

∑
q
eiq ·R l =

⎧⎨
⎩ 0 (R l �= 0)

N (R l = 0)

∑
l
eiq ·R l =

⎧⎨
⎩ 0 (q �=G)

N (q =G)
. (1.14)

These results state that the phase factors cancel out each other in the summation, unless they

are computed at particular values of q or R . Hence, the points of the reciprocal or direct lattice

are the only locus of points for which many integrals will have a non zero value.

1.2 Harmonic approximation

The atoms in a crystal are described by the following lattice Hamiltonian:

H =∑
lb

p2(lb)

2mb
+V (x l1b1 ,x l2b2 , . . . ) , (1.15)

where x lb = R l +Bb and p lb identify the position and the momentum of every atom (lb) in

the crystal, and V is the potential energy surface felt by the atoms, in general a function of

the atomic positions. This Hamiltonian can be justified at a fundamental level, since it is the

Hamiltonian to which the atoms are subject under the Born-Oppenheimer approximation.
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Chapter 1. Phonons

The solution of the general Hamiltonian is an extremely complicated task for a generic po-

tential V . The typical procedure is to study the system in the limiting case of atoms sitting on

their equilibrium site and vibrating by small oscillations around their equilibrium positions.

In this case, we introduce the displacement u(lb):

u(lb)= x lb − (R l +Bb) , (1.16)

and work in the limit for which u(lb) is small for every atom. Let us then expand the potential

V in a Taylor series around the equilibrium positions (u(lb)= 0):

V =V0+
∑
lbα

∂V

∂uα(lb)

∣∣∣∣
0
uα(lb)+ 1

2

∑
lbαl ′b′β

∂2V

∂uα(lb)∂uβ(l ′b′)

∣∣∣∣
0
uα(lb)uβ(l

′b′) (1.17)

+ 1

3!

∑
lbαl ′b′βl ′′b′′γ

∂3V

∂uα(lb)∂uβ(l ′b′)∂uγ(l ′′b′′)

∣∣∣∣
0
uα(lb)uβ(l

′b′)uβ(l
′′b′′)+ . . .

=V0+V1+V2+V3+ . . .

where we use the greek letters to label the cartesian directions. The first term V0 is a constant

term of the energy that can be set to zero without loss of generality. The term V1 corresponds

to the forces acting on the atoms, which at the equilibrium positions need to be zero. The

first non-zero term is V2, which describes the second derivatives of the potential with respect

to the atomic displacements. For the rest of this chapter we will stop at the term V2 which

identifies the harmonic Hamiltonian, but the higher order term will be reintroduced later.

Let us therefore consider the harmonic crystal Hamiltonian:

H =
∑
lb

p2(lb)

2mb
+ 1

2

∑
lbαl ′b′β

φαβ(lb, l
′b′)uα(lb)uβ(l

′b′) , (1.18)

where we simplified the notation introducing the dynamical matrix φ:

φαβ(lb, l
′b′)= ∂2V

∂uα(lb)∂uβ(l ′b′)

∣∣∣∣
0
, (1.19)

where these matrix terms are also called force constants, due to the similarity with the Hamil-

tonian of a spring. Among the various properties of the dynamical matrix, we recall that, by

translational symmetry, the terms of the dynamical matrix must only depend on the distance

between the Bravais lattice sites:

φαβ(lb, l
′b′)=φαβ(0b, (l

′ − l )b′) . (1.20)

Even if the harmonic Hamiltonian is simpler than the original one, the solution in the position

and momentum representation is still not self-evident. The difficulty arise due to the fact that

the force constants couple the motion of the atoms. However, the motion of the atoms can be

decoupled if instead of studying their motion atoms by atoms, we study their motion as waves

10



1.2. Harmonic approximation

of displacements, or, in other words, we look for solution in the form of waves. To this aim, we

switch to a reciprocal space representation by introducing a set of collective variables:

u(lb)= 1�
V

∑
q

X (qb)eiq ·R l , (1.21)

p(lb)= 1�
V

∑
q

P (qb)e−iq ·R l .

Now, each displacement andmomentum is thought as a superposition of waves, each with

wave vector q . Mathematically, this procedure corresponds to applying a Fourier transform of

the coordinates. Adopting these coordinates, the harmonic Hamiltonian becomes:

H = 1

V

∑
qb

P (qb) ·P†(qb)

2mb
+ 1

2V

∑
qbb′αβ

φαβ(bb
′|q)Xα(qb)X

†
β
(qb′) , (1.22)

where we Fourier transformed the dynamical matrix as:

φαβ(bb
′|q)=∑

l ′
φαβ(0b, l

′b′)e−iq ·R l ′ . (1.23)

The transformation carries a great advantage over the previous representation. Whereas

previously the potential term was correlating all atoms, with the reciprocal space description

instead the waves of different wave vector are decoupled. Therefore, the problem is greatly

simplified and rather than solving one large equation involving all the atomic coordinates,

now we can solve much simpler equations (in fact we will solve them analytically), each for

every wave vector q . More rigorously, the Hamiltonian now is a sum of separate terms:

H =∑
q
Hq , (1.24)

where each Hq can be solved separately. The Bloch theorem also comes at hand now, since

one of its consequences is that the only relevant wave vectors q are those belonging to the

Brillouin zone.

To proceed, we diagonalise the dynamical matrix at each q-point:

∑
b′β

1�
mbmb′

φαβ(bb
′|q)eβ(b′|q s)=ω2

q seα(b|q s) , (1.25)

where s = 1,3Nat is a set of eigenvalue indices, Nat is the number of atoms in the basis, ω2 are

the eigenvalues and e the eigenvectors.

Although we could solve the Hamiltonian just with these transformations, it will be useful for
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Chapter 1. Phonons

later discussion to introduce another set of operators as:

X (qb)=−i∑
s

√
ħ

2mbωq s
e(b|q s)(a†q s −a−q s) , (1.26)

P (qb)=
∑
s

√
ħmbωq s

2
e∗(b|q s)(aq s +a†−q s) ,

expressing the X and P operators in terms of the so called creation and annihilation operators.

In this representation, the Hamiltonian has taken the form of an ensemble of harmonic

oscillators in the second quantization:

Hharm =∑
q s

ħωq s

(
1

2
+a†q saq s

)
, (1.27)

where from the commutation relations of the position andmomentum:

[uα(l ,b),pβ(l
′,b′)]= iħδl ,l ′δb,b′δα,β , (1.28)

we can obtain the commutation relations for the creation and annihilation operators:

[aq s ,a
†
q s]= δq ,q ′δs,s′ , (1.29)

indicating a bosonic statistic for the waves of atomic displacements. Starting from the com-

mutation relations, the Hamiltonian of the harmonic oscillator can be solved exactly (for a

detailed explanation, see for example Ref. [54]). The main results are that the state of the

system is represented by the state:

|nq1s1 ,nq2s2 , . . .〉 = |nq1s1〉⊗ |nq2s2〉⊗ . . . , (1.30)

where |nq s〉denotes the eigenstates of the operator a†q saq s , also eigenstates of theHamiltonian,

which are the phonons. The eigenvalues nq s of the operator a
†
q saq s are called the phonon

excitation number. The eigenvalues of the Hamiltonian are ħωq s
(
nq s + 1

2

)
, so that the total

energy of the system is just the sum of the separate oscillators:

E =∑
q s

(
nq s + 1

2

)
ħωq s , (1.31)

showing how the total energy of the system is directly related with the excitation number nq s .

Each excitation number, i.e. each quantum of energy, defines a phonon.

The name of the operators a† and a, the creation and annihilation operators, come from

noting two properties:

a†q s |nq s〉 =
√
nq s +1|nq s +1〉 (1.32)

aq s |nq s〉 =
√
nq s |nq s −1〉 .
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1.3. Equilibrium distributions

Therefore, we call a† the creation operator, since its action on the state of the system creates

one phonon excitation (and thus increases the total energy). Similarly, the action of a destroys

a phonon and is thus called the annihilation operator.

Before moving on, there are some properties not necessary to understand the harmonic

oscillator but of great help in later chapters. Applying backwards the various coordinate

transformations, the time dependent displacement of an atom (lb) can be expressed in terms

of the creation and annihilation operators as:

uα(lb)(t )=
∑
q s

( ħ
2V mbωq s

) 1
2

(aq s −a†−q s)eα(b|q s)ei (q ·R l−ωq s t ) . (1.33)

In this expression it is also more clearly stated that the displacement of an atom is a superposi-

tion of monochromatic waves and that, since it is not linear in a†a, it is not an eigenstate of

the Hamiltonian.

The group velocity of the monochromatic wave, i.e. the phonon group velocity, is:

vq s =
∂ωq s

∂q
. (1.34)

Finally, there are some useful symmetry properties of the phonons, all coming from the

hermiticity of the matrix φ:

φ∗
αβ(bb

′|q)=φβα(b
′b|q) . (1.35)

In particular, we note that:

e∗α(b|−q s)= eiξeα(b|q s)
v−q s =−vq s

ω−q s =ωq s ,

where ξ is any real number. Therefore, phonon energies/velocities are even/odd under inver-

sion of wave vector.

1.3 Equilibrium distributions

In the previous section we learned that the energy of the harmonic crystal is determined

by the knowledge of the force constants φ and of the phonon occupation numbers. In this

section we focus on how to obtain the latter. The second quantization of quantummechanics

alone does not prescribe a way to determine the phonon occupation numbers. Also, they

are not directly related with the atomistic details of the system, which instead determine the

phonon frequencies. We have to introduce some fundamental knowledge of statistical physics
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Chapter 1. Phonons

to predict what is the most likely number of phonons. As a matter of fact, most of the problem

of thermal transport consists in trying to find a good guess for nq s in presence of a gradient of

temperature.

At equilibrium conditions the problem is much simpler and can be solved with few considera-

tions. In this case, the most likely phonon occupation number, i.e. the thermal equilibrium,

can be found by entropy maximisation (which is a fundamental law of thermodynamics). It

can be shown that the entropy of an ensemble of non-interacting bosons (as it is the case for

the harmonic crystal) is [90]:

S

kB
=∑

q s
[(nq s +1)log(nq s +1)−nq s log(nq s)] . (1.36)

Before maximising the entropy, we impose a constrain that keeps the energy constant to a

value E :

L =∑
q s
[(nq s +1)log(nq s +1)−nq ,s log(nq s)]−βE , (1.37)

where the Lagrange multiplier β = 1
kBT

, defining the temperature of the system T , is the

parameter that controls the total energy. Therefore, we look for the extremal value of the

functional L :

δL

δnq s
= 0 (1.38)

log(nq s +1)− log(nq s)−βħωq s = 0 . (1.39)

Inverting the relation, we obtain the Bose–Einstein distribution, i.e. the phonon excitation

number at thermal equilibrium:

n̄q s = 1

eβħωq s −1
. (1.40)

With this result we can compute the expectation value of several quantities at thermal equilib-

rium (in the harmonic approximation). For example, the internal energy of a harmonic crystal

at temperature T is:

U = 1

N

∑
q s

ħωq s
(
n̄q s + 1

2

)= 1

N

∑
q s

ħωq s

2
+ 1

N

∑
q s

ħωq s

eβħωq s −1
. (1.41)

The specific heat at constant volume can also be obtained from the previous relation:

Cv = ∂U

∂T
= 1

N

∑
q s

∂

∂T

ħωq s

eβħωq s −1
= 1

N

∑
q s
n̄q s(n̄q s +1)

(ħωq s)2

kBT 2 = 1

N

∑
q s
Cq s . (1.42)

Another important distribution is the most probable under the constrain of conservation of
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1.4. Ab initio treatment

energy andmomentum. To this aim, we maximise the functional:

L =∑
q s
[(nq s +1)log(nq s +1)−nq ,s log(nq s)]−βE −Λ ·P (1.43)

where we introduced an additional Lagrange multiplierΛwith the purpose to keep constant

the momentum P :

P =∑
q s

qnq s . (1.44)

We set to zero the functional derivative:

δL

δnq s
= 0 (1.45)

−[log(nq s +1)− log(nq s)]−βħωq s −Λ ·q = 0 . (1.46)

Inverting the previous relation, we obtain the drifting distribution:

ndrift
q s = 1

eβħω�qs−Λ·q −1
= 1

eβ(ħωq s−V drift·q)−1
, (1.47)

where in the last equality we introduced the drifting velocity V drift such that V driftβ=Λ, which

is sometimes more convenient for a physical interpretation. The equilibrium distribution for

a momentum conserving distribution is therefore quite similar to the Bose–Einstein one, but

"displaced" by the action of the drift velocity.

1.4 Ab initio treatment

Statistical physics gives us the tool to compute the phonon excitation numbers. The last

missing ingredient is to find a good estimate of the force constants φ, which is ultimately

related with the phonon frequencies ω. Density functional theory (DFT) [79, 87] nowadays

offers the best tradeoff between cost and accuracy to computemicroscopic parameterswithout

the introduction of any empirical parameter. As a proof of its success, twelve papers in the

top-100 list of the most cited papers are related with this theory [127], and 2 of them are in the

top 10. Let us then show how density functional theory enters the computation of the force

constants and sketch the main ideas behind the method. The topic is still relatively recent

but quite broad and still under active development, therefore we refer to dedicated books for

more details, for example Refs. [101, 64].

The exact state of the crystal is in principle described by the Schrödinger equation for a system

of Nat atoms and Ne electrons. The problem is in practice almost impossible to solve exactly

except for a very few simple cases. Therefore, one tries to simplify the problem by noting

that, since atoms are more massive than electrons, they also have a much slower dynamics.

Therefore, one adopts the Born–Oppenheimer approximation, in which one solves for the
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Chapter 1. Phonons

electronic degrees of freedom keeping the ions (atoms) frozen at fixed positions. Within this

approximation, the electrons are described by the Hamiltonian:

HBO(R)=− ħ2

2m

∑
i

∂2

∂r 2
i

+ e2

2

∑
i �= j

1

|r i − r j |
+VR (r )+EN (R) , (1.48)

where the indexes i , j label the electrons, the indexes I , J label the ions, VR is the ion-electron

electrostatic potential:

VR (r )=−∑
i I

ZI e2

|r i −R I |
, (1.49)

where ZI e is the ionic charge and the ion-ion interaction is given by EN :

EN (R)= e2

2

∑
I �=J

ZI ZJ
|R I −R J |

. (1.50)

The ground state energy of this Hamiltonian defines a potential energy surface, i.e. an energy

as a function of the ionic positions in the sample. The ions instead are subject to the lattice

Hamiltonian (Eq. 1.15), where the potential V used throughout the discussion of phonons is

nothing else but the potential energy surface.

Therefore, in order to compute the phonon properties, we need to obtain the second derivative

of the potential energy surface around an equilibrium configuration of the system where ionic

forces are zero. Let us suppose for the moment that we are able to solve the Hamiltonian HBO

and see how we can obtain the second derivative. We proceed in steps, realising first that the

first derivative, the forces, can be obtained with the Hellman–Feynman theorem:

F I =−∂E(R)

∂R I
=

〈
ψ(R)

∣∣∣∣ ∂H(R)

∂R I

∣∣∣∣ψ(R)

〉
(1.51)

=−
∫
nR (r )

∂VR (r )

∂R I
dr − ∂EN (R)

∂R I
, (1.52)

where nR (r ) is the electronic density of the ground state. The forces are readily computable,

sincewe know the analytical expression ofVR andEN (R), whereas the electronic density comes

by having diagonalised the electronic Hamiltonian. Proceeding to the second derivation, we

obtain:

∂2E(R)

∂R I∂R J
=−∂F I

∂R J
=+

∫
∂nR (r )

∂R J

∂VR (r )

∂R I
dr +

∫
nR (r )

∂2VR (r )

∂R I∂R J
dr + ∂2EN (R)

∂R I∂R J
. (1.53)

Once again the second derivatives of VR and EN are easy to obtain. Here the difficult part

consists in the computation of the derivative of the electronic density ∂nR (r )
∂R I

, also called the

density response to an ionic displacement.

Therefore we need two ingredients: the density functional theory to solve the Hamiltonian

HBO and a perturbation theory to get the density response.
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Density functional theory

The direct solution to the Schrödinger equation requires the computation of the many-body

wave function ψ(r 1,r 2, . . . ). By far, this is a too complex task to solve for most practical

applications in solid state physics. The exact many body wave function in fact depends on

the coordinates of all the electrons present in the unit cell of the crystal, and therefore is a

function of 3Ne variables, too many to be efficiently treated.

Density functional theory is based on two properties that allow a dramatic simplification of the

problem. First, the ground state energy is a functional of the charge density [79] and therefore,

rather than looking for a wavefunction solution of 3Ne variables, we can simply optimize the

density, function of 3 variables only. Secondly, it is possible to map the interacting electron

system into a system of non-interacting particles, which however have the same density of the

original system [87]. The advantage is that the non-interacting Hamiltonian is a much simpler

problem than the interacting case and can be solved.

The governing equation of the independent particles is:

(
− ħ2

2m

∂2

∂r 2 +VSCF (r )
)
ψn(r )=HSCFψn(r )= εnψn(r ) (1.54)

where εn andψn are n-th eigenvalue and wave function for a particle subject to the potential:

VSCF (r )=V (r )+e2
∫

n(r ′)
|r −r ′|dr ′ + vxc (r ) , (1.55)

where V is the potential originated by the nuclei and vxc is the exchange-correlation potential.

The difficulties of the description of the many body problem have not disappeared completely,

since, although the DFT Hamiltonian is easy to solve, one does not know the exact expression

for vxc . Luckily, there are several good approximations for vxc that can be used. In this Thesis

we used exclusively the local density approximation [114], which approximates the unknown

xc potential at a given position in space with that of a homogeneous electron gas with a

density corresponding to the local value of the density at that point and that was found to well

describe the phonon properties of 2Dmaterials [59, 75].

With the choice of the functional, all parts of the DFT Hamiltonian are known and it can be

diagonalised. The final result for the total energy of the Ne interacting electrons is:

E [n]= 2
N/2∑
n=1

εn − e2

2

∫
n(r )n(r ′)
|r −r ′| drdr ′ +Exc [n]−

∫
n(r )vxc (r )dr , (1.56)

where for simplicity only a non-spin polarized material is considered. The charge density of

the electrons is instead the same density of the independent Kohn–Sham particles:

n(r )= 2
N/2∑
n=1

|ψn(r )|2 . (1.57)
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Chapter 1. Phonons

Density functional perturbation theory

Having seen how DFT computes the ground state charge density and energy, it is possible

to compute the ionic forces. However, we need the charge density response to compute the

dynamical matrix (Eq. 1.53), which can be obtained with perturbation theory [38, 39]. Let’s

suppose to perturb the potential with the displacement of an atom: VSCF → VSCF +ΔVSCF .

The extra term gives raise to a change in the wave function with respect to the unperturbed

ground state and a perturbation of the energy levels:

ψ→ψ+Δψ , (1.58)

Δεn = 〈ψn
∣∣ΔVSCF ∣∣ψn〉 .

Inserting these modifications into Eq. 1.54, one obtains the Sternheimer equation:

(HSCF −εn)
∣∣Δψn〉 =−(ΔVSCF −Δεn)

∣∣ψn〉 , (1.59)

where the perturbation of the potential is explicitely given by:

ΔVSCF (r )=ΔV (r )+e2
∫

Δn(r ′)
|r −r ′|dr ′ + dvxc (n)

dn

∣∣∣∣
n=n(r )

Δn(r ) , (1.60)

and the change in density is obtained directly from Δψ:

Δn(r )= 4ℜ
N/2∑
n=1

ψ∗
n(r )Δψn(r ) . (1.61)

The Sternheimer equation can be solved self-consistently and thus obtain the electron-density

response.

Density functional perturbation theory has proved to be extremely successful in estimating the

phonon dispersion, giving results in excellent agreement with experimental data without the

use of any fitting parameter [59]. For example, we report in Figure 1.3 the phonon dispersion of

graphene, i.e. the results of the diagonalisation of the dynamical matrix, on the high symmetry

lines of the Brillouin zone. In this Thesis, all phonon properties have been computed with

density functional perturbation theory. In particular, we used the implementation of the

open-source software suite Quantum ESPRESSO [63], which is a DFT solver based on an

expansion of the wave function in a plane-wave basis.
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M Γ K M
0

500

1000

1500

ω
 (

cm
-1

)

GrapheneZA

TA

ZO

LA

TO

LO

Figure 1.3 – The phonon dispersion of graphene is plotted over a high symmetry path in the
Brillouin zone of graphene. The 6 branches are: out-of-plane acoustic (ZA), transverse acoustic
(TA), longitudinal acoustic (LA), out-of-plane optic (ZO), transverse optic (TO), longitudinal
optic (LO).
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2 Phonon scattering

The harmonic approximation is an excellent starting point for the study of atomic vibrations

in a crystal. We have seen in the previous chapter that it is possible to obtain a first estimate of

equilibrium properties such as the lattice energy or the specific heat. There are however some

drawbacks that cannot be addressed if we limit the Taylor expansion of the lattice Hamiltonian

to the second order. Most importantly for the aim of this Thesis, the harmonic approximation

predicts an infinite thermal conductivity for a perfect crystal (as we will see in Chapter 3).

Therefore, since we want to characterise the intrinsic lattice thermal conductivity, anharmonic

effects are fundamental to consider, at least to lowest order.

In this chapter, we will present the perturbation theory approach (found in many textbooks,

see [132, 123]), in which the harmonic crystal is the reference state and the deviations from

the harmonic Hamiltonian are considered a small perturbation. In particular, we will show

how to add the 3-phonon interactions, i.e. the third order derivative of the lattice potential,

and the phonon-isotope scatterings. The phonon scatterings considered in this work by no

means should be considered exhaustive. However, following the procedure outlined in this

section, one can add also the effects of different kinds of phonon interactions, for example

higher order phonon-phonon interactions, defects, impurities, dislocations and any other

deviation from the perfectly harmonic Hamiltonian.

2.1 Phonon-phonon interaction

In the previous chapter, we considered the approximated Hamiltonian defined by the second

order term of the Taylor expansion of the lattice potential (see Eq. 1.17). In this section we will

retain also the third order term, the lowest order anharmonic term, and we will try to express

it in terms of the creation and annihilation operators introduced previously. The Hamiltonian

in terms of the atomic displacements in real space is:

H =Hharm+ 1

3!

∑
lbαl ′b′βl ′′b′′γ

ψαβγ(lb, l
′b′, l ′′b′′)uα(lb)uβ(l

′b′)uβ(l
′′b′′) , (2.1)
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Chapter 2. Phonon scattering

where we adopted for simplicity the short-hand notation:

ψαβγ(lb, l
′b′, l ′′b′′)= ∂3V

∂uα(lb)∂uβ(l ′b′)∂uγ(l ′′b′′)

∣∣∣∣
0
. (2.2)

In complete analogy with the previous chapter - but with some additional algebra - we can

operate a Fourier transform and express the position andmomentum operators in terms of

the collective variables X (q ,b) and P (q ,b), finding:

H =Hharm+ 1

3!V 3/2

∑
q q ′q ′′bb′b′′αβγ

ψαβγ(qb,q ′b′,q ′′b′′)δq+q ′+q ′′,GXα(qb)Xβ(q
′b′)Xγ(q

′′b′′) ,

(2.3)

where:

ψαβγ(qb,q ′b′,q ′′b′′)= ∑
l ′,l ′′

ψα,β,γ(0b, l
′b′, l ′′b′′)eiq ′·R l ′ eiq ′′·R l ′′ , (2.4)

is the Fourier transform of the matrix of third order derivatives. Then, writing X and P in

terms of the creation and annihilation operators (see Eq. 1.26), we can write:

H =Hharm+ 1

3!

∑
q s,q ′s′,q ′′s′′

ψ(q s,q ′s′,q ′′s′′)δq+q ′+q ′′,G (2.5)

(a†q s −a−q s)(a
†
q ′s′ −a−q ′s′)(a

†
q ′′s′′ −a−q ′′s′′)

=Hharm+ΔH ,

where:

ψ(q s,q ′s′,q ′′s′′)= iħ3/2

�
V

∑
bb′b′′αβγ

eα(b|q s)eβ(b′|q ′s′)eγ(b′′|q ′′s′′)ψαβγ(qb,q ′b′,q ′′b′′)√
8mbmb′mb′′ωq sωq ′s′ωq ′′s′′

. (2.6)

Unfortunately, the eigenstates of a†q saq s are no longer the eigenstates of the anharmonic

Hamiltonian (one can show that the harmonic and anharmonic terms do not commute)

and therefore the solution to the anharmonic problem is more complicated to find. It is

for this reason that we add the effect of anharmonicity as a perturbation over the harmonic

Hamiltonian. Let us therefore start from the harmonic description of the lattice, which is

defined by the phonon states:

|nq snq ′s′ . . .〉 = |nq s〉⊗ |nq ′s′ 〉⊗ . . . . (2.7)

In the harmonic case, all phonons are perfectly decoupled and are a set of independent

oscillators. The anharmonic term instead introduces couplings between the oscillators, so

that it is possible that a phonon excitation is transferred from one mode to another. Let us

therefore compute the probability to observe a transition from an initial state
∣∣i 〉 to a final
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2.1. Phonon-phonon interaction

state
∣∣ f 〉 in a unit of time. This scattering rate can be obtained using the Fermi golden rule

(see for example Ref. [54] for a formal derivation):

P f
i (3ph)=

2π

ħ |〈 f |ΔH |i 〉|2δ(E f −Ei ) , (2.8)

where ΔH is the perturbation to the harmonic Hamiltonian (H =Hharm+ΔH) and Ei , f is the

energy of the initial / final state.

The number of possible transitions is extremely large in principle, if we are to consider all

possible initial and final states. However, the Fermi golden rule is very specific in selecting the

combinations of final and initial states that have a non-zero transition rate. To see this, first

notice that the perturbation ΔH consists in a summation of terms in the form:

(a†q s −a−q s)(a
†
q ′s′ −a−q ′s′)(a

†
q ′′s′′ −a−q ′′s′′) . (2.9)

Writing down this term explicitly we obtain:

a†q sa
†
q ′s′a

†
q ′′s′′ −a†q sa†q ′s′a−q ′′s′′ −a†q sa−q ′s′a

†
q ′′s′′ −a−q sa

†
q ′s′a

†
q ′′s′′ (2.10)

+a†q sa−q ′s′a−q ′′s′′ +a−q sa
†
q ′s′a−q ′′s′′ +a−q sa−q ′s′a

†
q ′′s′′ −a−q sa−q ′s′a−q ′′s′′ .

Although this term is no longer local in (q , s) (as in the harmonic case), it only acts between two

states that differ only by three phonons, leaving all the other modes unmodified. Therefore,

to compute all the relevant transitions, we don’t need to consider all the possible phonon

states, but only all possible phonon triplets. Also, as a consequence of the properties of the

creation and annihilation operators, the phonon excitation number can only change by three

quanta. For example, the first term creates an excitation in each of the three phonon states

and gives a non zero scattering rate only for the matrix element 〈nq s + 1,nq ′s′ + 1,nq ′′s′′ +
1
∣∣a†q sa†q ′s′a

†
q ′′s′′

∣∣nq s ,nq ′s′ ,nq ′′s′′ 〉; and so on for the other terms. Enumerating the various cases,

there can only be four kinds of processes:

1. creation of 3 phonons;

2. creation of 2 phonons and annihilation of 1 phonon;

3. creation of 1 phonons and annihilation of 2 phonon;

4. annihilation of 3 phonons.

No other kinds of processes are allowed by the lowest order anharmonic term.

As a further simplification, the Fermi golden rule imposes the conservation of energy. There-

fore, the transitions of kind 1 and 4 are not allowed as they violate this conservation law. Only

the processes of the kind 2, the phonon decay, or 3, the phonon coalescence, are admitted, as

shown in Figure 2.1.
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Chapter 2. Phonon scattering

decay coalescence

Figure 2.1 – The lowest order phonon-phonon scattering in crystals is described by two kind
of interactions: phonon decay, when a phonon is destroyed and two other modes are excited,
or the phonon coalescence, in which two phonons are destroyed and a third one is created.

2.2 Normal and Umklapp scattering

Let us analyse the scattering of a phonon in the state
∣∣nq s〉. The scattering processes involve, for

both decay and coalescence, two more phonons in the states (q ′s′) and (q ′′s′′). We introduced

in the previous section the conservation of energy, which imposes a constraint on the phonon

frequencies of the three phonons under consideration. Moreover, there is an additional

constraint on the momentum of the phonons. The anharmonic term of the Hamiltonian

(Eq. 2.5) contains a factor δq+q ′+q ′′,G , which appears as a direct consequence of the Fourier

transform (see Eq. 1.14) when switching from the real to the reciprocal space description and

is a direct consequence of the periodic properties of the Bravais lattice. This relation is the

conservation of crystal momentum, stating that the momentum of the three phonons must

satisfy a relation of the form:

q +q ′ +q ′′ =G . (2.11)

This shows that in a three-phonon process, the momentum of a phonon does not need to be

conserved exactly. Instead, there can be a mismatch between the initial and final momentum,

equal to any reciprocal lattice vector G .

Summarising, the laws of energy and crystal momentum conservation greatly restrict the

possible scattering processes of the phonon (q , s). When it undergoes decay, it satisfies the

following conservation laws:

ωq s =ωq ′s′ +ωq ′′s′′ , (2.12)

q +G = q ′ +q ′′ .

For phonon coalescence:

ωq s +ωq ′s′ =ωq ′′s′′ , (2.13)

q +q ′ = q ′′ +G .

If these laws are not obeyed there is no possible transition between the initial and final states.

24



2.3. Three-phonon scattering rate
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Normal process Umklapp process

Figure 2.2 – Normal and Umklapp processes in a phonon coalescence process. In a normal
process, the sum of the momenta of the two initial phononmodes is a vector lying inside the
first Brillouin zone (the grey square). In a Umklapp event, the sum of the two momenta is
outside the first Brillouin zone, but there is a reciprocal lattice vector that allows to fold it back
inside.

The conservation of crystal momentum imposes a further restriction on the possible number

of phonon triplets to consider. Two phonon states suffice to determine the third phonon

wavevector. Peierls introduced a further distinction between 3-phonon scattering events. The

processes that strictly conserve momentum (G = 0) are called normal, whereas if momentum

is not conserved (G �= 0) they are dubbedUmklappwhich means turn over in German, since it

can reverse the direction of momentum, see Figure 2.2. To distinguish the normal from the

Umklapp processes, one simply needs to compute the third wavevector out of the other two

as q ′′ = q ±q ′. If q ′′ lies in the Brillouin zone, like the other two points, the process is normal,

and Umklapp if instead it needs a certain reciprocal lattice vector G to be folded back into the

Brillouin zone. We will later see that this distinction is extremely important in the context of

thermal transport, since a crystal with only normal scattering events has an infinite thermal

conductivity, as we will prove in Section 3.2.

2.3 Three-phonon scattering rate

We are finally equipped for computing the transition rates involving a triplet of phonons using

the Fermi golden rule. The probability for a phononmode (q s) to undergo a decay event with

two other phononmodes is:

Pq ′s′,q ′′s′′
q s =2π

ħ2 |〈nq s −1,nq ′s′ +1,nq ′′s′′ +1|ΔH |nq s ,nq ′s′ ,nq ′′s′′ 〉|2δ(ωq s −ωq ′s′ −ωq ′′s′′)

= 2π

ħ2V
δ(ωq s −ωq ′s′ −ωq ′′s′′)δq−q ′−q ′′,G |ψ(q s,−q ′s′,−q ′′s′′)|2

nq s(nq ′s′ +1)(nq ′′s′′ +1)

=L
q ′s′,q ′′s′′
q s nq s(nq ′s′ +1)(nq ′′s′′ +1) . (2.14)
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Similarly, for the coalescence process we obtain:

Pq ′′s′′

q s,q ′s′ =
2π

ħ2 |〈nq s −1,nq ′s′ −1,nq ′′s′′ +1|ΔH |nq s ,nq ′s′ ,nq ′′s′′ 〉|2δ(ωq s +ωq ′s′ −ωq ′′s′′)

= 2π

ħ2V
δ(ωq s +ωq ′s′ −ωq ′′s′′)δq+q ′−q ′′,G |ψ(q s,q ′s′,−q ′′s′′)|2

nq snq ′s′(nq ′′s′′ +1)

=L
q ′′s′′

q s,q ′s′nq snq ′s′(nq ′′s′′ +1) . (2.15)

In both cases, we extracted an intrinsic rate L which does not depend on the temperature or

the phonon populations and is only determined by the third-order derivatives of the lattice

Hamiltonian. Therefore, temperature does not affect the strength of the phonon coupling, it

only enters the scattering rates indirectly through the phonon populations, which we know at

equilibrium to be equal to the Bose–Einstein distribution function.

2.4 Ab initio evaluation

The computation of the scattering rates for phonon decay and coalescence depends on

several quantities. Most of them are simply related to harmonic properties, that is, quantities

depending on the dynamical matrix. The additional part that we need to obtain from density

functional perturbation theory is the matrix of anharmonic force constantsψ.

We learned in Section 1.4 that it is possible to compute the forces of a system, i.e. the 1-st

order energy response to a perturbation, just by the knowledge of the charge density. In

our particular case of interest, the perturbation is the displacement of an atom from the

equilibrium position. Moreover, we have seen that it is possible to compute also the dynamical

matrix, i.e. the energy response to the perturbation at the second order, just by the knowledge

of the first order response of the charge density to the perturbation.

It is not by chance that the nth order energy response depends on the charge density response

of a smaller order. In fact, there is a general theorem of quantum mechanics, commonly

found under the name of the 2n+1 theorem [66], which states that the knowledge of the nth

order response of the wave-function (or density) is sufficient to compute the 2n+1-th energy

response. The implications of this theorem are of great help to our case. Since in Section

1.4 we sketched the technique to obtain the first order charge density response, by means of

the 2n+1 theorem it is possible to use this information to compute the third order energy

derivatives needed for the phonon-phonon coupling. Indeed, it can be shown that the third
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2.5. Mass disorder scattering

derivative with respect to a perturbation λ (the phonon displacement) can be computed as:

∂3E

∂λ3 =2
N/2∑
n=1

〈Δψn |ΔVSCF −Δεn |Δψn〉 (2.16)

+2
N/2∑
n=1

(
〈Δψn |∂

2V

∂λ2 |ψn〉+c.c.
)

+2
N/2∑
n=1

(
〈ψn |∂

3V

∂λ3 |ψn〉+c.c.
)

+ 1

6

∫
δvxc

δn1δn2δn3
Δn(r 1)Δn(r 2)Δn(r 3)dr 1dr 2dr 3 .

Therefore, knowing the charge density response (Δn), the anharmonic force constants can be

computed. The implementation of this equation in the reciprocal space is not straightforward,

its formulation has been developed only recently [56] and it later has been implemented

in Quantum ESPRESSO [112]. Working with this reciprocal space formulation of density

functional perturbation theory, it is possible to obtain the matrixψ(q s,q ′s′,q ′′s′′) directly at
any arbitrary set of wave vectors.

2.5 Mass disorder scattering

Up to this point we considered only an ideal Hamiltonian in which all atoms have the same

mass. However, atoms in a real crystal do not all have the samemass due to the presence of

different stable isotopes for each atomic species. The presence of different masses breaks

the translational periodicity of the crystal and gives rise to phonon scattering. Assuming the

effect of the mass disorder to be small in some sense, we treat this perturbatively on top of the

Hamiltonian without mass disorder.

Let us consider as a starting point the harmonic Hamiltonian which takes into account the

presence of atoms of different masses in every unit cell of the crystal:

H = 1

2

∑
αlb

Mlbu̇
2
α(lb)+V harm , (2.17)

where the mass of the atom of basis index b changes its value for different crystal unit cells l .

We neglect for simplicity the anharmonic terms of the potential and merely look at the lowest

order differences from the harmonic system.

The lattice Hamiltonian above is difficult to solve and we can no longer apply the technique of

the Fourier transform learned for the case of the harmonic Hamiltonian, since mass disorder

breaks the crystal periodicity. However, the problem can be tackled in perturbation theory. We

first introduce the average mass of the atom b:

M̄b =
∑
i
fibMib (2.18)
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Chapter 2. Phonon scattering

where fib is the probability of observing the isotope i in the basis site b. It is worth noting

that the introduction of the isotopic distribution f is meant to simplify the problem by subtly

reintroducing the lattice periodicity: rather than studying the detailed distribution of isotopes

in the lattice sites, we imagine to dealwith a system inwhich each crystal atomhas a probability

distribution of masses. Most likely this is not a limitation for applications. In fact, we do not

expect a natural clustering of isotopes in a material and, if the crystal is large enough, the

distribution of isotopes can be considered uniform. The Hamiltonian can be rewritten as:

H =H0+ΔH , (2.19)

H0 = 1

2

∑
αlb

M̄bu̇
2
α(lb)+V harm ,

ΔH = 1

2

∑
αlb

(Mlb − M̄b)u̇
2
α(lb)=

1

2

∑
αlb

ΔMlbu̇
2
α(lb) , (2.20)

where the perturbation is determined by the mass difference of the isotope from the average

value. To express the Hamiltonian in terms of the creation and annihilation operators, we

make use of Eq. 1.33 and express ΔH as:

ΔH = 1

V

∑
q s,q ′s′

ħ√
ωq sωq ′s′e

∗
q seq ′s′(a

†
q s −a−q s)(a

†
q ′s′ −a−q ′s′)Mq q ′ (2.21)

= ∑
q s,q ′s′

ΔHq s,q ′s′ , (2.22)

where

Mq q ′ =∑
lb

ΔMlbe
i (q−q ′)·x lb . (2.23)

This last equation reveals a difficulty of studying the isotopic scattering: the coupling term

Mq q ′ depends on the detailed distribution of mass differences in the crystal. To simplify the

problem, we assume the uniform distribution of the isotopes, so that themass differenceΔMlb

depends only on the basis index and we can simply average over the probability distribution

of isotopes fib .

At variance with the three-phonon interaction, there is no requirement in the conservation

of crystal momentum. Therefore, isotopic processes dissipate momentum (and heat flux,

for what concerns thermal conductivity). Moreover, this perturbation introduces a coupling

between states that differ only by two phonons. We find the transition probabilities by applying

the Fermi golden rule:

Pq ′s′
q s = 2π

ħ
∣∣〈 f ∣∣ΔHq s,q ′s′

∣∣i 〉∣∣2δ(E f −Ei ) . (2.24)

The requirement of energy conservation allows only transitions with the creation of one

phonon (q s) and the annihilation of a phonon (q ′s′) or viceversa. Therefore, the only relevant
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2.5. Mass disorder scattering

scattering rates for the transitions of a phonon in the state (q s) are given by the expression:

Pq ′s′
q s = πωq sωq ′s′

2N0

(
nq snq ′s′ +

nq s +nq ′s′

2

)∑
b
gb

∣∣e∗(b|q s) ·e(b|q s)∣∣2δ(ωq s −ωq ′s′) , (2.25)

where we symmetrised the phonon population terms so that Pq ′s′
q s = Pq s

q ′s′ , and we introduced

a mass disorder parameter:

gb =
∑
i
fib

(
1−Mib

M̄b

)
. (2.26)

Using the results of this chapter, we have at our hands all the necessary ingredients needed for

the computation of 3-phonon and phonon-isotope scattering rates. Now it is time to introduce

a theory capable of using these scattering rates to predict the lattice thermal conductivity.
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3 The phonon Boltzmann transport
equation

The application of a temperature gradient brings an energy unbalance in the crystal, felt by all

elementary excitations present in the system such as electrons, holes, phonons, magnons and

others. In response to the perturbation, the system attempts to reestablish the equilibrium

situation where the excess of energy (heat) is spread uniformly over the sample. Therefore,

in presence of a temperature gradient, heat tends to be transferred from the hot to the cold

side of the material. The quantitative measure of this effect is given by thermal conductivity,

defined as the ratio between the heat flux and the temperature gradient. Of all the possible

excitations that can carry heat throughout the sample, lattice vibrations give often the largest

contribution to heat transfer and this Thesis will focus only on their contribution to the

thermal conductivity. In particular, lattice thermal conductivity is often the dominant heat

transfer mechanism in insulators, semiconductors and semimetals, and even in metals, where

also electrons contribute to the heat transfer, the lattice contribution is not negligible at room

temperature.

The microscopic modeling of lattice thermal transport in solids can be tackled using the

phonon Boltzmann transport equation. This methodology had been introduced by Peierls

almost a century ago (1929) [113] as the main result of his Ph.D. Thesis. Despite being derived

long ago, it is still the main theoretical framework to study the microscopic origin of heat

transport in crystals. In fact, only the advent of modern computers and reliable ab-initio

estimates of microscopic parameters has opened the possibility to solve the equation with

a good accuracy and without resorting to oversimplifying assumptions that can miss some

relevant features of thermal transport. The Boltzmann equation is not universally applicable

to phonon transport and there are known phenomena that cannot be described (or at least

require extensions of the formalism), for example the coherent propagation of phonons or

high phonon density conditions. Other formalisms, like the Green-Kubo theory [68, 89] have a

broader range of applicability but also a considerably increased complexity. However - within

its range of applicability - the Boltzmann equation provides an appealingly simple equation (at

least, with respect to Green-Kubomethods), and has proved to be a valuable tool for describing

accurately the thermal conductivity of most crystals. Therefore, we will proceed and use it for
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Chapter 3. The phonon Boltzmann transport equation

characterising the thermal conductivity of 2Dmaterials.

In this chapter, we recall the foundations of the Peierls–Boltzmann theory of thermal transport

by phonons. The harmonic phonon properties and the scattering rates derived in the previous

chapter will be the only ingredients necessary to set up this model of thermal transport. After

the derivation of the Boltzmann equation, we will see two important properties associated

to the equation. First, we will see that the equation can be casted in a variational formula-

tion, which has close links with the entropy of the phonon gas. Lastly, we will comment on

the Matthiessen rule, a law that is very often used to combine the contribution of different

scattering processes to thermal conductivity. The theory exposed here can also be found in

greater detail in most textbooks about phonons or transport (see for example Refs. [132, 123]).

We report here the details necessary to understand the developments of next chapters.

3.1 Formal derivation

The basic idea of Peierls theory is to adapt the Boltzmann equation, originally written for a gas

of classical particles, to the case of phonons. The procedure is not directly applicable, since

the phonon defined in the previous chapters is actually a wave of lattice displacements. A

fundamental assumption of the semiclassical approach is that we can define a wavepacket as

a superposition of waves localised both in real and reciprocal space, so that we can represent

it as a particle with a well defined position r andmomentum q . Such wavepacket, built out

of a superposition of lattice waves, will be at the center of the discussion for the rest of the

Thesis and for simplicity we will call it a phonon (even if the phonon wavepacket is different

than the phonon monochromatic wave, the literature has adopted for simplicity the same

terminology).

The assumptions of the semiclassical approach presented above are not trivial to justify and

there are some conditions upon which the definition of the wavepacket are valid. Being a

superposition of waves, the wavepacket is spread in real space over a distance δr . In order to

treat the phonon as a particle and assign it a precise position, it is necessary that the average

distance L traveled by the phonon (the phonon mean free path) be much larger than the

spread δr . Also, the interaction potential that gives raise to the scattering of such wavepacket,

should be sufficiently slowly varying in space so that it can be considered to be constant

over the extent of the wavepacket. Similarly, in order to have a well defined momentum, it is

necessary that the spread δq is such that δq� q . Under these conditions, the phonon can be

thought as a classical particle, with a position r , a momentum q and a velocity v q s . Putting the

real and reciprocal space conditions together and using the uncertainty principle δr ·δq ≈ 1,

the condition of validity for the semiclassical approach is that the phonon wavevector λ= 2π
q

must be much smaller than the mean free path λ� δr � L.

After having introduced the phonon, we need to understand which is the expectation value for

the number of phonons in each state nν(r , t ) for every different location inside the crystal at a

time t . The index ν= (q , s) is a notation for condensing thewavevector and the phonon branch
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3.1. Formal derivation

index, which will substantially simplify the notation for the rest of the Thesis. In the simple

case of thermal equilibrium, we saw that Bose–Einstein distribution describes the phonon

excitation number. After we apply a gradient of temperature to the sample, the number of

phonons changes and we need to write down a procedure to compute it. Let us therefore

take a statistical approach and, rather than studying the random walk of each phonon, we

examine how every phonon in the state ν evolves on average. The phononBoltzmann equation

describes the average behavior of the phonon and once solved will give us with the steady

state phonon distribution nν(r , t ).

Let us then consider the nν(r , t ) phonons occupying a region of the phase space dr . If no

scattering has occurred, all phonons at a previous time t −dt must have been in the position

r −vνdt . Therefore:

nν(r , t )=nν(r −vνdt , t −dt )≈ nν(r , t )−vνdt
∂nν(r , t )

∂r
−dt ∂nν(r , t )

∂t
. (3.1)

The mere presence of a phonon velocity thus allows their diffusion. However, not all phonons

can move from r − vνdt to r because of scatterings, which might destroy or redistribute

them in other states ν′. Therefore, we need to consider an additional change in the phonon

distribution with a rate:

∂nν(r , t )

∂t

∣∣∣∣
scatt

. (3.2)

Gathering thesemechanisms together, wemay write the total rate of change of the distribution

function and find the phonon Boltzmann transport equation in its most general form:

∂nν(r , t )

∂t
+vν · ∂nν(r , t )

∂r
= ∂nν(r , t )

∂t

∣∣∣∣
scatt

. (3.3)

The scattering operator appearing in the equation still needs to bewritten down explicitly. First

of all, we note that at the thermal equilibrium, when nν is simply given by the Bose–Einstein

distribution n̄ν and there is no dependence on space and time, the Boltzmann equation

requires the collision term to vanish:

∂n̄ν(r , t )

∂t

∣∣∣∣
scatt

= 0 . (3.4)

Instead, when not at equilibrium, there is an unbalance causing the scattering term to be

different from zero. To construct the expression of the scattering operator, let us start for

simplicity with the case of the isotopic scattering, which only involves two phonon states. The

probability for the transition from a state ν to ν′ is given by:

Pν′
ν =nν(nν′ +1)L ν′

ν , (3.5)

where we have shown in Section 2.5 that L is independent both of temperature and details of
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Chapter 3. The phonon Boltzmann transport equation

the distribution nν, so that the total probability for observing the transition is the intrinsic rate

L times the factors taking into account the populations of the phonons at the initial and final

states ν and ν′. By microscopic reversibility L ν
ν′ =L ν′

ν (a result that follows from Eqs. 2.14 and

2.15). Therefore the probability for observing the inverse mechanism is:

Pν
ν′ = (nν+1)nν′L ν

ν′ . (3.6)

Putting together these information, the total change rate of the phonon νmust combine the

depopulation due to phonons exiting the state ν with the repopulation coming from other

phonons ν′. Therefore, the scattering operator for the isotopic scattering (or more generally

for scatterings involving two phonon states) is:

∂nν(r , t )

∂t

∣∣∣∣
2,scatt

=∑
ν′

[
(nν+1)nν′ −nν(nν′ +1)

]
L ν′

ν . (3.7)

A similar discussion can be made also for the three-phonon processes, finding a scattering

operator in the form:

∂nν(r , t )

∂t

∣∣∣∣
3,scatt

= ∑
ν′ν′′

{[
(nν+1)(nν′ +1)nν′′ −nνnν′(nν′′ +1)

]
L ν′′

νν′ (3.8)

+ 1

2

[
(nν+1)nν′nν′′ −nν(nν′ +1)(nν′′ +1)

]
L ν′ν′′

ν

}
,

where the factor 1
2 avoids the double counting of the final states in the phonon decay, L ν′′

νν′ is

the intrinsic rate for phonon coalescence and L ν′ν′′
ν for the phonon decay. The total scattering

operator that describes both 3-phonon processes and isotopic scattering events is just the

sum of the two separate scattering operators.

Using these expressions for the scattering operator, the Boltzmann equation is an integro-

differential equation of still formidable complexity. To simplify it, we consider only small

perturbations of temperature, so that we can always define a local temperature T (r , t ) and

so that the out-of-equilibrium distribution nν(r , t ) deviates by a small amount from the

local thermal equilibrium n̄ν(r , t ). Under these conditions we don’t need to consider the full

scattering integral, instead it is sufficient to linearise it for small deviations nν− n̄ν. The linear

approximation suggests the introduction of a deviation from equilibrium function hν, defined

as:

nν ≡ n̄ν−hν
∂n̄ν

∂(βħων)
= n̄ν+ n̄ν(n̄ν+1)hν , (3.9)

so that the deviation from equilibrium is n̄ν(n̄ν+1)hν. Luckily, the isotopic scattering operator

can be written exactly in terms of the linear deviation from equilibrium:

∂nν(r , t )

∂t

∣∣∣∣
2,scatt

=∑
ν′

[
n̄ν′(n̄ν′ +1)hν′ − n̄ν(n̄ν+1)hν

]
L ν′

ν . (3.10)
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3.1. Formal derivation

The expression for the 3-phonon interaction instead cannot be exactly expressed in terms of

the deviation from equilibrium of the phonon distribution, and it is necessary to expand it in

series and neglect higher order terms. In this way, we obtain the linearised scattering operator:

∂nν

∂t

∣∣∣∣
scatt

=− ∑
ν′ν′′

[
P̄ν′′
νν′(hν+hν′ −hν′′)+ 1

2
P̄ν′ν′′
ν (hν−hν′ −hν′′)

]
(3.11)

−∑
ν′
P̄ν′
ν (hν−hν′) ,

where the scattering rates P̄ are:

P̄ν′′
νν′ = n̄νn̄ν′(n̄ν′′ +1)L ν′′

νν′ , (3.12)

P̄ν′ν′′
ν = n̄ν(n̄ν′ +1)(n̄ν′′ +1)L ν′ν′′

ν ,

P̄ν′
ν = n̄ν(n̄ν′ +1)L ν′

ν .

As a consequence of the linearisation, the action of the scattering operator on the distribution

function can be represented with a matrix - vector multiplication:

∂nν

∂t

∣∣∣∣
scatt

=−∑
ν′
Aνν′hν′ = −∑

ν′
Ωνν′nν′ = −Ah =−Ωn , (3.13)

where the two scattering matrices A and Ω are related as Ωνν′ n̄ν′(n̄ν′ + 1) = Aνν′ and the

scattering matrix A is defined by [61]:

Aνν′ = −
[ ∑
ν′′,ν′′

(P̄ν′′
νν′′′ + 1

2
P̄ν
ν′′ν′′′)+

∑
ν′′
Pν′′
ν

]
δν,ν′ +∑

ν′′
(P̄ν′

νν′′ − P̄ν′′
νν′ + P̄ν

ν′ν′′)+ P̄ν′
ν . (3.14)

In writing this expressionwemade use of the detailed balance condition Pν′′
ν,ν′ = Pν,ν′

ν′′ to reorder

the indexes appropriately. The usage of a matrix notation will prove extremely convenient for

studying the Boltzmann equation, in particular we will use the matrix A to discuss iterative

solutions of the Boltzmann equation andΩwhen we will diagonalise the scattering matrix.

Again for later convenience, let us mention that the scattering matrix is often separated into

two components, the diagonal Aout and the off-diagonal part Ain:

Aout
νν′ = − n̄ν(n̄ν+1)

τν
δν,ν′ , (3.15)

Ain
νν′ =

∑
ν′′
(P̄ν′

ν,ν′′ − P̄ν′′
νν′ + P̄ν

ν′ν′′)+ P̄ν′
ν . (3.16)

The meaning of the name of the twomatrices [61] will be clearer with the introduction of the

relaxation time approximation in Section 4.1, and they refer to the fact that Aout
νν is the rate

of depopulation of the phonon ν, while Ain
νν′ is the repopulation of the mode ν due to the

scattering of other phonons.
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Chapter 3. The phonon Boltzmann transport equation

The steady state problem

In a large number of cases we are simply interested at solving the time independent problem,

in which a constant gradient of temperature is applied to the crystal. In this case, the time

derivative appearing in the Boltzmann equation can be set to zero. The remaining part of the

drifting operator can be further simplified:

vν · ∂nν(r , t )

∂r
= vν ·∇T ∂nν(r , t )

∂T
≈ vν ·∇T ∂n̄ν(r , t )

∂T
. (3.17)

The first equality takes advantage that the system is homogeneous in space and the distribution

differs in real space only due to the presence of a different temperature. The approximation

instead holds for a small deviation from thermal equilibrium, where in fact also the linearisa-

tion of the scattering operator holds, so that the change of the out-of-equilibrium distribution

due to temperature is approximately the same of the Bose–Einstein distribution. Therefore,

the steady state homogeneous Boltzmann equation is greatly simplified and becomes:

vν ·∇T ∂n̄ν(r , t )

∂T
=−∑

ν′
Aνν′hν′ . (3.18)

We look for solution to this equation that are linear in the temperature gradient:

hν ≈ fν∇T ,

nν ≈ n̄ν+ n̄ν(n̄ν+1)∇T fν . (3.19)

so that the Boltzmann equation is reduced to:

vν
∂n̄ν(r , t )

∂T
=−∑

ν′
Aνν′ fν′ (3.20)

where vν is the component of vν parallel to ∇T . The advantage of the matrix notation is to

make explicit the mathematical structure of the equation, which is simply a linear algebra

problem:

A f = b , (3.21)

where we introduced a vector bν =−vν ∂n̄ν

∂T =−vνn̄ν(n̄ν+1) ħων

kBT 2 .

The solution to this equation could be obtained directly by inversion of the scattering matrix:

f = A−1b. Let us suppose for the time being that this equation can be solved; with the

knowledge of the deviation function fν the most difficult part of the transport problem is

solved. The lattice heat flux can be evaluated, to lowest order, as [72]:

Q = 1

V

∑
ν
ħωνvνnν = 1

V kBT 2

∑
ν
n̄ν(n̄ν+1)ħωνvν fν∇T . (3.22)
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3.2. Conductivity without scattering

Comparing this equation to the definition of the thermal conductivity k:

Q =−k∇T , (3.23)

we can finally compute the lattice thermal conductivity of the Boltzmann–Peierls theory:

k =− 1

V kBT 2

∑
ν
n̄ν(n̄ν+1)ħωνvν fν . (3.24)

As we can see, the thermal conductivity can be easily obtained if the phonon deviation

distribution fν is known. However, obtaining the solution to the problem is an extremely

computationally expensive operation, given that the matrix is extremely large, and the entire

Chapter 4 will be dedicated to methods for finding the solution. Before venturing into these

methods, we introduce additional properties of the Boltzmann equation that will be useful for

the discussion of this Thesis.

3.2 Conductivity without scattering

At this point, we are equipped to understand the distinction between normal and Umklapp

processes introduced before and show that the thermal conductivity of a crystal with only

normal processes is infinite. First of all, it is not true that every single normal process conserves

the heat flux [132]. In fact, let us consider an initial phonon ν, carrying a heat flux ħωνvν. After

a normal scattering process, for example a decay event, the heat flux is ħ(ων′vν′ +ων′′vν′′).

While the energy is conserved by the scattering process, the velocity does not need to and thus

the heat flux may not be conserved in an isolated normal scattering event. Only in the special

case of acoustic phonons with the same linear dispersion, the velocity is simply proportional

to momentum and heat fluxes are exactly conserved.

To properly interpret normal events, we need instead to study what is the statistical (or

collective) behavior of phonons. Let us consider a system in which only normal scattering

events take place. We proved in Section 1.3 that, in a system where momentum is conserved,

the stable distribution of the system is the drifting distribution:

ndrift
ν = 1

eβ(ħων−V drift·q)−1
. (3.25)

This distribution carries a non-zero heat flux. Since ndrift
ν must be a solution of the Boltzmann

equation in absence of Umklapp scatterings, it follows that it is a stationary distribution of the

normal scattering operator [69]:

∂ndrift
ν

∂t

∣∣∣∣
normal scatt

= 0 (3.26)

This result also implies that the drifting distribution is an eigenvector of the normal scattering

matrix with zero eigenvalue.
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Let us also recall Eq. 3.4, where we’ve shown that the Bose–Einstein distribution is a stationary

solution to the problem, that is, the Bose–Einstein distribution is an eigenvector of the scatter-

ing matrix with a zero eigenvalue, independently of the conservation of momentum. If we try

to compute the heat flux or the total momentum due to the Bose–Einstein distribution, we

obtain a zero heat flux and total momentum, which follows from the parity of the functions

involved. Thus, the Bose–Einstein distribution is a stationary solution for the phonon gas,

which does not contribute to heat transfer.

If instead we set the system of phonons into a condition with non zero momentum, normal

processes alone will not be able to bring the system into full thermal equilibrium, even if no

temperature gradient is applied. At most, normal processes relax the system into the drifting

distribution, with the drifting velocity determined by the amount of momentum present

in the system. Since the drifting distribution supports a non-zero heat flux and since this

distribution persists even in absence of a temperature gradient, it follows that a system with

only normal scattering events has infinite thermal conductivity. One should not, however,

think that normal processes could be neglected: these still enter the Boltzmann equation and

redistribute the phonon population across modes, as we will discuss later in this Thesis.

Using the same arguments, a harmonic crystal without phonon scattering conserves momen-

tum, and therefore it also has an infinite thermal conductivity. The inclusion of anharmonicity

is therefore necessary to characterise thermal conductivity.

3.3 Variational principle

Boltzmann, after having written his equation for a gas of particles, derived in 1872 the H-

theorem, proving the existence of a quantity that represents the entropy of the system. Using

the properties of the scattering operator, it is possible to show that the entropy can only

increase over the course of time (a result that Boltzmann claimed to be a ‘proof’ of the second

law of thermodynamics). It was noted in the 50s [85, 86, 132] that the same ideas developed

by Boltzmann for the classical system can be transferred to the phonon system. Although we

do not intend to study directly the entropy associated to the Boltzmann equation, these ideas

are at the base for a variational formulation of the phonon Boltzmann equation, which is of

great utility for finding solutions to the problem.

To proceed, it is convenient to adopt a bra-ket notation for the algebraic operations, so that

the scalar product between two distribution functions is defined by:

〈 f |g 〉 =∑
ν
fνgν . (3.27)

The scattering matrix A is characterised by a number of mathematical properties:

1. A is real, i.e. Aνν′ ∈R,∀ν,ν′;
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3.3. Variational principle

2. A is symmetric, i.e. Aνν′ = Aν′ν;

3. A is semi-positive definite on the ensemble of solutions, i.e. 〈 f ∣∣A∣∣ f 〉 ≥ 0,∀ f .

The first property is trivial, since by construction the probabilities entering the matrix are real

numbers. The second follows from the detailed balance condition. The last property can be

demonstrated (see for example the appendix of Ref. [61] for a proof) and it derives from the

non-negativity of the scattering probabilities.

There are several physical implications of the properties mentioned above (see also Section

4.5). The one we’ll be dealing with in this section is the variational principle [132]:

Theorem: The solution of the Boltzmann equation gives the functional F [ f ] = 〈 f |A| f 〉 its
maximum value.

Proof. Let φ be the solution to the Boltzmann equation. Choose any other function ψ, not

necessarily a solution of the Boltzmann equation, but that satisfies:

〈ψ|A|ψ〉 = 〈ψ|b〉 .

Then:

0≤〈(φ−ψ)|A|(φ−ψ)〉 by matrix property 3

=〈φ|A|φ〉+〈ψ|A|ψ〉−〈φ|A|ψ〉−〈ψ|A|φ〉
=〈φ|A|φ〉+〈ψ|A|ψ〉−2〈ψ|A|φ〉
=〈φ|A|φ〉+〈ψ|A|ψ〉−2〈ψ|b〉 using the Boltzmann equation

=〈φ|A|φ〉−〈ψ|A|ψ〉 by definition ofψ .

Therefore:

〈φ|A|φ〉 ≥ 〈ψ|A|ψ〉 .

The functional 〈 f |A| f 〉 is practical for proving the theorem, but it can be reformulated in other

more physically convenient ways [132]. Using Eq. 3.24, let us note that k = 1
V 〈b| f 〉when f is

the solution of the Boltzmann equation and for such f we also have 〈 f |A| f 〉 = 〈b| f 〉. Therefore,
we can state the variational principle as a problem of minimisation of the thermal resistivity

functional (ρ = 1
k ) [132]:

ρ[ f ]= V
〈 f |A| f 〉
(〈b| f 〉)2 . (3.28)
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Chapter 3. The phonon Boltzmann transport equation

Similarly, we can define a variational thermal conductivity functional:

k[ f ]= 1

V
(2〈b| f 〉−〈 f |A| f 〉) . (3.29)

Note that, although we are calling it a thermal conductivity (resistivity) functional, it assumes

a physical meaning only when computed at the solution of the Boltzmann equation. The

existence of this functional is particularly important for deriving a variational method for

finding the solution of the Boltzmann equation.

3.4 Matthiessen rule

We learned that various phonon scattering events, in particular three-phonon and isotopic

processes, are the microscopic origin of thermal resistance. It would be interesting however to

quantify howmuch of the total thermal resistance is attributed to each kind of scattering. For

example, we may consider a crystal in which only the 3-phonon scatterings (process 1) take

place and another in which only isotopic scatterings are observed (process 2). For both crystal

we are able to compute the thermal resistivity ρ1 and ρ2, how do they relate to the thermal

resistivity ρ of a crystal that has both kinds of scattering?

The Matthiessen rule states that the total thermal resistivity is the sum of resistivities due to a

single source of scattering:

ρ = ρ1+ρ2 . (3.30)

This empirical rule aims at simplifying the problem and often works, but strictly speaking is

not correct and we will see indeed that has limited applicability in 2D materials. Using the

variational principle, we can prove that the correct general relation is [132]:

ρ ≥ ρ1+ρ2 . (3.31)

To demonstrate it, let’s consider the variational thermal resistivity of Eq. 3.28 (we set the

volume to one in the following for simplicity). Now, let’s suppose to separate the scattering

matrix into the two different components 1 and 2 (for example separate 3-phonon from

isotopic scatterings):

A = A1+ A2 . (3.32)

The total resistivity is:

ρ = 〈 f |A1| f 〉+〈 f |A2| f 〉
(〈 f |b〉)2 . (3.33)

The function f is the solution that minimises the total resistivity functional defined by A, and

does not need to be identical to the function that minimises the functionals ρ1 and ρ2 defined
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3.4. Matthiessen rule

by A1 or A2 only. Let us instead denote with f1 and f2 the solutions for the thermal resistivity

functionals ρ1 and ρ2. By the variational principle:

ρ = 〈 f |A1| f 〉
(〈 f |b〉)2 + 〈 f |A2| f 〉

(〈 f |b〉)2 (3.34)

≥ 〈 f1|A1| f1〉
(〈 f1|b〉)2

+ 〈 f2|A2| f2〉
(〈 f2|b〉)2

= ρ1+ρ2 .

Therefore, the Matthiessen law overestimates the exact thermal conductivity:

1

k
≤ 1

k1
+ 1

k2
. (3.35)

It’s always impossible to rigorously separate the contribution to the total thermal conductivity

of different scattering processes and the Matthiessen rule is an approximation with varying

range of applicability. Atmost, we can compute the total thermal conductivities for every given

system and compare differences to quantify how important is the inclusion of one scattering

process. In Chapter 8 we will study the range of applicability of this rule and also comment it

in relation to phonon lifetimes.
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4 Solutions of the Boltzmann transport
equation

As we have seen in the previous chapter, the Boltzmann equation is a linear algebra problem,

whose solution is formally obtained by inverting the scattering matrix. This simple minded

picture for finding the solution is of little help in practice. In fact, the matrix inversion is

an extremely expensive operation to be performed and therefore it is convenient to think at

alternative methods. Moreover, after inverting the matrix and computing the value of the

thermal conductivity, there is no obvious physical way of interpreting the results obtained in

terms of microscopic quantities.

In this chapter, we will focus onmethods for solving the linearised Boltzmann equation to find

the out-of-equilibrium distribution function and thus the steady state thermal conductivity

of a crystal. The first two methods that we will discuss, the single-mode relaxation time

approximation (SMA) and the Callaway method, are two theories that give an approximate

solution to our problem. Historically, the SMA has been the first way of solving the transport

problem, a tool that was introduced by Boltzmann himself in the study of a classical gas. The

Callaway approximation is instead a method originally developed for the study of phonons

at low temperature conditions. The nice feature of these two methods is an appealingly

simple closed-form solution that allows a physical interpretation. However, they rely on some

assumptions on the scattering operator, whose validity will be discussed down below, that do

not always apply and are sometimes insufficient to describe 2Dmaterials.

The following three methods instead are capable of solving the linear Boltzmann equation

exactly, without any assumption on the form of the scattering operator. The iterative method

has been the first algorithm that successfully managed to solve a phonon Boltzmann equation,

developed about 20 years ago [110, 109, 108] and now probably the most commonly used

method. It has successfully been applied to crystals using phonon properties from first

principles. For example, the first exactly solved ab-initio Boltzmann equation has been

studied byMingo et al. [44] for silicon, for alloys it has been solved by Garg et al. [62] and since

then it has later been used in several studies. However, this method has only a limited domain

of convergence in 2D materials and is not capable of describing the thermal conductivity

of graphene (we will see this in Section 8.3). In addition to the iterative method, we will
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Chapter 4. Solutions of the Boltzmann transport equation

see a recent method that takes advantage of the variational interpretation of the Boltzmann

equation to find efficiently the exact solution [61]. This will be the method of choice for

the results of Chapters 6, 7 and its robustness is particularly important for the study of 2D

materials and addresses some deficiencies of the iterative method.

Lastly, we will also show how to tackle the problem using a direct diagonalisation of the

scattering matrix. This method has a much worse efficiency than the variational method and

in fact very few people studied the theory behind this method and even fewer attempted the

diagonalisation. However it provides a closed-form solution of the Boltzmann equation and,

as an original result of this Thesis, we found that it is capable to provide a rigorous physical

interpretation of the Boltzmann equation.

4.1 Single mode relaxation time approximation

As a first attempt in finding the solution to the Boltzmann equation, we start in this section

with the single-mode relaxation time approximation (SMA). Since the complete problem is a

challenging task, we simplify the scattering operator by using only its diagonal elements

A ≈ Aout
ν,ν′ = n̄ν(n̄ν+1)

τν
δν,ν′ , (4.1)

where τν is the phonon lifetime or phonon relaxation time. Historically, the first solution has

been the single relaxation time approximation, an even simpler version of what we will see in

which there is only one relaxation time for all modes, i.e. the matrix is replaced essentially by a

single scalar.

To understandwhy τν is called a relaxation time, it is necessary to consider the time-dependent

Boltzmann transport equation. Using the SMA, it becomes:

∂nν(r , t )

∂t
+vν ·∇nν(r , t )=−nν(r , t )− n̄ν

τSMA
ν

. (4.2)

Suppose now to study a homogeneous system at thermal equilibrium, so that the space

dependence can be dropped. At time t0 we excite a phononmode homogeneously across the

sample and take it to an excitation number nν. The governing equation for larger times is

simply:

∂nν(r , t )

∂t
=−nν(r , t )− n̄ν

τSMA
ν

. (4.3)

The solution of this equation is nν(t)= n̄ν+ (nν(t0)− n̄ν)e−t/τν . This shows that the phonon
relaxes back to the Bose–Einstein equilibriumwith a characteristic time τν. More precisely, the

time it takes for the phonon to decay by a factor 1/e defines the relaxation time τν. Therefore,

the diagonal elements of the scattering matrix are those describing the depopulation of the

phononmode ν.

44



4.1. Single mode relaxation time approximation

Let us now return to the steady state problem and find the expression for the SMA thermal

conductivity from the SMA Boltzmann equation:

vν
∂n̄ν

∂T
=− n̄ν(n̄ν+1)

τSMA
ν

fν . (4.4)

The equation is diagonal in the phonon index ν, which allows for a trivial solution:

fν =−ħωνvντSMA
ν

kBT 2 . (4.5)

In a matrix notation, the SMA solution to the Boltzmann transport equation is:

f = (Aout)−1b . (4.6)

Inserting the SMA phonon deviation distribution into the expression of thermal conductivity

(Eq. 3.24), we find:

kSMA = 1

V

∑
ν
n̄ν(n̄ν+1)ħωνvν fν

= 1

V kBT 2

∑
ν
n̄ν(n̄ν+1)(ħων)

2v2ντ
SMA
ν

= 1

V

∑
ν
Cνv

2
ντ

SMA
ν ,

= 1

V

∑
ν
CνvνΛ

SMA
ν , (4.7)

where in the last equality we introduced the phononmean free pathΛSMA
ν :

ΛSMA
ν = τSMA

ν vν . (4.8)

Since the phonon propagates at velocity vν for a characteristic time τν before decaying, it

follows thatΛν is the average distance the phonon can travel before its excitation has decayed

by a factor 1
e , i.e. the phonon mean free path. Therefore, Λ represents the characteristic

distance at which the phonon scattering can reestablish thermal equilibrium.

The result is completely analogous to the classical kinetic theory of gases, that introduced

the notion of relaxation times (the first documented use of the word ’relaxation time‘ dates

back to Maxwell, in a seminal work [102] in which a modern version of the kinetic theory

of a particle gas was formulated). Although we do not report here the theory in full detail,

the kinetic thermal conductivity is given as well by the expression k =CvΛ, where C is the

specific heat of the gas, v is the average particle velocity andΛ is the average mean free path.

In the kinetic theory, the particles are identical and thus there is no index on the particle states.

Beside this difference on the allowed particle states, the phonon Boltzmann equation has a

striking analogy with the kinetic gas theory within the relaxation time approximation and for

this reason we can interpret the phonon transport problem as that of a gas of quasiparticles
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Chapter 4. Solutions of the Boltzmann transport equation

randomly collidingwith each otherwith a characteristic time τSMA
ν and drifting in one direction

due to the presence of a gradient of temperature at a velocity vν by carrying a thermal energy

Cν.

What are we neglecting using the SMA? First of all, it cannot be a complete explanation since

we set the out-of-diagonal matrix elements to zero. The analysis on the decay of the phonon

ν can also be extended to the other phonon modes ν′ �= ν. Equation 4.2 describes that the

phonons ν′ at time t > t0 are never excited and are always left at the Bose–Einstein equilibrium.

However, this cannot be the correct description: when the phonon ν scatters, it necessarily

has to change the excitation number of other phononmodes ν′. The out-of-diagonal elements

describe the coupling between the various phononmodes that arise from the scattering and

thus describes the repopulation of the phononmode ν by the scattering that occurs at other

phononmodes ν′. For this reason, we indicated the out-of-diagonal part of the matrix as Ain.

The diagonal term Aout describes only the depopulation of the phononmode.

Closely related to this point, the out-of-diagonal elements are also necessary to describe

correctly normal scattering events. Think for example at the problem of Section 3.2, where we

were considering a crystal in which only normal scattering events take place, which should

have an infinite thermal conductivity. Even if we limit all scattering to normal events, it is

still possible to compute the relaxation time for each phononmode. Yet, each phononmode

will have a finite relaxation time, i.e. a finite probability for decaying into another state, and

therefore the thermal conductivity would be finite. As Ziman well described in his book [132],

this happens because the lengthΛSMA
ν describes the characteristic length at which the phonon

mode is scattering (in fact, τν is also the phonon lifetime, i.e. the average time between phonon

collisions). This does not necessarily have an obvious connection to the length at which the

excess of heat is dissipated. In fact, heat flux does not need to be completely dissipated at

every phonon scattering and the SMA is not capable of describing how the heat flux is shuttled

through the various modes. Instead, the SMA describes more properly the length at which

heat is transferred from one phonon to another and therefore it only gives an approximate

treatment of the heat transport theory.

4.2 Callaway approximation

When a crystal is cooled to cryogenic temperatures, the Umklapp processes tend to freeze [34]

and the normal scattering events become dominant. As explained in the previous section, the

shortcomings of the SMA prevent it to be capable of describing the phonon transport in these

conditions. In an attempt to study the thermal conductivity of Germanium at temperatures

smaller than 20K, Callaway [47] put forward an improvement on the SMA description of

normal processes.

Following his derivation, we separate the contribution to the scattering matrix due to normal
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4.2. Callaway approximation

(N ) scattering events from all the other resistive (R) mechanisms:

Ω ·n =ΩR ·n+ΩN ·n . (4.9)

For simplicity, we retain the SMA approach of neglecting the off-diagonal elements of the

matrix and we let the resistive part decay, as before, to the thermal equilibrium distribution

(note that the term n̄ν(n̄ν+1) fν appearing in Eq. 4.4 is equal to (nν− n̄ν)/∇T ). At variance
with the SMA, we try to insert the knowledge that the most probable phonon distribution that

conserves momentum is the drifting distribution ndrift
ν (see Section 1.3). Therefore, we let the

phonon distribution decay towards ndrift
ν when driven by the normal processes:

∑
ν′
(ΩR)νν′nν = nν− n̄ν

τR
ν∑

ν′
(ΩN )νν′nν =

nν−ndrift
ν

τN
ν

. (4.10)

The Boltzmann equation within the Callaway approximation becomes:

vν ·∇T ∂n̄ν

∂T
=−nν− n̄ν

τR
ν

− nν−ndrift
ν

τN
ν

(4.11)

To further simplify the equations, we expand the drifting distribution in Taylor series:

ndrift
ν = 1

eβ(ħων−q ·V )−1
≈ n̄ν+ n̄ν(n̄ν+1)

q ·V drift

kBT
. (4.12)

Inserting it back into the Boltzmann equation we find:

vνn̄ν(n̄ν+1)
ħων

kBT 2 =− n̄ν(n̄ν+1)

τν
fν+ q ·V drift

∇TkBT
n̄ν(n̄ν+1)

τN
ν

, (4.13)

where we used the relation 1
τν

= 1
τN
ν

+ 1
τR
ν
. The equation has a closed-form solution for the

out-of-equilibrium phonon deviation:

fν =−vνħωντν

kBT 2 + q ·V drift

∇TkBT
τν

τN
ν

. (4.14)

TheBoltzmann equation alone does not provide away to fix the drift velocity, thereforeweneed

another way to impose an auxiliary condition. Callaway proposed that the total momentum

carried by the phonon gas should not be changed by normal collisions (alternatives have been
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explored in Ref. [31]). This statement reads as:

0=∂P

∂t

∣∣∣∣
N

(4.15)

0=∑
ν

q
∂nν

∂t

∣∣∣∣
N

0=∑
ν

q
n̄ν(n̄ν+1)

τN
ν

(
fν− q ·V drift

∇TkBT
)

0=∑
ν

q
n̄ν(n̄ν+1)

τN
ν

(ħωνvντν
T

+ q ·V drift

∇T
(
1− τν

τN
ν

))
. (4.16)

Rearranging terms, we can extract the value of the drift velocity:

V drift =−μ∇T (4.17)

μ= 1

T

∑
ν n̄ν(n̄ν+1)q//vνħων

τν
τN
ν∑

ν n̄ν(n̄ν+1)q2//
1
τN
ν
(1− τν

τN
ν
)
,

where q// is the component of the phonon wavevector (remember that ν= (q , s)) parallel to

the gradient of temperature, and μ is a phonon mobility giving the constant of proportionality

between the drifting velocity and the temperature gradient.

The Boltzmann-Callaway equation is therefore solved and using f and V drift in the expression

for thermal conductivity we find:

k = 1

kBT 2V

∑
ν
n̄ν(n̄ν+1)(ħων)

2v2ντν (4.18)

+ 1

kBT 2V

(∑
ν
n̄ν(n̄ν+1)ħωνvνq//

τν

τN
ν

)2/(∑
ν
n̄ν(n̄ν+1)(q//)

2 τν

τN
ν τR

ν

)
.

The Callaway expression for the thermal conductivity contains in the first term the SMA ap-

proximation. In addition to it, the new treatment of normal processes introduces a correcting

term. In the chapters of applications on 2Dmaterials, we will verify howmuch this expression

improves the SMA and how it compares with exact solutions of the Boltzmann equation.

A number of ideas that are present in the Callaway model led us to find some of the original

results of this Thesis. The Callaway approximation improves the SMA, which describes a single

relaxation model of the phonon gas towards equilibrium, and essentially replaces it with a

two-fluidmodel in which the phonon gas can relax either to the drifting or to the Bose–Einstein

distributions. The time scale of the two relaxations is given by the two relaxation times τN

and τR . Although the Callaway model is not exact, as it still relies on approximations to the

scattering operator, it is actually suggesting that a single relaxation time per phononmode is

not enough to describe the exact transport. This idea is actually what led us to suppose that, in

materials where the Callaway approximation gives a huge improvement over the SMA, second

soundmight exist. In fact second sound, especially in the original formulation for superfluid
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Helium, is intimately related with the presence of a two fluid system [90]: for the case of liquid

Helium, second sound is the oscillation between the normal and superfluid component of the

excitations; in our case, we saw an analogy with the normal and Umklapp component of the

phonon gas. Therefore, we will investigate in greater detail the issue of second sound in 2D

materials in Chapter 7. Moreover, the idea of interpreting the relaxation of a phonon with two

different relaxation times goes in the right direction for describing thermal transport exactly.

In Section 4.5 we will show that rather than using 2 relaxation times, the exact solution can be

interpreted in terms of N different relaxation times for each phonons.

4.3 Iterative method

The iterative method has been the first to exactly solve the linear Boltzmann equation, pi-

oneered by Omini and Sparavigna [108, 109, 110] in the context of a Lennard–Jones crystal

and later applied for the first time with ab-initio scattering rates by Broido et al. [44]. At the

moment, the method is the most common exact solver of the phonon Boltzmann equation.

Using the matrix notation, the iterative method can be formulated in a very intuitive way.

We start with an initial guess of the phonon deviation distribution, typically this is the SMA

solution f0 = (Aout)−1b. Next, we iteratively improve the solution, computing the solution at

the i -th step of the iteration procedure as:

fi =
i∑
j=0

(
− (Aout)−1Ain

) j
(Aout)−1b . (4.19)

The method therefore is a geometric series of the matrix
(− (Aout)−1Ain

)
. Using the properties

of a geometric series it is easy to prove that - within its domain of convergence - the series

tends to the correct solution of the Boltzmann equation. Note that in this method wemake

use of the complete scattering operator, both diagonal and off-diagonal terms, and therefore

it can solve the complete linear Boltzmann equation exactly.

The algorithm has the great merit of being the first method applied to find the exact solution

of the Boltzmann equation. However, it should be pointed out that it only converges as a

geometric series, i.e. if and only if all the eigenvalues of the matrix
(− (Aout)−1Ain

)
are smaller

than one in absolute value. Quite generally we can state that if the out-of-diagonal elements

of the matrix are not sufficiently small, the eigenvalues of the iterative matrix will not be small

and the method will not converge. The domain of convergence of this equation has not been

studied in great detail. In preliminary tests on 2Dmaterials, we found that the algorithm was

not able to reach a converged value after several hundreds of iterations, so that the exploration

of other methods was necessary. In fact, we will show in Section 8.3 by diagonalising the

iterative matrix that this method diverges for graphene at room temperature. Additionally,

since we will see that in many 2Dmaterials the out-of-diagonal scattering matrix elements are

non-negligible, the applicability of the iterative method should be verified case-by-case.
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Chapter 4. Solutions of the Boltzmann transport equation

4.4 Variational method

In Section 3.3 we introduced a variational thermal conductivity functional:

k[ f ]= 1

V
(2〈b| f 〉−〈 f |A| f 〉) . (4.20)

The thermal conductivity can be found as the maximal value of such functional:

k =max
{ f }

1

V
(2〈b| f 〉−〈 f |A| f 〉) . (4.21)

Therefore, there exists an entire family of methods that try to find the optimal value of the

phonon deviation f , that maximises the thermal conductivity functional.

In the past (for example the approach of Ref. [71]) the problem of functional optimization was

most often approached by writing the distribution function f with a trial function dependent

on some variational parameters. The solution was then obtained tuning the variational

parameters to optimize the thermal conductivity. This approach greatly improves the results

of the SMA, but is not guaranteed to obtain the exact solution of the Boltzmann equation, and

the accuracy of the final result greatly depends on the choice of the trial function. Moreover, it

is not desirable to use a trial function too complex, as the computational efficiency is penalised

by the addition of more variational parameters.

Very recently Fugallo and coworkers [61] applied a conjugate gradient method that maximises

the thermal conductivity functional. Since the matrix A is semi-positive definite (see Section

3.3) it can be shown that there exists a maximum of the thermal conductivity functional and

that it is unique. Therefore, the conjugate gradient algorithm is capable of improving the

thermal conductivity in a systematic way, reaching the only global maximum of the functional

and therefore finding the correct distribution function f , without the usage of any variational

parameter. Moreover, the conjugate gradient always converges to the correct solution without

limitations on the values of the matrix and therefore does not have convergence issues like the

previous iterative method.

The conjugate gradient algorithm is a standard method that can be found in several books (for

example Ref. [119]). The pseudo-code for the conjugate gradient algorithm is shown in Alg. 1:

The cost of the algorithm is comparable to the iterative method, as each step of the conjugate

gradient method requires the multiplication of the scattering matrix A with a vector, the most

computationally expensive part.

In its pure form, the algorithm converges slowly to the solution [61]. For this reason, it is

convenient to take advantage of the diagonally dominant character of the scattering matrix

and precondition the functional. The terms of the Boltzmann equation are scaled by the vector
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4.4. Variational method

Algorithm 1 Conjugate gradient

initialise
f0 = (Aout)−1b = f SMA

r0 = b− A f0
p0 = r0
i = 0
loop

αi = ri ri
pi Api

fi+1 = fi +αi pi
if k[ fi+1]≈ k[ fi ] then return

ri+1 = ri −αi Api
βi = ri+1ri+1

ri ri
pi+1 = ri+1+βi pi
i = i +1

of the diagonal part of the scattering matrix Aout in the following way:

f̃ =
�
Aout f (4.22)

b̃ = 1�
Aout

b

Ã = 1�
Aout

A
1�
Aout

F̃ [ f̃ ]= 1

2
f̃ Ã f̃ − b̃ f̃ =F [ f ] .

Typically, we found that the preconditioned conjugate gradient method is able to converge in

about 20 iterations for the 2Dmaterials studied in this Thesis.

In summary, the preconditioned conjugate gradient is an efficient tool for finding the solution

of the Boltzmann equation. It does not have limitations on its convergence properties, it

always obtains the exact solution and converges in few iterations. In our opinion, there is

one drawback this method shares with the iterative method: neither of them is capable of

interpreting the transport in terms of microscopic relaxation times or mean free paths. Both

tools (within their convergence domain) are capable of obtaining the exact phonon deviation

distribution f and they both give a total value of thermal conductivity, but we did not find a

simple way to derive relaxation times or mean free paths from the distribution f . This is in

contrast with many other works (see for example Ref. [94]), which claim the opposite. The

argument is that the thermal conductivity (Eq. 3.24) can be cast in a kinetic gas expression like

Eq. 4.7 if one defines a relaxation time τν = fν
vνħων

or a mean free pathΛν = fν
ħων

. However, the

definition of such quantities by the simple argument of analogy leaves space for objections.

For example, it is not evident how such τν can be associated with a decay by a factor 1/e of the

phonon excitation. Also, the relaxation time can diverge when the phonon ν has zero velocity,

yet it can travel for a finite mean free path. Eventually, the mean free path can have both

negative and positive sign, so that it cannot be interpreted as an average distance between
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scattering events. As a novel result of this Thesis, we will overcome these limitations in the

next section providing a rigorous definition of exact relaxation times andmean free paths.

4.5 Relaxons

In a last attempt of finding the solution of the Boltzmann equation, we will study in this

section the diagonalisation of the scattering operator. The method has been used by very few

authors in the past. As far as we know, Guyer and Krumhansl [69] have tried for the first time

to write the solution of the Boltzmann equation in terms of the eigenvectors of the normal

scattering operator. Hardy [74] extended this idea diagonalising the complete scatteringmatrix

during a study of second sound. These works only wrote the theory but did not attempt an

explicit diagonalisation of thematrix and only more recently Chaput computed the eigenvalue

spectrum for studying the thermal response to a time dependent temperature perturbation

[52]. Beside these authors and their coworkers, we couldn’t find other works who diagonalised

the scattering matrix. In fact, the method is seemingly unappealing if one simply desires to

get the static thermal conductivity: for this purpose, the iterative or the variational methods

are muchmore computationally feasible than an explicit diagonalisation.

Despite the computational cost associated to this method, we will see, as a novel result of this

Thesis [51], that the diagonalisation provides an interpretation of thermal transport, which is

formally similar to the SMA, but takes correctly into account all the phonon correlations due

to scattering.

Let us start by reconsidering the linear Boltzmann equation:

∂nν(r , t )

∂t
+vν ·∇nν(r , t )=−∑

ν′
Ωνν′nν′(r , t ) . (4.23)

We first note that it is not possible to define a phonon relaxation time. In analogy with the

procedure outlined for the explanation of the SMA relaxation time, we study a homogeneous

system at thermal equilibrium, in which we excite a phonon at time t0. The system is governed

by the equation:

∂nν(r , t )

∂t
=−∑

ν′
Ωνν′nν′(r , t ) . (4.24)

In this more general situation, the solution for the phonon relaxation does not have anymore

a simple exponential form e−t/τ. The out-of-diagonal matrix elements are responsible for a

coupling between phonons that prevents the definition of a phonon relaxation time.

It is still possible to define a relaxation time. To proceed, we first note that the drifting operator,

i.e. the left side of Eq. 4.23 is diagonal in ν but the scattering operator is not. Since the

information about the time scale of the relaxation is contained in the latter, we extract it by

diagonalising the scattering operator. First, we symmetrise the Boltzmann transport equation
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[73, 88, 74, 52] with the transformations:

Ω̃νν′ =Ωνν′

√
n̄ν′(n̄ν′ +1)

n̄ν(n̄ν+1)
, (4.25)

ñν = (n̄ν(n̄ν+1))−
1
2nν , (4.26)

so that Ω̃ν,ν′ = Ω̃ν′,ν. The transformation leaves the Boltzmann equation untouched, but now

Ω̃ posses the same properties of the matrix A: it is real, symmetric and semi-positive definite

[73, 74]. Now, we diagonalise the scattering matrix Ω̃:

∑
ν′
Ω̃νν′θαν′ = 1

τα
θαν . (4.27)

The scalar product between two eigenvectors is defined by (θα,θβ) = ∑
ν θ

α
ν θ

β
ν . Since the

matrix is semi-positive definite, it follows that 1
τα

≥ 0, ∀α. Moreover, its eigenvalues have

a well defined parity and they can be either even or odd: θαν = ±θα−ν, where −ν = (−q , s)

[74]. We know very little about the eigenvalue spectrum a-priori, however we know that the

Bose–Einsten distribution is an eigenvector with zero eigenvalue:

θ0ν =
�
n̄ν(n̄ν+1)ħων√

kBT 2C
, (4.28)

whereC = 1
V

∑
νCν. The eigenvectors form a complete basis for any phonon distribution [74]

and therefore we can write the phonon distribution nν as a linear combination of eigenvectors:

ñν(x , t )=
∑
α
fα(x , t )θ

α
ν . (4.29)

In the basis of the eigenvectors, the Boltzmann equation becomes:

∂ fα(x , t )

∂t
+∑

β

V αβ ·∇ fβ(x , t )=− 1

τα
fα(x , t ) , (4.30)

whereV αβ =∑
ν θ

α
ν vνθ

β
ν . In contrast with the standard formulation of the Boltzmann equation,

here the scattering operator is diagonal whereas the non-diagonal term now is the diffusion

operator. It is also worth noting that the formalism is equivalent to the SMA in the special case

of diagonal Ω̃: α coincides with ν, τ= τSMA and θα
ν′ = δν,ν′ .

In this Thesis, we interpret the eigenvectors θα as a set of collective excitations which we call

relaxons, and whose occupation numbers are given by fα. We assigned this name due to the

relaxation properties of this collective excitation. If we consider an homogeneous system

(∇ f β = 0) in which only one relaxon is excited at an initial time, the system relaxes back to

equilibrium as fα(t) = fα(t0)e−t/τα . Therefore, relaxons are characterised by a well defined

relaxation time τα. The fact that all lifetimes are positive guarantees that thermal equilibrium
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is reached at infinite time. Only the Bose–Einstein state that has a zero lifetime is stationary,

i.e. it does not evolve in time and is the only surviving state at infinite times. Since we solved

the time evolution of the system analytically, we can use Eq. 4.29 to prove that phonons do

not have a relaxation time. Upon excitation, the phonon ν relaxes back to equilibrium as a

linear combination of relaxon relaxations: nν(t )=∑
α fα(t0)θ

α
ν e

−t/τα . Therefore, the phonon
relaxes back to equilibrium according to N different relaxation times, where N is the number

of phonons present in the system (i.e. the size of the scattering matrix).

The velocities appear in Eq. 4.30 as a matrix V αβ coupling different relaxons. This was to

be expected to some extent since the diffusion operator is diagonal in the phonon basis

and the change of representation introduces off-diagonal elements. Therefore we cannot

unambiguously identify a relaxon velocity in all circumstances. However, the equations are

substantially simplified in an homogeneous system where we can approximate ∇nν ≈ ∂n̄ν

∂T ∇T
for small temperature gradients (see Eq. 3.17). In this case, the homogeneous Boltzmann

equation in the relaxon basis writes as:

∂ fα(t )

∂t
+

√
C

kBT 2∇T (t ) ·V α =− fα(t )

τα
, (4.31)

where V α =V α,β=0. Both the drifting and the collision operator are diagonal and this time we

can identify a relaxon velocity V α. Therefore, only if the system is not homogeneous, as when

surfaces are present (Ch. 5), it is not straightforward to define a relaxon velocity.

Let’s simplify further and consider the steady state in presence of a temperature gradient

∇T (t) = ∇T . Now we can set ∂ fα
∂t = 0 in Eq. 4.31. We look for solutions that are linear in

the gradient of temperature fα = ∑
i f

i
α∇i T , where i is a cartesian direction. The relaxon

Boltzmann equation reduces to:

√
C

kBT 2V
i
α =− f iα

τα
, (4.32)

which can easily be inverted to obtain f . Using the relation between phonons and relaxon oc-

cupation numbers nν =
�
n̄ν(n̄ν+1)

∑
iα∇i T f iαθ

α
ν , we can compute the thermal conductivity:

ki j = 1

∇i T

∑
ν
ħωνv

j
νnν =

∑
α
f iα

√
kBT 2CV j

α

=∑
α
CV i

αV
j
ατα =∑

α
CV i

αΛ
j
α , (4.33)

where we introduced the relaxon mean free path Λ
j
α, and the summation is done only over

odd relaxons (for even relaxons V i
α = 0). This is perhaps the key result of this method. The

thermal transport without any approximation on the scattering operator can be interpreted

with the kinetic theory of gases. The exact thermal conductivity is described by a kinetic theory

of the relaxon gas, where each relaxon has a lifetime τα travels at an average velocity Vα and

carries the thermal energyC for an average distanceΛα before thermalisation lets the relaxon
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population decay by a factor 1/e. Therefore we can determine the time, velocity and length

scale of thermal transport. No other work has given, to our knowledge, a similar interpretation

of thermal conductivity and we will apply it for the first time to graphene in Chapter 8 with

interesting findings.

4.6 Technical details

The numerical solutions of most theoretical models need to resort to some approximations,

and the methods for the Boltzmann equation make no exception.

First of all, the summation on the Brillouin-zone wavevectors q for an infinite crystal should

actually be a continuous integration. Since infinite summations are not possible on computers,

the q-points summations need to be limited to a uniformly distributedMonkhorst-Pack mesh.

One should therefore choose a sufficiently dense grid of points and increase it until the error

has decreased to a sufficiently small value.

The q-points are not the only computational parameter appearing in the Boltzmann equation.

The scattering rates contain Dirac-δ expressions that ensure the conservation of energy and

crystal momentum. The conservation of momentum can be exactly enforced if the grid of q-

points is centered on the Γ point of the Brillouin zone (in this case every summation of q points

is another point of the grid). The conservation of energy instead needs an approximation. In

this Thesis, we opted for a simple gaussian approximation of the Dirac-δ:

δ(ħω)= 1�
πσ

e−(
ħω
σ
)2 . (4.34)

The smearing parameter σ has to be optimized at the same time of the q-point mesh. The

converged value is the one as close as possible to the limit for σ→ 0 and k→∞.
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5 Surface scattering

In the previous chapters we limited the study of the Boltzmann equation to the case of infinite

crystals. In this idealised picture we have shown how to compute the intrinsic value of the

crystal thermal conductivity. However, all measurements are performed on crystals of finite

size and we have to adapt the theory in order to describe these conditions.

Even without diving into a detailed explanation, we can guess empirically how the presence of

a surface can impact the thermal conductivity. Within the SMA, the thermal conductivity is

roughly proportional to the mean free pathsΛ of the phonons:

k = 1

V

∑
ν
CνvνΛν . (5.1)

In an infinite crystal,Λ is exclusively determined by the distance between intrinsic phonon

scattering events, like, as we have seen, the 3-phonon interaction and the phonon-isotope

scattering. When the sample has a finite size, let’s say a characteristic size L, we can expect

that the phonon cannot travel for a distance larger than L without hitting the surface. As a first

guess, we can think at the surface as a region where the phonon scatters and is brought back

to thermal equilibrium. We can therefore expect that the correct value to use forΛν is either L

or the intrinsic scattering length, whichever of the two scatterings is the most likely to occur.

From this simple analysis, that will soon be corroborated by more quantitative evaluations, we

can already guess that the crystal can be approximated as infinite when the characteristic size

of the sample is much larger than the mean free path for heat carriers. The surface scattering

is therefore of great relevance in some cases. First, at low temperatures when the Umklapp

scattering freeze out (or whenever the resistive scatterings are small), themean free paths grow

dramatically. In fact, in the limit of T → 0, the probability for a phonon-phonon scattering

event tends to zero and the mean free paths tend to diverge. The presence of the surface is

preventing a divergence of thermal conductivity, since it will limit the largest distance the

phonons can travel. Second, also at room temperature the thermal conductivity can be mostly

determined by the surface, if the sample is much smaller than the length scale of the mean

free path. This in particular is a very important area of contemporary research, since several
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Chapter 5. Surface scattering

L T

x

y

Figure 5.1 – Sketch of the ribbon of a 2Dmaterial that will be analysed in this chapter. Note
that the direction in which the temperature gradient is applied is infinite. The surface effect
will instead be introduced by a finite width of the sample.

applications can take advantage or rely onmaterials whose size reaches the microscopic (or

nano) scale. For example, one of the various strategies to improve the performance of thermo-

electrics is to nanostructure the material, so that heat carriers are scattered more efficiently by

surfaces and the thermal conductivity is reduced. Also in semiconductor technology, where

the size of CPUs keeps shrinking, it is crucial to understand how heat is dissipated through the

material.

In this chapter, we will study the heat flow of a two-dimensional ribbon, as shown in Figure

5.1. The direction in which the temperature gradient is applied, labeled as x, is approximated

as infinite. There is also a perpendicular direction, indicated by y , in which the ribbon has

instead a finite width L. We will study the steady state thermal conductivity of this ribbon and,

for simplicity of the discussion, we will use the single-mode relaxation time approximation

[77, 48]. In addition, we will investigate the ballistic regime [49, 48], sometimes also called

Casimir limit, in which the intrinsic phonon scattering can be neglected and only the surface

scattering is considered.

5.1 Definition of the problem

Even when the crystal has a finite size, we can still suppose that in all interior points of the

sample there exists a distribution function nν(r ), which describes the most probable number

of phonon excitations in the state ν at position r . We can still write the Boltzmann equation as

before:

vν∇nν(r )+
∑
ν′
Ωνν′nν(r )= 0 . (5.2)

By using the Boltzmann equation in a crystal of finite size we are making some additional

assumptions with respect to the bulk case. As a first hypothesis, we are assuming that the

Bloch theorem is a good approximation for the quantum numbers of the lattice vibrations.

Strictly speaking, the Bloch theorem does not hold anymore, since we are breaking the perfect

periodicity of the crystal with a surface. However, this becomes a concern only when the

ribbon is extremely narrow (for example, a few unit cells). In this limiting scenario, the

58



5.1. Definition of the problem

wavevectors allowed in the direction of finite size will be much less than those possible in the

bulk. However, we are interested in a ribbon which has a width of somemicrons, as this is the

sizemost relevant for applications and in this case the limitation on the wavevector is not a big

issue. For example, for the materials studied in this work, we found converged conductivities

by sampling the Brillouin zone with about 100×100 points. The largest wavelength that is

sampledwith this choice of q-points corresponds to about 25nm,meaning that all wavelengths

considered are still allowed in a ribbon of width ≈ 1 μm. Longer wavelengths have a negligible

contribution and we can use the Bloch theorem for our study. Note that if we were to study a

much narrower ribbon, one can still study the system accurately by treating it as 1-dimensional.

The additional assumption we make, is that the phonon force constants, used to compute

velocities and scattering operator, do not depend on the position inside the sample, i.e. the

surface does not deform the lattice. To take into account how the phonon properties change

as the surface is approached is a formidable task. Therefore, we approximate the scattering

properties as constant throughout the interior of the space, andwewill parametrise the surface

properties by imposing appropriate boundary conditions. This approach can be considered

a good approximation for sufficiently large systems, where the surface transport is small

compared to the bulk.

The characteristic feature of boundary scattering that makes it so different from other intrinsic

events, is that it does not occur uniformly throughout the sample. Therefore, we cannot

simply add another rate to the scattering operator. The phonon distribution function in

this case depends on the position inside the crystal, mostly affecting the phonons close to

the surface than others. For this reason, at variance with the infinite system, we cannot

approximate anymore ∇nν(r )≈ ∂nν

∂T ∇T and the Boltzmann equation needs to be considered

in its more generic form. In order to proceed, let us separate, without loss of generality, the

out-of-equilibrium function in two terms:

nν = n̄ν+ gν , (5.3)

so that the difference from the equilibrium case is given by g . To make the diffusion term

treatable analytically, we suppose that the temperature is constant along the y direction, i.e.

temperature changes only along the x direction according to ∇T . In this approximation, the

Boltzmann equation becomes:

∇xT v
x
ν

∂n̄ν

∂T
+ v yν ·∇y gν(y)+

∑
ν′
Ωνν′gν(y)= 0 . (5.4)

Onmathematical ground, Eq. 5.4 is a non-homogeneous linear order differential equation,

whose unknown is the vector (with index ν) of functions gν(y) as a function of the position

along the width of the ribbon y .

The equation can be integrated to obtain gν(y), however, to fix the integration constants,

we need to impose suitable boundary conditions. Let us consider, for example, a phonon

ν which is travelling with a velocity exactly parallel to x, i.e. v yν=0 so that the second term
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Chapter 5. Surface scattering

of Eq. 5.4 disappears. Since this phonon will never be able to bounce on the surfaces, the

Boltzmann equation simplifies to the bulk case, and the surface does not alter the diffusion of

the phonon. Let’s instead consider a phonon ν such that its velocity is v yν > 0. This phonon

is leaving the surface located at y = 0, where it emerged as the result of a previous scattering

event. For this phonon mode, the solution gν(y) is different from the bulk case and has a y

dependence, thus it needs a boundary condition. The simplest and only boundary condition

that we will use in this Thesis, is the so-called Casimir limit. In this approximation, we suppose

that the surface is able to absorbe phonons and locally thermalise the system. Hence, the

phonon ν was at thermal equilibrium when it was emitted by the surface at y = 0 that it is

leaving. In mathematical terms, we have to impose that nν(y = 0)= n̄ν or, in other terms, that

gν(y = 0)= 0. Conversely, a phonon ν leaving the surface at y = L with a velocity v yν < 0, must

have been at thermal equilibrium when it was located at the surface, i.e. gν(y = L)= 0.

In a more general case, the surface does not necessarily have to establish the local thermal

equilibrium. For example, we can imagine the presence of surface modes that will conduct

some heat and cause the phonons to be thermally excited also at the surface. Therefore, the

boundary condition should be generalised to gν(0)= gν(L)= δν. However, the computation

of such boundary condition δν is not a trivial task and, since it depends on the microscopic

details of the surface, it varies in principles for every sample. As is customary in literature, we

simplify the discussion by fixing a value of this boundary condition and we proceed for the

rest of this Thesis only with the Casimir limit.

5.2 SMA surface scattering

To proceed and extract a solution to the surface scattering problem, we now restrict the

generality of the discussion and adopt the SMA. The Boltzmann equation (Eq. 5.4) is simplified

to

vxν∇xT
∂n̄ν

∂T
+ v yν

∂gν(y)

∂y
+ gν(y)

τν
= 0 . (5.5)

The first term is constant in y , so, to outline this we substitute it with a y-independent quantity:

Rν =−vxν∇xT
∂n̄ν

∂T
. (5.6)

In this way, it is more visible that the problem is just a linear order differential equation in y :

v yν
∂gν(y)

∂y
+ gν(y)

τν
=Rν . (5.7)

If v yν = 0, the problem is analogous to the already known infinite system as mentioned above.

Let’s then focus on the case v yν > 0 (the results for the case v yν < 0 will be identical, besides a

sign). One can verify that the solution of the differential equation, compatible with Casimir’s
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5.2. SMA surface scattering

boundary condition gν(0)= 0, is:

gν(y)= τνRν

[
1−e−y/τνv yν ] . (5.8)

Very often, this result is written as an effective correction to the intrinsic phonon lifetimes.

To do this, we note that the Boltzmann equation can be written in a form similar to the

homogeneous case:

vxν∇xT
∂n̄ν

∂T
+ 〈gν〉

τeffν

= 0 , (5.9)

where we averaged the y-dependency of g by integrating over the ribbon’s cross section:

〈gν〉 = 1

L

∫
gν(y)dy , (5.10)

and we defined an effective phonon lifetime as:

1

τeffν

= 1

τν
+ 1

τbν
, (5.11)

1

τbν
=

∫
v yν

∂nν(x,y)
∂y dy∫

nν(x, y)dy
, (5.12)

For the ribbon geometry we integrate this expression between 0 and L and obtain the boundary

correction to the phonon relaxation time:

1

τbν
= v yν

L

(
1−e−

L

τνv
y
ν

)
1− τνv

y
ν

L

(
1−e−

L

τνv
y
ν

) . (5.13)

To better understand this result, it is convenient to study the two limits in which the phonon

lifetime τ is negligible or dominant with respect to τb . In the first case, the resulting effective

relaxation time is:

lim
τ→∞

1

τbν
= 2v yν

L
. (5.14)

In other words, the phononwith velocity v yν is only able to travel for a distance L/2, the average

distance between the walls of the ribbon. This result is also called the ballistic limit: in the

limit of no internal scattering events, this is the only scattering event seen by the phonon. In

the second case, if the intrinsic phonon scattering is very frequent, we have:

lim
τ→0

1

τbν
= v yν

L
, (5.15)

so that the effective size of the ribbon felt by the phonon is twice asmuch as before. Away from
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Chapter 5. Surface scattering

these two limits, the effective length of the ribbon falls at values in between the two extreme

situations. The effective phononmean free path can therefore be found as:

1

λeff
ν

= 1

vxν

(
1

τν
+ 1

τbν

)
= 1

λν
+ 1

λb
ν

. (5.16)

The complete expression for τb gives some overhead in the calculations. However, it is typically

found that this result does not differ too much from the simple use of the ballistic relaxation

time of Eq. 5.14 in place of τbν [132]. The difference between the two expressions is that with

this approximations, one scales down also the relaxation time of phonons with v yν = 0. If we

make this final assumption, the surface scattering can be treated approximately as if there was

an additional scattering rate in the Boltzmann equation, of the form:

P size
νν′ = n̄ν(n̄ν+1)v yν

L
δνν′ . (5.17)

This term can be easily added to the intrinsic scattering matrix and the Boltzmann equation

can then be solved using the same techniques explained in the previous section.
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6 Transport in 2D materials

In this chapter we will present our numerical results on thermal transport of 2D materials,

developed using the theory exposed in the first part of this Thesis. First, we will review the

failure of the single-mode relaxation time approximation in 2Dmaterials. This fact was first

pointed out by Lindsay et al. [97] in a study for graphene and subsequently for boron nitride

[96]. We extended the analysis to the intrinsic crystal, since their work always made use of a

relaxation time for surface scattering [60]. Moreover, we extended the analysis to a broader

range of 2Dmaterials, showing that the failure of the relaxation time approximation is very

common for this family of crystals, and is robust to variations in the isotopic scattering and to

isotropic strain.

To understand the deficiency of this approximation, we will point out in the course of this

chapter some effects that hint at the existence of collective phonon excitations, that will be

formalised in Chapter 8 with the analysis on relaxons. In particular, we will note that 2D trans-

port is characterised by unusually high rates of normal scattering events [50]. Since normal

scatterings act mainly reshuffling phonon distributions without contributing to thermal resis-

tivity, correlations between phonons arise. As a consequence, thermal transport does not fall

into common conditions of ballistic or kinetic-diffusive regimes. Instead, the hydrodynamic

regimes of Poiseuille and Ziman, hitherto observed only at cryogenic temperatures, take place

at room temperature and above. Due to the similarity of the room temperature transport in 2D

with the low temperature conditions of 3D crystals, the Callaway model, originally invented

for describing thermal conductivity at cryogenic temperatures, provides a good estimate of

thermal conductivity.

To compute the results labeled as exact of this and the following chapter, we used the varia-

tional approach to the Boltzmann transport equation. The list of the computational parame-

ters used in the simulations for all the various materials is reported in appendix A. For all the

results of this chapter, we used isotopic scattering at natural abundances.
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Figure 6.1 – (Top panel) In-plane lattice thermal conductivity in bulk graphite, single- and
bilayer graphene of crystalline-domain sizes (see text) L = 1 mm and (bottom panel) out-
of-plane thermal conductivity of graphite with L = 0.3 μm. The data (EXP) of graphite are
taken from Ref. [78], which were obtained by a compilation and analysis of several research
papers with a widely accepted extrapolation above 300 K, a posteriori shown to be accurate
by the present calculations. This extrapolation regime is highlighted by the use of filled
diamonds. Solid lines are used for the exact solutions while dashed lines for the single-mode
approximation (SMA) solutions. (Inset) Zoomed SMA results for the range T = 200–600 K, in
which in-plane thermal conductivity is qualitatively wrong; graphite conductivity is found to
be higher than single- and bilayer graphene.
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6.1. Failure of the relaxation time approximation

6.1 Failure of the relaxation time approximation

Thermal conductivity of 2Dmaterials has been object of investigations only since a few years

and there are many debatable results. For example, there is no consensus on the thermal

conductivity of graphene (see Ref. [36] for a collection of different estimates, spanning from

600 to 4000Wm−1K−1). For this reason, it is convenient to start our investigation with graphite,

the 3D counterpart of graphene, which is instead a better characterised material. In order to

compare measurements with our simulation estimates, it is necessary to include the presence

of grain boundaries. It can be shown that, within the SMA, the scattering of phonons on

grain boundaries [83] is described in the same way of the effective scattering rate for surfaces

presented in Chapter 5.2. In this case however, the length L entering the relaxation time is

not anymore the width of the sample perpendicular to the temperature gradient; instead L

now is the average grain size. The presence of this scattering term is necessary in particular

to describe the low temperature thermal conductivity: in absence of surface scattering the

phonon-phonon scatterings freeze out and the thermal conductivity diverges, instead the

extrinsic scattering (a surface or a grain) renormalizes the thermal conductivity to finite values.

For graphite, we chose a value of L = 1mm for in-plane transport and L = 0.3 μm for transport

in the out-of-plane direction, chosen as a characteristic distance between stacking faults in

carbon planes [60].

In Figure 6.1 we report our estimates of graphite thermal conductivity and compare it with

high-precision measurements on perfect crystals of large sizes [78]. The comparison shows a

remarkable agreement betweenmeasurements and the results of our simulations. However,

if the SMA is used, we find a severe underestimation by an order of magnitude for the in-

plane conductivity, while keeping a good agreement with experiments for the out-of-plane

conductivity. The proper agreement with experiments is realised only when considering the

exact solution of the Boltzmann equation. As mentioned above, the inadequacy of the SMA

was found also in a recent first-principles work on graphene [99] and in single and multilayer

graphene described with an empirical potential [97, 98, 122, 121]. In addition, we have shown

[60] that such limitation is not restricted to 2D materials and can be found also at room

temperature in 3D layered systems.

Graphene has amuch higher thermal conductivity with respect to graphite (top panel of Figure

6.1), as the experimental evidence suggests [36], and the bilayer is intermediate between the

two extreme cases. We note also that the increase in thermal conductivity upon reduction

of the material thickness cannot be reproduced by the SMA. In fact, as seen for graphite,

the values of thermal conductivity are underestimated for the 2D materials. Moreover, the

qualitative trends are incorrectly reproduced by the SMA, as it would predict the smallest

values for graphene and the highest for graphite, quite the opposite of the exact result.

In the recent years there has been an active debate about the possible divergence of thermal

conductivity in two dimensional materials ([107, 93, 131, 57, 97, 104, 41] to name a few), and

recently also in an experimental study of graphene [130]. Although we report indeed very high
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Chapter 6. Transport in 2D materials

Figure 6.2 – Ab-initio estimates of the thermal conductivity k as a function of temperature for
infinite suspended sheets, at natural isotopic abundances. The single-mode relaxation time
approximation (SMA) is tested against the exact solution of the first-principles Boltzmann
equation.

values of thermal conductivity (and we will find very large mean free paths in Section 7.1),

we did not find such divergence and instead the thermal conductivity of an infinite sample

at finite temperature converges to a finite value. We can thus provide the highest theoretical

limit of the lattice thermal conductivity of graphene, that would be reached in a perfect

infinite crystal where no grains or surfaces limit the mean free path. At room temperature the

highest predicted thermal conductivity has the value of 3600Wm−1K−1 for naturally-occurring
graphene and 4300 Wm−1K−1 for the isotopically pure case. For comparison, these values are

of 2200 and 2500 Wm−1K−1 for a bilayer, and 2000 and 2200 Wm−1K−1 for graphite.

The failure of the relaxation time approximation is not limited to carbon-based crystals. In

Figure 6.2 we extend the study to a larger set of 2D materials, including graphane, boron

nitride, fluorographene and molybdenum disulphide, and in Figure 6.3 we test it for some

common 2D transitionmetal dichalcogenides: MoS2,MoSe2,WS2 andWSe2. For both pictures,

we show the intrinsic thermal conductivity, i.e. without including surface scattering. In

all cases, the differences between the SMA and exact solutions cannot be neglected, and

sometimes, like for example graphene and graphane, the SMA underestimates the thermal

conductivity by an order of magnitude at room temperature, the difference growing larger

at lower temperatures. Similarly with graphitic materials, the SMA changes even qualitative

trends of thermal conductivity, for example predicting incorrectly the thermal conductivity

of MoS2 to be smaller than fluorographene. Therefore, the SMA is not capable of describing
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Figure 6.3 – Ab-initio estimates of the thermal conductivity k as a function of temperature
for infinite suspended sheets of some transition metal dichalcogenides, at natural isotopic
abundances. The single-mode relaxation time approximation (SMA) is tested against the exact
solution of the first-principles Boltzmann equation.

neither quantitatively nor qualitatively the thermal conductivity of 2Dmaterials and, as seen

for graphite, this can be extended to layered materials as well.

It is also interesting to note that the SMA also alters the effect of strain on thermal conductivity.

This topic has been object of debate, due to the presence of contradictory results. Some have

predicted a divergence of thermal conductivity in presence of strain that casts doubts on the

definition of thermal conductivity itself [43, 32], while others found a finite and sometimes

even decreasing thermal conductivity [100, 33, 95, 99]. In Figure 6.4, we see that the exact

values of thermal conductivity predict a weak change with applied isotropic in-plane strain.

Also, this change does not show a strong size dependence and for three particular cases

studied in detail (L=5 μm, 100 μm,∞) the ratio between the strained and unstrained sample is

always close to 1 for all the temperatures considered here, changes being typically within 10%.

Instead, the SMA provides once again a qualitatively different description and predicts a large

increase of thermal conductivity with respect to strain, even diverging for infinite sizes in the

limit of zero temperature. In the SMA, the response to strain is strongly dependent on size and

temperature, and a strain of 4% leads to a change in k typically larger than 200%. We notice

also that the discrepancy between the SMA and the exact solutions increases with L, and

persists even in the limit of high temperatures, where the SMA would typically be considered

reliable. Therefore, our simulation of an infinite sample contradicts the divergences claimed

by Ref. [43] and the simulation at large strains is in contrast with the divergence found in Ref.

[32], indicating instead a small effect.
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0.1 1

5
100

EXACT

Figure 6.4 – (Top panel) Thermal conductivity percentage variation (%) as a function of strain
distribution and grain-size length for the exact solution of the Boltzmann equation. The
reference value is the unstrained value of thermal conductivity at various sizes, which are,
for example, 356, 646, 831, and 1037 W/mK for sizes L of 0.1, 1, 10, and 100 μm, respectively.
(Bottom panel) Ratio between strained (4%) and unstrained cases in the exact solution of the
Boltzmann equation and in the SMA for three different crystalline-domain sizes L = 5 μm, 100
μm, and∞. (Inset) Acoustic phonon dispersion between Γ an K/2 for the two different strain
limits.
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6.2. Phonon transport regimes

When introducing the SMA in Section 4.1, we pointed out that the SMA neglects the out-of-

diagonal elements of the scatteringmatrix, which are responsible for (1) introducing couplings

between phonon modes and (2) describing the repopulation of phonons due to scattering.

The SMA, which uses only the diagonal terms, neglects the couplings between phonons and

neglects completely the repopulation of phonons. Therefore, collective aspects of the thermal

excitations are completely neglected, for the sake of having a simple solution of the Boltzmann

equation. The deficiency of the SMA in 2Dmaterials highlights how the description of thermal

transport in terms of single-phonon properties is not sufficient, and it is necessary to take into

account also the collective aspects of the thermal excitations.

6.2 Phonon transport regimes

In order to make further progress and gain insights on the collective nature of the phonon

excitations, it is instructive to inspect the scattering rates for the different processes involved:

3-phonon processes - divided into normal (N ) and Umklapp (U ) events - and isotopic

scattering (I ).We show in Figure 6.5 the average linewidths for these processes, defined as

〈Γi 〉 = 〈2π
τi

〉 =
∑

νCν2π/τiν∑
νCν

, (6.1)

where i labels either N , U or I processes and Cν = n̄ν(n̄ν+1) (ħων)2

kBT 2 is the specific heat of

the phonon mode ν. Conventionally, it is expected that N events become dominant only

at very low temperatures, when U processes freeze out [132], and even then only provided

that I rates or other extrinsic sources of scattering are negligible. Quite surprisingly, it is seen

here that not only N processes are very relevant, as argued in Ref. [97, 112], but that they

represent the dominant scatteringmechanisms in these 2Dmaterials at any temperature (with

the exception of natural-abundance molybdenum disulphide and boron nitride, where I is

comparable to N due to the large isotopic disorder of molybdenum and boron). Therefore,

the phonon gas in graphene and 2Dmaterials has analogies with an ideal gas of molecules,

which conserves both energy andmomentum in collisions: for this reason, phonons under

these particular regimes are said to be in hydrodynamic regimes.

The predominance of normal scattering processes identifies the regime(s) under which the

SMA does not hold anymore and the collective aspects of the phonon dynamics must be

considered. In fact, we discussed in Chapter 4 that normal scattering events, which alone

would give an infinite thermal conductivity, are poorly described by the SMA, that overesti-

mates their contribution to thermal resistivity. We nevertheless underscore that, even if the

momentum-conserving N processes tend not to dissipate heat-currents, they still affect the

total thermal conductivity by altering the out-of-equilibrium phonon distribution. Last, we

highlight that the failure of the SMA in these conditions is a rather conceptual one, since it’s the

assumption that heat-flux is dissipated at every scattering event that becomes invalid. Instead,

given that most processes are normal, heat-flux is just being shuttled between phononmodes.
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Figure 6.5 – Average linewidths of Normal (N ), Umklapp (U ) and Isotopic (I ) scattering pro-
cesses in infinite suspended sheets;I processes are calculated at natural isotopic abundances.
N scattering in all these 2Dmaterials is clearly dominant.
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6.2. Phonon transport regimes

Ballistic E �N and E �R

Poiseuille N � E �R

Ziman N �R � E

Kinetic R �N and R � E

Table 6.1 – Classification of different regimes of thermal conductivity as a function of the
linewidths of different scattering events: normal (N ), resistive (R - combining both Umklapp
and isotopic), and extrinsic (E ). Poiseuille and Ziman hydrodynamics are characterized by
dominant N scattering against all other mechanisms.

In order to compare these 2Dmaterials with conventional solids, we summarize in Table 6.1

the different regimes of phonon transport according to the nomenclature of Guyer [70]. In

the ballistic regime the dominant scattering events are extrinsic (E ), and are typically due to

the finite size of the sample (line defects, surfaces, grain boundaries); in the Poiseuille regime

normal (N ) processes dominate, and the heat-flux is dissipated by E events (this is the first

hydrodynamic regime where the gas of phonons is “normal” but it feels the “walls” of the

container). In the Ziman regime N events still dominate, but the heat flux is now dissipated

by resistive R scattering (either Umklapp (U ) or isotopic (I )) - in this regime the “walls” have

become irrelevant for the normal gas. Finally, in the kinetic regime intrinsic resistive processes

R (again, typically U or I ) have the highest linewidth, the sample size is much larger than all

typical mean free paths and N events have become negligible.

It becomes instructive then to compare graphene, taken as reference, with a typical three-

dimensional solid, like silicon or germanium. We show in Figure 6.6 the thermal conductivity

of graphene both in the case in which we have an infinite sample (k∞) or a finite ribbon

(here of width L=100μm, kL), considering this also in the ballistic limit kballisticL obtained by

removing all the internal sources of scattering N , U and I , but preserving the extrinsic

scattering E . The comparison of kballisticL with the exact thermal conductivity kL in a ribbon

of width L shows that the ballistic regime is not a good approximation to kL . In fact, the

introduction ofN scattering events enhances the thermal conductivity well above the ballistic

limit. As the thermal conductivity grows with temperature, graphene is in the Poiseuille

regime, where N events facilitate the heat flux, and extrinsic sources of scattering dissipate it

(the term Poiseuille comes from an analogy [70] between the flow of phonons in a material

with the flow of a fluid in a pipe). The thermal conductivity does not grow indefinitely with

temperature, due to the limit imposed by the intrinsic thermal conductivity of an infinite sheet

k∞. Thus, there is a thermal conductivity peak, and for higher temperatures the heat-flux

is mostly dissipated by intrinsic sources (U + I ). Since the N processes have the largest

linewidth at any temperature, the regime at temperatures higher than the peak shifts to Ziman,

where the intrinsic resistive processes R set the typical length scales, and the boundaries

become irrelevant. Last, if the intrinsic eventsR (U +I ) had the largest linewidth the thermal

conductivity would be in the kinetic regime: this is the regime of conventional materials at

ordinary temperatures, but it is never reached in these two-dimensional cases.
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6.3. Testing the Callaway approximation

Figure 6.7 – Test of the Callaway model against the exact solution of the Boltzmann equation
for some infinite suspended 2Dmaterials. The model greatly improves over the SMA and is
able to reproduce the exact conductivity.
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Figure 6.8 – Test of the Callaway model against the exact solution of the Boltzmann equation
for some infinite suspended 2D transition metal dichalcogenides. The model improves over
the SMA, but the differences with the exact solutions are more pronounced than for graphene
and other materials.
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tivities. The model broadly reproduces the exact solutions, even if e.g. in fluorographene it

overestimates the exact results, or in transition metal dichalcogenides underestimates them.

So, even more than providing simple but fairly accurate estimates of the phonon distribution

without the need of solving exactly the Boltzmann equation, the value of the model is in the

clear physical insight it offers on the microscopic nature of heat transport, allowing us to

conclude not only that the dominant presence of N processes at all temperatures character-

izes heat transport in these materials, but also that the distribution function can be broadly

described as a drifting distribution according to the prescriptions of Callaway and Klemens

[47, 84]. In the dichalcogenides however the model has a reduced effectiveness, suggesting

that for those materials it is not possible to describe the system only using a two-component

relaxation.

Even though themodel has sometimes a limited applicability, it has a great merit in suggesting

a possible way of improving the interpretation of thermal conductivity. The introduction of

two different relaxation processes has improved the estimates of thermal conductivity over

the SMA. This suggested the interpretation of thermal transport in terms of relaxons that we

presented in Section 4.5, where we have shown that the introduction of N different decay

channels of the phonon distribution allows for an exact description of thermal transport.
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7 Fourier’s law failures

Fourier’s law states that the local heat fluxQ of a material is proportional to the local gradient

of temperature, through the thermal conductivity k, a constant property of the material. In its

differential form, Fourier’s law is written as

Q(r , t )=−k∇T (r , t ) . (7.1)

Very often, this equation is used in connection with the energy balance equation:

C
∂T (r , t )

∂t
+∇·Q(r , t )= 0 . (7.2)

These two equations have great relevance in the context of applied physics. In particular, they

can be used to give a continuum description of heat flow, and the unknown heat flow and the

temperature profile inside amaterial can be computed by applying some boundary conditions

to the temperature. The information about the microscopic nature of the materials enters

the equation only by means of the thermal conductivity. Therefore, knowing k, it is possible

to study the heat transport in macroscopic systems of complicated geometries, relevant for

many industrial applications but too complicated to be modeled with microscopic theories.

The Boltzmann equation is thus a tool that links microscopic scattering rates to the thermal

conductivity, which can then be transferred to continuummodels. However, Fourier’s law is

an empirical law that is not derived from a fundamental theory. There are many conditions

for which the equation does not hold and cannot be used to describe thermal transport.

In this chapter we will study in detail two circumstances in which Fourier’s law does not hold

in 2Dmaterials. Firstly, it can occur that the thermal conductivity is not a constant property

of the crystal, but is instead determined by the surface [132, 60]. Secondly, Fourier’s law is

not capable of describing the response to temperature pulses [53] and in some circumstances

the material can exhibit a response in the form of heat waves (second sound) [50]. For both

cases, we will see that these effects, often negligible for bulk crystals, are very important in 2D

materials at the microscale.
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Chapter 7. Fourier’s law failures

7.1 Size dependent conductivity

The thermal conductivity is often assumed to be a constant property of the material. However,

with the discussion of Chapter 5, we noticed how surfaces can reduce the effective value of

thermal conductivity. When the mean free path of heat carriers is larger than the width of

the 2Dmaterial, its value is renormalised by the presence of a surface. Therefore, the sharp

value of thermal conductivity depends in general on the surface properties of the material

and Fourier’s law holds, strictly speaking, only in the thermodynamic limit of an infinitely

large crystal. It is therefore crucial to characterize the average mean free path at which heat is

dissipated, since this determines the material size above which Fourier’s law holds. Below this

length scale, the details of the temperature profile cannot be reconstructed with Fourier’s law,

and it is necessary to solve a purely microscopic model.

The analysis of mean free paths in the SMA is a well establishedmethodology: it is sufficient to

study the quantityλν = vντν for each phononmode ν. It is less clear insteadwhat is the correct

quantity to study when going beyond the relaxation time approximation. As we discussed in

Section 4.4, the knowledge of the phonon distribution does not grant us immediate access

to the values of heat mean free paths, since we cannot interpret heat transport in terms of

single-phonon properties. In fact, we have seen in the previous chapter that collective phonon

excitations are responsible for heat transport in 2Dmaterials, therefore we should look for a

alternative ways of estimating the heat mean free path.

One way to characterise the mean free path of collective excitations can be achieved by

studying the thermal conductivity as a function of the sample size. In fact, a characteristic

sample size L prevents heat to travel for a distance larger than L itself, because it undergoes

a scattering event at the boundary (and in Casimir’s limit it is assumed to redistribute the

carriers isothermally). To model extrinsic scattering, we use the rate of the form vν/L, as

introduced in Chapter 5.2. With this procedure, we avoid the analysis of mean free paths

in terms of phonon modes that cannot describe exactly the surface effect: since thermal

conductivity is a collective property, the change of extrinsic sources of scattering does not

merely scale down the largest mean free paths of a phononmode but affects all the modes at

once. As reported in Figure 7.1, one moves from a region in which the conductivity rises for

increasing values of L (i.e. ballistic-like regime) to a plateau area (diffusive regime) above a

length Ldiff, where the thermal conductivity has reached the thermodynamic limit of intrinsic

thermal conductivity. The length Ldiff, at which the diffusive regime is reached, represents the

longest mean free path of heat carriers.

The study of the heat carrier mean free paths at room temperature for graphene, bilayer

graphene, in-plane and out-of-plane graphite is reported in Figure 7.1. Since the SMAuses only

individual phonon excitations, the Ldiff observed within the SMA is determined by the phonon

mean free paths (in particular, the longest mean free path of the heat carrying phonons). For

graphene, Ldiff falls then in a range of values between 1 μmand 10 μm, in agreement with what

is commonly accepted in the literature [43, 112]. Crucially, the exact solution of the Boltzmann
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7.1. Size dependent conductivity

Figure 7.1 – Lattice thermal conductivity of naturally occurring (magenta line) and isotopically
pure (blue line) graphene, bilayer graphene, in-plane graphite, and out-of-plane graphite, at
300 K as a function of the crystalline-domain sizes L, in the SMA (left panel) and in the exact
solution (right panel). Experimental points from the left panel of Figure 3 in ref [130]. Dotted
lines report the values of the thermodynamic limit.
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Figure 7.2 – Schematic representation of the different uses of the scattering rate term vν/L in
the presence of a gradient of temperature between the source and the sink at distanceD . (a)
Ribbon of width L with D � L. (b) Polycrystalline sample of domain size L with D � L. (c)
Ribbon of length L or circular sample of diameter L: the theory of surface scattering presented
in Chapter 5 does not apply using L in the scattering rate.

equation reaches a diffusive limit for lengths that are two orders of magnitude larger, setting

Ldiff in a range of values between 100 μm and 1 mm. On the basis of our results, we infer

that the logarithmic divergence claimed for graphene in Ref. [130] is only originated by the

experimental complexity of extending the study to larger samples. We remark that while other

works [98, 99] have performed numerical simulations of the Boltzmann equation on graphene,

such studies were limited to lengths up to 50 μm, and were then not able to access or discuss

the effects presented here. As shown in Figure 7.1 the diffusive limit is reached at lower values

in going from 2D to 3D, indicating that mean free paths are decreasing. In the out-of-plane

direction the difference between SMA and the exact solution is reduced, so that the difference

between the mean free paths of phonons isn’t too different from the heat carrier mean free

paths. Eventually, the reduction of thermal conductivity with respect to the in-plane direction

is also reflected in a corresponding reduction of the mean free paths.

Unfortunately, the results of the simulations are not directly comparable with experimental

measurements of graphene. In fact, the theory of surface scattering that we introduced is valid

only when the distanceD between the source and the sink is infinite, or at least much larger

then the heat carrier mean free path (D�λ). In case of a ribbon geometry, the mean free path

λ is limited by the finite lateral dimension L (Figure 7.2, panel (a)), and it is crucial that the

distanceD is much larger than L, in such a way that the relationD�λ holds. Similarly, the

distanceD is sufficiently large in a polycrystalline material (Figure 7.2, panel (b)) when it is

larger than the average size L of the crystal grain. In contrast, experimental setups (Figure
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7.2, panel (c)) have a different geometry than that considered in our description of surface

scattering and their description requires a different set of boundary conditions to be applied

on the material, which we do not cover in this Thesis.

The extremely large values of the heat carriers mean free paths in graphene have some im-

portant consequences, given that Fourier’s law is valid only for systems large enough to

accommodate at least a fewmean free paths. Current measurements of thermal conductivity

in graphene (see Figure 7.2c) have been performed in samples whose lateral size covered

a range from 1μm up to some tens of μm, which is smaller than the mean free path for the

collective phonon excitations. Thus, the use of Fourier’s law for interpreting themeasurements

performed in these systems becomes questionable. Since the sample is small, the conditions

in which thermal conductivity is defined from amacroscopic and statistical point of view, i.e.

as a diffusion coefficient, are no longermet. We can still use the ratio between the heat flux and

the difference of temperature, namely the "thermal conductance", defined also in absence of

a diffusion equation. Finally, the proper theoretical procedure to evaluate an effective thermal

conductivity comparable to experiments requires the solution of the Boltzmann transport

equation with appropriate boundary conditions.

7.2 Second sound

There are well known limitation in the capability of Fourier’s law to describe the thermal

response to a temperature pulse. Following the phenomenological approach of Chester [53], it

is easy to see that combining the Fourier equation with the conservation of energy (Eqs. 7.1

and 7.2), we obtain the equation:

C

k

∂T

∂t
−∇2T = 0 , (7.3)

which is the typical diffusion equation used to describe the temperature profile in a material

with a thermal conductivity k. This equation cannot describe the response to a perturbation

in the form of a wave such as T = T0+δTeiωt : since this is not a valid solution of the equation

at any time, the thermal response should transform the temperature pulse into a valid solution

at an infinitely fast rate. This unphysical consideration can be solved by introducing an

additional term to Fourier’s law in the form:

τss
∂Q

∂t
+Q =−k∇T . (7.4)

This equation includes an additional friction term (actually, a result that dates back toMaxwell),

that allows for a finite time to build the response to the initial temperature pulse. Only in the

long time limit (t � τss) one recovers again the standard Fourier’s law. In presence of such a

friction term, the temperature profile is described by:

∂2T

∂t2
+ 1

τss

∂T

∂t
− v2ss∇2T = 0 , (7.5)
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where we introduced a velocity v2ss = k
Cτss

. When this equation is valid, it is said that a material

sustains thermal waves, a phenomenon called second sound.

Second sound is a rare phenomenon that has been observed in a few selected materials at

cryogenic temperatures [81, 118, 106, 30, 76]. Inmost cases, the time τss is so small that second

sound cannot be observed and the standard non wave-like description of the temperature

profile applies. The fewmaterials that host second sound are actually characterised by hydro-

dynamic thermal transport, when normal processes are dominating the heat dynamics. It is

therefore interesting to discuss its existence or characteristics in two dimensions.

In principle more than one microscopic mechanism could lead to the formation of second

sound [74]; the common requirement is that a mechanism exists which is causing a slow decay

of the heat flux (i.e. a long τss). This can indeed happen in case of a large presence ofN events.

As mentioned in the discussion of Callaway’s model, the conservation of momentum drives

nν towards ndrift
ν , and once this drifting distribution ndrift

ν has accumulated, heat propagates

as a wave that is eventually damped on longer timescales by the resistive processes that relax

the phonons to the equilibrium Bose–Einstein distribution. Thus, at longer distances or larger

times, second sound disappears and the solution of Eq. 7.5 becomes indistinguishable from

that of Eq. 7.3, describing the usual diffusive heat transport.

Theory of second sound

In this section, we show that if the out-of-equilibriumdistribution functionnν is approximately

equal to ndrift
ν , then the Boltzmann equation describes the second sound temperature profile.

Hardy derived this result in the constant relaxation time approximation [74] and we extend

his argument using the Callaway approximation. In fact, Boltzmann equation can be viewed

as a microscopic and more complete formulation of Fourier’s law. With this procedure, we

will derive the expression for the second sound relaxation time and velocity. We start from the

time dependent Boltzmann equation in the Callaway approximation:

∂nν(r , t )

∂t
+vν ·∇nν(r , t )≈−nν(r , t )− n̄ν(T (r , t ))

τR
ν

− nν(r , t )−ndrift
ν (r , t )

τN
ν

, (7.6)

where we wrote explicitely that the Bose–Einstein distribution depends on space and time

only through the temperature:

n̄ν(T (r , t ))= 1

eħων/kBT (r ,t )−1
. (7.7)

We want to analyse the temperature profile in amedium that is kept at an average temperature

T0 to which a time and space dependent temperature perturbation is applied. Let’s suppose

that the drifting distribution (Eq. 1.47) is a good approximation for the out-of-equilibrium
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distribution:

nν(r , t )≈ndrift
ν (r , t )≈ n̄ν(T (r , t ))+ n̄ν(T0)(n̄ν(T0)+1)

q ·V (r , t )

kBT0
. (7.8)

This assumption is justified if the normal processes dominate the thermal dynamics of

phonons andmomentum is approximately conserved. Using this approximations, we take the

energy flux of the Boltzmann equation multiplying Eq. 7.6 by ħωνviν and sum over all modes ν

(i identifies a generic cartesian direction):

∂

∂t

(∑
ν
ħωνv

i
νn

drift
ν (r , t )

)
+∑

ν
ħωνv

i
νvν · dn̄ν

dT

∣∣∣∣
T0

∇T (r , t )=−∑
ν

ħωνviνn
drift
ν (r , t )

τR
ν

−0

=−∑
ν
ħωνv

i
νn̄ν(T0)(n̄ν(T0)+1)

q ·V (r , t )

kBTτR
ν

. (7.9)

Let us now recall the definition of the heat (energy) flux of phonons:

Q(r , t )= 1

V

∑
ν
ħωνvνnν(r , t ) , (7.10)

and note that only the odd component of the out-of-equilibrium distribution (nν+n−ν, where
−ν= (−q , s)) contributes to the heat flux, so that the Bose–Einstein component of the drifting

distribution has zero contribution to Q . To make Q explicitly appear on the right side of

equation 7.9, we define an average resistive lifetime as:

〈 1

τR
〉i =

∑
ν, j n̄ν(T0)(n̄ν(T0)+1)ħωνviνq

jV j (r , t )/τR
ν∑

ν, j n̄ν(T0)(n̄ν(T0)+1)ħωνviνq jV j (r , t )
. (7.11)

The Boltzmann equation can then be rewritten as an equation for the heat flux:

〈 1

τR
〉−1i

∂Qi (r , t )

∂t
+∑

j
K i j∇ j T (r , t )+Qi (r , t )= 0 , (7.12)

where we defined a thermal conductivity tensor as:

K i j = 1

V
〈 1

τR
〉−1i

∑
ν

dn̄ν

dT

∣∣∣∣
T0

ħωνv
i
νv

j
ν . (7.13)

At this point, equation 7.12 is formally equivalent to Eq. 3.9 of Ref. [74], but with an explicit

way of constructing the average relaxation time in the Callaway approximation. Our derivation

differs from Ref. [74] in that we extend the single relaxation time approximation (constant

τν = τ) to the Callaway approximation retaining a mode dependency, and in that we explicitly

use the drifting distribution rather than a generic odd function in order to obtain a closed

expression for the average relaxation time. Following the same arguments of Hardy, we now

restrict ourselves to the case of an isotropic two dimensional material, where K i j = Kδi , j ,

〈 1
τR 〉i = 〈 1

τR 〉 and the drift velocity is parallel to ∇T (so that it is possible to take only j = i

and the drift velocity V disappears from the equations). To recast equation 7.12 in terms of
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temperature, we first need to consider the lattice energy densityU (r , t ), where:

U (r , t )=U0+u(r , t ) , (7.14)

U0 = 1

V

∑
ν
ħωνn̄ν(T0) , (7.15)

u(r , t )= 1

NV

∑
ν
ħων(nν(r , t )− n̄ν(T0)) . (7.16)

For small temperature differences, the energy density is proportional to the temperature

difference, as in

U (r , t )=U0+C (T (r , t )−T0) , (7.17)

where

C = 1

V

∑
ν

dn̄ν

dT

∣∣∣∣
T0

ħων = 1

V kBT 2

∑
ν
n̄ν(T0)(n̄ν(T0)+1)(ħων)

2 . (7.18)

Therefore, the local deviation u(r , t ) from the base energy density U0 is equal to u(r , t ) =
C (T (r , t )−T0). We also note that u(r , t ) follows a balance equation:

∂u(r , t )

∂t
+∇·Q(r , t )= 0 , (7.19)

which can be obtained from the Boltzmann Equation by multiplying it by ħων and summing

over all modes [74]. Using equations 7.19, 7.12 and the proportionality between u and T , we

obtain the second sound equation:

∂2T (r , t )

∂t2
+ 1

τss

∂T (r , t )

∂t
− (vss)

2∇2T (r , t )= 0 , (7.20)

with second sound velocity and relaxation time equal to:

(vss)
2 =

∑
ν

vν·vν

2 n̄ν(T0)(n̄ν(T0)+1)(ħων)2∑
ν n̄ν(T0)(n̄ν(T0)+1)(ħων)2

=
∑

νCν
vν·vν

2∑
νCν

, (7.21)

1

τss
= 〈 1

τR
〉 =

∑
ν n̄ν(T0)(n̄ν(T0)+1)ħωνviνq

i /τR
ν∑

ν n̄ν(T0)(n̄ν(T0)+1)ħωνviνqi
. (7.22)

These equations are going to be used in the characterisation of second sound in 2Dmaterials.

Before continuing, it’s worth commenting briefly the drifting approximation for second sound,

that is, the interpretation of the Boltzmann equation as an equation for momentum fluxes.

A similar procedure applies as before, however wemultiply the Boltzmann equation by the
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momentum ħqi , obtaining

∂J i (r , t )

∂t
+∑

j

∂T i j (r , t )

∂x j
=−〈 1

τR
〉i J i (r , t ) , (7.23)

J i (r , t )= 1

V

∑
ν
nν(r , t )ħqi , (7.24)

T i j (r , t )= 1

V

∑
ν
nν(r , t )ħqi v jν , (7.25)

〈 1

τR
〉i =

∑
ν n̄ν(T0)(n̄ν(T0)+1)(qi )2/τR

ν∑
ν n̄ν(T0)(n̄ν(T0)+1)(qi )2

, (7.26)

where J is the crystal-momentum flux and T is the crystal-momentum density. Using Eq.

7.19, the proportionality between u and T and restricting to the symmetries of graphene, it is

possible to obtain a damped-wave equation for the temperature [74], with a velocity of second

sound equal to:

(vss)
2 =

(∑
ν n̄ν(T0)(n̄ν(T0)+1)ωνq ·vν

)2
2
∑

ν n̄ν(T0)(n̄ν(T0)+1)ω2
ν×

∑
ν n̄ν(T0)(n̄ν(T0)+1)q ·q

. (7.27)

However, if one considers a two dimensional Brillouin zone and a phonon with quadratic

dispersion (e.g. the out-of-plane ZAmode), one can readily see that the crystal-momentum

flux J and the length vss · 〈 1
τR 〉−1 are both infinite, due to a divergence for small wavevectors

(
∫
n̄ν(n̄ν+1)q2dq ∝ ∫ 1

q2
1
q2 q2qdq = ∫ 1

q dq diverges when integrating around the Brillouin

zone center), whereas the velocity vss goes to zero and the crystal-momentum density t is

finite. Due to the infinite momentum-flux, the drifting approximation for second sound

cannot be applied. Similarly, also the theory developed in Ref. [74], which deals with the

exact expression of the Boltzmann equation, suffers from the same divergence problem (see

equation 4.25, 4.26 and 4.28 of Ref. [74]) and does not hold for 2Dmaterials with quadratic

phonon dispersion. These divergences are not present if we consider energy fluxes, and are

not present in case of phonons with linear dispersion close to the Brillouin Zone center (as

Ref. [74] implicitly assumed).

Second sound in 2D materials

Let us now apply the second sound theory to 2D materials. There are several hints that

validate the approximation nν ≈ndrift
ν necessary to the existence of second sound. First, we

observed that Callaway’s model, that takes into account the decay of the phonon population

in such a state, is capable of describing the thermal conductivity in good agreement with exact

solutions of the Boltzmann equation. Moreover, we can inspect and compare the deviation

from equilibrium functions of the two distributions, that is, we study fν (see Eq. 3.19) instead

of nν, and qV instead of ndrift
ν (the linear term in the Taylor expansion of ndrift

ν around the

Bose–Einstein distribution) [50, 92]. The two distributions are approximately equal if fν is well
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Figure 7.3 – Graphical representation of the out-of-equilibrium deviation function f for the
ZAmode of graphene at 300K, as computed by the Boltzmann equation. The linearity of the
function throughout large sections of the Brillouin zone suggests that it is well approximated
by the drifting distribution.

described by a plane over the Brillouin zone. For example, in Figure 7.3 we graphically inspect

the deviation function for graphene at room temperature for the out-of-plane ZAmode. It is

evident in the picture that the function is approximately linear in momentum over a large part

of the Brillouin zone. In other materials, such as molybdenum disulphide, one could do the

same plot and observe that at room temperature the similarity with a linear function is less

striking.

In order to bemore quantitative and avoid visual inspection, we define the drifting component

as: ∑
νCν fνq//√∑

νCν f 2ν
√∑

νCνq2//

, (7.28)

which is equal to one if the out-of-equilibrium distribution is equal to the drifting distribution.

We plot this quantity for all materials considered in Figure 7.4 (as a percentage), and we

observe that more than 40% of the phonon distribution of graphene at room temperature is

determined by the drifting distribution, and that this ratio grows at lower temperatures. The

ratio is slightly smaller in all other materials, falling below 30% for fluorographene and 10%

molybdenum disulphide. Therefore, in graphene, graphane and boron nitride a large fraction

of the heat flux is carried by the drifting distribution (which is a good approximation of nν for

the study of the heat flux propagation), while in fluorographene and molybdenum disulphide
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Figure 7.4 – Projection of the out-of-equilibrium phonon distribution onto the drifting distri-
bution (percentage values).

the drifting distribution is not a good descriptor of the out-of-equilibrium distribution, as also

hinted by the reduced effectiveness of the Callaway model.

When the drifting distribution is a good approximation to the out-of-equilibrium distribution,

the material will display second sound. The second-sound heat wave is characterized by a

velocity vss and a relaxation time τss that define a second-sound length λss = vssτss , i.e. the

characteristic distance over which the heat wave propagates before decaying.

The second sound relaxation times in Figure 7.5 indicate that the energy flux dissipation

decays on a time scale of the order of hundred picoseconds at room temperature for the three

materials of higher conductivity. The second-sound velocities depend only on harmonic

properties, and can be easily computed - they are reported in the Figure 7.6 as a function of

temperature, and compared with the average velocity of acoustic phonons. In particular, the

phonon group velocities of the three acoustic branches (transverse (TA), longitudinal (LA)

and out-of-plane (ZA) ) are averaged as v̄2 = (∑
νCν

vν·vν

2

)
/
∑

νCν. We find that values of vss lay

typically in between the larger average velocities of the longitudinal (LA) and tranverse (TA)

acoustic branches, and the much lower average velocity of the out-of-plane acoustic mode

(ZA).

The propagation lengths λss = τssvss for the second-sound wave in graphene and graphane

reach the micron scale, even at room temperature, while boron nitride is characterized by

second sound lengths of a fraction of a micron (the values of λss for molybdenum disulphide

and fluorographene are shown in Figure 7.7 for completeness, even if those materials do not
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Figure 7.5 – Second sound relaxation times for the different materials considered.

host second sound). At lower temperatures, where U processes tend to freeze and only I are

present, damping of the second sound becomes less effective and the heat wave propagates

over longer distances.

As mentioned, the presence of second sound has been verified experimentally in the past

[81, 118, 106, 30, 76] in 3Dmaterials at cryogenic temperatures, and it is conveniently studied

as the response of a material to a temperature pulse. One should then be able to observe at

a distance standard pulses due to the diffusive propagation by the LA, TA and ZAmodes; in

addition, the second sound signature will appear as a further peak due to the formation of

the drifting distribution. One should also always consider the size of the experimental setup,

since this will affect phonons which travel ballistically, i.e. without scattering between the

heat source and the detector, and that would diminish the component of heat travelling in

the other modes. Their effect on second sound should be negligible as long as the distance

between pump and probe is larger than λss . Finally, let us note that the estimate of λss is

obtained here as a statistical average, and thus we cannot exclude the existence of tails of the

second soundmode propagating at much longer distances.
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Figure 7.6 – Velocities for the acoustic-phonon branches, compared with the velocities of
drifting second sound.
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Figure 7.7 – Characteristic propagation length of second sound, describing the wave-like
propagation of heat. Dotted lines are used for the materials where second sound has a low
probability of being observed. We note that for graphene and graphane at room temperature
the typical decay length of second sound is of the order of microns.
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8 Relaxons in graphene

In the previous chapters, we have shown that thermal transport in 2Dmaterials is driven by

collective excitations of phonons. The large presence of normal processes plays a key role in

redistributing the phonon populations across modes and introducing correlations between

phonons. Moreover, we have seen that the phononmean free paths are much smaller than

the dissipation length for heat, and we predicted that second sound, i.e. the formation of a

phonon wavepacket in the form of a drifting distribution, could be observed in graphene and

other 2Dmaterials.

However, a proper definition of these collective excitations can only be achieved by diagonal-

ising the dynamical matrix and using the concept of relaxon that we introduced in Section 4.5.

Although there exist few works that diagonalised the scattering matrix to obtain the thermal

conductivity (as for example Refs. [52, 124]), we are not aware of studies that interpreted

thermal transport in terms of relaxons. In this chapter we apply this interpretation of thermal

transport to graphene. In particular we will compare relaxation times, velocities and mean

free paths in the two main pictures of thermal transport: as a gas of phonons (i.e. within

the SMA) and as a gas of relaxons. Finally, we will show that Matthiessen’s rule, a property

often assumed to hold, is violated in graphene and that the iterative method for solving the

Boltzmann equation has a limited domain of convergence, insufficient for graphene at room

temperature.

To simplify the discussion, we limit the study to relaxons in an infinite sample of graphene

at room temperature (300K). In order to have a direct comparison with the results of the

variational methods presented in the previous chapters, we kept the same computational

parameters, so that the scattering matrix is identical within numerical error and includes the

effect of 3-phonon interactions and isotopic scattering at natural carbon abundances [128].

The resulting matrix has 98304 rows and as many columns, which can be diagonalised only

using massively parallel software libraries. In particular, we diagonalised it exactly using the

routine PDSYEV of the ScaLAPACK library [42]. The results of the diagonalisation have been

validated against the variational method, by finding a thermal conductivity of 3.9 ·103 W/(mK)

which well compares with the variational value of 3.6 ·103 W/(mK). The residual difference
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Chapter 8. Relaxons in graphene

Figure 8.1 – Representation of the relaxon with the longest lifetime in graphene at room
temperature. The relaxon eigenvector θαν identifies a collective excitation of phonons ν= (q, s),
which we plot as a function of the q-points of the Brillouin zone for the out-of-plane mode
s=ZA.

is attributed to roundoff errors in the floating point precision (16 digits), due to the large

numerical complexity of the matrix diagonalisation (O(1015) operations). This algorithm is

therefore muchmore expensive than a variational approach, if the only goal is to obtain the

thermal conductivity. The advantage of the method is to grant inspection to the spectrum

of relaxon properties. The diagonalisation procedure provides all the relaxon eigenvectors;

notably, few discrete ones have large relaxation times and, for example, the longest-lived

relaxon is plotted in Figure 8.1 over the Brillouin zone of graphene, taking into account for

simplicity only the component relative to the acoustic out-of-plane branch. So, it becomes

possible to understand which phonons are most relevant for a given relaxon; for the case

shown in Figure 8.1, we see that the acoustic out-of-plane component is composed mainly by

long-wavelength phonons close to the Brillouin-zone center.

8.1 Relaxon properties

We analyse the entire eigenvalue spectrum in Figure 8.2, where the contributions to the SMA

or the exact thermal conductivities are plotted as a function of the relaxon or phonon lifetimes.

We first note that the spectrum of phonon lifetimes (and phonon velocities and mean free

paths) is continuous, with a divergence τν →∞ for acoustic ZA phonons at the Γ point [43].

This divergence cannot be accurately described with a finite mesh of points for the sampling

of the Brillouin-zone (in our case, a full mesh of 128×128 points), resulting in a sparse tail of

long-lived phonons on the right side of Figure 8.2A, whose contribution to kSMA is negligible

[43]. Instead, relaxon lifetimes (Figure 8.2B) are discrete and sparse, in particular in the

long-lifetime region, so that only a small number of relaxons is sufficient to describe thermal

transport with high accuracy. On average, relaxon lifetimes are skewed to larger values with
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Figure 8.2 – Panel A: spectrum of phonon lifetimes and their contribution to thermal conduc-
tivity. Panel B: same for relaxon lifetimes. The relaxons tend to be longer lived than single
phonon excitations. The greatest contributions to the thermal conductivity come from re-
laxons of lifetime larger than 103ps, whereas the phonons have lifetimes mainly in the range
10-100 ps.
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Figure 8.3 – Panel A: spectrum of phonon group velocities and their contributions to thermal
conductivity. Panel B: same for relaxon velocities. The relaxons move with velocities much
smaller than the speed of sound in graphene (about 20 km/s for the longitudinal acoustic
phonon), and most of themmove at velocities of 0.1-1 km/s.

respect to phonon lifetimes by at least two orders of magnitude. Therefore, most of the heat

flux is dissipated within nano- andmicro-second time scales.

Before analysing velocities, we note that the sign of Vα is arbitrary, since both θαν and −θαν
are eigenvectors. As a convention, we select the sign of odd eigenvectors such that Vα is

non-negative (and so alsoΛα), noting that in any case the contribution to k would be positive

(as V 2
α ). Figure 8.3 reveals that the velocities of relaxons are much smaller than those of

phonons. The scale of phonon velocities is set by the speed of sound (the group velocity of

the longitudinal acoustic phonon is about 20 km/s), whereas the relaxons are slower by two

orders of magnitude, indicating that heat is transferred through the material at 0.1-1 km/s.

Finally, we study the relaxonmean free paths in Figure 8.4. As other works reported, phonon

mean free paths for graphene are distributed in the 0.1-1μm region [60]; this is confirmed
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Figure 8.4 – Panel A: spectrum of phononmean free paths and their contribution to thermal
conductivity. Panel B: same for the relaxon mean free paths. Phonon mean free paths are
mostly smaller than 1μm, whereas relevant relaxon mean free paths are skewed to values
larger than 1μm. The two largest relaxon mean free paths lie between 10 and 100μm.
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Figure 8.5 – Total thermal conductivity (solid line) and thermal conductivities computed
through various Matthiessen sums, where the total sum is given by the sum of the reciprocals
(by kN+kU+kI wemean k−1 = (kN )−1+(kU )−1+(kI )−1). There is no decomposition for which
the Matthiessen rule is obeyed at all temperatures.

here and shown in Figure 8.4A. Relaxonmean free paths are longer than phonons’ ones, the

longest being in the range of tens of μm. The contribution to k is roughly monotonic with

the mean free path, and the large increase in τα is partly compensated by the decreased Vα.

The saturation of relaxons’ mean free paths at tens of μm appears to be in contrast with the

estimate for saturation lengths of 100μmwe gave in Section 7.1. However, that estimate is

based on the approximated SMA treatment of the surface scattering in graphene ribbons. Since

the present study is concerned only with an infinite system, it cannot be properly compared

and further studies are required to include the scattering of relaxons at surfaces.

8.2 Failure of the Matthiessen rule

Awidely held assumption that is also violated by the exact Boltzmann transport equation is the

Matthiessen rule, which states that the total thermal resistivity (i.e. 1
k ) is the sum of the resistiv-

ities of each independent scattering mechanism (see Section 3.4). However, the Matthiessen

rule is an approximation [132] relying on the possibility of exactly decoupling the scattering

mechanisms. To probe numerically this violation, we computed the resistivities of normal,

Umklapp and isotopic processes, or any combination of these, and combined them according

to Matthiessen rule. In Figure 8.5 we show that, regardless of any particular decomposition,

the conductivity obtained by imposing the Matthiessen sum deviates significantly from the

exact conductivity. Finally, we verify in our calculations that the total thermal conductivity is

always smaller or equal to the Matthiessen sum, as proved in Section 3.4.

94



8.3. Divergence of iterative methods

Often, modern literature associates Matthiessen’s rule to the following relation on the relax-

ation times:

1

τν
= 1

τ1,ν
+ 1

τ2,ν
, (8.1)

that is, for each phonon mode its relaxation time can be decomposed into the different

scattering sources. This relation is of course derived using the single-mode relaxation time

approximation. We remind that in this approximation, the scattering matrix is diagonal:

Aνν′ ≈ n̄ν(n̄ν+1)

τν
δνν′ . (8.2)

Since, by construction, the total scattering matrix is just the sum of scattering matrices for

the different processes considered, it follows that the total relaxation time of a phonon is the

Matthiessen sum of event specific probabilities.

This relation is different from the original formulation from Matthiessen, yet, it still is an

approximated relation. In fact, the exact lifetime is the eigenvalue of the scattering matrix, and

the exact applicability of Eq. 8.1 on relaxon lifetimes would require that the eigenvalues of the

sum of two matrices were the sum of eigenvalues of two matrices - generally not correct when

the scattering matrix is not diagonal.

In conclusion, the Matthiessen rule has a varying range of applicability, and when the scatter-

ing gives raise to strong correlations between the different mechanisms, which is the case if

the relaxon and phonon pictures strongly differ, it is not possible to disentangle them based

on the Matthiessen law.

8.3 Divergence of iterative methods

As an added benefit, the direct diagonalisation of the scattering matrix brings clear insight on

the numerical stability of the exact solutions of the Boltzmann equation. The iterative method

[110, 109, 45] presented in Section 4.3, is often used in literature to study 2Dmaterials, and we

remind that it computes the out-of-equilibrium deviation distribution f as a geometric series

f =∑∞
j=0

(− (Aout)−1Ain
) j (Aout)−1b, where Aout and Ain are respectively the diagonal and the

off-diagonal parts of A. The series is convergent if and only if all the eigenvalues λ of 1
Aout Ain

are |λ| < 1. In Figure 8.6, we show that in graphene |λ| > 1 for more than half of the spectrum,

proving that the iterative method is numerically unstable for graphene at room temperature.

In general, onemight expect convergence issues for the iterativemethodwhenever Ain � Aout,

i.e. whenever the relaxon picture differs significantly from the phonon picture.

95



Chapter 8. Relaxons in graphene

0 20000 40000 60000 80000 100000
Eigenvalue index

-2

-1

0

1

2

3

4

5
E

ig
en

va
lu

e

Figure 8.6 – Eigenvalues λ of the matrix (Aout)−1Ain, for graphene at room temperature, or-
dered by their magnitude. The red dots, roughly half of the eigenvalue spectrum, indicate
eigenvalues |λ| > 1 that cause a divergence of the iterative solution for the Boltzmann transport
equation. Most of the unstable eigenvalues are greater than 1, with only one eigenvalue lower
than -1.
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9 AiiDA

The last decade has seen computational science rising as a new powerful research paradigm,

capable of valuable insights to theories and experiments. This has been possible thanks to

the sustained increase in high-performance computational (HPC) capacity and to the accu-

racy and predictive power of current “quantum engines” (computational codes performing

quantum-mechanical simulations). Nowadays simulations are widespread in science and

technology and are routinely used in industry and academia to understand, predict, and

design properties of complex materials and devices.

Despite this spectacular growth, the researcher’s work has largely remained unchanged, with

an approach of managing the simulations manually, where a researcher is preparing calcu-

lations and collecting the results in a more or less organised way. This artisanal approach

has serious limitation in contemporary research. An example that would be cumbersome to

realize is the creation of databases of computational materials properties. The need for such

databases arises from the fact that, although there exists versions covering crystal structures,

few of them register also properties and they are rarely complete. In particular, the theoretical

investigation of this Thesis on thermal properties is part of a larger effort that aims at creating

a database of thermal properties. The challenges of this project are twofold: on one hand it

needs an understanding of the physical models and the reliability of common approximations,

that make calculations faster at the cost of accuracy; on the other hand, it faces the challenges

of automatizing the calculation of phonon properties, in order to automatically characterize

several thousands of materials.

The creation of such large databases requires a flexible and general, yet easy to use, software

infrastructure that helps the user managing the huge amount of data that is created, in

particular without the risk of losing information. Moreover, such an infrastructure can be of

use even if there is no strict necessity of running a large number of calculations, as in fact

has been done for this Thesis. Even in this case, an automating infrastructure provides a

significant help to the researcher, by keeping track of the history, ensuring the reproducibility

of simulations (quite often missed in computational articles), and facilitating the publishing

and sharing of results.
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With these considerations in mind, we developed AiiDA [117], an Automated Interactive

Infrastructure and Database for computational science. Using AiiDA, the users can access

transparently both local and remote computer resources. The platform is easy to use thanks to

a high-level python scripting interface and can support different codes by means of a plugin

interface. A central goal of AiiDA is the full reproducibility of calculations and of the resulting

data chain, which we obtain by a tight coupling of storage and workflow automation. Data

analysis and querying of heterogeneous results and of the provenance relationships are made

possible and effective by a database design based on directed acyclic graphs and targeted

towards data management for high-throughput simulations. Sharing of scientific knowledge

is addressed by making it easy to setup andmanage local repositories driven by the interests

of a given group, providing tools to seamlessly share not only the data itself, but also the full

scientific workflows used to generate the results.

In this chapter, we first discuss in detail the general characteristics that any infrastructure

should meet to create, manage, analyze and share data and simulations. These requirements

are summarized in the four pillars of the ADES model (Automation, Data, Environment,

and Sharing). We then describe how these have been addressed by the current open-source

implementation of AiiDA, starting from Section 9.3 (one section per pillar). This infrastructure

has been intensively developed and used during the Thesis with the goal of simplifying the

management of the various results.

9.1 The ADES model for computational science

The aim of this section is to introduce and illustrate the ADESmodel (see Figure 9.1), in order

to motivate our design choices for AiiDA and describe the platform requirements.

The first pillar, Automation, responds to the needs of abstracting away the low-level tasks to

prepare, submit, retrieve and store large numbers of calculations. It can be subdivided into

the following main items:

• Remote management Large computations are typically prepared on a user’s worksta-

tion and executed on HPC clusters. The different steps of job preparation, submission,

status check, and results retrieval are repetitive and independent of the specific simula-

tion tool. Therefore, remote management tasks can be abstracted into an Application

Programming Interface (API) and automated. Different communication and scheduler

implementations can be supported by plugins, all adopting the same API, as we discuss

in Section 9.3.

• Coupling to data Full reproducibility of calculations requires a tight coupling of au-

tomation and storage. Decoupling these two aspects leaves the researcher with the

error-prone task of manually uploading calculation inputs and outputs to a suitable

repository, with the additional risk of providing incomplete information. Instead, if
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9.1. The ADES model for computational science

Figure 9.1 – The four pillars of the proposed infrastructure for computational science. At the
lower level, an automation framework and an efficient data management solution are needed.
At the user level, a high-level environment is coupled with a social ecosystem to stimulate the
sharing of codes, data and workflows.

the repository is populated first by the user with all the information needed to run the

simulation, the process of creating the input files and running the calculation can be

automated and easily repeated. The resulting repositories are therefore necessarily

consistent; moreover, almost no user intervention is required to create direct pipelines

to shared repositories, as the data is already stored coherently.

• High-throughput The main advantage of automation is obtained in situations when

screening or parameter sweeps are required, involving thousands of calculations ormore.

Running andmanaging them one by one is not feasible. Having a high-level automation

framework opens the possibility to runmultiple calculations simultaneously, analyze

and filter the results. The infrastructuremust be able to deal with potential errors arising

during the computations, trying to automatically recognize and remedy these whenever

possible.

The second pillar, Data, concerns the management of the data produced by the simulations

and covers the following three core areas:

• Storage HPC calculations produce a large amount of heterogeneous data. Files contain-

ing input parameters and final results need to be automatically and permanently stored

for future reference and analysis. On the other hand, much of the data is required only

temporarily (e.g., for check-pointing) and can be discarded at the end of the simulation.

Therefore, a code-dependent file-storage policy (optionally customizable by the user)

must be adopted to categorize each output file. Anyhow, the existence of intermediate

files should be recorded, so that the logical flow of calculations is persisted even when

restart files are deleted. If the platform ensures reproducibility of calculations, it is
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straightforward to regenerate the intermediate files, if needed. It is also important to

store information on the codes that generated the data. If ultimate reproducibility is

needed, one could envision to store reference virtual machines or Docker [1] images

with the code executables.

• Provenance To achieve reproducibility, the platform needs to store and represent the

calculations that are executed, together with their input data. An effective data model,

though, should not only put emphasis on calculations and data, but also keep track

of the causal relationships between them, i.e., the full provenance of the results. For

instance, a final relaxed crystal structure is of limited use without knowing how it was

obtained. The natural data structure to represent the network of relations between

data and calculations is a directed acyclic graph, as we will motivate in greater detail in

Section 9.3.

• Database Today’s typical computational work environment consists of a multitude of

files with arbitrary directory structures, naming schemes and lacking documentation.

In practice, it is hard to understand and use the information (even by the author after

some time) and to retrieve a specific calculation when many are stored. A database

can help in organizing results and querying them. The implementation of the data

model discussed above, based on directed acyclic graphs, must not be restricted to a

specific application, but has to accommodate heterogeneous data. It must be possible to

efficiently query any attribute (number, string, list, dictionary, . . . ) associated to a graph

node. Queries that traverse the graph to assess causal relationships between nodesmust

also be possible. A graph database backend is not required if the requirements above are

satisfied. For instance, AiiDA’s backend is a relational database with a transitive-closure

table for efficient graph-traversal (see Section 9.4).

The first two pillars described above address mainly low-level functionalities. The next two

pillars deal instead with user-oriented features. In particular, the pillar Environment focuses

on creating a natural environment for computational science, and involves the following

aspects:

• High-level workspace As the researcher’s objective is to make new discoveries and

not to learn a new code, the infrastructure should be flexible and straightforward to

use. For instance, while databases offer many advantages in data-driven computa-

tional science, few scientists are expert in their administration. For this reason, the

intricacies of database management and connections must be hidden by the an API

abstraction layer. Furthermore, by adopting a widespread high-level programming

language (such as Python) one can benefit of mature tools for inserting and retrieving

data from databases [2, 3, 4]. The infrastructure must also be modular: a core providing

common low-level functionalities, and customizable plugins to support different codes.

• Scientific workflows Much of the scientific knowledge does not merely lie in the final

data, but in the description of the process, i.e., the “scientific workflow” used to obtain
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them. If these processes can be encoded, then they can be reused to compute similar

quantities in different contexts. A workflow specifies a dependency tree between calcula-

tion steps, that may not be defined at the start, but depend on intermediate results (e.g.,

an iterative convergence with an unpredictable number of iterations). Therefore, the

infrastructure should automatically generate dependent calculations only when their

inputs are available from earlier steps, evaluating dependencies at run-time. The inte-

gration of the scientific workflows with the other infrastructure pillars helps the users to

focus on the workflow logic rather than on the details of the remote management. As an

additional benefit, the automatic storage of the provenance during execution provides

an implicit documentation of the logic behind the results.

• Data analytics Application-driven research has the necessity of using dozens of different

tools and approximations. Nevertheless, results obtained with different codes often

require the same post-processing or visualization algorithms. These data types (e.g.,

crystal structures or band structures) should be stored in the same common format. The

infrastructure can then either provide data analytics capabilities to perform operations

on them, or even better facilitate the adoption of existing libraries. This result can be

achieved by providing interfaces to external tools for data processing and analytics

(e.g. [35, 111] for crystal structures), regardless of the specific simulation code used to

generate the data.

The fourth pillar, Sharing, envisions the creation of a social ecosystem to foster interaction

between scientists, in particular for sharing data, results and scientific workflows:

• Social ecosystem The envisioned framework should be an enabling technology to create

a social ecosystem in computational research. Data access policies must be considered

with great care. Researchers prefer at times to keep their data private (while protecting

information in pending patents or unpublished data), but sharing with collaborators

or on a public repository should occur with minimal effort, when desired. Beside data

sharing, a standardized plugin interface should be provided. Plugin repositories can be

set up, to which users can contribute to share workflows, handlers for new data formats,

or support for new simulations codes. By this mechanism, scientists will be able to

engage in social computing, parallel to the developments in the mobile app and web

ecosystems.

• Standardization In order to facilitate data exchange, standard formats should be agreed

upon and adopted for data sharing (e.g. [105]). Even when multiple standards exist,

a hub-and-spoke configuration can be envisaged, where each new code has the task

to provide the data in an established format. On the other hand, it is important that

suitable ontologies are defined (i.e., simplifying, the names and physical units of the

quantities to store in a given repository, together with their meaning). Ontologies are

field-specific and their definitionmust be community-driven (an example of an ongoing
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effort is the TCOD [5] database). The infrastructure can be useful in this respect both

as an inspiration for the ontology, and as a testing environment containing a set of

simulated use cases.

• Repository pipelines As more repositories emerge, it is important to develop the ability

to import or export data directly, either through REST interfaces or via suitably defined

protocols. If formats and ontologies are established, the platformmust simply convert

the data and its provenance in the specified format. Contributing to external databases

becomes straightforward and the platform becomes a facilitator for the creation of

shared repositories.

9.2 The AiiDA infrastructure

TheADESmodel described in the previous section aims at defining an integrated infrastructure

for automating, storing, managing and sharing simulations and their results. Until now, we

discussed the model at an abstract level, so as to highlight the generality of the requirements.

In order to provide researchers with an effective tool to manage their efforts, we developed a

Python infrastructure, “AiiDA”, (available online at http://www.aiida.net) that is distributed

open-source. In the following, we describe the implementation details of AiiDA, with particular

emphasis on how the requirements of Section 9.1 have been met.

We start by outlining the architecture of AiiDA, schematically represented in Figure 9.2. AiiDA

has been designed as an intermediate layer between the user and the HPC resources, where

automation is achieved by abstraction.

The core of the code is represented by the AiiDA API, a set of Python classes that expose to the

user an intuitive interface to interact with the main AiiDA objects — calculations, codes and

data— hiding the inhomogeneities of different supercomputers or data storage solutions. The

key component of the API is the Object–Relational Mapper (ORM), a layer that maps AiiDA

storage objects into python classes. Using the ORM, these objects can be created, modified

and queried via a high-level interface which is agnostic of the detailed storage solution or of

the SQL query language. The details of the storage, composed of both a relational database

and a file repository, are discussed in Section 9.4.

The user interacts with AiiDA in different ways: using the command line tool verdi, via the

interactive python shell, or directly through python scripts (more details in Section 9.5). Most

components are designed with a plugin architecture (Section 9.5). Examples of features that

can be extended with new plugins include the support of new simulation codes, management

of new data types, and connection to remote computers using different job schedulers.
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Figure 9.2 – The main components of the AiiDA infrastructure and their interactions. The core
AiiDA component is the API, whose ORM represents stored objects as python classes. AiiDA
supports any computational code and data type via a plugin interface. The AiiDA daemon is a
background process that takes care of most automated operations such as job submission,
scheduler state check, file retrieval and parsing. It interacts with the remote clusters via
different channels (local, ssh, . . . ) using the appropriate scheduler plugins.

9.3 Automation in AiiDA

The AiiDA daemon

The daemon is one important building block of AiiDA: it is a process that runs in the back-

ground and handles the interaction with HPC clusters (selecting the appropriate plugins for

the communication channels — like SSH— or for the different job schedulers) and takes care

of all automation tasks. Once the daemon is started, it runs in the background, so that users

can even log out from their accounts without stopping AiiDA. Internally, it uses celery [6]

and supervisor [7] to manage asynchronous tasks.

The fundamental role of the daemon is to manage the life cycle of single calculations. The

management operations are implemented in the aiida.execmanagermodule and consists

in three main tasks: 1) submission of a new job to a remote computer, 2) verification of the

remote job scheduler state, and 3) retrieval and parsing of the results after a job completion.

These steps are run independently. If several calculations are running on the samemachine,

they are grouped in order to open only one remote connection and avoid to overload the

remote cluster.

The user can follow the evolution of a calculation without connecting directly to the remote

machine by checking the state of a calculation, an attribute that is stored in the database and

is constantly updated by the daemon. In particular, every calculation is initialized in a NEW

state. A call to the calc.submit()method brings calc to the TOSUBMIT state. As soon as the
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daemon discovers a new calculation with this state, it performs all the necessary operations to

submit the calculation and then sets the state to WITHSCHEDULER. Periodically, the daemon

checks the remote scheduler state of WITHSCHEDULER calculations and, at job completion, the

relevant files are automatically retrieved, parsed and saved in the AiiDA storage. Finally, the

state of the calculation is set to FINISHED, or FAILED if the parser detects that the calculation

did not complete correctly. Beside the aforementioned states, other transition states exist

(SUBMITTING, RETRIEVING, PARSING) as well as states to identify failures occurred in specific

states (SUBMISSIONFAILED, RETRIEVALFAILED and PARSINGFAILED).

Transports and schedulers

As discussed in the “Remote management” section of the “Automation” pillar, in AiiDA we de-

fine an abstract API layer with methods to connect and communicate with remote computers

and to interact with the schedulers. Thanks to this API, the internal AiiDA code and the user

interface are independent of the type of connection protocol and scheduler that are actually

used.

The generic job attributes valid for any scheduler (wall clock time,maximum requiredmemory,

name of the output files, ...) are stored in a common format. For what concerns schedulers,

early work in the specification of a middleware API has been done in the Open Grid Forum [8]

with, e.g., the DRMAA [125] and the SAGA APIs, and similar efforts have been done by the

UNICORE [9] and gc3pie [10] projects. In AiiDA, we have taken inspiration from these efforts.

We provide appropriate plugins to convert the abstract information to the specific headers to

be written at the top of the scheduler submission file. Moreover, the plugins provide methods

that specify how to submit a new job or how to retrieve the job state (running, queued, . . . ).

Plugins for the most common job schedulers (Torque [11], PBS Professional [12], SLURM [13],

SGE or its forks [28]) are already provided with AiiDA.

The scheduler plugins and the daemon, then, rely on the transport component to perform

the necessary remote operations (file copy and transfer, command execution, . . . ). Also in

this case, we have defined an abstract API specifying the standard commands that should be

available on any transport channel (connection open and close, file upload and download,

file list, command execution, . . . ). Plugins define the specific implementation. With AiiDA,

we provide a local transport plugin, to be used if AiiDA is installed on the same cluster on

which calculations will be executed. This plugin performs directly command execution and

file copy using the os and shutil Python modules. We also provide a ssh transport plugin to

connect to remote machines using an encrypted and authenticated SSH channel, and SFTP

for file transfer. In this case, AiiDA relies on paramiko [14] for the Python implementation of

the SSH and SFTP protocols.

The appropriate plugins to be used for each of the configured computers are specified only

once, when user configures for the first time a new remote computer in AiiDA.
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Figure 9.3 – A simple example of how a calculation, the executable code and input/output
data are represented as nodes in a graph. Labeled links between nodes represent logical
relationships: either inputs or outputs. The code in input of a calculation represents the
executable that is launched. In this example, a Quantum ESPRESSO code is used to relax
a diamond crystal, using further parameters as input nodes (cutoffs, a mesh of k−points, a
pseudopotential in UPF format for carbon, . . . ). In output, two nodes are produced: a list of
result parameters (e.g., the total energy) and an output relaxed structure. This node can in
turn be used as input of new calculations.

9.4 Data in AiiDA: database, storage and provenance

The data model in AiiDA

The core concept of the AiiDAdatamodel, partially inspired by theOpenProvenanceModel [103],

is that any calculation acts as a function (with the meaning this word has in mathematics or in

a computer language), performing somemanipulation on a set of input data to produce new

data as output.

We thus represent each fundamental object, Calculation and Data, as a node in a graph.

These nodes can be connected together with directional and labeled links to represent input

and output data of a calculation. Direct links between Data nodes are not allowed: any

operation (even a simple copy) converting data objects to other data objects is a function and

must thus be represented by an intermediate Calculation node. We define for convenience

a third fundamental object, the Code, representing the executable file that is run on the HPC

resource. Each Calculation has therefore a set of Data nodes and a Code node as input

(Figure 9.3). As the output Data nodes can in turn be used as input of new calculations, we are

effectively modeling a Directed Acyclic Graph (DAG) representing the chain of relationships

between the initial data (e.g., a crystal structure from an experimental database) and the final

results (e.g., a luminescence spectrum) through all the intermediate steps that are required to

obtain the final result: the provenance information of the data is therefore saved. (The graph

is acyclic because links represent a causal connection, and therefore a loop is not allowed.)
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Figure 9.4 – Themost relevant tables of the AiiDA database schema. The DbNode table contains
an entry for each node, with only a limited set of columns such as the ID (or primary key,
PK), a string identifying the type of node (Calculation, Data, Code, or a subclass), the creation
date, and the owner (a foreign key to the DbUser table). All other attributes are stored in the
DbAttribute table, as described in the text. A third DbLink table stores all the links (each link
being identified by the PK of the input and output endpoints, and by a label). Other tables
exist in the database (to store computers, authorization information, comments, logmessages,
groups, ...) typically referencing both to nodes and users (e.g., the comment of a given user on
a given node).

The AiiDA database

Given that AiiDA represents data in terms of DAGs, we need to choose an efficient way to save

them on disk. The objects we need to store are the nodes and the links between them. Each

node needs to contain all the information describing it, such as lists of input flags, sets of

parameters, list of coordinates, possibly some files, etc. Therefore, the actual implementation

must support the storage of arbitrary lists of files, and of attributes in the form key=value

(of different types: strings, numbers, lists, . . . ) associated to each node. One simple solution

could consist in storing one file per node, containing all node attributes in a suitable format,

and then store all the links in another file. However, this storage type is clearly not efficient

for querying, because in the absence of a suitable indexing system every search requires disk

access to each file. A database, instead, can speed up queries significantly. To have a net

benefit however, the database must be suitably configured for the specific type of data and

queries that are most likely expected. Moreover, different database solutions exist, each of

them tailored to specific types of data.

After benchmarking different solutions, we have chosen to adopt a SQL backend for the AiiDA

database. In particular, MySQL [15] and PostgreSQL [16] are fully supported, together with

the file-based backend SQLite [17] (even if the latter is not suited for multiple concurrent
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DbAttribute table

node_pk key value

num_cpus7 48

queue_name7 “private”

submission_time7 May 2nd, 2014
13:46:07

energy8 -13.736229

energy_units8 “eV”

forces8 [[4.32, 3.22, 0.73]],
[2.23, -1.46, 0.22], ...]

pk=7
Calc

pk=8
Results

Figure 9.5 – Schematic representation of an arbitrary attribute data in a SQL EAV table by
means of our DbAttribute table.

accesses, and its usage is limited to testing purposes). The database is complemented by a file

repository, where arbitrary files and directories can be stored, useful for large amounts of data

that do not require direct querying, and is going to be discussed in details later in Section 9.4.

In our implementation, the three main pieces of information of the DAG (nodes, links, and

attributes) are stored in three SQL tables, as shown in Figure 9.4.

The main table is called DbNode, where each entry represents a node in the database. Only a

few static columns are defined: an integer identifier (ID), that is also the Primary Key (PK) of

the table; a universally-unique identifier or UUID, a “type” string to identify the type of node

(Calculation, Data, Code, or one of their subclasses, see Section 9.5). A fewmore columns

exist for “universal” information such as a label, the creation andmodification time, and the

user who owns the node (a foreign link to the DbUser table, storing user details).

A second table, DbLink, keeps track of all directional links between nodes. Each entry contains

the PKs of the input and output nodes of the link, and a text field for the link label, that

distinguishes the different inputs to a calculation node (e.g., a crystal structure, a set of

parameters, a list of k-points, etc.). For instance, link names used for a Quantum ESPRESSO

calculation can be seen in Figure 9.3.

A third table, DbAttribute, is used to store any possible attribute that further characterizes

each node. Some examples of attributes could be: an energy value, a string for the chemical

symbol of each atom in a crystal structure, a 3×3 matrix for the components of the crystal

vectors, an integer specifying the number of CPUs that we want to use for a given calculation,

or others.

The DbAttribute table is schematically represented in Figure 9.5. Each entry represents

one attribute of a node, and for each attribute we store: the PK of the node to which this

attribute belongs; the key, i.e. a string defining the name of the property that we want to store
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(e.g. “energy”, “atom_symbols”, “lattice_vectors”, “num_cpus”, . . . ); and the value of the given

property. Internally, the table has amore complicated schema allowing for extended flexibility:

• Different primitive data types can be stored (booleans, integers, real values, strings,

dates and times, . . . )

• Arbitrary Python dictionaries (sets of key=value pairs) and lists can be stored, and any

element of the list or of the dictionary can be directly and efficiently queried (even in

case of multiple depth levels: lists of lists, lists of dictionaries, . . . )

We emphasize that by means of this table we achieve both flexibility, by being able to store

many data types as an attribute, and preserving query efficiency, since any element in the

database can be queried directly at the database level (making full use of indexes, etc.).

Since each row of the DbAttribute table is an internal property of a single node, we enforce

that attributes cannot be modified after the respective node has been permanently stored

(for example, we do not want the number of CPUs of a calculation to be changed after the

calculation has been stored and executed). However, the user will often find it useful to store

custom attributes for later search and filtering (e.g., a tag specifying the type of calculation, the

spacegroup of a crystal structure, . . . ). To this aim, we provide a second table (DbExtra) that is

identical to the DbAttribute table (and therefore it has the same data storage and querying

capabilities). The content of the DbExtra table, though, is not used internally by AiiDA, and is

at complete disposal of the user.

Besides the three tables DbNode, DbLink and DbAttribute that constitute the backbone of the

database structure, there are a few other tables that help data management and organization.

The most relevant are:

• DbUser contains user information (name, email, institution).

• DbGroup defines groups of nodes to organize and gather together calculations belonging

to the same project, pseudopotentials of the same type, etc.

• DbComputer stores the list of remote computational resources that can be used to run

the simulations.

• DbAuthInfo stores the authorization information for a given AiiDA user (from the

DbUser table) to log in a given computer (from the DbComputer table), like the username

on the remote computer, etc.

• DbWorkflow, DbWorkflowData, DbWorkflowStep are the tables that store workflow-

related information.

• DbPath is the transitive closure table, described in the next section.
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Figure 9.6 – A schematic example of a possible graph inside the AiiDA database. An initial
crystal structure (blue node on the top of the figure) is used both for a total energy calculation
(SCF) and for a structural relaxation calculation (Relax). Each calculation has a set of input
parameters (orange dots) and of output results (dark green dots). The relaxation calculation
also produces another crystal structure, used as input for a new SCF calculation. Moreover,
the two structures in the graph are both taken as input from a calculation that computes a
suitably-defined “distance” between them.

Graph database: querying the provenance

An example of a simple graph that can be stored in AiiDA is shown in Figure 9.6, where four

different calculations have been runwith different inputs producing a set of output results, and

where some output nodes have been used as input of new calculations. Using the database

data model described in the previous section, we can store DAGs with arbitrary queryable

attributes associated to each node. However, there is another type of query specific to graph

databases, related to the graph connectivity: given two nodes, to determine the existence of

a path connecting them. This is particularly relevant for simulations in Materials Science:

typical queries involve searching for crystal structures with specific computed properties, but

the number of intermediate steps (i.e., Calculation nodes) between a structure data node

and the final result can be large and not even predictable (e.g., if multiple restarts are required,

. . . ). This type of searches requires in practice to query the provenance of the data in the

database.

Sophisticated and efficient graph traversal techniques have been developed to discover the

existence of a path between two nodes, and graph databases (e.g., Neo4j [18]) implement these

functions at the database level, however they require the use of custom querying languages.

Instead, we address the graph traversal problem within a SQL database by incrementally

evaluating a transitive closure table (that we called DbPath). This table lists the “paths”, i.e.,
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all pair of nodes (“parent” and “child”) that are connected together in the graph through a

chain of links. The table is automatically updated every time a link is added, updated or

removed from the DbLink table, by means of database triggers that we have developed for the

three supported backends (SQLite, MySQL and PostgreSQL). The algorithm for the update of

the transitive closure table has been inspired by Ref. [58].

Obviously, the DbPath table allows for fast queries on the data “history”, at the expense of

occupying additional disk space for its storage. The size of the table can in general become

very large; however, in Material Science applications, we typically do not have a single dense

graph where all nodes are interconnected; instead, one often creates many small graphs of the

type of Figure 9.6. This means that the size of the DbPath table will remain roughly linear in

the number of nodes in the graph. After benchmarking, we have chosen the solution described

above as a good compromise between storage and query efficiency.

Database vs. file repository

The storage of attributes in the database discussed previously allows for query efficiency, at

the price of disk space (for additional information like indexes, data types, ...) and of efficiency

in regular operations (retrieving a large list from the database is slower than retrieving a file

containing the same list). For large matrices, therefore, a threshold exists above which the

advantages of faster query speed are not justified anymore. Moreover, the single entries of a

large matrix (like the electron charge density discretised on a grid) are often of little interest

for direct querying. In such cases it is convenient to store data in a file and rely on the file

system for I/O access. This is especially appropriate when the data should be used as an input

to another calculation and a fast read access is required.

For these reasons, AiiDA complements the database storage with a file repository (see Fig-

ure 9.2), confined within a folder configured during the setup phase of AiiDA. Every time a

new node is created, AiiDA automatically creates a subfolder for the specific node. Any file, if

present, associated with the node will be stored therein.

Storing information as files or in the database is left as a choice for the developers of the

specific subclass of the Data of Calculation nodes (plugins are discussed in Section 9.5),

but in order to maximize efficiency, it should follow the guideline discussed above. Some

examples of the choices made for some AiiDA Data plugins can be found in Section 9.5.

9.5 The scientific environment in AiiDA

The ORM

AiiDA is written in Python, a powerful object-oriented language. The materials simulation

community has beenmoving towards Python in recent years, due to its simplicity and the large

availability of libraries for visualization, text parsing, and scientific data processing [82, 35, 19].
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An important component of the AiiDA API is the Object-Relational Mapper (ORM), which

exposes to the user only a very intuitive Python interface to manage the database. The main

class of the AiiDA ORM, Node, is used to represent any node in the graph. Each instance of the

Node class internally uses Django to perform database operations, and complements it with

methods for accessing the file repository. The low-level interaction with the database uses the

Django framework [2].

The main functionalities of the Node class are:

• It provides a direct access to the node attributes, accessible as a Python dictionary by

using the node.attrs()method. The method also properly recreates lists and dictio-

naries that were stored in expanded format at the database level (lists and dictionaries

are not natively supported in the chosen databases). Similar methods allow the user to

read and write user-defined attributes in the DbExtra table.

• It provides direct access to the repository folder containing the files associated to each

Node.

• It provides a caching mechanism that allows the user to create and use the Node even

before storing it in the database or on the repository folder, by keeping the files in a

temporary sandbox folder, and the attributes in memory. This is particularly useful

to test the generation of the input files by AiiDA without the need to store test data in

the database. Only after the node.store() call, all the data is permanently stored in

the AiiDA database and repository and no further modifications are allowed. A similar

caching mechanism has also been implemented to keep track of links between nodes

before storing.

• It provides an interface for querying nodes with specific attributes or with specific

attribute values, or nodes with given inputs or outputs, etc.

• It provides methods (.inp and .out) to get the list of inputs and outputs of a node and

similarly the list of all parent and child nodes using the transitive closure table.

The plugin interface

To support a new type of calculation or a new kind of data (e.g. a band structure, a charge

density, a set of files, a list of parameters, . . . ), one simply needs to write an AiiDA plugin. A

plugin is simply a python module file, containing the definition of a subclass of the AiiDA

classes, sitting in an appropriate folder; AiiDA automatically detects the newmodule and uses

it.

All different types of nodes are implemented as subclasses of the Node class. At a first subclass

level we have the three main node types: Calculation, Code and Data. Each of them is

further subclassed by plugins to provide specific functionalities. In particular, instances
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of Code represent a specific executable file installed on a given machine (in the current

implementation, there are no further subclasses). Each subclass of Calculation, instead,

supports a new simulation software and contains the code needed to generate the software-

specific input files starting from the information stored in the AiiDA database. Moreover, it

can also provide a set of software-dependent methods (like calc.restart(), . . . ) that make it

easier for the user to perform routine operations. Finally, the Data class has a subclass for each

different type of data that the user wants to represent. The specific subclass implementation

determines the possible user operations on the data, and whether the information is going to

be stored in the database as attributes or in the file repository. We report here a description of

some of the most relevant Data subclasses distributed with AiiDA:

• ArrayData: it is used to store (large) arrays. Each array is stored on disk as a binary,

portable, compressed file using the Python numpymodule [126]. Some attributes are

stored in the DbAttribute table for fast querying (like the array name and its size).

Subclasses use the same storage model, but define specific methods to create and read

the data (e.g., the KpointsData class has methods to detect a structure cell, build the

list of special k-points in k space and create paths of k-points, suitable for plotting band

structures, using for instance the standard paths listed in Ref. [120]).

• ParameterData: it is used to store the content of a Python dictionary in the database.

Each key/value pair is stored as an attribute in the DbAttribute table, and no files are

stored in the repository.

• RemoteData: this node represents a “link” to a directory on a remote computer. It is

used for instance to save a reference to the scratch folder on the remote computer in

which the calculation was run, and acts as a placeholder in the database to keep the

full data provenance, for instance if a calculation is restarted using the content of that

remote folder. No files are written in the AiiDA repository, but the remote directory

absolute path is stored as an attribute.

• FolderData: this node represents a folder with files. At variance with RemoteData, files

are stored permanently in the AiiDA repository (e.g., the outputs of a finished calculation

retrieved from the remote computer).

• StructureData: this node represents a crystal structure. The 3×3 coordinates of the

lattice vectors, the list of atoms and their coordinates, and any other information (atomic

masses, . . . ) are saved as attributes for easy querying. (For very large structures, a differ-

ent data model may be more efficient.) Methods are provided for standard operations

like getting the list of atoms, setting their positions andmasses, converting structures

to and from other formats (e.g. the Atoms class of the ASE Atomistic Simulation En-

vironment [35]), obtaining the structure from an external database (like ICSD [20] or

COD [67]), getting the spacegroup using SPGlib [19], etc.
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Finally, we emphasize that the plugin interface is not limited to the ORM, and a similar plugin-

based approach applies to other AiiDA components, like the connection transport channel

and the schedulers (as discussed in Section 9.3).

User interaction with AiiDA

We provide a few different interfaces to interact with AiiDA. The most commonly used is

the verdi command line utility. This executable exposes on the command line a set of very

common operations, such as performing the first installation; reconfiguring AiiDA; listing

or creating codes, computers and calculations; killing a calculation; starting/stopping the

daemon, . . . The verdi tool is complemented by a Bash completion feature to provide sug-

gestions on valid commands by pressing the TAB key. Moreover, an inline help provides a list

of existing commands and a brief description for each of them. The advantage of verdi is

to expose basic operations to the user without requiring any knowledge of Python or other

languages.

In order to access the full AiiDA API, however, the best approach is to write Python scripts. The

only differencewith respect to standard python scripts is that a special function load_dbenv()

needs to be called at the beginning of the file to instructs Python to properly load the database.

Once this call has beenmade, any class from the aiida package can be loaded and used. If the

users do not want explicitly the load_dbenv() call in the python code, then they can run the

script using the verdi run command. In this case, the AiiDA environment and some default

AiiDA classes are automatically loaded before executing the script.

A third interface is the interactive python shell that can be loaded using the command verdi

shell. The shell is based on IPython [115] and has the advantage to automatically load the

database environment; at the same time, it already imports by default some of the most

useful classes (e.g. Node, Calculation, Data, Group, Computer, . . . ) so that they are directly

available to the user. TAB completion is available and very useful to discover methods and

attributes. Moreover, the documentation of each class or method (written as Python “doc-

strings”) is directly accessible.

Scientific workflows

As introduced in Section 9.1, many tasks in scientific research are standard and frequently

repeated, and typically require multiple steps to be run in sequence. Common use cases are

parameter convergence, restarts in molecular dynamics simulations, multi-scale simulations,

data-mining analysis, and other situations when results of calculations with one code are used

as inputs for different codes. In such cases, it is beneficial to have a system that encodes the

workflow andmanages its execution [21, 22, 23, 24, 129].

In order to fully integrate the workflows within the ADES model, we implement a custom

engine into AiiDA, by which the user can interact with all AiiDA components via the API.
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This engine is generic and can be used to define any computational workflow. Specific

automation schemes, crafted for selected applications (equation of states, phonons, etc...) are

implemented within each workflow and can be developed directly by the users.

AiiDA workflows are subdivided into a number of steps. One or more calculations can be

associated to each step; these are considered to be independent and are launched in parallel.

Instead, different steps are executed sequentially and the execution order is specified by

“forward” dependency relationships: In other words, each “parent” step must specify the

step to be executed next. The execution of the “child” step is delayed until all calculations

associated to the parent have completed. We emphasize that dependency relationships

are defined only between steps. Dependencies between calculations are implicit, with the

advantage of allowing for both parallel and serial simulation streams.

Within a step, beside creating calculations and associating them to the current step, any other

Python (and AiiDA) command can be executed. This gives maximum flexibility to define

complex workflow logics, especially if the outputs of a calculation in a parent step require

some processing to be converted to the new calculation inputs. Moreover, a step can define

itself as the next step to be executed, providing support for loops (even conditional ones,

where the number of iterations depends on the calculations results).

A key feature, modularity, completes AiiDA workflows: within each step, the user can associate

not only calculations, but also subworkflows. The advantage is the possibility to reuse existing

workflows that perform specific tasks, so as to develop only missing features. For instance, let

us assume that we developed a workflow “A” that performs a DFT calculation implementing

code-specific restart and recover routines in order to make sure convergence is achieved.

Then, a workflow “B” that calculates the energy of a crystal at different volumes (to obtain its

equation of state) does not need to reimplement the same logic, but will just reuse “A” as a

subworkflow. “B” can in turn become a subworkflow of a higher-level workflow “C” that, for

instance, compares the equation of state calculated at different levels of approximation. The

combination of parallel and serial execution, conditional loops, andmodularity, makes the

workflows general enough to support any algorithm.

From the implementation point of view, the AiiDA workflow engine is provided by a generic

Workflow class, that can be inherited to define a specific workflow implementation. Workflow

steps are special class methods identified by the @step decorator. The base class also provides

dedicatedmethods to associate calculations and workflows to the current step. In every step, a

call to the self.next()method is used to define dependencies between steps. This method

accepts as a parameter the name of the following step. The name is stored in the database,

and the corresponding method is executed by the daemon only when all calculations and

subworkflows of the current step have finished.

In analogy with calculations, AiiDA uses states to keep track of workflows and workflow steps

(RUNNING, FINISHED, . . . ). The AiiDA daemon handles all the workflow operations (submission

of each calculation, step advancement, script loading, error reporting, . . . ) and the transitions

114



9.5. The scientific environment in AiiDA

between different workflow states.

In the long term, we envision integrating into AiiDA many new and existing methods in

the form of workflows (e.g., training interatomic potentials [40], crystal structure prediction

algorithms [65, 116], . . . ), so that the researcher can focus onmaterials science and delegate

to AiiDA the management of remote computers, the appropriate choice of code-specific

parameters, and dealing with code-specific errors or restarts.

Querying

A relevant aspect of a high-level scientific environment is the possibility of running queries on

the data stored in AiiDA without the need to know a specific (and typically complex) query

language. To this aim, we have developed a Python class, called the QueryTool, to specify

in a high-level format the query to run. For instance, it is possible to specify a filter on the

node type (e.g., to get only crystal structures); to filter by the value of a specific attribute or

DbExtra table entry (e.g., to select structures with a specific spacegroup); or to filter by a

specific attribute in one of the linked nodes (e.g., to get structures on which a total-energy

calculation was run, and the energy was lower than a given threshold). Queries can also take

advantage of the transitive closure table, setting filters on attributes of nodes connected to

the one of interest by an unknown number of intermediate links (e.g., if the result of the

calculation was obtained after an unknown number of restarts). As an example, a complex

query that can be run with AiiDA is: give me all crystal structures containing iron and oxygen

and with a cell volume larger than X Å3, that I used as input for a sequence of calculations with

codes Y and Z to obtain the phonon band structure, for which the lowest phonon frequency

that was obtained is positive, and for which the DFT exchange-correlation functional used was

LDA. Other complex queries can be specified using the QueryTool in a format that is easy

both to write and to read.

Documentation and unit testing

A key component of a productive scientific environment is a complete and accurate code

documentation. For this reason, AiiDA is complemented by an extensive documentation.

Each class, method and function has a Python docstring that describes what the function does,

the arguments, the return values and the exceptions raised. These docstrings are accessible

via the interactive shell, but are also compiled using the Sphinx [25] documentation engine

into a comprehensive set of HTML pages (see Figure 9.7). These pages are distributed with the

code (in the docs/ subfolder) and also available online at http://aiida-core.readthedocs.org.

Moreover, we also provide in the same format, using Sphinx, a complete user documentation

of the different functionalities, supported databases, classes and codes, together with tutorials

covering the installation phase, the launch of calculations and workflows, data analysis, . . .

The user guide is also complemented by a developer’s guide that documents the API and

contains tutorials for the development of new plugins.
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Figure 9.7 – The first page of the AiiDA documentation. Different sections are aimed at the
end users (with examples and tutorials) and at developers (with the documentation of classes
and methods, and tutorials for new plugin development).

Moreover, to simplify the code maintenance, we implement a comprehensive set of unit tests

(using the Python unittestmodule), covering the different components of AiiDA described

in Figure 9.2.

9.6 Sharing in AiiDA

The fourth pillar introduced in Section 9.1 aims at enabling a social ecosystem where it be-

comes easy to share tools and results, such as data, codes, and workflows. In order to preserve

the authorship and privacy of the data of each researcher, we implemented a model in which

each user or group of users can install their own local AiiDA instance. All data and calcula-

tions are accessible only to people with direct access to the instance and therefore remain

private. In order to enable sharing of the database (or parts of it) with collaborators, we provide

functionality to export a portion of the database to a file, and then to import it in a different

instance of AiiDA. In this way several groups in a collaboration may contribute to a common

repository, open to the entire project, while retaining their private portions as needed. This

approach simplifies issues of user- and group-level security. To avoid conflicts during this

procedure, AiiDA assigns a Universally Unique IDentifier (UUID) to each node as soon as it

is locally created. In fact, while for internal database usage an auto-incrementing integer PK

is the most efficient solution to refer to a database row, the PK is not preserved when a node

is transferred to a different database. Instead, the first node to be created will always have

PK=1, the second PK=2, and so on. A UUID is instead a hexadecimal string that may look like

the following: e3d21365-7c55-4658-a5ae-6122b40ad04d. The specifications for creating a

UUID are defined in RFC 4122 by IETF [26], and they guarantee that the probability that two

different UUIDs generated in different space and time locations can be assumed to be zero. In

this way, we can use the UUID to identify the existence of a node in the DB; at import time, it is

only verified whether a node with the same UUID already exists before including its contents

in the database. We envision one or several centralized repositories, available to the public,
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that collect results from different groups. Researchers will be able to share results with col-

leagues by exchanging just the UUID of the nodes stored on the public repository, rather than

sending actual scripts or files. In this collaborative environment the adoption of new codes,

the comparison of results, and data disclosure and reproducibility become straightforward,

realizing the “social ecosystem” discussed in Section 9.1 and facilitating the reusability of data,

codes and workflows. We emphasize that only after having a locally deployed automation

infrastructure like AiiDA it becomes feasible to populate public repositories efficiently and

in a uniform format, because the user effort to uniform the data, prepare it and upload it is

reduced to the minimum.

The standardization of the formats produced by different codes is necessary to maximize

the effectiveness of data sharing. This task is outside the scope of the AiiDA project, but we

encourage existing and future standardization efforts by the developers of the simulation

codes. At the same time, within AiiDA we provide a set of “default” plugins for the most

common data structures (crystal structures, paths of k−points in reciprocal space, . . . ), which

can be seamlessly reused in different codes. Implemented classes provide importers and

exporters from/to common file formats, so that it is possible to exchange the data also with

other infrastructures and repositories that use different data formats. We also emphasize that

it is possible to write workflows that perform high-level tasks common to a variety of codes,

such as structure optimization or molecular dynamics, even before a standardization of data

formats takes place.

Moreover, to encourage the development of the repository pipelines discussed in the “Sharing”

pillar, we define in AiiDA a common API for importers and exporters of crystal structures

(in the aiida.tools package). Also in this case, repositories can be supported by plugin

subclasses; plugins for importing structures from some common databases, such as ICSD [20],

COD [67], MPOD [27] and TCOD [5] are already distributed with the code.
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Conclusion

In the course of this Thesis we studied thermal transport in 2Dmaterials, investigating and

developing the concept of collective excitations. We show that the interpretation of thermal

transport with a kinetic theory of the phonon gas holds only within the single-mode relaxation

time approximation: the phonon relaxation time is not a well defined quantity for describing

the thermal conductivity. Scattering events introduce correlations between phononmodes,

giving rise to collective phonon excitations called relaxons. Relaxons, at variancewith phonons,

are characterised by well defined relaxation times and, in case of a homogeneous system,

also by a velocity and a mean free path. Therefore, it is possible to recover a kinetic theory

description of thermal transport, provided that a gas of relaxons is considered.

The need of properly taking into account collective excitations is strictly connected to the

failure of the single-mode relaxation time approximation. While this effect is often negligible

in conventional solids at room temperature and becomes apparent only at cryogenic tem-

peratures, collective excitations are fundamental at any temperature in 2D crystals. For the

materials examined, the correlation between phonon scatterings is mostly attributed to the

dominant presence of normal scattering events. Normal processes play a central role in the

transport dynamics, not directly by dissipating the heat flux, but mainly redistributing phonon

populations. Only taking into account these collective aspects of the excitations it is possible

to obtain large thermal conductivities in 2D systems, that would be otherwise underestimated.

Moreover, we show that Callaway’s model greatly improves over the single-mode relaxation

time approximation and, although discrepancies persist with respect to the exact solution, is

an important pointer to the relevance of normal scattering.

We also show that heat conduction cannot always be described by Fourier’s law in 2Dmaterials.

The statistical nature of this law makes it valid only when the heat carriers are allowed to

scatter several time between heat source and sink. Therefore, it cannot be applied when crystal

sizes reach the micro or nanoscale and are comparable with the heat-carriers mean free paths.

Under these conditions the effective thermal conductivity is not an intrinsic property of the

material, but depends on the sample size or shape. In addition, Fourier’s law does not apply to

describe the response to temperature oscillations. The expected behavior is that of diffusive

propagation of heat. Instead, the analysis of the Boltzmann transport equation reveals how

heat can propagate as a wave, called second sound, due to the formation of a collective

excitation similar to the drifting distribution of Callaway’s model. In particular, it should be
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possible to observe heat propagating as a thermal wave at room temperature in many 2D

materials.

The introduction of relaxons gives us also insights on the validity of Matthiessen’s rule. Due to

the presence of collectivemechanisms, it is not possible to clearly distinguish the contributions

to the thermal conductivity (or to a relaxon lifetime) coming from different scattering events,

like phonon-isotopes or phonon-phonon processes. Finally, we gained insight on the solvers

of the Boltzmann transport equation, showing that the iterative method does not converge for

graphene at room temperature and more generally whenever the collective excitations are

relevant.

The main conclusion that one can draw from this study is that a complex behavior emerges

after shrinking a material to small scales or reduced dimensionality. Laws and approximations

that are often used do not hold anymore and care must be taken in describing heat fluxes

with macroscopic laws. Instead, a more sophisticated analysis is required and in particular

a microscopic description of thermal transport is necessary, as for example that given by

the Boltzmann equation used in this Thesis. Most likely, the miniaturization of devices will

encounter various unexpected behaviors and there will be several novel phenomena that will

need careful investigations.

Although we focused most of the Thesis on the characterisation of thermal transport in 2D

materials, this work falls into a broader project for the creation of databases for computational

materials properties, which requires a dedicated platform to manage simulations and their re-

sults. We first postulated the abstract needs of such a platformwith the ADESmodel, including

its fundamental pillars of Automation, Data, Environment and Sharing, and then described its

implementation in the open-source infrastructure AiiDA. The AiiDA API provides an intuitive

way of interacting with the user, exposing in a simple way the functionalities inherent to

Calculation, Data and Code objects. Each logical operation on data is mapped into a custom

tailored SQL database, with a schema that allows the storage of directed acyclic graphs and

of heterogeneous data. Thanks to the abstraction provided by the API, the user does not

need to be aware of the underlying database, the storage solution, or the SQL query language.

Procedures for generating new data are encoded in workflows, to provide an efficient turn-key

solution for the calculation of properties, and the plugin logic allows for systematically adding

new functionalities and support of new codes. The automatic handling of data allows for shar-

ing capabilities across different instances of AiiDA and improving the access to data. We hope

that this software will be help the transition to a modern approach to computational research,

shifting away from the paradigm of error-prone scripting to a systematic methodology based

on object programming.
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A Computational parameters

First-principles simulations

The second- and third-order force constants for all systems have been calculated using density-

functional perturbation theory [38, 55, 56, 91] as implemented in the Quantum ESPRESSO

distribution [63], using the local-density approximation and norm-conserving pseudopoten-

tials from the PSlibrary [29]. A summary of the parameters used in the calculations are reported

in Table A.1, namely the integration mesh used for the ground state energy calculation (ρ), the

mesh for the computation of the dynamical matrix φ, and for the anharmonic force constants

ψ and the kinetic energy cutoff for the plane wave basis. The structures have been relaxed to

minimize the total energy, and we report the final value of the lattice parameter a in the table.

The materials have been simulated using 3D periodic boundary conditions in a slab geometry,

using an height c sufficiently large to give negligible interactions between periodic images; the

c/a factor is reported in the tabel as well. The force constants, obtained on such coarse grid

meshes, are interpolated on finer meshes to be used in the Boltzmann equation using Fourier

interpolation.

Thermal conductivity simulations

The Boltzmann transport equation has been solved using the variational method in Chapters

6, 7 and with the diagonalization and iterative method in Chapter 8. The computational

parameters (Brillouin zone integration mesh, gaussian smearing and c/a) used to solve it are

reported in table A.2. The c/a value is introduced to renormalize the volume of the simulation

cell. In fact, the equation for thermal conductivity contains a renormalizing volume whereas,

strictly speaking, a 2D system should use a renormalizing surface. However, in order to have a

quantity comparable with a 3D thermal conductivity, it is preferable to introduce a volume

constituted by the area of the unit cell times the interlayer distance c of the bulk system. In

particular, we used the experimental interlayer distances of the corresponding 3Dmaterial,

whose values have been taken from the ICSD database [20].
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Appendix A. Computational parameters

Material ρ mesh φmesh ψmesh Pw cutoff a (Bohr) c/a
Graphite 16×16×4 8×8×2 4×4×2 90 Ry 4.6077 2.6643
Graphene 24×24×1 16×16×1 4×4×1 90 Ry 4.6074 3.0000
Graphane 24×24×1 16×16×1 4×4×1 90 Ry 4.7621 4.0000
Boron nitride 24×24×1 16×16×1 4×4×1 90 Ry 4.7328 3.0000
Fluorographene 24×24×1 16×16×1 4×4×1 90 Ry 4.8411 3.9347
MoS2 24×24×1 16×16×1 6×6×1 100 Ry 6.0081 6.2906
MoSe2 24×24×1 16×16×1 6×6×1 100 Ry 6.1898 6.1059
WS2 24×24×1 16×16×1 6×6×1 100 Ry 5.8883 4.8139
WSe2 24×24×1 16×16×1 6×6×1 100 Ry 6.1279 4.6257

Table A.1 – Computational parameters for density functional theory and linear response
calculations.

Material Integration mesh Smearing (cm−1) c/a
Graphite 64×64×5 10 2.6643
Graphene 128×128×1 10 1.367
Graphane 128×128×1 10 1.367
Boron nitride 128×128×1 10 1.317
Fluorographene 128×128×1 10 1.206
MoS2 120×120×1 2 1.945
MoSe2 120×120×1 2 1.966
WS2 120×120×1 2 1.954
WSe2 120×120×1 2 1.974

Table A.2 – Computational parameters used for solving the Boltzmann transport equation.

The isotopic concentrations are chosen to be the natural ones [128]: hydrogen of 99.9885%
1H, 0.0115% 2H; carbon of 98.93% 12C, 1.07% 14C; boron of 19.9% 10B, 80.1% 11B, nitrogen

of 99.632% 14N, 0.368% 15N; fluorine of 100% 19F; sulphur of 94.93% 32S, 0.76 33S, 4.29 34S,

0.02% 36S; selenium of 0.0089% 74Se, 0.0937% 76Se, 0.0763% 77Se, 0.2377% 78Se, 0.4961% 80Se,

0.0873% 82Se; molybdenum of 14.84% 92Mo, 9.25% 94Mo, 15.92% 95Mo, 16.68% 96Mo, 9.55%
97Mo, 24.13% 98Mo, 9.63% 100Mo; tungsten of 0.0012% 180W, 0.2650% 182W, 0.1431% 183W,

0.3064% 184W, 0.2843% 186W.

Tests have been made to assure that the final value of thermal conductivity is converged with

respect to the parameters of the calculations.

Most of the calculations that have been made to produce the results shown in this Thesis have

been managed using the AiiDAmaterials’ informatics platform [117].
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