
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. S. Süsstrunk, présidente du jury
Prof. H. Bourlard, Dr A. Popescu-Belis, directeurs de thèse

Prof. T. Hofmann, rapporteur
Prof. S.-F. Chang, rapporteur

Dr J.-C. Chappelier, rapporteur

Learning Explainable User Sentiment and Preferences
for Information Filtering

THÈSE NO 6920 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 4 MARS 2016

À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE L'IDIAP

PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE

Suisse
2016

PAR

Nikolaos PAPPAS





To the loving memory of my grandfather Christos. . .





Acknowledgements
“Once we accept our limits, we go beyond them.” —Albert Einstein

Preparing the PhD thesis was one of the most fascinating, challenging and rewarding periods

of my life. As I look back, this period was the most favorable time to reach my limits and

strive to go beyond them. Having arrived at the end of this long journey, I am very grateful to

have met bright, motivated and knowledgeable people with persistence and critical thinking

along the way, from whom I learned a lot and with whom I shared numerous wonderful

moments, extraordinary activities, stimulating discussions and fruitful collaborations which

greatly enriched my experiences and positively influenced me in many different ways.

First and foremost, I thank my advisors Andrei Popescu-Belis and Hervé Bourlard for giving

me the opportunity to work on interesting topics in a perfect environment. I especially thank

Andrei for teaching me how to be more concise and organized, sharing my enthousiasm,

as well as for providing me his constant support, guidance and availability throughout the

past four years. I also would like to acknowledge the institutions which funded my research,

namely the 7th Framework Program of the European Union (FP7), the Swiss National Science

Foundation (SNF), The Ark Foundation and the Idiap Research Institute.

I am greatful to my thesis committee – Sabine Süsstrunk, Shih-Fu Chang, Jean-Cédric Chappe-

lier and Thomas Hofmann who reviewed my thesis and provided me with interesting questions,

constructive feedback and helpful remarks. Furthermore, I am greatly thankful to Shih-Fu

Chang for hosting my internship at DVMM in Columbia University and for including me in

stimulating and rigorous research discussions and exciting research projects; it was a very

interesting and productive experience.

Thanks to all my colleagues at Idiap who made this journey enjoyable and memorable with cool

discussions and awesome outside activities: skiing, climbing, swimming, slacklining, jogging,

lake excursions, lunches, coffee breaks, babyfoot, card games, themed dinners, hanging out,

concerts and many more; thank you Thomas, Manuel, Elie, Laurent E., Ivana, Tiago, André,

Adolfo, Roy, Ilja, Arjan, Leo, Riwal, Gwenole, Samira, Majid, Sharid, Maryam, Serena, Nesli,

Marco, Cijo, Tatjana, James, Alexandre, Petr, Aleksandra, Maryam, Rui, Darshan, Kenneth,

Pranay, Gulcan, Pierre, Alexandros, Phil, Marc, Blaise, Raphael, Dayra, Darshan, Laurent N.,

Joan, Xiao, Quang, Parvaz, Yannis, Daniel, Ajay, Pedro, Dimitri, Remi, Joel and others. It has

been a great pleasure to meet you all. Special thanks go to Majid, Ilja, Marc, Dimitri, Cijo,

i



Acknowledgements

Leo, Marco, Thomas, Darshan and others for the interesting and helpful research discussions.

Moreover, I would especially like to thank Thomas, Majid, and Ilja for support, friendship and

amazing time we spent together.

Finally, I would like to heartily thank Amanda for her love, encouragement and patience. Thank

you for making me smile, for being straightforward and always by my side. Furthermore, I

would like to deeply thank my numerous long-lasting friends from Greece who spread all over

Europe and those who stayed back. Lastly, I am very grateful to my family and relatives: Dimitra

and Petros, my loving parents, who supported my education by all means and respected my

choices; Evagelia and Christos, my beloved siblings and super awesome friends, who stood

always by me in good and difficult times.

Lausanne, 14 January 2016 Nikolaos Pappas

ii



Abstract
In the last decade, online social networks have enabled people to interact in many ways with

each other and with content. The digital traces of such actions reveal people’s preferences

towards online content such as news or products. These traces often result from interactions

such as sharing or liking, but also from interactions in natural language. The continuous

growth of the amount of content and of digital traces has led to information overload: sur-

rounded by large volumes of information, people are facing difficulties when searching for

information relevant to their interests. To improve user experience, information systems must

be able to assist users in achieving their search goals, effectively and efficiently.

This thesis is concerned with two important challenges that information systems need to

address in order to significantly improve search experience and overcome information over-

load. First, these systems need to model accurately the variety of user traces, and second,

they need to meaningfully explain search results and recommendations to users. To address

these challenges, this thesis proposes novel methods based on machine learning to model

user sentiment and preferences for information filtering systems, which are effective, scalable,

and easily interpretable by humans.

We focus on two prominent types of user traces in social networks: on the one hand, user

comments accompanied by unary preferences such as likes, and on the other hand, user

reviews accompanied by numerical preferences such as star ratings. In both cases, we advocate

that by better understanding user text through mining its semantics and modeling its structure,

we can not only improve information filtering, but also explain predictions to users. Within this

context, we aim to answer three main research questions, namely: (i ) how do item semantics

help to predict unary preferences; (i i ) how do sentiments of free-form user texts help to

predict unary preferences; and (i i i ) how to model fine-grained numerical preferences from

user review texts. Our goal is to model and extract from user text the knowledge required to

answer these questions, and to obtain insights on how to design better information filtering

systems that are more effective and improve user experience.

To answer the first question, we formulate the recommendation problem based on unary

preferences as a top-N retrieval task and we define an appropriate dataset and metrics for

measuring performance. Then, we propose and evaluate several content-based methods

based on semantic similarities under presence or absence of preferences. To answer the

second question, we propose a sentiment-aware neighborhood model which integrates the

sentiment of user comments with unary preferences, either through fixed or through learned
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mapping functions. For the latter type, we propose a learning algorithm which adapts the

sentiment of user comments to unary preferences at collective or individual levels. To answer

the third question, we cast the problem of modeling user attitude toward aspects of items as a

weakly supervised problem, and we propose a weighted multiple-instance learning method

for solving it. Lastly, we show that the learned saliency weights, apart from being easily

interpretable, are useful indicators for review segmentation and summarization.

To maximize the practical impact of our study, we experiment on real-world data collected

from online social networks or Web communities such as TED, Flickr, Vimeo, Audible, RateBeer

and BeerAdvocate. In addition to providing answers to the questions above, we also show

how to build novel applications derived from them, such as emotion-based recommendation,

lecture transcript summarization, explaining sentiment or emotion scores, and predicting

emotion attributes of lectures based on transcripts or comments.

Keywords: Sentiment Analysis, One-class Collaborative Filtering, Semantic Similarity, Recom-

mender Systems, Content-based Recommendation, Multimedia Recommendation, Multiple-

Instance Learning, Aspect Rating Prediction, Structured Learning, Review Summarization,

Review Segmentation, Sentence Ranking
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Résumé
Les réseaux sociaux en ligne ont permis à leurs utilisateurs, particulièrement durant la dernière

décennie, d’interagir de manière variée avec d’autres utilisateurs ou avec des contenus

numériques. Les traces de ces interactions révèlent leurs préférences envers des informations

ou des produits disponibles en ligne. Ces traces proviennent souvent du partage en ligne ou

des listes de favoris, mais également des textes plus ou moins détaillés écrits par les utilisateurs

à leur propos. La croissance continue de la quantité de contenus et de traces laissées par les

utilisateurs conduit à une surcharge informationnelle: entourés de nombreuses informations,

les individus trouvent difficilement celles qui sont réellement pertinentes pour eux. Afin

d’améliorer leur expérience, les systèmes d’information devraient être capables de guider plus

efficacement les utilisateurs pour leur accès à l’information.

Cette thèse s’intéresse à deux importants défis qui se posent aux systèmes d’information

pour pouvoir améliorer le processus de recherche et gérer la surcharge informationnelle.

D’abord, ces systèmes doivent analyser plus précisément la diversité des traces laissées par les

utilisateurs, et ensuite, ils doivent être capables d’expliquer aux utilisateurs les résultats de

leurs recherches ou les recommandations proposées. Pour aider à relever ces défis, cette thèse

propose des méthodes novatrices fondées sur l’apprentissage automatique qui permettent de

modéliser les sentiments et les préférences des utilisateurs, au sein de systèmes de filtrage

d’information, de manière efficace, extensible et facile à interpréter pour des humains.

Nous nous intéressons à deux types importants de traces que les utilisateurs des réseaux soci-

aux laissent derrière eux: d’un côté, les commentaires, accompagnés d’indications unaires de

préférences (like), et de l’autre côté les critiques, accompagnées d’appréciations numériques

(par exemple de une à cinq étoiles). Dans les deux cas, nous montrons qu’une meilleure com-

préhension des textes, par l’analyse sémantique et structurelle, permet d’améliorer le filtrage

d’information et expliquer les prédictions du système à ses utilisateurs. Dans ce cadre, nous

répondons à trois questions de recherche : (i ) comment le contenu sémantique des entités

aide-t-il à prédire les préférences unaires ? (i i ) comment les sentiments de les commentaires

aident-ils à améliorer la prédiction de ces préférences unaires ? (i i i ) comment modéliser

des préférences numériques pour des aspects spécifiques à partir des critiques ? Notre but

est de modéliser et d’extraire à partir des textes rédigés par les utilisateurs les informations

nécessaires pour répondre à ces questions, et d’en déduire des méthodes pour concevoir des

systèmes d’information plus efficaces et qui améliorent l’expérience de l’utilisateur.

Pour répondre à la première question, nous formulons le problème de la recommandation
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Résumé

basée sur des préférences unaires comme une tâche de recherche des N documents les plus

pertinents, et nous mettons en place un jeu de données et une métrique pour l’évaluation. Puis,

nous proposons et évaluons plusieurs méthodes de recommandation utilisant la similarité

sémantique entre les contenus, en présence des préférences ou bien en son absence. Pour

répondre à la deuxième question, nous proposons un modèle de voisinage prenant en compte

les sentiments, qui combine les préférences unaires et le sentiment des commentaires laissés

par les utilisateurs, soit de manière rigide, soit en adaptant leur combinaison aux données.

Dans ce dernier cas, nous proposons un algorithme d’apprentissage qui adapte l’amplitude des

sentiments extraits automatiquement des commentaires au niveau des préférences unaires,

soit individuellement, soit pour tous les utilisateurs. Pour répondre à la troisième question,

nous formulons la modélisation de l’attitude des utilisateurs envers les aspects des items

comme un problème d’apprentissage faiblement supervisé, et proposons pour le résoudre

une approche fondée sur l’apprentissage à base d’instances multiples pondérées. Nous

montrons alors que les poids appris par notre modèle sont non seulement faciles à interpréter,

mais constituent des traits pertinents pour la segmentation et le résumé des critiques.

Afin de maximiser l’impact pratique de nos propositions, nous utilisons dans nos expériences

des données provenant de réseaux sociaux ou de communautés en ligne, obtenus à partir de

sites Internet tels que TED, Flickr, Vimeo, Audible, RateBeer et BeerAdvocate. Les implémenta-

tions permettent d’apporter des réponses aux questions énoncées ci-dessus, mais aussi de

construire des applications pratiques nouvelles, notamment pour la recommandation fondée

sur les émotions, le résumé des transcriptions de conférences, l’explication des niveaux de sen-

timent, et la prédiction des émotions suscitées par une conférence à partir de sa transcription

ou des commentaires reçus.

Mots-clefs: Analyse des Sentiments, Filtrage Collaboratif à une Classe, Similarité Sémantique,

Systèmes de Recommandation, Recommandation Basée Sur le Contenu, Recommandation

Multimédia, Apprentissage à Instances Multiples, Prédiction des Aspects, Apprentissage Struc-

turé, Résumé de Critiques, Segmentation de Critiques, Classement de Phrases
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1 Introduction

1.1 Context and Motivation

The information age has seen an increasing interest in methods for processing large amounts

of data in reasonable time, taking into consideration its volume, variety and growth. The Web

in its early stages enabled people to view content across the world regardless of their location.

In the last decade, apart from simple actions such as viewing online content, people have

become able to interact at multiple levels with each other and with content in social networks

such as Facebook, YouTube and Twitter. The digital traces of such actions reveal the behavior

of people, namely their preferences towards entities, products, news, events or other types of

online content. These traces often result not only from interactions such as sharing, liking,

rating or marking as a favorite, but also from interactions in natural language, for example,

through comments or reviews.

The volume of data and of traces left by users increases dramatically over time. Some examples

of social network statistics highlight the importance of the data volume, variety and growth.

For instance, Facebook monthly active users increased from 100 million to 1.4 billion from

2008 to 20151. These users connect with other users through friendship relations, create

groups of interest, generate content such as comments, posts or shares, and express their

appreciation for online content such as news or products. Similarly, Youtube has presently

more than one billion users who upload 300 hours of videos every minute and generate billions

of views every day2. Twitter has 300 million users who send 500 million messages per day3,

share messages that they like, and follow other users. These statistics exemplify the concept

of information overload, which every user in these social networks faces when searching for

information that is relevant to their interests. To help users, information systems should be

able to assist them to retrieve relevant information and access large volumes of information

on the Web, effectively and effortlessly.

1First Quarter 2015 Results, Facebook, 2015, http://investor.fb.com/releasedetail.cfm?ReleaseID=908022/.
2Product statistics, Youtube, 2015, https://www.youtube.com/yt/press/statistics.html.
3Twitter turns six, Twitter, 2012, https://blog.twitter.com/2012/twitter-turns-six/.
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Chapter 1. Introduction

Recommender systems (RSs) are information filtering systems which are designed to cope

with the aforementioned data deluge. These systems attempt to predict the preferences of

users for items that they have not seen yet and to recommend to them items that might be

of interest to them (Resnick and Varian, 1997; Koren and Bell, 2011; Ricci et al., 2010). The

recommendations that are made are related to users’ decision-making processes, such as

what products to buy, what movies to watch, what music to listen or what news to read4.

RSs typically use the properties of items and the explicit feedback collected from users to

predict users’ preferences for unseen items. In recent years, recommender systems have

become popular within online social networks, but also in commercial websites such Amazon

and E-bay because they help users find useful information among the vastness of available

information, enhance user experience, and reinforce the users’ engagement with the website.

The elementary user actions that are typically exploited by recommender systems, such as

liking or rating, reveal the preferences of individual users. However, these systems do not

have access to information about why they were performed. On the contrary, the user actions

that result in written text, such as reviewing or commenting, provide more insights and often

provide reasons why users express preferences the way they do. Automatic sentiment analysis

can identify and extract subjective information from written texts, such as the overall polarity

expressed in them or the attitude of a speaker or writer towards some topic (Pang and Lee,

2008). The attitude may be the evaluation or judgment of the writer, or her affective state, or an

intended emotional communication. Progress towards a better understanding of opinionated

text has been made by observing that the overall sentiment can often be decomposed into

sentiments towards various aspects of an item (Lu et al., 2011). For instance, the overall

appreciation of a restaurant expressed in a review can be a function of the food, the service,

and the setting. The mining of such information enables the summarization of online reviews,

which is helpful for semantic indexing and user access, and for the recommendation to users

of specific items that satisfy their multiple-aspect preferences.

1.2 Challenges Addressed in this Thesis

The two research areas introduced above, namely recommender systems and sentiment

analysis, handle complementary types of digital traces left by users. However, they have

until recently progressed separately. Interestingly, there are relations between them which

can provide benefits to information system design. For example, in social networks for

reviewing products, the recovery of missing ratings used for recommendation can be achieved

through sentiment analysis of text (McAuley et al., 2012). The modeling of latent factors

in recommender systems from both text reviews and sets of ratings has been shown to be

more beneficial than handling them individually (McAuley and Leskovec, 2013). Such studies

highlight the need to consider both types of digital traces, namely explicit preferences such as

ratings and implicit preferences expressed in natural language.

4Some examples are, respectively, Amazon, http://www.amazon.com/, IMDb, http://www.imdb.com/, Last.fm,
http://www.last.fm/ and Google News http://news.google.com/.
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1.2. Challenges Addressed in this Thesis

In the context of these developments, this thesis identifies two major research challenges.

Challenge 1: Dealing with free-form text and unary preferences

Typically, when users review products online, they enter into an information system a textual

review and a corresponding real-valued rating (e.g. from 1 to 5). These reviews have an

explicit and informative nature which greatly facilitates the joint consideration of these two

traces and the modeling of user preferences into recommendation systems. However, writing

them requires considerable effort from users. On the contrary, there are other types of social

networks, such as those resulting from user interaction on TED, Vimeo, Flickr, YouTube,

Facebook, in which users provide a less detailed type of traces, which require much less effort,

but are available in great quantities. In such social networks, users express their preferences

in terms of unary feedback, such as liking or marking an item as favorite, which are not

necessarily followed by corresponding text. This type of feedback reveals only what users liked,

however what they do not like remains unknown, i.e. the notion of negative or fine-grained

feedback is absent. At the same time, users may write free-form comments, which may or may

not refer directly to items,by engaging with other users in discussions.

The arbitrary creation of comments and unary feedback makes the joint consideration of both

types of digital traces more challenging. The first difficulty lies in inferring sentiment from

free text and incorporating this information into recommender systems. The second difficulty

lies in mapping sentiments inferred form text optimally to the unary feedback. Addressing

this challenge has a potentially large impact on numerous large online social networks, as it

extends considerably the information that can be leveraged for making recommendations.

Challenge 2: Mining user text to support the explanation of recommendations

Even though the joint modeling of user ratings and text has the potential to improve the

performance of recommender systems, the output of such systems, i.e. the recommended

items, is not easily interpretable by users. This happens because these systems are unable to

explain or provide hints to the users about why a particular item is recommended to them.

This lack of interpretability and transparency contributes negatively to the persuasiveness of

the system and to the trust of users toward it, which may lead users to make less informed

decisions or simply ignore the assistance provided by the system. Currently, solutions to gain

trust from users rely on showing them ratings of similar users (Herlocker, 2000), shared content

attributes with known user items (Tintarev and Masthoff, 2007), or confidence intervals of the

models themselves (Hu et al., 2008). Still, the generated explanations do not take into account

what users write about items in their texts. Consequently, it may be hard for the users to relate

to explanations that are remote from their own beliefs and opinions.

Therefore, an important challenge is how to design systems with the ability to mine user texts

in order to support recommendations with explanations. The difficulty lies in identifying seg-
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ments of user texts which optimally represent users’ opinions towards items in general, as well

as opinions on individual aspects of items specifically. These segments can be used for explain-

ing to users the recommendation of unknown items that share similar sentiment attributes

with known items. Building such systems with interpretable and transparent functionalities

will improve their effectiveness and, again, the overall user experience.

1.3 Contributions of the Thesis

To address the above challenges, this thesis proposes models of user sentiment and preferences

which are effective, efficient and easily interpretable by humans, for information filtering

systems. The thesis advances the state of the art relevant to Natural Language Processing and

Machine Learning, and explores two different types of feedback, namely user preferences (see

Definition 1 below) and user text (Definition 2). These types of feedback cover a wide range of

options that are present in social networks, namely user comments and unary feedback such

as likes and favorites, and user reviews followed by numerical feedback such as star ratings. In

both cases, we advocate that by better understanding user text through mining its semantics,

modeling its structure and leveraging its knowledge, we can design more interpretable models

which improve information filtering but also can be explained to users.

Definition 1: User preferences are the user actions performed on items in a social

network indicating their attitude towards them. We consider two types of preferences

of user u for item i , noted rui . The first one is unary feedback, rui ∈ {1,?}, i.e. 1 for

presence of action and ? for absence of action. The second one is numerical feedback,

rui ∈ {1, . . . ,b} i.e. a number from 1 to b.

Definition 2: User texts are the texts written by users in a social network, which may

refer to items. We consider two types of such texts: comments, which are in free form,

and reviews, which are accompanied by numerical feedback (e.g. from 1 to 5).

Figure 1.1 displays a diagram of the context and overview of this thesis: users interact with

items in a social network, and find relevant items with the help of information filtering systems.

Throughout this thesis, we focus on solving real-world information filtering problems using

large datasets collected from online social networks such as TED, Flickr, Vimeo, BeerAdvocate,

RateBeer, and Audible. These problems include recommending products or videos in person-

alized or non-personalized recommendation settings, predicting sentiment and emotion from

text, summarizing and segmenting reviews, and identifying useful textual units in user texts.

Within this context of social networks, we aim to answer three main research questions:

1. How do item semantics help to predict unary preferences?

2. How do sentiments of free-form user texts help to predict unary preferences?
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Figure 1.1: Diagram of the thesis context and overview. We consider users who interact with
items in a social network through two different sets of actions: (a) comments and unary
feedback such as likes, (upper left part) and (b) reviews and numerical feedback such as star
ratings (lower right part). These digital traces of users are processed by an information filtering
system (center) which enables users to find items that are relevant to them.

3. How to model fine-grained numerical preferences from user review texts?

We aim to provide principled yet testable answers to these questions, as well as to obtain

insights on how to design better information filtering systems to improve user experience and

access. The first two research questions address Challenge 1 by mining semantic information

from free-form text to improve the learning of unary preferences. The third research question

addresses Challenge 2 by modeling fine-grained preferences from user review text. To answer

the first research question we will analyze the role of the information content of the items on

predicting user preferences, and the level of difficulty of this prediction task when information

from free-form user text is unavailable. To answer the second research question, which is com-

plementary to the first one, we will investigate the importance of the sentiment information

expressed in free-form user text and its influence on user preferences. Lastly, to answer the

third research question, we will design models with interpretable components which are able

to predict but also explain fine-grained preferences from user review text. In the following

sub-sections, we briefly introduce the main contributions of this thesis.
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Figure 1.2: The proposed framework for generic or personalized recommendation. The
similarity between items is based either on content or on collaborative information.

1.3.1 How item semantics help to predict unary user preferences

The recommendation of items to users can leverage the content descriptors of items or the

information from the preferences of users or both. While in some domains, such as movie

recommendation, user ratings are available on a large scale, in other domains such as lectures

or videos these can be scarce. In Chapter 3, we investigate such domains with infrequent

ratings – specifically, the domain of scientific lectures or courses, the content of which plays a

significant part in deciding what to recommend. We present first a dataset that we created with

lecture metadata downloaded and processed from the TED website (http://ted.com/) which

contains more than 100k favorites and 200k comments made by about 70k users on 1,200

items5. Then, we propose a recommendation framework, represented in Figure 1.2, in which

we compare content-based, collaborative-filtering, and combined methods for personalized

recommendation (Pappas and Popescu-Belis, 2013a)6. On the left of the schema, a set of user

nodes U = {u1, . . . ,un} are connected with the items I = {i1, . . . , im} through ‘like’ actions. The

items are in turn linked to other items through a similarity measure, defined over content-

based or collaborative feature spaces, represented at the center. This framework allows to

recommend the most similar items to a given item (generic recommendation), but also to

recommend to each user the items that are most similar to the ones he/she has liked so far

(personalized recommendation). For instance, on the right, for user u1, the item i3 (green

node) is the highest ranking recommendation because it is the most similar to her liked

items i1 and i2 (blue nodes) in the example feature space. The gray nodes i1 and i2 are not

recommended since they are already known to the user u1.

We show that among the content-based representations, the semantic-based methods (ESA,

RP and LSI) provide more predictive descriptors of unary user preferences than keyword-

based ones (TFIDF) when user feedback is absent, making them particularly applicable to

5The dataset is freely available at https://www.idiap.ch/dataset/ted/.
611th International Workshop on Content-Based Multimedia Indexing, 2013.
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personalized recommendations in repositories into which new items are inserted frequently.

A similar conclusion is drawn when we evaluate these methods on generic recommendations,

i.e. recommending most similar items to a query item, with a ground truth defined by human

experts (Pappas and Popescu-Belis, 2015)7. Moreover, we propose a combined method which

utilizes content similarity and the popularity bias, and we show that it performs better than

popularity bias alone and at close levels with pure collaborative filtering. To show the applica-

bility of this study, we developed a content-based lecture recommender system in the context

of the InEvent project8. Moreover, we participated in two international competitions on video

annotation, search and hyperlinking, in both of which our team was ranked first (Bhatt et al.,

2013a,b, 2014)9.

1.3.2 How sentiments of free-form user texts help to predict unary preferences

Predicting unary preferences of users with content-based methods is beneficial when user

feedback is scarce, but is less effective than collaborative filtering methods when user feedback

is dense, as shown in our first contribution. In other words, content information itself cannot

help to predict user preferences as precisely as the collaborative information derived from

social networks. The second research question arising at this stage is: can we improve the pre-

diction of user preferences based on the sentiment expressed in user comments, in addition to

u1 un...

i1 i2 im...i3

u1 un...

i1 i2 im...i3

θpos

θneg

θneu

i1 i2 im...i3 i1 i2 im...i3

u2

i4

i4

i4

i4

u2

(1) sentiment labels

(2) adaptive sentiment labels 

 “She is very true in saying that mistakes are part of learning.”
                      (sentiment=pos, polarity=+5.5) 

pos
neu
neg

pos
neu
neg

likes

comments

Figure 1.3: The proposed framework for sentiment-aware recommendation.

7Multimedia Tools and Applications Journal, 2015.
8European FP7 project InEvent: Accessing Dynamic Networked Multimedia Events, 2012–2014. Our recommen-

dation demo is hosted at http://www.inevent-project.eu/demos/automatic-recommendation-of-lectures/, and
its code is also used in the InEvent portal at http://www.inevent-project.eu/demos/inevent-portal/.

9MediaEval video search and hyperlinking task, 2013; ACM Multimedia Grand Challenge on video lecture
annotation and search, 2013; paper presented at the ACM International Conference on Multimedia Retrieval, 2014.
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the collaborative information? To answer this question, in Chapter 4, we propose a sentiment-

aware neighborhood model which incorporates the sentiment from user comments to predict

unary preferences (Pappas and Popescu-Belis, 2013b)10. Moreover, we investigate whether

there are individual or collective opinion effects which influence the unary preferences of

users by devising an adaptive algorithm that is able to map the sentiments of comments to

one-class feedback, globally or per user (Pappas and Popescu-Belis, 2016a)11.

Figure 1.3 displays the framework proposed for leveraging the sentiment of comments to

improve recommendation. On the left, in the graph of users and items, each solid edge

represents an explicit feedback action (e.g. like) and each dashed edge represents an implicit

action (e.g. comment) of a user towards an item. Our goal is to integrate the sentiment of

comments (example shown at the bottom of the figure) with the unary preferences of the graph

through fixed or learned mapping functions obtained by: (1) directly using the sentiment labels

computed by a sentiment classifier, or (2) learning to adapt the sentiment labels to individual

or collective unary preferences. In the latter case, the learned parameter values (θpos , θneu ,

θneg ) indicate the importance of, respectively, positive, negative or neutral comments for the

recommendation task. The parametrization enables us to capture complex patterns from the

data and to reveal the underlying relationships between the sentiments of comments and

the unary preferences. We compare the proposed models against state-of-the-art ones over

three real-world datasets – lectures from TED, videos from Vimeo, and images from Flickr –

demonstrating consistent improvements that and increase with the frequency of comments.

1.3.3 How to model fine-grained numerical preferences from user review texts

As shown in our second contribution, the sentiment information which lies in the user com-

ments can improve the modeling of unary user preferences in addition to the collaborative

filtering information. Although this approach enables systems to suggest new content that is

actually relevant to users, the lack of explanations for the recommendations that are made,

compromise the system’s trustworthiness and transparency. As mentioned in Section 1.2,

current methods for explaining recommendations systems are uninformed about why the

users have particular preferences about items and their aspects. Such information can be

found in social networks where users write reviews of products and rate them globally or

according to specific aspects. Hence, there is a need to understand the fine-grained numerical

preferences or opinions of users about items and how they are expressed in texts. Another

related problem is how to summarize the user sentiments and how to identify sentences that

are the most related to the global or aspect-specific ratings of items, both of which can be used

for explaining recommendations of items that the user has not yet seen.

To address this review understanding challenge, we solve two important problems, namely

learning to predict fine-grained numerical preferences of users from text and learning to

10Annual ACM SIGIR Conference on Research and Development in Information Retrieval, 2013.
11Expert Systems with Applications Journal, 2015.
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Figure 1.4: Sentiment analysis of a user comment using our multiple instance learning model
which predicts the relevance of each sentence to the overall sentiment (here, the overall
positive sentiment is mostly carried by the first sentence).

segment and summarize user reviews. Figure 1.4 displays an example of sentiment analysis

of a user comment using the proposed models, which are presented hereafter. On the right,

a positive comment (4 out of 5 stars) comprised of three sentences is displayed. The yellow

bar shows the contribution of each sentence to the overall sentiment value. The highlighted

words belong to the most predictive words in our dataset, a subset of which is displayed on

the left, separating positive words (top, in green) from negative ones (bottom, in red).

Learning to predict the aspect ratings of reviews

Determining the aspect ratings of reviews is a challenging task, which may seem to require the

engineering of a large number of features to capture each aspect. By treating a text globally,

existing methods ignore that the sentences of a text have diverse contributions to its overall

sentiment or to the sentiment towards a specific aspect of an item. In Chapter 5, we model the

aspect sentiment expressed in text as a weakly supervised learning problem and we propose a

new feature-agnostic solution based on multiple-instance regression (MIR) which assumes

that not all the parts of a text have equal contribution to its rating (Pappas and Popescu-

Belis, 2014)12. Thus, we aim for a finer-grained analysis of text meaning and for a better

understanding of how aspects contribute to people’s opinion.

We consider a set of m reviews, where each review (bag of sentences) Bi is represented by

its ni d-dimensional instances (sentences), i.e. Bi = {bi j }d
ni

. The set of the k aspect ratings

per bag i is Y = {yi }k
m , yi ∈ Rk. We model the sentence contribution to the ratings through

saliency weights Ψ= {ψi j k }1
ni

per class k with unit constraints per review (see Figure 1.5). This

allows us to represent each review in the feature space as an exemplar vector per class k with

the set X = {xi k }d
m obtained from the convex combination of the instances. By learning the

model parameters we are able to predict more accurately the target scores, but also to reveal

their relations to text structure at the phrase, sentence, or paragraph levels. Our evaluation on

12Conference on Empirical Methods in Natural Language Processing, 2014.
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Figure 1.5: The proposed weighted multiple instance learning framework.

aspect rating datasets of restaurants, toys, books, beers, sentiment of comments, and emotion

attributes of lectures, shows that weighted MIR consistently outperforms previous strongly

and weakly supervised methods.

Learning to segment and summarize reviews

The above model provides interpretable saliency weights which represent the relevance of

textual parts, such as sentences, paragraphs, documents or comments, to the target sentiment

or emotion scores. In Chapter 6, we seek to evaluate these components in a quantitative

manner, by assessing the value of the learned weights as features for three tasks pertaining

to the understanding of reviews : (1) segmentation: identify the sentences of a review which

discuss each ratable aspect; (2) summarization: choose the most likely sentence per aspect

in a review; and (3) rating prediction: determine the attitude of the review toward each

aspect. Using six large publicly available datasets with 1.3K–1.6M reviews and 3–6 aspects,

our model learns saliency and relevance weights for the sentences of reviews. Then, we

propose a Conditional Random Field (CRF) model which uses the learned saliency weights and

sentiments of sentences to perform aspect-based segmentation and summarization of online

reviews. The experimental results demonstrate that our model improves over or has similar

performance to structured and unstructured state-of-the-art models, especially when using

supervised learning across all examined datasets. Moreover, to show the applicability of this

study, we trained our model on emotion attributes of lectures (such as ‘fascinating’, ‘inspiring’

or ‘boring’) using features from their transcripts to improve navigation and recommendation,

as well as to summarize parts of the transcripts with respect to each emotion category, as

shown in an online demonstrator implemented for the (aforementioned) InEvent project 13.

13http://www.inevent-project.eu/demos/emotion-based-analysis-and-recommendation-of-lectures/.
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1.4 Plan of the Thesis

The thesis is organized as follows. In Chapter 2, we provide an overview of the published

studies in areas related to our thesis, namely recommender systems, sentiment analysis, and

multiple-instance learning, and we discuss the contributions of the thesis with respect to

each of them. In Chapter 3, to answer the first research question above, we formulate the

recommendation problem based on unary preferences as a one-class collaborative filtering

problem. To solve this problem, we propose several content-based models which are based

on semantic similarities, and combine them with the popularity of items for generic and

personalized recommendation. In Chapter 4, to answer the second research question, we

extract sentiment from user comments to improve one-class collaborative filtering using a

sentiment-aware neighborhood model. To further improve the performance, we propose

a learning algorithm which automatically adapts the sentiment of user comments to unary

preferences. In Chapter 5, to answer the third research question, we concentrate on aspect-

based sentiment analysis, which we cast as a weakly supervised problem. We propose a

weighted multiple-instance learning method for solving this problem and then we analyze

qualitatively its interpretability. In Chapter 6, to show that the learned saliency weights are

useful indicators for opinionated text summarization and segmentation, we propose and

evaluate a structured learning method which makes use of these saliency weights on several

real-world datasets. In Chapter 7, the main achievements of the thesis are summarized and

the proposed models are discussed from a broader perspective along with future directions

for improvement.
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2 Related Work

In this chapter, we provide a comprehensive overview of related studies spanning over three

main research areas, namely recommender systems, sentiment analysis and multiple-instance

learning. We analyze the merits and limitations of the existing studies and highlight the contri-

butions of this thesis against this background. Section 2.1 surveys previous work on automatic

recommendation, starting with a brief overview of content-based and collaborative filtering

methods in Subsection 2.1.1. We review studies on semantic and multimodal information

for recommendation respectively in Subsections 2.1.2 and 2.1.3. In Subsection 2.1.4, we re-

view studies on top-N recommendation, and in Subsection 2.1.5, we discuss studies which

have leveraged comments for various predictive tasks. Secondly, in Section 2.2, we provide

background knowledge and an overview of studies on sentiment analysis. Particularly, in

Subsection 2.2.1, we describe studies on predicting the sentiment of reviews, while in Sub-

section 2.2.2, we focus on the prediction of aspect ratings of reviews. In Subsection 2.2.3, we

describe previous studies on segmenting and summarizing reviews, and in Subsection 2.2.4

we survey studies which use sentiment analysis to improve recommendation. Lastly, in Sec-

tion 2.3, we provide background knowledge and review studies on multiple-instance learning,

focusing on those which attempt to solve regression problems and text-based tasks.

2.1 Recommender Systems

Recommender Systems (RSs) are software tools and techniques which seek to identify and

provide suggestions for useful or interesting items to a user among previously unseen ones

(Ricci et al., 2010). The suggestions relate to various decision-making processes of the users,

such as selecting which product to buy or which book to read, and they can be personalized

or non-personalized (e.g. top popular books). These systems are primarily directed towards

users who need to evaluate potentially overwhelming number of alternatives in order to make

their decisions (data deluge problem).
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2.1.1 Definitions and Main Recommendation Methods

In order to achieve its function, a recommender system must be able to predict the usefulness

of an item. i.e. whether the item is worth recommending. The usefulness is estimated from

available user profiles which contain feedback that users have provided to the system. There

are two main categories of feedback that can be used by recommender systems, namely

explicit and implicit feedback, as presented respectively in Definitions 3 and 4 below.

Typical recommender systems are built based on single criteria (overall rating for an item), but

it is also possible to use multiple criteria (ratings on aspects or attributes of items) instead of

one, namely with multi-criteria recommender systems (Adomavicius et al., 2011). Capturing

explicit feedback is usually more demanding and time-consuming from a user perspective,

though it is a more accurate source of information than implicit feedback. Hence, it often

happens that ratings are missing from the collected data, especially for multi-criteria systems,

which is detrimental to the quality of recommendation. In Chapters 4 and 5, we propose

solutions to overcome this problem by inferring missing ratings from available free-form

comments and reviews respectively.

Types of user feedback

Definition 3: Explicit feedback is a specific, direct and straight-forward way to capture

user preferences, for instance by asking users to provide: (a) categorical ratings (e.g.

awful, bad, indifferent, good, or amazing) or numerical ones (e.g. 1 to 5 stars); (b) unary

or binary ratings (e.g. bookmarks, favorites or like/dislike); (c) preference rankings (e.g.

ranking pairs or larger sets of items in a collection).

Definition 4: Implicit feedback is an indirect and less transparent way to capture user

preferences, for instance through recording clicking and browsing behaviors, item

viewing times or frequencies, or purchasing histories.

The prediction step may vary among recommendation algorithms but it can be described using

a unifying model which represents the general role of recommender systems (Adomavicius

and Tuzhilin, 2005). The degree of utility of an item i for a user u is modeled as a real valued

function r (u, i ), exemplified in Equation 2.1 below. The goal is to predict the values of r over

pairs of users u ∈ U and items i ∈ I (where the size of U is n and the size of I is m), i.e. to

compute r̂ (u, i ) where r̂ is the estimation of r . Once the estimations of utilities to a user u of a

set of items i1, . . . , iN are computed, the system will recommend the top ranked items per user.

r (u, i ) =

⎛
⎜⎜⎜⎜⎝

r1,1 r1,2 · · · r1,n

r2,1 r2,2 · · · r2,n
...

...
. . .

...

rm,1 rm,2 · · · rm,n

⎞
⎟⎟⎟⎟⎠ e.g.

⎛
⎜⎜⎜⎜⎝

5 1 ? 2

1 ? ? 5

5 1 4 ?

5 1 1 ?

⎞
⎟⎟⎟⎟⎠ or

⎛
⎜⎜⎜⎜⎝

1 1 ? 1

0 ? ? 1

1 1 0 ?

1 1 0 ?

⎞
⎟⎟⎟⎟⎠ (2.1)
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Recommender systems commonly leverage either the characteristics of the items (content-

based systems, see Lops et al. (2011)), or the user’s social environment (collaborative filtering

systems, see Koren and Bell (2011)) or both (hybrid systems). Below, we provide a brief

overview of methods which belong to these three categories. More extensive overviews of

content-based, collaborative filtering and hybrid methods, including techniques for their

evaluation, have been provided by Sarwar et al. (2001); Ricci et al. (2010); Lops et al. (2011);

Koren and Bell (2011).

Content-based (CB) methods recommend items that are similar to the ones that the user liked

in the past (Magnini and Strapparava, 2001; Semeraro et al., 2009b; Lops et al., 2011). The

similarity is calculated based on the features that represent items or are associated with them.

For example, if a user has previously rated positively a movie that belongs to a specific genre,

then the system will recommend items from this genre. The cosine similarity between feature

vectors (e.g. tf-idf) that represent items can be used as item similarity. A key problem of these

methods is that usually the system is limited to recommending content of the same type of

what a user has already seen (Lops et al., 2011).

Collaborative Filtering (CF) is considered to be the most popular and widely used recommen-

dation technique (Adomavicius and Tuzhilin, 2005; Sarwar et al., 2001; Herlocker et al., 2004;

Schafer et al., 2007; Koren and Bell, 2011). The original implementation of this approach rec-

ommends to a user the items that the other users with similar tastes liked in the past (Schafer

et al., 2007). The similarity of the tastes of two users is calculated based on the similarity of

their previous rating histories. There are many extensions of the original approach for building

CF systems, including neighborhood models, latent factor models such as singular value

decomposition (Koren and Bell, 2011) or low rank matrix factorization (Takács et al., 2008;

Koren et al., 2009; Ma et al., 2011). Latent factor models make it possible to address effectively

user feedback, either explicit (Koren, 2008) or implicit (Hu et al., 2008), temporal dynamics

(Koren, 2009), and rich content information. However, their predictive power comes with a

high computational cost and the learned factors are not easy to interpret. On the contrary,

neighborhood models are more scalable and interpretable because they perform predictions

based on locality, but they generally have less learning capacity than latent factor models. The

models designed in Chapters 3 and 4 (see specifically Sections 3.5.2 and 4.4.2) are built upon

state-of-the-art neighborhood models.

The hybrid methods are based on combinations of the content-based with collaborative

filtering ones mentioned above, to overcome some limitations of each approach. For example,

CF methods suffer from the sparsity problem (i.e. they cannot recommend items that have

not yet been rated), an issue that is not present in content-based approaches. Several ways of

combining them have been proposed (Burke, 2007). Moreover, the context of the user can be

also considered for recommendation, through a better personalization of the output of the

system (Adomavicius and Tuzhilin, 2011). Ensemble methods, which are considered as hybrid

methods, combine several individual predictors together to produce a final prediction. The

performance of such methods is guaranteed to be greater than or equal to the best performing
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individual predictor. Interestingly, the winner of the Netflix competition was an ensemble

of about 100 individual recommendation models (Bell et al., 2010). The Netflix Prize was an

open competition awarding one million dollars for the best collaborative filtering algorithm to

predict user ratings for films, held yearly from 2006 to 2008. The participants were not allowed

to use any other information about users or films other than the provided ratings.

2.1.2 Mining Text for Semantic Representations of Items and Users

Semantic analysis enables learning accurate profiles of users and items thanks to references

to external knowledge bases, such as ontologies or semi-structured encyclopedic knowledge.

A recommender system can benefit from such analyses, which provide conceptual, linguistic

and cultural background knowledge. Several research studies build semantic representations

based on lexical semantic resources such as WordNet1. SiteIF (Magnini and Strapparava,

2001) is a personal agent for a multilingual news Web site using MultiWordNet2 as an external

knowledge source to model user interests. The ITem Recommender system or ITR (Degemmis

et al., 2007; Semeraro et al., 2009a) can provide recommendations for items in several domains,

using WordNet to build a document representation model called bag-of-synsets, which is an

extension of the bag-of-words model (Semeraro et al., 2007). QuickStep (Middleton et al., 2004)

is a system for the recommendation of on-line academic research papers using an ontology

obtained from the DMOZ open directory project and semantically annotating documents

using k-nearest neighbor classification. The main limitation of using ontologies is that they

require significant human effort in their creation and maintenance.

Other semantic analysis approaches make use of semi-structured encyclopedic knowledge

sources such as Wikipedia or the Yahoo! Web Directory. Leveraging such sources is bene-

ficial, because they are constantly evolving, so they have up-to-date real world knowledge,

and they are collaboratively curated by hundreds of thousands of people around the world.

Wikipedia was used to estimate similarity between movies (Lees-Miller et al., 2008) in order to

provide recommendations for the Netflix Prize competition by using a k-nearest neighbor and

a pseudo-SVD algorithm. Smirnov and Krizhanovsky (2008) present an approach for filtering

RSS feeds and e-mails which makes use of Wikipedia to automatically generate the user pro-

files from the user’s document collection. Another approach which uses the WordSpace model

and Wikipedia for content analysis was presented by Semeraro et al. (2009b). The dimensions

of the WordSpace model represent semantic concepts and the points in the space represent

documents (Sahlgren, 2006). In Chapter 3, we compare the features obtained using external

knowledge from Wikipedia using Explicit Semantic Analysis (Gabrilovich and Markovitch,

2007) with semantic methods obtained from in-domain data, namely dimensionality reduc-

tion and topic modeling methods (Hofmann, 1999; Blei et al., 2003; Chappelier and Eckard,

2009), to identify the most appropriate one for generic and personalized recommendation. A

1A lexical database for English, https://wordnet.princeton.edu/.
2A multilingual lexical database where English and non-English senses such as Italian, Spanish, Portuguese,

Hebrew, Romanian and Latin are aligned, http://multiwordnet.fbk.eu/english/home.php.
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detailed overview and analysis of topic models for text information access focusing on text

classification and clustering is presented in (Chappelier, 2013).

2.1.3 Integrating Multimodal Information for Recommendation

Apart from using textual information to represent items, several authors have highlighted

the need for integrating various modalities in the process of item recommendation where

the ‘modalities’ include not only text, audio, or video channels of the items, but also their

metadata, along with multimodal information from user interaction. MadFilm (Johansson,

2003) is a multimodal movie recommendation system that uses both modalities from natural

language and direct manipulation. Arapakis et al. (2009a) proposed a multimodal video

recommendation system, which predicts the topical relevance of a video by analyzing affective

aspects of user behavior. Shin et al. (2009) designed a digital TV content recommendation

system based on descriptive metadata collected from versatile sources. They used a combined

multimodal approach which integrates classification-based and keyword-based similarity

predictions. Mei et al. (2011) presented a contextual video recommendation system which

was based on multimodal content relevance and user feedback based on visual, audio and

textual information.

Arapakis et al. (2009b) proposed a multimodal recommender system which can predict topical

relevance, by exploiting interaction data, contextual information as well as users’ affective

responses. Di Massa et al. (2010) used multimodal information from radio and television

channels, websites, written and spoken content. The personal interests are inferred using

natural language processing of the users’ blogs. Latent semantic analysis was used to find

relationships between user’s interests and items to recommend. Yang et al. (2007) presented a

video recommendation system based on multimodal fusion and relevance feedback. They

defined the multimodal relevance as a textual, visual and aural relevance and calculated the

different intra-weights for each modality and inter-weights among them.

This thesis differentiates from previous studies, as it focuses on integrating two user feedback

modalities, namely user comments and unary ratings, in Chapter 4. Even though our methods

do not include the processing of audio and video modalities, they could benefit from them in

the future, as discussed in the perspectives of the thesis in Section 7.2.

2.1.4 Top-N Recommendation Task

In contrast to mainstream recommender systems that aim to predict numerical ratings for

each item, top-N recommender systems are used to recommend N items that are most likely

to be of interest or appealing to users (Cremonesi et al., 2010), as in Chapters 3 and 4 of this

thesis. Common evaluation methods based on error metrics are not a natural fit for evaluating

the top-N recommendation task, rather it can be directly measured by alternative metrics

such as accuracy metrics (Cremonesi et al., 2010). Top-N recommendation systems operate on
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both discrete and real-valued feedback, although they are mostly applied to unary feedback

obtained from user behavior data, because in this case numerical rating prediction is difficult

(Schwab et al., 2000). The recommendation problem with unary feedback is also known as one-

class CF problem Pan et al. (2008). The CF methods for top-N recommendation can be broadly

divided in two categories: memory-based vs. model-based ones (Deshpande and Karypis,

2004). These methods typically originate from traditional CF recommendation methods (e.g.

Koren and Bell, 2011; Lops et al., 2011) tailored to the top-N task, as we will explain in Section

3.5. However, a combination of the two is possible, for example with neighborhood models

that are able to learn bias effects and interpolation weights from data, as proposed by Koren

(2008). Our sentiment-aware neighborhood model defined in Section 4.4 belongs to this

type of methods, although with a different kind of parametrization, namely bias effects and

sentiment mapping weights.

Many studies have focused on model-based methods for top-N recommendation. Hu et al.

(2008) adapted CF to datasets with implicit feedback by considering positive and negative

preferences with varying confidence levels, which they used to provide explanations. Ning and

Karypis (2011) proposed sparse linear methods (SLIM) to generate top-N recommendations

by solving a regularized optimization problem. Other studies have formulated top-N recom-

mendation as a ranking problem. Rendle et al. (2009) adopted a Bayesian perspective and

proposed an optimization criterion, named Bayesian Personalized Ranking (PBR). Shi et al.

(2012) proposed an approach called collaborative less-is-more filtering (CLiMF) which directly

maximizes the Mean Reciprocal Rank for top-N recommendation with binary relevance data.

The same authors generalized CLiMF for multiple levels of relevance (Shi et al., 2013). Kabbur

et al. (2013) reduced the sparsity of the datasets for top-N recommendation by learning an

item similarity matrix using structural equation modeling. Aiolli (2014) optimized the Area

Under the Curve (AUC) within a maximum margin framework for CF top-N recommendation.

Elbadrawy and Karypis (2015) proposed a sparse factor model, which learns feature-based

item similarity models that are able to exploit global and user-specific preferences.

Pan et al. (2008) formulated the one-class CF problem as dealing only with positive instances of

user feedback. The inherent problem of one-class CF is the lack of explicit negative feedback, in

other words the uncertainty of the class to which an unknown rating belongs. An approach that

is commonly used for one-class CF problems (see also Section 2.1.4) is to make an assumption

about the distribution of the negative class. Several schemes were proposed by Pan et al.

(2008) to weigh the negative class in a discriminative fashion, formulated within a matrix

factorization framework. These weighting mechanisms performed better than the baseline

assumptions that treat all the missing instances as negative or unknown. We obtained similar

results with our proposed assumption for balancing the missing instances in Section 4.4.3

below. Sindhwani et al. (2009) suggested to treat zero-valued pairs as optimization variables

computed from the training data. Thus, instead of making a uniform assumption about

the negative class, the distribution of the negative class was learned. Li et al. (2010c, 2014)

incorporated rich user information to improve one-class CF, such as search history, purchasing

and browsing activities. Paquet and Koenigstein (2013) addressed the lack of a negative class
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using a Bayesian generative model for the latent signal with an unobserved random graph

which connects users with items they might have considered. Yuan et al. (2013) considered

the richer user and item content information, such as user posts and item titles, abstracts,

authors and keywords, for better weighting the unknown data.

In Chapter 4, we solve the top-N recommendation problem through a ranking function based

on an adaptive sentiment-aware neighborhood model, which uses both user comments and

unary ratings. The proposed model is a significant extension of item-based CF models such

as those proposed by Cremonesi et al. (2010) and Koren and Bell (2011). To complement

unknown ratings, we propose to infer user ratings from free-form user comments, which

occur frequently in online repositories and social networks. Instead of hypothesizing the

values of missing instances, we attempt to infer some of them from available textual data, and

demonstrate the value of such information in combination with three different assumptions

about missing instances.

2.1.5 Leveraging User Comments for Recommendation

User comments in online communities have captured the attention of researchers due to their

high availability, and the personal, opinionated and rich information they contain. Many

predictive tasks and applications have benefited from the analysis of textual user comments,

though most of the applications are not directly related to recommender systems, since they

aim to predict the popularity or mood of news articles, blogs, or user profiles The few existing

studies of comments for recommender systems do not target personalized recommendation

in the one-class setting – despite the importance of this setting, emphasized in this thesis.

Pavlou and Dimoka (2006) utilized content analysis to quantify comments from sellers on a

popular online auction website and to match them with purchasing data from buyers that had

transacted with them. The addition of text comments to numerical ratings helped to explain a

greater part of the variance in seller’s benevolence and credibility compared to ratings only. Li

et al. (2007) proposed to include comments on blog posts for clustering blogs and found that

they increased discriminative effects compared to using only the blogs’ contents. Tsagkias et al.

(2009) hypothesized that the number of user comments on a news article may be indicative

of its importance and attempted to predict the volume of comments on an article prior to its

publication as a binary classification task (high or low volume).

More recent studies of user comments have refined the above trends on news and profiling.

They include ideas such as: comparing several text analysis strategies to automatically gather

profile data from user comments on news articles (Messenger and Whittle, 2011); predicting

the popularity of online articles during a short observation period using a simple linear

prediction model (Tatar et al., 2011); predicting the political orientation of news stories (Park

et al., 2011); exploiting the mood of tweets to predict stock market time series (Bollen et al.,

2011); improving social tag recommendation by connecting user comments with tags (Yin

et al., 2013); predicting user affective comments based on image content (Chen et al., 2014,
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2015); analyzing the influence of Facebook user comments on relationship status updates

(Ballantine et al., 2015); and detecting hate speech in online user comments by learning

distributed low-dimensional representations of comments and using them as features for

classification (Djuric et al., 2015).

The studies which have a similar goal to ours in Chapter 4, namely leveraging user comments

for content recommendation, exhibit a number of significant differences with our approach:

they focus on the generic (i.e. non-personalized) recommendation of tags, comments, or news

for commenting, emphasizing their semantic content over their polarity. As also confirmed

by the literature review of Sun et al. (2014), studies of personalized recommendation from

one-class feedback augmented with comments remain scarce. For instance, Wang et al.

(2010b) presented a framework for non-personalized news recommendation which is based

on constructing news topic profiles based on their text description and along with associated

reader comments. Wang et al. (2010c) and Li et al. (2010b) used structural, semantic and

authority information from user comments to improve recommendation. Agarwal et al. (2011)

attempted to rank the comments associated with a news article according to personalized

user preferences, i.e. liking or disliking a comment. Shmueli et al. (2012) presented a model

that predicts news stories that are likely to be commented by a given user. Kim et al. (2012)

proposed a query expansion method that utilizes user comments in order to consider user’s

different preferences in finding movies. San Pedro et al. (2012) analyzed the user comments

to detect opinions about the aesthetic quality of images for image search. Jain and Galbrun

(2013) proposed to organize user comments in semantic topics which enable users to discover

significant topics of discussions in comments and allow to explicitly capture the immediate

interests of users on news articles. In one of the few studies on multimedia content, Siersdorfer

et al. (2010) analyzed dependencies between comments, views, comment ratings, topic cate-

gories and comment sentiment influence in a large dataset from Youtube, to predict comment

ratings, i.e. number of feedback votes on comments.

The only other study apart from the one presented in this thesis on sentiment analysis for

one-class CF over multimedia content is the study of Sun et al. (2014), to which we compare

our scores in Section 4.8.5, Table 4.13 below. This study uses the metadata set that we created

from the TED talks (Pappas and Popescu-Belis, 2013a, 2015) and made available online (see

Section 4.2), though not the Flickr and Vimeo datasets additionally used in Chapter 4. Sun

et al. (2014) leverages sentiment information extracted with ensemble classifier from user

comments to improve one-class CF task. Moreover, they showed that a matrix factorization

framework, which reaches higher recommendation scores than neighborhood models, can be

combined with them to increase performance.

2.2 Sentiment Analysis

Sentiment analysis is one of the major topics researched in NLP, and its goal is to determine

the overall attitude of a writer or speaker, or their attitude towards specific topics, from their
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texts or speeches respectively. The attitudes of the speakers or writers have several compo-

nents. According to appraisal theory in psychology, they may refer to their own assessment or

judgment (expressed), to the assessments of listeners or readers (perceived), to their affective

state when writing or talking, or to the intended emotional communication. Opinions or

sentiments are essential to human activities because they are able to influence our behaviors

and decisions. This fact, along with the recent growth of social media content and user activity,

has created an increased commercial interest for marketing, public relations and political

campaigns. Consequently, sentiment analysis has nowadays gained a lot of popularity because

of its wide and pervasive application to real-life problems. Another factor which contributed

to its popularity is that it is a challenging research problem in NLP, and covers a variety of sub

problems as we describe below.

Types of sentiment analysis

Definition 5: At the document level, the task is to classify whether a whole opinionated

document has a positive, negative or neutral sentiment.

Definition 6: At the sentence level, the task is to classify whether an individual sentence

has a positive, negative or neutral sentiment.

Definition 7: At the fine-grained level, the task is to classify the sentiment of individual

sentences or phrases inteded towards certain entities or aspects.

Below we provide an overview of the methods which have been used for predicting sentiment

of review, including aspect-level sentiment, followed by methods for segmentation and sum-

marization of reviews. Lastly, we provide an overview of studies which have used sentiment

analysis to improve recommendation.

2.2.1 Predicting the Overall Sentiment of Reviews

Sentiment analysis typically aims to detect the polarity of a given text, and is commonly

formulated as a classification problem for discrete labels such as ‘positive’ and ‘negative’

or a regression one for real-valued labels (Pang and Lee, 2005, 2008). Pang and Lee (2008)

survey the large range of features that have been engineered for rule-based sentiment analysis

methods as the one used in Chapter 4 of this thesis (Hatzivassiloglou and Wiebe, 2000; Hu and

Liu, 2004; Wilson et al., 2005) and for corpus-based ones (Pang et al., 2002; Thomas et al., 2006).

Machine learning techniques for sentiment classification have been introduced quite early

(e.g. Pang et al., 2002), including unsupervised techniques based on the notion of semantic

orientation of phrases (e.g. Turney, 2002). A related family of studies focused on subjectivity

detection, i.e. whether a text expresses opinions or not (Wiebe et al., 2004).

A large volume of research focused on the prediction of sentiment, i.e. the overall rating of

a review. Most of these studies have focused on feature engineering (Pang and Lee, 2008),
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and more recently on feature learning (Maas et al., 2011; Socher et al., 2011; Tang et al., 2014),

including the use of deep neural networks (Socher et al., 2013; Mikolov et al., 2013; Tang, 2015).

These methods do not require careful engineering of features to go beyond state-of-the-art

alternatives, however the learned features which capture semantic information are difficult

to be interpreted by humans. Deep learning, to our knowledge, has not been applied yet to

aspect rating prediction, but as it would likely not provide interpretable features, we advocate

here the use of a different type of learning methods, namely multiple-instance ones (MIR, see

Section 2.3), to capture high-level semantics in terms of aspect saliency in Chapter 6.

The above methods treat the sentiment analysis problem as a strongly supervised learning

problem, which assumes that the target labels correspond to the entire input text. In Chapter 5,

we put forward a new formulation for the problem based on weakly supervised learning which

assumes that parts of a text have unequal contributions to its target label.

2.2.2 Predicting the Aspect Ratings of Reviews

The fine-grained analysis of opinions regarding specific aspects or features of items is known

as multi-aspect sentiment analysis. This task usually requires aspect-related text segmentation,

followed by prediction or summarization (Hu and Liu, 2004; Zhuang et al., 2006). Most

attempts to perform this task have engineered various feature sets, augmenting words with

topic or content models (Mei et al., 2007; Titov and McDonald, 2008; Sauper et al., 2010;

Lu et al., 2011), or with linguistic features (Pang and Lee, 2005; Baccianella et al., 2009; Qu

et al., 2010; Zhu et al., 2012). Other studies have advocated the joint modeling of multiple

aspects (Snyder and Barzilay, 2007) or of multiple reviews for the same product (Li et al., 2011).

McAuley et al. (2012) introduced new corpora of multi-aspect reviews, which we also partly

use here, and proposed models for aspect detection, sentiment summarization and rating

prediction. Lastly, joint aspect identification and sentiment classification have been used for

aggregating product review snippets by Sauper and Barzilay (2013).

Previous studies on aspect rating prediction have used for training segmented text obtained

automatically (Zhu et al., 2012; McAuley et al., 2012), or have modeled the relationships

between different aspect ratings (Lin and He, 2009; Gupta et al., 2010; McAuley et al., 2012) to

go beyond standard supervised models such as SVM with bags-of-words. To our knowledge,

none of the previous studies considered in their modeling the weak relationship between

text labels and the parts of texts (e.g. sentences) as we propose in Chapter 5. Moreover, in

Chapter 6, the proposed MIR method is trained over the entire unsegmented text, reducing

the computational cost and human intervention which is required to obtain segmented text.

In addition, MIR captures meaningful structural information of the input text, instead of the

output labels only, and thus provides interpretable sentence saliency weights, which can be

used for segmenting and summarizing reviews.
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2.2.3 Segmenting and Summarizing Reviews

Most studies of review segmentation and summarization focused mainly on unsupervised

learning (Titov and Mcdonald, 2008; Zhu et al., 2009; Wang et al., 2010a; Brody and Elhadad,

2010; Lu et al., 2011), while fewer studies explored supervised learning (Li et al., 2010a). Re-

cently, the availability of annotated data (McAuley et al., 2012; Pontiki et al., 2014) has increased

the interest in supervised methods, e.g. with constrained structured models (McAuley et al.,

2012), or with linear chain CRF models (Patra et al., 2014; Hamdan et al., 2015). While sentence

sentiment has been shown to be useful for inferring sentence aspects (Brody and Elhadad,

2010; Ganu et al., 2009), the aspect saliency and sentiment of sentences from in-domain

corpora have not been considered before. In Chapter 6, we augment common word or topic

spaces with such high-level semantics.

2.2.4 Improving Recommendation through Sentiment Analysis

Since their appearance, sentiment analysis techniques have attracted the interest of the re-

search community because they help capturing high-level meaning in language and offer a

wide variety of applications. Several studies have performed sentiment analysis of textual

reviews of items to improve recommendation. Most of them focus on learning to infer numer-

ical ratings from a set of already labeled textual reviews (arguing in favor or against particular

items), unlike the free-form unlabeled comments that are exploited in this thesis (Chapter 4).

Leung et al. (2006, 2011) proposed a probabilistic rating inference framework which mines

user preferences from text reviews and then maps them onto numerical rating scales. Similarly,

Kawamae (2011) proposed a hierarchical topic modeling approach for integrating sentiment

analysis with CF by modeling each author’s preference and writing attitude as latent variables.

Such frameworks provide a convenient way of combining feedback from preferences and

from reviews, but their main drawback is that they are only applicable to review websites,

and cannot be easily transferred to other situations. Singh et al. (2011) performed two-stage

filtering with CF and sentiment classification of user reviews, keeping however the modeling

of text and ratings separate, unlike our model which optimizes their combination.

Moshfeghi et al. (2011) addressed the cold-start problem by considering item-related emotions

and semantic information extracted from movie plots as well as text reviews, using LDA and

gradient boosted trees. The benefits of this method were mostly observed when the amount

of user ratings was very small or zero. In cases when user ratings are unavailable, Zhang

et al. (2010, 2013) proposed to perform online video recommendation by using virtual ratings

extracted from sentiment analysis of text reviews, instead of actual user ratings. Similarly, when

ratings are absent, Karampiperis et al. (2014) examined the benefits of using sentiment analysis

on user review comments followed by explicit numerical ratings to improve recommendation

in educational repositories. In contrast, we will show that our proposed model in Chapter 4 is

beneficial on various proportions of free-form user comments.

Several recent methods have focused on situations were both review text and ratings are
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available. Pero and Horváth (2013) proposed a simple, scalable and effective rating predic-

tion framework based on matrix factorization which utilizes both user ratings and opinions

inferred from their reviews. García-Cumbreras et al. (2013) categorized users according to

the average polarity of their comments, in the context of movie reviews. These categories

were then used as features to improve CF models, thus following a less personalized and

item-oriented recommendation strategy than ours. McAuley and Leskovec (2013) and Ling

et al. (2014) combined latent rating dimensions (such as those of latent-factor recommender

systems) with latent topics of reviews learned by topic models. Similarly, Diao et al. (2014)

proposed a probabilistic model based on CF and a topic model, which jointly captures the

interest distribution of users and the content distribution for movies. The advantage of such

models, apart from their improved accuracy, is that the learned latent dimensions can be more

easily interpreted than pure latent-factor models. Zhang et al. (2015) first extracted hidden

dimensions from reviews with topic modeling, and then applied a traditional CF model to

capture correlations between hidden dimensions in reviews and ratings. All these studies used

explicitly labeled reviews for evaluation, therefore it is unclear whether their improvements

still hold when using free-form comments and a more challenging recommendation setting

such as with unary ratings, as in our study presented in Chapter 4.

A promising line of sentiment analysis research, for structured reviews, is to recognize the

aspects of items and their ratings. For instance, Ganu et al. (2009) proposed a regression

approach which considers various aspects of a restaurant to improve recommendations

using a k-NN method. Similarly, Jakob et al. (2009) proposed to extract movie aspects for

improving movie recommendations in a CF model. Faridani (2011) generalized the concept of

sentiment analysis of reviews to multiple dimensions (such as service or price) using Canonical

Correlation Analysis, with applications to product search and recommendation. Levi et al.

(2012) addressed the cold-start problem by mining aspects and their sentiment, and profiling

users according to their intent and nationality using context groups extracted from reviews.

Personalization of quality rankings for products using aspect information from reviews was

investigated by Musat et al. (2013), who also proposed new evaluation methods to rate expla-

nations and to predict pairwise user preferences. Zhang et al. (2014) extracted attribute-value

pairs from product reviews and integrated them into a latent matrix factorization model, result-

ing in an explicit factor model which is able to provide explanations of its recommendations

in terms of aspects preferred by users. To capture the importance given by different users to

different items, Nie et al. (2014) used tensor factorization to automatically infer the weights of

different aspects in forming the overall rating. D’Addio and Manzato (2015) proposed a vector-

based representation of items computed from user reviews, which considers the sentiment

of those reviews towards specific aspects, within a neighborhood-based CF model. Wu and

Ester (2015) proposed a unified probabilistic model which combines the advantages of CF and

aspect-based opinion mining to learn personalized sentiment polarities on different aspects

of items. He et al. (2015) proposed to cast the recommendation task as vertex ranking and

devised a generic personalized algorithm for ranking in tripartite graphs of user-item-aspect

relations, named TriRank. To be applicable, these methods require even more demanding
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explicit feedback information, namely repositories which include multiple-aspect reviews and

aspect-specific ratings, which are currently available only for limited range of item types.

Most of the above studies aim to predict ratings (on numeric scales) from reviews, generally

by training the predictor on similar reviews that are accompanied by ground-truth ratings

given by their authors. Unlike such studies, we will analyze in Chapter 4 of this thesis the

sentiment of user comments which are never accompanied by ratings. Free-form comments

differ from text reviews as they are not necessarily purposed to refer to the items which are

considered for recommendation, due to their unconstrained and spontaneous nature. Rather,

they reflect the written interactions among the users of an online community. In addition,

the existing approaches which make use of reviews composed of ratings and text have a high

adaptation cost to a new domain if no ground-truth ratings are initially available. Another

novelty presented in Chapters 3 and 4 of this thesis is that, unlike previous work on this topic,

we consider explicit user feedback in the form of unary ratings, which is a common form of

feedback in social networks such as YouTube, Facebook, Flickr, Vimeo, Twitter and others.

2.3 Multiple Instance Learning

We turn now to a specific category of machine learning which will be used in Chapters 5 and

6 of this thesis, namely multiple-instance learning (MIL). MIL was originally proposed by

Dietterich et al. (1997), and is able to deal effectively with ‘weak’ or ‘coarse-grained’ input labels.

The MIL algorithms receive as input a set of labeled bags, each of which contains a variable

number of instances, instead of individual labeled instances, as in traditional supervised

learning. The goal of MIL is either (a) to be able to learn a classifier which assigns correct

labels to individual instances or (b) predict the labels of the bags without necessarily inducing

the labels of the individual instances. Consider the simple example of a MIL problem shown

in Fig. 2.1, adapted from Dietterich et al. (1997) by Babenko (2009). There are several faculty

members, and each owns a key chain that contains a few keys, but only some of them are

able to open a certain room, and some are not. The goal is then to predict whether a certain

key or a certain key chain can get us into this room. To solve this we need to find the key that

all the key chains which can get us into the room (“positive”) have in common. By finding

which key is the correct one (here the 3rd and 2nd key in Sanjoy’s and Lawerence’s key chain

respectively), we can also correctly classify an entire key chain – either it contains the required

key, or it does not.

The solution of the above MIL problem is based on one of the first assumptions proposed,

which is the primary instance assumption, i.e. that there is a single instance called ‘primary’

which is responsible for the label of the bag. Foulds and Frank (2010) surveyed the various

MIL assumptions and concluded that they are differently suited to different tasks, and should

be stated clearly when describing a model. MIL has been successfully applied to a variety of

domains such as image classification, molecule classification for drug discovery, drug activity

prediction, remote sensing (e.g. crop yield prediction) and text or document categorization.
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Figure 2.1: Key-chain example: each faculty member owns a key chain which can or cannot
open a certain room. How to predict which key or key chain open the room?

The majority of the MIL studies focused on classification (Andrews et al., 2003; Bunescu and

Mooney, 2007; Settles et al., 2008; Wang et al., 2011; Doran and Ray, 2014; Cheplygina et al.,

2015; Zhu et al., 2015), while fewer focused on regression (Ray and Page, 2001; Davis et al.,

2007; Wagstaff et al., 2008; Wagstaff and Lane, 2007; Wang et al., 2012). A comprehensive review

of multiple-instance classification along with comparison of major methods is presented by

Amores (2013).

Multiple-instance regression (MIR) belongs to the class of MIL problems for real-valued output,

and is a variant of multiple regression where each data point may be described by more than

one vector of values. Related to document analysis, several MIR studies have focused on news

categorization (Zhang and Zhou, 2008; Zhou et al., 2009) or web-index recommendation (Zhou

et al., 2005) but, to our knowledge, no study has attempted to use MIR for text regression tasks

with real-valued labels such as aspect rating prediction, sentiment and emotion prediction, as

we do in Chapters 5 and 6 of this thesis.

MIR was firstly introduced by Ray and Page (2001), proposing an EM algorithm which assumes

that one primary instance per bag is responsible for its label. Wagstaff and Lane (2007)

proposed to simultaneously learn a regression model and to estimate instance weights per

bag for crop yield modeling; however their method is not applicable to prediction. A similar

method which learns the internal structure of bags using clustering was later proposed by

Wagstaff et al. (2008) for crop yield prediction, and we will use it for comparison in Chapter 5.

Later, the method was adapted to map bags into a single-instance feature space by Zhang and

Zhou (2009). Wang et al. (2008) assumed that each bag is generated by random noise around a

primary instance, while Wang et al. (2012) represented bag labels with a probabilistic mixture

model. The main disadvantages of the above methods for text regression tasks is that they do

not scale well to high-dimensional feature spaces, and that some of them are not applicable to

prediction.

In Chapter 5 of this thesis, we propose the first weighted MIR model (to our knowledge) suited

for text regression tasks, and evaluate it on three such tasks, namely aspect rating prediction,
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sentiment prediction and emotion prediction. Moreover, in Chapter 6 we analyze the quality

and the utility of the learned MIR features by using them as features for review understanding

tasks such as review segmentation and summarization. Perhaps the most related work to

our own on sentiment analysis with MIL is the study from Kotzias et al. (2015). The authors

combined MIL with deep learning features and applied it on sentiment prediction with the

goal of transferring label information from group labels (review) to instance labels (sentences).

However, this study focused solely on sentiment classification rather on regression, and it did

not take into account the sentiments towards aspects.

This thesis attempts to overcome the aforementioned limitations of previous studies and

to build upon the contributions from a variety of domains that have been presented in this

chapter. Specifically, many of our proposals will benefit from the leveraging of knowledge

from certain domains for application to others. Examples of this transfer include the use of

sentiment analysis as means to extract preference information from text and thus improve

recommendation, and the use of multiple-instance learning to model weakly-supervised text

regression tasks such as sentiment or aspect-based rating prediction.
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3 Semantic Analysis of Item Content for
Recommendation

Understanding the importance of content for predicting user preferences is a challenging

problem. Knowing which attributes and representations of items are more predictive of

preferences, enables a system to make relevant and accurate recommendations in large and

constantly growing repositories of items, even when user preferences are scarce, i.e. in a

cold-start setting. In this chapter, we attempt to address this problem by introducing a novel

dataset and by comparing several methods for the recommendation of non-fiction audio

visual material, namely lectures from the TED website. The TED dataset contains 1,149 talks

and 69,023 profiles of users, who have made more than 100,000 ratings and 200,000 comments.

The corresponding metadata, which have been made available, can be used for training and

testing generic or personalized recommender systems.

We define content-based, collaborative, and combined recommendation methods for TED

lectures and use cross-validation to select the best parameters of keyword-based (TF-IDF) and

semantic vector space-based methods (LSI, LDA, RP, and ESA). We compare these methods on

a personalized recommendation task in two settings, a cold-start and a non-cold-start one.

In the cold-start setting, semantic vector spaces perform better than keywords. In the non-

cold-start setting, where collaborative information can be exploited, content-based methods

are outperformed by collaborative filtering ones, but the proposed combined method shows

comparable performances to the latter ones, and can be used in both settings. For the generic

recommendation task, LSI and RP again outperform TF-IDF.

3.1 Introduction

The recommendation of multimedia content to users can leverage either the content descrip-

tors (content-based methods, CB) or information from the preferences of users (collaborative

filtering, CF) or both types of information (hybrid systems). While in some domains, such as

movie recommendation, user ratings are available on a large scale, as in the Movielens data

with millions of ratings, in other domains these can be scarce.
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In this chapter, we compare recommendation techniques for lecture recordings, that is, non-

fiction audiovisual material with informative purposes, the content of which plays a significant

part in deciding what to recommend. We compare the merits of CB and CF methods and

propose a new method for combining semantic features (based on distances in semantic vector

spaces) with user preferences, which are defined as the list of recordings explicitly marked

as favorites, following common practice in recommender systems (Shani and Gunawardana,

2011). Following appropriate training to identify the best performing features, we show that

CB recommendation using Explicit Semantic Analysis (Gabrilovich and Markovitch, 2007)

is the best performing method in a cold-start setting, when no user preferences are known,

including the case of anonymous viewers. In a non-cold-start setting, we will show that pure

CF methods perform best, but only slightly above the combined CB and CF method with

keyword-based distance, showing the importance of using content features in both settings.

The methods will be tested on a new dataset acquired from the TED repository of lectures on

scientific and social topics. We will show how this dataset can be used for the evaluation of

lecture recommendations, given its rich content and metadata (to be used as features) along

with explicit feedback from users (to be used as ground truth for training and testing). Our

results thus constitute the first benchmark scores on this promising data set, which we made

public.

This chapter is organized as follows. We introduce the TED dataset and the metadata we

extracted from it in Section 3.2. Then, we define the generic and personalized recommendation

tasks that can be tested using this data in Section 3.3. We present semantic vector spaces in

Section 3.4 and use them to define CB recommendation methods, as well as combined CB + CF

ones, in Section 3.5. The results of feature selection are given in Section 3.6, while results over

test data are given in Section 3.7 for personalized recommendations, and in Section 3.8 for

generic ones, i.e. for anonymous users.

3.2 The TED Collection: A Dataset for Recommendation Evaluation

The TED website is the online repository of audio-visual recordings of the popular TED lec-

tures given by prominent speakers (see www.ted.com). The recordings and the metadata

accompanying them are made available under a Creative Commons non-commercial license.

The website provides extended metadata as well as user-contributed material such as discus-

sion threads related to the talks. The TED speakers are scientists, writers, journalists, artists,

and businesspeople from all over the world who are generally given a maximum of 18 minutes

to present their ideas. The talks are given in English and are usually transcribed and then

translated into several other languages by volunteers. The quality and interest of the talks has

made TED one of the most popular online lecture repositories. An important characteristic of

TED is that the metadata for the audio visual content is human-made.

In Figure 3.1 an example of a TED talk page is shown. On the left, the main audio visual player

which displays the talk is at the top, just below the speaker’s name and title of the talk. On the
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Total Talk User Active user
Attribute Count Avg Std Avg Std Avg Std

Talks 1,149 - - - - - -
Speakers 961 - - - - - -
Users 69,023 - - - - - -
Active Users 10,962 - - - - - -
Tags 300 5.83 2.11 - - - -
Themes 48 2.88 1.06 - - - -
Related Videos 3,002 2.62 0.74 - - - -
Transcripts 1,102 0.95 0.19 - - - -
Favorites 108,476 94.82 114.54 1.57 8.94 9.90 20.52
Comments 201,934 176.36 383.87 2.92 16.06 4.87 23.42

Table 3.1: Statistics for the TED data: total counts and averages (‘avg’) with standard deviations
(‘std’) per talk, user and ‘active user’, for each of the attributes. Active users are those who have
indicated at least one favorite talk.

right, a short description of the talk is provided, along with the speaker’s bio and the number

of total views of the talk. Below the video player is the transcript of the talk, in a separate

sub-frame that can be scrolled. To the right of the transcript, the TED website recommends to

the user three talks that are related to the one that is currently displayed, which are presented

as “what to watch next”. Apart from the talk recommendation, TED website recommends

three thematic collections of TED talks i.e. playlists related to the currently displayed talk,

presented as “related playlists”. The major part of the area below the player and the transcript

is dedicated to the user comments, organized in threads.

3.2.1 Metadata Structure and Statistics

We crawled the TED dataset in April 2012 and gathered the metadata only, excluding the audio-

visual recordings. Two main entry types constitute the metadata: talks and users. The talks

have the following data fields: identifier, title, description, speaker name, TED event at which

they were given, transcript, publication date, filming date, number of views. Each talk has

user comments, organized in threads. In addition, we consider three metadata fields that were

assigned by the TED editorial staff: tags, themes, and pointers to related talks (generally three

per talk). The tags and the themes were additional descriptive keywords for each talk provided

by TED during our crawl in 2012, but they are now obsolete, as they were removed in later

versions of the TED website. Conversely, the related playlists were not available at crawling

time, and thus they are not included in the dataset. For 95% of the talks, a high-quality manual

transcript is available. Table 3.1 provides the main statistics of the dataset, which includes

1,149 talks from 961 speakers.

The users are all the visitors of the TED website who have created an individual profile and have
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Figure 3.1: Presentation of a lecture on the TED website. The audio visual player (top) is
followed by the transcript (in its own sub-frame) and by user comments (not shown here
entirely), while on the right side is a short description followed by suggestions of related
playlists and talks. (Screen shot from http://www.ted.com/talks/richard_dawkins_on_our_
queer_universe.html used here for illustrative purposes only.)
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indicated a list of talks as public favorites. Although 69,023 users are registered, only 10,962 of

them (i.e. 14%) have explicitly indicated one or more favorite talks, and we will refer to them as

active users, for reasons related to ground truth and evaluation which will be explained in the

next section. Moreover, we will only use the subset of 2,427 users who have made 12 or more

ratings each. This value strikes a balance between having enough ratings per user and enough

users in the subset, according to standard practice in recommendation system evaluation. All

lists of favorites (more than 100,000) and comments (more than 200,000) are included in the

metadata set that we distribute and use here for training and testing.

We made available the TED metadata set1 under the same Creative Commons non-commercial

license as the TED talks, and by permission of the TED managers. The metadata, excluding au-

dio and video signals, was acquired using web crawlers developed with the Scrapy toolkit (from

http://scrapy.org.), one for the talks and one for the user profiles. The data was anonymized

in the process, by replacing the public user IDs with hashes and discarding full names. With

a polite rate of one request per second, the crawling lasted a couple of hours on April 27,

2012. The extraction of the attributes from talks and user profiles was done with hand-crafted

patterns that exploit HTML attributes and CSS classes using the XPath query language.

3.2.2 Ground Truth

The explicit user preferences in a given dataset constitute the ground truth which can be used

for training and evaluating recommendation algorithms for personalized recommendations. A

common form of such preferences are numeric ratings (e.g. from 1 to 5) that are assigned by

users to items. In the TED dataset, the fact that a user has listed a talk among her favorite talks

will count as the explicit preference. This corresponds to unary feedback or rating, coded as

‘1’ for a favorite talk, and ‘?’ for a talk not included in the list of favorites. The latter case can

mean two things: either the talk was not seen, or it was seen but was not liked. The ambiguity

cannot be solved because viewing information for each profile is not available.

Therefore, we are not interested in predicting explicit rating values, but rather in ordering

items according to the hypothesized user’s preferences as defined by favorite lists (Shani and

Gunawardana, 2011). We should note that this evaluation is considerably different from con-

ducting user studies to judge the performance of recommender systems and from modeling

detailed user preferences recorded with ontology-based approaches (Dasiopoulou et al., 2010;

Martinez, 2002; Tsinaraki and Christodoulakis, 2006). The former, aside from the biases, is

time-consuming and challenging. The latter is based on fine-grained semantic modeling of

user preferences, but such models are difficult to construct and cannot be compared directly.

Instead, modeling user preferences only based on individual properties (e.g. favorites, pur-

chases) is typical of large-scale collaborative filtering systems and is helpful to compare the

output of such systems. However, ontologies could be used to extract user and item features

(see Section 2.1.2).

1https://www.idiap.ch/dataset/ted/.
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Figure 3.2: Distributions of user feedback (favorites and comments). The percentage of items
covered is on the x-axis and the percentage of ratings is on the y-axis.

As the goal of our recommender system is to predict favorite lectures, we will evaluate it,

following common practice, by hiding some of the favorite talks of active users and measuring

how well the system predicts them simply by comparing the system’s output with the ground

truth. For this measure, only the profiles of active users can be used, because for the others,

no favorites are available. Moreover, personalized recommendation algorithms must be tested

on user profiles that contain a sufficient number of ratings to serve as training data for each

profile (Herlocker et al., 2004; Shani and Gunawardana, 2011). This is why only active users

with at least 12 favorites are kept in our experiments.

Things would be different if we tried to predict the commenting behavior, because this task

is distinct from recommendation. In our view, commenting does not always signal positive

interest – though it likely signals that the talk has been at least partly viewed – because the

meaning of comments is uncertain without further analysis: they may indicate that a talk was

liked or disliked, or they may be mere replies to an argument from previous comments. Given

that the goal of many recommender systems is to predict purchase, we consider that this is

more closely related to marking talks as favorites rather than just commenting on them. There-

fore, we did not experiment here with prediction of commenting behavior. Nevertheless, we

show in Chapter 4 that the polarity of user comments obtained through automatic sentiment

analysis can be used to augment rating information.

3.2.3 Distributions of User Feedback

Figure 3.2 displays the distributions of favorites and comments in the TED dataset. The

favorite marks are less sparse than comments, since the percentage of the former is higher

than the percentage of the latter for the same percentage of items. In Figure 3.3, the TED talks
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Figure 3.3: Three-dimensional representation of the numbers of favorites and comments,
and the unique users that made them for each talk, showing the skewed distribution of user
feedback. The number of comments is on the x-axis, the number of favorites is on the y-axis,
and the number of unique users that gave feedback is on the z-axis.

are displayed in a three-dimensional space, which shows more clearly the density of favorites

and comments. The majority of the talks receive feedback from 1 to 500 unique users, with 1

to 250 favorite marks and 1 to 400 comments (including comments on comments, etc.). As

explained above, in this paper, we use favorites as explicit ratings for training and testing, while

noting that comments could be used as additional ratings on condition that their polarity is

analyzed.

Corroborating the well known long-tail distribution of rated items found in data from many

commercial systems, here as well the majority of ratings are condensed over a small fraction of

the most popular items (Anderson, 2006). We examined the TED dataset to find out whether

this property applied to its distribution of explicit ratings (favorites) as well, and found that

23% of the ratings apply to the top 5% of the items (short-tail) and the rest are distributed over

the remaining set of 77% less popular items (long-tail). Hence, the ratings in the TED dataset

do follow a long-tail distribution, but it is less long-tailed than other distributions known in the

literature: for instance, 33% of ratings apply to the top 5.5% movies in the Movielens dataset,

and 33% of the ratings apply to the top 1.7% movies in the Netflix dataset. The fact that the

distribution of ratings is less skewed is likely due to the young age of the TED dataset (6 years

old) and its rather slow growth.

A marked long-tail distribution may introduce a bias to the recommendation process since an

algorithm which recommends only the most popular items may have good performance, but

does not always bring benefits to the users because the recommendations may not be novel

to them, as shown by Cremonesi et al. (2010). In the TED dataset, this effect should be less

observed since the distribution of ratings is less long-tailed.
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Collection Basic Speaker Transcripts Tags Implicit Explicit CC
VideoLectures � � � �
KhanAcademy � � �
Youtube EDU � � � �
DailyMotion � � �
TED � � � � � � �

Table 3.2: Comparison of TED with other repositories in terms of available metadata and
user feedback. The properties are: Basic (title and description), Speaker, Transcript, Tags
(categories in form of keywords), Implicit (implicit feedback such as comments or views),
Explicit (explicit feedback sich as ratings, favorites or bookmarks), and CC (Creative Commons
Non-Commercial License).

3.2.4 Comparison with other Collections

The aforementioned properties of the TED data cannot be easily found in other alternative

lecture repositories such as Khan Academy2, VideoLectures.NET3, YouTube EDU4, or Daily-

motion5 – as shown in Table 3.2, which compares various properties of these data sets. Khan

Academy is an online learning community that contains more than 3,200 videos on scholarly

topics. It shares some properties with TED in terms of providing transcripts and offering

commenting capabilities, but it lacks descriptive fields, annotation with thematic tags and

explicit feedback. Similarly, VideoLectures.NET, Youtube EDU or Dailymotion do not provide

transcripts and do not provide all the TED metadata fields. The dataset provided for the

VideoLectures.NET recommender system challenge (Antulov-Fantulin et al., 2011) includes

the viewing history of the lectures as a ground truth for predicting future views of each lecture,

along with content-related features, author and event information. However, information that

is particularly useful for recommendation tasks such as explicit user feedback and detailed

content information such as lecture transcripts is not made available.

The TED dataset thus appears as particularly valuable since it provides ground truth from

explicit user preferences along with human-made recommendations, which are critical for

evaluating, respectively, personalized and generic recommendation tasks. Besides, the dataset

has been used for evaluating other tasks, in particular in the fields of automatic speech

recognition (e.g. Rousseau et al., 2012) and machine translation (e.g. Federico et al., 2012;

Hardmeier et al., 2015), where the transcripts are distributed as the WIT3 corpus (?).

2http://www.khanacademy.org/.
3http://www.videolectures.net/.
4http://www.youtube.com/education/.
5http://www.dailymotion.com/.
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3.3 Definition of Recommendation Tasks

In this section, we specify two complementary recommendation tasks that can be evaluated

using the TED dataset, namely a personalized and a generic one. The first one considers the

global history of each user (embodied in the list of favorites) to recommend to the user new

content of interest, while the second one aims at recommending content that is related to a

given talk, regardless of the user watching it. Of course, a combined task could also be defined,

in which a given user watching a given talk receives further recommendations – an instance of

context-aware recommendation (Adomavicius and Tuzhilin, 2011). However, the available

TED metadata does not offer ground-truth data to evaluate such a task, and thus it is beyond

the scope of this study.

3.3.1 Personalized Recommendations

Given a set of unary ratings as a ground truth, the goal of personalized recommendation is to

predict whether unseen items will be interesting or relevant for each individual user (Shani and

Gunawardana, 2011). In other words, we try to predict the N most interesting items, a problem

which is known as top-N recommendation (Cremonesi et al., 2010). The problem of dealing

with unary ratings in collaborative filtering is also known as one-class collaborative filtering

(OCCF), originally defined by Pan et al. (2008). Such problems are particularly challenging due

to the fundamental uncertainty of the ‘0’ class. In such a scenario of offline prediction, the

recommendation models are classically trained on fragments of user’s histories, and evaluated

by hiding some of the preferred user items and then trying to predict them. The performance

is evaluated using classification accuracy metrics.6

For the TED dataset, we propose that for each user u in the set of users U (or a subset of it,

such as users having made more than a number of ratings, similar to the assumption made

in Section 3.2.1), her ratings (favorites) are randomly split into training and test sets, noted

M and T , typically 80% and 20%. A recommendation model is trained (possibly with cross-

validation) on M , and then tested on the held-out set T by comparing its output with the

actual ratings of user u over T .

3.3.2 Generic Recommendations

The generic or user-independent recommendation task corresponds to scenarios in which the

users’ history of ratings is absent, e.g. for anonymous users. The goal of this task is to predict

the most similar items to a given one, which can also be seen as a non-personalized top-N

6The scenario of this task does not presuppose that the user is currently viewing a talk, but considers only
the user’s past history. As a consequence, if a user is interested in several different topics, it is likely that in the
resulting recommendations each topic will be present with its probability of appearance in the user’s past history.
On the contrary, if one aims for contextual personalized recommendation (mentioned above), then the topic
of the talk that is currently viewed should be considerably boosted with respect to the others in the resulting
recommendations.
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recommendation task. Given the set of human-made, user-independent recommendations for

each item in a dataset – here, the three related videos (or “what to see next”) selected by TED

editors for each TED talk – a model can be trained and evaluated using only this information

as ground truth and ignoring user preferences or the talks previously viewed. Again, the set of

items I can be split into a training set M and a testing set T for evaluation.

3.3.3 Evaluation Metrics

For the top-N personalized recommendation task, error metrics such as RMSE are not the

most appropriate ones, since a top-N recommender is not necessarily able to infer the exact

rating of a user u ∈ U for any item i ∈ I (Cremonesi et al., 2010). Instead, this task can be

evaluated more informatively by using the classification accuracy metrics of precision, recall

and F-measure (Shani and Gunawardana, 2011). Precision and recall at N are respectively

given by the following formulas:

P (N ) = 1

|U |
∑

u∈U

|Tu ∩Ru@N |
N

; R(N ) = 1

|U |
∑

u∈U

|Tu ∩Ru@N |
|Tu |

, (3.1)

where N is the bound of top recommendations, |U | is the total number of users in U , Tu is the

set of items in user’s u history and Ru@N are the top-N recommendations of the model for

the user u. Recall is computed in a similar way, but dividing by the number of items in the

user’s u history, |Tu |, instead of N . The F-measure is the harmonic mean F (N ) of P (N ) and

R(N ), which is computed as:

F (N ) = 2 · P (N ) ·R(N )

P (N )+R(N )
(3.2)

Similarly, applying Equation 3.1 directly to the items I in a test set T , we obtain the definitions

of precision and recall for generic recommendations as follows:

P (N ) = 1

|I |
∑
i∈I

|Ti ∩Ri @N |
N

; R(N ) = 1

|I |
∑
i∈I

|Ti ∩Ri @N |
|Ti |

, (3.3)

where Ti are the ground-truth items related to i , Ri are the recommended items for i and the

remaining variables are the same as above.

3.4 Semantic Vector Space Models

Content-based recommender systems use similarity measures between items that rely on

their content descriptors. Here, we consider semantic vector space models (VSM) to define

such similarities, and compare in Sections 3.7 and 3.8 their merits for recommendation over

the TED dataset. Benchmarking these models is a contribution to the ongoing debates on

semantic-based approaches to recommendation (Lops et al., 2011).
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Semantic VSMs are considered to be able to reduce the effect of the curse of dimensionality

and data sparseness of standard VSMs, such as those based on TF-IDF weighting (Sahlgren,

2006). The proximity of two vectors in a semantic space, which is usually computed with

cosine similarity, can be interpreted as a measure of the semantic relatedness between the

objects that are represented by those vectors. This semantic similarity can then be used to

compute similarities between items or users in recommender systems.

When using a VSM, each document i is first represented as a feature vector composed of

terms (ti 1, ti 2, . . . , ti j ), where each position j corresponds to a word of the vocabulary V . The

coefficients ti j can be computed using various models: Boolean values (‘1’ if the document

contains the word, ‘0’ if it does not), counts of words, term frequencies, inverse document

frequencies, or TF-IDF coefficients. 7 The TED talks, noted as items I , can thus be represented

by creating vectors of words from their metadata, which can be pre-processed to remove stop

words or to apply stemming. In this study we performed the following pre-processing steps:

I → TOKENIZATION → STOP WORDS REMOVAL → STEMMING →V

There are several methods for creating semantic representations in VSMs. In our experiments,

we use a VSM with TF-IDF as the baseline weighing model (Salton and Buckley, 1988) and

evaluate four representative semantic VSMs from the three main existing categories, as follows:

1. Two dimensionality reduction methods, namely Latent Semantic Indexing (LSI) and Ran-

dom Projections (RP), respectively proposed by Hofmann (1999) and Sahlgren (2005).

2. A topic modeling method, namely Latent Dirichlet Allocation (LDA) by Blei et al. (2003).

3. A concept space based on external knowledge from Wikipedia, namely Explicit Semantic

Analysis (ESA) (Gabrilovich and Markovitch, 2007).

These techniques have generalization capabilities, as they project the data from the original

vector space to a topic or concept space with a reduced number of dimensions – apart from

ESA which actually augments the dimensionality to the number of Wikipedia concepts. In

terms of free parameters, LSI, RP and LDA rely on the number of topics t (latent factors).

Moreover, LDA relies on two parameters traditionally noted α and β for the Dirichlet priors

of topic and word distributions. For the implementation of LSI, RP and LDA we used the

Python Gensim library (Řehůřek and Sojka, 2010), while for ESA we used the Wikipre-ESA

implementation of the method described in (Gabrilovich and Markovitch, 2007), over a 2005

snapshot of Wikipedia.

7For example, TF-IDF is computed as follows: ti j = tf i j · idf j , where tf j is the term frequency of word j in
document i and idf j is classically the inverse document frequency of word j .
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3.5 Recommendation Algorithms

In this section, we define two types of recommendation algorithms for personalized lecture

recommendation, namely content-based and collaborative filtering ones, which are based on

item-based similarities (Papagelis and Plexousakis, 2005). Then, we show how to combine

minimal collaborative information, i.e. item popularity, with content-based item similarities.

3.5.1 Content-based Algorithms

For content-based methods, we first pre-compute an item similarity matrix for each of the

VSMs above, noted respectively ST F−I DF , SLSI , SRP , SLD A and SES A . Each matrix S is an m×m

matrix, m being the number of talks. The value of each element si j of each S is the cosine

similarity of the vectors representing items i and j in the given VSM.

We then define a ranker based on content similarities, noted as C B . Given a similarity function

that outputs a score for two items (two TED talks), C B recommends to a user u a list of ranked

items based on the k most similar items to those already known to be her favorites from

the training data Mu . Therefore, C B recommends items to user u based on their estimated

relevance r̂ui defined as:

r̂ui =
∑

j∈Dk (u;i )

si j (3.4)

where Dk (u; i ) are the k most similar items from I to the ones in the training set of the user Mu

and si j is the similarity between items i and j , both of them computed according to one of

the five matrices S. The summation is limited to a set of k neighbors (Dk (u; i )) for tractability

and efficiency reasons.

3.5.2 Collaborative Filtering Algorithms

For collaborative filtering, we use the model from (Cremonesi et al., 2010) applied to unary

ratings. First, we pre-compute the item similarity matrices based on the ratings between pairs

of items in the user-item matrix built from the training set. The similarity of each pair is based

on two popular metrics, namely Pearson correlation, yielding the SPC matrix as in (Mahmood

and Ricci, 2009), and cosine similarity, yielding the SCOS matrix, as in (Cremonesi et al., 2010).

The elements of these matrices are computed respectively as follows:

SCOSi j =
�i ·�j

||�i ||2 ×||�j ||2
; SPCi j =

E [(�i −μi )(�j −μ j )]

σiσ j
, (3.5)
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where�i and �j are the feature vectors of items i and respectively j derived from the item-item

co-rating matrix8.

Then, we use a neighborhood model defined in Equation 3.6, which is commonly used for

collaborative filtering. The prediction function r̂ui estimates the rating of a user u for an

unseen item i , based on the bias estimate bui of u for item i , computed using Equation 3.8,

and on a score that is calculated from the k most similar items to i (according to either SPC

or SCOS) which the user u has already rated, i.e. the neighborhood Dk (u; i ) as above. The

denominator ensures that the predicted ratings will fall in the same range of values as the

known ones.

r̂ui = bui +
∑

j∈Dk (u;i ) di j (ru j −bu j )∑
j∈Dk (u;i ) di j

(3.6)

The term ru j is the rating value of a user u for a given item j . The coefficient di j expresses

the similarity between item i and item j , and is computed as in Equation 3.7 by using the

similarity si j between items i and j multiplied by a factor varying from 1 (when the number of

common raters ni j is considerably larger than λ) to 0 (when ni j is considerably smaller than

λ). Typically, λ≈ 100.

di j = si j
ni j

ni j +λ
(3.7)

The bias estimate bui is the sum of the average ratings μ of items in the dataset, the average of

the ratings of a user u, noted bu , and the average of the ratings for a given item i , noted bi , as

shown in Equation 3.8:

bui =μ+bu +bi (3.8)

We consider two representative variants of this model. First, we use a normalized neighbor-

hood model (as defined in Equation 3.6) with Pearson Correlation for vector similarity; this

model is noted as CF(PC). Second, we use a non-normalized model, noted with a preceding

‘u’ for ‘unnormalized’, obtained by removing the denominator in Equation 3.6 and using the

cosine similarity distance, hence this model is referred to as uCF(COS). In previous stud-

ies (Cremonesi et al., 2010), non-normalized models were found to perform better for the

top-N recommendation task than normalized ones.

3.5.3 Combining Collaborative Filtering with Content Similarity

We incorporate into the neighborhood model presented above (non-normalized version)

information about content-based similarity, by replacing in Equation 3.6 the di j similarity

with the content-based one from Equation 3.4, and using the non-normalized version. Hence

8In other formulations, the feature vectors can be derived from the user-item matrix, where each item is
represented by a vector of user ratings.
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Figure 3.4: Combinations of item attributes from which features are extracted for comparison.
The atomic attributes are title (TI), description (DE), related tags (RTA), related themes (RTH),
transcript (TRA), speaker (SP) and TED event (TE).

the estimated rating in the combined model is:

r̂ui = bui + ∑
j∈Dk (u;i )

si j (ru j −bu j ) (3.9)

This new model allows us to exploit at the same time the semantic-based similarities and

the bias estimate, therefore to combine the two types of information, content-based and

collaborative one. This is especially useful when collaborative information is sparse, and the

similarity computed using it is less reliable than the content-based one.

We consider this time only the non-normalized versions of the model (noted again with ‘u’)

because they outperformed the normalized ones in our preliminary experiments. We also

indicate in the notation the type of content-based similarity that is used in combination to

the CF neighborhood model. Hence, these combined models are referred to as uCF(TF-IDF),

uCF(LSI), uCF(LDA), uCF(RP) and uCF(ESA). For comparison purposes, we finally consider a

user-independent recommender noted TopPopular, which always recommends the items with

the highest popularity, based on the total number of ratings, regardless of a user’s preferences.
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3.6. Parameter and Attribute Selection for Content-Based Methods

Figure 3.5: Ranking of individual and combined attributes based on the decreasing average of
F-measure over all five content-based methods. Atomic attributes are title (TI), description
(DE), related tags (RTA), related themes (RTH), transcript (TRA), speaker (SP) and TED event
(TE). The segments over the bars represent the standard deviations when averaging over 5-fold
cross-validation and five methods with all tested parameters.

3.6 Parameter and Attribute Selection for Content-Based Methods

We determine the optimal parameters and attributesas of the content-based methods for

personalized recommendation using 5-fold cross-validation over the training set M , which

includes 80% of the ratings for each of the 2,427 TED users that have made 12 or more ratings.

The remaining 20% of the ratings from these users are kept as an unseen test set T , which is

used in Section 3.7.

The CB methods use lexical features (vectors of words) extracted from one or more field-

s/attributes of each TED talk, represented schematically in Figure 3.4, and several meta-

parameters for each of the semantic representations (TF-IDF, LSI, RP, LDA, and ESA) as

described in Section 3.4. Exploring all possible combinations of attributes to find out which

subset performs best is not tractable. Therefore, we grouped individual attributes into four

groups: title and description (TIDE), related tags and themes (RTT), transcript (TRA), and

speaker plus TED event (TESP). Along with all individual attributes, we tested these sets, and

all their combinations, organized as in Figure 3.4.

For LSI and RP we optimized the values of the parameter t (number of topics) by varying it

from 10 to 5,000 and for LDA from 10 to 200 only, for tractability reasons. Additionally, for

LDA, we varied the α and β parameters from 0 to 1, and the optimal ones were found to be

α = 1 and β = 0.002. We fixed the neighborhood size at k = 3, which is a trade-off between

computational cost and expected prediction accuracy (Koren and Bell, 2011).
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Figure 3.5 displays the ranking of attributes and their combinations, ordered by the average

F-measure (F@5) over all the tested types of semantic VSMs (i.e. TF-IDF, LSI, RP, LDA, and

ESA) and all the parameters of methods stated in the previous paragraph. These results thus

indicate which attributes perform well over all methods, as opposed to attributes that are

optimal for each method, which will be shown below. As seen on the standard deviations

obtained from cross-validation and averaging over the five methods (segments over the bars

in Fig. 3.5), the non-overlapping segments indicate important differences between single or

composite attributes. For instance, the four top-level attributes are clearly better than the four

bottom ones.

The results show that the human-made description of talks (DE), the title (TI), and their combi-

nations with other attributes (TIDE, TIDE.RTT, and TIDE.TESP.RTT) are the most useful attributes

on average for content-based personalized recommendation. In addition, knowledge of the

speaker (SP) is useful too (ranked sixth). However, these metadata fields come to a cost because

they must be entered by the editors of the lecture repository. The description, in particular,

requires a significant human effort, hence likely the TED speakers write their own descriptions.

The lowest performing attributes were the name of the TED event (TE) and the related themes

assigned by TED editors (RTH), which presumably lack specificity for recommendation. In

fact, the related tags and themes have been removed since we gathered the metadata in 2012

removed from the TED website. Somewhat surprisingly, the transcript (TRA) decreases the

performance of all methods and most of the combinations that include it are in the middle

of the ranking. One possible explanation is that the huge size of the transcript’s vocabulary

introduces a lot of noise.

Table 3.3 shows the optimal attributes and parameters for each semantic representation used

with CB, together with the scores (precision, recall and F-measure at 5) that they enable the

recommender system to reach (5-fold cross-validation on the development data). All the

semantic-based methods except LDA outperform significantly the TF-IDF baseline (pairwise t-

statistic, p < 0.05): 11% improvement for LSI, 7.6% for RP and up to 64% by ESA, which reaches

the best score. While two semantic-based methods (LSI and RP) perform without significant

differences, ESA is significantly above them (pairwise t-tests, p < 0.05). The performance of

ESA shows that the external-knowledge-based representation of the items is significantly more

useful to our task than the domain knowledge captured intrinsically by the other methods.

3.7 Performance of Personalized Lecture Recommendation

In this section, we compare recommendation performance of CB, CF and combined methods

over the held-out test set T , considering two different settings: (i) a cold-start setting where

the collaborative rating information for the items is not available and (ii) a non-cold-start

setting where it is. Note that when testing, we only hide the rating information for the user

currently tested, but use the information from the other users to make our recommendations,

following current practice in the field.
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Method Optimal Attributes Performance (%)
P@5 R@5 F@5

LDA (t=200) Title, description, TED event, 1.63 1.96 1.78
speaker (TIDE.TESP)

TF-IDF Title (TI) 1.70 2.00 1.83
RP (t=5000) Description (DE) 1.83 2.25 2.01
LSI (t=3000) Title (TI) 1.86 2.27 2.04
ESA Title, description (TIDE) 2.79 3.46 3.08

Table 3.3: Optimal attributes for content-based methods found using 5-fold cross-validation
on the training set. Scores in bold are significantly higher than TF-IDF ones. Moreover, the
scores of ESA are significantly above those of RP and LSI (pairwise t-statistic, p < 0.05).

Figure 3.6: Scores of content-based methods in a cold-start setting, in terms of precision and
recall at N (1 ≤ N ≤ 30) on the held-out set T . The ESA-based distance outperforms by far all
the others, while LSI and RP outperform TF-IDF for most values of N , and LDA outperforms
TF-IDF for low values of N (1 to 4).
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3.7.1 Cold-start Recommendations (CB Methods Only)

The cold-start setting is characterized by sparse user ratings, with many items not having

been rated at all, which makes it impossible for CF methods to recommend these items

(e.g. new TED lectures). In such a situation, only content-based methods can help making

recommendations. In Figure 3.6, we show the performance of our CB methods in terms of

precision and recall over the held-out set T . Most of the semantic-based representations

perform significantly better (t-statistic, p < 0.05) than TF-IDF, with +62% for ESA, +7% for

LSI and +8% for RP. As for LDA, this does not improve over TF-IDF (as also seen in Table 3.3)

except at the top 1 to 4 recommendations; it was also the most difficult method to tune.

The scores obtained appear to be overall quite small, though in line with previous work –

see (Cremonesi et al., 2010; Pan et al., 2008) and Section 2.1.4. These scores must be interpreted

in the light of the following two facts. Firstly, the probability of having the correct item ranked

by chance first (P@1) among 1,149 candidates is only 0.08%, while our lowest score (for

Random Projections) was 40 times higher at 3.20% (Figure 3.6). Moreover, the precision of

random guessing decreases dramatically at higher ranks (e.g. P@5). Secondly, we consider here

only the positive ratings (favorites) to calculate precision, and discard the scores of unseen

items, which would have a much higher baseline.

The improvement brought by ESA appears to be again (as in Section 3.6) much greater than

that of LSI and RP, allowing us to conclude that similarity based on concept spaces from

external knowledge captures more effectively the content similarity and, consequently, the

user preferences than the other semantic spaces and the baseline TF-IDF. Semantic-based

approaches are thus more effective than keyword-based ones for cold-start personalized

recommendations.

3.7.2 Non-Cold-Start Recommendations (All Methods)

In a non-cold-start setting, where the items have been rated by many users, the collaborative

filtering information and the bias introduced by the popularity of items can be specifically

exploited. As the CB methods do not have such information, their performance was found to

be lower than that of CF methods, and will not be reported here. However, the combinations

of CB and CF proposed in Section 3.5.3 (noted uCF(·) with ‘·’ indicating the similarity method)

allow content-based similarity to take into account the bias estimate, and their results are

close to pure CF methods in the non-cold-start scenario, while being operational both in

cold-start and non-cold-start settings.

Figure 3.7 displays the performance of two neighborhood models used for collaborative

filtering: the normalized one using Pearson Correlation (CF(PC)) and the unnormalized one

using cosine similarity (uCF(COS)). We also represent the two best performing combined

methods, unnormalized, using TF-IDF and LSI distances (uCF(TF-IDF) and uCF(LSI)), as

well as the TopPopular baseline. The best performance is achieved by the non-normalized
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Figure 3.7: Lecture recommendation scores for two collaborative filtering methods, CF(PC) and
uCF(COS), and two combined methods, namely uCF(TF-IDF) and uCF(LSI) (neighborhood
with TF-IDF and LSI distances), in a non-cold-start setting. Precision and recall at 1 ≤ N ≤ 30
are computed on the held-out test set T . Collaborative filtering using cosine similarity in
a neighborhood model scores highest, but the combined model using neighborhoods and
TF-IDF is not far behind.

neighborhood model with cosine similarity, uCF(COS) (+34% on average with respect to

TopPopular over all data points in Figure 3.7). The CF(PC) model is in the same range, and

significantly better than TopPopular (+15%). The CB methods have insignificant differences

with each other and with uCF(PC). All these comparisons are based on pairwise t-tests over

the values of the P-R curves from 1 to 30.

The combined models, uCF(TF-IDF) and uCF(LSI), perform similarly to CF(PC) and are also

significantly better (t-statistic, p < 0.05) than TopPopular, respectively +10.5% and +13% above

it. The other content-based similarities (RP, LDA, ESA) perform slightly below TF-IDF, but the

difference is not statistically significant. Using the bias introduced by the item popularity thus

decreases the difference in performance between the content-based similarity models, i.e.

uCF(LSI) and uCF(TF-IDF), compared to their differences in the cold-start setting.

3.8 Performance of Generic Recommendations

The goal of generic or user-independent recommendation is to predict items that are related

to a given one, without any knowledge of user profiles. We use here unsupervised methods,

namely rankers based on content similarities, defined in Section 3.5. As a ground-truth, we

use the human-made lists of related videos that are available in the TED data set. In most of

the cases (76.4% of the talks), TED editors have indicated three related talks for each talk, or

sometimes fewer than three talks (for 23.6% of the talks).
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Methods TED TopPopular TF-IDF LSI RP LDA ESA
TED 1.000 0.006 0.129 0.156 0.143 0.091 0.124

TopPopular - 1.000 0.003 0.003 0.004 0.004 0.006
TF-IDF - - 1.000 0.510 0.323 0.195 0.523

LSI - - - 1.000 0.419 0.220 0.442
RP - - - - 1.000 0.200 0.299

LDA - - - - - 1.000 0.193
ESA - - - - - - 1.000

Table 3.4: Evaluation of unsupervised methods (content-based rankers) for generic recom-
mendation, in terms of overlap with the related talks recommended by TED editors on first line.
In the remaining lines, the matrix provides the overlap values between all pairs of methods,
showing for instance that ESA and LSI provide the most similar recommendations to TF-IDF
(0.523 and 0.510). The metric is the F-measure computed over pairs of recommendation
lists produced by the respective methods, and underlined scores are significantly higher than
TF-IDF ones (pairwise t-statistic: p < 0.05).

Figure 3.8: Ranking of atomic and combined features (see combinations in Figure 3.5) based
on the decreasing average F-measure for TF-IDF similarities. The atomic features are: title
(TI), description (DE), related tags (RTA), related themes (RTH), transcript (TRA), speaker (SP)
and TED event (TE). The segments over the bars are the standard deviations from 5-fold
cross-validation, with non-overlapping intervals indicating important differences.
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Using classification accuracy metrics (F-measure), we evaluate various content-based rankers,

namely semantic-based and keyword-based ones, in terms of their overlap with the ground-

truth ranking. Table 3.4 shows that, similarly to personalized recommendations, the LSI and

RP semantic-based methods significantly outperform the keyword-based one using TF-IDF

and the other methods as well (pairwise t-test on 5-fold c-v., p < 0.05). However, the difference

between LSI and RP is not significant. The parameters of the methods were set to the optimal

values found for the personalized recommendation task in Section 7, which means the results

that are obtained from these rankers might be even improved if we optimize them for the

generic task. Results might also improve when supervised methods (rather than unsupervised

ones) are used for learning to rank, such as SVM-Rank (Joachims, 2006). The main conclusion

at this stage is that the semantic information is beneficial over keyword-based only methods

for generic recommendation, as it was for personalized recommendation.

Figure 3.8 displays the ranking of features and their combinations, ordered by the average

F-measure (F@3) obtained when using them in the TF-IDF content-based ranker. The ranking

of the features for this task is quite different from the one for personalized recommendations

(displayed in Figure 3.5 above). For generic recommendations, the combination of all features

appears to be the second best performing subset of features, while the subset that actually

performs best is RTT.TESP, which includes the related tags and themes, the speaker and the

TED event. These sets were ranked in the middle for the personalized recommendation task.

When considered independently, the related themes (RTH) and the TED event (TE) fields rank

very low (respectively 19th and 20th), while the other two features, namely the related tags

(RTA) and the speaker (SP) have have relatively low rank as well (respectively 15th and 17th).

We presume that when put together, these features capture complementary properties, be-

cause their combination leads to the best recommendation performance. Note that the

combination of some other fields does not lead to improvement, implying that they capture

overlapping properties, for example description (DE) compared to title plus description (TIDE).

A possible explanation for these differences is that individual user preferences in the personal-

ized task are more difficult to capture than the preferences of the TED editors who defined the

related talks used as ground-truth for generic recommendations.

3.9 Applications

To demonstrate the generality of the proposed content representations, we apply them to

several scenarios of lecture and snippet recommendation. Such recommendations require the

linking of lectures according to their main content or based on their segments. The links can

be found through a similarity function in the content representation space, as described above.

For this purpose, we implemented and made available a content-based recommendation

library9, which is used in the two applications presented below.

9http://github.com/idiap/cbrec/.
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3.9.1 The InEvent Portal: Content-Based Lecture Recommendation

The InEvent Portal10 is purposed for accessing and navigating large repositories of networked

multimedia. One of its basic functions is to provide generic (user-independent) recommenda-

tions over its repository which contains talks from Klewel11 plus metadata imported from TED.

As discussed above, in such a generic recommendation task, the goal is to predict lectures that

are related to a given lecture that is being viewed, without any knowledge of a user’s profile.

For each of the talks in the repository we recommend the five most similar talks based on text

content from all metadata fields. Figure 3.9 shows a snapshot from our online demonstration12

which displays on its right side the most related talks to the one that is being viewed.

Figure 3.9: Generic recommendations computed using semantic similarities of items over
the InEvent repository. Example of top five content-based recommendations for a talk that is
currently being viewed, presented as a list of clickable titles on the right side.

The proposed solution uses the semantic vector space techniques described in Section 3.4

to represent lectures based on their content. Specifically, we make use of all available item

meta-data such as titles, speaker names, descriptions, subtitles, and slide titles with start time,

in addition to words extracted through speech recognition, or manual transcripts when they

are available. Initially, a vector is built for each lecture (each position corresponding to a word

of the vocabulary), with weights computed using TF-IDF coefficients. Then the feature vectors

are projected to a low-dimensional semantic space with LSI and finally, a talk similarity matrix

is computed with cosine similarity as in Eq. 3.5.

10http://www.inevent-project.eu/demos/inevent-portal/.
11http://portal.klewel.com/watch/webcasts/.
12http://www.inevent-project.eu/demos/automatic-recommendation-of-lectures/.
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3.9.2 The MUST-VIS System: Content-Based Snippet Recommendation

The MUST-VIS system allows users to visualize a lecture as a series of segments which are

represented by keyword clouds, with relations to other similar lectures and segments. This

allows users to understand the main content of a lecture at a glance without entirely watching

it, but also to navigate conveniently through the lecture graph generated by the system i.e the

navigation graph. The system was designed by the Idiap NLP group (Bhatt et al., 2013b) for the

MediaMixer/VideoLectures.NET Temporal Segmentation and Annotation Grand Challenge

at ACM Multimedia 2013, and was declared the winner of this challenge. The MUST-VIS

system makes use of multimodal processing of audios, videos and texts to build the navigation

graph. Initially, the ASR transcripts or the subtitles of each lecture of the dataset are segmented

Figure 3.10: Navigation graph of the MUST-VIS system. Each lecture is represented with a
keyframe and keyword clouds for each segment around it. The lecture in focus is surrounded
by other lectures with related segments. The screenshot was taken from (Bhatt et al., 2013b).

using the TextTiling algorithm implemented in the NLTK toolkit (Loper and Bird, 2002). Then

the words in each topic segment are ranked using the diverse keyword extraction technique

proposed by Habibi and Popescu-Belis (2013, 2015), which selects keywords so that they cover

the maximum number of topics mentioned in each segment with an additional diversity

constraint. Words ranked higher are graphically emphasized in the word cloud. Our content-

based methods are used then to compute the similarity between the lecture segments which

defines the links between segments and between lectures in an interactive navigation graph

(color-coded in the GUI). Figure 3.10 shows a snapshot of the graph for a lecture that is

currently being viewed, and around it the most similar lectures. The user can quickly inspect

the links between the segments and the keyword clouds to decide which lecture to watch next.
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3.10 Conclusion

In this chapter, we introduced a new dataset with metadata from the TED lectures and formu-

lated two benchmark tasks for non-fiction multimedia recommendation utilizing the ground

truth available from the TED website. Feature selection experiments over the most active TED

users indicated that the most informative data fields for CB methods are the description and

the title of each lecture. Using cross-validation, CB using ESA was found to outperform all

other CB methods.

We compared in detail content-based, collaborative-filtering, and combined recommendation

methods over the test set in two different settings: a cold-start one and a non-cold-start

one. The benchmark scores obtained for lecture recommendation are comparable to similar

studies on other tasks, e.g. movie recommendation (Cremonesi et al., 2010). We showed that

the semantic-based methods (ESA, RP and LSI) were able to make more relevant recommen-

dations than keyword-based ones (TF-IDF) in a cold-start setting, making them particularly

applicable to multimedia datasets into which new items are inserted frequently. Even though

we focused on the text modality, the proposed similarities can be potentially used for audio

and visual modalities as well. However, the CB methods were outperformed by CF ones in a

non-cold-start setting, although a combined method using a neighborhood model, user/item

biases and TF-IDF similarity achieved performance close to pure CF by utilizing only the

popularity bias. The proposed method can be used when newly-added and older items are

both present, as it does not rely entirely on collaborative rating similarities.

According to our knowledge, no other dataset with non-fiction audio-visual material contains

both content metadata and explicit user feedback (favorites) – a fact that points to the value of

the TED dataset for multimedia recommendation. In the future, if other audio-visual collec-

tions with explicit feedback such as favorites are made available, they will allow additional

evaluations of the proposed algorithms. However, if little or no explicit feedback is available,

we show in the next chapter how to leverage other user-generated information such as com-

ments. Lastly, to demonstrate the generality of the proposed content-based methods beyond

our generic and personalized recommendation scenarios over the TED talks, we applied them

to two other scenarios of lecture and snippet recommendation, namely within the InEvent

portal and MUST-VIS system. These systems could be also used for obtaining additional user

feedback which will help to further improve them.
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4 Adaptive Sentiment-Aware Neighbor-
hood Models for Recommendation

Predicting user preferences based on the content is beneficial when feedback is scarce, but is

less effective than CF when feedback is dense, as shown in Chapter 3. Content information

itself is not as accurate as collaborative information, likely because it is missing what users may

think of the items. This lacking information, however, can be found in comments, in which

users often express their opinions. In this chapter, we answer the question of whether the

prediction of one-class user preferences (e.g. likes) improves based on sentiment expressed in

free-form user comments. We combine the unary feedback with the sentiment of comments

through fixed or learned mappings within a sentiment-aware nearest neighbor model, which

serves as an effective personalized ranker of items according to their hypothesized relevance

to users.

We evaluate the proposed models on top-N recommendation over three real-world datasets:

TED lectures, Vimeo videos and Flickr images. The proposed models outperform several com-

peting alternatives in a majority of cases, thus demonstrating the generality of the approach.

In particular, the superiority of the adaptive sentiment-aware models validates our hypothesis

that there are inherent relationships between sentiments expressed in comments and unary

feedback, both at community and individual levels. The improvements due to our models are

consistent across all three datasets, they are observed over three different assumptions on

the negative class (i.e. items that are not seen or not liked), and they increase as comments

become more abundant.

4.1 Introduction

Collaborative filtering methods aim to predict the preferences of an individual user based

on items that have been previously rated by other similar users, often in the form of explicit

numerical ratings, e.g. on a 1 to 5 scale. However, in many cases, ratings are only expressed

through the users’ behavior, such as bookmarking, marking as favorite, or liking, i.e. more

generally in terms of ‘action’ or lack thereof, i.e. ‘inaction’. This kind of feedback is common

in social media and is easier to obtain since it requires considerably less effort from the user
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side compared with numerical ratings. The main drawback of the unary ratings is the lack of a

negative class: it is inherently unsure whether user inaction means that an item was not seen

or was seen but not liked. Another drawback, presented in Section 1.1, is that the reasons why

a user has liked an item remain unclear; however, understanding them would be useful to

explain the recommendations made to the users.

Dealing only with positive explicit feedback is usually referred to as the one-class collabora-

tive filtering problem (Pan et al., 2008). There are several strategies to handle this problem.

Hand-labeling negative instances, for example, converts the problem to a standard two-class

collaborative filtering one, but is a time-consuming strategy. Alternatively, it is possible to

make certain assumptions on the negative class, for example that the missing instances are

all unknown, or all negative, but these assumptions bias the recommendation process. More

sophisticated assumptions attempt to balance the solution and improve over the two extreme

assumptions. In the previous chapter, we dealt with a one-class CF problem using only the

most basic assumption that all missing instances are unknown, while here we investigate two

additional assumptions on the negative class. Moreover, unlike focusing on the importance

of item content for recommendation, here we investigate the importance of sentiment of

free-form user comments for recommendation.

Our goal is to extract sentiment information from free-form user comments, which are avail-

able in abundance on social media websites, to improve one-class collaborative filtering.

Previous studies of sentiment analysis for collaborative filtering have mostly focused on user

reviews composed of text and numerical ratings, however, to the best of our knowledge, the

study of free-form user comments to complement unary ratings remains largely unexplored.

Here, the sentiment information is integrated with a nearest neighbors model similar to the

one used in the previous chapter (see Section 3, Eq. 3.5–3.8) into a sentiment-aware nearest

neighbor model (SANN) by mapping the sentiment scores to user ratings. We investigate

several mappings, either direct ones using the output of a sentiment classifier, or adaptive

ones, which adapt this output to user ratings through a learning algorithm. We evaluate our

proposals against competitive recommendation models, over three real-world multimedia

datasets – lectures from TED, videos from Vimeo, and images from Flickr – demonstrating con-

sistent improvements that are independent from the negative class assumption and increase

with the number of comments.

The chapter is organized as follows. Section 4.2 introduces and analyzes the datasets used in

our experiments. Section 4.3 presents our sentiment analysis component, including evaluation

results and sentiment-level statistics of the datasets. Section 4.4 formally defines the one-class

collaborative filtering problem and describes the models we propose. Section 4.5 presents

the experimental setup and evaluation protocol, while Sections 4.6–4.8 describe in detail our

empirical studies and analyze their results.
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4.2 Multimedia Collections

Unlike the previous chapter, in which we used only on a single dataset from TED, here we use

three real-world multimedia datasets that contain both user comments and indications of

favorite items, namely TED, Vimeo and Flickr (see Table 4.1). These are popular online reposi-

tories of talks, videos and images respectively which contain explicit user feedback of action

or inaction, i.e. users mark certain items as favorites, while leaving all the others unmarked.

Therefore, the problem of recommendation over these datasets is a one-class CF problem. The

datasets have different user rating behaviors, comment densities and correlations between

the two user-action variables (favorites and comments), as we show below.

4.2.1 Description of the Datasets

The TED dataset that we use in this chapter was already presented in Section 3.2 of the previous

chapter. However, we use here a different snapshot of the TED dataset, created in in September

2012 (6 months after our initial crawl), which we also made publicly available by permission

from TED owners, along with April 2012 version, under the same Creative Commons license1.

The reason for re-crawling the dataset was that TED repository was growing quickly and the

September 2012 version of the TED dataset contained more data than the April version, namely

1,203 talks (+5% more), 74,760 user profiles (+8.3% more), 129,633 indications of favorite talks

(+20% more) and 209,566 comments on talks (+4.2% more). In comparison to the other two

datasets used in this chapter – Vimeo and Flickr, presented in the next paragraph – TED users

tend to make the longest and most elaborate comments, since they contain on average about

5 sentences and 95 words, compared to about 2 sentences and 20 words for the Vimeo and

Flickr datasets.

Vimeo (www.vimeo.com) is an online video sharing repository that allows users to upload,

share and view videos. The metadata are accessible in machine-readable format through an

API provided by Vimeo. Using this API, in January 2013, we collected 2,000 videos, 255,144

user profiles, 722,474 indications of favorites (“likes”) and 278,563 comments from the nature,

science, art, politics and music categories. Flickr is another large online image and video

sharing repository (www.flickr.com), which also provides an API giving access to their data. We

collected a similar number of items as for Vimeo, namely 1,994 images, 246,272 user profiles,

477,184 indications of favorites (“likes”) and 690,798 comments from the macro category. As

the owners of the Vimeo and Flickr repositories forbid the redistribution of the data obtained

through their APIs, we cannot provide these sets along with our distribution of TED metadata.

4.2.2 Statistics of the Datasets

To evaluate the utility of comments for recommendation, we consider from now on the active

users of TED, Vimeo and Flickr, defined as those who indicated more than five favorites and

1http://www.idiap.ch/dataset/ted/.
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All Items and Users Active Users
Datasets Items Users Favorites Comments cpi wpc Users Favorites Comments
TED 1,203 74,760 129,633 209,566 174 95.45 4,961 113,241 35,229
Vimeo 2,000 255,144 722,474 278,563 139 18.75 7,071 155,207 32,639
Flickr 1,994 246,272 477,184 690,798 346 22.31 9,963 161,398 304,564

Table 4.1: Statistics of TED (Sep. 2012), Vimeo and Flickr datasets: number of items, users,
favorites, comments, average comments per item (cpi) and average words per comment (wpc).
We will use only the active users in our experiments, who are defined as those who have
indicated more than five favorites and have made at least one comment.

made at least one comment. Note that for the analysis of this section, in contrast to Chapter 3,

we adopt a stricter definition for the active users (the minimum threshold of favorites is 5

instead of 1) in order to reduce the long-tail effect, i.e. having too many users with very few

favorites (compared to the April 2012 dataset). However, later in this chapter (Sections 3.6

and 4.5) we use the same minimum number of 12 favorites for training methods only on the

particularly active users.

Statistics about the active users are given in the rightmost three columns of Table 4.1. Figure 4.1

displays the distributions of favorites and comments per active user, ordered by decreasing

number of favorites. The following differences are observed between datasets. In Flickr, users

are more likely to make a comment than to mark an item as favorite, while in Vimeo the reverse

is true: indeed, in Figure 4.1, red spikes stay mostly below the blue line in (b) and mostly

above it in (c). In the TED dataset, the two behaviors can be observed: large and small spikes

alternate in Figure 4.1 (a). We can also observe that the long-tail distribution of favorites is

approximated more closely by comments in Flickr, followed by Vimeo, and then by TED.

To quantify the differences between the distributions of favorites and comments across users,

we measured by Pearson’s r coefficient. It turns out that our visual observations match the

observations from the correlation between favorites and comments: r coefficient is weak in

TED (0.11), moderate in Vimeo (0.33) and strong in Flickr (0.61). Finally, comment density, i.e.

the ratio of comments over favorites, is 0.24 for TED, 0.18 for Vimeo and 1.88 for Flickr. Flickr

is thus the densest dataset in terms of comments, while TED and Vimeo are much sparser. The

variety of these three real-world multimedia datasets will thus allow us to test our proposal

over different user behavior patterns and comment densities.

4.3 Sentiment Analysis

The first stage of our proposal for using comments in a one-class CF task is the sentiment

analysis of user comments. Given the lack of ground-truth labels to use for training, we

use a dictionary-based approach. Specifically, we extend the rule-based (RB) sentiment

classifier designed by Wilson et al. (2005), as explained in Pappas et al. (2013), and make this
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Figure 4.1: Numbers of comments (spikes) and favorites (curve) per active user, ordered by
decreasing number of favorites.

implementation freely available.2

The RB algorithm first determines whether an expression is neutral or polar and then hypoth-

esizes the polarity of the polar expressions by using a set of contextual rules accounting for

phenomena such as negations, modifiers, intensifiers, and polarity shifters. The algorithm

relies on the MPQA polarity lexicon3 for identifying subjective and polar words in a given

text. It proceeds through the following steps: (i) text pre-processing, (ii) feature extraction,

(iii) polar expression marking, (iv) negation modeling, (iv) intensifier marking, (v) heuristic

weighting, and (vi) calculation of the total polarity score. This score is not bounded since its

range depends on the size and content of the input texts.

Since we build our sentiment-aware neighborhood models (in subsection 4.4.2) on top of the

sentiment classification output, other rule-based classifiers could as well be used instead of

the RB one, such as the one from the Pattern4 or the TextBlob5 libraries, as well as corpus-

based classifiers trained on domain data such as the one from the LingPipe6 or the Stanford7

toolkits. However, for the corpus-based classifiers, the ground-truth labels for in-domain

free-form comments needed for training are in general costly to generate.

In the rest of this section, we describe how the sentence-level and comment-level polarities

are obtained from the RB classifier, we report the results of the sentiment labeling performed

by humans, we evaluate the RB classifier, and lastly, we provide sentiment statistics over the

three datasets.

2http://github.com/nik0spapp/unsupervised_sentiment/.
3http://mpqa.cs.pitt.edu/.
4http://www.clips.ua.ac.be/pattern/.
5https://textblob.readthedocs.org/en/dev/quickstart.html#sentiment-analysis.
6http://alias-i.com/lingpipe/demos/tutorial/sentiment/read-me.html.
7http://nlp.stanford.edu/sentiment/code.html.
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Label Value Sentence
positive +6 +0.50 She is very true in saying that mistakes are part of learning.
negative −1 −0.05 The problem with the statement: ’the institutions determine work

ethics’ is the point of correlation does not equal causation.
neutral 0 0 For years scientists have puzzled over how the sea surface temperature

around Antarctica has risen, but sea ice there has been increasing at
the same time.

Table 4.2: Examples of sentences with the three possible sentence-level labels from the RB
sentiment classifier and their respective polarity values, first non-normalized and then nor-
malized by the length of the sentence.

4.3.1 Sentence-level and Comment-level Polarity Estimation

Given a set of sentences from a user comment c, the RB classifier hypothesizes the polarity

of each sentence s ∈ c as a signed numerical value, noted polRB (s) (non-normalized). If

needed, the sentiment label of the sentence, positive or negative, is determined from the

sign of polRB (s), with neutral if polRB (s) = 0. In Table 4.2, we show examples of sentences

with the three possible labels and their polarity values; here, it appears that the labels were

correctly determined by the RB classifier. Having assigned polarity values to each sentence,

the total polarity value and the label for each user comment are computed. Among the various

possibilities for computing the total polarity value of a comment, we we will use here the sum

of the polarities of each sentence normalized by the length of the sentence in terms of words,

i.e. polRB (c) =∑
s∈c (polRB (s)/|s|).

4.3.2 Ground-truth Labeling

To evaluate the RB sentiment analysis component we focused on the binary classification of

polarized comments, namely positive or negative, and performed two studies. In Study 1, we

performed ground-truth labeling of a subset of the TED comments with three labels: positive,

negative or undecided. Six human judges, who were recruited among our English-speaking

colleagues, annotated 320 sentences and 160 comments that had been randomly selected from

the TED data, with an overlap of about 20% in both cases to assess agreement. Agreement over

the shared subset (61 sentences and 29 comments) was found to be κ= 0.83 for sentences and

κ= 0.65 for comments using Fleiss’ kappa. As agreement was substantial, we subsequently

used the entire set as ground truth. After excluding the undecided cases, we obtained 260

labels for sentences and 135 for comments.

To obtain additional ground-truth data, we performed Study 2, a larger-scale study using

a crowdsourcing platform.8 We submitted 1,200 randomly selected comments from TED

for annotation on a sentiment scale from 1 to 5, by at least 3 and at most 7 annotators per

comment. Crowdflower computes a trust-aware inter-annotator agreement score by testing

the annotators’ trust randomly during the annotation process based on majority agreement

8http://crowdflower.com/
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Sentences Comments
Study 1 (260 labels) Study 1 (135 labels) Study 2 (526 labels)

Methods P R F kkk P R F kkk P R F kkk
RB 73.4 76.4 74.9 0.53 75.7 69.7 72.6 0.43 78.6 67.3 72.5 0.48
Rand 47.3 49.9 48.5 -0.01 56.3 50.1 52.9 -0.02 50.0 50.0 50.0 0.00

Table 4.3: Performance of the RB and Rand sentiment classifiers measured with percentage
precision, recall, F-measure and Fleiss’ kappa.

over a subset of the comments. The agreement between the annotators was found to be 0.74

on a 0–1 scale. We thus obtained 623 positive, 314 neutral and 263 negative ground-truth

labels. Furthermore, we created a balanced set for classification containing 263 positive and

263 negative comments, as balanced sets are often used in the literature (Pang et al., 2002;

Turney, 2002; Pang and Lee, 2008). Below, we will measure the performance of the RB classifier

on the balanced set as well as on the full set of positive and negative labels.

4.3.3 Evaluation of the RB Classifier

The binary classification results of our RB classifier and those of a random baseline (Rand)

against the ground truth obtained in Studies 1 and 2 are shown in Table 4.3. When measured by

the same kappa score as inter-annotator agreement, our system reaches κ= 0.53 on sentences

(dataset of Study 1) and κ = 0.43 and 0.48 on comments (dataset of Study 1 and balanced

subset of Study 2). As expected, Rand has close to zero κ values. The agreement between

the RB classifier and the annotators is thus consistently moderate in both studies. Moreover,

the RB classifier reaches a classification accuracy score (F-measure) of 72.5% on comments

and 74.9% on sentences. When measured over the full set of labels obtained in Study 2, i.e.

the unbalanced sentiment distribution of the comments, the RB classifier reaches higher

classification scores (P, R and F) and slightly lower kappa (κ): 89.9% precision, 69.2% recall,

78.2% F-measure, and 0.43 kappa.

The quality of the labels assigned by the RB classifier is comparable to scores found in pre-

vious works on binary sentiment classification (Pang et al., 2002; Turney, 2002), in which

classification performance reached about 75% F-measure. We will show below that this level

of performance is sufficient to improve significantly the one-class CF task. Nevertheless,

supervised methods for sentiment classification have been also used and shown useful for our

task. Specifically, the study by Sun et al. (2014) on the TED dataset used supervised methods

over a balanced set of 600 comments, and reached 87% accuracy using ensemble learning,

while our RB classifier reaches 75% accuracy on a comparable set (balanced set of Study 2).

The improvement of sentiment classification obtained by Sun et al. (2014) is conditioned

on the availability of ground-truth annotation for learning, which limits the portability of

their method, unlike general purpose dictionary-based methods such as the above one with

the MPQA lexicon. Moreover, supervised learning has a risk of overfitting, which cannot be

ruled out from the experiment by Sun et al. (2014) given the small size of their data set (600
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Count Percentage Average per Item
Datasets pos neg neu pos neg neu pos neg neu
TED 130,260 58,171 21,121 62.1% 27.7% 10.0% 108.2 48.3 17.5
Vimeo 195,397 21,726 61,375 70.1% 7.8% 22.0% 97.6 10.8 30.6
Flickr 530,787 22,924 137,087 76.8% 3.3% 19.8% 266.1 11.4 68.7

Table 4.4: Statistics about the sentiment of user comments, as estimated by the RB classifier
on the three multimedia datasets.

comments out of 209,566).

4.3.4 Sentiment Statistics

We labeled all the TED, Vimeo and Flickr comments using the RB classifier with the positive,

negative or neutral labels. Statistics about the results of automatic labeling are given in Table

4.4. Based on this classification, the TED dataset appears to have more positive comments

than negative ones (62% vs. 27%) and a small percentage of neutral comments (10%). The

Vimeo and Flickr comments have an even more skewed distribution of positive vs. negative

comments: 70.1% positive vs. 7.8% negative, and 76.8% positive vs. 3.3% negative, respectively.

Figure 4.2 displays the number of positive, negative and neutral labels per user assigned by the

RB classifier (for all users, not only active ones). This plot allows us to inspect the distributions

of the expressed sentiments per user which are not visible from the table, and to observe how

skewed they are. We can observe the similarity in the concentrations of sentiments expressed

by the users across datasets, the different shapes of the distributions, but also spot users who

deviate from the average. In all the datasets, the average commenting behavior is roughly

concentrated in the range of 0 to 200 comments on the positive axis, 0 to 100 on the neutral

axis, and 0 to 50 on the negative axis. However, TED users appear to be distributed along

the negative axis more than those of the other two datasets, which are flatter. Lastly, we can

always observe a number of outliers. For instance, in all datasets, some users have a very large

number of negative comments compared to their peers.

4.4 One-class Collaborative Filtering Models

Several applications such as the recommendation of news, bookmarks, images, or videos can

be viewed as a one-class CF problem, with training data consisting of binary values expressing

the user action or inaction, e.g. bookmarking or marking as liked (Pan et al., 2008). Inaction

can mean that an item was either not seen or that it was seen but not liked. This ambiguity of

the negative class makes the problem particularly difficult to solve. In the previous chapter,

we had assumed that all the missing actions mean that the given item was not seen, while here

we investigate two more negative class assumptions. In addition, we propose a method for

leveraging comments for one-class CF by mapping their polarities to a format that is usable

with neighborhood models.
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Figure 4.2: Three dimensional scatter plot of the number of positive, negative and neutral
comments per user computed by the RB sentiment classifier. The opacity of the points
indicates their depth in space. We can observe the dense areas and the spread over the axes of
the sentiment distributions for each dataset. The dense areas for all datasets are concentrated
in 0 to 200 of the positive axis, 0 to 100 of the neutral axis, and 0 to 50 of the negative axis;
however, TED is more spread on the negative axis than Vimeo and Flickr.

The one-class CF problem is formalized as follows. Let U be the set of users of size |U | = NU

and I the set of items of size |I | = NI . The matrix of user-item ratings is R = {rui }NU
NI

of size

NU ×NI , with rui = 1 indicating a positive rating of item i by user u (e.g. i is a favorite of u)

and rui = ? an absent rating (i was not seen or not liked by u). If one assumes that some of

the negative examples have been seen but not liked (or not marked as favorites), then the

corresponding ratings become rui = 0. Our goal is to predict the preference of the users in the

future, therefore, to evaluate our system, we hide a certain proportion of ‘1’ values per user

and measure how well we predict them, as often performed in previous studies.

Next, we present the baseline neighborhood model for one-class collaborative filtering, in-

spired by Cremonesi et al. (2010), which is the one described and used in Section 3.5.2 of the

previous chapter. Here, we will use this model as the starting point for our sentiment-aware

neighborhood model.

4.4.1 Neighborhood Models

Neighborhood or Nearest Neighbor (NN) models are often used for CF and have been proven

to be quite effective despite their simplicity (Cremonesi et al., 2010). There are several versions

of such models, including similarity-based interpolation, jointly-derived interpolation and

generalized neighborhood models with parameters computed from the data (Koren and Bell,

2011). We will adopt here the first approach, based on similarities, and focus on item-based

neighborhood models as defined in Eq. 4.1 below, with a prediction function r̂ui that estimates

the rating of a user u for an unseen item i .

r̂ui = bui +
∑

j∈Dk (u;i )(ru j −bu j )di j∑
j∈Dk (u;i ) di j

(4.1)
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The prediction r̂ui , following Cremonesi et al. (2010), is the sum of the bias estimate bui of

a user u towards an item i (defined in Eq. 4.2) and of a similarity score computed using the

k most similar items to i that the user u has already rated, i.e. the neighborhood of item i ,

denoted by Dk (u; i ). The similarity score relies on a similarity metric such as cosine distance,

as specified at the end of this subsection. The value of k limits the number of items to be taken

into account, for efficiency purposes. The coefficient di j expresses the similarity between

items i and j , computed as in Eq. 4.3 below. The denominator in Eq. 4.1 ensures that the

predicted values fall in the same range as the known ones, although it is optional for top-N

recommendation because we are interested in the ranking of top items rather than their rating.

The bias estimate bui is defined in Eq. 4.2 as the sum of the average rating μ, the bias estimate

bu of the user u, and the bias estimate bi of the item i . The bias bu is computed as the

difference between the average rating of a user u, noted r̄u , and the mean μ. Similarly, the bias

bi is the difference between the average rating of an item i , noted r̄i , and the mean μ. Given

that the ratings are not real-valued in one-class CF, the biases bu and bi are normalized by the

total number of ratings of the most rated item, noted rmax .

bui =μ+bu +bi , with: bu = r̄u −μ and bi = r̄i −μ, where

r̄u =
∑

i∈I rui

rmax
, r̄i =

∑
u∈U rui

rmax
, μ=

∑
i∈I r̄i

NI
(4.2)

The coefficient di j is defined in Eq. 4.3 as the similarity si j between items i and j multiplied

by a coefficient involving the number of common raters ni j and a shrinking factor λ, following

Cremonesi et al. (2010). The choice of the optimal value of λ and the optimal size of the

neighborhood k used in Dk (u; i ) will be determined by cross-fold validation in Section 4.6.

di j = si j
ni j

ni j +λ
(4.3)

The similarity si j between items i and j can be defined, as in Eq. 4.4, either as the cosine

similarity, denoted by COS, or as Pearson’s correlation, denoted by PC , following Cremonesi

et al. (2010). The vectors for items i and j of size |U | are obtained for each item after creating

the co-rating matrix of size N ×N that contains the number of times that two items have been

co-rated by pairs of users. Given the vectors of two items�i and �j , their expected values μ′
i and

μ′
j , and their standard deviations σi and σ j , the similarities with COS or PC are computed as

follows:

si j =COS(�i ,�j ) =
�i ·�j

||�i ||2 ×||�j ||2
or si j = PC (�i ,�j ) =

E [(�i −μ′
i )(�j −μ′

j )]

σiσ j
(4.4)
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4.4.2 Sentiment-Aware Neighborhood Models

We extend the neighborhood model defined above by proposing a sentiment-aware nearest

neighbor model (SANN) with the main purpose of using, in addition to the explicit ratings,

the preferences of the users that are implicitly expressed in user-generated texts such as

comments. The polarities of the comments are computed by the RB sentiment classifier, and

then combined with explicit ratings using a mapping function. Several proposals for such a

function are made in this section.

The model in Eq. 4.1 is modified as follows.9 Firstly, we use a new neighborhood D ′k (u; i )

to account for the additional data, and secondly, we define a new rating function r ′
u j that

combines the numerical output of the sentiment classifier and the explicit rating values.

Moreover, the additional data from commented items is considered for the creation of the

co-rating matrix used for the similarity si j in Eq. 4.4. Thus, we modify the Eq. 4.1 of the

traditional neighborhood model as follows:

r̂ui = bui +
∑

j∈D ′k (u;i )

di j (r ′
u j −bu j ) (4.5)

In this new definition, r̂ui no longer represents a proper prediction of the rating, but serves

only as a ranking function associating user u with item i . The goal of such function is to

rank items according to user preference, for example, in the one-class case, higher ranked

items are more likely to belong to the positive class than the lower ranked ones. D ′k (u; i ) is

the neighborhood of the k most similar items that the user has already rated or commented

and r ′
u j is the rating function for item j that accounts both for explicit ratings and for those

inferred from comments.

We propose the following model for r ′
u j : if the explicit unary feedback of user u for item j

is available (favorite mark, ru j = 1) then r ′
u j = 1, but if this unary feedback is not available

(ru j �= 1, i.e. it is zero or unknown), then r ′
u j takes the value of a mapping function mu j .

This is a function of the polarity scores of user’s u comment(s) to item j , Cu j , for which

several alternatives are proposed and studied below. Thus, r ′
u j can be defined as the following

piecewise function:

r ′
u j =

⎧⎨
⎩1, if ru j = 1

mu j , if ru j �= 1
(4.6)

This function augments the standard neighborhood model which makes use of explicit ratings

when available (first part) with a sentiment mapping function based on user comments when

explicit ratings are absent (second part). It should be noted that, when explicit ratings are

available, the user’s comments on the item are not considered at all. This is because the

explicit rating is the ground truth which represents the actual preference of the user, while

9Originally proposed in our 2013 paper (Pappas and Popescu-Belis, 2013b), the model has also been adopted by
others (Sun et al., 2014).
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Type Mapping function Notation
Random Discrete - mu j = signrand randSANN

Fixed
Discrete - mu j = signRB (Cu j ) sigSANN
Continuous - mu j = 1+ zu j ·polRB (Cu j ) polSANN

Learned
Discrete

Global mu j =

⎧⎪⎨
⎪⎩
θ, if signRB (Cu j ) = 1

υ, if signRB (Cu j ) = 0

α, if signRB (Cu j ) =−1

ltmSANN(global)

Per user mu j =

⎧⎪⎨
⎪⎩
θu , if signRB (Cu j ) = 1

υu , if signRB (Cu j ) = 0

αu , if signRB (Cu j ) =−1

ltmSANN(user)

Continuous
Global mu j = η+ζ ·polRB (Cu j ) ltmpolSANN(global)
Per user mu j = η+ζu ·polRB (Cu j ) ltmpolSANN(user)

Table 4.5: Random, fixed and learned mapping functions mu j from discrete or continuous
sentiment scores to ratings, for use within the SANN models.

the mapping function only makes an assumption on how the sentiment of comments from a

user might correspond to her preference. Although, for instance, positive comments could

consistently accompany a favorite item and vice-versa, empirical observations (see under

‘Learned Mappings’ in Section 4.4.2) show that this is not always the case. For these reasons,

in our model, explicit ratings always have precedence over those inferred from comments.

In what follows, we define three types of mapping functions mu j from sentiment scores to

ratings, which are summarized in Table 4.5.

Random Mapping

As a baseline, we compare a random sentiment classifier with the RB sentiment classifier,

which will be used in the fixed and learned mapping functions. The random mapping, noted

as randSANN, simply assigns a random class value signrand (either 1, 0 or -1) to the sentiment

of a user comment. Hence, this baseline does not extract any actual preference information

from text.

Fixed Mappings

We first propose two different mapping functions that rely on the output of the RB classifier

(polarity score), one based on the discretized output, represented in Table 4.5 as “fixed → dis-

crete”, and the other using the actual real-valued output, represented as “fixed → continuous”.

Let Cu j be the set of all comments made by a user u on an item j . The first function, denoted

by sigSANN (for ‘sign’), assigns a rating value for a user-item pair according to the sign of the

average polarity score of the comments: signRB (Cu j ) = sign(mean({polRB (c) | c ∈Cu j })), where

polRB (c) is the polarity of a comment defined in Section 4.3.1.

The second mapping function, polSANN, uses the real-valued output of the RB classifier with
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a normalization factor and an offset. The polarity score of a given user u for a particular item

j is polRB (Cu j ) = mean({polRB (c) | c ∈Cu j }) and the normalization factor is zu j = 1/(1+|Cu | ·
|{c s.t. c ∈ Cu ∧ signRB (c) = signRB (Cu j )}|). This normalization penalizes the impact of the

polarity score in proportion to the total number of a user’s comments times the number of the

user’s comments of the same class as the predicted one. In other words, without normalization,

polSANN estimates that users who always comment positively are biased towards positive

feedback, and similarly for negative comments. The normalization zu j aims to reduce these

effects on the rating prediction r̂ui .

Learned Mappings

The mapping functions described above combine sentiment scores with ratings based on the

intuition that positive scores imply positive preferences and negative scores imply negative

preferences. However, this intuition may not be accurate in all cases, for example, a user could

write positive comments about non-favorite items. To support this claim, we have examined

the number of times ratings (i.e. marking as favorites) appear with either positive, negative or

neutral comments, as labeled by the RB classifier. The results, listed in Table 4.6, show that in

a majority of cases when a favorite is accompanied by a comment the latter is a positive one:

76.5% of the times on TED, 77.8% on Vimeo and 83.1% on Flickr. However, ratings can also

be followed by neutral or negative comments, which motivate the need to employ learning

methods to handle such cases by learning either global or individual behavior patterns from

the data, as defined hereafter.

1. Mapping discrete scores globally: We introduce three parameters θ, υ and α respec-

tively for positive, neutral and negative comments, which define the mapping according

to the piecewise function presented in Table 4.5 under “learned → discrete → global”.

This mapping is denoted by ltmSANN(global), with ‘ltm’ standing for “learning to map”.

Inspired by the global neighborhood models used by Koren and Bell (2011), we propose

to learn the three parameters by minimizing the following regularized least squares

objective on the training set:

mi n
θ,υ,α

∑
(u,i )∈Rknown

(rui − r̂ui (θ,υ,α))2 +ε(θ2 +υ2 +α2) (4.7)

where Rknown is the set of all the user-item pairs (u, i ) with known ratings, r̂ui (θ,υ,α) is

the prediction made by the sentiment-aware rating predictor from Eq. 4.5 which now

depends on θ, υ and α (due to r ′
u j and mu j ), and ε is the regularization hyper-parameter.

Intuitively, the above objective, which is influenced by the user rating behavior, will

learn the optimal parameters of the mapping function in order to make r̂ui ≈ 1 if the

actual rating rui is equal to 1, or close to 0 otherwise.

2. Mapping discrete scores per user: A similar mapping can also be learned for each user,

considering that the discrete scores of the sentiment classifier may have a different
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Favorites accompanied by comment(s) from the same user
Total Positive Neutral Negative

TED 7,053 (6.2% of the total) 5,385 (76.5%) 548 (7.7%) 1,120 (15.8%)
Vimeo 11,883 (7.7% of the total) 9,246 (77.8%) 1,898 (16.0%) 739 (6.2%)
Flickr 84,119 (52.1% of the total) 69,910 (83.1%) 12,208 (14.5%) 2,001 (2.4%)

Table 4.6: Total number of ratings (favorites) from active users which are accompanied by at
least one comment from the same user, and the proportion of positive, neutral and negative
comments among them, as labeled by the RB classifier.

impact on recommendation depending on the user. We introduce three vectors of user

parameters, θ∗ = {θu}Nu , υ∗ = {υu}Nu and α∗ = {αu}Nu respectively for positive, neutral

and negative comments. These vectors define a user-specific mapping through the

piecewise function shown in Table 4.5 under “learned → discrete → per user”, denoted

by ltmSANN(user). Similarly to ltmSANN(global), the parameters are computed by

minimizing the following objective:

mi n
θ∗,υ∗,α∗

∑
(u,i )∈Rknown

(rui − r̂ui (θu ,υu ,αu))2 +ε(θ2
u +υ2

u +α2
u) (4.8)

3. Mapping continuous scores globally: We introduce two parameters η and ζ, respec-

tively for the offset and slope of the linear relationship between the continuous score

(polarity) of the RB classifier and the ratings, as defined in Table 4.5 under “learned →
continuous → global”, denoted by ltmpolSANN(global). This model is a generalized ver-

sion of polSANN, with the η and ζ parameters being identical for all users, and learned

from the data. The parameters are computed by minimizing the following objective:

mi n
η,ζ

∑
(u,i )∈Rknown

(rui − r̂ui (η,ζ)2 +ε(η2 +ζ2) (4.9)

4. Mapping continuous scores per user: Finally, we also define user-specific linear rela-

tionships between the continuous score (polarity) of the RB classifier and the ratings,

denoted by ltmpolSANN(user). We introduce a parameter η and a vector of user pa-

rameters ζ∗ = {ζu}NU respectively for the offset and the user-specific slope of the linear

relationships. The function is defined in Table 4.5 under “learned → continuous →
per user”, and is denoted by ltmpolSANN(user). This model is a generalized version of

polSANN too, by adopting the user-specific normalization zu j to the data. The objective

to minimize is now:

mi n
η,ζ∗

∑
(u,i )∈Rknown

(rui − r̂ui (η,ζu)2 +ε(η2 +ζ2
u) (4.10)
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ALGORITHM 1: Learning the mapping function globally (i.e. across all users). The algorithm
which currently corresponds in Eq. 4.7 can be adapted to user-specific mapping scores by
replacing the parameters θ,υ,α with the user parameter vectors θ∗,υ∗,α∗.

Data: User ratings R = {rui }NU
NI

, User comments C = {Cu j }NU
NI

Result: Parameters θ,υ,α
1 set (max_i ter,γ,ε) # Set maximum number of iterations and hyper-parameters
2 i ni t i al i ze(θ,υ,α) # Initialize model parameters
3 while not converged do
4 for (u, i ) ∈ Rknown do
5 for j ∈ D ′k (u; i ) do
6 # Compute error for gradient steps
7 eui = rui − r̂ui (θ,υ,α)
8 # Perform gradient steps for θ,υ,α
9 if signRB (Cu j ) = 1 then

10 θ = θ+γ ·eui −ε ·θ
11 else if signRB (Cu j ) = 0 then
12 υ= υ+γ ·eui −ε ·υ
13 else if signRB (Cu j ) =−1 then
14 α=α+γ ·eui −ε ·α
15 end
16 end
17 end
18 # Check for convergence based on tolerance and max_i ter
19 e = 1

Rknown

∑
(u,i )∈Rknown

eui # Mean absolute error

20 if epr ev −e < tol er ance or i ter > max_i ter then
21 converged = True
22 end
23 epr ev = e
24 i ter ++
25 end

Algorithm for Learning the Mappings

To minimize the above objectives (Eq. 4.7–4.10), we define a simple stochastic gradient descent

solver inspired by the parameter estimation for global neighborhood models proposed by

Koren and Bell (2011), although other optimization techniques can be used as well. The

algorithm loops through all known ratings in Rknown and for each (u, i ) pair it modifies the

parameter values in the opposite direction of the gradient of the prediction error rui − r̂ui . The

algorithm designed to learn the parameters of Eq. 4.7 is shown as Algorithm 1. The algorithm

is easily adapted to Eq. 4.8, on the one hand, and to Eq. 4.9 and Eq. 4.10 on the other hand.

The best values of the γ and ε hyper-parameters of the algorithm (respectively the step size and

the regularization factor) will be determined empirically using cross-validation in Section 4.6.

Likewise, the θ, υ, and α parameters can be initialized with random values or with the discrete
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class values of the sentiment classifier (1, 0, -1 as in the first fixed mapping, SANN); the

best option will again be determined empirically. The overall complexity of Algorithm 1 is

O (k · |{(u, i ) ∈ Rknown}|), which is linear with respect to the input size, given that the size of the

neighborhood k is usually considerably smaller than the number of non-empty elements in

the user-item matrix R.

4.4.3 Negative Class Assumptions

The inherent problem of one-class CF is the lack of explicit negative feedback, in other words

the uncertainty of the class to which an unknown rating belongs. An approach that is com-

monly used for one-class CF problems (see also Section 2.1.4) is to make an assumption about

the distribution of the negative class. We describe here two intuitive assumptions used in

previous studies and we propose an additional one that is a trade-off between the two. In Sec-

tion 4.8.2 below, we will show that exploiting user comments for recommendation improves

results for all three assumptions.

1. All Missing as Unknown (AMAU): All missing ratings are ignored, and only positive

ones are used, with CF algorithms that model only non-missing data (Nati and Jaakkola,

2003). A direct consequence is that these models can only predict positive examples but

not negative ones.

2. All Missing as Negative (AMAN): All missing ratings are treated as negative examples.

This assumption has been shown empirically to perform quite well (Pan and Scholz,

2009), even if it introduces a potentially large imbalance between classes. The main

drawback is that a classifier trained using this assumption will likely be biased towards

the negative class.

3. Equal-to-positive Missing as Negative (EMAN): We propose this more nuanced ap-

proach, which treats as negative instances a random sample of the missing instances,

equal in size to the number of positive instances per user. In this way, the model can be

trained with equal numbers of examples from both classes.10

4.4.4 Baseline Models

We will compare the SANN models with several baselines in order to show that the additional

information included in the SANN models, and not captured by the baselines, improves

performance of one-class CF.

1. TopPopular: A user-independent method which recommends a fixed list of the most

10More sophisticated negative class assumptions have been studied by Pan et al. (2008) and Pan and Scholz
(2009), who showed that they can marginally improve over the two extreme ones (AMAU and AMAN), but at the
expense of a much greater complexity. Therefore, we limit our exploration of negative class assumptions to the
three listed in the text.
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4.4. One-class Collaborative Filtering Models

popular items, i.e. those that received the most ratings across users, as used also in

Chapter 3 (e.g. Figure 3.7).

2. Nearest Neighbors (NN): The standard neighborhood model presented in Section 4.4.1

above. This model will be optimized with respect to the number of nearest neighbors

k and the shrinking factor λ. We will test each of the three negative class assumptions,

either with normalization, denoted by normNN, or without it, denoted by NN.

3. Singular Value Decomposition (SVD): A common matrix factorization method, where

the SVD of a user-item matrix R is a factorization of the form: R =UΣV T , where U is a

unitary matrix (M ×M), Σ is a diagonal matrix with non-negative real numbers on the

diagonal and V T is the transpose of the unitary matrix V (N ×N ). For the SVD algorithm

we use the AMAN assumption (all unknown examples set to 0), because the matrices

need to be filled with numeric values. The model will be optimized with respect to the

low-rank dimensionality hyper-parameter l , i.e. the number of values to be considered

from the diagonal matrix Σ. For our experiments we use the implementation of SVD

provided in the Python-recsys library.11

4. Non-negative Matrix Factorization (NMF): This is another common low-rank matrix

approximation method, which decomposes a non-negative matrix R into two non-

negative matrix factors W (N × l ) and H (l × M) such that R ≈ W H . Again, l is the

low-rank dimensionality of the approximation, generally chosen to be smaller than

N or M , so that W and H are smaller than R. To find the approximate factorization,

we experimented with three different cost functions (Euclidean distance, generalized

Kullback-Leibler (KL) divergence, or connectivity matrix convergence) and selected KL

as the best performing one (see Section 4.6.3 for the actual scores). For the same reason

as above, we will test here the AMAN assumption only. The model will be optimized with

respect to the low-rank approximation hyper-parameter l . We use the implementation

from the nimfa library (Zitnik and Zupan, 2012).12

5. Sparse Non-negative Matrix Factorization (SNMF): A low-rank matrix approximation

method which enforces sparsity on the learned factors. It uses an alternating least

squares optimization objective with non-negativity constraints to approximate R ≈W H

(Kim and Park, 2007). Sparseness can be enforced either on the left factor, noted as

SNMF/L, or on the right factor, noted as SNMF/R, by using the �1-norm. The model will

be optimized with respect to the low-rank approximation hyper-parameter l and the �1

regularization hyper-parameter ε. Similarly to SVD and NMF, we will make the AMAN

assumption, and use the implementation provided in the nimfa library.

11http://recsyswiki.com/wiki/python-recsys/.
12http://nimfa.biolab.si/.
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Data Set Favorites Comments Users
Training 92,560 22,259 4,961

TED Testing: sparse 18,027 15,108 2,809
Testing: dense 8,351 12,918 1,090
Training 126,954 22,303 7,071

Vimeo Testing: sparse 24,628 16,338 4,150
Testing: dense 8,879 11,640 1,111
Training 132,937 198,098 9,963

Flickr Testing: sparse 21,540 133,074 4,182
Testing: dense 9,807 86,792 1,100

Table 4.7: Numbers of favorites, comments and users per training/testing sets in the TED,
Vimeo and Flickr datasets.

4.5 Evaluation Protocol and Metrics

For each of the three datasets, 80% of each active user’s13 positive ratings (values of ‘1’) are

used for training and the remaining 20% are held out for testing (in the experiments from

Sections 4.7.2 and 4.8). We will use two specific subsets of each test set, which include only

users among active users only those who are particularly active, so that enough training and

testing items are available for each of them. For the dense sets, we filter out from the entire

testing sets users with fewer than 12 ratings and fewer comments than, respectively, 2 for

TED, 3 for Vimeo and 39 for Flickr, so that enough users will be included (about 1100 for each

set). For the sparse sets, we filter out the users with fewer than 12 ratings and 1 comment.

These sets contain respectively around 7% (dense sets) and 16% (sparse sets) of all active users’

ratings for all three datasets. Additional statistics are shown in Table 4.7. As a matter of fact,

the sparse set is close to the entire test set of 20% of the active users. The optimization of the

hyper-parameters is made on the training set using 5-fold cross-validation. Similarly to the

sparse set, we also filter out from the test folds used in cross-validation (Section 4.6 and 4.7.1)

the users with fewer than 12 ratings and 1 comment.

We evaluate all methods for one-class CF using the framework of top-N personalized rec-

ommendation, i.e. measuring how many items selected by each method in a set of N items

actually match the user favorites hidden in the test set, for varying values of N . For this task,

the error metrics such as RMSE are not the most appropriate ones to be used, since a top-N

recommender does not need to infer item ratings (Cremonesi et al., 2010). Instead, it is more

informative to apply the classification accuracy metrics of precision, recall and F-measure

(Shani and Gunawardana, 2011). The average precision at N (noted AP) and the mean average

precision at N (noted MAP) are respectively given in the following equations:

AP(N ) = 1

|U |
∑

u∈U

|Tu ∩Ru@N |
N

; MAP(N ) = 1

|U |
∑

u∈U

(
1

N

∑
1≤ν≤N

|Tu ∩Ru@ν|
ν

)
(4.11)

In both equations, N is the bound of top recommendations, |U | is the total number of users

13As a reminder ‘active users’ are the users with at least five favorites and one comment (Section 4.2.2).
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Hyper-params kkk λλλ lll εεε γγγ

Range 1 − 50 1 − 50 5 − 100 4e-5 − 4e+5 4e-5 − 4e+5
Step +2 +5 +5 ×10 ×10
normNN(AMAU) 19(T)/7(V)/23(F) 25(T)/40(V)/20(F)
NN(AMAU) 27(TF)/49(V) 10(TF)/5(V)
NN(AMAN) 7(TF)/9(V) 50(TVF)
NN(EMAN) 17(TF)/27(V) 15(TF)/5(V)
sigSANN(AMAU) 5(TF)/49(V) 10(TF)/5(V)
sigSANN(AMAN) 5(TVF) 50(TVF)
sigSANN(EMAN) 1(TF)/9(V) 5(TF)/15(V)
SVD 5(TVF)
NMF 5(TVF)
SNMF 10(VF)/75(T) 1e-2(VF)/1e-3(T)
ltmSANN 4e-5(T)/4e-2(V)/ 4e-4(VF)/4e-1(T)
(global) 4e-4(F)
ltmSANN 4e-3(T)/4e-2(V)/ 4e-3(VF)/4e-2(T)
(user) 4e-5(F)
ltmpolSANN 4e-5(TV)/4e-3(F) 4e-1(TVF)
(global)
ltmpolSANN 4e-4(T)/4e-5(V)/ 4e-1(T)/4e-0(VF)
(user) 4e-2(F)

Table 4.8: Optimal values of the hyper-parameters of each model found by grid searches (see
also examples in Figure 4.3) over the TED (T)/Vimeo (V)/Flickr (F) datasets. The ranges of
explored values and steps are shown in the second and third lines respectively. k is the number
of nearest neighbors, λ is the similarity shrinking factor, l is the latent factor of SVD and NMF
models, ε is the regularization hyper-parameter for ltmSANN and SNMF and γ is the step of
gradient descent for ltmSANN.

in U , Tu is the set of items that a user u has marked as favorites and Ru@N is the set of

top-N recommendations of the model for the user u. To compute average recall (AR), we

divide by the number of items that a user u has marked as favorites, |Tu |, instead of N for AP.

Similarly, mean average recall (MAR) is computed by dividing by |Tu | instead of ν for MAP.

The average F-measure (AF) and mean average F-measure (MAF) are respectively computed

as the harmonic means of the previous two metrics.

AF(N ) = 2 · AP (N ) · AR(N )

AP (N )+ AR(N )
; MAF(N ) = 2 · M AP (N ) ·M AR(N )

M AP (N )+M AR(N )
(4.12)

In the following sections, we experiment with variable values of N , from 1 to 50, and base most

of our conclusions on the top 50 recommendations.

4.6 Optimizing the Hyper-Parameters and Selecting the Models

In this section, we discuss the optimization of the hyper-parameters and the selection of the

models by cross-validation over each training set. In Section 4.7, we provide a comparison of

the scores of all models on the training sets with cross-validation, and then on the held-out

sparse and dense test sets. In Section 4.8, we discuss the results, explaining the effectiveness

of sentiment-aware nearest neighbor models under various configurations.
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Figure 4.3: Performance heatmaps of the MAP score (at 50) from the grid search for NN,
sigSANN and SNMF models over TED, Vimeo and Flickr training sets, with 5-fold cross-
validation. The size of the neighborhood k is on the x-axis and the shrinking factor λ for the
similarity di j between items is on the y-axis. Higher scores are in red and lower ones in blue,
on scales adapted to each heatmap. The heatmaps show the concentration of regions with the
highest performance for each dataset and model.

4.6.1 Selection Method and Comparison of Values

Table 4.8 lists the hyper-parameters on which each model relies and the ranges of values

that we searched for each parameter with the incrementation steps. The optimal values per

model were obtained from grid search, i.e. a complete search over all the combinations of

values, with 5-fold cross-validation. These time-consuming computations were carried out

using Idiap’s computation grid with about 400 processor cores. The optimal values led to the

cross-validation scores over the training sets presented in Tables 4.9 and 4.10 and to the scores

over the held-out sets presented in Tables 4.11 and 4.12, which are discussed below.

The results of grid searches for optimal hyper-parameter values for the NN, sigSANN and

SNMF models are represented using heatmaps in Figure 4.3. Each point represents the MAP

at 50 score obtained through 5-fold cross-validation with the corresponding hyper-parameter

values. In most of the cases, the optimal values (red colors) are well inside each range of values,

indicating that the ranges were sufficiently large to ensure that a global optimum was found.

When this was not the case, we extended the ranges to ascertain this fact.

The sigSANN model appears to reach its best performance on smaller values of the size of

the neighborhood k than standard NN in most cases. This happens presumably because the

additional sentiment information incorporated into sigSANN allows the neighborhood model

to find fewer but more relevant neighbors compared to NN, which requires more neighbors

but which are likely less relevant. In cases where the heatmap patterns for NN and sigSANN

are similar, namely on TED under the AMAU assumption, and under the AMAU and EMAN

assumptions on Vimeo, both models reach their best values for similar values of k.
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The sigSANN model outperforms or is comparable with NN over the full spectrum of k: for

instance, the lowest MAP scores of sigSANN(AMAU) (6%, 6.4% and 12% for TED, Vimeo

and Flickr respectively), are comparable to the best scores for NN(AMAU) (6.1%, 7,2% and

10.8%), and similar observations can be made for the other negative class assumptions. The

differences between NN and sigSANN are larger on Flickr, likely because this dataset contains

far more comments to be exploited by SANN than TED or Vimeo (Table 4.1). Lastly, the NN

and sigSANN models appear to have a stable performance across the three negative class

assumptions over Flickr – i.e. the optimal values appear in the same areas of the heatmap –

while on Vimeo and TED they are less stable.

4.6.2 Hyper-Parameters of Neighborhood Models

The neighborhood models rely on two hyper-parameters, namely the size of the neighborhood

k and the shrinking factor λ for the similarity di j between items i and j (see Section 4.4.1).

The grid search examined 250 different models for each possible negative class assump-

tions, ending up with 750 NN models and 750 SANN models (see Table 4.8). In addition,

for the si j similarity included in di j , we experimented with two proximity measures, Cosine

Similarity and Pearson’s Correlation. The latter performed significantly better, thus from

here on all models will use it. For the learned SANN models, namely ltmSANN(global), ltm-

SANN(user), ltmpolSANN(global), and ltmpolSANN(user), the optimization of their γ and ε

hyper-parameters was performed after setting k and λ to their optimal values for the fixed

SANN models.

Turning now to the differences between discrete and continuous SANN models, as well

as global or per user ones, we observed that on TED, the best performance was achieved

by ltmpolSANN(user), followed by ltmSANN(user), and then ltmSANN(global) and ltmpol-

SANN(global). On the Vimeo and Flickr datasets, the ltmSANN(global) performed the best,

followed by ltmSANN(user), ltmpolSANN(user), and ltmpolSANN(global). Therefore, while

the use of actual polarity scores (as opposed to their signs only) in a user-dependent way is

optimal for TED, this is not the case for the other two datasets. Possible causes for this include

the lack of variability in the scores, or its weak effect on the rating behavior of the users, or the

smaller reliability of polarity values from the RB classifier compared to their signs. In what

follows, we will report the results of the best-performing model for each dataset, and unify

their notation, for simplicity, as ltmSANN.

4.6.3 Hyper-Parameters of Low-rank Factorization Models

The SVD models rely on a single hyper-parameter which is the low-rank dimensionality l . We

performed a linear search to find the best performance among 20 SVD models which were

obtained by uniformly varying l from 5 to 100. The NMF and SNMF models also rely on l , and

SNMF moreover relies on the regularization hyper-parameter ε. Similarly to SVD, for NMF we

performed a linear search to find the best performance among 20 NMF models (l from 5 to
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Figure 4.4: Example of learned weights of positive (θ), neutral (υ) and negative (α) comments
for the ltmSANN (global) model over TED, Vimeo and Flickr. The left side displays the values
of the parameters while the right side shows their difference, as a percentage, from the mean
value of each dataset.

100). For SNMF, we performed grid search over a range of values for l and ε (5 to 100 and 10−6

to 106 respectively) ending up with 260 different SNMF models. This was repeated for two

sparsity options, namely over the left factor W (SNMF/L) or over the right factor H (SNMF/R),

ending up with 520 models. The highest performance was obtained by applying sparsity on

the left factor (SNMF/L) for Vimeo and Flickr datasets, and on the right factor for TED dataset.

The optimal values of their parameters, i.e. l and ε which lead to the highest performance are

shown in Table 4.8, namely l = 10, ε= 10−2 for Vimeo and Flickr, and l = 75, ε= 10−3 for TED.

In addition, we experimented with the three different cost functions mentioned in Section 4.4.4

and found out that Kullback-Leibler (KL) divergence performed best. Therefore, all our NMF

and SNMF models use it. For simplicity reasons, as in the case of ltmSANN, we will use a

common name (SNMF) for the best performing SNMF model per dataset.

4.6.4 Examples of Globally Learned Parameters for Discrete Sentiment Output

Figure 4.4 shows examples of learned θ, υ and α parameters for the ltmSANN(global) model.14

The values of these parameters indicate the importance of, respectively, positive, negative or

neutral comments for the recommendation task: the greater the value the more important

the sentiment class. The optimal values of the parameters found by learning (Algorithm 1)

are similarly ordered for each dataset, with the θ parameter (weight of positive comments)

having the greatest value in all cases. The α parameter (weight of negative comments) has the

smallest absolute value on Vimeo and the highest value on TED. This means that the negative

comments on Vimeo are more rarely followed by positive feedback (i.e. rating as favorite),

while on TED, users tend to leave negative comments even though they liked a talk, possibly

as a result of disagreements with other TED users in a discussion thread.

14These are not hyper-parameters optimized through grid search, but parameters learned by the optimization
method in Algorithm 1.
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TED (5-fold c-v) Vimeo (5-fold c-v) Flickr (5-fold c-v)
Model MAP MAR MAF MAP MAR MAF MAP MAR MAF
TopPopular 3.77 12.07 5.75 2.92 7.86 4.26 1.95 6.13 2.96
normNN(AMAU) 4.59 13.76 6.88 3.59 9.18 5.16 2.26 6.77 3.39
NN(AMAU) 5.22 15.88 7.86 5.20 12.97 7.42 7.69 20.25 11.15
NN(AMAN) 4.23 11.96 6.24 4.05 9.28 5.64 8.88 22.98 12.81
NN(EMAN) 5.59 16.86 8.40 5.57 13.68 7.92 8.01 21.09 11.61
SVD 4.45 13.30 6.67 3.32 8.64 4.80 2.16 6.63 3.26
NMF 5.08 15.37 7.64 3.86 9.49 5.49 4.45 12.03 6.50
SNMF 5.33 15.87 7.98 3.91 9.59 5.56 5.07 13.29 7.34
sigSANN(AMAU) 6.03 17.51 8.97 5.65 14.04 8.06 10.05 27.09 14.66
sigSANN(AMAN) 5.63 15.32 8.24 6.46 13.49 8.73 17.21 46.01 25.05
sigSANN(EMAN) 6.16 17.84 9.15 6.05 14.98 8.62 10.94 29.51 15.96
sigSANN vs. best (%) +10.1 +5.8 +8.9 +15.9 -1.8 +10.2 +93.8 +100.21 +95.55
randSANN 4.67 13.93 7.00 4.08 9.42 5.69 8.18 21.13 11.80
polSANN 6.41 18.42 9.51 7.06 14.71 9.54 18.39 49.79 26.86
ltmSANN(global) 6.50 18.74 9.65 7.11 14.75 9.59 18.45 50.33 27.00
ltmSANN(user) 6.52 18.86 9.69 7.07 14.71 9.55 18.43 49.90 26.92
ltmpolSANN(global) 6.36 18.42 9.46 6.94 14.54 9.40 18.07 49.06 26.42
ltmpolSANN(user) 6.56 19.03 9.76 7.05 14.71 9.53 18.41 49.89 26.90
ltmSANN vs. sigSANN (%) +6.8 +6.6 +6.6 +10.0 +9.3 +9.8 +7.2 +9.3 +7.7

Table 4.9: Performance of each recommendation model using MAP, MAR and MAF metrics
at 50 with 5-fold cross-validation on the training set. The percentage of improvement of the
best SANN model (indicated in bold) over the best baseline (underlined) is displayed in the
sixth row from the bottom. The last row displays the additional improvement obtained with
ltmSANN (again in bold) compared to the best SANN model for each dataset. All improvements
are significant among the three datasets (pairwise t-statistic, p < 0.01).

Regarding the neutral parameter (υ), the smallest value is on TED while the highest one is on

Flickr. It appears that neutral comments on TED imply absence of feedback, while on Flickr

they are more likely to be followed by positive feedback. Furthermore, parameters learned on

Flickr have higher values than those learned on the other datasets, showing that comments are

more important for recommendation on this dataset. This finding matches the observation

that the Flickr comments have the highest correlation with the one-class ratings, as shown in

Section 4.2.2.

4.7 Personalized Multimedia Recommendation

4.7.1 Results over the Training Sets with Cross-Validation

In Table 4.9 we present the results of 5-fold cross-validation over the TED, Vimeo and Flickr

training sets. The sigSANN model performed significantly better (pairwise t-statistic, p < 0.01)

than all the other models not using comments, namely about 9% improvement for TED, 10%

for Vimeo and even 95% for Flickr using MAF at 50. The adaptive SANN models, i.e. ltmSANN

and its variants, further improved over sigSANN (bottom part of Table 4.9), namely about 6%

improvement on TED, 10% improvement on Vimeo and 8% on Flickr. To examine the effect of

N on the reported improvements, Table 4.10 displays (for the best-performing methods) the
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TED (5-fold cv) Vimeo (5-fold cv) Flickr (5-fold cv)
MAF at N MAF at N MAF at N

Methods 10 20 30 40 10 20 30 40 10 20 30 40
TopPopular 4.69 5.46 5.72 5.77 2.53 3.45 3.90 4.13 1.68 2.35 2.68 2.87
SVD 5.55 6.40 6.62 6.64 2.89 3.96 4.44 4.68 1.85 2.59 2.95 3.16
NMF 6.12 7.03 7.30 7.35 3.67 4.62 5.11 5.35 4.42 5.51 6.07 6.30
SNMF 6.22 7.28 7.62 7.70 3.71 4.73 5.21 5.46 5.33 6.62 7.19 7.38
NN 6.92 8.06 8.04 8.46 5.60 7.00 7.56 7.79 11.31 12.93 13.24 13.10
sigSANN 8.70 9.58 9.61 9.44 8.30 9.08 9.14 8.97 22.93 26.20 26.53 25.91
ltmSANN 9.31 10.19 10.18 9.97 9.40 10.16 10.14 9.90 24.13 27.85 28.35 27.77
ltmSANN 34.5 26.4 26.6 17.8 67.8 45.1 34.1 27.0 113.8 115.3 114.1 111.9
vs. best (+%)

Table 4.10: Performance of models with optimal settings using MAF at N when N varies from
10 to 40 on the training sets. The scores for N = 50 are in Table 4.9. The last row displays the
improvement of the ltmSANN model over the best baseline (here NN, underlined).

Figure 4.5: Comparison of models in terms of average MAF at N , for 1 ≤ N ≤ 50, using cross-
validation on the training set.

additional values of MAF at N for N lower than 50, namely 10, 20, 30 and 40, while Figure 4.5

plots all the values of MAF at N , for N from 1 to 50. It appears that the differences between the

proposed models (ltmSANN, sigSANN) and each of the other ones remain constant when N

varies, or even increase for smaller values of N , especially below 20. These values may even be

considered as more important for a top-N recommender system than larger ones, because a

user can find more quickly a relevant entry in a short recommendation list.

Among the low-rank factorization models, SVD performed similarly to the standard NMF and

both of them performed best with low values of l . However, NMF was consistently better than

SVD in all cases. The lowest scores for SVD are the ones obtained on the Flickr dataset, on

which SVD was outperformed by all other methods except the TopPopular baseline. SNMF, on

the other hand, was the best performing model among the low-rank factorization ones and it

also performed better than NN models on the TED dataset, which confirms the validity of the

sparsity assumption in this data, especially when the SNMF scores are compared to those of

SVD and NMF. One reason for the lower scores of SNMF models compared to NN over Vimeo

and Flickr might be that these datasets have 40% more items (about 800 more), and 30% and

50% respectively more users (about 2,000 and 5,000 more) than the TED dataset, resulting in

76



4.7. Personalized Multimedia Recommendation

TED (Sparse held-out) Vimeo (Sparse held-out) Flickr (Sparse held-out)
Methods MAP MAR MAF MAP MAR MAF MAP MAR MAF
TopPopular 3.10 13.42 5.04 2.12 9.34 3.46 1.32 6.37 2.19
SVD 4.38 16.48 6.92 2.91 11.06 4.60 3.64 15.03 5.86
NMF 4.34 16.46 6.87 2.82 10.80 4.48 3.48 13.38 5.53
SNMF 4.70 18.19 7.47 2.93 11.09 4.64 3.94 14.31 6.18
NN 5.10 19.32 8.07 4.11 15.67 6.51 6.79 24.83 10.67
sigSANN 5.77 21.45 9.09 4.83 15.19 7.33 13.79 50.54 21.67
ltmSANN 6.10 22.73 9.63 5.48 16.92 8.28 15.26 56.75 24.05
ltmSANN vs. best (+%) 19.6 17.6 19.3 33.3 7.9 27.1 124.7 124.5 125.3

Table 4.11: Performance of models with optimal settings using MAP, MAR and MAF at 50 on
the sparse held-out sets. The last row displays the improvement of the ltmSANN model over
the best baseline (NN, which is underlined).

much sparser user-item matrices despite the similar number of ratings. Such cases appear to

be more difficult to model with latent factors than with local models such as NN.

4.7.2 Results over the Held-Out Sets

In Tables 4.11 and 4.12 we report results on the sparse and dense held-out sets respectively.

Similarly to the results on the training sets with 5-fold cross-validation, the sentiment-aware

models outperformed all the other ones. The ltmSANN model was the best performing one,

with 19% improvement for TED, 27% for Vimeo and 125% for Flickr on the sparse held-out sets,

and even higher improvements on the dense held-out sets: 43%, 180% and 106% respectively.

On Flickr, which is the densest among the three datasets, the improvements of ltmSANN with

respect to the other models were higher than on TED or Vimeo in all cases (i.e. the scores were

more than doubled), namely cross-validation over the training set and testing over the two

held-out sets. These results indicate that the denser a dataset with respect to user comments,

the better the performance of the sentiment-aware models.15

In Figures 4.6 and 4.7 we display the performance of the models on the sparse and dense

held-out sets by plotting the average precision (AP) against the average recall (AR) at N , varying

N from 1 to 50. The SANN models have better performance compared to the baselines over all

values of N , except for the largest values on the sparse Vimeo dataset (Fig. 4.6 (b)). Similarly to

the observations in Figure 4.5, here the sentiment-aware models outperform the baselines

by a larger margin for the smaller values of N (typically 1 to 20). Moreover, for Flickr, which

has the highest density of comments, the difference is large over the entire range of N . The

sentiment-aware models (fixed and adaptive ones) consistently outperform the other models

(NMF, SNMF and NN) on the six sets in Figures 4.6 and 4.7. These results strongly indicate

that sentiment information extracted from user comments is predictive for one-class CF, and

15One relative exception was the fact that the ltmSANN model had a smaller relative improvement (with respect
to the baseline models) on the dense held-out set of Flickr than on the sparse one (106% vs. 125%). Still, its absolute
MAF improvement on the sparse held-out set was 14% (10.67 for NN vs. 24.05 for ltmSANN) and in the dense
held-out set it was larger, at 18% (16.53 for NN vs. 34.11 for ltmSANN).
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TED (Dense held-out) Vimeo (Dense held-out) Flickr (Dense held-out)
Methods MAP MAR MAF MAP MAR MAF MAP MAR MAF
TopPopular 3.42 12.64 5.39 2.24 7.41 3.45 2.13 6.82 3.25
SVD 5.03 15.80 7.63 3.32 9.39 4.91 3.93 17.49 10.03
NMF 4.78 15.17 7.27 3.20 9.16 4.74 6.70 15.42 9.34
SNMF 5.25 17.63 8.09 4.17 11.04 6.05 7.82 17.08 10.72
NN 5.65 17.97 8.60 5.33 15.31 7.91 12.10 26.07 16.53
sigSANN 7.45 23.94 11.37 8.58 22.54 12.44 22.99 53.07 32.09
ltmSANN 8.05 26.43 12.35 9.92 25.71 14.32 24.42 56.56 34.11
ltmSANN vs. best (+%) 42.4 47.0 43.6 186.1 167.9 181.0 101.8 116.9 106.3

Table 4.12: Performance of models with optimal settings using MAP, MAR and MAF at 50 on
the dense held-out sets. The last row displays the improvement of the ltmSANN model over the
best baseline (NN, which is underlined).

that adapting the sentiment scores to the user ratings further improves performance.

4.8 Analysis of the Results

In the previous section we demonstrated the effectiveness of the proposed sentiment-aware

neighborhood models, first by using cross-validation over the training sets and then by testing

on held-out sets. In this section, we quantify the respective impacts of sentiment analysis,

negative class assumptions, sentiment mapping functions, and quantity of comments on the

performance of recommendation.

4.8.1 Importance of Sentiment Analysis

To assess the impact of sentiment analysis, we compare the recommendation results when us-

ing a random classifier (randSANN) with those obtained using our state-of-the-art rule-based

one (sigSANN). These results, shown in Table 4.9, show that the sigSANN model outperforms

randSANN over all datasets, with about 30% MAF improvement on TED, 53% on Vimeo and

112% on Flickr. The performance of randSANN is similar to the performance of the neigh-

borhood model (NN) under the AMAN assumption. This means that when the quality of the

sentiment classifier is poor, the additional information that is enclosed in user comments

cannot be reliably exploited and it is the actual ratings that predict the user preference. All

other things being equal, a more accurate sentiment classifier than the RB one could achieve

further improvements, as suggested in a recent study (Sun et al., 2014).

4.8.2 Independence from Negative Class Assumptions

We also studied whether the additional information captured from comments is always pre-

dictive for one-class CF regardless of the negative class assumption. We observe from Table 4.9

that under all assumptions the SANN model outperforms the neighborhood model (NN)

significantly on all the three datasets using cross-validation. The greatest improvements of
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Figure 4.6: Model comparison in terms of average recall at N (horizontally) and average
precision at N (vertically), for N from 1 to 50, on the sparse held-out sets. Data points with
lower values of N have higher precision and lower recall. The top-scoring curves, upper-right,
correspond to the ltmSANN model.

Figure 4.7: Model comparison in terms of average recall at N (horizontally) and average
precision at N (vertically), for N from 1 to 50, on the dense held-out sets. Data points with
lower values of N have higher precision and lower recall. The top-scoring curves, upper-right,
correspond to the ltmSANN model.

the sigSANN model are: 9% on TED under the EMAN assumption, 10% on Vimeo also with

EMAN, and 95% on Flickr under the AMAN assumption. The best performing assumption for

NN on TED and Vimeo was EMAN, and for Flickr it was AMAN. The same assumptions were

the best performing ones for sigSANN over the three datasets, though for Vimeo there was no

significant difference between EMAN and AMAN. Furthermore, the performance ordering

of the different assumptions for NN and sigSANN is the same in most cases (combination of

dataset and assumption in Table 4.9). From our experimental results, we conclude that the

performances of the different assumptions depend mostly on the dataset, and then on the

model. Overall, the additional information captured by SANN is valuable independently of

the negative class assumption.
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Figure 4.8: Performance of baseline (NN) and sentiment-aware neighborhood models
(sigSANN and ltmSANN) under the EMAN assumption, when varying the proportion of train-
ing comments, measured by MAF at 50 on the dense held-out sets. The performance of the
proposed models increases with the number of comments.

4.8.3 Learning to Map Sentiment Scores to Ratings

Another question is: is it better to adapt our sentiment analysis scores to preference scores? To

answer the question, we compare learned mappings for discrete sentiment values (ltmSANN)

and for continuous ones (ltmpolSANN), learning either a global or a user-specific mapping,

against fixed mappings (see scores in Table 4.9). Both ltmSANN models (per user and global)

performed similarly with respect to each other but significantly better than the non-adaptive

sigSANN model (6% improvement on TED, 10% on Vimeo and 8% on Flickr using 5-fold

c.-v.). The user-specific mapping performs slightly better on the TED dataset, while the

global mapping is optimal on Vimeo and Flickr. The reason is likely that in the Vimeo and

Flickr communities, users have the tendency to follow shared textual norms to express their

preferences through their texts, while in the TED community, the users have the tendency to

follow more individual norms.

The ltmpolSANN method achieved the highest scores on TED, but it scored below ltmSANN

over Vimeo and Flickr. Still, it always performed similarly to or better than polSANN. When

considering the sentiments of each user individually, for long elaborate comments like in

TED, it is more reliable to treat two comments of the same sentiment type differently as in

ltmpolSANN(user), while for short comments like in Vimeo and Flickr it is better to treat them

equally as in ltmSANN(user). When considering the sentiments of the users globally, the

best option is to treat them equally for all types of sentiment, that is to use ltmSANN(global)

instead of ltmpolSANN(global). The fixed mapping with normalization, polSANN, achieved

only marginally lower performance compared to ltmSANN and ltmpolSANN(user). This an

interesting result given that polSANN has a fixed and simple mapping. However, despite its

complexity, ltmSANN is more flexible and can be applied to other datasets or predictors.
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Figure 4.9: Recall at N (horizontally) and precision at N (vertically) for N from 1 to 50 for two
baselines (TopPopular and NN) and a sentiment-aware neighborhood model (sigSANN) under
the EMAN assumption, on the dense held-out sets, when varying the proportion of comments
that are used for training from 20% to 100% (color-coded as indicated). Lower values of N
correspond to lower recall and higher precision in each curve.

4.8.4 Necessary Quantity of Comments

We now examine the quantity of comments that is necessary, when using the sentiment-aware

models, to improve performance over the baselines. Figure 4.8 plots the MAP at 50 score of

sigSANN and ltmSANN models under the EMAN assumption (the best one, see 4.8.2) when

the proportion of comments varies from 0% to 100% of the total of available comments, on

the dense held-out sets. Both models increase their performance as the number of comments

increases and they outperform the NN baseline (under the same assumption, EMAN) already

when only 5% of comments for TED and Flickr are used, or 20% for Vimeo. Similar results

are obtained for the sparse held-out sets, except that the proportion of comments needed to

outperform the NN baseline is slightly higher.

Using the same variation of the proportion of comments over the dense held-out sets, we plot

in Figure 4.9 the precision and recall curves at N (for N from 1 to 50) of the sigSANN model

compared to the NN baseline (under the EMAN assumption as well). On the TED dataset, the

improvement of the sigSANN model is much higher for every additional fraction of comments

than on Vimeo and Flickr, and the smallest improvements are on the Vimeo dataset. EMAN

was the best assumption for the sigSANN model on TED, while for Vimeo and Flickr it was

not optimal (see Tables 4.9 and 4.12). Hence, in the latter case, the improvement of sigSANN

model over the baseline is in reality even higher than the one displayed in Figures 4.8 and 4.9.

4.8.5 Comparison with Other Models over the TED Dataset

We provide a brief comparison of the proposed fixed and learned mappings, SANN and

ltmSANN, with the recommendation models proposed in a recent study (Sun et al., 2014) that

also makes use of the TED dataset as we have distributed it (Section 4.2.1). Using 5-fold cross

validation, in terms of average precision at 5 and 10, our SANN model outperforms the best

sentiment-aware neighborhood models presented by Sun et al. by respectively 15% and 20%
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Method AP@5 AP@10
SA_UCF (Sun et al., 2014) 8.37 6.05
SA_ICF (Sun et al., 2014) 8.15 6.23
SANN 9.93 7.79
SA_AWAN_MF (Sun et al., 2014) 6.73 5.69
SA_wAWAN_MF (Sun et al., 2014) 10.07 7.98
ltmSANN 10.60 8.23
Fused model (Sun et al., 2014) 11.42 9.32

Table 4.13: Comparison of our SANN (fixed mapping) and ltmSANN (learned mapping) models
with a recent study (Sun et al., 2014) on the TED dataset using 5-fold cross-validation (80% for
training and 20% for testing). The scores of Sun at al. have been copied verbatim in the table,
with the best one for each type (NN or matrix factorization) being underlined.

(top part of Table 4.13). Similarly, our ltmSANN model outperforms the best sophisticated

models from Sun et al. (2014) based on matrix factorization by respectively 5% and 3% in terms

of AP at 5 and 10 (middle part of Table 4.13). However, SANN and ltmSANN are outperformed

by the combined model proposed by Sun et al., which exploits both frameworks, namely

neighborhood models and matrix factorization (last line of the table). It is thus a topic for

future research to explore the combination of our models as well, while avoiding over-fitting

the TED dataset, but seeking progress on TED, Vimeo, Flickr and possibly other datasets at the

same time.

4.8.6 Synthesis on the Influence of the Datasets on the Results

From the description of the datasets in Section 4.2 and the experimental results reported in

Sections 4.7 and 4.8 we can infer the following relationships between the properties of the

datasets and the performances of the methods:

• When the number of items increases (TED → Vimeo → Flickr), the performances of

NN and SANN models increase, while the performances of latent factor models (SVD,

NMF and SNMF) decrease, likely because NN models can cope with rating sparsity more

effectively than the latent factor ones.

• When the density of comments increases, either from one dataset to another (Vimeo →
TED → Flickr) or within each dataset (sparse vs. dense sets as in Section 4.8.4), the scores

of SANN models increase, because there are more comments from which to extract

sentiment information.

• When the correlation between comments and ratings increases (TED → Vimeo →
Flickr), the percentages of improvement of SANN models compared to the best baseline

increase, because SANN models are able to map appropriately the sentiment of com-

ments to ratings and thus they benefit the most from the correlation between the two

properties.
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• When the test sets are dense, all the methods (NN, SANN and latent factor models)

perform better than on sparse test sets because they contain a larger number of active

users with many ratings in their profiles, hence more complete profiles than sparse sets.

4.9 Conclusion

In this chapter, we proposed sentiment-aware models to improve one-class CF. The models

were evaluated on three real-world multimedia datasets, namely TED talks, Vimeo videos and

Flickr images, demonstrating significant improvements over models that do not use sentiment

information. For instance, on the Vimeo and Flickr test sets that have the most comments,

scores are doubled with respect to not using the sentiment of comments. In addition, it was

shown that the improvements of sentiment-aware models hold for all three negative class

assumptions, meaning that the benefits gained from various strategies for balancing the

negative class are likely to be preserved when combined with our model.

The results of extensive empirical studies showed that the adaptive sentiment-aware models

(ltmSANN or ltmpolSANN) performed better than those with a fixed mapping (SANN or

polSANN). This is likely because ltmSANN is able to adapt the sentiment scores to the user

preferences, and in particular to model cases in which the output scores of the sentiment

classifier do not exactly match actual preferences. This procedure can be considered as rating

inference, although since we deal only with positive values (i.e. 1), the ratings that are inferred

correspond to importance weights rather than commonly-used ratings (e.g. on a 1 to 5 scale).

Still, these weights allow us to rank items for each user and to successfully recommend the

top-N items in the list.

The proposed models are relevant to many real-world applications to communities where

users interact both in terms of explicit feedback (favorites, likes) and in terms of textual

feedback (comments, discussions). In datasets with a small amount of comments, the im-

provements brought by our models are likely to be less noticeable, although the improvements

for individual users who comment frequently will still be noticeable. We have shown ex-

perimentally that our models perform well with three different types of content: lectures,

general-purpose videos, and images. However, our models are not constrained by a domain,

and can adapt to domain data through learning, so they are likely to perform well in domains

with similar type of feedback, including traditional product recommendation, although their

exact performance remains to be assessed experimentally in each case.
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5 Weighted Multiple Instance Learning
for Text Regression Tasks

Sentiment information from user comments can improve the modeling of user preferences,

as we showed in the previous chapter. Although this approach enables systems to suggest

new content that is relevant to users, there are also other factors which affect the quality

of the recommendations. For instance, the lack of explanations of the recommendations

that are made compromises the system’s trustworthiness and transparency to users. Current

methods for explaining recommendations are uninformed about why the users have particular

preferences about items and their particular aspects. Such information can be found in reviews

of products which rate them globally or according to specific aspects. Hence, recommender

systems would benefit from the capability to understand the user preferences or opinions

about items and how they are expressed in such text. The majority of methods for modeling

aspect sentiment from text have focused on feature engineering or learning, assuming a

supervised learning objective. However, the data often comprises labels assigned by users at

the document (review) level only, which makes it hard to determine to which specific part of

the text they refer. In this chapter, we cast the above sentiment modeling problem as a weakly

supervised one. To solve this problem, we propose a weighted multiple-instance learning

model applied to text regression tasks, namely the prediction of aspect, sentiment and emotion

ratings from user-contributed texts such as product reviews and free-form comments.

5.1 Introduction

Sentiment analysis of texts provides a coarse-grained view of their overall attitude towards

an item, either positive or negative. However, the overall sentiment of a text towards an item

often results from the ratings of several specific aspects of the item. For instance, the author

of a review might have a rather positive sentiment about a movie, having particularly liked

the plot and the music, but not too much the actors. Determining the ratings of each aspect

automatically is a challenging task, which may seem to require the engineering of a large

number of features designed to capture each aspect. Here, we propose a new feature-agnostic

solution for analyzing aspect-related ratings expressed in a text, thus aiming for a finer-grained,

deeper analysis of text meaning than overall sentiment analysis.
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Figure 5.1: Analysis of a comment (bag of sentences {s1, ..., s j }) annotated by humans with the
maximal positive sentiment score (5 stars). The weights assigned by MIR reveal that s1 has the
greatest relevance to the overall sentiment.

Current state-of-the-art methods to sentiment analysis including those dedicated to aspect-

based sentiment analysis, attempt to go beyond word-level features, either by using higher-

level linguistic features such as POS tags, parse trees, and semantic knowledge, or by learning

features that capture syntactic and semantic dependencies between words. Once an appro-

priate feature space is found, the ratings are typically modeled using a linear model, such as

Support Vector Regression (SVR) with �2 norm for regularization or Lasso Regression with �1

norm. By treating a text globally, these models ignore that the sentences of a text have diverse

contributions to the overall sentiment or to the attitude towards a specific aspect of an item.

In this chapter, we propose a new learning model which answers the following question: “To

what extent does each part of a text contribute to the prediction of its overall sentiment or the

rating of a particular aspect?” The model uses multiple-instance regression (MIR), based on

the assumption that not all the parts of a text have the same contribution to the prediction of

the rating. Specifically, a text is seen as a bag of sentences (instances), each of them modeled

as a word vector. The overall challenge is to learn which sentences refer to a given aspect, and

how they contribute to the text’s attitude towards it, but the model applies to overall sentiment

analysis as well. For instance, Figure 5.1 displays a positive global comment on a TED talk and

the weights assigned to two of its sentences by MIR.

Using regularized least squares, we formulate an optimization objective to jointly assign

instance weights and regression hyperplane weights. Then, by estimating instance relevance,

we predict global or aspect ratings in previously unseen texts. The parameters of the model

are learned using an alternating optimization procedure inspired by Wagstaff and Lane (2007).

Our model requires only text with ratings for training, with no particular assumption on

the word features to be extracted, and provides interpretable explanations of the predicted
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ratings through the relevance weights assigned to sentences. We also show that the model has

reasonable computational demands.

The model is evaluated on aspect, sentiment and emotion rating prediction over seven

datasets: five of them contain reviews with aspect labels about beers, audiobooks and toys

(McAuley et al., 2012), and two contain TED talks with emotion labels, and comments on them

with sentiment labels (Pappas and Popescu-Belis, 2013b). Our model outperforms previous

MIR models and two strong linear models for rating prediction, namely SVR and Lasso, by

more than 10% relative in terms of mean squared error. The improvement is observed even

when the sophistication of the feature space increases, e.g. from BOW with counts to BOW

with TF-IDF.

The rest of the chapter is organized as follows. Section 5.2 introduces our framework and for-

mulates the problem, while Section 5.3 describes within this framework the main assumptions

on the relations between instances and bags made in past studies. Section 5.4 presents our

MIR model and learning procedure. Section 5.5 presents the datasets and evaluation methods.

Section 5.7 reports our results on three text regression tasks, namely aspect, sentiment and

emotion rating prediction, and provides examples of rating explanation, while Section 5.9 we

apply the findings of this study in two real-world scenarios.

5.2 Problem Definition: Weakly Supervised Text Regression

Let us consider a set B of m bags accompanied by numerical labels Y as input data D . There-

fore, D is noted as D = {({b1 j }d
n1

, y1), ..., ({bm j }d
nm

, ym)}, with bi j ∈Rd (for 1 ≤ j ≤ ni ) and yi ∈R.

Each bag Bi consists of ni data points (called ‘instances’), which are typically d-dimensional

vectors, e.g. vectors of words. The challenge is to infer the label of new bags which may

have a variable number of instances ni . This requires finding a set of bag representations

X = {x1, . . . , xm} of size m where xi ∈Rd , to train our regression model, from which the class

labels of new bags can then be inferred. The goal is then to find a mapping from this represen-

tation, noted Φ : Rd → R, which is able to predict the label of a given bag. Ideally, assuming

that X is the optimal bag representation for our task1, we look for the optimal regression

hyperplane Φ which minimizes a loss function L plus a regularization term Ω as follows:

Φ= ar g mi n
Φ

(
L (Y , X ,Φ)︸ ︷︷ ︸

loss

+Ω(Φ)︸ ︷︷ ︸
reg.

)
(5.1)

Since the best set of representations X for a task is generally unknown, one has to make

assumptions to define it or compute it jointly with the regression hyperplane Φ. Thus, the

main difficulty lies in finding a good assumption for X , as we will now discuss.

1Note that X is a function of B.
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5.3 Previous Multiple Instance Assumptions

The assumption that is made about the input in multiple instance problems has a strong

impact on the performance of a multiple instance learning algorithm and its appropriateness

depends on the data at hand. We describe here three assumptions that have been frequently

made in past MIR studies, to which we will later compare our model: namely, aggregating all

instances, keeping them as separate examples, or choosing the most representative one (Wang

et al., 2012). For each assumption, we will experiment with two state-of-the-art regression

models (noted abstractly as f ), namely SVR (Drucker et al., 1996) and Lasso (Tibshirani, 1996)

with respectively the �2 and �1 norms for regularization.

5.3.1 Aggregated Instances

According to the Aggregated assumption, each bag is represented as a single d-dimensional

vector, which is the average of its instances (hence xi ∈ Rd ). Then, a regression model f is

trained on pairs of vectors and class labels, Dagg = {(xi , yi ) | i = 1, . . . ,m}, and the predicted

class of an unlabeled bag B ′
i = {b′

i j | j = 1, . . . ,ni } is computed as follows:

ŷ(B ′
i ) = f (mean({b′

i j | j = 1, . . . ,ni })) (5.2)

In fact, a simple sum can also be used instead of the mean, and we observed in practice

that with an appropriate regularization there is no difference on the prediction performance

between these options. This baseline corresponds to the typical approach for text regression

tasks, where each text sample is represented by a single vector in the feature space. For

instance, bag-of-words (BOW) with counts or TF-IDF weights.

5.3.2 Instance as Example

According to the Instance assumption, each of the instances in a bag as separate examples, by

labeling each of them with the bag’s label. A regression model f is learned over the training set

made of all vectors of all bags, Dins = {(bi j , yi ) | i = 1, . . . ,m; j = 1, . . . ,ni }, assuming that there

are m labeled bags. To label a new bag B ′
i , given that there is no representation xi , the method

simply averages the predicted labels of its instances:

ŷ(B ′
i ) = mean({ f (b′

i j ) | j = 1, . . . ,ni }) (5.3)

Instead of the average, the median value can also be used, which is more appropriate when

the bags contain outlying instances.
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5.3.3 Primary Instance

According to the Prime assumption, a single instance in each bag is responsible for its label

(Ray and Page, 2001). This instance is called the primary or prime one. The method is

similar to the previous one, except that only one instance per bag is used as training data:

Dpri = {(bp
i , yi ) | i = 1, . . . ,m}, where bp

i is the prime instance of the i th bag Bi and m is the

number of bags. The prime instances are discovered through an iterative algorithm which

refines the regression model f . Given an initial model f , in each iteration the algorithm selects

from each bag a prime candidate which is the instance with the lowest prediction error. Then,

a new model is trained over the selected prime candidates, until convergence. For a new bag,

the target class is computed as in Equation 5.3 above.

The main drawback of Prime assumption is that is able to pinpoint the primary instance only

when the bag is already labeled, thus it is not applicable on unlabeled bags. Aggregated and

Instance assumptions are unable to pinpoint the most relevant instances with respect to the

label of each bag. Therefore, all the above methods are applicable only to the prediction of

labels of unseen bags. Instead of using a pre-defined method to aggregate instances, our

model learns an optimal method directly from in-domain training data which allows more

degrees of freedom in the regression model than previous ones.

5.3.4 Instance Relavance

According to the Instance Relevance assumption, a weighted combination of the instances is

responsible for the label of each bag, as in (Wagstaff and Lane, 2007; Wagstaff et al., 2008; Wang

et al., 2011). This assumption can be seen as a generalization of the Aggregated and Prime

assumptions. For instance, when we set equal instance weights for each bag, the Instance

Relevance assumption is equivalent to taking the simple average of the instances as in the

Aggregated one, while when we set only one non-zero weight for each bag it is equivalent to

the Primary assumption. The main drawbacks of the previous instance relevance methods

that we intend to address (see Section 5.4) are the following ones: (i) prohibitive complexity for

high dimensional feature spaces which are common in text regression tasks, as in Wagstaff and

Lane (2007); Wagstaff et al. (2008); Wang et al. (2011); (ii) inefficiency or inability to estimate

the importance of the instances of unseen bags, as in (Wang et al., 2011) and (Wagstaff and

Lane, 2007) respectively; and (iii) lack of modeling of weights with sparsity which can be

adapted to different types of data. Our proposal to overcome these issues is described in detail

hereafter.

5.4 Proposed Model: Weighted Multiple Instance Regression

The new MIR model that we propose assigns individual relevance values (weights) for each

instance of a bag to model the input structure, similarly to the assumption made by Wagstaff

and Lane (2007), but unlike the three first simplifying assumptions. To jointly learn instance
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weights and target labels efficiently, we minimize a regularized least squares loss (RLS) objec-

tive instead of solving normal equations, which allows to support high-dimensional feature

spaces, as required for text regression tasks. In addition, the model is able to predict both the

class label and the contribution of each instance of the bag to the bag’s label of previously

unseen (hence unlabeled) bags. Our model learns an optimal method directly from in-domain

training data to aggregate instances, rather than a pre-defined one, and allows more degrees

of freedom in the regression model than previous ones. Lastly, the weight of an instance is

interpreted as its relevance both in training and prediction.

5.4.1 Instance Relevance Assumption

Each bag defines a bounded region of a hyperplane orthogonal to the y-axis (the envelope of

all its points). The goal is to find a regression hyperplane that passes through each bag Bi and

to predict its label by using at least one data point xi within that bounded region. Thus, the

point xi is a convex combination of the points in the bag, in other words Bi is represented by

the weighted average of its instances bi j :

xi =
ni∑

j=1
ψi j bi j , ψi j ≥ 0 and

ni∑
j=1

ψi j = 1 (5.4)

where ψi j is the weight of the j th instance of the i th bag. Each weight ψi j indicates the

saliency or relevance of an instance j to the prediction of the class yi of the i th bag. The

constraint forces xi to fall within the bounded region of the points in bag i and guarantees

that the i th bag will influence the regressor.

5.4.2 Modeling Bag Structure and Labels

We propose here a method for jointly learning to predict the instance weights and the target

labels of bags over a given dataset. Let us consider a set of m bags, where each bag Bi is

represented by its ni d-dimensional instances, i.e. Bi = {bi j }d
ni

, along with the set of k target

class labels for each bag, Y = {yi }k
m , yi ∈ R. The set of representation of all Bi in the (same)

feature space X = {x1, . . . , xm} with xi ∈Rd , is obtained using the ni instance weights associated

to each bag Bi , ψi = {ψi j }1
ni

with ψi j ∈ [0,1], which are initially unknown. Thus, we look for a

linear regression model f that is able to model each target value yi for each bag i using the

regression coefficients Φ ∈Rd , that is, Y = f (X ) =ΦT X , where X and Y are respectively the

sets of training bags and their labels2.

We define a loss function according to the least squares objective dependent on B , Y , Φ and

2Note that the coefficients Φ, the weights Ψ and representations X are different for each aspect. For brevity, we
develop the formulation assuming only one aspect (k = 1).
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the set of weight vectors Ψ= {ψ1, . . . ,ψm} using Eq. 5.4 as follows:

L (Y ,B ,Ψ,Φ) = ||Y −ΦT X ||22
(5.4)=

N∑
i=1

(
yi −ΦT ( ni∑

j=1
ψi j bi j

))2

=
N∑

i=1

(
yi −ΦT (Biψi )

)2
(5.5)

Using the above loss function, accounting for the constraints of our assumption in Eq. 5.4 and

assuming �2-norm for regularization with ε1 and ε2 terms for each ψi ∈Ψ and Φ respectively,

we obtain the following least squares objective from Eq. 5.1. The selection of the �2-norm was

based on preliminary results which demonstrated that �2-norm has superior performance

than �1-norm, i.e. it learned a more accurate function. Other combinations of p-norm regu-

larizations can be explored for f1 and f2, e.g. to control the sparsity of instance weights and

regression coefficients (amount of non-zero elements).

ψ1, . . . ,ψm ,Φ= ar g mi n
ψ1,...,ψm ,Φ

m∑
i=1

((
yi −ΦT (Biψi )

)2

︸ ︷︷ ︸
f1 loss

+ε1||ψi ||︸ ︷︷ ︸
f1 reg.

)

︸ ︷︷ ︸
f2 loss

+ε2||Φ||2︸ ︷︷ ︸
f2 reg.

subject to: ψi j ≥ 0 ∀i , j and
ni∑

j=1
ψi j = 1 ∀i (5.6)

The above objective is non-convex and difficult to optimize because the minimization is with

respect to all ψ1, . . . ,ψm and Φ at the same time. As indicated in Eq. 5.6 above, we will note f1

a model that is learned from the minimization only with respect to ψ1, . . . ,ψm and f2 a model

obtained from the minimization with respect to Φ only. In Eq. 5.6, we observe that if one of the

two functions is known or held fixed, then the other one is convex and can be learned with the

well-known least squares solving techniques. In Section 5.4.3, we will describe an algorithm

that exploits this observation.

Having computed ψ1, . . . ,ψm and Φ, we can predict a label for an unlabeled bag using Eq. 5.3,

but then we would not be able to compute the weights of its instances. Moreover, information

that has been learned about the instances during the training phase would not be used during

prediction. One way to be able to predict instance weights is to learn a set of regression

coefficients O ∈Rd which are able to map a given instance to a real-valued weighted in [0,1]

interval which also satisfies the constraints of Eq. 5.4. To achieve this we have to replace ψ in

Eq 5.6 with a linear regression model f3(Bi ) =OT Bi ; thus, creating a least squares objective

based on a bilinear model with m non-negativity and unit constraints, as follows:

O,Φ= ar g mi n
O,Φ

m∑
i=1

((
yi −ΦT (Bi OT Bi )

)2 +ε1||OT Bi ||
)
+ε2||Φ||2 (5.7)
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Figure 5.2: Visual representation for the training and testing procedure of Algorithm 2. The
training of f1 and f2 is done with the alternating projections method (AP), and the f3 model is
trained on the weights that are obtained from the previous step. For testing, the weights of an
unseen bag B ′

i are estimated using the f3 model, and the class label is predicted using the f1

model with the estimated bag representation xi .

subject to: (OT Bi )i j ≥ 0 ∀i , j and
∑ni

j=1(OT Bi )i j = 1 ∀i . We find this objective is intractable for

learning in practice due to the numerous non-negativity and unit constraints, and therefore

one has to make simplifications to make it tractable. For instance, by removing the unit

constraints or by forcing f3 output to be positive with unit length; however, this would mean

that we deviate from our goal to have control over the sparsity of the instance weights.

For these reasons, we solve the problem sequentially instead of jointly by introducing a

third regression model f3, with regression coefficients O ∈ Rd assuming a �2-norm for the

regularization with ε3 term, which is trained on the relevance weights obtained from the Eq.

5.6, Dw = {(bi j ,ψi j ) | i = 1, ...,m; j = 1, ...,ni }. The optimization objective for the f3 model is

the following:

O = ar g mi n
O

N∑
i=1

ni∑
j=1

(
ψi j −OT bi j

)2

︸ ︷︷ ︸
f3 loss function

+ε3||O||2︸ ︷︷ ︸
f3 reg.

(5.8)

Again, this minimization can be easily performed with the well-known least squares solving

techniques. The learned model is able to estimate the weights of the instances of an unlabeled

bag B ′
i during prediction time as follows:

ψ̂i = f3(B ′
i ) =OT B ′

i (5.9)

The ψ̂i weights are estimations which are influenced by the relevance weights learned in our

minimization objective of Eq. 5.6 but their range of values is not constrained at prediction

time. To obtain interpretable weights, we normalize the estimated scores to the [0,1] interval

as follows: ψ̂i = ψ̂i /
∑

(ψ̂i ). Finally, the prediction of the label for the unsen bag B ′
i using the

estimated instance weights ψ̂i is done as follows:

ŷi = f2(B ′
i ) =ΦT B ′

i ψ̂i (5.10)
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5.4.3 Learning with Alternating Projections

Algorithm 2 on page 93 solves the non-convex optimization problem of Eq. 5.6 by using a

powerful class of methods for finding the intersection of convex sets, namely alternating

projections (AP). The problem is firstly divided into two convex problems, namely f1 loss

function and f2 loss function, which are then solved in an alternating fashion. Like EM

algorithms, AP algorithms do not have general guarantees on their convergence rate, although,

in practice, we found it acceptable, at generally fewer than 20 iterations. The convergence is

achieved when the difference of the mean absolute error of the model between two consecutive

iterations over the training set does not exceed a predefined threshold of 10−6, noted as

‘tolerance’ in Algorithm 2.

Figure 5.2 displays a visual representation of the training and testing procedure of Algorithm 2.

The algorithm takes as input the set of bags Bi with known labels yi and the regularization

terms ε1,ε2, ε3 and proceeds as follows. First, under a fixed regression model f2, it proceeds

with optimizing f1, i.e. finding the optimal assignment of weights to the instances of each

bag (can be seen as a projection of Φ vectors on the ψi space, which is a ni -simplex), and

computes the new representation set X of the bags. Second, given the fixed instance weights,

the algorithm trains a new regression model f2 using X (this can be seen as a projection back

to the initial Φ space). This procedure repeats until convergence, i.e. when there is very small

or zero decrease on the training error based on the predefined tolerance as mentioned above,

or until a maximum number of iterations has been reached. Finally, the regression model f3 is

trained on the weights learned from the previous steps.

5.4.4 Complexity Analysis

We analyze the time complexity of the proposed algorithm in terms of the following input

variables, noted h = {m, n̂,d}, where m is the number of bags, n̂ is the average size of the bags,

and d is the dimension of the feature space (here, size of word vectors). The time complexity

TAP of the AP procedure in Algorithm 2 can be expressed as follows:

TAP (h) = (
O

(
m

)(
O

(
n̂

)
O

(
f1

)))+O
(

f2
)

= (
O

(
m

)(
O

(
n̂

)
O

(
n̂2)))+O

(
md 2)

=O
(
m(n̂2 +d 2)

)
(5.11)

Thus, the overall time complexity T of Algorithm 2 in terms of the same input variables

h = {m, n̂,d} is derived as follows:

T (h) = TAP (h)+T f3 (h)

=O
(
m(n̂2 +d 2)

)+O
(
mn̂d 2)

=O
(
m(n̂2 +d 2 + n̂d 2)

)
(5.12)
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ALGORITHM 2: Learning the parameters of the regularized least squares objective in Eq. 5.6
with alternating projections. The stopping criterion is based on the pre-defined error tolerance
over MAE or MSE and a maximum number of iterations.
Data: Reviews B = {bi j }m

ni
, Ratings Y = {Yi }m

Result: Parameters ψ1, . . . ,ψN , Φ, O
1 set(max_iter, tolerance, ε1, ε2, ε3) # Set max iterations, tolerance and hyper-parameters
2 initialize(iter, eprev) # Initialize iteration counter and previous error
3 initialize(ψ1, . . . ,ψN ,Φ, X ) # Initialize model parameters
4 while not converged do
5 for Bi in B do
6 # Given Φ optimize for weights Ψi

7 Pi =ΦT Bi # Project to the instance space
8 ψi = cRLS(Pi ,Yi ,ε1) # f1 model
9 xi = Biψ

T
i # Project back to the feature space

10 end
11 # Given Ψ1, . . . ,Ψm optimize for Φs
12 Φ= RLS(X ,Y ,ε2) # f2 model
13 # Check for convergence based on tolerance and max_iter
14 e = 1

m

∑
i (Yi −X T

i Φ) # Mean absolute error
15 if eprev −e < tolerance or iter > max_iter then
16 converged = True
17 end
18 eprev = e
19 iter++
20 end
21 # Given ψ1, . . . ,ψm optimize for O
22 O = RLS({bi j∀i , j }, {ψi j∀i , j },ε3) # f3 model

where TAP and T f3 are respectively the time complexities of the AP procedure and of training

the f3 model. Eq. 5.12 shows that when n̂  m, the model complexity is linear with the input

bags m and always quadratic with the number of features d .

Lastly, we can see that TAP is more efficient than a previous proposal (Wagstaff and Lane, 2007)

that used normal equations for computing the f1 and f2 regression models:

TAP (h) =O
(
m(n̂2 +d 2)

)︸ ︷︷ ︸
with RLS

≤ O
(
m(n̂3 +d 3)

)︸ ︷︷ ︸
with normal equations

(5.13)

The time complexity of RLS is indeed quadratic with respect to d , while when using normal

equations it is cubic, which makes computation prohibitive for large feature spaces such as

those used for dealing with text data.

Previous works on relevance assignment for MIR have prohibitive complexity for high dimen-

sional feature spaces or numerous bags and hence they are not most appropriate for text

regression tasks. Wagstaff and Lane (2007) have cubic time complexity with the average bag
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Bags Instances Dim. Aspect ratings
Dataset Type Type Count Count Classes
BeerAdvocate

review sentence

12,189 19,418 feel, look, smell, taste, overall
RateBeer (ES) 3,269 2,120 appearance, aroma, overall, palate, taste
RateBeer (FR) 4,472 903 appearance, aroma, overall, palate, taste
Audiobooks 4,886 3,971 performance, story, overall
Toys & Games 6,463 31,984 educational, durability, fun, overall
TED comments comment sentence 3,814 957 sentiment (polarity)
TED talks comments

per talk
comment 11,993 5,000 unconvincing, fascinating, persuasive,

ingenious, longwinded, funny, inspir-
ing, jaw-dropping, courageous, beautiful,
confusing, obnoxious

Table 5.1: Description of the datasets used for aspect, sentiment and emotion rating prediction.
‘Dim.’ is the number of dimensions of each feature space.

size n̂ and the number of features d ; Zhou et al. (2009) use kernels, thus their complexity is

quadratic with the number of bags m; and Wang et al. (2011) have cubic time with respect to

d . Our formulation is thus competitive in terms of complexity and the benefits gained from

our modeling do not come with excessive computational demands.

5.5 Description and Statistics of the Datasets

We describe here and provide statistics for the seven datasets, along with an in-depth analysis

of the emotion attributes of the TED dataset.

5.5.1 Overview of Aspect, Sentiment and Emotion Data

We use seven datasets summarized in Table 5.1. Five publicly available datasets were built for

aspect prediction by McAuley et al. (2012) – namely BeerAdvocate, Ratebeer (ES), RateBeer

(FR), Audiobooks and Toys & Games – and have the aspect ratings that were assigned by

their creators on the respective websites. On the set of comments on TED talks presented

in Chapter 3, Section 3.2, which we gathered and distributed, we aim to predict two types of

labels: talk-level emotion attributes assigned by the community users through voting3, and

comment polarity scores assigned by crowdsourcing as explained in Chapter 4, Section 4.3.

The distributions of ratings per dataset are shown in Figure 5.3 grouped in three categories,

namely aspect rating datasets, sentiment datasets, and emotion datasets. Five datasets are

in English, one in Spanish (Ratebeer) and one in French (RateBeer), so our results will also

demonstrate the language-independence of our method.

From every dataset we keep 1,200 texts as bags of sentences, to ensure comparison across

a similar number of bags. However, we also use three full-size datasets, namely Ratebeer

ES (1,259 labeled reviews), Ratebeer FR (17,998) and Audiobooks (10,989). The features for

3The votes per talk express the aggregate emotion repsponses of the community users after they view a talk.
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each of them are word vectors with binary attributes signaling word presence or absence, in

a traditional bag-of-words model (BOW). The word vectors are provided with the first five

datasets and we generate them for the latter two, after lowercasing and stopword removal.

Moreover, for TED comments, we compute TF-IDF scores using the same dimensionality as

with BOW, to experiment with a different feature space. The target class labels are normalized

by the maximum rating in their scale, except for TED talks where the votes are normalized by

the maximum number of votes over all the emotion classes for each talk, and two emotions,

‘informative’ and ‘ok’, are excluded as they are neutral ones.

5.6 Evaluation Protocol and Metrics

We compare the proposed model, noted APWeights, with following baselines: the Aggregated,

Instance and Prime methods presented in Section 5.3, and the Clustering method, which is

an instance relevance method proposed by Wagstaff et al. (2008)4. In addition, we report for

comparison the scores of AverageRating, which always predicts the average rating over the

training set. Lastly, we compare our proposal with state-of-the-art models on aspect rating

prediction proposed by McAuley et al. (2012).

First, for each aspect class, we optimize all methods on a development set of 25% of the data,

i.e. 300 randomly selected bags. Then, we perform 5-fold cross-validation for every aspect

on each entire data set and report the average scores using the optimal hyper-parameters

for each method. To compare with methods from McAuley et al. (2012), we replicate their

experimental setup i.e. by splitting the dataset in half for training and testing.

We report standard error metrics for regression, namely the Mean Absolute Error (MAE) and

the Mean Squared Error (MSE). The former measures the average magnitude of errors in a set

of predictions while the latter measures the average of their squares. Both are defined over the

test set of bags B ′
i of size m′ in Eq. 5.14. The cross-validation scores are obtained by averaging

the MAE and MSE scores on each fold.

MAE = 1

m′
m′∑
i=1

| f (Bi )− yi | ; MSE = 1

m′
m′∑
i=1

( f (Bi )− yi )2 (5.14)

To find the optimal hyper-parameters for each model, we perform 3-fold cross-validation on

the development set using exhaustive grid-search over a range of possible values and select

the ones that perform best in terms of MAE. The hyper-parameters to be optimized for the

baselines (except for AverageRating) are the regularization terms λ2,λ1 of their regression

model f , namely SVR which uses the �2 norm and Lasso which uses the �1 norm. As for

APWeights, it relies on three regularization terms, namely ε1,ε2,ε3 of the �2-norm for the

f1, f2 and f3 regression models. Lastly, for the Clustering baseline, we use the f2 regression

model, which relies on ε2 and the number of clusters k, optimized over the 5–50 range with

step 5, for its clustering algorithm, here k-Means. All the regularization terms are optimized

4We use the implementation from https://github.com/garydoranjr/mcr/.
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Figure 5.3: Distributions of rating values per rating class for seven datasets which are grouped
in three categories: (1) aspect rating datasets, namely BeerAdvocate, RateBeer (ES), Rate-
Beer(FR), Audiobooks and Toys & Games, from (a) to (e); (2) sentiment datasets, namely TED
comments (f); (3) emotion attributes datasets, namely TED talks from (g) to (j). The emotion
values of the TED talks were normalized per talk. Note that the ratings in Audiobooks and Toys
& Games datasets have been projected from the 1–5 interval to the 1–10 interval (hence, the
zero counts on the ratings with odd numbers).
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REVIEW LABELS

BeerAdvocate RateBeer (ES) RateBeer (FR) Audiobooks Toys & Games
Model \\\ Error MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
AverageRating 14.20 3.32 16.59 4.31 12.67 2.69 21.07 6.75 20.96 6.75
Aggregated (�1) 13.62 3.13 15.94 4.02 12.21 2.58 20.10 6.14 20.15 6.33
Aggregated (�2) 14.58 3.68 14.47 3.41 12.32 2.70 19.08 5.99 18.99 5.93
Instance (�1) 12.67 2.89 14.91 3.54 11.89 2.48 20.13 6.17 20.33 6.34
Instance (�2) 13.74 3.28 14.40 3.39 11.82 2.40 19.26 6.04 19.70 6.59
Prime (�1) 12.90 2.97 15.78 3.97 12.70 2.76 20.65 6.46 21.09 6.79
Prime (�2) 14.60 3.64 15.05 3.68 12.92 2.98 20.12 6.59 20.11 6.92
Clustering (�2) 13.95 3.26 15.06 3.64 12.23 2.60 20.50 6.48 20.59 6.52
APWeights (�2) 12.24 2.66 14.18 3.28 11.37 2.27 18.89 5.71 18.50 5.57
APW vs. SVR (%) +16.0 +27.7 +2.0 +3.8 +7.6 +15.6 +1.0 +4.5 +2.6 +6.0
APW vs. Lasso (%) +10.1 +15.1 +11.0 +18.4 +6.8 +11.8 +6.0 +6.9 +8.1 +11.9

APW vs. 2nd best (%) +3.3 +7.8 +1.5 +3.3 +3.7 +4.9 +1.0 +4.5 +2.6 +6.0

Table 5.2: Performance of aspect rating prediction (the lower the better) in terms of MAE
and MSE (×100) with 5-fold cross-validation. All scores are averaged over all aspects in each
dataset. The scores of the best method are in bold and those of the second best one are
underlined. Significant improvements (paired t-test, p < 0.05) are in italics. Fig. 5.4 shows
MSE scores per aspect for three methods on five datasets.

over the same range of possible values, noted a ·10b with a ∈ {1, . . . ,9} and b ∈ {−4, . . . ,+4},

hence 81 values per term. For the regression models, we use the scikit-learn machine learning

library (Pedregosa et al., 2012)5. Our code and data are made available online6.

5.7 Results on Text Regression Tasks

We report here our results on aspect, sentiment and emotion rating prediction. Moreover, we

verify whether our contribution is independent of the selection of the feature space, and lastly

we analyze qualitatively the parameters of the model to assess their interpretability.

5.7.1 Aspect Rating Prediction

The results for aspect rating prediction are given in Table 5.2. The proposed APWeights method

outperforms all other baselines on each dataset. In particular, it outperforms the two models

with the Aggregated Instance assumption, which correspond respectively to traditional SVR

(�2 norm) and Lasso (�1 norm) which use BOW with counts. The SVR baseline has on average

11% lower performance than APWeights in terms of MSE and about 6% in terms of MAE.

Similarly, the Lasso baseline has on average 13% lower MSE and 8% MAE than APWeights. As

shown in Figure 5.4 on page 100, APWeights also outperforms them for each aspect in the five

review datasets.

The Instance-as-Example assumption with �1 performed well on BeerAdvocate and Toys &

5http://scikit-learn.org/stable/.
6https://github.com/nik0spapp/weighted-MIL/.
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SENTIMENT LABELS EMOTION LABELS

TED comments TED talks
Model \\\ Error MAE MSE MAE MSE
AverageRating 19.47 5.05 17.86 6.06
Aggregated (�1) 17.08 4.17 15.98 5.03
Aggregated (�2) 16.88 4.47 15.24 4.97
Instance (�1) 17.69 4.37 16.48 5.30
Instance (�2) 16.93 4.24 16.10 5.57
Prime (�1) 17.39 4.37 15.98 5.78
Prime (�2) 18.03 4.91 16.74 5.94
Clustering (�2) 17.64 4.34 17.71 6.02
APWeights (�2) 15.91 3.95 15.02 4.89
APW vs SVR (%) +5.7 +11.5 +1.5 +1.6
APW vs Lasso (%) +6.8 +5.3 +6.0 +2.9
APW vs 2nd best (%) +5.7 +5.3 +1.5 +1.6

Table 5.3: MAE and MSE (×100) on sentiment and emotion prediction with 5-fold cross-
validation. Scores on TED talks are averaged over the 12 emotions. The scores of the best
method are in bold and those of the second best one are underlined. Significant improvements
(paired t-test, p < 0.05) are in italics.

Games (for MSE), and with �2 it performed well on Ratebeer (ES), RateBeer (FR) and Toys &

Games (for MAE). Therefore, this assumption is quite appropriate for this task, however it

still scores below APWeights, by about 5% MAE and 8%–9% MSE. The Prime assumption with

�1 performed well only on the BeerAdvocate dataset and with �2 only on the Toys & Games

dataset, always with lower scores than APWeights, namely about 9% MAE and 15%–18% MSE.

This suggests that the Prime assumption is not the most appropriate for this task. Lastly, even

though Clustering is an instance relevance method, it has similar scores to Prime, presumably

because the relevances are assigned according to the computed clusters and they are not

directly influenced by the objective of the task.

To compare with the state-of-the-art results obtained by McAuley et al. (2012), we evaluated

our proposal on three of their full-size datasets. Splitting each dataset in half for training

vs. testing (as done by McAuley at al.) and using the optimal settings from our experiments

above, we measured the average MSE over all aspects. APWeights improves over Lasso by

10%, 26% and 17% MSE respectively on each dataset: the absolute MSE scores are 3.8% for

Lasso vs. 3.4% for APWeights on Ratebeer SP; 2.3% vs. 1.7% on Ratebeer FR; and 6.3% vs. 5.2%

on Audiobooks. When compared to the best SVM baseline provided by McAuley et al., our

method improves by 32%, 43% and 35% respectively on each dataset, though it did not use

their rating model. McAuley et al. report MSE scores of 3%, 2% and 3% (respectively on the

above data sets) for their best model, which uses a joint rating model and an aspect-specific

text segmenter trained on hand-labeled data. These scores are comparable to those of our

model (3.4%, 1.7% and 5.2%), which does not use these features, though it could benefit from

them in the future.

Lastly, as mentioned by the same authors, predictors which use segmented text, for example
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BOW TF-IDF
Model \\\ Error MAE MSE MAE MSE
Aggregated (�1) 17.08 4.17 16.59 3.97
Aggregated (�2) 16.88 4.47 16.25 4.16
Instance (�1) 17.69 4.37 18.11 4.50
Instance (�2) 16.93 4.24 16.88 4.23
Prime (�1) 17.39 4.37 17.72 4.43
Prime (�2) 18.03 4.91 17.10 4.29
APWeights (�2) 15.97 3.97 15.36 3.63
APW vs SVR +5.3% +11.2% +5.5% +12.5%
APW vs Lasso +6.4% +5.0% +7.3% +8.5%
APW vs 2nd best +5.3% +5.0% +5.5% +8.5%

Table 5.4: MAE and MSE (× 100) on sentiment prediction with 5-fold cross-validation over TED
comments, when changing the features space from BOW with counts to TF-IDF. Improvements
in italics are significant with p < 0.05 (pairwise t-test).

Figure 5.4: MSE scores of SVR, Lasso and APWeights per aspect over the review datasets.

with topic models as in Lu et al. (2011), do not necessarily outperform SVR baselines. Instead,

they have marginal or even no improvements, which is why we did not further experiment

with them. Interestingly, however, MIR algorithms under several assumptions go beyond SVR

baselines with BOW and even more sophisticated features such as TF-IDF (see below).

5.7.2 Sentiment and Emotion Prediction

Our method is also competitive for sentiment prediction over comments on TED talks, as

well as for talk-level emotion prediction with 12 dimensions from subsets of 10 comments on

each talk (see Table 5.3). APWeights outperforms SVR and Lasso, and all other methods for

each task. For sentiment prediction, SVR is outperformed by 11% MSE and Lasso by 5%. For

emotion prediction (averaged over all 12 aspects), differences are smaller, at 1.6% and 2.9%

respectively. The smaller differences could be explained by the fact that among the 10 most
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Class Top comment per talk (according to weights ψi ) ψ̂i distribution

inspiring

“It seems to me that the idea worth spreading of this TED Talk is inspiring
and key for a full life. ‘No-one else is the authority on your potential. You’re
the only person that decides how far you go and what you’re capable of.’ It
seems to me that teens actually think that. As a child one is all knowing and
all capable. How did we get to the (...)”

beautiful

“The beauty of the nature. It would be more interesting just integrates his
thought and idea into a mobile device, like a mobile, so we can just turn
on the nature gallery in any time. The paintings don’t look incidental but
genuinely thought out, random perhaps, but with a clear grand design behind
the randomness. Drawing is an art where it doesn’t (...)”

funny

“Funny story, but not as funny as a good ’knock, knock’ joke. My favorite
knock-knock joke of all time is Cheech & Chong’s ‘Dave’s Not Here’ gag from
the early 1970s. I’m still waiting for someone to top it after all these years.
[Knock, knock] ‘Who is it?’ the voice of an obviously stoned male answers
from the other side of a door, (...)”

courageous

“I was a soldier in Iraq and part of the unit represented in this documentary. I
would question anyone that told you we went over there to kill Iraqi people.
I spent the better part of my time in Iraq protecting the Iraqi people from
insurgents who came from countries outside of Iraq to kill Iraqi people. We
protected families men, women, and (...)”

Table 5.5: Four examples of top comments (according to weights ψi ) for correctly predicted
emotions in four TED talks (score 1.0) and the distribution of weights over the 10 most recent
comments in each talk.

recent comments per talk, many are not related to the emotion that the system tries to predict.

5.7.3 Independence from Feature Space

As mentioned earlier, the proposed model does not make any assumption about the feature

space. Thus, we examined whether the improvements it brings remain present even with

a different feature space, for instance based on TF-IDF instead of BOW with counts. For

sentiment prediction on TED comments, we found that by changing the feature space to

TF-IDF, strong baselines such as Aggregated (�1) and (�2), i.e. SVR and Lasso, improve their

performance, now reaching 16.25% and 16.59% MAE respectively (with 4.16% and 3.97% MSE).

However, APWeights still outperforms them on both MAE and MSE scores, which reach 15.35%

and 3.63%, thus improving over SVR by 5.5% on MAE and 12.5% on MSE, and over Lasso by

7.4% on MAE and 8.5% on MSE. These results suggest that improvements with APWeights

could be observed also on even more sophisticated feature spaces.

5.8 Interpreting the Relevance Weights

Apart from predicting ratings, the MIR scores assigned by our model reflect the contribution

of each sentence to these predictions. To illustrate the explanatory power of our model, we

provide examples of predictions on test data taken from the cross-validation folds above.

Table 5.5 displays the most relevant comment (based on ψ̂i ) for several correctly predicted
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Sentences per comment ψ̂i ŷi yi

“Very brilliant and witty, as well as great improvisation.” 0.64
5.0 5.0

“I enjoyed this one a lot.” 0.36

“That’s great idea, I really like it!” 0.56
4.2 4.0“I can’t wait to try it, but first thing, I need a house with big windows,

next year, maybe I can do that.”
0.44

“This dog and pony show is classic revisionist history.” 0.17

3.3 3.0
“Tesla, who was a true genius, wanted to give mankind free energy.” 0.26
“This frightened those in power.” 0.18
“This was the cause of his demise. ” 0.17
“His secret is still out there waiting to be shown the light of day.” 0.22

“Unfortunately countries are not led by gifted children.” 0.48

2.4 2.0
“They are either dictated by the most extreme personalities who
crave nothing but power or managed by politicians who are voted
in by a far from gifted population.”

0.52

“I am very disappointed by this, smug, cliched and missing so much
information as to be almost worthless.”’

0.43

1.8 1.0
“No mention of ship transport lets say 50% of all material transport,
no mention of rail transport, no mention of agriculture with its vast
use of petrochemical fertilizers, pesticides and diesel use.”

0.29

“I am sorry to be so negative, this just sounds like a sales pitch that
he has given too many times without any constructive criticism.”

0.28

Table 5.6: Examples of predicted sentiment for TED comments: ψ̂i is the estimated relevance
of each sentence with respect to the sentiment, ŷi is the predicted polarity score and yi is the
actual polarity score.

emotions of specific TED talks from the test sets, along with the distribution of ψ̂i weights of

the other comments of the talk. Four emotion classes are illustrated in the figure: ‘informative’,

‘beautiful’, ‘funny’ and ‘courageous’. The selected comments appear to reflect correctly the

fact that the respective emotion is the majority one for each of the talks in the figure. As noted

above, this task is particularly challenging because we use only the ten most recent comments

for each talk.

Moreover, we represent in Figure 5.5 the top words in the vector space for the same sample

of four emotions, as computed according to the Φ regression coefficients; they are displayed

as tag clouds using freely available software7. Again, we observe that the most important

keywords selected for each emotion match our intuitions about it, as they appear to be highly

correlated with the emotion descriptor, e.g. ‘beautiful’ with various forms of art, or ‘inspiring’

with a range of synonyms such as ‘inspirational’ and ‘encouraging’. These clouds show the high

precision of the Φ regression coefficients in selecting relevant keywords from the comments.

Table 5.6 displays TED comments selected from the test set of a given fold, for the comment-

7http://www.wordle.net/.
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Figure 5.5: Top words based on Φ for predicting four emotions from comments on TED talks,
namely inspiring, beautiful, funny and courageous. The size of each word is proportional to
its coefficient value in the regression hyperplane.

level sentiment prediction task. The table also shows the ψ̂i relevance scores assigned to each

of the composing sentences, the predicted polarity scores ŷi and the actual ones yi assigned

by human raters. We observe that the sentences that convey the most sentiment are assigned

higher scores than sentences with less sentiment, always with respect to the global polarity

level. For example, the first sentence of the first comment (highly positive with a score of

5) is assigned a weight of 0.64, versus 0.36 for the second sentence: these values match our

intuition regarding the contribution of each sentence to the overall sentiment of the comment.

Similarly, for all the other polarity levels illustrated in the table, the highest ranked sentences

appear to be the most relevant for the sentiment that the author wants to convey.

The examples presented here suggest that the APWeights model has more degrees of freedom

for interpretation than the other models, since it is able to assign meaningful relevance weights

to parts of a text (here, sentences) as well as words, while the state-of-the-art models to which

we compare can only consider the relevance of words. Due to the lack of quantitative ground

truth data for intrinsic evaluation, we illustrated the explanatory power only qualitatively with

examples. However, it is possible to perform extrinsic evaluations of the assigned relevance

weights on other tasks such as sentence ranking, segmentation or summarization – as we

demonstrate in the next chapter.

103



Chapter 5. Weighted Multiple Instance Learning for Text Regression Tasks

5.9 Applications

In the previous section, we showed that the proposed MIR model is applicable to several

types of text regression tasks, and that its results are interpretable as relevance weights. In

this section, we demonstrate its versatility and practical value by applying it to two real-

world scenarios, namely emotion-based lecture analysis for recommendation (5.9.1) and its

explanation (5.9.2), and explanation of comment sentiment results (5.9.3).

5.9.1 Emotion-based Analysis and Recommendation

Within the context of the InEvent Portal8, apart from the content-based recommendation

functionality (presented in Section 3.9.1), we propose to recommend lectures based on emo-

tion attributes. Using the MIR model, we analyzed 1000 TED talks over 12 real-valued emotion

dimensions, and we generated recommendations for each talk based on emotions using

cosine similarity. Figure 5.6 displays an example of top eight recommendations based on

emotion for a TED talk. The MIR model is trained on the human-made transcripts and the

community emotion labels which are obtained via the TED API. To learn from transcripts

with known aspect ratings, the model assigns importance weights to each of the paragraphs,

uncovering their contribution to the ratings per emotion. Then, the model is used to predict

emotion attributes in previously unseen transcripts. Apart from its use for generic recommen-

dation, this functionality might be also useful when designing and preparing a TED talk before

presenting it to the general audience, to anticipate the emotions that could be perceived in it.

Figure 5.6: Example of top eight emotion-based recommendations for a TED talk (“Metaphor-
ically speaking” by James Geary). The recommendations are based on emotion similarity
(along 12 dimensions) hypothesized automatically for TED talks based on their transcripts.

8http://www.inevent-project.eu/demos/inevent-portal/.
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Figure 5.7: Example of emotion values (along 12 dimensions) hypothesized automatically for
an entire lecture (blue bars) and, underneath, the relative relevance per emotion score of its
first paragraphs (green and red bars). The recommendations resulting from emotion-based
similarities are presented at top right of Fig. 5.6.
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5.9.2 Explanation of Predicted Emotions of Talks

Figures 5.7 and 5.6 are snapshots of our online demonstration of emotion-based analysis and

recommendation9 related to the same TED talk. While browsing a particular TED talk, the user

is able to view below the video player the estimated emotion values per dimension (blue bars).

This allows users to inspect at a glance the emotional attributes of the talk. Below the emotion

attributes, the user can view the transcript of the full TED talk segmented in paragraphs. For

each paragraph the relative relevance (mean centered) to each emotion dimension based

on MIR is displayed. This allows the user to inspect which paragraphs are more relevant to

particular dimensions.

To further facilitate the browsing and searching within a TED talk, the system allows the

user to click on the estimated emotion values (blue bars) of his/her preference to sort all the

paragraphs of the transcript according to their relevance to the selected emotion dimension.

For example, the user can click on the funny dimension and all the paragraphs which are

most related to the funny emotion will appear on top. Essentially, this function serves as an

explanatory tool of the estimated emotional attributes, since the user has a better idea of

which parts of the TED talk contributed the most to the estimation of the emotions by the

system. Similarly, when viewing the recommendations, it is possible to display excerpts of the

most similar paragraphs to the paragraphs of the talk that is currently being viewed, in order

to explain to the user why a particular talk has been recommended.

5.9.3 Explanation of Predicted Sentiments of Comments

Figure 5.8 displays the sentiment analysis of two sample user comments using the proposed

MIR model trained on the TED comments dataset from Section 5.7. The orange bars show the

contribution of each sentence to the overall sentiment value. The highlighted words belong

to the most predictive words in positive comments (marked in green), and in negative ones

(marked in red). On the left, a positive comment (4 out of 5 stars) comprised of three sentences

is displayed. The first sentence of this comment is found to be the most relevant to its overall

sentiment with 44.7%, and indeed it contains highly positive words such as ‘love’, ‘ideas’ and

‘wow’. The two other sentences follow with a lower relevance score, since both their content

have fewer sentiment words than the first sentence.

On the right, a negative comment (2 out of 5 stars) comprising three sentences is displayed.

The most relevant sentence to the comment’s negative sentiment is the second one with 62.0%,

containing negative words such as ‘barely’, ‘get’ and ‘past’, followed by the third sentence with

32.2% and the first one with 5.8%. Even though the third sentence contains more slightly

negative words and one highly negative word (‘less’), it still has a lower contribution than the

second one, because its negative sentiment is compensated by a highly positive word (‘like’).

The MIR analysis thus allows the summarization of the sentiment of comments by determining

9InEvent demonstration: Emotion-based analysis and recommendation, http://www.inevent-project.eu/
demos/emotion-based-analysis-and-recommendation-of-lectures/demo.html.
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Figure 5.8: Explaining sentiment analysis results with the proposed MIR model. One positive
comment (left) and one negative comment (right) are analyzed and explained using MIR
(upper part), with the orange bar showing the contribution of each sentence to the overall
sentiment value. The most predictive words for positive class and negative class are displayed
in the lower part.

the top relevant sentences. This enables users to have efficient access to meaningful sentences

of comments, and brings to them deeper knowledge of how the sentiment results are obtained

by the system.

5.10 Conclusion

In this chapter, we introduced a novel multiple-instance regression model for aspect rating

prediction from text, which learns instance relevance weights together with target labels. To

the best of our knowledge, this has not been considered before. Compared to previous

work on relevance assignment for MIR, the proposed model is able to predict labels on

unseen bags in addition to assigning relevance to instances of previously labeled bags, while

remaining efficient in terms of complexity. When used for aspect rating prediction, our

proposal outperforms state-of-the-art MIR and non-MIR methods on seven publicly available

datasets. These results make it applicable on a large variety of available labeled texts with

numerical target labels.
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Compared to previous work on aspect rating and sentiment prediction, our model performs

significantly better than BOW regression baselines (SVR, Lasso) without using additional

knowledge or features. The improvement persists even when the sophistication of the feature

space increases, suggesting that our contribution is to a certain extent independent from fea-

ture engineering or learning. Lastly, the qualitative evaluation on test examples demonstrates

that the parameters learned by the model are also interpretable and have explanatory power,

thus making a step further towards understandable models.

Our experimental results on three text regression tasks and seven different datasets validate

our hypothesis that the labels in text regression tasks are only weakly connected to the various

segments of a text, and that the appropriate framework for learning is therefore one which

accounts for this uncertainty in the input, namely the multiple instance learning framework.

This finding is the most important outcome of our study, and it differentiates it from previous

methods which assumed a classical strongly supervised learning setting. Another important

finding is that the models which are based on weak supervision are more interpretable than

the ones that are not based on it. This has great potential impact in several applications such

as the explanation of recommendations, sentiment or emotion attributes and the design of

new text-based algorithms which are able to better justify their estimations.
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6 Learning Aspect Saliency of Sentences
for Review Understanding

Understanding the precise attitude of users toward the aspects that they discuss in reviews

remains an open problem in NLP, with potential impacts on information filtering, behavior

analysis, and computational psychology. The majority of methods for modeling aspect ratings

have focused on feature engineering or learning, assuming a supervised learning objective.

Nonetheless, the data often comprises weak labels assigned by users at the review level, which

makes it hard to determine which specific part of the review motivates them. In the previous

chapter, we have cast this problem as a weakly supervised one using weighted multiple-

instance regression (MIR), with competitive results on aspect rating prediction. However,

although we interpreted the instance weights as the saliency or relevance of each sentence to

the targeted aspect, this interpretation was only analyzed qualitatively on a few examples. In

this chapter, we will demonstrate quantitatively that the saliency weights estimated by MIR

capture meaningful structural information from texts on review understanding tasks.

6.1 Introduction

Methods for multi-aspect sentiment analysis have been typically evaluated on three tasks

pertaining to the understanding of reviews: (1) segmentation, i.e. identifying the sentences of

a review which discuss each ratable aspect; (2) summarization, i.e. choosing the most likely

sentence per aspect in a review; and (3) rating prediction, i.e. determining the review-level

attitude of the user toward each aspect. These operations when applied on reviews that are

not accompanied by explicit aspect ratings enable the extraction of preferences to be used

by recommender systems. Moreover, displaying aspect-based summaries of reviews makes

recommendations more understandable and trustable.

In this chapter, we propose an approach based on MIR that learns the connections between

sentences and aspects based on the words of the sentences. For each aspect, the method learns

the saliency or relevance weights of the sentences of a review in an unsupervised manner, as

in the previous chapter, and uses them to predict the aspect rating, but also, in combination

with a Conditional Random Field (CRF) model, to perform aspect-based segmentation and
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Figure 6.1: Aspect saliency weights estimated with MIR for an audiobook review of five sen-
tences. The weights reveal the contribution of the sentence to the review’s aspect ratings.

summarization. Figure 6.1 displays the aspect saliency weights estimated with MIR on an

audiobook review. Our main goal is to evaluate the informativeness of such aspect saliency

features from MIR for review segmentation and summarization, and thus to validate our

previous findings of MIR effectiveness on aspect rating prediction over additional, larger

datasets than in Chapter 5, by comparing them with state-of-the-art. Our contributions to

review understanding can be summarized as follows: (i) we evaluate the usefulness of weighted

MIR on six multi-aspect datasets with a total of two million reviews, for products such as

beers or toys, with 3 to 6 aspects per product; (ii) we augment word or topic feature spaces

with contextual feature templates bringing high-level semantics related to aspect saliency

and sentiment; and (iii) we reach or exceed the state-of-the-art scores, thus validating the

effectiveness of the proposed approach.

The rest of the chapter is organized as follows. In Section 6.2, we recap on how to use MIR for

estimating aspect saliency weights and ratings, and in Section 6.3, we show how to combine

them with CRF models for segmenting and summarizing reviews. In Section 6.4, we provide

the description of the datasets, evaluation, and baselines. In Section 6.5, we compare the

results across CRF models with and without employing MIR features on review segmentation

and summarization, while in Section 6.6, we compare MIR-based methods with other state-

of-the-art methods on three review understanding tasks. Lastly, in Section 6.7, we perform a

qualitative analysis through examples for segmentation and summarization which have not

been discussed and illustrated in the previous chapter.

6.2 Learning to Predict Aspect Ratings

In the previous chapter, we proposed a weighted MIR model which can be applied to various

text regression tasks such as aspect rating prediction. As a reminder, the prediction of the
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ID Aspect Sentence
s0 story This book was nearly as good as the first one in the series.
s1 story It seemed the ending was at least an hour or more too late.
s2 story When I thought it should be over, I checked how many minutes I had left and

knew I was not even close.
s3 performance I liked the narration, I thought he did a good job.
s4 overall Still a 4 star rating: good story, good characters, and looking forward to the

third in the series.

Table 6.1: Sentences and actual aspect labels for the audiobook review in Figure 6.1.

target label of an unseen bag Bi is done as follows:

ŷ = f2(Bi ) =ΦT Bi ψ̂i

The weighted MIR model (Section 5.4), apart from its ability to predict aspect ratings, can

also estimate the saliency of sentences with respect to each aspect. The saliency is learned

without using any knowledge of which aspect is being discussed in each sentence, i.o.w. they

are learned in an unsupervised manner. Hence, it is beneficial to leverage them for improving

the segmentation and summarization tasks. For the unsupervised case, the categorical aspect

label of a sentence can be estimated by its maximum aspect saliency score as follows:

a = argmax
a

ψ̂(a)
i (6.1)

6.3 Learning to Segment Reviews

In this section, we describe how to use the learned aspect saliency weights for summarization

and segmentation. To segment and summarize reviews in a supervised learning setting, we

focus on Conditional Random Fields (CRFs), a class of structured conditional probabilistic

models. These models are typically trained using bags of word-level features, from simpler

ones (binary or numerical counts, TF-IDF weights) to more complex ones (POS tags, Wordnet

synsets, and others). Here, in addition to BOW, we introduce in the CRF model new contextual

features based on the sentence-level aspect saliency and sentiment features predicted by MIR.

Although CRFs have been previously used for review segmentation, none of the past studies

has modeled aspect saliency and sentiment information obtained without sentence-level

supervision (as surveyed in Section 2.2.3).

6.3.1 Linear Chain CRF

Given a set of m reviews Bi = {bi j }d
ni

(input variables) accompanied by a set of m aspect labels

Yi = {yi j }1
ni

(output variables), with yi j taking values from 1 to k aspects, a first-order Linear

Chain CRF models the conditional distribution p(y |b) as a globally normalized log-linear

111



Chapter 6. Learning Aspect Saliency of Sentences for Review Understanding

distribution (Lafferty et al., 2001):

p(y |b) ∝
m∏

i=1

ni∏
j=1

ψs(yt ,bi j )
ni−1∏
t=1

ψs�(yi j , yi j+1) (6.2)

where ψs(yi j ,bi j ) = exp(w · fs(yi j ,bi j )) models the aspect label of the jth sentence of review i

by means of a parameter vector w and a feature vector fs(yi j ,bi j ), and ψs�(yi j , yi j+1) models

the transition between the aspect variables at positions j and j +1 in the linear chain. Hence,

this model accounts for sequential dependencies of aspects in the context of each review.

We consider three CRF models of increasing complexity: (i) an unstructured linear model

(noted CRF) without sequential dependencies between the output variables; (ii) an undirected

linear chain CRF (noted CRF-u) where the transitions are symmetric, using (k2+k)/2 variables;

and (iii) a directed linear chain CRF (noted CRF-d) where the transitions are asymmetric, using

k2 variables. For implementation we use the Pystruct library (Müller and Behnke, 2014).

6.3.2 Aspect Saliency and Sentiment Features

The typical bag-of-words features mentioned above lack information about high-level seman-

tics such as the saliency and the sentiment of the sentences towards an aspect, which could

be useful when deciding whether a sentence discusses one aspect or another. For example,

when the salience of a given sentence with respect to an is high, it is likely that it refers to this

particular aspect. Similarly, the polar sentiment towards an aspect of a given sentence is an

indicator that it discusses the specific aspect.

Based on this observation, we propose a set of contextual feature templates listed in Table 6.2

intended to capture the aspect saliency and sentiment information, by using the weighted

MIR model described above. Figure 6.2 displays the augmentation process of word or topic

feature spaces with the proposed features. The saliency features are computed by the weight

estimate ψ̂a and the sentiment features are computed by ŷa for each aspect a. The features in

the first three rows (of each type) make use of the local context and are computed directly at

the sentence-level, while the ones in the last row exploit the global context and are computed

at the review-level: cw is the average sentence saliency and cp is the aspect rating prediction.

Sentences Saliency (ψ̂) Sentiment (ŷ) Context
current sw sp local

previous sw_prev sp_prev local
next sw_next sp_next local
all cw cp global

Table 6.2: Notations for the aspect saliency and sentiment feature templates based on MIR for
a given review. The aspect saliency features are computed by the weight estimate ψ̂ and the
sentiment features are computed by the rating estimate ŷ of the respective aspect models.
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Review Bi

ψi1 yi1

... ... ...

ψik... yik...

Aspect saliency

... bij-1 bij bij+1 ...

Aspect sentiment

MIRBOW

...
BOW

bij

^ ^ ^ ^

Figure 6.2: Augmenting BOW with aspect saliency and sentiment features from MIR model.

Diversifying the segmented output

As observed by McAuley et al. (2012), sentences from different aspects tend to be assigned a

single label when their aspects are very similar (e.g. smell and taste aspects on BeerAdvocate).

These effects were diminished by enforcing diversity on the predicted output, i.e. choosing the

most likely aspect assignments with the constraint that each aspect is assigned at least once.

We adopt this method throughout our experiments.

For each review Bi a bipartite graph A is constructed which maps ni sentences to their most

likely aspect, where ni is the length of the review. The compatibility between a sentence s of a

review i and an aspect a is defined in this paper as the saliency estimate for the unsupervised

case: csa = ψ̂(a)
i s or as the CRF probability estimate for the supervised case: csa = p(a|s). The

graph edges are defined as:

A(Bi )
s,l =

{
csl if 1 ≤ l ≤ k

max
a

csa otherwise
(6.3)

The first part of the function enforces each of the k aspects to have a matching sentence,

while the second part allows other sentences to match any aspect (unconstrained). Given an

assignment function fa , the optimal cover a is given by Kuhn-Munkres algorithm as follows:

f̂a = ar g max
fa

∑
s∈Bi

ABi

s, fa (s) (6.4)

The above objective is used for segmentation, while the same objective without the uncon-
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Dataset Reviews (nr ) Sentences (ns ) Words (nw ) Dim. (d) ns /nr nw /nr

BeerAdvocate 1,586,259 16,883,058 109,733,059 19,418 10.6 69.1
Pubs 53,492 769,009 5,817,459 18,350 14.3 108.7
Toys & Games 373,974 2,105,647 16,136,343 31,984 5.6 43.1
Audiobooks 10,989 44,487 286,335 3,971 4.0 26.0
RateBeer (FR) 17,998 105,569 938,564 903 5.8 52.1
RateBeer (ES) 1,259 3,511 31,105 2,120 2.7 24.7

Table 6.3: Description and statistics of the six multi-aspect datasets.

strained nodes is used for the summarization task i.e. choosing k sentences which are the

most compatible with the k aspects. In case of reviews with fewer than k sentences, the above

constraints are discarded.

6.4 Data, Evaluation and Baselines

6.4.1 Description and Statistics of the Datasets

To evaluate our models we use six publicly available datasets of product reviews (McAuley et al.,

2012) presented in Table 6.3: BeerAdvocate (1.6M reviews), Pubs (53K), Toys & Games (373K),

Audible (10K), Ratebeer (FR, 18K), and RateBeer (ES, 1.2K). The aspect ratings were assigned by

their creators from the respective websites, and the aspect labels were annotated by humans

through crowdsourcing for a subset shown in Table 6.4. For instance, toys are rated in terms

of educational value, durability, fun, and overall quality, while beers are rated according to

how they feel, look, smell, or taste, plus an overall rating. The baseline features are binary

vectors from a bag-of-words model (BOW) provided with the datasets. For segmentation and

summarization, the sentence vectors were normalized with L2, so that the MIR features in

Section 6.3.2 are in the same range as the BOW features.

6.4.2 Evaluation Protocol and Metrics

To compare between the three CRF models in a supervised setting, we will evaluate them

in Section 6.5 over five random splits, 80% for training and 20% for testing. To compare our

models with previous work (McAuley et al., 2012), we also replicate their experimental setup:

a single 50/50 random split. To account for randomness effects in the evaluation, we report

the average scores of each method over several runs. Specifically, we report scores of five

random splits for segmentation and summarization, and two random splits for aspect rating

prediction1. The methods are evaluated using the same accuracy and error metrics as those

used by McAuley et al. (2012).

For segmentation, the goal is to predict the aspect labels of sentences, while for summarization,

1For segmentation and summarization we use more random splits than for aspect rating prediction to account
for the fact that the corresponding evaluation sets are much smaller and have more variability.
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Dataset Reviews Sentences S/R Aspects
BeerAdvocate 992 (.06%) 8,399 (.05%) 8.5 feel, look, overall, smell, taste
Pubs 100 (0.2%) 981 (0.1%) 9.8 vibe, selection, quality, service, food, price
Toys & Games 101 (.03%) 510 (.02%) 5.1 educational, durability, fun, overall
Audible 95 (0.9%) 439 (1.0%) 4.6 performance, story, overall
RateBeer (FR) 57 (0.3%) 279 (0.2%) 4.9 appearance, aroma, overall, palate, taste
RateBeer (ES) 115 (9.1%) 319 (9.1%) 2.8 appearance, aroma, overall, palate, taste

Table 6.4: Statistics of the segmentation labels for the six multi-aspect datasets.

the goal is to choose one sentence per aspect for each review and compare it to the ground-

truth aspect labels. This particular definition of summarization requires one representative

sentence for each aspect of an item, but it ignores the attitude of the user towards the given

aspect of the given item. For instance, one positive and one negative sentence which discuss

the same aspect are treated equally and are both correct according to the above definition

(see also our related remarks in Section 6.7.2). For both tasks, we report the fraction of correct

predictions as the accuracy. Summarization can also be cast as retrieving the most relevant

sentences for each aspect; here, probabilities for each sentence are computed per aspect to

produce a ranking, and then the Area Under Curve (AUC) is computed using the ground-truth

aspect labels. For aspect rating prediction, we report the Mean Squared Error (MSE).

The model and feature selection are always performed by cross-validation on the training data

using the same range of values for their regularization terms. All the CRF models are optimized

over the same range of values for their regularization term, noted a ·10b with a ∈ {1, . . . ,9} and

b ∈ {−3, . . . ,+3}. For the three regularization terms of the MIR model, we use the optimal values

from the previous chapter, in Section 5.6. To select the best MIR features, we train MIR on

each dataset (unsupervisedly with respect to segmentation labels) and we test all the unique

combinations of features from Table 6.2 in addition to BOW features.

6.4.3 Baseline Systems for Review Segmentation and Summarization

For segmentation and summarization, the baselines from previous work include unsupervised,

semi-supervised and fully-supervised methods, as listed below:

1. LDA: Latent Dirichlet Allocation (Blei et al., 2003) is a popular topic modeling method

which is trained here with various numbers of topics: k (the number of aspects of each

dataset), 10, or 50 and is optimized over the training set for an optimal alignment be-

tween topics and aspects. Therefore, this baseline is considered to be semi-supervised.

2. PALE LAGER: The probabilistic model proposed by McAuley et al. (2012) which jointly

learns which words discuss a particular aspect, and which words are associated with

a particular rating. This model achieves state-of-the-art performance on the tasks we

consider and supports three types of learning, namely unsupervised, semi-supervised

and fully-supervised.
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BeerAdvocate Pubs Toys & Games Audible RateBeer (FR) RateBeer (ES)

Model BOW +MIR BOW +MIR BOW +MIR BOW +MIR BOW +MIR BOW +MIR

CRF 81.30 81.70† 64.77 64.03 58.62 60.69* 55.83 58.07† 87.57 89.84* 81.02 81.49

CRF-u 87.55 89.09* 67.35 67.76 59.94 60.88† 61.85 65.08* 88.28 89.28* 83.07 81.15

CRF-d 88.96 89.03 69.73 69.12 58.30 60.60 64.56 64.68 88.88 90.90* 83.42† 82.73

CRF 88.07 88.10 62.54 62.69 35.74 41.34* 56.20 58.15* 74.86 75.62 53.33 55.00

CRF-u 87.89 88.22* 61.18 64.68* 40.23 41.67† 56.39 56.06 73.62 74.29† 55.33 56.33

CRF-d 87.53 87.93 61.14 61.88 38.41 42.52* 54.91 56.02† 74.29 74.29 54.33 56.00

CRF 87.40 88.06 65.72 67.79* 46.60 48.96* 57.44 56.20 70.13 70.64† 47.08 52.07†

CRF-u 87.40 87.11 67.21* 66.86 47.03 48.05 54.51 56.44† 70.22 71.35 49.85 52.53 *

CRF-d 86.67 86.64 67.24* 65.56 46.93 48.47† 55.17 59.86† 70.17 72.21† 51.18 52.91†

Table 6.5: Performance of CRF models, with and without MIR features, for: aspect segmenta-
tion (top three lines); summarization (middle three lines); and sentence ranking (bottom three
lines). Accuracy is used as a metric for the first two tasks and AUC for the third one, all with
5-fold cross-validation. The best scores for each comparison between BOW and BOW+MIR are
in bold, and the best scores for each dataset and task are underlined. The best scores marked
with a ‘*’ are significant at the p < 0.1 level, while those with a ‘†’ at the p < 0.16 level.

6.4.4 Baseline Systems for Aspect Rating Prediction

For aspect rating prediction, the baselines from previous studies are structured and unstruc-

tured methods trained either over (i) segmented text, i.e. only the review sentences which

belong to the target aspect, or over (ii) unsegmented text, i.e. all review sentences are used:

1. SVM: A well-known supervised learning model for classification or regression, Support

Vector Machine (Cortes and Vapnik, 1995), with segmented or unsegmented text.

2. Structured-SVM: This method is generalization of SVM for training a classifier for gen-

eral structured output labels (Tsochantaridis et al., 2005), and it learns the relationship

between aspect ratings (rating model).

3. PALE LAGER: The probabilistic model proposed by (McAuley et al., 2012), combined

with a structured SVM which learns the relationship between aspect ratings (rating

model).

6.5 Results across CRF Models

The CRF models with MIR features for aspect saliency and sentiment outperform those not

using these features, as shown in Table 6.5. Specifically, when looking at the 18 combinations

of the three tasks and the six datasets, the CRF model with BOW+MIR features is the best

performing one for 16 of them (89%). Furthermore, in 81% of the pairwise model comparisons

(44 out of 54), the CRF model with BOW+MIR features improves over the CRF model using

solely the BOW features.
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6.5.1 Review Segmentation

The BOW+MIR features segment the reviews more accurately than only BOW features in 78%

of the pairwise comparisons for this task, shown in the first three lines of Table 6.5. The

structured models (CRF-u and CRF-d) outperform unstructured ones (CRF) over all datasets,

highlighting the importance of modeling the relationships between aspects. The unstructured

model (CRF) benefited the most from the MIR features, on average, followed by the structured

models CRF-u and CRF-d. The MIR features were not informative on Pubs and Ratebeer (ES).

The CRF models with MIR features had the lowest segmentation scores on Pubs and Ratebeer

(ES). One reason why MIR features were not informative is that feature selection was not

efficient and caused models to overfit. Indeed, over the training sets, the CRF models with

MIR features always outperformed the others, but this did not generalize to the testing sets.

6.5.2 Review Summarization

On the summarization task, the linear chain CRFs were outperformed by the unstructured CRF

on two datasets (lines 4–6 of Table 6.5). When the linear chain CRFs are are given BOW+MIR

features (lines 5–6 of Table 6.5 for BeerAdvocate, Pubs and RateBeer-FR), their performance

increases and this leads to an improvement over the unstructured CRF (line 4 of Table 6.5 for

the same datasets), highlighting once more their added value.

For sentence ranking (lines 7–9 of Table 6.5), the CRF models with MIR features always achieve

the best scores, as in summarization above. Here, the linear chain CRFs perform better than

for summarization (k most likely sentences for k aspects) but they still benefit from MIR

features over all datasets apart from BeerAdvocate and Pubs, which are the datasets with the

largest number of sentences per review (10.6 and 14.3, vs. less than 6 for the others). This

indicates that a larger context allows the linear chain to learn more accurately the relationship

between aspects for this task.

6.5.3 Feature Analysis

To determine the exact MIR features that are the most useful for each task, we analyze the

feature importance over the training data, both for summarization and segmentation. We

measure the importance of each type of features by the probability of an individual feature to

appear in the top-5 models which showed an improvement over structured or unstructured

CRF with BOW, separately per dataset. The results are represented as heatmap diagrams in

Figure 6.3 for each dataset. When averaged over the six datasets, it appears that the saliency

features have a higher importance compared to the sentiment ones for both tasks, namely

0.86 vs. 0.63 and 0.79 vs. 0.70.

For segmentation, the sentiment features score higher than saliency ones over Audible, Toys

and BeerAdvocate. Over the other datasets, the saliency of the neighboring sentences (sw_prev,
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Figure 6.3: MIR feature importance for segmentation and summarization (10-fold c.-v. on the
training data), as their probability to appear in the top-5 models better than CRF with BOW.

sw_next) and the global saliency (cw) are the most informative features. For summarization,

the saliency of the current sentence (sw) is the most important feature for Toys, Audible and

Ratebeer (ES), the global saliency (cw) for Ratebeer (FR) and Pubs, and the aspect sentiment

of neighboring sentences (sp_prev, sp_next) for BeerAdvocate.

The proposed MIR features have discriminative potential for both tasks, although the optimal

features are data dependent. The best performing features across all datasets and models are:

for segmentation, the saliency of the next sentence (sw_next at 0.91) and the global sentiment

(cp at 0.72); and for summarization, the saliency of the current sentence (sw at 0.86) and the

sentiment of the previous sentence (sw_prev at 0.81).

6.6 Results of MIR-based Models Compared to SOA Models

We now compare the performance of state-of-the-art models presented by McAuley et al.

(2012): (i) with the proposed models which use MIR features, namely one unstructured model,

CRF, and the top-performing structured model, CRF-u, for segmentation and summarization,

and (ii) with the weighted MIR model proposed in the previous chapter, for aspect rating

prediction. To obtain comparable scores, we follow the evaluation protocol used by McAuley

et al., i.e. uniformly splitting the data in training and testing subsets multiple times, and

reporting the average score of all runs.

6.6.1 Review Segmentation

For segmentation, the proposed linear chain CRF with MIR features outperforms all other

baselines over all datasets (see Fig. 6.4, upper part), with about 15% relative improvement
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Figure 6.4: Accuracy on review segmentation (top) and summarization (bottom) of the CRF
models with BOW+MIR features, compared to several unsupervised, semi-supervised and
fully-supervised baselines. Note that the number of topics k in the “LDA k-topics” method is
the number of aspects of the respective dataset. The scores of LDA and PALE LAGER are from
McAuley et al. (2012).

on average over the best baseline (PALE LAGER, fully-supervised). The largest differences

appear on the Toys and Audible datasets with about 31% and 14% improvement respectively.

Compared to the semi-supervised models, LDA and PALE LAGER, the improvements are much

higher, as expected. The CRF-u model performed better than the simple CRF, demonstrating

that capturing the relationship between aspects is beneficial for these tasks, as already shown

in Section 6.5.

The unsupervised PALE LAGER exhibits high scores especially on large datasets such as

BeerAdvocate and Pubs, where it clearly outperforms the unsupervised saliency weights from

MIR, while on the smaller datasets the performances of the two are similar. This can be

attributed to the ability of PALE LAGER to decorrelate aspect words from aspect sentiment

words, which is not the case for MIR weights. Nonetheless, the unsupervised MIR weights

have reasonable performance on most datasets except from Pubs, presumably due to its high

number of aspects.

6.6.2 Review Summarization

The performance on review summarization of the CRF with MIR features is slightly higher

on average (+2.3%) than the fully-supervised PALE LAGER, with the best scores recorded

on Ratebeer (ES) and BeerAdvocate (+18.6% and +2.3%) and the worst on Ratebeer (FR)

and Toys (-3.8% and -5%), as shown in Fig. 6.4, lower part. Hence, the proposed model

has better segmentation than PALE LAGER as well as good scores on summarization. One

explanation for not always making an improvement on summarization (e.g. on Toys), with

a better segmentation model than PALE LAGER, is that here only the reviews with at least k

sentences are considered. It appears that such reviews are more difficult to segment than
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Figure 6.5: Mean squared error (MSE) on rating prediction for the MIR model with unseg-
mented text, compared to structured or unstructured supervised baselines, with unsegmented
or segmented text. The scores of SVM and PALE LAGER are from McAuley et al. (2012).

reviews with fewer sentences.

As for the unsupervised setting, PALE LAGER outperforms the MIR and LDA models in most

cases. The unsupervised use of saliency weights from MIR scored below PALE LAGER (except

for Audible), but similarly to or above most LDA models over all datasets. Therefore, the

best option for unsupervised learning is the PALE LAGER model for both segmentation and

summarization. For sentence ranking, PALE LAGER was evaluated only on BeerAdvocate,

with an average AUC of 0.87 (fully-supervised case), which is slightly below that of our best

performing CRF, which achieved 0.88 AUC.

6.6.3 Aspect Rating Prediction Task

Figure 6.5 shows that the MIR model outperforms all other models over all datasets except

Audible and Pubs (the latter was, however, not evaluated by McAuley et al. (2012)). This indi-

cates that by uncovering the saliency of sentences for aspect ratings, even with unsegmented

text only, the MIR model can go beyond increasingly complex baselines, including structured

models (structured SVM), which make use of either unsegmented or segmented text (PALE

LAGER). This means that, unlike PALE LAGER which requires a segmentation procedure to

achieve the best scores, MIR does not require human intervention to perform as well or even

better. Hence, MIR is able to learn structural information without explicitly modeling the

relationship between aspect ratings. The structured models are more successful than MIR

only on Audible, likely because this is the dataset with the fewest number of aspects.

Moreover, the MIR model is able to learn structural information without having to explic-

itly model the relationship between aspect ratings. Nonetheless, the structured learning

approaches are more successful compared to MIR on Audible dataset. In fact, this dataset

had the smallest number of aspects, which shows that the ability of MIR to capture structural

information is lower than in reviews with greater number of aspects.
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BOW features BOW + MIR features
Aspects Sentence s p(a|s) Sentence s p(a|s)

Perf.

job interested keep changing listener nar-
rator great

0.91 job interested keep changing listener nar-
rator great

0.92

didnt help narrator 0.88 parts female would read series suggest
narrator continues

0.71

decided think narrator voices characters
english

0.68 didnt help narrator 0.70

parts female would read series suggest
narrator continues

0.64 performance dale comes reading mr
given opinion

0.66

audio job listen content laugh wonderful
dont narrator

0.61 audio job listen content laugh wonderful
don’t narrator

0.65

Story

story original compelling thought 0.82 story original compelling thought 0.85
wow say 0.58 could short story told easily 0.66
one 0.58 yet best changing constantly may style

writing
0.50

could short story told easily 0.58 story ability strength tell understand fol-
low way easily

0.49

intended perhaps value well attempt po-
tential different

0.55 bringing interesting excellent story job
life brown come

0.49

Overall

star gave 5 0.83 audio surprise totally took admit book 0.48
audio surprise totally took admit book 0.73 audio recommended highly great book 0.42
choice start first glad finish enjoyed really
audible book

0.59 choice start first glad finish enjoyed really
audible book

0.33

world books still picture addition short
local liberal future

0.45 much last books first 2 half horrible time
book

0.26

otherwise notes 0.45 world books still picture addition short
local liberal future

0.25

Table 6.6: Top ranking sentences according to probability per aspect for an unstructured
multi-class CRF with and without MIR features from the Audible test set.

6.7 Qualitative Analysis

We examine here the segmentation output of the best-performing CRF employing MIR features

in terms of sentence ranking and summarization results on the Audible dataset.

6.7.1 Sentence Ranking Examples

Table 6.6 displays the five most probable sentences per aspect found by an unstructured

multi-class CRF which employs MIR features compared to the BOW only baseline on examples

from the Audible test set. Overall, it can be observed that the sentences obtained with MIR

features tend to be longer and more related to the target aspect than those obtained using

the BOW features alone. For example, with BOW, sentences 2 and 3 from the story aspect

and sentences 1 and 5 from the overall aspect are very short and do not represent clearly the

respective aspect. Another observation is that the MIR features tend to rank higher sentences

which, apart from discussing the particular aspect, have higher sentiment – compared to those

selected by using BOW features only, which tend to be more neutral. For example, this can be

seen by comparing sentence 3 from BOW compared to sentence 4 from MIR on performance,
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Review 1 Selected sentence yi j ŷi j

Performance
(BOW) rushed story action felt fast paced

8 9
(+MIR) nice listen real conversations series

Story story good opinion 6 8
Overall still enough give enjoyed rating 8 9
Review 2 Selected sentence y ŷ

Performance
(BOW) start honor comes stop series listening

10 10
(+MIR) job good johnson narrating book

Story political drama intense 10 10

Overall
(BOW) job good johnson narrating book

10 10
(+MIR) exciting battles weber space famous

Review 3 Selected sentence y ŷ

Performance
(BOW) read hear really need

8 9
(+MIR) story reader great superb

Story like without story best sex defined type graphic 10 10

Overall
(BOW) havent eyre read forward something

10 10
(+MIR) passion great book

Table 6.7: Summarization examples of three audiobooks using CRF with BOW+MIR features
and BOW only. The last two columns display the actual and estimated rating by MIR for
each aspect at the review-level. The different sentences produced by the two methods in the
summaries are marked for correctness with green and red colors (correct and incorrect).

sentences 3 and 5 on story and sentences 4 and 5 on the overall aspect.

6.7.2 Summarization Examples

Table 6.7 lists three example summaries for both models along with the actual and estimated

sentiment of each aspect at the review-level, which have decreasing agreement with the

ground-truth, for CRF with BOW+MIR features. On the first example, it can be seen that BOW

selected a sentence for the performance aspect which has in reality an unclear topic, as it

might also refer to the story aspect, and does not reflect well the aspect rating since it has

a negative sentiment. Similarly, on the second and third examples, BOW performance and

overall sentences do not reflect well the aspect sentiment, and the overall sentences are more

related to the performance aspect. It appears thus that MIR features tend to select sentences

which are more representative of the aspect topic and sentiment, giving additional value on

the produced summaries. This is a beneficial property which is not measured quantitatively

by the current metrics used for the summarization task.

6.8 Conclusion

We have shown in this chapter that the MIR framework can greatly benefit three important

tasks pertaining to review understanding. In contrast with previous methods, MIR formulates

aspect rating prediction as a weakly supervised problem and allows models to have access

to the structure of the input, thus making them more accurate and interpretable. MIR can
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augment word or topic feature spaces with high-level semantics regarding the aspect saliency

and the sentiment of sentences within the context of each review, thus providing informative

features for review segmentation and summarization, which in combination with CRF models

demonstrate superior or similar performance to the state-of-the-art.

These results reinforce our findings regarding the effectiveness of MIR for aspect rating pre-

diction presented in Chapter 5, and generalize them over six large publicly available datasets.

Moreover, the results validate the ability of MIR to capture meaningful structural informa-

tion of the input for review segmentation and summarization. Finally, our findings have a

potential impact on several similar text regression tasks with weak labels, and make a step

forward towards better understanding of user-generated ratings such as sentiment, emotion

and preferences from their corresponding texts.
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7 Conclusion

In this thesis, we proposed novel methods based on machine learning to model user sentiment

and preferences for information filtering in social networks, which are effective, scalable and

interpretable by humans. Mainly, we aimed to extract high-level semantic information from

natural language, and to understand how this information is expressed in texts, in order to

overcome the challenges of jointly modeling various types of user traces and explaining model

estimations to users.

We first investigated semantic representations of items from their textual descriptions to

improve generic and personalized recommendations. Moreover, we leveraged and adapted the

sentiment of user comments to improve recommendation with unary feedback at collective

or individual levels. Lastly, we proposed a novel way to cast text regression problems as weakly

supervised ones and solved them with a weighted multiple-instance learning model which

is effective and efficient. The learned instance saliency weights are easily interpretable and

enable explainable model estimations; they are also useful indicators for segmenting and

summarizing written texts.

This conclusion is organized as follows: we first review the achievements and specific con-

tributions of the thesis, and then we discuss the limitations of the proposed methods and

propose a series of promising future work directions.

7.1 Achievements

The achievements of this thesis cover two main directions: (1) the successful mining of seman-

tic information from texts to improve the learning of unary preferences, and (2) the learning of

explainable or easy-to-interpret models of sentiment from texts in online social networks. Both

of them, as shown throughout this thesis, are beneficial to information filtering via generic or

personalized recommendation (Chapters 3 and 4), aspect rating prediction (Chapters 5 and 6),

and review summarization and segmentation (Chapter 6). Our contributions related to these

achievements are summarized below.
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Mining semantic information from text to improve the learning of unary preferences

In Chapter 3, we created a new metadata set extracted from the TED lectures to evaluate

generic and personalized multimedia recommendation based on unary feedback. Feature

selection experiments over the most active TED users showed that the most informative data

fields for content-based (CB) methods are the description and the title of each lecture. More-

over, we showed that the semantic-based methods (ESA, RP and LSI) were more accurate than

keyword-based ones (TF-IDF) in a cold-start setting, and that CB methods were outperformed

by collaborative filtering (CF) in a non-cold-start one. The semantic-based methods which

rely on external knowledge (ESA) were more informative for personalized recommendation,

while the ones which rely on domain knowledge (LSI) were more informative for generic rec-

ommendation. To achieve performance closer to CF ones, we proposed a combined method

using a neighborhood model, user/item popularity biases and content-based similarities (LSI,

TF-IDF). The proposed method can be used when newly-added and older items are both

present, as it does not rely entirely on collaborative rating similarities.

In Chapter 4, we proposed sentiment-aware models to improve one-class CF on three real-

world multimedia datasets, namely TED talks, Vimeo videos and Flickr images, demonstrating

significant improvements over models that do not use sentiment information. Moreover,

we showed that the improvements of sentiment-aware models hold for all three negative

class assumptions, meaning that the benefits gained from various strategies for balancing the

negative class are likely to be preserved when these strategies are combined with our model.

We also showed that the adaptive sentiment-aware models performed better than those with a

fixed mapping. This is likely because the former are able to adapt the sentiment scores to the

user preferences, and in particular to model cases in which the output scores of the sentiment

classifier do not exactly match actual preferences. The proposed models are relevant to many

real-world applications to communities where users interact both in terms of explicit feedback

(favorites, likes) and in terms of textual feedback (comments, discussions). We experimented

with three different types of content – lectures, general-purpose videos, and images – thus

showing that our models are not constrained by a domain, and can adapt to domain data

through learning.

Learning explainable models of fine-grained sentiment from text

In Chapter 5, we introduced a novel multiple-instance regression model (MIR) for text re-

gression tasks which learns instance relevance weights together with target labels. Unlike

previous work on relevance assignment, the proposed model can estimate efficiently the in-

stance weights of unseen bags. Our proposal outperforms state-of-the-art MIR and non-MIR

methods on aspect rating prediction, sentiment prediction and emotion prediction, over seven

publicly available datasets. These results show that the model is applicable to a large variety of

texts labeled with numerical target labels. Our model outperforms bag-of-words baselines

(SVR, Lasso) without using additional knowledge or features, and the improvement persists

even when the sophistication of the feature space increases, suggesting that our contribution
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is to a certain extent independent from feature engineering or learning. Our results validate

the hypothesis that the labels in text regression tasks are only weakly connected to the various

segments of a text, and that MIR is an appropriate framework for learning as it accounts for

this uncertainty in the input. Apart from being more accurate, the weakly supervised models

are more interpretable than fully supervised ones, which has great potential impact on several

applications such as the explanation of recommendations, sentiment or emotion attributes,

and the design of new text-based algorithms which can better justify their estimations.

In Chapter 6, we showed that the saliency weights from MIR, apart from being interpretable, are

beneficial to three important tasks pertaining to review understanding, namely aspect rating

prediction, review segmentation and summarization. MIR can augment word or topic feature

spaces with high-level semantics regarding the aspect saliency and the sentiment of sentences

within the context of each review, thus providing informative features for review segmentation

and summarization, which in combination with CRF models demonstrate superior or similar

performance to the state-of-the-art. These results generalize our findings from Chapter 5

over six large publicly available datasets and validate the ability of MIR to capture meaningful

structural information of the input for review segmentation and summarization. Lastly, our

results contribute to better understanding of user-generated ratings such as aspect, sentiment

and emotion from their corresponding texts.

7.2 Discussion and Perspectives

The proposed approaches exhibit desirable properties in terms of effectiveness, efficiency

and interpretability across several different information filtering tasks, but several of their

limitations should be addressed in future work. We first provide a quick overview of limitations

with their possible solutions, then develop each of them to some extent.

Brief Overview of Limitations and Possible Solutions

In Chapter 3, the semantic-based methods were most effective when ratings were scarce and,

conversely, less effective when ratings were abundant. This property makes them mostly

applicable to repositories in which new items are inserted frequently and therefore have few

ratings. An effective application to abundant ratings could be achieved by a more principled

integration with collaborative filtering methods, for instance through hybrid methods. The

sentiment-aware models proposed in Chapter 4 are only applicable to users who have written

at least a few comments, and are therefore vulnerable to the cold-start scenario with scarce

comments. This limitation could be overcome by generalizing the model to other types of

predictors, for example a nearest neighbor model with user-based similarities instead of item-

based ones, which would allow transferring sentiment information from comments between

similar users and thus addressing to an extent the comment sparsity issue.

The MIL-based methods proposed in Chapter 5 provided strong evidence that text regression
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tasks can effectively be cast as weakly supervised problems. In this new spectrum of weakly

supervised methods, there are several possibilities for improvement, such as a joint learn-

ing objective for the proposed weighted MIR model along with alternative MIR objectives

that provide desirable properties for learning. For instance, with multiple-instance logistic

regression, we can transfer information from group labels to instance labels. In Chapter 6, the

optimal combination of aspect saliency and sentiment features was obtained with exhaustive

search using cross-validation which is a time-consuming procedure. One way to overcome

this issue is by using a more robust and efficient feature selection method during the learning

procedure or by learning the aspect saliency and sentiment features jointly for multiple tasks

using multi-task learning. In the rest of this section, we highlight the most interesting research

direction per chapter, and provide motivation for other future research directions.

Chapter 3: Integrate content-based and collaborative information

An interesting future work direction is to further explore algorithms which integrate both CB

and CF, in particular hybrid algorithms, especially given that the TED dataset has rich content

information to be exploited. More specifically, the hybrid method could exploit ensemble

learning from two individual predictors, CB and CF. Another idea is to perform early fusion

of content-based and collaborative information with other learning models, such as matrix

factorization. Lastly, another interesting direction is to assess recommendation performance

when automatically-assigned values are available for metadata fields, for instance through au-

tomatic speech recognition (for the transcript of a media file), speaker detection, or automatic

summarization.

Chapter 4: Generalize sentiment-aware models to other types of predictors

The adaptation of sentiment-aware models to other predictors, such as low-rank matrix

factorization, is another interesting future work direction. This could be done by parametrizing

the prediction function with new variables that will influence it according to the output of a

sentiment classifier (for binary feedback) or a regressor (for real-valued feedback), as shown

in this thesis for the case of local predictors such as neighborhood models. Moreover, it would

be interesting to investigate other loss functions than least squares for adapting the sentiment

to unary feedback. For instance, a ranking-based loss function could help learn a better

mapping for top-N recommendation than the one explored in Chapter 4. Another research

direction is the inference of more granular preference information from text by performing

multi-aspect sentiment analysis, for instance based on the methods proposed in Chapter 5

(see also proposed extension below) again for improving the one-class CF task.
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Chapters 5 and 6: Investigate alternative MIL objectives

The multiple-instance learning framework for text regression tasks proposed in Chapter 5

paves the way for several promising research directions. For instance, one of them is to

investigate alternative formulations and assumptions for multiple-instance learning such

as multiple-instance logistic regression (MILR) (Settles et al., 2008). Such a model can be

tested on sentiment classification at the sentence-level and at the document-level, based only

on document-level supervision (Täckström and McDonald, 2011). Note that the proposed

weighted MIR model is not able to directly transfer label information from bags to individual

instances, rather it computes the contribution of each instance to the target label. MILR

computes the conditional probabilities of each instance using logistic regression as:

oi j = P (yi j = 1|bi j ) = 1

1+e−(w ·bi j+δ)
(7.1)

where yi j is the class of the instance bi j and w is the vector of the regression coefficients

associated with the features of the instance. These estimates are combined into a probability

estimate for a bag using the softmax function:

oi = P (yi = 1|Bi ) = softmaxa(oi 1, . . . ,oi n) =
∑ni

j=1 oi j eaoi j∑ni

j=1 eaoi j
(7.2)

where a controls to which extend softmax approximates a hard max function. At this stage, it

would be possible to directly compute the probability of a bag belonging to a class if we knew

the labels of the instances, however most often they are not available. One way to learn to

predict instance labels jointly with bag labels using only bag supervision is by minimizing the

following least squares objective: L (w) =∑m
i=1(yi −oi )2 +Ω(w), where Ω is a regularization

term (e.g. �2 norm) for the regression coefficients w . The above objective can be solved with

stochastic gradient descent.

Chapters 5 and 6: Combine MIL objective with feature learning

Perhaps the most closely related work to this research direction is a recent study by Kotzias

et al. (2015). The authors used MIL with pre-trained deep learning features to transfer in-

formation from group labels to individual labels. The results of this study showed that the

approach outperforms baselines for sentiment classification at the sentence and document

levels. However, it is not clear whether the improvement is mostly due to the deep features or

to the MIL objective, because simpler features such as bags-of-words were not included in the

experiments. At this stage, one interesting line of work is to avoid using predefined features,

and directly learn deep features for instances using a MIL objective over a large sentiment

corpus, e.g. from Maas et al. (2011), by modifying the MILR model presented above (Eq. 7.2).
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Chapters 5 and 6: Improve weighted-MIL objective

As for the weighted MIR model, new methods to estimate instance weights at prediction time

could be investigated, e.g. using a unified objective. Further experiments with other model

settings would be beneficial, such as regularization norms other than �2 and feature spaces

other than BOW or TF-IDF. Moreover, it would be interesting to evaluate intrinsically the

learned weights on sentence ranking when sentiment is assumed to be known using human

judges. Lastly, another promising direction is to train jointly multiple tasks, for example aspect

rating prediction and review summarization or review segmentation, as in multi-task learning.

Chapters 5 and 6: Extend to multiple modalities

Apart from the text regression tasks on which we focused on this thesis, an important research

direction is the investigation of multiple modalities for example predicting the sentiment or

emotion of images or videos using audio, visual and text modalities. For images as in (Borth

et al., 2013), the instances could be predefined patches or regions of interest to predict the

sentiment label of image tweets, while for videos as in (Ellis et al., 2014) the instances could

result from a predefined temporal segmentation to predict the emotion of videos. The features

per modality can be a combination of high-level and low-level features commonly used in the

literature on multimodal sentiment analysis, typically resulting from the following procedures:

(i) visual analysis, such as smile and head pose estimates, face muscle movements features

and basic emotion estimates, (ii) acoustic analysis such as prosody features, energy features,

voice probabilities, spectral features and (iii) linguistic analysis such as n-gram bag-of-word

features and topic modeling, respectively.

Broader perspectives

We now turn to three broader and longer-term research perspectives, which are timely and

compelling at the same time, namely: sentiment-aware recommendation across languages,

explaining recommendations or decisions to users in interactive recommender systems, and

mining massive amounts of user-generated texts to detect opinion norms and trends.

1. Cross-lingual recommendation. Users in online communities are not usually con-

strained by a single language for communicating their opinions. Dealing with multiple

languages in information filtering and access systems is a challenging problem which

requires attention. For instance, how to recommend products or services when opinions

are written in several different languages? Which language to use when recommending

items to a particular user? More importantly, in the context of sentiment-aware rec-

ommendation, how do sentiments expressed by users vary across languages, and what

expressions are used to convey the same sentiments in different languages? Answering

these questions would enable the development of applications such as cross-lingual

recommendation. Recently, Jou et al. (2015) investigated how visual sentiment and
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emotion semantics are expressed in social multimedia across languages. To achieve

this, they developed an ontology comprised of multilingual sentiment and emotion

polarized visual concepts by adapting semantic structures called adjective-noun pairs.

One interesting future research direction is to use this ontology for learning language-

independent semantic representations of text, to be used for representing items and

users for the purpose of cross-lingual recommendation.

2. Generating explanations of recommendations. The models of aspect, sentiment or

emotion proposed in this thesis are able to identify the relevance of textual parts with

respect to target label. At the same time, they are easily interpretable and beneficial for

explaining predictions to the users. One interesting future research direction is to use

them to generate explicit explanations within recommender or dialogue systems. This

can be achieved by analyzing known reviews with MIL methods, estimating the most

relevant or salient sentences per user, and then showing them as explanations for unseen

items with similar estimated ratings. To avoid presenting to users sentences exactly as

they appeared in texts from other users, the system can learn to generate them based

on a given target rating using user-independent or user-specific language modeling.

Therefore, the system will generate original sentences which are descriptive of and

compatible with the preferences of the given user or across all users. The generation

model can then be used to explain a recommendation based on its estimated rating

in three different ways: (i) according to the user-specific model, (ii) according to the

user-specific model of similar users, or (iii) according to a general, user-independent

model. The main challenges here are the fluency of such a generation model and the

quality of adaptation to the particular user for whom recommendations are made

3. Detecting opinion norms and trends. The ability to process user-generated texts in

terms of sentiment and emotion towards products or aspects of products, apart from

benefiting information filtering tasks, also provides an opportunity for processing mas-

sive datasets to discover opinion norms and trends towards particular topics such as

products, events, brands or individuals. The opinion norms could be described as global

opinion tendencies aggregated from a large number of users which are more or less in-

variant of the time component (e.g. the event of ‘Christmas holidays’), while the opinion

trends could be described as sudden or abrupt changes in the opinion norms (e.g. the

breaking news about a ‘company scandal’). Given that this aggregated information is

a result of numerous individual opinions which are hard for a human to inspect one

by one, it should be possible to automatically provide comprehensible summaries of

groups of opinions as shown in this thesis for individual ones (Chapters 5 and 6). This

could help measuring the impact of products, news or events on the general public or

monitoring the public responses towards them over time, thus enabling applications to

social relations, industry, journalism, politics and psychology.
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Learning and Knowledge Discovery in Databases, volume 5781 of Lecture Notes in Computer

Science, pages 195–210. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-04179-2. doi:

10.1007/978-3-642-04180-8_30.

Yan-Ying Chen, Tao Chen, Winston H. Hsu, Hong-Yuan Mark Liao, and Shih-Fu Chang. Pre-

dicting viewer affective comments based on image content in social media. In Proceedings

of International Conference on Multimedia Retrieval, ICMR ’14, pages 233:233–233:240,

Glasgow, United Kingdom, 2014. ISBN 978-1-4503-2782-4. doi: 10.1145/2578726.2578756.

Yan-Ying Chen, Tao Chen, Taikun Liu, H.-Y.M. Liao, and Shih-Fu Chang. Assistive image com-

ment robot - a novel mid-level concept-based representation. IEEE Transactions on Affective

Computing, 6(3):298–311, 2015. ISSN 1949-3045. doi: 10.1109/TAFFC.2014.2388370.

Veronika Cheplygina, David M.J. Tax, and Marco Loog. Multiple instance learning with bag

dissimilarities. Pattern Recognition, 48(1):264 – 275, 2015. ISSN 0031-3203. doi: 10.1016/j.

patcog.2014.07.022.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):

273–297, 1995. ISSN 0885-6125. doi: 10.1023/A:1022627411411.

135



Bibliography

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algo-

rithms on top-N recommendation tasks. In Proceedings of the 4th ACM Conference on

Recommender Systems, RecSys ’10, Barcelona, Spain, 2010. doi: 10.1145/1864708.1864721.

Rafael M. D’Addio and Marcelo G. Manzato. A sentiment-based item description approach for

knn collaborative filtering. In Proceedings of the 30th Annual ACM Symposium on Applied

Computing, SAC ’15, pages 1060–1065, Salamanca, Spain, 2015. doi: 10.1145/2695664.

2695747.

Stamatia Dasiopoulou, Vassilis Tzouvaras, Ioannis Kompatsiaris, and MichaelG. Strintzis.

Enquiring MPEG-7 based multimedia ontologies. Multimedia Tools and Applications, 46

(2-3):331–370, 2010. ISSN 1380-7501. doi: 10.1007/s11042-009-0387-4.

Jesse Davis et al. Tightly integrating relational learning and multiple-instance regression for

real-valued drug activity prediction. In Proceedings of the 24th International Conference on

Machine Learning, ICML ’07, pages 425–432, Corvallis, OR, USA, 2007.

Marco Degemmis, Pasquale Lops, and Giovanni Semeraro. A content-collaborative recom-

mender that exploits wordnet-based user profiles for neighborhood formation. User

Modeling and User-Adapted Interaction, 17(3):217–255, 2007. ISSN 0924-1868. doi:

10.1007/s11257-006-9023-4.

Mukund Deshpande and George Karypis. Item-based top-N recommendation algorithms.

ACM Transactions on Information Systems, 22(1):143–177, 2004. ISSN 1046-8188. doi:

10.1145/963770.963776.

Riccardo Di Massa, Maurizio Montagnuolo, and Alberto Messina. Implicit news recommen-

dation based on user interest models and multimodal content analysis. In Proceedings of

the 3rd International Workshop on Automated Information Extraction in Media Production,

AIEMPro ’10, pages 33–38, Firenze, Italy, 2010. doi: 10.1145/1877850.1877861.

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J. Smola, Jing Jiang, and Chong Wang.

Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In

Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’14, pages 193–202, New York, NY, USA, 2014. doi: 10.1145/2623330.

2623758.

Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. Solving the multiple

instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1–2):31 – 71, 1997.

ISSN 0004-3702. doi: 10.1016/S0004-3702(96)00034-3.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Grbovic, Vladan Radosavljevic, and Narayan

Bhamidipati. Hate speech detection with comment embeddings. In Proceedings of the 24th

International Conference on World Wide Web, WWW ’15 Companion, pages 29–30, Florence,

Italy, 2015. doi: 10.1145/2740908.2742760.

136



Bibliography

Gary Doran and Soumya Ray. A theoretical and empirical analysis of support vector machine

methods for multiple-instance classification. Machine Learning, 97(1-2):79–102, 2014. ISSN

0885-6125. doi: 10.1007/s10994-013-5429-5.

Harris Drucker, Chris J.C. Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik. Support

vector regression machines. In Advances in Neural Information Processing systems, pages

155–161, Denver, CO, USA, 1996.

Asmaa Elbadrawy and George Karypis. User-specific feature-based similarity models for top-N

recommendation of new items. ACM Transactions on Intelligent System and Technology, 6

(3):33:1–33:20, 2015. ISSN 2157-6904. doi: 10.1145/2700495.

Joseph G. Ellis, Sabrina W. Lin, Ching-Yung Lin, and Shih-Fu Chang. Predicting evoked

emotions in video. In Proceedings of the IEEE International Symposium on Multimedia, ISM

’14, pages 287–294, 2014. doi: 10.1109/ISM.2014.69.

Siamak Faridani. Using canonical correlation analysis for generalized sentiment analy-

sis, product recommendation and search. In Proceedings of the 5th ACM Conference

on Recommender Systems, RecSys ’11, pages 355–358, Chicago, Illinois, USA, 2011. doi:

10.1145/2043932.2044005.

Marcello Federico, Mauro Cettolo, Luisa Bentivogli, Michael Paul, and Sebastian Stüker.

Overview of the IWSLT 2012 evaluation campaign. In Proceedings of the International

Workshop on Spoken Language Translation, IWSLT ’12, Hong Kong, China, 2012.

James Foulds and Eibe Frank. A review of multi-instance learning assumptions. The Knowledge

Engineering Review, 25:1:1–25, 2010.

Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using Wikipedia-

based explicit semantic analysis. In Proceedings of the 20th International Joint Conference

on Artificial Intelligence, IJCAI ’07, pages 1606–1611, Hyderabad, India, 2007.

Gayatree Ganu, Noemie Elhadad, and Amélie Marian. Beyond the stars: Improving rating

predictions using review text content. In Proceedings of the 12th International Workshop on

the Web and Databases, WebDB ’09, Providence, Rhode Island, 2009.

Miguel Á. García-Cumbreras, Arturo Montejo-Ráez, and Manuel C. Díaz-Galiano. Pessimists

and optimists: Improving collaborative filtering through sentiment analysis. Expert Systems

with Applications, 40(17):6758 – 6765, 2013. ISSN 0957-4174. doi: 10.1016/j.eswa.2013.06.

049.

Narendra Gupta, Giuseppe Di Fabbrizio, and Patrick Haffner. Capturing the stars: Predicting

ratings for service and product reviews. In Proceedings of the NAACL HLT 2010 Workshop on

Semantic Search, SS ’10, pages 36–43, Los Angeles, CA, USA, 2010.

Maryam Habibi and Andrei Popescu-Belis. Diverse keyword extraction from conversations.

In Proceedings of the 51th Annual Meeting of the Association for Computational Linguistics,

Short Papers, ACL ’13, Sofia, Bulgaria, 2013.

137



Bibliography

Maryam Habibi and Andrei Popescu-Belis. Keyword extraction and clustering for document

recommendation in conversations. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 23(4):746–759, 2015. doi: 10.1109/TASLP.2015.2405482.

Hussam Hamdan, Patrice Bellot, and Frederic Bechet. Lsislif: CRF and logistic regression

for opinion target extraction and sentiment polarity analysis. In Proceedings of the 9th

International Workshop on Semantic Evaluation, SemEval ’15, pages 753–758, Denver,

Colorado, 2015.

Christian Hardmeier, Preslav Nakov, Sara Stymne, Jörg Tiedemann, Yannick Versley, and Mauro

Cettolo. Pronoun-focused mt and cross-lingual pronoun prediction: Findings of the 2015

discomt shared task on pronoun translation. In Proceedings of the Second Workshop on

Discourse in Machine Translation, pages 1–16, Lisbon, Portugal, 2015.

Vasileios Hatzivassiloglou and Janyce M. Wiebe. Effects of adjective orientation and gradability

on sentence subjectivity. In Proceedings of the 18th Conference on Computational Linguistics

- Volume 1, COLING ’00, pages 299–305, Saarbrücken, Germany, 2000. doi: 10.3115/990820.

990864.

Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. TriRank: Review-aware explainable

recommendation by modeling aspects. In Proceedings of the 24th ACM International on

Conference on Information and Knowledge Management, CIKM ’15, pages 1661–1670, Mel-

bourne, VIC, Australia, 2015. doi: 10.1145/2806416.2806504.

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. Evaluating

collaborative filtering recommender systems. ACM Transactions on Information Systems, 22

(1):5–53, 2004. ISSN 1046-8188. doi: 10.1145/963770.963772.

Jonathan Lee Herlocker. Understanding and Improving Automated Collaborative Filtering

Systems. PhD thesis, University of Minnesota, 2000. AAI9983577.

Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual

international ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’99, Berkeley, CA, USA, 1999. doi: 10.1145/312624.312649.

Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of the

10th ACM SIGKDD International Conference on Knowledge discovery and data mining, KDD

’04, pages 168–177, Seattle, WA, 2004. doi: 10.1145/1014052.1014073.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback

datasets. In Proceedings of the 8th IEEE International Conference on Data Mining, ICDM ’08,

pages 263–272, Washington, DC, USA, 2008. doi: 10.1109/ICDM.2008.22.

Vidit Jain and Esther Galbrun. Topical organization of user comments and application to

content recommendation. In Proceedings of the 22nd International Conference on World

Wide Web Companion, WWW ’13 Companion, pages 61–62, Rio de Janeiro, Brazil, 2013.

138



Bibliography

Niklas Jakob, Stefan Hagen Weber, Mark Christoph Müller, and Iryna Gurevych. Beyond the

stars: Exploiting free-text user reviews to improve the accuracy of movie recommendations.

In Proceedings of the 1st International CIKM Workshop on Topic-sentiment Analysis for Mass

Opinion, TSA ’09, pages 57–64, 2009. doi: 10.1145/1651461.1651473.

Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06, pages

217–226, 2006. doi: 10.1145/1150402.1150429.

Pontus Johansson. Madfilm - a multimodal approach to handle search and organization in a

movie recommendation system. In Proceedings of the 1st Nordic Symposium on Multimodal

Communication, pages 53–65, Copenhagen, Denmark, 2003.

Brendan Jou, Tao Chen, Nikolaos Pappas, Miriam Redi, Mercan Topkara, and Shih-Fu Chang.

Visual affect around the world: A large-scale multilingual visual sentiment ontology. In

Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, MM ’15, pages

159–168, Brisbane, Australia, 2015. ISBN 978-1-4503-3459-4. doi: 10.1145/2733373.2806246.

Santosh Kabbur, Xia Ning, and George Karypis. FISM: factored item similarity models for top-

N recommender systems. In Proceedings of the 19th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’13, pages 659–667, Chicago, Illinois, USA,

2013. doi: 10.1145/2487575.2487589.

Pythagoras Karampiperis, Antonis Koukourikos, and Giannis Stoitsis. Collaborative filtering

recommendation of educational content in social environments utilizing sentiment analysis

techniques. In Nikos Manouselis, Hendrik Drachsler, Katrien Verbert, and Olga C. Santos,

editors, Recommender Systems for Technology Enhanced Learning, pages 3–23. Springer,

Berlin, 2014. doi: 10.1007/978-1-4939-0530-0_1.

Noriaki Kawamae. Predicting future reviews: Sentiment analysis models for collaborative

filtering. In Proceedings of the 4th ACM International Conference on Web Search and Data

Mining, WSDM ’11, pages 605–614, Hong Kong, China, 2011. doi: 10.1145/1935826.1935911.

Hyung W. Kim, Keejun Han, Yi Y. Mun, Joonmyun Cho, and Jinwoo Hong. MovieMine: person-

alized movie content search by utilizing user comments. IEEE Transactions on Consumer

Electronics, 58(4):1416–1424, 2012. ISSN 0098-3063. doi: 10.1109/TCE.2012.6415015.

Hyunsoo Kim and Haesun Park. Sparse non-negative matrix factorizations via alternating

non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23

(12):1495–1502, 2007. doi: 10.1093/bioinformatics/btm134.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering

model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’08, pages 426–434, Las Vegas, NV, USA, 2008. doi: 10.

1145/1401890.1401944.

139



Bibliography

Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09,

pages 447–456, Paris, France, 2009. doi: 10.1145/1557019.1557072.

Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Francesco Ricci, Lior

Rokach, Bracha Shapira, and Paul B. Kantor, editors, Recommender Systems Handbook,

pages 145–186. Springer US, 2011. doi: 10.1007/978-0-387-85820-3_5.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, 42(8):30–37, 2009. ISSN 0018-9162. doi: 10.1109/MC.2009.263.

Dimitrios Kotzias, Misha Denil, Nando de Freitas, and Padhraic Smyth. From group to indi-

vidual labels using deep features. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 597–606, Sydney,

NSW, Australia, 2015. doi: 10.1145/2783258.2783380.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In 18th International

Conference on Machine Learning, pages 282–289, San Francisco, California, 2001.

John Lees-Miller, Fraser Anderson, Bret Hoehn, and Russell Greiner. Does Wikipedia informa-

tion help Netflix predictions? In Proceedings of the 7th International Conference on Machine

Learning and Applications, ICMLA ’08, pages 337–343, San Diego, California, 2008.

Cane Leung, Stephen Chan, and Fu-Lai Chung. Integrating collaborative filtering and senti-

ment analysis: A rating inference approach. In Proceedings of The ECAI 2006 Workshop on

Recommender Systems, pages 62–66, Riva del Garda, Italy, 2006.

Cane Leung, Stephen Chan, Fu-lai Chung, and Grace Ngai. A probabilistic rating inference

framework for mining user preferences from reviews. World Wide Web, 14:187–215, 2011.

ISSN 1386-145X.

Asher Levi, Osnat Mokryn, Christophe Diot, and Nina Taft. Finding a needle in a haystack of

reviews: Cold start context-based hotel recommender system. In Proceedings of the Sixth

ACM Conference on Recommender Systems, RecSys ’12, pages 115–122, Dublin, Ireland, 2012.

doi: 10.1145/2365952.2365977.

Beibei Li, Shuting Xu, and Jun Zhang. Enhancing clustering blog documents by utilizing

author/reader comments. In Proceedings of the 45th Annual Southeast Regional Conference,

ACM-SE 45, pages 94–99, Winston-Salem, North Carolina, 2007. doi: 10.1145/1233341.

1233359.

Fangtao Li, Chao Han, Minlie Huang, Xiaoyan Zhu, Ying-Ju Xia, Shu Zhang, and Hao Yu.

Structure-aware review mining and summarization. In Proceedings of the 23rd International

Conference on Computational Linguistics, COLING ’10, pages 653–661, Beijing, China, 2010a.

140



Bibliography

Fangtao Li, Nathan Liu, Hongwei Jin, Kai Zhao, Qiang Yang, and Xiaoyan Zhu. Incorporating

reviewer and product information for review rating prediction. In Proceedings of the 22nd

International Joint Conference on Artificial Intelligence - Volume 3, IJCAI ’11, pages 1820–

1825, Barcelona, Spain, 2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-305.

Qing Li, Jia Wang, Yuanzhu Peter Chen, and Zhangxi Lin. User comments for news recommen-

dation in forum-based social media. Journal of Information Science, 180(24):4929–4939,

2010b. ISSN 0020-0255. doi: 10.1016/j.ins.2010.08.044.

Yanen Li, Jia Hu, Cheng Xiang Zhai, and Ye Chen. Improving one-class collaborative filtering

by incorporating rich user information. In Proceedings of the 19th ACM International

Conference on Information and Knowledge Management, CIKM ’10, pages 959–968, Toronto,

ON, Canada, 2010c. doi: 10.1145/1871437.1871559.

Yanen Li, ChengXiang Zhai, and Ye Chen. Exploiting rich user information for one-class

collaborative filtering. Knowledge and Information Systems, 38(2):277–301, 2014. ISSN

0219-1377. doi: 10.1007/s10115-012-0583-9.

Chenghua Lin and Yulan He. Joint sentiment/topic model for sentiment analysis. In Proceed-

ings of the 18th ACM Conference on Information and Knowledge Management, CIKM ’09,

pages 375–384, Hong Kong, China, 2009. doi: 10.1145/1645953.1646003.

Guang Ling, Michael R. Lyu, and Irwin King. Ratings meet reviews, a combined approach to

recommend. In Proceedings of the 8th ACM Conference on Recommender Systems, RecSys

’14, pages 105–112, Foster City, CA, USA, 2014. doi: 10.1145/2645710.2645728.

Edward Loper and Steven Bird. NLTK: the natural language toolkit. In Proceedings of the

ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language

Processing and Computational Linguistics - Volume 1, ETMTNLP ’02, pages 63–70, 2002. doi:

10.3115/1118108.1118117.

Pasquale Lops, Marco Gemmis, and Giovanni Semeraro. Content-based recommender sys-

tems: State of the art and trends. In Francesco Ricci, Lior Rokach, Bracha Shapira, and

Paul B. Kantor, editors, Recommender Systems Handbook, pages 73–105. Springer US, 2011.

doi: 10.1007/978-0-387-85820-3_3.

Bin Lu, Myle Ott, Claire Cardie, and Benjamin K. Tsou. Multi-aspect sentiment analysis with

topic models. In Proceedings of the 11th IEEE International Conference on Data Mining

Workshops, ICDMW ’11, pages 81–88, Washington, DC, USA, 2011. doi: 10.1109/ICDMW.

2011.125.

Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King. Recommender systems

with social regularization. In Proceedings of the 4th ACM International Conference on

Web search and Data Mining, WSDM ’11, pages 287–296, Hong Kong, China, 2011. doi:

10.1145/1935826.1935877.

141



Bibliography

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher

Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics: Human Language Technologies -

Volume 1, HLT ’11, pages 142–150, Portland, OR, USA, 2011.

Bernardo Magnini and Carlo Strapparava. Improving user modelling with content-based

techniques. In Mathias Bauer, PiotrJ. Gmytrasiewicz, and Julita Vassileva, editors, User

Modeling 2001, volume 2109 of Lecture Notes in Computer Science, pages 74–83. Springer,

2001.

Tariq Mahmood and Francesco Ricci. Improving recommender systems with adaptive conver-

sational strategies. In Proceedings of the 20th ACM Conference on Hypertext and Hypermedia,

HT ’09, pages 73–82, Torino, Italy, 2009. doi: 10.1145/1557914.1557930.

José M. Martinez. Standards - MPEG-7 overview of MPEG-7 description tools, part 2. Multi-

Media, IEEE, 9(3):83–93, 2002. ISSN 1070-986X. doi: 10.1109/MMUL.2002.1022862.

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: Understanding rating

dimensions with review text. In Proceedings of the 7th ACM Conference on Recommender

Systems, RecSys ’13, pages 165–172, Hong Kong, China, 2013. doi: 10.1145/2507157.2507163.

Julian McAuley, Jure Leskovec, and Dan Jurafsky. Learning attitudes and attributes from multi-

aspect reviews. In Proceedings of the 12th IEEE International Conference on Data Mining,

ICDM ’12, pages 1020–1025, Brussels, Belgium, 2012. doi: 10.1109/ICDM.2012.110.

Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, and ChengXiang Zhai. Topic sentiment

mixture: modeling facets and opinions in weblogs. In Proceedings of the 16th International

Conference on the World Wide Web, WWW ’07, pages 171–180, Banff, AB, Canada, 2007. doi:

10.1145/1242572.1242596.

Tao Mei, Bo Yang, Xian-Sheng Hua, and Shipeng Li. Contextual video recommendation by

multimodal relevance and user feedback. ACM Transactions on Information Systems, 29(2):

10:1–10:24, 2011. ISSN 1046-8188. doi: 10.1145/1961209.1961213.

Andrew Messenger and John Whittle. Recommendations based on user-generated comments

in social media. In Proceedings of the 3rd International Conference on Privacy, Security, Risk

and Trust, PASSAT ’11, pages 505–508, Boston, USA, 2011. doi: 10.1109/PASSAT/SocialCom.

2011.146.

Stuart E. Middleton, Nigel R. Shadbolt, and David C. De Roure. Ontological user profiling in

recommender systems. ACM Transactions on Information Systems, 22(1):54–88, 2004. ISSN

1046-8188. doi: 10.1145/963770.963773.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-

sentations of words and phrases and their compositionality. In Christopher Burges, Léon

Bottou, Max Welling, Zoubin Ghahramani, and Kilian Weinberger, editors, Advances in

Neural Information Processing Systems 26, pages 3111–3119, 2013.

142



Bibliography

Yashar Moshfeghi, Benjamin Piwowarski, and Joemon M. Jose. Handling data sparsity in

collaborative filtering using emotion and semantic based features. In Proceedings of the

34th International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR ’11, pages 625–634, Beijing, China, 2011. doi: 10.1145/2009916.2010001.

Andreas C. Müller and Sven Behnke. pystruct - learning structured prediction in python.

Journal of Machine Learning Research, 15:2055–2060, 2014.

Claudiu-Cristian Musat, Yizhong Liang, and Boi Faltings. Recommendation using textual

opinions. In Proceedings of the Twenty-Third International Joint Conference on Artificial

Intelligence, IJCAI ’13, pages 2684–2690. AAAI Press, 2013.

Nathan Srebro Nati and Tommi Jaakkola. Weighted low-rank approximations. In Proceed-

ings of the 20th International Conference on Machine Learning, ICML ’03, pages 720–727,

Washington, DC, USA, 2003.

YanPing Nie, Yang Liu, and Xiaohui Yu. Weighted aspect-based collaborative filtering. In

Proceedings of the 37th International ACM SIGIR Conference on Research and Development

in Information Retrieval, SIGIR ’14, pages 1071–1074, Gold Coast, QLD, Australia, 2014. doi:

10.1145/2600428.2609512.

Xia Ning and George Karypis. SLIM: Sparse linear methods for top-N recommender systems. In

Proceedings of the 11th International Conference on Data Mining, ICDM ’11, pages 497–506,

Vancouver, BC, Canada, 2011.

Rong Pan and Martin Scholz. Mind the gaps: Weighting the unknown in large-scale one-class

collaborative filtering. In Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’09, pages 667–676, Paris, France, 2009. doi:

10.1145/1557019.1557094.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan N. Liu, Rajan Lukose, Martin Scholz, and Qiang

Yang. One-class collaborative filtering. In 8th IEEE International Conference on Data Mining,

ICDM ’08, pages 502–511, Pisa, Italy, 2008. doi: 10.1109/ICDM.2008.16.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categoriza-

tion with respect to rating scales. In Proceedings of the 43rd Annual Meeting on Association

for Computational Linguistics, ACL ’05, pages 115–124, Ann Arbor, Michigan, 2005. doi:

10.3115/1219840.1219855.

Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and Trends in

Information Retrieval, 2(1-2):1–135, 2008. ISSN 1554-0669. doi: 10.1561/1500000011.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: Sentiment classification

using machine learning techniques. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing, EMNLP ’02, pages 79–86, Philadelphia, PA, USA, 2002. doi:

10.3115/1118693.1118704.

143



Bibliography

Manos Papagelis and Dimitris Plexousakis. Qualitative analysis of user-based and item-based

prediction algorithms for recommendation agents. Engineering Applications of Artificial

Intelligence, 18(7):781–789, 2005. ISSN 0952-1976. doi: 10.1016/j.engappai.2005.06.010.

Nikolaos Pappas and Andrei Popescu-Belis. Combining content with user preferences for ted

lecture recommendation. In 11th International Workshop on Content-Based Multimedia

Indexing, CBMI ’13, pages 47–52, 2013a. doi: 10.1109/CBMI.2013.6576551.

Nikolaos Pappas and Andrei Popescu-Belis. Sentiment analysis of user comments for one-class

collaborative filtering over TED talks. In Proceedings of the 36th international ACM SIGIR

Conference on Research and development in information retrieval, SIGIR ’13, pages 773–776,

Dublin, Ireland, 2013b. doi: 10.1145/2484028.2484116.

Nikolaos Pappas and Andrei Popescu-Belis. Explaining the stars: Weighted multiple-instance

learning for aspect-based sentiment analysis. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing, EMNLP ’14, pages 455–466, Doha, Qatar,

2014.

Nikolaos Pappas and Andrei Popescu-Belis. Combining content with user preferences for

non-fiction multimedia recommendation: a study on ted lectures. Multimedia Tools and

Applications, pages 1–23, 2015. ISSN 1380-7501. doi: 10.1007/s11042-013-1840-y.

Nikolaos Pappas and Andrei Popescu-Belis. Adaptive sentiment-aware one-class collaborative

filtering. Expert Systems with Applications, 43:23 – 41, 2016a. ISSN 0957-4174. doi: 10.1016/

j.eswa.2015.08.035.

Nikolaos Pappas and Andrei Popescu-Belis. Learning aspect saliency of sentences for review

understanding. In Proceedings of the 15th Annual Conference of the North American Chapter

of the Association for Computational Linguistics (Submitted), San Diego, CA, USA, 2016b.

Nikolaos Pappas, Georgios Katsimpras, and Efstathios Stamatatos. Distinguishing the popu-

larity between topics: A system for up-to-date opinion retrieval and mining in the web. In

Proceedings of the 14th International Conference on Intelligent Text Processing and Compu-

tational Linguistics, CICLING ’13, pages 197–209, 2013. doi: 10.1145/2362456.2362462.

Ulrich Paquet and Noam Koenigstein. One-class collaborative filtering with random graphs.

In Proceedings of the 22nd International Conference on World Wide Web, WWW ’13, pages

999–1008, Rio de Janeiro, Brazil, 2013.

Souneil Park, Minsam Ko, Jungwoo Kim, Ying Liu, and Junehwa Song. The politics of com-

ments: Predicting political orientation of news stories with commenters’ sentiment patterns.

In Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, CSCW

’11, pages 113–122, Hangzhou, China, 2011. doi: 10.1145/1958824.1958842.

Braja Gopal Patra, Soumik Mandal, Dipankar Das, and Sivaji Bandyopadhyay. JU_CSE: A

conditional random field (CRF) based approach to aspect based sentiment analysis. In

144



Bibliography

Proceedings of the 8th International Workshop on Semantic Evaluation, SemEval ’14, pages

370–374, Dublin, Ireland, 2014.

Paul A. Pavlou and Angelika Dimoka. The nature and role of feedback text comments in online

marketplaces: Implications for trust building, price premiums, and seller differentiation.

Information Systems Research, 17(4):392–414, 2006. ISSN 1526-5536. doi: 10.1287/isre.1060.

0106.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake

VanderPlas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and

Edouard Duchesnay. Scikit-learn: Machine learning in python. CoRR, abs/1201.0490, 2012.

Stefan Pero and Tomáš Horváth. Opinion-driven matrix factorization for rating prediction. In

Sandra Carberry, Stephan Weibelzahl, Alessandro Micarelli, and Giovanni Semeraro, editors,

User Modeling, Adaptation, and Personalization, volume 7899 of Lecture Notes in Computer

Science, pages 1–13. Springer Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-38844-6_1.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion Androutsopoulos,

and Suresh Manandhar. SemEval-2014 task 4: Aspect based sentiment analysis. In Proceed-

ings of the 8th International Workshop on Semantic Evaluation, SemEval ’14, pages 27–35,

Dublin, Ireland, 2014.

Lizhen Qu, Georgiana Ifrim, and Gerhard Weikum. The bag-of-opinions method for review rat-

ing prediction from sparse text patterns. In Proceedings of the 23rd International Conference

on Computational Linguistics, COLING ’10, pages 913–921, Beijing, China, 2010.

Soumya Ray and David Page. Multiple instance regression. In Proceedings of the 18th Interna-

tional Conference on Machine Learning, ICML ’01, pages 425–432, 2001.
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