
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. E. Bugnion, président du jury
Prof. V. Kuncak, directeur de thèse

Prof. R. Alur, rapporteur
Prof. M. Vechev, rapporteur
Prof. C. Koch, rapporteur

Deductive Synthesis and Repair

THÈSE NO 6878 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 26 FÉVRIER 2016

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE D'ANALYSE ET DE RAISONNEMENT AUTOMATISÉS

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2016

PAR

Etienne KNEUSS

Acknowledgements
First and foremost I would like to thank my advisor, Viktor Kuncak, for his constant support

and guidance throughout my studies. I am thankful that he trusted me with my odd research

projects. It has been a real pleasure working with him.

I would like to extend my gratitude to the members of my review committee: Rajeev Alur,

Martin Vechev, Chirstoph Koch, and Martin Odersky. I thank them for their constructive

remarks and insightful comments during my defense.

Without my co-authors, parts of this dissertation would not exist: I thank Philippe Suter,

Ivan Kuraj, Manos Koukoutos, and Régis Blanc. Specifically, I thank Philippe for managing to

motivate me to enter the wonderful world of program synthesis, and Manos for his help and

insights regarding the work on repair.

My life at the lab has always been enjoyable, mostly thanks to the past and present members

of the LAMP and LARA labs, including Adriaan, Alex, Ali, Andrej, Andrew, Eva, Filip, Guilano,

Heather, Hossein, Hubert, Ingo, Ivan, Jad, Lukas, Manohar, Manos, Miguel, Mikaël, Nada,

Philippe, Régis, Sandro, Sébastien, Vojin and Vlad.

I thank Danielle Chamberlain and Yvette Gallay for their administrative support and making

sure we all meet outside of EPFL, at least once a year. I also thank Holly for spending time to

spot my numerous English mistakes. I thank Fabien Salvi for making sure our infrastructure

meets our eccentric requirements.

I also thank my family for keeping the amount of computer-related support requests to a strict

minimum.

Finally, of course I thank Aline.

Lausanne, December 2015 E. K.

i

Preface
A new generation of software development tools is emerging these years. These tools can

symbolically explore infinitely many possible executions of programs while making use of any

user-supplied contracts, much like compilers make use of types. They can not only find errors,

but also correct them, ensuring that the program meets its specification, or even synthesize

functions from specifications alone. This dissertation presents a preview of such tools and the

new techniques needed to build them.

The central stage of the thesis occupy synthesis techniques. The remarkable idea of deductive

synthesis re-appears here in the most useful form it has ever taken. Several game changing

technologies complement deductive synthesis compared to its original deployment decades

ago: satisfiability modulo theory solvers enable much more automated verification and un-

precedented ability to find counterexamples. Using counter-examples to provide feedback

into synthesis in itself is another crucial idea that emerged from model checking as well as

from synthesis over bounded domains.

Even after taking best available techniques into account, synthesis over unbounded domains

remains an extremely challenging problem. This thesis aims to synthesize pure recursive

functions over unbounded domains, with no a priory restriction on the form of specifications

or programs to synthesize. It introduces a synthesis framework that proved general enough

to accommodate different synthesis steps yet specific enough to accommodate expressing

algorithmic insights and serving as the starting point for an implementation. It introduces

a new approach to counter-example guided synthesis, which makes use of SMT solvers to

navigate an exponential space of programs while permitting the use of program execution to

quickly rule out invalid candidate programs.

Synthesis can be leveraged in fully automated mode, where it can generate from specifications

functions such as sorting or simple data structure operations. Its use with manual synthesis

rules can be made arbitrarily expressive, though it is not necessary because an editor and

verification engine remain at the disposal of the programmer.

The thesis presents program repair as a practical deployment of synthesis technology. The

best way to explain where an error was to repair a program into the form where it has no error.

Repair can be naturally invoked whenever verification identifies a problem, and can leverage

the existing program to reduce the search space for a correct solution. Indeed, the repaired

programs are several times larger than programs that can be synthesized from scratch, while

the set of repairs is not nearly as bounded as in heuristic repair techniques.

The time at which these tools arise makes their deployment as a web service an obvious choice.

iii

Chapter 0. Preface

Instead of increasingly bulky desktop development environments, web services work with zero

installation, support collaboration, and can leverage scalable remote computational resources

to perform their tasks. The tool shown in this thesis sets a new standard in terms of both ease

of use and the breadth of functionality of tools for developing correct software.

Lausanne, 14 February 2016 Viktor Kuncak

iv

Abstract
In this thesis, we explore techniques for the development of recursive functional programs

over unbounded domains that are proved correct according to their high-level specifications.

We present algorithms for automatically synthesizing executable code, starting from the speci-

fication alone. We implement these algorithms in the Leon system. We augment relational

specifications with a concise notation for symbolic tests, which are are helpful to characterize

fragments of the functions’ behavior. We build on our synthesis procedure to automatically

repair invalid functions by generating alternative implementations. Our approach therefore

formulates program repair in the framework of deductive synthesis and uses the existing

program structure as a hint to guide synthesis. We rely on user-specified tests as well as

automatically generated ones to localize the fault. This localization enables our procedure

to repair functions that would otherwise be out of reach of our synthesizer, and ensures that

most of the original behavior is preserved.

We also investigate multiple ways of enabling Leon programs to interact with external, un-

trusted code. For that purpose, we introduce a precise inter-procedural effect analysis for

arbitrary Scala programs with mutable state, dynamic object allocation, and dynamic dispatch.

We analyzed the Scala standard library containing 58000 methods and classified them into sev-

eral categories according to their effects. Our analysis proves that over one half of all methods

are pure, identifies a number of conditionally pure methods, and computes summary graphs

and regular expressions describing the side effects of non-pure methods.

We implement the synthesis and repair algorithms within the Leon system and deploy them

as part of a novel interactive development environment available as a web interface. Our

implementation is able to synthesize, within seconds, a number of useful recursive functions

that manipulate unbounded numbers and data structures. Our repair procedure automatically

locates various kinds of errors in recursive functions and fixes them by synthesizing alternative

implementations.

Key words: declarative programming, program synthesis, synthesis procedures, program

repair, static analysis, memory effects

v

Résumé
Dans cette thèse, nous explorons des techniques pour le développement de programmes

fonctionnels récursifs qui sont corrects par rapport à une spécification de haut niveau. Nous

présentons des algorithmes qui synthétisent automatiquement des programmes exécutables

en partant uniquement de leurs spécifications. Nous implémentons ces algorithmes dans le

système Leon. Nous accompagnons ces spécifications relationnelles d’une notation concise

pour les tests symboliques qui sont utiles afin de caractériser certains aspects du comporte-

ment des fonctions. Nous étendons ensuite cette procédure de synthèse afin de permettre la

réparation automatique d’une fonction invalide en générant une implémentation alternative

qui satisfait sa spécification. Notre approche formule ainsi la réparation de programmes dans

le cadre de la synthèse déductive et se base sur le programme existant pour guider cette

synthèse. Nous utilisons des tests générés automatiquement ainsi que ceux fournis par les

utilisateurs pour localiser la source de l’erreur. Cette localisation nous permet de réparer des

fonctions qui seraient sinon hors de portée de nos algorithmes de synthèse et nous garantit

également de conserver une grande partie du comportement du programme d’origine.

Nous étudions aussi diverses manières de permettre à Leon d’interagir avec des programmes

externes pour lesquels nous n’avons aucune garantie. Pour cette raison nous introduisons une

analyse inter-procédurale d’effets pour des programmes Scala arbitraires, et en particulier

pour les programmes avec de l’état mutable, de l’allocation dynamique d’objets et des appels

dynamiques à des méthodes. Nous avons analysé la librairie standard Scala qui contient 58’000

méthodes et les avons classifiées en fonction de leurs effets. Notre analyse montre que plus

de la moitié de ces méthodes sont pures, qu’une partie sont conditionnellement pures. Elle

rapporte les effets des méthodes impures sous la forme d’expressions régulières.

Nous implémentons les algorithmes de synthèse et de réparation dans le système Leon et

les déployons dans un nouvel environnement de développement disponible sous la forme

d’une interface Web. Notre implémentation est capable de synthétiser en quelques secondes

un nombre de fonctions récursives manipulant des structures de données. Notre procédure

de réparation localise automatiquement diverses erreurs dans des fonctions récursives et les

corrige en synthétisant une implémentation alternative.

Mots-clefs : programmation déclarative, synthèse de programme, procédure de synthèse,

réparation de programme, analyse statique, effets de mémoire

vii

Contents
Acknowledgements i

Preface iii

Abstract (English/Français) v

List of figures xv

Introduction 1

1 The Leon System 5

1.1 Verification in Leon . 5

1.2 Web Interface . 6

1.2.1 Live Code Updates . 7

1.2.2 Verification . 9

1.2.3 Execution . 9

1.2.4 Synthesis . 10

1.2.5 Repair . 15

1.3 Symbolic Input/Output Tests . 15

2 Deductive Synthesis 17

2.1 Examples . 18

2.1.1 Tree Manipulations . 18

2.1.2 List Manipulation . 19

2.2 Formalism . 26

2.3 Deductive Framework . 28

2.3.1 Exploring the Space of Applications . 29

2.3.2 Synthesis Rules . 31

2.3.3 Cost Models . 37

2.4 Symbolic Term Exploration . 38

2.4.1 Grammars for Programs . 38

2.4.2 From Grammars to Programs . 43

2.4.3 Search Algorithm . 46

2.4.4 Execution of Partial Programs . 49

2.5 Ground-Term Generator . 50

ix

Contents

2.5.1 Generate and Test . 50

2.5.2 Symbolic Input-Output Examples . 51

2.5.3 Model-Based Enumeration . 51

2.6 Evaluation . 52

2.7 Related Work . 54

2.8 Conclusions . 58

3 Deductive Repair 59

3.1 Example . 60

3.2 Deductive Guided Repair . 62

3.2.1 Fault Localization . 63

3.2.2 Guided Decompositions . 65

3.2.3 Synthesis within Repair . 65

3.3 Counterexample-Guided Similar-Term Exploration 65

3.4 Generating and Using Tests for Repair . 66

3.4.1 Extraction and Generation of Tests . 66

3.4.2 Classifying and Minimizing Traces . 67

3.5 Evaluation . 68

3.6 Further Related Work . 70

3.7 Conclusions . 71

4 Effect Analysis for Programs with Callbacks 73

4.1 Overview of Challenges and Solutions . 75

4.2 Effect Analysis for Mutable Shared Structures . 77

4.2.1 Intermediate Language Used for the Analysis 78

4.2.2 Effects as Graph Transformers . 78

4.2.3 Composing Effects . 80

4.2.4 Local Strong Updates . 81

4.2.5 Application to the Analysis of Real-World Scala Code 82

4.3 Compositional Analysis of Higher-Order Code . 83

4.3.1 Control-Flow Graph Summarization . 84

4.3.2 Partial Unfolding . 84

4.3.3 Combining Unfolding and Summarization 86

4.3.4 Controlled Delaying . 87

4.3.5 Handling Recursion . 87

4.3.6 Instantiation for Effect Graphs . 88

4.3.7 Context Sensitivity . 88

4.4 Producing Readable Effect Summaries . 89

4.5 Evaluation on Scala Library . 91

4.5.1 Overall Results . 91

4.5.2 Comparative Analysis . 93

4.5.3 Selected Examples . 93

4.6 Related Work . 95

x

Contents

4.7 Conclusion . 97

Conclusions 99

A Synthesis Benchmarks and Solutions 101

A.1 Compiler . 101

A.1.1 Header . 101

A.1.2 Rewrite Implies . 103

A.1.3 Rewrite Minus . 104

A.2 List . 104

A.2.1 Header . 104

A.2.2 Insert . 105

A.2.3 Delete . 105

A.2.4 Merge . 106

A.2.5 Diff . 106

A.2.6 split . 106

A.3 Sorted List . 107

A.3.1 Header . 107

A.3.2 Insert . 108

A.3.3 Insert Always . 109

A.3.4 Delete . 109

A.3.5 Merge . 110

A.3.6 Diff . 110

A.3.7 Insertion Sort . 111

A.4 Strictly Sorted Lists . 111

A.4.1 Header . 111

A.4.2 Insert . 112

A.4.3 Delete . 113

A.4.4 Merge . 113

A.5 Unary Numerals . 114

A.5.1 Header . 114

A.5.2 Add . 114

A.5.3 Distinct . 115

A.5.4 Mult . 115

A.6 Batched Queue . 116

A.6.1 Header . 116

A.6.2 Dequeue . 117

A.7 Address Book . 118

A.7.1 Header . 118

A.7.2 Merge . 119

xi

Contents

B Repair Benchmarks and Solutions 121

B.1 Compiler . 121

B.1.1 Complete File . 121

B.1.2 Desugar 1 . 126

B.1.3 Desugar 2 . 126

B.1.4 Desugar 3 . 127

B.1.5 Desugar 4 . 127

B.1.6 Desugar 5 . 128

B.1.7 Simplify . 128

B.2 Heap . 129

B.2.1 Complete File . 129

B.2.2 Merge 1 . 131

B.2.3 Merge 2 . 132

B.2.4 Merge 3 . 132

B.2.5 Merge 4 . 133

B.2.6 Merge 5 . 133

B.2.7 Merge 6 . 133

B.2.8 Insert . 134

B.2.9 Make Node . 134

B.3 List . 135

B.3.1 Complete File . 135

B.3.2 Pad . 142

B.3.3 ++ . 142

B.3.4 :+ . 142

B.3.5 Replace . 142

B.3.6 Count . 143

B.3.7 Find 1 . 143

B.3.8 Find 2 . 144

B.3.9 Find 3 . 144

B.3.10 Size . 145

B.3.11 Sum . 145

B.3.12 - . 145

B.3.13 Drop 1 . 146

B.3.14 Drop 2 . 146

B.4 Numerical . 147

B.4.1 Complete File . 147

B.4.2 power . 147

B.4.3 ModDiv . 148

B.5 Merge Sort . 148

B.5.1 Complete File . 148

B.5.2 Split . 149

B.5.3 Merge 1 . 150

xii

Contents

B.5.4 Merge 2 . 150

B.5.5 Merge 3 . 151

B.5.6 Merge 4 . 151

Bibliography 161

Curriculum Vitae 163

xiii

List of Figures

1.1 Example of a typical PureScala program that combines algebraic data-types and

recursive abstraction functions. We notice a post-condition on the size function,

specifying that its result is non-negative. 6

1.2 Overview of the Leon web interface. We can see the main editor pane where

developers can write programs. The pane on the right displays live analysis

results and updates automatically as the program changes. 7

1.3 Architecture of the web interface divided into components. Each component of

the back end is an independent worker actor that runs asynchronously. Compo-

nents receive code updates extracted and preprocessed into Leon trees, as well

as commands sent from the interface. It provides feedback to the interface that

updates its views. 8

1.4 When clicking on the invalid status in the right pane, we display verification

details explaining why the function is invalid. We display the counter-example

Leon discovered, as well as the resulting value when executing the function with

this counter-example. 8

1.5 Exploring the execution of an invalid function with a discovered counter-example

(in1 = Cons(0, Nil) and v = −1) . This enables the developer to figure out which

part of the post-condition is violated and why. 9

1.6 A synthesis pane is displayed whenever the input program contains a function

that can be synthesized. The interface then offers manual and automated ways

of synthesizing the function. 11

1.7 Searching will display a progress-bar showing the current status of the explo-

ration within the search graph. It displays the number of nodes covered, as well

as the total size of the graph. When a solution is found, we enable the developer

to either import the resulting expression, or explore it to refine it. 12

1.8 Exploration displays the search tree as well as how the resulting expression is

composed. For each node of the tree, the developer can choose an alternative

rule to apply, consequently changing how the solution will look. 13

1.9 We display the progress for the repair attempt in a dedicated modal. When suc-

cessful, we present the alternative implementation that satisfies the specification

and we enable the developer to import it in place of the old code. 14

xv

List of Figures

1.10 Partial specifications using the passes construct, enabling the matching of more

than one input and providing the expected output as an expression. In the case

of reverse, a single symbolic test is sufficient to fully specify the behavior of the

function on all lists of size three. 15

2.1 Expression trees with an evaluation function that returns the value correspond-

ing to a given (ground) expressions. Note that our evaluation function eval is

total: it returns Error when it gets stuck. We then define two functions that we

want to implement. They both rewrite an expression tree into an different shape,

that should be equivalent with respect to our evaluation function. 20

2.2 User-defined list structure with the usual size and content abstraction functions.

Here and throughout the chapter, the content abstraction computes a set of

elements, but it can easily be extended to handle multisets (bags) by using the

same techniques [dMB09] if stronger contracts are desired 21

2.3 Specification of sorting suitable for insertion sort 23

2.4 Synthesized insertion sort for Figure 2.3 . 23

2.5 Specification of removal from a sorted list. 24

2.6 Implementation synthesized for Figure 2.5 . 24

2.7 Normalizing rules for particular problems and specifications. 33

2.8 Normalizing rules for algebraic data-types. 34

2.9 Detupling for input and output variables. 34

2.10 Rules introducing conditional expressions. 36

2.11 Solver-based heuristics . 37

2.12 Partial search-graph that leads to a deep invocation of STE. This graph corre-

sponds to a top-level invocation of ADT-Split on the in variable. Then, we invoke

Equality-Split between v and h on the sub-problem corresponding to the Cons
case. Finally, we invoke STE in the sub-problem for when h is equal to v. 43

2.13 Partial solution around an invocation to STE, corresponding to the search-graph

displayed in Figure 2.12 (with PNi l solved with 〈� | Ni l〉 and P �= unsolved). . . . 44

2.14 Functions generated to represent the grammar G|3|. The non-terminal symbol

BigInt |1| is represented by two independent functions, because it can be used

twice at the same time in BigInt |3|. 45

2.15 Search algorithm. 47

2.16 Automatically synthesized functions using our system. We consider a problem

as synthesized if the solution generated is correct after manual inspection. For

each generated function, the table lists the size of its syntax tree and the number

of function calls it contains.
�

indicates that the system also found a proof

that the generated program matches the specification: in many cases proof

and synthesis are done simultaneously, but in rare cases merely a large number

of automatically generated inputs passed the specification. The final column

shows the total time used for both synthesis and verification. 53

xvi

List of Figures

3.1 The syntax tree translation in function desugar has a strong ensuring clause, re-

quiring the semantic equivalence of the transformed and the original tree, as

defined by several recursive evaluation functions. desugar contains an error. Our

system finds it, repairs the function, and proves the resulting program correct. 61

3.2 Code and invocation graph for desugar. Solid borderlines stand for passing tests,

dashed ones for failing ones. Type constructors for literals have been omitted. 67

3.3 Automatically repaired functions using our system. We provide for each opera-

tion a small description of the kind of error introduced, the overall program size,

the size of the invalid function, the size of the erroneous expression we locate,

and the size of the repaired version. We then provide the times our tool took

to gather and classify tests, and to repair the erroneous expression. Finally, we

mention if the resulting expression can be verified. The source of all benchmarks

can be found in the appendix. 69

4.1 Program statements P considered in the target language. 78

4.2 Example of a graph representing the effects of prepend. Read edges lead to load

nodes that represent unknown values, and solid edges represent field assignments. 79

4.3 Merging a graph with load nodes and strong updates in a context that does not

permit a strong update. Inside nodes are imported after refining their label. . . 81

4.4 Example of strong update being delayed as much as possible 81

4.5 Example of unfolding with Tcall = {C1.m,C2.m}. 85

4.6 Example of a chain of method calls. 86

4.7 Transformation steps from an effect-graph to a minimized DFA. The graph on

the left is the definite effect of an impure list traversal. The center graph is the

corresponding NFA whose accepting language represents paths to modified

fields. The last graph is the minimized DFA to be translated to a regular expression. 90

4.8 Decomposition of resulting summaries per package. 92

4.9 Comparing strategies. Numbers below boxes are percentages. Running times

are 166, 123 and 57 minutes respectively. 93

4.10 The particular four operations applied on the TreeSet collection 94

4.11 Readable effect descriptions obtained from graph summaries from four opera-

tions performed on five kinds of collections. 95

xvii

Introduction

Ensuring the trustworthiness of a software application requires two key insights: knowing

what it should do, and understanding what it currently does. Any mismatch between the

two represents flaws that can have dramatic repercussions. In this work, we explore multiple

approaches to bridge the gap between our expectations of an application and their realizations.

Today, writing software remains a largely manual effort, despite significant progress in software

development environments and tools. By exposing high-level constructs, modern program-

ming languages relieve developers from writing boiler-plate code and other error-prone details.

This trend can also be seen in the renewed appeal for domain-specific languages: experts

design and implement high-level building blocks that are then composed by users. Combin-

ing high-level constructs and rich type systems, as it is the case in Scala, already prevents

many programming errors. But most of the intended behavior of software applications is left

implicit: we expect, for instance, a list-sorting function to return a list that is sorted, but this

specification is often not stated explicitly. In fact, most popular programming languages do

not offer a way to specify the behavior of the program, as they would not be able to exploit

them anyway. These high-level description are often relegated to comments.

Software engineers have therefore developed many ad-hoc techniques to increase the reliabil-

ity of their codebase. Common approaches include coding guidelines, human code-reviews

and mechanical testing. The extent to which these techniques are applied generally depends

on the cost of a potential failure. For safety-critical applications such as for flight equipment,

constraining rules are well established and enforced by regulations. These typically include a

correctness certification: a strong argument or proof that the application behave as expected

under all circumstances.

For general-purpose software, the correctness of their behavior is mostly asserted by runtime

tests. These tests cover the aspects of the application that are deemed relevant by the testers

and developers. Although testing usually provides a good return on investment in terms of

quality, it does not give strong guarantees. It is difficult to establish a good metric for software

reliability, but the high number of bugs and security issues that are continuously discovered

indicates that commonly-used software still contains many preventable issues, although

mostly in edge-cases. This observation is also true for critical security software that has been

manually studied and thoroughly tested. We thus believe that the situation can be greatly

1

List of Figures

improved by enabling the mainstream use of verification. One of the strengths of software

verification is that, by considering the entire set of possible inputs, it does not discriminate

against edge-cases. Whereas the construction of arbitrarily complex verified software is

possible in principle, verifying programs after they have been developed is extremely time-

consuming [LS09, KAE+09] and it is difficult to argue that it is cost-effective.

At the root of our research stands the Leon verifier for purely-functional Scala programs

[Sut12b]. Leon quickly detects errors in functional programs by reporting concrete counterex-

amples and can also prove the correctness of programs [BKKS13, Sut12a, SDK10, SKK11]. An

important aspect of the tool is its modularity: The verification of an individual function against

its specification can begin before the entire software system is completed and the resulting

verification tasks are partitioned into small pieces. As a result, it can provide rapid feedback

that enables specifications and implementations to be developed simultaneously.

Int this thesis, we explore multiple approaches that aid the development of verified software.

Although the verifier itself is a key component, we believe the developers can also benefit from

techniques for synthesis and repair from specifications. Specifications in terms of relational

properties generalize existing declarative programming language paradigms by enabling the

statement of constraints between inputs and outputs [JL87, KKS12] as opposed to always

specifying outputs as functions from input to outputs. Unlike deterministic implementations,

constraints can be composed using conjunctions, which enables the problem to be described

as combination of orthogonal requirements.

The purely-functional subset of Scala offers interesting properties that Leon is able to exploit.

Any non-trivial applications are however unlikely to rely solely on purely functional features of

Scala. Whereas important parts of the application logic may be expressed in functional style,

dependencies to user-interactions or global state will be implemented by non-functional code.

We believe Leon can also be useful for these hybrid applications: it can modularly analyze the

functional components, assuming certain properties of the non-functional fragment. For this

purpose, we enabled Leon to support the definition of arbitrary Scala functions accompanied

by a specification. We also developed an effect system for Scala that characterizes the behavior

of arbitrary Scala code. The resulting effects provide an overview of the behavior of selected

functions, which aids program understanding.

Contributions and Outline

In this thesis, we explore synthesis and repair techniques for the integrated development of

verified programs.

– We describe a deductive synthesis framework that takes a given set of synthesis rules and

applies them according to a cost function. The framework accepts a synthesis problem

as a relational specification between input and output variables. It returns the function

2

List of Figures

from inputs to outputs as a solution. Within the above framework we implement rules

for synthesis of algebraic data-type equations and disequations [Sut12a], as well as a

number of general rules for decomposing specifications based on their logical structure

or case splits on commonly useful conditions. We evaluate the current reach of our

synthesizer in fully automated mode by synthesizing recursive functions on nested

algebraic data-types, including those that perform operations on lists defined by using a

general mechanism for algebraic data-types, as well as on other custom data-types (e.g.

trees) defined by the user.

– One of the main strengths in our framework is a new form of counterexample-guided

synthesis. To generate bodies of functions, we have symbolic term generators that

systematically generate well-typed programs built from a selected set of operators (such

as algebraic data-type constructors and selectors). To test candidate terms against

specifications, we use the Leon verifier. To accelerate this search, the rule accumulates

previously found counter-examples. Moreover, to quickly bootstrap the set of examples

it uses systematic generators that can enumerate, in a fair way, any finite prefix of a

countable set of structured values. The falsification of generated bodies is done by

a direct execution of code. For this purpose, we developed a lightweight bytecode

compiler for our functional implementation language (a subset of Scala), allowing us to

use code execution as a component of counterexample search in the constraint solver.

– We present an automatic algorithm that repairs invalid functions by returning a valid al-

ternative implementation. We implement this algorithm inside the synthesis framework

with rules tailored for repair. The algorithm combines techniques for fault localization

as well as the exploration of similar programs.

– We deploy the synthesis framework with repair in a web-browser-based environment

with continuous compilation, highlighting the modular aspect of our techniques. The

synthesis framework can be interrupted at any point to yield a partial solution with a pos-

sibly simpler synthesis problem. The repair algorithm can be invoked to automatically

fix invalid functions. The search space can be interactively explored.

– We describe several ways of integrating Leon functions and data-structures within Scala

applications, and discuss multiple ways of enabling interactions between them. We

discuss ways of accounting for the potentially non-deterministic behavior of arbitrary

Scala code.

– In order to detect and account for unpredictable behaviors in arbitrary Scala code,

we present the design, implementation, and evaluation of a new static analysis for

method side-effects: this analysis is precise and scalable even in the presence of call-

backs, including higher-order functions. The key design aspects of our analysis include

a relational analysis domain that computes summaries of code blocks and methods

by flow-sensitively tracking side-effects and performing strong updates and an auto-

mated effect classification and presentation of effect abstractions in terms of regular

expressions, thus facilitating their understanding by developers.

3

List of Figures

The following chapters are organized as follows:

Chapter 1 introduces the Leon verifier and its target language: PureScala. We provide an

overview of the Leon system as implemented for its web-interface.

Chapter 2 presents the deductive synthesis framework. We describe the problem of synthe-

sizing programs from specification and provide the complete set of deductive rules

implemented in our system.

Chapter 3 describes the repair algorithm. We implement the search for the alternative imple-

mentation as an extension of our synthesis framework.

Chapter 4 describes the design and implementation of an analysis that characterizes the

memory effects of arbitrary Scala functions. The effect system is tailored to handle

higher-order constructs that are ubiquitous in Scala programs.

4

1 The Leon System

In this thesis, we explore several techniques to help developers build verified Scala software.

We build on the Leon verification system, that provides tools for reasoning about programs

written in purely-functional Scala (PureScala). Leon supports most functional features of the

Scala language, which notably include algebraic data-types, recursive functions and higher-

order constructs. In addition to this purely functional fragment, Leon also supports some

imperative features such as mutable local variables, while loops or some form of mutable

arrays. Leon handles these constructs by first translating them to their functional counterparts.

1.1 Verification in Leon

In its library, Scala defines a notation [Ode10] for specifying runtime checks in the form of

assertions, pre-conditions, and post-conditions. Leon reuses the same notation and extracts

the specifications for our functions. We then verify that these specifications are satisfied in all

scenarios. We show in Figure 1.1 a typical example of a PureScala program with a specification

on size.

At the core of the Leon verification procedure is an algorithm for reasoning about formulas

that refer to user-defined recursive functions. Our goal is to check the satisfiability of such

formulas and possibly generate models. This enables us to generate verification conditions

that indicate the presence of an error. In the case of size, the verification condition looks as

follows:

∃l .si ze(l) < 0

On one hand, being able to satisfy this formula and finding a model for l indicates that

the specification of size is violated for this valuation of the input variable. Satisfying the

verification condition is thus equivalent to finding counter-examples. On the other hand, we

can prove the correctness of the function (with respect to its post-condition) by determining

the unsatisfiability of the verification condition.

5

Chapter 1. The Leon System

abstract class List[T]
case class Cons[T](h: T, t: List[T]) extends List[T]
case class Nil[T]() extends List[T]

def size[T](lst: List[T]): BigInt = {
lst match {

case Cons(h, t) ⇒ size(t) + BigInt(1)
case Nil() ⇒ BigInt(0)

}
} ensuring { res ⇒

res ≥ 0
}

Figure 1.1 – Example of a typical PureScala program that combines algebraic data-types and
recursive abstraction functions. We notice a post-condition on the size function, specifying
that its result is non-negative.

The algorithm proceeds by iteratively examining longer and longer execution traces through

the recursive functions. It alternates between an over-approximation of the executions, where

only unsatisfiability results can be trusted, and an under-approximation, where only satis-

fiability results can be concluded. The status of each approximation is checked using state-

of-the-art SMT solvers such as Z3 from Microsoft Research [dMB08] and CVC4 [BCD+11].

Leon communicates with these solvers by using the SMT-LIB interface. The algorithm is

a semi-decision procedure, meaning that it is theoretically complete for counter-examples:

if a formula is satisfiable, Leon will eventually produce a model [SKK11]. Additionally, the

algorithm works as a decision procedure for a certain class of formulas [SDK10]. However, the

algorithm might never terminate for some formulas. We therefore equip it with a timeout,

guaranteeing that it will eventually return with either SAT, UNSAT, or UNKNOWN.

In the past, we have used this core algorithm in the context of verification [SKK11], but also as

part of an experiment in providing run-time support for declarative programming that uses

constructs similar to choose [KKS12]. In both cases, we find the performance in finding models

to be suitable for the task at hand. Throughout this thesis, we will use this algorithm extensively

within synthesis and repair for deciding a variety of automatically generated formulas.

1.2 Web Interface

In this work, we explore ways of improving the process of developing verified software. It

is thus only natural to lift the original command-line-based incarnation of the Leon system

to an integrated development environment that permits more advanced interactions with

the developers. In order to facilitate its access, we deploy this environment as a public web

interface. We show an overview of the interface in Figure 1.2. We describe here some of the

main components of our web interface and how features, such as synthesis and repair, are

deployed.

6

1.2. Web Interface

Figure 1.2 – Overview of the Leon web interface. We can see the main editor pane where
developers can write programs. The pane on the right displays live analysis results and
updates automatically as the program changes.

The interface is organized into independent components which enables multiple aspects of

Leon to co-exist in the same interface. We show in Figure 1.3 a brief overview of the architecture

of the interface. The Javascript front end communicates with the back end using a web-socket,

which enables bidirectional transfer of events and messages. Each component runs in an

individual worker actor that is spawned for each client. The extraction component receives

code updates from the front end, and dispatches the corresponding Leon trees to all workers.

These workers also receive commands directly from the front end, and reply with feedback that

translates into modification of the views of the interface. Workers are able to communicate

between them as well. For instance, the execution workers gets new tasks to evaluate as soon

as the verification worker discovers new counter-examples.

1.2.1 Live Code Updates

As it is typically the case with development environments, we automatically recompile the

program as it updates. New versions of the program are sent to the server that recompiles it.

Like standard development environments, compilation warnings and errors are immediately

displayed in their context, at the position at which they occur. We rely on a dependency graph

coupled with a hash-based way of identifying functions across compilations to only invalidate

meta-data associated with functions that have been modified either directly or through one of

its dependency. This enables past results to be kept in the cache if the modifications done by

the developer do not affect it.

7

Chapter 1. The Leon System

Front end

Extraction

Execution

Verification

Synthesis

Repair

...

Back end

Code Updates

Commands

UI Feedback

Figure 1.3 – Architecture of the web interface divided into components. Each component of
the back end is an independent worker actor that runs asynchronously. Components receive
code updates extracted and preprocessed into Leon trees, as well as commands sent from the
interface. It provides feedback to the interface that updates its views.

Figure 1.4 – When clicking on the invalid status in the right pane, we display verification details
explaining why the function is invalid. We display the counter-example Leon discovered, as
well as the resulting value when executing the function with this counter-example.

8

1.2. Web Interface

1.2.2 Verification

Leon automatically verifies functions with specifications and displays the results as soon as

they are computed in a pane on the right. By clicking on the status, the developer obtains

additional details about the verification results, as pictured in Figure 1.4. In the case of an

invalid function, we display the counter-example found by Leon, as well as the resulting value

that the function generated for these inputs.

Figure 1.5 – Exploring the execution of an invalid function with a discovered counter-example
(in1 = Cons(0, Nil) and v = −1) . This enables the developer to figure out which part of the
post-condition is violated and why.

1.2.3 Execution

The interface comes with a tracing evaluator that records intermediate evaluation results. This

enables the evaluation of functions to be displayed partially, at the command of the developer.

We identify two main types of use of evaluation: parameterless functions, that are naturally

executable, and invalid functions, evaluated using one of their discovered counter-example.

This exploration of the evaluation results enables the developer to collect information about

the produced result and about why it violates the specification.

Concretely, the tracing evaluator returns the list of values for all intermediate expressions, ab-

stracted by their range positions. Note that this tracing is done only for the top-level execution

frame; we therefore do not record intermediate results within recursive calls or invocations of

other functions, because these results would be hard to interpret when displayed within the

interface.

We take the simple expression "a + b ∗ c" as example. Given a = 1, b = 2, and c = 3, our

9

Chapter 1. The Leon System

evaluator generates the following information (in the interest of clarity, we reduce the positions

to their column only; our technique naturally extends to lines as well):

a : (0,1)
→ 1

b : (4,5)
→ 2

c : (8,9)
→ 3

b * c : (4,9)
→ 6

a + b * c : (0,9)
→ 7

We then extract the range corresponding to the selection done by the developer in the editor.

When no explicit selection is made, we take the current cursor position as an empty range.

Next, we match this range to the best candidate within the evaluator results. For this we define

a difference function for ranges that computes how well a given range matches the selection.

This enables us to find the range that has a minimal difference with the range selected by the

user. For instance, given the selection [a + b]∗ c, which corresponds to (0,6), we select the

result of the full expression. We favor ranges that occur within bigger expressions over ranges

that are beside it: The selection a + b[]∗ c therefore matches the expression b ∗ c and not b.

Finally, we display a tooltip with the result and highlight the expression for which the result

corresponds to

Note that we apply a cut-off so that we oo not display the closest range if its too far away.

We believe this exploration is especially useful when investigating invalid functions, as it

enables the developer to not only see the inputs and the generated outputs, but also which

part of the specification was violated. We illustrate this with a function that inserts into a

sorted list in Figure 1.5. Because the function is invalid, we automatically execute it with the

discovered counter-example. By selecting part of the specification, we are able to see why the

result is considered invalid.

1.2.4 Synthesis

The synthesis framework described in Chapter 2 can be invoked whenever the program

contains either synthesis holes (??? within a specified function), or the choose construct.

10

1.2. Web Interface

Figure 1.6 – A synthesis pane is displayed whenever the input program contains a function
that can be synthesized. The interface then offers manual and automated ways of synthesizing
the function.

In Figure 1.6, we find a choose construct for the problem of deleting from a list. This produces

an extra synthesis pane on the right where we can invoke the procedure. By clicking on the

synthesis problem, we are presented with several options: We can either let the procedure

search for a solution, as described in Section 2.3.1, or manually explore the invocations of the

deductive rules available.

Automated Synthesis

Leon can search for solutions by exploring the search graph automatically. Upon finding a

solution, it displays the synthesized expression and enables the developer to either import the

solution code to replace the choose, or to explore the solution and possibly refine it. We show

a successful synthesis modal for the problem of deleting from a list, in Figure 1.7.

Refactoring Steps and Exploration

The graph representing the search for solutions can be explored interactively in two ways: The

developers can apply individual rules and obtain the resulting code, where sub-problems have

become more specific choose constructs. This corresponds to applying development steps

that help the developer write repetitive code such as pattern-matching expressions or other

conditionals. Another way is to navigate through the search tree by choosing, at each point

which rule instantiation to apply. This is illustrated in Figure 1.8. The developer chooses what

rule to apply for each synthesis problem. When selecting a particular rule, the resulting partial

program is displayed, and sub-problems are again represented by choices.

11

Chapter 1. The Leon System

Figure 1.7 – Searching will display a progress-bar showing the current status of the exploration
within the search graph. It displays the number of nodes covered, as well as the total size of
the graph. When a solution is found, we enable the developer to either import the resulting
expression, or explore it to refine it.

12

1.2. Web Interface

Figure 1.8 – Exploration displays the search tree as well as how the resulting expression is
composed. For each node of the tree, the developer can choose an alternative rule to apply,
consequently changing how the solution will look.

13

Chapter 1. The Leon System

Figure 1.9 – We display the progress for the repair attempt in a dedicated modal. When
successful, we present the alternative implementation that satisfies the specification and we
enable the developer to import it in place of the old code.

14

1.3. Symbolic Input/Output Tests

1.2.5 Repair

To enable the developers to automatically repair invalid functions, we implement within our

web interface the repair techniques described in Chapter 3. As you can see in Figure 1.4,

we expose a repair button whenever a function is detected as invalid. Clicking the button

will open a subsequent pane in which it describes the progress of the repair attempt. When

successful, we show the alternative implementation that satisfy the specification, as displayed

in Figure 1.9. We enable the developer to immediately import the new version in place of the

invalid code, similarly to synthesis.

1.3 Symbolic Input/Output Tests

It is often interesting for the user to specify how a function behaves by listing a few examples

of inputs and corresponding outputs. However, having to provide full inputs and outputs

can be tedious and impractical. To make specifying families of tests convenient, we define

a passes construct to express input-output examples. We rely on pattern matching in our

language to symbolically describe sets of inputs and their corresponding outputs. This gives

us an expressive way of specifying classes of input-output examples. Not only the pattern

can match more than one input, but the corresponding outputs are given by an expression

that depends on the pattern’s variables. This puts our symbolic input/output at the frontier

between traditional input/output tests and full-blown relational specifications. Wildcard

patterns are particularly useful when the function does not depend on all aspects of its inputs.

For instance, a function that reverses a generic list does not inspect the values of individual

list elements. Similarly, the function computing the power of two integers could be partially

specified by providing a few cases. Both examples are illustrated in Figure 1.10.

def reverse[T](l: List[T]): List[T] = {
// ...

} ensuring { res ⇒
(l, res) passes {

case h1 :: h2 :: h3 :: Nil() ⇒
h3 :: h2 :: h1 :: Nil()

}
}

def power(a: BigInt, b: BigInt) = {
// ...

} ensuring { res ⇒
((a, b), res) passes {

case (a, 0) if a != 0 ⇒ 1
case (1, b) ⇒ 1
case (a, 1) ⇒ a
case (2, 10) ⇒ 1024

}
}

Figure 1.10 – Partial specifications using the passes construct, enabling the matching of more
than one input and providing the expected output as an expression. In the case of reverse, a
single symbolic test is sufficient to fully specify the behavior of the function on all lists of size
three.

Although our passes construct does not add any expressive power to our relational specifica-

tions, it offers a concise and predictable notation from which we can extract and generate

15

Chapter 1. The Leon System

concrete input/output tests, as we will see in Section 2.5.2 and Section 3.4.1.

Our passes constructs are in a way similar to external testing functions in the framework

of parameterized unit tests [TS05] (PUT). Our approach allows the test to accompany the

function definition, and the structure of passes enables us to efficiently extract pairs of input-

output tests, because inputs-conditions are clearly separated from outputs-computations. In

the PUT framework, they rely on symbolic execution to extract inputs-conditions, necessary

to then generate valid input-output pairs.

16

2 Deductive Synthesis

In this chapter, we build on the Leon verifier described in Chapter 1 to introduce one of the

principal contributions of this thesis: synthesis algorithms, techniques and tools that integrate

synthesis into the development process for functional programs. We present a synthesizer

that, starting solely from their contracts, can construct the bodies of functions.

The programs that our synthesizer produces typically manipulate unbounded data types, such

as algebraic data types and unbounded integers. Due to the use of deductive synthesis and the

availability of a verifier, when the synthesizer succeeds with a verified output, the generated

code is correct for all possible input values.

Our synthesizer uses specifications as the description of the synthesis problems. Even though

it can additionally accept input/output examples to illustrate the desired functionality, we

view such illustrations as a special form of input/output relation: as input/output examples

correspond to tests and provide a description of a finite portion of the desired functionality, we

primarily focus on symbolic descriptions, which ensures the desired behavior over an arbitrar-

ily large or even infinite domain. From such descriptions, our synthesizer can automatically

generate input/output examples when needed, but can also directly transform specifications

into executable code.

We integrate our synthesizer into Leon, where it tightly cooperates with the underlying verifier,

enabling it to achieve performance orders of magnitude better than when using simpler

generate-and-test approaches. The techniques we use include symbolic transformation based

on synthesis procedures, as well as synthesis of recursive functions by using counterexample-

guided strategies. We evaluate a number of system architectures and trade-offs between

symbolic and concrete reasoning in our implementation and arrive at an implementation that

appears successful, despite the large space of possible programs. We therefore believe we have

achieved a new level of automation for a broad domain of recursive functional programs. We

consider that a particular strength of our system is that it can synthesize code that satisfies a

given relational specification for all values of inputs, and not only given input/output pairs.

17

Chapter 2. Deductive Synthesis

Our techniques aim at a high automation level, but we are aware that any general-purpose

automated synthesis procedure will ultimately face limitations: the developers may want

to synthesize code larger than the scalability of automated synthesis permits, or they may

want to control not only the observational behavior but also the structure of the code to be

constructed. We therefore deploy the synthesis algorithm as an interactive assistance that

enables the developer to interleave manual and automated development steps. In our system,

the developer can decompose a function and leave the subcomponents to the synthesizer;

or, conversely, the synthesizer can decompose the problem, solve some of the subproblems,

and leave the remaining open cases for the developer. To facilitate such synergy, we deploy an

anytime synthesis procedure, that maintains a ranked list of current problem decompositions.

The developers can interrupt the synthesizer at any time to display the current solution and

continue manual development.

The approach to synthesis we follow in this work is for deriving programs by a succession

of independently validated steps. We exploit a previous (purely theoretical) version of the

framework in [JKS13]; the new framework supports the notion of path condition and is the

first time we report on the practical realization of this framework.

2.1 Examples

We begin by illustrating through a series of examples how developers use our system to write

programs that are correct by construction. We first illustrate our system and the nature of the

interactions with it, through operations on expression trees and (sorted) user-defined lists,

thus reflecting along the way on the usefulness of programming with specifications.

2.1.1 Tree Manipulations

We begin our overview with an example manipulating abstract-syntax trees, similarly to what

you would find in a toy compiler. The trees represent operations on booleans as well as

mathematical integers.

To provide meaning to the trees, the developer defines in Figure 2.1 the untyped expression

trees, as well as an evaluation function that provides implicit meaning to trees. In case of type

mismatch, the evaluation function eval returns an error value. This enables the developer to

write semantics-preserving transformation functions.

In Figure 2.1, we also define two rewrite-functions that we want to implement; They take a

certain tree as input and are expected to return a different tree that should nonetheless be

equivalent to their input, with respect to eval.

In about three seconds, Leon synthesizes the following two functions:

def rewriteMinus(in: Minus): Expr = Plus(in.lhs, UMinus(in.rhs))

18

2.1. Examples

def rewriteImplies(in: Minus): Expr = Or(Not(in.lhs), in.rhs)

What is interesting here is that even though these transformations are somewhat predictable

and appear trivial to most developers, they fully depend on the provided evaluation func-

tion. Given less natural evaluation semantics, the required transformation is likely to be less

predictable as well. However, our synthesizer would be equally good at finding it.

2.1.2 List Manipulation

We show how our system behaves when we synthesize operations on lists. The developer

partially specifies lists by using their effect on the set of elements. As shown in Figure 2.2, we

start from a standard recursive definition of lists, along with recursive functions that compute

their size as a non-negative integer and their content as a set of integers.

Splitting a list

We first consider the task of synthesizing the split function as used in, e.g., merge sort. As a

first attempt to synthesize split, the developer can try the following specification:

def split(lst: List): (List, List) = {
choose { (r: (List,List)) ⇒

content(lst) == content(r._1) ++ content(r._2)
}

}

Because it tends to generate simpler solutions before more complex ones, Leon here instantly

generates the following function:

def split(lst: List): (List,List) = (lst, Nil)

Although it satisfies the contract, it is not particularly useful. This shows the difficulty in using

specifications, but the advantage of a synthesizer such as ours is that it enables the developer

to quickly refine the specification and obtain a more desirable solution. To avoid obtaining a

single list, together with an empty one, the developer refines the specification by enforcing

that the sizes of the resulting lists should not differ by more than one:

def split(lst: List): (List, List) = {
choose { (r : (List, List)) ⇒

content(lst) == content(r._1) ++ content(r._2)
&& abs(size(r._1)−size(r._2)) ≤ 1

}
}

Again, Leon instantly generates a correct, useless, program:

def split(lst: List): (List, List) = (lst, lst)

19

Chapter 2. Deductive Synthesis

abstract class Expr
case class Plus(lhs: Expr, rhs: Expr) extends Expr
case class Minus(lhs: Expr, rhs: Expr) extends Expr
case class UMinus(e: Expr) extends Expr
case class LessThan(lhs: Expr, rhs: Expr) extends Expr
case class And(lhs: Expr, rhs: Expr) extends Expr
case class Implies(lhs: Expr, rhs: Expr) extends Expr
case class Or(lhs: Expr, rhs: Expr) extends Expr
case class Not(e : Expr) extends Expr
case class Eq(lhs: Expr, rhs: Expr) extends Expr
case class Ite(cond: Expr, thn: Expr, els: Expr) extends Expr
case class BoolLiteral(b : Boolean) extends Expr
case class IntLiteral(i: BigInt) extends Expr

abstract class Value
case class BoolValue(b: Boolean) extends Value
case class IntValue(i: BigInt) extends Value
case object Error extends Value

def eval(e: Expr): Value = e match {
case Plus(l, r) ⇒

(eval(l), eval(r)) match {
case (IntValue(il), IntValue(ir)) ⇒ IntValue(il+ir)
case _ ⇒ Error

}

// ~100 lines...
}

def rewriteMinus(in: Minus): Expr = {
choose{ (out: Expr) ⇒

eval(in) == eval(out) && !(out.isInstanceOf[Minus])
}

}

def rewriteImplies(in: Implies): Expr = {
choose{ (out: Expr) ⇒

eval(in) == eval(out) && !(out.isInstanceOf[Implies])
}

}

Figure 2.1 – Expression trees with an evaluation function that returns the value corresponding
to a given (ground) expressions. Note that our evaluation function eval is total: it returns
Error when it gets stuck. We then define two functions that we want to implement. They both
rewrite an expression tree into an different shape, that should be equivalent with respect to
our evaluation function.

20

2.1. Examples

sealed abstract class List
case class Cons(head: BigInt, tail: List) extends List
case object Nil extends List

def size(lst: List): BigInt = {
lst match {

case Nil ⇒ BigInt(0)
case Cons(_,rest) ⇒ BigInt(1) + size(rest)

}
} ensuring(_ ≥ 0)

def content(lst : List) : Set[BigInt] = {
lst match {

case Nil ⇒ Set()
case Cons(e, rest) ⇒ Set(i) ++ content(rest)

}
}

Figure 2.2 – User-defined list structure with the usual size and content abstraction functions.
Here and throughout the chapter, the content abstraction computes a set of elements, but it
can easily be extended to handle multisets (bags) by using the same techniques [dMB09] if
stronger contracts are desired

We can refine the specification by stating that the sum of the sizes of the two lists should match

the size of the input one:

def split(lst: List): (List, List) = {
choose { (r: (List, List)) ⇒

content(lst) == content(r._1) ++ content(r._2)
&& abs(size(r._1) − size(r._2)) ≤ 1
&& (size(r._1) + size(r._2)) == size(lst)

}
}

We then finally obtain a useful split function:

def split(lst: List): (List, List) = lst match {
case Nil ⇒ (Nil, Nil)
case Cons(h, Nil) ⇒ (Nil, Cons(h, Nil))
case Cons(h1, Cons(h2, t2)) ⇒

val r = split(t2)
(Cons(h1, r._1), Cons(h2, r._2)) }

We observe that in this programming style, users can write (or generate) code by conjoining

orthogonal requirements, such as constraints on the sizes and contents, which are only

indirectly related. The rapid feedback makes it possible to go through multiple candidates

rapidly, strengthening the specification as required.

21

Chapter 2. Deductive Synthesis

We believe this rapid feedback is mandatory when developing from specifications. One reason

is that, as contracts are typically partial, results obtained from under-specifications can be

remote from the desired output. Thus, a desirable strategy is to rapidly iterate and refine

specifications until the output matches the expectations.

Insertion sort

Sorting is an example often used for illustrating declarative descriptions of problems. We

therefore continue this overview of Leon’s synthesis capabilities by showing how it synthesizes

an implementation of several sorting algorithms, starting from insertion sort. Figure 2.3 shows

the specification of the problem. From this, Leon generates the solution in Figure 2.4 within

seconds and without further hints.

Advantages of specifications. Comparing Figure 2.3 and Figure 2.4, which are of similar size,

we might wonder what we have gained by using specifications instead of implementations.

Whereas only a widespread use of synthesis systems will give the true answer, we anticipate at

least three reasons (with 3. partly following from 2.):

1. Flexibility: By supporting synthesis from specifications, we do not eliminate the ability

to directly write implementations when this is more desirable, rather we add the free-

dom and the expressive power to describe problems in additional ways that could be

appropriate; the new mechanism does not harm performance or readability when not

used;

2. Narrower gap between requirements and software: Natural language and mathemat-

ical descriptions of structures often have the form of conjunctions that more directly

map to choose constructs than to recursive functions that compute the precise objects.

We view the sorting process as one of the many possible ways of obtaining a collection

that has (1) the same elements and (2) is sorted, as opposed to thinking of a particular

sorting algorithm.

3. Reusability when introducing new operations: Once we specify key invariants and

abstraction functions, we can reuse them to define new versions of these operations; a

related concept is the ability to express orthogonal requirements independently [Jac95].

We next illustrate the last point using examples of reusability as we add new operations:

synthesizing removal from a sorted list given the specification for insertion, and synthesizing

merge sort given a specification for sort.

Removal and merge for sorted lists. Suppose that, after synthesizing insertion into a sorted

list, the developer now wishes to specify the removal and merge of two sorted lists. Figure 2.5

22

2.1. Examples

def isSorted(lst: List): Boolean = lst match {
case Nil ⇒ true
case Cons(_, Nil) ⇒ true
case Cons(x1, xs @ Cons(x2, _)) ⇒ x1 ≤ x2 && isSorted(xs)

}

def insert(lst: List, v: Int): List = {
require(isSorted(lst))
choose { (r: List) ⇒

isSorted(r) && content(r) == content(lst) ++ Set(v)
}

}

def sort(lst : List): List = {
choose { (r: List) ⇒

isSorted(r) && content(r) == content(lst)
}

}

Figure 2.3 – Specification of sorting suitable for insertion sort

def insert(lst: List, v: Int): List = {
require(isSorted(lst))
lst match {

case Cons(h, t) ⇒
if (v > h) {

Cons(h, insert(t, v))
} else if (h == v) {

insert(t, v)
} else {

Cons(v, insert(t, h))
}

case Nil ⇒ Cons(v, Nil)
}

}

def sort(lst: List): List = {
lst match {

case Cons(h, t) ⇒ insert(sort(t), h)
case Nil ⇒ Nil

}
}

Figure 2.4 – Synthesized insertion sort for Figure 2.3

23

Chapter 2. Deductive Synthesis

def delete(in1: List, v: Int) = {
require(isSorted(in1))
choose { (out: List) ⇒

isSorted(out) && (content(out) == content(in1) -- Set(v))
}

}

def merge(in1: List, in2: List) = {
require(isSorted(in1) && isSorted(in2))
choose { (out: List) ⇒

isSorted(out) && (content(out) == content(in1) ++ content(in2))
}

}

Figure 2.5 – Specification of removal from a sorted list.

def delete(in1: List, v: Int): List = {
require(isSorted(in1))
in1 match {

case Cons(h, t) ⇒
if (v == h) {

delete(t, v)
} else {

Cons(h, delete(t, v))
}

case Nil ⇒ Nil
}

} ensuring {(out : List) ⇒
isSorted(out) && (content(out) == content(in1) -- Set(v))

}

def merge(in1: List, in2: List): List = {
require(isSorted(in1) && isSorted(in2))
in1 match {

case Cons(h, t) ⇒ merge(t, insert(in2, h))
case Nil ⇒ Nil

}
} ensuring { (out : List) ⇒

isSorted(out) && (content(out) == content(in1) ++ Set(v))
}

Figure 2.6 – Implementation synthesized for Figure 2.5

24

2.1. Examples

shows the specification of these operations. Note that, once we have gone though the process

of defining the invariant for what a sorted list means using function isSorted in Figure 2.3, to

specify these two new operations we only need to write the concise specification in Figure 2.5.

The system then automatically synthesizes the full implementations in Figure 2.6. We expect

that the pay-off from such re-use grows as the complexity of structures increases.

Merge sort

Now suppose that the developer wants to ensure that the system, given a sorting specification,

synthesizes merge sort instead of insertion sort. To do this, the developer can introduce the

function merge into the scope instead of insert. In our current version of the system, Leon then

synthesizes the following code:

def sort(lst : List): List = lst match {
case Cons(h, tail) ⇒ merge(sort(tail), Cons(h, Nil))
case Nil ⇒ Nil

}

Although the result is a valid synthesis output according to the given contract, it remains an

implementation of the insertion sort algorithm, because merge is called on a list that is split in

a systematically unbalanced way. Even if the split function we synthesized or implemented

before is in the scope, the system may decide not to use it in the generated code.

Interactive synthesis and verified refactoring. In a situation such as above, where more

control is needed, we enable the developer to refine the code, either with manual edits or by

applying synthesis rules in the form of verified refactoring steps (such as those around which

entire systems were built [BGL+97]).

Because synthesis can be invoked only for a fraction of a function, it enables two new usage

scenarios: (1) the expert developer knows how to write the inductive part of the function, but

uses synthesis as a fast auto-completion tool for simple base-cases, (2) the developer knows

what the overall structure of the program will be, but uses synthesis to discover the rest of the

implementation.

We illustrate the first scenario with the following partial implementation of merge-sort:

def sort(lst: List): List = {
lst match {

case Cons(_, Cons(_, _)) ⇒
val (s1, s2) = split(list)
merge(sort(s1), sort(s2))

case _ ⇒ ???
}

} ensuring { (out: List) ⇒

25

Chapter 2. Deductive Synthesis

isSorted(out) && content(out) == content(lst)
}

Leon completes this implementation in 0.6 seconds, by filling the synthesis hole with lst.

2.2 Formalism

In this section, we introduce the necessary formalism in order to precisely define the problem

of synthesizing relational specifications into executable implementations. We describe the

notation we use for concisely describing synthesis problems and their associated solutions.

This enables us to describe deductive steps in a compact way.

The input to our synthesizer, referred to as a synthesis problem, is given by a predicate that

describes a desired relation between a set of input and a set of output variables, as well as

the context (program point) at which the synthesis problem appears. We represent such a

problem as a quadruple

�
ā

〈
Π�φ

〉
x̄
�

where:

– ā denotes the set of input variables,

– Π is the path condition of the synthesis problem,

– φ is the synthesis predicate, and

– x̄ denotes the set of output variables,

The free variables of φ must be a subset of ā ∪ x̄. The path condition refers to a formula that

holds for inputs variables at the point of the synthesis hole, and the free variables of Π are

therefore a subset of ā.

To illustrate this notation, we consider the following partial function:

def f(a: BigInt): BigInt = {
if(a ≥ 0) {

???
} else {

0
}

} ensuring {
res ⇒ res ≥ 0 && a + res ≤ 5

}

26

2.2. Formalism

The representation of the corresponding synthesis problem is

� a 〈 a ≥ 0 � r es ≥ 0∧a + r es ≤ 5 〉 x � (2.1)

When successful, our procedure will produce a synthesis solution represented by the pair

〈P | T̄ 〉

where P is the precondition, and T̄ is the program term. The free variables of both P and T̄

must range over ā. The intuition is that, whenever the path condition and the precondition are

satisfied, evaluating φ[x̄
→ T̄] should evaluate to true, i.e. T̄ are realizers for a solution to x̄ in

φ given the inputs ā. Furthermore, for a solution to be as general as possible, the precondition

must be as weak as possible. We denote that a solution pair solves a given synthesis problem

with the following notation:

�
ā

〈
Π�φ

〉
x̄
�� 〈P | T̄ 〉

For our solution pair to be valid, the following two properties must hold:

– Relation refinement:

Π∧P |=φ[x̄
→ T̄]

This property states that whenever the path- and precondition hold, the program T̄

can be used to generate values for the output variables x̄ such that the predicate φ is

satisfied.

– Domain preservation:

Π∧ (∃x̄ : φ) |= P

This property states that the precondition P cannot exclude inputs for which an output

would exist such that φ is satisfied.

A valid solution to the synthesis problem (2.1) is given by 〈a ≤ 5 | 0〉. We thus have that

�a 〈a ≥ 0� x ≥ 0∧a +x ≤ 5〉 x� � 〈a ≤ 5 | 0〉

The precondition a ≤ 5 characterizes exactly the input values for which a solution exists, and

for all such values, the constant 0 is a valid solution term for x. Note that the solution is in

general not unique; alternative solutions for this particular problem also include, for example,

〈a ≤ 5 | 5−a〉.

27

Chapter 2. Deductive Synthesis

For certain classes of formulas, a given set of rules can ensure completeness of synthesis.

This is for instance the case for integer linear-arithmetic relations [KMPS10] or algebraic data-

types [JKS13] without recursive functions. We exploit these past results and implement the

procedures as deductive rules, thus making Leon complete for such relations. Our approach

however targets synthesis problems that go beyond these decidable fragments (e.g, by allowing

arbitrary recursive functions).

In the general case, producing partial solutions, as well as their corresponding weakest pre-

conditions is a difficult task, as both have to be discovered simultaneously. Several of the

implemented rules will assume that the solution is complete (under a given path-condition)

and only attempt to find solutions where the precondition is true.

2.3 Deductive Framework

Building on our correctness criteria for synthesis solutions, we now describe inference rules

for synthesis. Such rules describe relations between synthesis problems, thus capturing how

some problems can be solved by reduction to others.

We distinguish three important operations in our deductive framework, and illustrate them

with an example of a simple If-Zero rule that we informally describe. The rule decomposes a

problem into two subproblems, one where one integer input variable is known to be zero and

one where it is explicitly non-zero.

Rule Instantiation Applying rules to a given synthesis problem yields a list of instantiations.

Each instantiation corresponds to a distinct way of applying the rule to the problem. The

If-Zero rule thus gets instantiated as many times as there are integer input variables to our

problem. For instance, given a synthesis problem with three integer inputs:

�
a0, a1, a2

〈
Π�φ

〉
x
�

instantiating If-Zero on this problem yields three independent rule instantiations: "If-Zero on

a0", "If-Zero on a1", and "If-Zero on a2".

Application of a Rule Instantiation A rule instantiation serves as intermediate step between

a problem and a decomposition and/or solution. Applying a rule instantiation effectively

decomposes the problem and generates the corresponding sub-problems. Applying the

instantiation "If-Zero on a1" yields the following sub-problems:

�
a0, a2

〈
Π[a1
→ 0]�φ[a1
→ 0]

〉
x
�

�
a0, a1, a2

〈
a1 �= 0∧Π�φ

〉
x
�

28

2.3. Deductive Framework

A rule instantiation can return an empty list of sub-problems. We call such rules closing rules.

Instead of decomposing problems, they attempt to find solutions immediately. Our framework

defines several of such rules, that are necessary for reaching any solutions.

We expect most of the computational work to take place in the application function, because

some rules depend heavily on SMT solvers to carry out additional checks.

Solutions Recomposition A rule instantiation indicates how tentative solutions to the sub-

problems can be recomposed to create a solution for the overall problem. For our "If-Zero on

a1" instantiation, the recomposition function is defined as:

(〈P0 | T̄0〉,〈P �=0 | T̄ �=0〉)
→ 〈(a1 = 0∧P0)∨ (a1 �= 0∧P1) | if(a1 = 0) {T̄0} else {T̄ �=0}〉

By using the recomposition function independently from the decomposition itself, the frame-

work knows what to expect from solutions generated by this instantiation before fully applying

them. This enables the framework to prioritize certain rule instantiations. For instance,

our "If-Zero on X" instantiations might be discouraged if our cost model assigns a high cost

to if-then-else expressions. This prioritization is done before applying the decomposition

function.

The validity of each rule can be established independently from its instantiations, or from the

contexts in which it is used. This in turn guarantees that the programs obtained by successive

applications of validated rules are correct by construction.

2.3.1 Exploring the Space of Applications

Our synthesis framework currently defines more than 20 generic rules. These rules can apply

in multiple ways on a given problem and, as we have seen previously, a given deductive rule

can generate many sub-problems (its premises or dependencies). We can thus see the space

of rule applications as an And-Or graph. The graph is extended to store state variables for each

node, distinguishing three important states for each node:

– Open: it is not yet known if the node can be solved.

– Solved: the node has at least one solution, it is possible to obtain a non-empty stream of

solutions for this node.

– Impossible: the node definitely has no solution.

We restrict our graph in the sense that a given node does not mix and-descendants with

or-descendants. We thus lift the and/or distinction to the level of nodes.

29

Chapter 2. Deductive Synthesis

Or Node. An or-node stores synthesis problems. Its descendants are the multiple rule

instantiations that apply to this problem. To solve the synthesis problem, it is sufficient that

one of the rule-instantiations leads to a solution. The root of our graph is an or-node: the

initial synthesis problem. We display or-nodes as rectangular nodes in our graphs.

�
ā

〈
Π�φ

〉
x̄
�

R1 R2 R3

And Node. We represent rule applications that decompose a problem into a list of sub-

problems as and-nodes. The and-descendants represent the all the necessary premises

expressible as sub-problems for a given rule to apply. We display and-nodes as round nodes

in our graphs, the edges leading to their descendants are also connected to indicate that they

are and-edges.

R1

P1 P2

The state of each node can be mostly determined recursively by the states of its descendants,

according to the following intuitive principles:

1. An or-node is impossible if all of its descendants are impossible (this also includes the

case where no descendants exist).

2. An and-node is impossible if one of its descendants is impossible.

3. An and-node without descendants might either have found solutions for the problem,

or failed to apply. It is thus either solved or impossible (see for instance the rule Ground-1
in 2.7).

4. An or-node is solved if at least one of its descendants is solved. The stream of solutions

of the or-node is a combination of the streams of solutions of the solved descendants.

5. If all descendants of an and-node are solved, we take the cross-product of its sub-

solutions, and build corresponding solutions for the overall problem by following the

rule’s description. If this stream of solution is non-empty, the and-node is solved,

otherwise it is impossible.

30

2.3. Deductive Framework

Note that an impossible node refers to the ability of our tool to find any solution. It does not

indicate that the problem is knowingly infeasible. On the contrary, a problem that is detected

to be infeasible will typically be "solved" with an empty solution (a solution with false as

precondition), as illustrated in the Optimistic-Ground rule in Figure 2.11. This distinction

is crucial for correctly understanding how rules such as Case-Split will behave when the

specification renders one case infeasible.

The search graph can be expanded on demand. The descendants of an or-node are obtained by

instantiating all defined rules on the corresponding problem. As for and-nodes, the application

function can be invoked to possibly generate sub-problems or immediate solutions.

2.3.2 Synthesis Rules

We describe our deductive rules in the form of inference rules. We provide one example of this

rule notation, with added emphasis:

�
ā1

〈
Π1 �φ1

〉
x̄1

�
(b)

� 〈P1 | T̄1〉 (c)

�
ā2

〈
Π2 �φ2

〉
x̄2

�
(b)

� 〈P2 | T̄2〉 (c)�
ā

〈
Π�φ

〉
x̄
�

(a)
� 〈Pr | T̄r 〉 (d)

This rule is to be understood as follows: From an initial problem matching (a), we can decom-

pose it in one or more sub-problems (b). Assuming we find solutions for all sub-problems

(c), we construct a solution (d) for the overall problem. The sub-problems (b) are typically

variations of (a), and the overall solution (d) is a function of the sub-solutions (c).

To illustrate the various rules, we assume the presence of a List data-type in the program,

defined as follows:

abstract class List
case class Cons(h: Int, t: List) extends List
case object Nil extends List

Normalizing Rules

The set of normalizing rules can be seen as simplifiers. These rules normalize the specification

syntactically and are expected to gradually turn a synthesis problem into a normal form.

In Figure 2.7, we describe several normalizing rules that exploit particular kinds of problems

or specifications. As a first example, consider the rule One-point that reads as follows: “If the

predicate of a synthesis problem contains a top-level atom of the form x0 = t , where x0 is an

output variable not appearing in the term t , then we can solve a simpler problem where x0 is

substituted by t , obtain a solution 〈P | T̄ 〉 and reconstruct a solution for the original one by

31

Chapter 2. Deductive Synthesis

first computing the value for t and then assigning as the result for x0”. Note that the way we

compose the solution enables t to refer to variables in x̄.

The Assert rule transfers a specification fragment that only refers to input variables to the path

condition. The two Ground rules are applicable when no input variables are available. In this

scenario, the problem becomes purely existential. We can thus ask an SMT solver for a solution.

If the solver returns a model, we evaluate it for each output variable to yield a solution. If the

solver returns UNSAT (guaranteeing the absence of valid output values), we know the problem

is impossible to solve. The two rules described here represent two outcomes of the same call to

the SMT solver. If the solver times out, the rule does not apply. Unconstrained-Output detects

problems where one output value is left unconstrained; we can give it any value. We therefore

instantiate the corresponding type to obtain a solution for this output variable. Similarly,

the rule Unused-Input removes input variables that are unconstrained. Strictly speaking,

unconstrained input variables can be used as value for unconstrained output variables, but

we exclude this scenario. Note that unlike the output variables, input variables could also be

constrained by the path-condition. The Independent-Split rule exploits specifications that are

conjunctions of independent formulas. This typically occurs during the synthesis of a tuple of

unrelated values. We implement a family of rules for detecting equivalences between inputs.

The rule Equivalent-Inputs-1 detects obvious equalities between two inputs and ensures that

only one variable is used by the specification. Equivalent-Inputs-2 identifies inputs that are

fully characterized by other inputs. In our case, the rule detects the implicit equivalence

l = Cons(h,t) implied by the constraints on the type of l, as well as constraints on the fields of

the ADT. As we can see, these rules do not directly eliminate the inputs that are replaced with

their equivalence from the input set, we leave this to the dedicated rule Unused-Input.

In Figure 2.8, we define several unification-based rules that either detect impossible problems,

or rewrite them to make their specifications more explicit. Although the rules are defined in

order to apply to arbitrary ADTs, we describe their instantiation for the List data-type type

defined earlier. The first unification rule detects unsatisfiable predicate l st = Cons(..., l st)

(which can only describe infinite structures). Similarly, the rule Unification-2 enforces the fact

that two distinct ADTs cannot be equal. Unification-3 explicitly exposes equalities between

arguments. As described here, these rules match formulas at the top-level of the specification

but could also apply to inner formulas. The ADT-Unwrap rule converts occurrences of ADT

literals to equivalent constraints over selectors. The equality constraints exposed can then be

exploited by further rules.

The two rules described in Figure 2.9 transforms specifications to equivalent formulas, but

with a shape that enables other rules. These rules apply when a variable is known to be one

specific case of an algebraic data-type. They expose the fields of the ADT as separate variables,

which enables rules such as ADT-Unwrap to apply.

32

2.3. Deductive Framework

ONE-POINT�
ā

〈
Π�φ[x0
→ t]

〉
x̄
�� 〈P | T̄ 〉 x0 ∉ vars(t)�

ā
〈
Π� x0 = t ∧φ

〉
x0 , x̄

�� 〈P | (t [x̄
→ T̄] , T̄)〉
ASSERT

vars(φ1)∩ x̄ =� �
ā

〈
Π∧φ1 �φ2

〉
x̄
�� 〈P | T̄ 〉�

ā
〈
Π�φ1 ∧φ2

〉
x̄
�� 〈P | T̄ 〉

GROUND-1
M |=φ� 〈

Π�φ
〉

x̄
�� 〈� | M(x̄)〉

GROUND-2
¬∃M .M |=φ� 〈

Π�φ
〉

x̄
�� 〈⊥ | er r or 〉

UNCONSTRAINED-OUTPUT

x0 ∉ vars(φ) v0 ∈ typeOf(x0)
�

ā
〈
Π�φ

〉
x̄
�� 〈P | T̄ 〉�

ā
〈
Π�φ

〉
x0, x̄

�� 〈P | (v0, T̄)〉
UNUSED-INPUT

a0 ∉ vars(Π)∪vars(φ)
�

ā
〈
Π�φ

〉
x̄
�� 〈P | T̄ 〉�

a0, ā
〈
Π�φ

〉
x̄
�� 〈P | T̄ 〉

INDEPENDENT-SPLIT

vars(φ1)∩ x̄2 =� vars(φ2)∩ x̄1 =��
ā

〈
Π�φ1

〉
x̄1

�� 〈P1 | T̄1〉
�

ā
〈
Π�φ2

〉
x̄2

�� 〈P2 | T̄2〉�
ā

〈
Π�φ1 ∧φ2

〉
x̄1, x̄2

�� 〈P1 ∧P2 | (T̄1, T̄2)〉
EQUIVALENT-INPUTS-1�

a1, a2, ā
〈
Π[a2
→ a1]�φ[a2
→ a1]

〉
x̄
�� 〈P | T̄ 〉�

a1, a2, ā
〈
Π�a1 = a2 ∧φ

〉
x̄
�� 〈P | T̄ 〉

EQUIVALENT-INPUTS-2�
h, t , l , ā

〈
Π[l
→Cons(h, t)]�φ[l
→Cons(h, t)]

〉
x̄
�� 〈P | T̄ 〉�

h, t , l , ā
〈
Π� l .i sInst anceO f [Cons]∧ l .head = h ∧ l .t ai l = t ∧φ

〉
x̄
�� 〈P | T̄ 〉

Figure 2.7 – Normalizing rules for particular problems and specifications.

33

Chapter 2. Deductive Synthesis

UNIFICATION-1�
ā

〈
Π� l st =Cons(..., l st)∧φ

〉
x̄
�� 〈⊥ | er r or 〉

UNIFICATION-2�
ā

〈
Π�Cons(h, t) =Nil()∧φ

〉
x̄
�� 〈⊥ | er r or 〉

UNIFICATION-3�
ā

〈
Π�h1 = h2 ∧ t1 = t2 ∧φ

〉
x̄
�� 〈P | T̄ 〉�

ā
〈
Π�Cons(h1, t1) =Cons(h2, t2)∧φ

〉
x̄
�� 〈P | T̄ 〉

DISUNIFICATION�
ā

〈
Π� (h1 �= h2 ∨ t1 �= t2)∧φ

〉
x̄
�� 〈P | T̄ 〉�

ā
〈
Π�Cons(h1, t1) �=Cons(h2, t2)∧φ

〉
x̄
�� 〈P | T̄ 〉

ADT-UNWRAP�
ā

〈
Π�ah = e.h ∧at = e.t ∧φ

〉
x̄
�� 〈P | T̄ 〉�

ā
〈
Π�Cons(ah, at) = e ∧φ

〉
x̄
�� 〈P | T̄ 〉

Figure 2.8 – Normalizing rules for algebraic data-types.

DETUPLE-INPUT

typeOf(a1) =Cons
�

h, t , ā
〈
Π[a1
→Cons(h, t)]�φ[a1
→Cons(h, t)]

〉
x̄
�� 〈P | T̄ 〉�

a1, ā
〈
Π�φ

〉
x̄
�� 〈P [h
→ a1.h, t
→ a1.t] | T̄ [h
→ a1.h, t
→ a1.t]〉

DETUPLE-OUTPUT

typeOf(x1) =Cons
�

ā
〈
Π�φ[x1
→Cons(h, t)]

〉
h, t , x̄

�� 〈P | T̄ 〉�
ā

〈
Π�φ

〉
x1, x̄

�� 〈P | (Cons(h, t), T̄ (x̄))〉

Figure 2.9 – Detupling for input and output variables.

34

2.3. Deductive Framework

Conditionals

In order to synthesize programs that include conditional expressions, we need rules such as

Case-split in Figure 2.10. The intuition behind Case-split is that a disjunction in the synthesis

predicate can be handled by an if-then-else expression in the synthesized code, and each

subproblem (corresponding to predicates φ1 and φ2 in the rule) can be treated separately. As

we would expect, the precondition for the final program is obtained by taking the disjunction

of the preconditions for the subproblems. This corresponds to the intuition that the disjunctive

predicate is realizable if and only if one of its disjuncts is. Note as well that even though the

disjunction is symmetrical, in the final program we necessarily privilege one branch over

the other one. An extreme case is when the first precondition is true and the “else” branch

becomes unreachable.

The rules Equality-Split and Inequality-Split will introduce conditionals by splitting the input

space. Equality-Split will divide the search space by considering the cases where two inputs of

the same type are equal or not. Note that for the case where the two variables are equal, we

immediately substitute the variables. The rule Inequality-Split does the same for comparable

inputs; it only includes machine integers(bit-vectors) and mathematical integers. For any pair

of integer inputs, we consider the three possible cases: a1 > a2, a1 < a2 and a1 = a2. This rule

is, for instance, useful to synthesize a function that computes the maximum of two integers.

The Input-Split rule relies on a Boolean input variable to split the search space. In practice,

Boolean input variables are likely to be flags or options that dictate how the function should

behave. The rule hence specializes the problem for each input value.

The rule If-Split exploits a specification that is divided in multiple cases, where the condition

of the division depends only on input-variables. This case-analysis is imitated by the rule to

produce a solution that does a similar case-analysis. If-Split can also be seen as normalizing

the if-then-else expression "if(c) {t} else {e}" into (c ∧ t)∨ (¬c ∧ e). This then enables us

to instead apply Case-Split followed by Assert on its sub-problems; thus yielding equivalent

sub-problems and solutions.

The ADT-Split rule introduces a pattern-matching expression that decomposes a given ADT

argument into all its defined cases. The input variable is decomposed into the fields of the

given ADT case. We provide in 2.10 an example of ADT-Split for the List ADT.

Solver-Based Heuristics

In Figure 2.11, we continue our overview of rules with two rules in that rely on an SMT solver to

find potential immediate solutions. Unlike for Ground rules, the problems here does contain

input variables and thus remains of ∃∀ nature. However, a literal solution (a solution term that

does not reference input variables) might exist.

The rules Optimistic-Ground-1 and Optimistic-Ground-2 implement this approach by opti-

35

Chapter 2. Deductive Synthesis

CASE-SPLIT�
ā

〈
Π�φ1 ∧φ3

〉
x̄
�� 〈P1 | T̄1〉

�
ā

〈
Π�φ2 ∧φ3

〉
x̄
�� 〈P2 | T̄2〉�

ā
〈
Π� (φ1 ∨φ2)∧φ3

〉
x̄
�� 〈P1 ∨P2 | if(P1) {T̄1} else {T̄2}〉

EQUALITY-SPLIT

typeOf(a1) = typeOf(a2)�
a1, ā

〈
Π[a2
→ a1]�φ[a2
→ a1]

〉
x̄
�� 〈P1 | T̄1〉

�
a1, a2, ā

〈
Π∧a1 �= a2 �φ

〉
x̄
�� 〈P2 | T̄2〉�

a1, a2, ā
〈
Π�φ

〉
x̄
�� 〈(a1 = a2 ∧P1)∨ (a1 �= a2 ∧P2) | if(a1 = a2) {T̄1} else {T̄2}〉

INEQUALITY-SPLIT

typeOf(a1) = typeOf(a2) typeOf(a1) ∈ {Int ,Bi g Int }�
a1, a2, ā

〈
Π∧a1 = a2 �φ

〉
x̄
�� 〈P1 | T̄1〉�

a1, a2, ā
〈
Π∧a1 < a2 �φ

〉
x̄
�� 〈P2 | T̄2〉

�
a1, a2, ā

〈
Π∧a1 > a2 �φ

〉
x̄
�� 〈P3 | T̄3〉�

a1, a2, ā
〈
Π�φ

〉
x̄
�� 〈... | if(a1 = a2) {T̄1} else {if(a1 < a2) {T̄2} else {T̄3}}〉

INPUT-SPLIT

typeOf(a1) = Boolean�
ā

〈
Π[a1
→�]�φ[a1
→�]

〉
x̄
�� 〈P1 | T̄1〉

�
ā

〈
Π[a1
→⊥]�φ[a1
→⊥]

〉
x̄
�� 〈P2 | T̄2〉�

a1, ā
〈
Π�φ

〉
x̄
�� 〈(a1 ∧P1)∨ (¬a1 ∧P2) | if(a1) {T̄1} else {T̄2}〉

IF-SPLIT

vars(c)∩ x̄ =� �
ā

〈
Π∧c �e1 ∧φ

〉
x̄
�� 〈P1 | T̄1〉

�
ā

〈
Π∧¬c �e2 ∧φ

〉
x̄
�� 〈P2 | T̄2〉�

ā
〈
Π� if(c) e1 else e2 ∧φ

〉
x̄
�� 〈(c ∧P1)∨ (¬c ∧P2) | if(c) {T̄1} else {T̄2}〉

ADT-SPLIT (LIST)
typeOf(a1) = Li st

�
ā

〈
Π[a1
→ Ni l]�φ[a1
→ Ni l]

〉
x̄
�� 〈P1 | T̄1〉�

h, t , ā
〈
Π[a1
→Cons(h, t)]�φ[a1
→Cons(h, t)]

〉
x̄
�� 〈P2 | T̄2〉�

a1, ā
〈
Π�φ

〉
x̄
�� 〈P | a1 match { case Ni l ⇒ T̄1 case Cons(h, t) ⇒ T̄2}〉

with P = a1 match { case Ni l ⇒ P1 case Cons(h, t) ⇒ P2}

Figure 2.10 – Rules introducing conditional expressions.

36

2.3. Deductive Framework

mistically searching for literal solutions. One important difference with Ground is that φ can

reference input variables. The solver initially searches for a model for ∃āx̄.Π∧φ. If no such

model exists, the problem is known to be impossible. If a model M is found, we still have

to validate it by ensuring the literal solution is valid for arbitrary inputs. We thus perform a

secondary verification query to the SMT solver looking for models of ∃ā.Π∧¬φ[x̄
→ M(x̄)]

(i.e, counter-examples). If no counter-examples exist, the solution found in the first step is

returned as a solution. Otherwise, we can refine the initial formula and try again. This proce-

dure is known as a counter-example guided inductive synthesis (CEGIS) loop. Because there

exists an infinite number of literals, this search is not guaranteed to terminate. In practice, we

found that this rule is unlikely to find solutions for the kind of problems we target, we thus

abort after three incorrect attempts. It is however efficient at detecting impossible problems:

If the specification φ is unsatisfiable due to contradictions in the formula, Optimistic-Ground
will close this branch of the search tree with a solution that has ⊥ as a pre-condition.

OPTIMISTIC-GROUND-1
M |=φ ∀ā. φ[x̄
→ M(x̄)]�

ā
〈
Π�φ

〉
x̄
�� 〈� | M(x̄)〉

OPTIMISTIC-GROUND-2
¬∃M .M |=φ�

ā
〈
Π�φ

〉
x̄
�� 〈⊥ | er r or 〉

Figure 2.11 – Solver-based heuristics

2.3.3 Cost Models

Our framework defines several rules that can apply in different ways to the same problem.

This results in a search graph with a high branching-factor. We also note that as the rules do

not generally guarantee progress, our search graph is typically of infinite depth. The shape of

our search graph hence prevents both depth- and breadth-first search strategies: A depth-first

search could get trapped in an infinite branch without making any progress and breadth-first

search is overly inefficient.

We observe that for the benchmarks we consider, a deduction tree of depth 4 or 5 is generally

sufficient. However the smallest necessary sub-tree for deriving a solution makes only a small

fraction of the full search graph of depth 5. This calls for a more advanced search strategy.

Our search algorithm uses a variant of best-first search strategy similar to A* ; it under-

estimates the cost of the complete solution according to cost-models. The cost function

needs to underestimate the cost of a potential final solution. The framework takes a cost

function as parameter

C : Soluti on →N

The search is also implicitly bounded by a maximal cost Cmax , used to assign costs to impossi-

ble nodes. We determine the cost of any given node as follows: the cost of a closed node is the

37

Chapter 2. Deductive Synthesis

cost of its solution and the cost of an impossible node is Cmax . For open or-nodes, the cost is

determined by the minimal cost of its descendants. Finally, the cost of open and-nodes uses

the recomposition function to obtain a partial solution, on which we apply our cost function.

Our cost-models supports prioritizing certain shapes of solutions. For instance, we could

assign a high-cost to nested if-then-else expressions. This would force the framework to first

try alternative derivations before exploring nested applications to rules that introduce id-

then-else. The cost-model we use in practice makes use of this prioritization to discourage the

introduction of branching constructs deep in the solution expression.

2.4 Symbolic Term Exploration

In this section, we describe a closing rule that is responsible for closing many of the branches

in derivation trees. We call it symbolic term exploration (STE).

The core idea behind STE is to symbolically represent many possible terms (programs) and to

iteratively prune them out by using counter-examples and test case generation until either

(1) a valid term is proved to solve the synthesis problem or (2) all programs in the search

space have been shown to be inadequate. Because we have rules that take care of introducing

branching constructs or recursive functions, we focus STE on the search for terms consisting

only of constructors and calls to existing functions.

2.4.1 Grammars for Programs

The space of programs covered by our symbolic exploration is determined by a context-free

grammar of well-typed expressions E , described by the triple

G = (N ,P,S)

where

– N is a finite set (the typed non-terminals),

– P is a finite subset of N × (N̄ , Ē
→ E)) (the productions), and

– S ∈ N (the start symbol).

We diverge from the standard description of grammars and ignore the set of terminals. Instead,

we view the resulting expressions directly as trees, and we provide productions as a relation

between non-terminals and node constructors. These node constructors provide a list of

non-terminal dependencies as well as a function for building the resulting expression from

sub-expressions.

38

2.4. Symbolic Term Exploration

The non-terminals are typed, and the constructor functions should produce expressions of

the corresponding type. This grammar is implicitly restricted to produce only program terms

that typecheck. The arity of a production is defined by the arity of the constructor function.

The purpose of our procedure is to find out, given a synthesis problem
�

ā
〈
Π�φ

〉
x̄
�

and a

grammar G with a starting symbol such as typeOf(S) = typeOf(x̄), whether

∃e ∈L(G). ∀ā. Π⇒φ[x̄
→ e]

When we discover such an expression e, our procedure solves the synthesis problem with the

following solution:

�
ā

〈
Π�φ

〉
x̄
�� 〈� | e〉

It is not required that a grammar produces every value for a given type; we could hypothesize,

for instance, that our synthesis solutions will only need some very specific constants, such as

0, 1 or −1. But it is more likely that our synthesis solutions requires the use of input variables

and existing functions. As illustration, we consider the following synthesis problem:

�
i , j , l

〈
Π� sum(x) = sum(l)+ i + j

〉
x
�

The variables x and l are of type IntList and both i and j are integers. The function sum is a

user-defined function that computes the sum of the elements of a list. Here, we describe an

example of a grammar of IntList expressions G = (N ,P, IntList) with the following productions:

IntList ::= Nil
∣∣ l

::= Cons(BigInt, IntList)
BigInt ::= 0

∣∣ 1
∣∣ -1

∣∣ 42
∣∣ i

∣∣ j
::= BigInt + BigInt

∣∣ BigInt − BigInt
∣∣ BigInt ∗ BigInt

We observe that this grammar contains the three input variables i, j, and l. Of course, it cannot

refer to x. This grammar produces an infinite number of terms, among which we find several

that are solutions of our synthesis problem:

– Cons(i, Cons(j, l)),

– Cons(i+j, l),

– Cons(i+1, j−1, l),

– Cons(i+j, Cons(0, Cons(0, l))),

– and so on.

39

Chapter 2. Deductive Synthesis

Here, we describe how we explore this grammar in order to effectively find a solution amongst

the space of represented programs.

Bounding the Space of Programs

As we pointed out in Section 2.4.1, it is not necessary for our grammar to be complete. In

fact, it is also desirable to make it finite: this guarantees that our search procedure terminates.

Because our deductive framework sequentially orchestrates multiple rules, we would have

STE fail quickly rather than prevent other rules from ever applying.

A natural way of limiting the space of programs represented by a given grammar is to bound

the unfolding depth. This consequently bounds the depth of the resulting expression trees.

Instead of modifying how we compute the set of programs for a given grammar, we instead

bound the depth by applying a transformation on the grammar itself. We use G´d to denote

the grammar G at depth at most d . This implies that L(G´i) ⊆L(G´ j) for all i ≤ j .

Given the grammar G presented in Section 2.4.1, the depth-based grammar G´3 has starting

symbol IntList´3 and the following productions:

IntList´3 ::= Cons(BigInt´2, IntList´2)
∣∣ IntList´2

IntList´2 ::= Cons(BigInt´1, IntList´1)
∣∣ IntList´1

IntList´1 ::= Nil
∣∣ l

BigInt´2 ::= BigInt´1 + BigInt´1

∣∣ BigInt´1 − BigInt´1

∣∣ BigInt´1 ∗ BigInt´1

∣∣ BigInt´1

BigInt´1 ::= 0
∣∣ 1

∣∣ -1
∣∣ 42

∣∣ i
∣∣ j

This operation ensures that L(G´d) is finite for a any given d , thus enabling us to exhaustively

explore the corresponding space of programs. But bounding the depth of expressions provides

control that is too coarse-grained: the number of expressions represented by a grammar

explodes as depth increases. We can see that with the synthesis problem seen before: Its

smallest solution, Cons(i+j, l), is contained in L(G´3) (but not in L(G´2)). But L(G´3) also

contains expressions such as Cons(i+j, Cons(0, l)), which are also solutions, but strictly bigger

and thus harder to reason about. As a result of bounding the depth, we consider not only more

expressions than necessary but many of these expressions are overly complex.

A more granular way of bounding the search space is to bound the size instead of the depth of

the resulting expressions. Again, we present this bounding operation as a transformation of

grammars. This time, we look for expressions of size exactly s, denoted by G|s|. We illustrate

this transformation by applying it to our example grammar. G|5| has starting symbol IntList |5|

40

2.4. Symbolic Term Exploration

and contains the following productions:

IntList |5| ::= Cons(BigInt |3|, IntList |1|)
∣∣ Cons(BigInt |1|, IntList |3|)

IntList |5| ::= Cons(BigInt |2|, IntList |2|)
IntList |3| ::= Cons(BigInt |1|, IntList |1|)
IntList |1| ::= Nil

∣∣ l
BigInt |3| ::= BigInt |1| + BigInt |1|

∣∣ BigInt |1| − BigInt |1|
∣∣ BigInt |1| ∗ BigInt |1|

BigInt |1| ::= 0
∣∣ 1

∣∣ -1
∣∣ 42

∣∣ i
∣∣ j

This time, L(G|5|) contains our solution but does not contain Cons(i+j, Cons(0, l)), as this

would correspond to an expression of size 7. This does not prevent multiple solutions from

existing in the same expression size: here both Cons(i+j, l) and Cons(i, Cons(j, l)) are valid

solutions of the same size.

Handling Generic Functions and Data-Structures

Supporting generic language features brings interesting challenges, mainly because this makes

the set of types infinite. To illustrate, we consider a generic list data-type List[T] and its

size function. Providing a complete grammar for generating integer expressions becomes

impossible, as the sets of non-terminals and productions are infinite:

BigInt ::= size(List[Int])
BigInt ::= size(List[List[Int]]])
BigInt ::= size(List[List[List[Int]]]])
BigInt ::= ...

Note that this problem also occurs without any user-defined generic operations. For instance,

checking equality between two values (a == b) is a language construct that is implicitly generic.

There is thus immediately an unbounded number of ways to generate Boolean values.

In practice, we work around these issues by limiting the type instantiations for generic op-

erations, but we do so in a way that retains the most interesting operations: We consider all

types directly present as types of input variables, and allow for them to be wrapped once in

any generic types. Given a single input variable of type List[T], we will include productions for

T and List[List[T]] but not List[List[List[T]]]. This guarantees a finite set of non-terminals and

productions – a prerequisite for our expression grammars.

Generating Recursive Calls

When considering candidate expressions, it is often useful to include calls to user-defined

functions. However, the synthesized expression has to terminate. We conservatively ensure

this by excluding calls to functions that refer back to the function currently being synthesized.

41

Chapter 2. Deductive Synthesis

Because we assume that other functions terminate for all inputs prior to synthesis, we need to

prevent introducing calls that cause the synthesized function to loop. However, our purely

functional language often requires us to synthesize recursive implementations. Consequently,

the synthesizer must be able to generate calls to the function currently getting synthesized.

We must therefore take special care to avoid introducing calls resulting in a non-terminating

implementation. (Such an erroneous implementation would be conceived as valid if it trivially

satisfies the specification due to inductive hypothesis over a non-well-founded relation.)

Our technique consists of recording the function arguments a at the entry point of the function,

f, and keeping track of these arguments through the decompositions. We represent this

information with a syntactic predicate ⇓[
f(a)

]
. For example, we consider the synthesis of a

function deleting elements from a list of integers.

def delete(in: IntList, v: BigInt): IntList = {
???

} ensuring {
out ⇒ content(out) == content(in) -- Set(v)

}

To solve this problem, we need to traverse the list and remove elements whenever they match

v. This traversal is done by recursively calling delete. We inject the entry call information within

the path-condition of the root synthesis problem:

�
i n, v

〈⇓[
delete(in,v)

]
� content (out) = content (i n) \ {v}

〉
out

�

This predicate tells our system that it is currently synthesizing the implementation of a call

to delete(in,v) and plays no logical role in the path condition itself. This synthesis problem

can then be decomposed as usual, by the various deduction rules available in the framework.

An interesting case to consider is the problems stemming from the decomposition done by

the ADT-Split rule on in; it specializes the problem to known cases of IntList. Notably, the

sub-problem corresponding to the Cons variant looks as follows:

�
h, t , v

〈⇓[
delete(Cons(h,t), v)

]
� content (out) = content (Cons(h, t)) \ {v}

〉
out

�

We can see that in has been substituted by Cons(h,t), which tells us that we are currently

synthesizing the result of a call to delete(Cons(h,t), v). We also have that by the theory of

algebraic data-types, t is strictly smaller than Cons(h, t). As a result, we assume that calls to

delete with t as first argument are likely to terminate. Therefore, they are inserted within the

grammar as ways to generate IntList values:

IntList ::= delete(t,BigInt)

42

2.4. Symbolic Term Exploration

This relatively simple technique enables the introduction of recursive calls that are not triv-

ially non-terminating. In the case where it still introduces infinite recursion, the filtering of

candidate expressions by using concrete execution will discard them at a later stage, though

we found that this seldom occurs in practice.

2.4.2 From Grammars to Programs

Our STE procedure works with a program representing the current state of synthesis, as well

as all the possible expressions represented by the grammar. We consider our synthesis of

delete, after applying ADT-Split and then Equality-Split. This corresponds to the search graph

displayed in Figure 2.12.

P

ADT-Sp.

PCons

Eq-Sp.

P=

STE

P �=

...

PNi l

...

...

Figure 2.12 – Partial search-graph that leads to a deep invocation of STE. This graph corre-
sponds to a top-level invocation of ADT-Split on the in variable. Then, we invoke Equality-Split
between v and h on the sub-problem corresponding to the Cons case. Finally, we invoke STE in
the sub-problem for when h is equal to v.

This search graph can be used to build a partial implementation of delete. This enables us to

compute a good over-approximation of the solution, if a given rule was to be used in the overall

solution. For the purpose of illustration, we assume that we already solved PNi l with 〈� | Ni l〉
and that P �= remains unsolved. We display the partial solution around STE in Figure 2.13.

The unsolved parts are represented by synthesis holes, for which only the specification and

referential transparency can be assumed. This partial implementation will be especially useful

when the candidate expressions contain recursive calls: this refined version of delete is thus

more precise than simply assuming its postcondition.

43

Chapter 2. Deductive Synthesis

def delete(in: IntList, v: BigInt): IntList = {
in match {

case Cons(h, t) ⇒
if (h == v) {

ST E
} else {

???
}

case Nil ⇒ Nil
}

} ensuring {
res ⇒ content(res) == content(in) -- Set(v)

}

Figure 2.13 – Partial solution around an invocation to STE, corresponding to the search-graph
displayed in Figure 2.12 (with PNi l solved with 〈� | Ni l〉 and P �= unsolved).

This, for instance, enables individual-solution candidates to be plugged into the partial imple-

mentation in place of ST E . We can therefore trivially validate each candidate individually by

invoking verification on the resulting program. This would, however, be rather inefficient in

the presence of large grammars.

Instead, we symbolically explore the grammar by using an SMT-solver. Hence, we represent

the grammar provided as parameter to STE as a series of functions. In our example, we will

consider a size-bound grammar with the following productions:

IntList |3| ::= Cons(BigInt |1|, IntList |1|)
::= delete(t,BigInt |1|)

IntList |1| ::= Nil
∣∣ t

BigInt |3| ::= BigInt |1| + BigInt |1|
∣∣ BigInt |1| − BigInt |1|

∣∣ BigInt |1| ∗ BigInt |1|
BigInt |1| ::= 0

∣∣ 1
∣∣ 2

∣∣ v
∣∣ h

We convert each non-terminal into one or more independent functions that return candidate

expressions. For instance, with the grammar described above, we could represent the non-

terminals with the functions listed in Figure 2.14.

These functions represent the productions for a given non-terminal, and the choices of which

production to pick is provided by global boolean variables (B-variables). We can see that by

varying the B-values, we obtain results that correspond to the evaluation of all expressions

permitted by the input grammar. This program thus represents the input grammar. We also

need extra constraints to prevent multiple B-valuations from representing the same programs.

As is, both B1∧B2∧B5 and B1∧B2∧B5∧B6 represent Cons(0, Nil). Hence, we enforce that

44

2.4. Symbolic Term Exploration

def genIntList3(h: BigInt,
t: IntList,
v: BigInt): IntList = {

if (B1) {
Cons(genBigInt1a(h, t, v), genIntList1(h, t, v))

} else {
delete(t, genBigInt1a(h, t, v))

}
}

def genIntList1(h: BigInt,
t: IntList,
v: BigInt): IntList = {

if (B2) {
Nil

} else {
t

}
}

def genBigInt3(h: BigInt,
t: IntList,
v: BigInt): IntList = {

if (B3) {
genBigInt1a(h, t, v) + genBigInt1b(h, t, v)

} else if (B4) {
genBigInt1a(h, t, v) − genBigInt1b(h, t, v)

} else {
genBigInt1a(h, t, v) ∗ genBigInt1b(h, t, v)

}
}

def genBigInt1a(h: BigInt,
t: IntList,
v: BigInt): BigInt = {

if (B5) {
0

} else if (B6) {
1

} else if (B7) {
2

} else if (B8) {
h

} else {
v

}
}

def genBigInt1b(h: BigInt,
t: IntList,
v: BigInt): BigInt = {

if (B9) {
0

} else if (B10) {
1

} else if (B11) {
2

} else if (B12) {
h

} else {
v

}
}

Figure 2.14 – Functions generated to represent the grammar G|3|. The non-terminal symbol
BigInt |1| is represented by two independent functions, because it can be used twice at the
same time in BigInt |3|.

45

Chapter 2. Deductive Synthesis

only one production must be selected, which translates for genBigInt1a to the constraint

(¬B5∨¬B6)∧ (¬B6∨¬B7)∧ (¬B7∨¬B8)∧ (¬B5∨¬B7)∧ (¬B5∨¬B8)∧ (¬B6∨¬B8)

We note that non-terminals used more than once in the same production need to be dupli-

cated to ensure a complete coverage of the grammar. For instance, we duplicate the function

genBigInt1 because we rely on two independent values of genBigInt1 at the same time in pro-

ductions of genBigInt3. Without this, no valuation of B-variables would represent h + v.

We plug a call to the starting symbol’s function in place of the ST E invocation, in our program

representing the current search tree. This gives us a program that represents candidate

solutions. It remains to search for a valid B-valuation.

2.4.3 Search Algorithm

The search algorithm is composed mainly of a counter-example guided inductive synthesis

(CEGIS) loop in order to symbolically explore program candidates from the input grammar.

We provide a high-level algorithm in Figure 2.15. The algorithm gradually increases the target

expression size, consequently increasing the coverage. To ensure termination, we bound the

expression size. For a given target size s, we start by computing the set of candidate programs in

L(G)|s|. This set of candidates is then filtered (Filter) by using concrete execution. Whenever

the number of discarded candidates is deemed substantial, we skip the symbolic discovery

and individually validate candidates. Otherwise, we rely on a modified CEGIS loop: we first

look for one candidate programs that works on at least one input (FindCandidate). Given

such a candidate, we validate it for all inputs. The validation procedure (ValidateCandidate)

either confirms that the candidate is a solution, or returns a counter-example (an input for

which the candidate fails to produce a valid result). When discovering a counter-example, we

use it to filter the set of remaining candidates. In contrast, if no candidate can be found, we

continue increasing the target expression size. We now describe in further detail the three

important components of our algorithm.

Discovering Programs

Given the set of functions and constraints representing a grammar of a given size, as explained

in Section 2.4.2, finding a valid program is reduced to finding a valuation for the B-variables

such that the following formula is true:

∃B̄∀ā. C (B̄)∧ (Π⇒φ[x̄
→ S|s|(ā)]) (2.2)

where

– C (B̄) are the extra-constraints enforcing a bijective mapping from valid B-valuations

46

2.4. Symbolic Term Exploration

Input: test s, the initial set of input tests
Input: G , a grammar for the search space

1 for s ← 1 to M axSi ze do
2 Pal l ←L(G)|s|
3 P ← Filter(Pal l , test s)

4 if |P |
|Pal l | ≤ vali d ateUpTo then

5 for p ∈ P do
6 V ali d | cex ← ValidateCandidate(p)
7 if V ali d then
8 return Success(〈� | p〉)
9 else

10 test s ← test s ∪ {cex}
11 P ← Filter(P, {cex})

12 end
13 end
14 else
15 conti nue ← tr ue
16 while |P | > 0∧conti nue do
17 if p ← FindCandidate(P) then
18 V ali d | cex ← ValidateCandidate(p)
19 if V ali d then
20 return Success(〈� | p〉)
21 else
22 test s ← test s ∪ {cex}
23 P ← Filter(P, {cex})

24 end
25 else
26 conti nue ← f al se
27 end
28 end
29 end
30 return Failed

31 end

Figure 2.15 – Search algorithm.

47

Chapter 2. Deductive Synthesis

and candidate programs.

– S|s|(ā) is a call to the function that produces candidate values for x̄.

The quantifier alternation makes this constraint difficult to handle by traditional SMT solvers.

Instead, we search for a candidate program that works on at least one input. This translates to

the following alternative formula:

∃B̄ ā. C (B̄)∧Π∧φ[x̄
→ S|s|(ā)] (2.3)

If there does not exist such a B-valuation, then our grammar at the given size s is not expressive

enough to encode a solution to the problem. Otherwise, we extract a B-valuation B̄0 from the

model. We now proceed by validating this candidate program.

Falsifying Programs

Given a candidate program expressed as a B-valuation (B̄0), we check whether the candidate

program is valid for all inputs:

∀ā . B̄ = B̄0 ∧ (Π⇒φ[x̄
→ S|s|(ā)]) (2.4)

Note that B̄0 are constants that encode a single, deterministic, program and that it is known to

satisfy C (B̄). With this in mind, it becomes clear that we are truly solving for ā. We translate it

to the following formula that encodes the presence of a counter-example:

∃ā . B̄ = B̄0 ∧Π∧¬φ[x̄
→ S|s|(ā)] (2.5)

If no such ā exist, then we have found a program that realizes φ for all inputs and we are done.

Whereas if we can find ā0, then this constitutes an input that confirms that our program does

not meet the specification.

Eventually, because the set of possible assignments to b̄ is finite (for a given instantiation

depth) this refinement loop terminates. If we have not found a program, we can increase the

target expression size and try again. When the maximal size is reached, we abandon.

Filtering with Concrete Execution

Although the termination of our search procedure is in principle guaranteed by the finite

amount of programs paired with their successive eliminations in the refinement loop, the set

of programs of a given size typically grows rapidly as the target size increases. As the number

48

2.4. Symbolic Term Exploration

of candidates augments, the difficulty for the solver to satisfy (2.2) or (2.5) also increases. As

a complement to symbolic elimination, we use concrete execution on a set of input tests to

rule out many programs. For each new size, we filter the corresponding search space with

all the tests available so far. In practice, this typically reduces the amount of programs to

be symbolically considered by multiple orders of magnitude. A filter is also used to further

reduce the search space when we discover new counter-examples, while validating candidate

programs.

We prime the set of tests with inputs that satisfy the path condition. These either come directly

from the synthesis framework or are generated within STE by Leon’s ground-term generators

described in Section 2.5. Our input generators are lazy: if a single test excludes all programs,

no other input tests are generated.

To make testing efficient in our implementation, we compile on the fly the expression φ[x̄
→
S|s|(ā)] to JVM bytecode. The expression uses both the inputs ā and an assignment to B̄ to

compute whether the program represented by the B-values succeeds in producing a valid

output for ā.

This encoding of all candidate programs into executable functions enables us to rapidly test

and potentially discard hundreds or even thousands of candidates within a fraction of a second.

The filtering procedure periodically re-orders the tests available so that those that are most

efficient at discarding candidates are tried first. The acceleration achieved through filtering

with concrete executions is particularly important when STE is applied to a problem it cannot

solve. In such cases, filtering often rules out all candidate programs and symbolic reasoning is

never applied.

2.4.4 Execution of Partial Programs

As we have seen in Figure 2.13, the solution program that represents the current search tree

is sometimes partial, because unsolved branches are “implemented” using synthesis holes.

In order to test candidate solutions that are recursive, we thus need to be able to properly

execute synthesis holes.

We therefore extend our evaluators with support for runtime constraint solving. Given a

synthesis problem and a valuation for input values, the evaluator solves the constraint that is

now purely existential to discover valid output values. The evaluators invoke the SMT solvers

at runtime, once the input values are known. We cache the models of the solver invocations

for two main reasons: Firstly, the solver can be slow if the necessary models is big. Caching

thus improves the running time of subsequent calls with equivalent input contexts. Secondly,

it is important for consistency reasons that identical invocations produce the same result,

because referential transparency is generally assumed in functional programs. This however

cannot be assumed of multiple identical calls to a SMT solvers, as solvers involve some pseudo

non-determinism that is hard to control. Caching thus ensures that results are consistent with

49

Chapter 2. Deductive Synthesis

a fully-implemented functional program.

This approach of solving synthesis holes at runtime has been explored in previous-work

[KKS12], and enables the use of constraints as advanced control structures. In their approach,

the user was able to iterate over multiple solutions using the monadic “for” construct. In

our setting, we are only interested in finding one solution for each pair of synthesis hole and

context.

2.5 Ground-Term Generator

Given that our programs and specifications are both executable, we rely on runtime execution

to filter candidate programs efficiently. This filtering executes each candidate program on a

set of input examples and checks that their output satisfies the postcondition.

We therefore need to gather interesting input examples so that filtering removes most invalid

candidates. The first challenge comes from the fact that the inputs to our synthesis problems

are constrained by the path-condition. For instance, the problem of inserting into a sorted list

would be given as follows:

�l , v 〈i sSor ted(l)� i sSor ted(r es)∧content (r es) = content (l)∪ {v}〉 r es�

To evaluate candidate solutions, we thus need to obtain several values for the pair (l , v) where

the value for l is sorted.

2.5.1 Generate and Test

The first approach we use is to naively enumerate several values of the necessary types. We

rely on a value grammar that describe a set of literal terms. The use of grammars enables

us to reuse the machinery developed in Section 2.4.1. We explore a given grammar using

memoization-based enumerators. This proves to be very efficient in practice: we typically

generate millions of values within seconds. However, the generated tests need to satisfy the

path-condition. We therefore use an evaluator to filter the candidate inputs for which the

path-condition returns “true”. To perform this efficiently, we implemented an evaluator that

first compiles the path-condition to JVM bytecode.

Although this is interesting when the path-condition is weak, it yields disappointing results

when the path-condition is non-trivial. In our example, we can see that naively enumerating

lists and selecting only those that are sorted becomes inefficient as the list size increases: All

lists of size one are sorted, but only a small fraction of the lists of size 10 are sorted. This

fraction in fact approaches zero as the list size increases.

50

2.5. Ground-Term Generator

2.5.2 Symbolic Input-Output Examples

As we have seen in Section 1.3, we introduce a notation for expressing symbolic tests, where

inputs can have symbolic holes, and outputs are defined as expressions of these holes. The

developers can thus use this notation to specify fragments of their functions. We exploit

symbolic tests found in the user-provided specification by generating several concrete inputs

matching the pattern provided by the user by filling symbolic holes with generated values.

We note that like regular pattern matches, symbolic holes can be guarded using an if construct

in the pattern, and they are also implicitly constrained by the function’s precondition. Gener-

ating values for symbolic holes is in practice as difficult as generating standard input examples.

However, we believe that symbolic tests provided by the user hint at interesting features of

the function. By generating tests that match the provided patterns, we are likely to test the

relevant aspects of the function’s intended behavior.

2.5.3 Model-Based Enumeration

We have seen that enumeration-based approaches are limited when the generated values are

constrained by non-trivial formulas. Satisfying formulas by providing models for free variables

is something that SMT solvers are designed to perform efficiently. It is thus natural to turn to

these solvers to generate interesting examples with non-trivial constraints. However, typical

SMT solvers will only produce one model per satisfiable formulas. Instead, we can look for

different examples by refining the constraint, so that it excludes previously found models, and

ask the solver again. We describe this generator of inputs in the form of a simple coroutine:

1 C ←Π

2 while ∃M . M |=C do

3 yield M(ā)

4 C ←C ∧ ā �= M(ā)

5 end

However, we have seen before that there exists an infinite number of sorted lists of size one,

and because finding a model of a list of size one is easier than finding bigger models, this naive

refinement loop seen above does not enumerate models in a fair way. As a result, it will never

reach inputs of a size bigger than one, again limiting our examples to trivial ones. It will be

very efficient at finding examples which require "big" integer literals, though.

We would however like to use the solver even for our cases with sorted lists. Our enumeration

procedure synthesizes a set of size functions for every types involved. These size functions

enable us to also inject formulas in C , which constraints the size of the model. As a result, we

51

Chapter 2. Deductive Synthesis

can ask the solver to find models of gradually increasing size:

1 n ← 0

2 C ←Π

3 while ∃M . M |=C do

4 yield M(ā)

5 n ← n +1

6 C ←C ∧ ā �= M(ā)

7 if 5|n then

8 C ←C ∧ (si ze(ā) > si ze(M(ā)))

9 end

10 end

Here, we force a variation of model size every five models.

2.6 Evaluation

To evaluate our system, we developed benchmarks with reusable abstraction functions. The

various examples used as illustrations already point to some of the results we obtain. Here,

we summarize further results and discuss some of the remaining benchmarks. The synthesis

problem descriptions are available in the appendix, along with their solution as computed by

Leon.

Our set of benchmarks, displayed in Figure 2.16, covers the synthesis of various operations over

custom data structures with invariants, specified through the lens of abstraction functions.

These benchmarks use specifications that are both easy to understand and shorter than

resulting programs (except in trivial cases). Most importantly, the specification functions are

easily reused across synthesis problems. We believe these are key factors in the evaluation of

any synthesis procedure.

Figure 2.16 shows the list of functions we successfully synthesized. In addition to the address

book and sorted list examples shown in Section 2.1, our benchmarks include operations on

unary numerals, defined as is standard as “zero or successor”, and on an amortized queue

implemented with two lists from a standard book on functional data-structure implementa-

tion [Oka99]. Each synthesized program has been manually validated to be a solution that

a programmer might expect. The synthesis can be performed in order, meaning that an

operation will be able to reuse all previously synthesized ones, thus mimicking the usual de-

velopment process. For instance, multiplication on unary numerals is synthesized as repeated

invocations of additions.

Typically, our system also proves automatically that the resulting program matches the specifi-

cation for all inputs. In some cases, the lack of inductive invariants prevents a fully-automated

proof of the synthesize code (we stop verification after a timeout of 5 seconds). In most cases

52

2.6. Evaluation

Operation Prog. Size Sol. Size Calls Proof sec.
Compiler.rewriteMinus 218 6 0 � 1.6
Compiler.rewriteImplies 218 6 0 � 1.5
List.insert 59 3 0 � 0.8
List.delete 61 18 2 � 3.8
List.merge 75 11 1 � 6.1
List.diff 106 11 2 � 5.5
List.split 96 24 2 � 3.4
SortedList.insert 91 29 2 14.9
SortedList.insertAlways 105 31 2 � 20.3
SortedList.delete 91 18 2 7.2
SortedList.merge 138 11 2 � 6.6
SortedList.diff 136 11 2 � 5.5
SortedList.insertionSort 125 10 2 � 1.9
StrictSortedList.insert 91 29 2 � 12.3
StrictSortedList.delete 91 16 1 9.4
StrictSortedList.merge 138 11 2 � 7.0
UnaryNumerals.add 42 9 1 � 3.8
UnaryNumerals.distinct 66 4 1 � 2.3
UnaryNumerals.mult 64 10 2 � 4.4
BatchedQueue.dequeue 65 23 1 14.2
AddressBook.merge 99 11 2 6.2

Figure 2.16 – Automatically synthesized functions using our system. We consider a problem as
synthesized if the solution generated is correct after manual inspection. For each generated
function, the table lists the size of its syntax tree and the number of function calls it contains.�

indicates that the system also found a proof that the generated program matches the
specification: in many cases proof and synthesis are done simultaneously, but in rare cases
merely a large number of automatically generated inputs passed the specification. The final
column shows the total time used for both synthesis and verification.

53

Chapter 2. Deductive Synthesis

the synthesis succeeds sufficiently fast for a reasonable interactive experience.

2.7 Related Work

Our approach is similar in the spirit to deductive synthesis [MW71, MW80, Smi05], which

incorporates transformation of specifications, inductive reasoning, recursion schemes and

termination checking, but we extend it with modern SMT techniques, new search algorithms,

and a new cost-based synthesis framework.

The origins of our deductive framework is in complete functional synthesis, which was used

previously for integer linear arithmetic [KMPS12]. In this chapter, we do not use synthesis

rules for linear integer arithmetic. Instead, here we use synthesis procedure rules for algebraic

data types [Sut12a, JKS13], that were not reported in an implemented system before. This

gives us building blocks for the synthesis of recursion-free code. To synthesize recursive code,

we developed new algorithms, that build on and further advance the counterexample-guided

approach to synthesis [SLTB+06], but apply it to the context of an SMT instead of SAT solver

and use new approaches to control the search space.

Deductive Synthesis Frameworks

Early work on synthesis [MW71, MW80] focused on synthesis using expressive and undecid-

able logics, such as first-order logic and logic containing the induction principle.

Programming by refinement was popularized as a manual activity [Wir71, BvW98]. Interactive

tools were developed to support such techniques in HOL [BGL+97]. A recent example of

deductive synthesis and refinement is the Specware system from Kestrel [Smi05]. We were not

able to use the system first-hand due to its availability policy, but it appears to favor expressive

power and control, whereas we favor automation.

A combination of automated and interactive development is analogous to the use of automa-

tion in interactive theorem provers, such as Isabelle [NPW02]. However, in verification it is

typically the case that the program is available, whereas the emphasis here is on constructing

the program itself, starting from specifications.

Work on synthesis from specifications [SGF10] resolves some of these difficulties by decoupling

the problem of inferring program-control structure and the problem of synthesizing the

computation along the control edges. The work exploits verification techniques that use both

approximation and lattice theoretic search along with decision procedures, but it appears

to require detailed information about the structure of the expected solution more than our

approach does.

54

2.7. Related Work

Synthesis with Input/Output Examples

One of the first works that addressed synthesis with examples and put inductive synthesis on a

firm theoretical foundation is the one by Summers [Sum77]. Subsequent work presents exten-

sions of the classic approach to induction of functional Lisp-programs [KS06, Hof10]. These

extensions include synthesizing a set of equations (instead of just one), multiple recursive calls,

and a systematic introduction of parameters. Our current system lifts several restrictions of

previous approaches by supporting reasoning about arbitrary datatypes, supporting multiple

parameters in concrete and symbolic I/O examples, and by enabling nested recursive calls

and user-defined declarations.

Inductive (logic) programming that explores the automatic synthesis of (usually recursive)

programs from incomplete specifications, most often being input/output examples [FP01,

MR94], influenced our work. Recent work in the area of programming by demonstration

has shown that synthesis from examples can be effective in a variety of domains, such as

spreadsheets [SG12]. Advances in the field of SAT and SMT solvers inspired counter-example

guided iterative synthesis [SLTB+06, GJTV11], that can derive input and output examples from

specifications. Our tool uses and advances these techniques through two new counterexample-

guided synthesis approaches.

ESCHER, recently presented an inductive synthesis algorithm that is completely driven by

input/output examples, focuses on synthesis of recursive procedures, and shares some sim-

ilarities with some of our rules [AGK13]. By following the goal graph, which is similar in

function as the AND/OR search tree, ESCHER tries to detect if two programs can be joined by

a conditional. The split goal rule in ESCHER can speculatively split goals and is thus similar

to our splitting rules. One of the differences is that ESCHER can split goals based on arbitrary

choices of satisfied input/output example pairs, whereas our rules impose strictly predefined

conditions that correspond to common branching found in programs. We found it difficult

to compare the two frameworks because ESCHER needs to query the oracle (the user) for

input/output examples each time a recursive call is encountered (in the SATURATE rule). We

do not consider it practical to allow the synthesizer to perform such extensive querying, be-

cause the number of recursive calls during synthesis tends to be very large. Thus, ESCHER

appears suitable for scenarios such as reverse-engineering a black-box implementation from

its observable behavior more than for synthesis based on user’s specification.

Our approach complements the use of SMT solvers, with additional techniques for the au-

tomatic generation of input/output examples. Our current approach is domain-agnostic,

although in principle related to techniques such as Korat [BKM02] and UDITA [GGJ+10].

Recent works on synthesis of functional programs from input-output examples [FCD15]

employ a deductive approach very similar to ours: they decompose the problem by making

hypotheses about the structure of programs, and sub-problems are generated by applying a

lens on input-output examples. Their approach relies on a fixed set of shapes of higher-order

programs that they can combine arbitrarily to generate solutions. While their approach is

55

Chapter 2. Deductive Synthesis

syntactically more restrictive, the higher-order combinators are expressive enough to cover a

large set of applications.

Synthesis Based on Finitization Techniques

Program sketching has demonstrated the practicality of program synthesis by focusing its use

on particular domains [SLTB+06, SLAT+07, SLJB08]. The algorithms employed in sketching

are typically focused on appropriately guided searches over the syntax tree of the synthesized

program. The tool we present shows one way to move the ideas of sketching towards infinite

domains. In this generalization, we reason about equations as much as SAT techniques.

Reactive Synthesis

The synthesis of reactive systems generates programs that run forever and interact with

the environment. Complete algorithms known for reactive synthesis work with finite-state

systems [PR89] or timed systems [AMP94]. Finite-state synthesis techniques have applications

for controlling the behavior of hardware and embedded systems or concurrent programs

[VYY09]. These techniques usually take specifications in a fragment of temporal logic [PPS06]

and result in tools that can synthesize useful hardware components [JB06]. Recently such

synthesis techniques were extended to repair-tasks that preserves good behaviors [vEJ13],

which is related to our notion of partial programs that have remaining choose statements.

These techniques are applied to the component-based synthesis problem for finite-state

components [LV09]. We focus on infinite domains but for simpler input/output computation

model.

TRANSIT combines synthesis and model checking to bring a new model for programming

distributed protocols [URD+13], which is a challenging case of a reactive system. The specifi-

cation of a protocol is given with a finite-state-machine description augmented with snippets

that can use concrete and symbolic values to capture intended behavior. Similarly to our STE

rule, the main computational problem solving in TRANSIT is based on the counter-example

guided inductive synthesis (CEGIS) approach, and the execution of concrete specification is

used to prune the parts of the synthesis search space. Although similarities exist between the

concept of progressive synthesis of guarded transitions in TRANSIT and inferring branches in

our case splitting and condition abduction rules, the crucial difference is that our framework

infers the entire implementation, including the control flow (with recursive calls), without

the need of approximate control flow specification. However, the effectiveness of TRANSIT is

increased by focusing on a particular application domain, which is the direction we will leave

for the future.

56

2.7. Related Work

Automated inference of program fixes and contracts

These areas share the common goal of inferring code and rely on specialized software synthesis

techniques [WFKM11, PWF+11]. Inferred software fixes and contracts are usually snippets of

code that are synthesized according to the information gathered about the analyzed program.

The core of these techniques lies in the characterization of runtime behavior that is used

to guide the generation of fixes and contracts. Such characterization is done by analyzing

program state across the execution of tests; state can be defined using user-defined query

operations [WFKM11], and additional expressions extracted from the code [PWF+11]. Genera-

tion of program fixes and contracts is done using heuristically guided injection of (sequences

of) routine calls into predefined code templates.

Our synthesis approach works with purely functional programs and does not depend on

characterization of program behavior. It is more general in the sense that it focuses on

synthesizing whole correct functions from scratch and does not depend on already existing

code. Moreover, rather than using execution of tests to define starting points for synthesis

and SMT solvers just to guide the search, our approach utilizes SMT solvers to guarantee

correctness of generated programs and uses execution of tests to speedup the search. Coupling

of flexible program generators and the Leon verifier provides more expressive power of the

synthesis than filling of predefined code schemas. In Chapter 3, we extend the synthesis

framework presented here to perform repair. In that setting, exploiting existing code as well as

runtime traces turns out to be crucial.

Further Related Work Synthesis remains an active research area as we write this. Interesting

developments have been made since our results were first published.

The problem of finding a solution program amongst a space of candidates given by a grammar,

as described in Section 2.4.1, has since been identified as a key synthesis challenge [ABJ+13]. A

representation for such synthesis problems has been standardized (SyGuS) and competitions

have been held. Sadly, the problems we target within Leon remains out of scope of most SyGuS

solvers, because our specifications and solutions involve calls to recursive functions. However,

we believe that this effort will drive the research towards efficient solutions for this challenging

problem. While our framework is in essence more general than syntax-guided synthesis (since

we only use it within certain deductive rules), most non-trivial synthesis problems are solved

in part thanks to these rules. We thus believe that our approach will directly benefit from

advances in syntax-guided synthesis.

The SYNAPSE[BTGC16] tool employs parallelization to simultaneously search for solutions

within multiple sketches. By coordinating the intermediate results of individual searches, it is

able to speed up the discovery of an optimal solution according to a user-provided cost-model.

Even though Leon also follows a cost-model to reach potential solutions, its cost-model orients

the search within the graph. Because it is not used within individual deduction rules, we thus

cannot guarantee optimality of the end-result solution.

57

Chapter 2. Deductive Synthesis

The increasing availability of large corpus of code made recent advances in statistical ap-

proaches for synthesis of code and specifications effective [RVY14, RVK15].

2.8 Conclusions

Software synthesis is a difficult problem, but we believe it can automate several development

tasks. We have presented a new framework for synthesis: it combines transformational and

counterexample-guided approaches. Our implemented system can synthesize and prove

correct functional programs that manipulate unbounded data structures such as algebraic

data types. We have used the system to synthesize algorithms that manipulate list and tree

structures. Our approach uses the state-of-the-art SMT solving technology and an effective

mechanism for solving certain classes of recursive functions. Due to this technology, we were

able to synthesize programs over unbounded domains that are guaranteed to be correct for all

inputs. Our automated system can be combined with manual transformations or run-time

constraints-solving [KKS13], to cover the cases where static synthesis does not fully solve

the problem. It can further be improved by having additional rules for manually verified

refactoring and automatic synthesis steps [KMPS12], by being able to inform the search using

statistical information from a corpus of code [GKKP13] and by being able to use domain-

specific higher-order combinators [SNK+13], as well as by further improvements in decision

procedures to enhance the class of verifiable programs.

58

3 Deductive Repair

We have seen in Chapter 2 a synthesis procedure that is able to generate implementations

that satisfy a given specification. We build on these techniques and extend the synthesis

framework to perform repair. We consider a function to be subject to repair if it does not satisfy

its specification, expressed in the form of pre- and post-conditions. The task of repair consists

in automatically generating an alternative implementation that meets the specification. The

repair problem has been studied in the past for reactive and pushdown systems [JGB05,

JSGB12, vEJ13, GBC06, SDE08, SOE14]. We view repair as generalizing, for example, the

choose construct of complete functional synthesis [KMPS13], sketching [Sol13, SLTB+06],

and program templates [SGF13], because the exact location and nature of expressions to be

synthesized is left to the algorithm. Repair is thus related to localization of error causes. To

speed up our approach, we do use coarse-grained error localization based on derived test

inputs. Indeed, the repair identifies a particular change that makes the program correct.

Using tests alone as a criterion for correctness is appealing for performance reasons [PWF+11,

GNFW12, NQRC13], but this can lead to erroneous repairs. We therefore exploit our prior

work on verifying and synthesizing recursive functional programs with unbounded data-types

(trees, lists, integers) to provide strong correctness guarantees, while optimizing our technique

to use automatically derived tests. By phrasing the problem of repair as one of synthesis and

introducing tailored deduction rules that use the original implementation as guide, we enable

the repair-oriented synthesis procedure to automatically find correct fixes, and in the worst

case, to resort to re-synthesizing the desired function from scratch.

We view repair as a good example of a practical deployment of synthesis techniques. We

implement repair as a particular use-case of the general synthesis procedure described in

Chapter 2, to which we add the following key techniques:

Exploration of similar expressions. We present an algorithm for expression repair based

on a grammar for generating expressions similar to a given expression (according to an error

model we propose). We use such grammars within our new generic symbolic-term exploration

routine that uses test inputs as well as an SMT solver, and efficiently explores the space of

59

Chapter 3. Deductive Repair

expressions that contain recursive calls whose evaluation depends on the expression being

synthesized.

Fault localization. To narrow down repair to a program fragment, we localize the error by

doing dynamic analysis by using test inputs generated automatically from specifications. We

combine two automatic sources of inputs: enumeration techniques and SMT-based tech-

niques. We collect traces leading to erroneous executions and compute the common prefixes

of branching decisions. We show that this localization is in practice sufficiently precise to

repair sizeable functions efficiently.

Integration into a deductive synthesis and verification framework. Our repair system is

part of a deductive verification system, so it can automatically produce new inputs from

specification, prove correctness of code for all inputs ranging over an unbounded domain,

and synthesize program fragments by using deductive synthesis rules that include common

recursion schemas.

The repair approach offers significant improvements, compared with synthesis from scratch.

Synthesis alone scales poorly when the expression to synthesize is large. Fault localization

focuses synthesis on the smaller, invalid portions of the program and thus results in significant

performance gains. The source code of our tool and additional details are available at http:

//leon.epfl.ch, as well as https://github.com/epfl-lara/leon.

3.1 Example

Consider the following functionality based on a part of a compiler. We want to transform

(desugar) an abstract syntax-tree of a typed expression language into a simpler untyped

language; simplifying some of the constructs and changing the representation of some of

the types, preserving the semantics of the transformed expression. In Figure 3.1, the original

syntax trees are represented by the class Expr and its subclasses, whereas the resulting untyped

language trees are given by SExpr. A syntax tree of Expr either evaluates to an integer, to a

Boolean, or to no value if it is not well typed. We capture this by defining a type-checking

function typeOf, along with two separate semantic functions, semI and semB. Whereas, SExpr
always evaluates to an integer, as defined by the simSem function. For brevity, most subclass

definitions are omitted.

The desugar function translates a syntax tree of Expr into one of SExpr. We expect the function

to ensure that the transformation preserves the semantics of the tree: originally integer-valued

trees evaluate to the same value, Boolean-valued trees now evaluate to 0 and 1, representing

false and true, respectively, and mistyped trees are left unconstrained. This is expressed in the

postcondition of desugar.

60

3.1. Example

abstract class Expr
case class Plus(lhs: Expr, rhs: Expr)

extends Expr
... // 9 more subclasses

abstract class SExpr
case class SPlus(lhs: SExpr,

rhs: SExpr) extends SExpr
... // 5 more subclasses

abstract class Type
case object IntType extends Type
case object BoolType extends Type

def typeOf(e: Expr): Option[Type] =
...

def semI(t: Expr): Int = {
require(typeOf(t)==Some(IntType))

...
}
def semB(t : Expr) : Boolean = {
require(typeOf(t)==Some(BoolType))

...
}
def simSem(e : SExpr) : Int = ...

def desugar(e: Expr) : SExpr = {
e match {
case Plus (lhs, rhs) ⇒

SPlus(desugar(lhs), desugar(rhs))
case Minus(lhs, rhs) ⇒

SPlus(desugar(lhs), Neg(desugar(rhs)))
case And(lhs, rhs) ⇒

SIte(desugar(lhs), desugar(rhs), SLiteral(0))
case Or(lhs, rhs) ⇒

SIte(desugar(lhs), SLiteral(1), desugar(rhs))
case Not(e) ⇒

SIte(desugar(e), SLiteral(0), SLiteral(1))
case Ite(cond, thn, els) ⇒

SIte(desugar(cond), desugar(els), desugar(thn))
case IntLiteral(v) ⇒

SLiteral(v)
case BoolLiteral(b) ⇒

SLiteral(if (b) 1 else 0)}
...

} ensuring { res ⇒ typeOf(e) match {
case Some(IntType) ⇒

simSem(res) == semI(e)
case Some(BoolType) ⇒

simSem(res) == if (semB(e)) 1 else 0
case None() ⇒ true }

}

Figure 3.1 – The syntax tree translation in function desugar has a strong ensuring clause, requir-
ing the semantic equivalence of the transformed and the original tree, as defined by several
recursive evaluation functions. desugar contains an error. Our system finds it, repairs the
function, and proves the resulting program correct.

61

Chapter 3. Deductive Repair

The implementation in Figure 3.1 contains a bug: the thn and els branches of the Ite case have

been accidentally switched. Using tests automatically generated by generic enumeration

of small values, as well as from a verification attempt of desugar, our tool is able to find a

coarse-grained location of the bug, as the body of the relevant case of the match statement.

During repair, one of the rules performs a semantic exploration of expressions similar to the

invalid one. It discovers that using the expression SIte(desugar(cond), desugar(thn), desugar(els))
instead of the invalid one makes the discovered tests pass. The system can then formally verify

that the repaired program meets the specification for all inputs. If we try to introduce similar

bugs in the correct desugar function, or to replace the entire body of a case with a dummy value,

the system successfully recovers the intended case of the transformation. In some cases our

system can repair multiple simultaneous errors; the mechanism behind this is explained in

Section 3.2.2. Note that the developer communicates with our system only by writing code and

specifications, both of which are functions in an existing functional programming language.

This illustrates the potential of repair as a scalable and developer-friendly deployment of

synthesis in software development.

3.2 Deductive Guided Repair

We next describe our deductive-repair framework. The framework currently works under

several assumptions, which we consider reasonable given the state of the art in repair of

infinite-state programs. We consider the specifications of functions as correct; the code is

assumed wrong if it cannot be proven correct with respect to this specification for all of the

infinitely many inputs. If the specification includes input-output tests, it follows that the

repaired function must have the same behavior on these tests. We do not guarantee that the

output of the function is the same as the original on tests not covered by the specification,

though the repair algorithm tends to preserve some of the existing behaviors due to the local

nature of repair. It is the responsibility of the developer to sufficiently specify the function

being repaired. Although under-specified benchmarks might produce unexpected expressions

as repair solutions, we found that even partial specifications often yield the desired repairs.

In our experience, a particularly effective specification style is to give a partial specification

that depends on all components of the structure (for example, describes property of the set of

stored elements), then additionally to provide a finite number of symbolic input-output tests.

We assume that only one function of the program is invalid; the implementation of all other

functions is considered valid as far as the repair of interest is concerned. Finally, we assume

that all functions of the program, even the invalid one, terminate.

Stages of the Repair Algorithm. The function being repaired passes through the following

stages, that we describe in the rest of the section:

– Test generation and verification. We combine enumeration- and SMT-based tech-

niques to either verify the validity of the function or, if it is not valid, to discover coun-

62

3.2. Deductive Guided Repair

terexamples (examples of misbehaviors).

– Fault localization. The incorrect implementation is provided as a hint to the synthesis

problem. This enables localization rules to select smaller expressions that are executed

in all failing tests, modulo recursion.

– Synthesis of similar expressions. After localizing the error to a set of independent

branches, the synthesis procedure can use, amongst other techniques, the erroneous

version as a hint to explore some of its variations.

– Verification of the solution. Lastly, the system attempts to prove the validity of the

discovered solution. Our results, in Section 3.5 Figure 3.3, indicate in which cases the

synthesized function passed the verification.

We perform repair using the framework described in Section 2.3. We show how this framework

can be applied to program repair by introducing dedicated rules, as well as special predicates.

We reuse the notation for synthesis tasks:

�
ā

〈
Π�φ

〉
x̄
�

To track the original (incorrect) implementation along instantiations of our deductive synthesis

rules, we introduce a guiding predicate into the path-condition Π of the synthesis problem.

We refer to this guiding predicate as �[
expr

]
, where expr represents the original expression.

Like the termination hint described in Section 2.4.1, this predicate does not have any logical

meaning in the path-condition (it is equivalent to true), but it provides syntactic information

that can be used by repair-dedicated rules. These rules are covered in detail in Section 3.2.1,

Section 3.2.2 and Section 3.3.

3.2.1 Fault Localization

A contribution of our system is the ability to focus the repair problem on a small sub-part

of the function’s body responsible for its erroneous behavior. The underlying hypothesis is

that most of the original implementation is correct. This technique enables us to reuse as

much of the original implementation as possible and minimizes the size of the expression

given to subsequent more expensive techniques. Focusing also has the profitable side-effect

of making repair more predictable, even in the presence of weak specifications: Repaired

implementation tends to produce programs that preserve some of the existing branches, and

thus have the same behavior on the executions that use only these preserved branches. To

lead us to the source of the problem, we rely on the list of examples that fail the function

specification: If all failing examples only use one branch of some branching expression in

the program, then we assume that the error is contained in that branch. We define F as the

set of all inputs of collected failing tests (see Section 3.4). We describe focusing by using the

following rules.

63

Chapter 3. Deductive Repair

If-Focus

Given the input problem
�

ā
〈�[

if(c) {t} else {e}
]
�φ

〉
x̄
�

we first check if there is an alterna-

tive condition expression such that all failing tests succeed:

IF-FOCUS-CONDITION:
∃C .∀ī ∈F. φ[x̄
→ if(C (ā)) {t} else {e}, ā
→ ī]�

ā
〈�[c]∧Π�φ[x̄
→ if(x ′) {t} else {e}]

〉
x ′�� 〈P | T 〉�

ā
〈�[

if(c) {t} else {e}
]∧Π�φ

〉
x̄
�� 〈P | if(T) {t} else {e}〉

Instead of solving this higher-order hypothesis, we execute the function and non-deterministically

consider both branches of the if (and do so within recursive invocations as well). If a valid

execution exists for each failing test, the formula is considered satisfiable. This indicates that

the if-condition might be the only source of error. We therefore focus on the condition alone.

Otherwise, we check whether c evaluates to either true or false for all failing inputs. In either

case, we focus on the corresponding branch:

IF-FOCUS-THEN:�
ā

〈�[t]∧c ∧Π�φ
〉

x̄
�� 〈P | T 〉 ∀ī ∈F.c[ā
→ ī]�

ā
〈�[

if(c) {t} else {e}
]∧Π�φ

〉
x̄
�� 〈P | if(c) {T } else {e}〉

IF-FOCUS-ELSE:�
ā

〈�[e]∧¬c ∧Π�φ
〉

x̄
�� 〈P | T 〉 ∀ī ∈F.¬c[ā
→ ī]�

ā
〈�[

if(c) {t} else {e}
]∧Π�φ

〉
x̄
�� 〈P | if(c) {t} else {T }〉

We use analogous rules to repair match expressions; they are ubiquitous in our programs. For

match expressions however, there might exist more than two branches. We thus focus on every

branch exercised by at least one failing test:

MATCH-FOCUS:
∃ī ∈F.cn[ā
→ ī]

�
ā

〈�[bn]∧cn �φ
〉

x̄
�� 〈Pn | T̄n〉 ...�

ā
〈�[

s match {... case Cn ⇒ bn ...}
]
�φ

〉
x̄
�� 〈cn ∧Pn | s match {... case Cn ⇒ Tn ...}〉

where cn is the condition required to reach Cn (and therefore execute bn). In case some of

the failing tests match none of the match conditions, we inject an additional “or-else” case

(case _⇒???), that matches everything that was not matched by all the defined cases. This

enables us to repair programs where the error is due to an incomplete match construct.

All the above rules use tests to locally approximate the validity of branches. They are sound

only if the set of tests F is sufficiently large and representative. Our system therefore performs

an end-to-end verification for the complete solution, thus ensuring the overall soundness.

64

3.3. Counterexample-Guided Similar-Term Exploration

3.2.2 Guided Decompositions

In case the focusing rules fail to identify a single branch of an if-expression, we might still

benefit from reusing the if-condition. To this end, we introduce a rule analogous to focus, that

decomposes based on the guide.

IF-SPLIT:�
ā

〈�[t]∧c ∧Π�φ
〉

x̄
�� 〈P1 | T1〉

�
ā

〈�[e]∧¬c ∧Π�φ
〉

x̄
�� 〈P2 | T2〉�

ā
〈�[

if(c) {t} else {e}
]∧Π�φ

〉
x̄
�� 〈(c∧P1)∨ (¬c∧P2) | if(c) {T1} else {T2}〉

3.2.3 Synthesis within Repair

The repair-specific rules described earlier solve repair problems according to the error model.

Due to integration into the Leon synthesis framework, general synthesis rules also apply, which

enables the repair of more intricate errors. This achieves an appealing combination between

fast repairs for predictable errors and expressive, albeit slower, repairs for more complicated

errors.

3.3 Counterexample-Guided Similar-Term Exploration

After following the overall structure of the original problem, it is often the case that the remain-

ing erroneous branches can be fixed by applying small changes to their implementations. For

instance, an expression calling a function might be wrong only in one of its arguments or it

might have two of its arguments swapped. We exploit this assumption by considering different

variations to the original expression. Due to the lack of a large code base in the PureScala

subset that Leon handles, we cannot use statistically informed techniques such as [GKKP13],

so we define an error model following our intuition and experience from previous work.

We use the notation G(expr) to denote the space of variations of expr and define it in the form

of a grammar as combination of three variations:

G(expr) ::= Gsw ap (expr)
∣∣ Gar g (expr)

∣∣ G|2|(expr)

with the following forms of variations.

Swapping arguments. We consider here all the variants of swapping two arguments that are

compatible in terms of type. For instance, for an operation with three operands of the same

type:

Gsw ap (op(a,b,c)) ::= op(b,a,c)
∣∣ op(a,c,b)

∣∣ op(c,b,a)

65

Chapter 3. Deductive Repair

Generalizing one argument. This variation corresponds to making a mistake in only one

argument of the operation we generalize:

Gar g (op(a,b,c)) ::= op(G(a),b,c)
∣∣ op(a,G(b),c)

∣∣ op(a,b,G(c))

Bounded arbitrary expression. We consider a grammar of interesting expressions of a given

type and of limited depth. This grammar considers all operations in scope as well as all input

variables, similar to the bounded grammars described in Section 2.4.1 Finally, it includes

the guiding expression as a terminal, which corresponds to possibly wrapping the source

expression in an operation.

Our grammars cover a range of variations that correspond to common errors. During synthesis,

we instantiate STE with this specialized grammar. The input examples, collected for localizing

the error, are also immediately available within STE. Even though this rule is inherently

incomplete, it is able to fix common errors efficiently. Our deductive approach allows us to

introduce such tailored rules without loss of generality: errors that go beyond this model

could be repaired using more general, albeit slower synthesis rules. The prioritization of rules

available in Section 2.3 enables us to first apply repair rules, which guarantees that we try to

localize the problem before solving it.

3.4 Generating and Using Tests for Repair

Tests play an essential role during repair, allowing us to gather information about the valid

and invalid parts of the function. In this section we elaborate on how we select, generate, and

filter examples of inputs and possibly outputs. Several components of our system then make

use of these examples. We distinguish two kinds of tests: input tests and input-output tests.

Specifically, input tests provide valid inputs for the function according to its precondition,

whereas input-output tests also specify the exact output that corresponds to each input.

3.4.1 Extraction and Generation of Tests

Our system relies on multiple sources for generating input tests that have been previously

described in detail in Section 2.5:

1. User-provided symbolic input-output tests: Having partially symbolic input-output exam-

ples strikes a good balance between literal examples and full-functional specifications.

They permit the specification of generic functions naturally and inline with the imple-

mentation, where traditional test frameworks would exercise specific instantiations of

the function in a test harness located elsewhere.

This is the only source of tests that constraint the output. Indeed, we cannot rely

on output values obtained by executing the function, without taking the risk of over-

66

3.4. Generating and Using Tests for Repair

def desugar(e : Expr) : SExpr = e match { ...
case And(lhs, rhs) ⇒ // correct

SIte(desugar(lhs), desugar(rhs), SLiteral(0))
case Ite(cond, thn, els) ⇒ // correct

SIte(desugar(cond), desugar(thn), desugar(els))
case BooleanLiteral(b) ⇒ // buggy

if (b) SLiteral(0) else SLiteral(1)
}

And(true, true)

true 0 1

Ite(true, 0, 1)

Figure 3.2 – Code and invocation graph for desugar. Solid borderlines stand for passing tests,
dashed ones for failing ones. Type constructors for literals have been omitted.

committing: even if the output value satisfies the specification (making it a valid inputs-

output pair), registering it as the only valid output value for the provided inputs is

over-constraining the problem, and might prevent us from finding valid repairs.

2. Generated Input Tests: We rely on enumeration techniques to generate inputs that satisfy

the precondition of the function. Using a generate and test approach, we gather up to

400 valid input tests in the first 1000 enumerated.

3. Solver-Generated Tests: We rely on the underlying solvers for recursive functions of Leon

to generate verification counter-examples. Given that the function is invalid and that

it terminates, the solver (which is complete for counter-examples) is guaranteed to

eventually provide us with at least one failing test.

3.4.2 Classifying and Minimizing Traces

We partition the set of collected tests into passing and failing sets. A test is considered as failing

if it violates a precondition, a postcondition, or emits one of various other kinds of runtime

errors when the function to repair is executed on it. In the presence of recursive functions, a

given test might fail within one of its recursive invocations. It is interesting in such scenarios

to consider the arguments of this specific sub-invocation: they are typically smaller than the

original and are better representatives of the failure. To clarify this, consider the example in

Figure 3.2 (based on the program in Figure 3.1):

Assume the tests collected are

– And(BooleanLiteral(true), BooleanLiteral(true)),

– Ite(BooleanLiteral(true), IntLiteral(0), IntLiteral(1)), and

– BooleanLiteral(true)

When executed with these tests, the function produces the graph of eval invocations shown on

the right of Figure 3.2. A trivial classification tactic would label all three tests as faulty, even

67

Chapter 3. Deductive Repair

though it is obvious that all errors can be explained by the bug in BooleanLiteral, due to the

dependencies between tests. More generally, a failing test should also be blamed for the failure

of all other tests that invoke it transitively. Our framework deploys this classification. Thus, in

our example, it would only label BooleanLiteral(true) as a failing example, which would lead to

the correct localization of the problem on the faulty branch. Note that this process discovers

new failing tests not present in the original test set if they occur as recursive sub-invocations.

Our experience with incorporating tests into the Leon system indicate that they prove time

and again to be extremely important for the tool’s efficiency and complement well our existing

verification approaches. In addition to allowing us to detect errors sooner and filter out wrong

synthesis candidates, tests also allow us to quickly find the approximate error location.

3.5 Evaluation

We evaluate our implementation on a set of benchmarks in which we manually injected errors

(Figure 3.3). The programs mainly focus on data structure implementations and syntax tree

operations. Each benchmark is comprised of algebraic data-type definitions and recursive

functions that manipulate them, specified using strong yet still partial preconditions and post-

conditions. We manually introduced errors of different types in each copy of the benchmarks.

We ran our tool unassisted until completion to obtain a repair, providing it only with the name

of the file and the name of the function to repair (typically the choice of the function could

also have been localized automatically by running the verification on the entire file). The

experiments were run on an Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz with 16GB RAM, with

2GB given to the Java Virtual Machine. Although the deductive reasoning supports parallelism

in principle, our implementation is currently single-threaded.

For each benchmark of Figure 3.3 we provide (1) the name of the benchmark and the broken

operation (2) a short classification of the kind of error introduced. The error kinds include a

small variation of the original program, a completely faulty match-case, a missing match-case,

a missing necessary if-split, a missing function call, and finally, two separate variations in

the same function. We describe the relevant sizes (counted in abstract syntax tree nodes)

of (3) the overall benchmark, (4) the erroneous function, (5) the localized error, and (6) the

repaired expression. The full size of the program is relevant because our repair algorithm

can introduce calls to any function defined in the benchmark, and because the verification

of a function depends on other functions in the file (recall Figure 3.1). We also include the

time, in seconds, our tool took (7) to collect and classify tests, and (8) to repair the broken

expression. Finally, we report (9) if the system could formally (and automatically) prove the

validity of the repaired implementation. Our examples are challenging to verify, let alone repair.

They contain both functional and test-based specifications to capture the intended behavior.

Many rely on unfolding procedure of [SKK11, Sut12a] to handle contracts that contain other

auxiliary recursive functions. The fast exponentiation algorithm of Numerical.power relies on

the non-linear reasoning of the Z3 SMT solver [dMB08].

68

3.5. Evaluation

Operation Error Size Time (sec) Proof
Prg Fun Err Fix Test Repair Success

Compiler.desugar1 full case 634 81 3 5 1.2 2.7 �

Compiler.desugar2 full case 632 79 2 6 1.3 3.1 �

Compiler.desugar3 variation 636 83 7 7 0.9 1.7 �

Compiler.desugar4 variation 636 83 7 7 1.7 2.5 �

Compiler.desugar5 2 variations 636 83 14 14 2.0 2.9 �

Compiler.simplify1 variation 636 30 4 1 0.8 1.6 �

Heap.merge1 if cond 314 36 3 3 2.8 7.1 �

Heap.merge2 full case 314 36 1 1 1.3 1.9 �

Heap.merge3 if cond 314 36 3 3 2.8 6.8 �

Heap.merge4 variation 314 36 6 6 1.3 5.7 �

Heap.merge5 if cond 316 38 5 7 1.7 10.6 �

Heap.merge6 2 variations 314 36 2 2 2.1 2.6 �

Heap.insert variation 316 8 8 10 10.2 7.2 �

Heap.makeNode variation 316 16 7 7 2.6 6.6 �

List.pad variation 736 34 8 6 2.2 2.6 �

List.++ variation 648 9 3 5 2.2 3.1 �

List.:+ full case 679 11 1 3 1.8 1.7 �

List.replace if cond 721 25 4 3 1.3 20.1 �

List.count variation 681 22 4 3 2.1 6.1 �

List.find1 variation 733 16 3 5 1.0 2.1 �

List.find2 variation 655 21 2 4 2.9 4.0 �

List.find3 if cond 708 23 4 6 2.9 3.8 �

List.size variation 709 24 4 3 4.7 14.5 �

List.sum variation 683 10 4 4 1.5 1.5 �

List.delete missing call 681 10 4 4 1.6 1.8 �

List.drop1 if cond 681 16 1 3 1.3 2.2 �

List.drop2 variation 721 22 3 5 1.3 4.9 �

Numerical.power variation 142 23 5 7 0.5 2.1 �

Numerical.moddiv variation 144 30 3 1 0.5 1.5 �

MergeSort.split full case 222 30 5 2 3.1 2.1 �

MergeSort.merge1 variation 224 32 5 5 1.7 2.3 �

MergeSort.merge2 if cond 224 32 3 3 1.7 3.8 �

MergeSort.merge3 variation 222 30 3 5 1.7 2.1 �

MergeSort.merge4 variation 224 32 1 1 1.3 1.6 �

Figure 3.3 – Automatically repaired functions using our system. We provide for each operation
a small description of the kind of error introduced, the overall program size, the size of the
invalid function, the size of the erroneous expression we locate, and the size of the repaired
version. We then provide the times our tool took to gather and classify tests, and to repair the
erroneous expression. Finally, we mention if the resulting expression can be verified. The
source of all benchmarks can be found in the appendix.

69

Chapter 3. Deductive Repair

An immediate observation is that fault localization is often able to focus the repair to a

small subset of the body. Combined with the symbolic term exploration, this translates to

a fast repair if the error falls within the error model. Among the hardest benchmarks are

those labeled as having “two variations”. For example, Compiler.desugar5 is similar to one in

Figure 3.1 but contains two errors. In those cases, localization returns the entire match as the

invalid expression. Our guided repair uses the existing match as the guide and successfully

resynthesizes code that repairs both erroneous branches. Another challenging example is

Heap.merge3, for which the more elaborate If-Focus-Condition rule of Section 3.2.1 kicks in to

resynthesize the condition of the if expression.

The repairs listed in evaluation are not only valid according to their specification, but were

also manually validated by us to match the intended behavior. A failing proof thus does not

indicate a wrong repair, but rather that our system was not able to automatically derive a proof

of its correctness, often due to insufficient inductive invariants. We identify three scenarios

under which repair itself might not succeed: (1) if the assumptions mentioned in Section 3.2

are violated, (2) when the necessary repair is either too big or outside of the scope of general

synthesis, or (3) if test collection does not yield sufficiently many interesting failing tests to

locate the error.

3.6 Further Related Work

Much of the prior work on diagnosis and repair focused on imperative programming, without

native support for algebraic data types, making it typically infeasible to even automatically

verify data structure properties of the kind that our benchmarks contain. The Syntax-guided

synthesis format [ABJ+13, ABD+14] does not support algebraic data types, or a specific notion

of repair (it could be used to specify some of the sub-problems that our system generates,

such those of Section 3.3). Another approach aims at diagnosing errors in submissions from

students [SGS13]. It also phrases the problem of repair as synthesis of program fixes, which in

turn become feedbacks. They rely on sketching to explore the space of program fixes extracted

from an error model. The error model is tailored for individual programs and requires expert

knowledge about the solution as well as the kind of errors to be expected. Unfortunately, their

approach does not seem to rely on runtime-execution to filter our invalid fixes, even though

the setting allows for a large set of test-cases to be generated or provided.

GenProg [GNFW12] and SemFix [NQRC13] accept as input a C program, along with user-

provided sets of passing and failing test cases, but no formal specifications. Our technique for

fault localization is not applicable to a sequential program with side-effects, and these tools

employ statistical fault localization techniques based on program executions. GenProg applies

no code synthesis, but tries to repair the program by iteratively deleting, swapping, or duplicat-

ing program statements, according to a genetic algorithm. Whereas SemFix uses synthesis, but

does not take into account the faulty expression while synthesizing. Staged Program Repair

[LR15] repairs large imperative programs by instantiating parametrized transformations to

70

3.7. Conclusions

error locations that are determined by running positive and negative tests. For each tentative

transformation, it then attempts to synthesize the appropriate parameters to validate the

repair. Note that these parameters can be expressions (e.g. conditions). This approach is

however limited by the parameterized transformation schemas provided to the system, and

only allows one repair pattern to apply for each defect. AutoFix-E/E2 [PWF+11] operates on

Eiffel programs equipped with formal contracts. Formal contracts are used to automatically

generate a set of passing and failing test cases, but not to verify candidate solutions. AutoFix-E

uses an elaborate mechanism for fault localization; it combines syntactic, control flow and

statistical dynamic analysis. It follows a synthesis approach with repair schemas that reuse the

faulty statement (e.g, as a branch of a conditional). Samanta et al. [SOE14] propose abstracting

a C program with a Boolean constraint, repairing this constraint so that all assertions in the

program are satisfied by repeatedly applying to it update schemas according to a cost model,

then concretizing the Boolean constraint back to a repaired C program. Their approach needs

developer intervention to define the cost model for each program, as well as for the concretiza-

tion step. Logozzo et al. [LB12] present a repair suggestion framework based on static analysis

provided by the CodeContracts static checker [FL11]; the properties checked are typically

simpler than those in our case. In [GMK11], Gopinath et al. repair data structure operations by

choosing an input that exposes a suspicious statement, then by using a SAT-solver to discover

a corresponding concrete output that satisfies the specification. This concrete output is then

abstracted to various possible expressions to yield candidate repairs that are filtered with

bounded verification. In their approach, Chandra et al. [CTBB11] consider an expression as a

candidate for repair if substituting it with some concrete value fixes a failing test.

Repair has also been studied in the context of reactive and pushdown systems with otherwise

finite control [JGB05, JSGB12, vEJ13, GBC06, SDE08, SOE14]. In [vEJ13], the authors generate

repairs that preserve explicitly subsets of traces of the original program, in a way strengthening

the specification automatically. We deal with the case of functions from inputs to outputs

equipped with contracts. In case of a weak contract we provide only heuristic guarantees

that the existing behaviors are preserved, arising from the tendency of our algorithm to reuse

existing parts of the program.

3.7 Conclusions

We have presented an approach to program repair of mutually recursive functional programs,

building on top of a deductive synthesis framework. The starting point gives it the ability

to verify functions, find counterexamples, and synthesize small fragments of code. When

doing repair, it has proven fruitful to first localize the error and then perform synthesis on

a small fragment. Tests prove to be very useful in performing such localization, as well as

for generally accelerating synthesis and repair. In addition to deriving tests by enumeration

and verification, we have introduced a specification construct that uses pattern matching to

describe symbolic tests, from which we efficiently derive concrete tests without invoking a

full-fledged verification. In the case of tests for recursive functions, we perform dependency

71

Chapter 3. Deductive Repair

analyses and introduce new ones to better localize the cause of the error. Although localization

of errors within conditional control flow can be done by analyzing test runs, the challenge

remains to localize change inside large expressions with nested function calls. We have

introduced the notion of guided synthesis that uses the previous version of the code as a guide

when searching for a small change to an existing large expression. The use of a guide is very

flexible, and enables us to repair multiple errors in some cases.

Our experiments with benchmarks of hundreds of syntax tree nodes, including tree transfor-

mations and data structure operations, confirm that repair is more tractable than synthesis

for functional programs. The existing (incorrect) expression provides a hint about useful

code fragments from which to build a correct solution. Compared to unguided synthesis,

the common case of repair remains more predictable and scalable. At the same time, the

developer needs not learn a notation for specifying holes or templates. Therefore, we believe

that repair is a practical way to deploy synthesis in software development.

72

4 Effect Analysis for Programs with
Callbacks

We have seen in previous chapters that programs written in PureScala have interesting prop-

erties that we can exploit to develop useful tools for developers. However, one of the most

common programming style for Scala uses predominantly functional computation steps,

including higher-order functions, with a disciplined use of side-effects. An opportunity for

parallel execution further increases the potential of this style. Although higher-order functions

have always been recognized as a pillar of functional programming, they have also become

a standard feature of object-oriented languages such as C# (in the form of delegates), the

2011 standard of C++, and Java 8. Moreover, design patterns popular in the object-oriented

programming community also rely on callbacks, for instance the strategy pattern and the

visitor pattern [GHJV94].

Because PureScala is a purely functional language, it is unlikely that an existing Scala project

can be fully handled by Leon. This hinders the applicability of Leon to entire applications.

Leon can however be used on selected components of an application. For instance, Leon

applies particularly well to immutable data-structures. A successful approach is thus to

structure the application so that certain components are purely-functional. Leon would then

be able to verify them, and the rest of the application could trust that these components

behave as expected. However, we require that these components are self-contained, limiting

the way they can interact with the application. In other words, for a given function to be

Leon-compatible, its transitive call-graph must contain only Leon-compatible functions. This

is often too restrictive, especially in the presence of higher-order functions. To loosen this

requirement, we introduce external functions, which offers a way for Leon to interact with

arbitrary Scala code.

def leonFun(a: BigInt, b: BigInt) = {
require(a > 0 && b > 0)
otherFun(a+b)

} ensuring { _ > a }

@extern
def otherFun(x: BigInt): BigInt = {

73

Chapter 4. Effect Analysis for Programs with Callbacks

require(x > 0)
// arbitrary scala body

} ensuring { _ > x }

An external function is a Scala function whose body cannot be fully translated to Leon. The

@extern annotation tells Leon to ignore extraction errors, which are likely to occur since the

function may use arbitrary Scala features. In Scala terms, the specification is provided as

part of the function body. We however distinguish the expression computing the resulting

value (that we refer to here as body) from the specification (pre- and post-conditions). When

possible, our extraction procedure preserves the specification of external functions.

Due to the arbitrary nature of the body of external functions, Leon is unable to guarantee that

these functions follow their specifications. However, the specification can be used to properly

reason about the usage of external functions: We check that pre-conditions hold when calling

an external function from a tractable fragment, and we assume that the post-condition holds

for their return values.

Our procedure for satisfiability modulo recursive functions therefore treats external functions

as uninterpreted. In contracts to normal functions, the solver may not unfold the function

body to refine the formulas. But the theory of uninterpreted functions assumes referential

transparency:

ā1 = ā2 =⇒ f (ā1) = f (ā2)

Although this mathematical behavior of functions is typically implied in functional program-

ming languages, it does not hold for arbitrary external functions. This threatens the soundness

of verification in Leon, because the behavior of the external function is not properly captured

by the corresponding solver formulas.

In this chapter, we describe an analysis of side-effect that will be able to characterize external

functions depending on their effects. As a result, we identify functions that maintain referential

transparency, allowing them to be called from Leon functions without special handling.

A precise analysis of side-effects is essential for automated, as well as manual, reasoning about

such programs. The combination of callbacks and mutation makes it difficult to design an

analysis that is both scalable enough to handle realistic code bases and precise enough to

handle common patterns such as local side-effects and initialization; these patterns arise both

from manual programming practice and compilation of higher-level concepts. Among key

challenges are flow-sensitivity and the precise handling of aliases, as well as the precise and

scalable handling of method calls.

We support not only automated program analyses and transformations that rely on effect

74

4.1. Overview of Challenges and Solutions

information, but also program understanding tasks. We therefore generate readable effect-

summaries that developers can compare to their intuition about what methods should and

should not affect in a program heap. Such summaries must go beyond a pure/impure di-

chotomy, and should ideally capture the exact frame condition of the analyzed code-fragment

– or at least an acceptable over-approximation.

In this chapter, we present the design, implementation, and evaluation of a new static analysis

for method side-effects; this analysis is precise and scalable even in the presence of callbacks,

including higher-order functions. The key design aspects of our analysis include the following:

– a relational analysis domain that computes summaries of code blocks and methods by

tracking flow-sensitive side-effects and performing strong updates;

– a framework for relational analyses that compute higher-order relational summaries

of method calls; the summaries are parameterized by the effects of the methods being

called;

– an automated effect-classification and presentation of effect abstractions in terms of

regular expressions to facilitate their understanding by developers.

Our static analyzer, called Insane (INterprocedural Static ANalysis of Effects) is publicly avail-

able from

https://github.com/epfl-lara/insane

We evaluate Insane on the full Scala standard library, that is widely used by all Scala programs,

and is also publicly available. Our analysis works on a relatively low-level intermediate rep-

resentation that is close to Java bytecodes. Despite this low-level representation, we were

able to classify most method calls as not having any observational side-effects. Moreover, our

analysis also detects conditionally pure methods, for which purity is guaranteed provided that

a specified set of sub-calls are pure. We also demonstrate the precision of our analysis on a

number of examples that use higher-order functions as control structures. We are not aware

of any other fully automated static analyzers that achieve this precision while maintaining

reasonable performance.

4.1 Overview of Challenges and Solutions

In this section, we present some of the challenges that arise when analyzing programs written

in a higher-order style and how Insane can tackle them.

Effect attribution. The problem of correctly attributing heap effects is specific to higher-

order programs. Consider a simple class and a (first-order) function:

75

Chapter 4. Effect Analysis for Programs with Callbacks

class Cell(var visited : Boolean)

@extern
def toggle(c : Cell) = {

c.visited = !c.visited
}

Any reasonable analyses for effects would detect that toggle potentially alters the heap, as it

contains a statement that writes to a field of an allocated object. This effect could informally

be summarized as “toggle may modify the .value field of its first argument”. This information

could in turn be retrieved whenever toggle is used. Consider now the function

def apply(c : Cell, f : Cell⇒Unit) = {
f(c)

}

where Cell⇒Unit denotes the type of a function that takes a Cell as argument and returns no

value. What is the effect of apply on the heap? Surely, apply potentially has all the effects

that toggle has, as the call apply(c, toggle) is equivalent to toggle(c). It also potentially has no

effect on the heap at all, e.g. if invoked as apply(c, (cell⇒())). The situation can also be much

worse, for instance in the presence of global objects that might be modified by f. In fact, in

the absence of a dedicated technique, the only sound approximation of the effect of apply
is to state that it can have any effects. This approximation is of course useless, both from

the perspective of a programmer, who does not learn anything about the behaviour of apply,

and for the perspective of a broader program analysis, where the effect cannot be reused

modularly.

The solution we propose in this chapter is, intuitively, to define the effect of apply to be “exactly

the effect of calling its second argument with its first as a parameter”. To support this, we extend

the notion of effect to be expressive enough to represent control-flow graphs where edges

can themselves be effects. In the context of Insane we apply this idea to a domain designed

for tracking heap-effects (described in Section 4.2), although the technique applies to any

relational analysis, as we show in Section 4.3.

Equipped with this extended notion of effects, we can classify methods as pure, impure, and

conditionally pure. The apply function falls into this last category: it is pure, as long as the

methods called from within it are pure as well (in this case, the invocation of f). Notable exam-

ples of conditionally pure functions include many of the standard higher-order operations

on structures that are used extensively in functional programs (map, fold, foreach, etc.). As an

example, a typical implementation of foreach on linked lists is the following:

class LinkedList[T](var hd : T, var tl : LinkedList[T]) {
@extern
def foreach(f : T ⇒ Unit) : Unit = {

var p = this
do {

76

4.2. Effect Analysis for Mutable Shared Structures

f(p.hd)
p = p.tl

} while(p != null)
}

}

Correctly characterizing the effects of such functions is essential to analyzing programs written

in a language such as Scala.

Making sense of effects. Another challenge we address in this chapter is one of presentation:

when a function is provably pure, this can be reported straightforwardly to the program-

mer. When, however, it can have effects on the heap, the pure/impure dichotomy falls short.

Consider a function that updates all (mutable) elements stored in a linked list:

@extern
def update(es : LinkedList[Cell]) = {

es.foreach(c ⇒ c.visited = true)
}

Because the closure passed to foreach has an effect, so does the overall function. Although a

summary stating only that it is impure would be highly unsatisfactory: Crucially, it would not

give any indication to the programmer that the structure of the list itself cannot be affected by

the writes. As we will see, the precise internal representation of effects, even though suited to

a compositional analysis, is impractical for humans, not the least because it is non-textual.

We propose to bridge this representation gap by using an additional abstraction of effects in

the form of regular expressions that describe sets of fields potentially affected by effects (see

Section 4.4). This abstraction captures less information than the internal representation but

can readily represent complex effect scenarios. For the example given above, the following

regular expression is reported to the programmer:

es(.tl)∗.hd.visited

It shows that the fields affected are those reachable through the list (by following chains of .tl)

but belonging to elements only, thus conveying the desired information. In Section 4.5.3, we

further demonstrate this generation of human-readable effect summaries on a set of examples

that use the standard Scala collections library.

4.2 Effect Analysis for Mutable Shared Structures

The starting point for our analysis is the effect analysis [Sal06, WR99]. We here present an

adaptation to our setting, with the support for strong updates, which take into account

statement ordering for mutable heap operations. In the next section, we lift this analysis to

the case of programs with callbacks (higher-order programs), for which most existing analyses

77

Chapter 4. Effect Analysis for Programs with Callbacks

Statement Meaning
v = w assign w to v
v = o.f read field o.f into v
o.f = v update field o.f with v
v = new C allocate an object of class C and store the reference to it in v
v = o.m(a1, ..., an) call method m of object o and store the result in v

Figure 4.1 – Program statements P considered in the target language.

are imprecise. We thus obtain a unique combination of precision, both for field updates and

for higher-order procedure invocations.

We start by describing a target language that is expressive enough to encode most of the

intermediate representation of Scala programs that we analyze.

4.2.1 Intermediate Language Used for the Analysis

The language we target is a typical object-oriented language with dynamic dispatch. A program

is made of a set of classes C that implement methods. We uniquely identify methods by using

the method name prefixed with its declaring class as in C .m and denote the set of methods

in a program M. Our intermediate language has no ad-hoc method overloading, because

the affected methods can always be renamed after type checking. We assume that, for each

method, a standard control-flow graph is available, where edges are labeled with simple

program statements. Each of these graphs contains a source node entry and a sink node exit.

Figure 4.1 lists the statements in our intermediate language, along with their meaning.

Because of dynamic dispatch, a call statement can target multiple methods, depending on the

runtime type of the receiver object. For each method call o.m(), we can compute a superset

of targets targets(o.m) ⊆M∪ {?} using the static type of the receiver. If the hierarchy is not

bounded through final classes or methods, we also include the special "?" target to represent

the arbitrary methods that could be defined in unknown extensions of the program. Hence, we

do not always assume access to the entire program: this assumption is defined as a parameter

of the analysis, and we will see in Section 4.3.2 how this parameter affects it.

4.2.2 Effects as Graph Transformers

We next outline our graph-based representation of compositional effects. Our approach is

related to the representation originally used for escape analysis [SR05, Sal06]. The meaning

of such an effect is a relation on program heaps, that over-approximates the behavior of a

fragments of code (e.g. methods). Section 4.3 lifts this representation to a more general,

higher-order settings, which gives our final analysis.

78

4.2. Effect Analysis for Mutable Shared Structures

class List(var elem: Int,
var nxt: List = null)

def prepend(lst: List, v: Int) {
lst.nxt = new List(lst.elem, lst.nxt)
lst.elem = v

}

I1

L1

.nxt .elem

L2

Lv2

.nxt

.elemlst
Lv1

v

.nxt .elem

Figure 4.2 – Example of a graph representing the effects of prepend. Read edges lead to load
nodes that represent unknown values, and solid edges represent field assignments.

Figure 4.2 shows an example of a simple function and its resulting graph-based effect. In this

graph, Lv1 and Lv2 represent unknown local variables, here the parameters of the function.

I1 is an inside node corresponding to an object allocation. L1 and L2 are two load nodes that

reference values for fields of Lv1 that are unknown at this time. Although read (dashed) edges

do not strictly represent effects, they are necessary to resolve the meaning of nodes when

composing this effect at call-sites.

In general, our effect-graphs are composed of nodes representing memory locations. We

distinguish three kinds of nodes. Inside nodes are allocated objects. Because we use the

allocation-site abstraction for these, we associate with them a flag indicating whether the

node is a singleton or a summary node. Load nodes represent unknown fields. They model

accesses to unknown parts of the heap; supporting them is a crucial requirement for modular

effect-analyses. Graphs also contain special nodes for unresolved local variables, such as

parameters.

We also define two types of edges labeled with fields. Write edges, represented by a plain

(solid) edge in the graphical representation, and read edges, represented by dashed edges.

Read edges provide an access path to past or intermediate values of fields, and are used to

resolve load nodes. Write edges represent must-write modifications. Multiple write-edges

for the same label with the same sources indicates that the field must be updated to one of

the alternatives. Along with the graph, we also keep a mapping from local variables to sets of

nodes.

Our analysis directly defines rules to compute the composition of any effect-graph with a state-

ment that makes an individual heap modification. It is also possible to represent the meaning

of each individual statement as an effect-graph itself; the result of executing statements on a

current effect graph then corresponds to composing two effect-graphs. However, the main

need for composition arises in the modular analysis of function calls.

79

Chapter 4. Effect Analysis for Programs with Callbacks

4.2.3 Composing Effects

Composition is a key component of most modular analyses. It is typically required for inter-

procedural reasoning. In our setting, it also plays an important role as a building block in

our analysis framework for programs with callbacks, which we describe in Section 4.3. We

now describe how composition applies to effect-graphs. This operation is done in a specific

direction: we say that an inner effect-graph is applied to an outer effect-graph. The merging of

graphs works by first constructing a map from inner nodes to equivalent outer nodes. This

map, initially incomplete, expands during the merging process.

Importing inside nodes. The first step of the merging process is to import inside nodes from

the inner graph to the outer graph. We specialize the labels that represent their allocation

sites to include the label corresponding to the point at which we compose the graphs. This

property is crucial for our analysis because case-classes, an ubiquitous feature of Scala, rewrite

to factory methods. Once the refined label is determined, we check whether we import a

singleton node into an environment in which it already exists. In such case, the node is

imported as a summary node. In our example displayed in Figure 4.3, I3 is imported as a

singleton I ′3.

Resolving load nodes. When merging two graphs, the next important operation is the reso-

lution of load nodes from the inner graph to nodes in the outer graph. The procedure works as

follows: for each inner load node we look at all its source nodes, by following read edges in the

opposite direction. Note that the source node of a load node might be a load node itself, in

which case we recursively invoke the resolution operation. Using this map, we then compute

the nodes in the outer graph that correspond to the source nodes.

The resolution follows by performing a read operation from the corresponding source nodes

in the outer graph. Once a load node is resolved to a set of nodes in the outer graph, the

equivalence map is updated to reflect this. In our example, L2 is identified as read from Lv2

through .g . We consequently read .g from the corresponding node Lv1, obtaining {I1,L1}.

Applying write effects. Given the map obtained by resolving load nodes, we apply write

edges found in the inner graph to the corresponding edges in the outer graph. A strong update

might not be able to remain strong in the outer-graph, depending on how the source node is

resolved. In our example, L2 is resolved to {I1,L1}. It would be incorrect to perform a strong

update on both of these objects. The write effect becomes a weak update; hence the old value

of L1. f is introduced. Our support for strong updates enables us to treat setter methods or

constructors precisely without specific dedicated techniques. Imprecisions due to the abstract

domain may however force us to treat a strong-update as a weak-update when merging the

effect of a function call.

80

4.2. Effect Analysis for Mutable Shared Structures

I1

L3I2

.f .f .f .f

I ′3

L1

.g .g

a
Lv1

b
Lv2

L2

I3

.g

.f

.g .g

.f

a
Lv1

I1

I2

L1

innerouter result

Figure 4.3 – Merging a graph with load nodes and strong updates in a context that does not
permit a strong update. Inside nodes are imported after refining their label.

class A(var x: Int)

def f1(a1: A, a2: A) {
val a = if(..) a1 else a2
f2(a)

}

def f2(a: A) {
a.x = 2
a.x = 3

}

Figure 4.4 – Example of strong update being delayed as much as possible

The composition not only executes the last two steps, but repeats them until the convergence

of the outer graph. Once a fixpoint is reached, we have successfully applied the full meaning of

the inner graph to the outer graph. Such application until the fixpoint is crucial for correctness

in the presence of unknown aliasing and strong updates. We illustrate this merging operation

in Figure 4.3.

4.2.4 Local Strong Updates

When computing the effects of the function f2 in Figure 4.4, we illustrate the need for local

strong updates . Because the argument a is essentially unknown (i.e. a may point to many

objects), a traditional conservative analysis would typically treat both writes to a.x as weak

updates. As a result, the analysis would conclude that a.x can be equal to 2, 3, or its old value.

In our approach, these updates are treated as strong. The resulting effect summary will thus

be that a.x is strongly updated to 3. Although this technique improves the precision of the

analysis dramatically, it does require additional checks when applying an effect, because an

update previously considered as strong can become weak. Indeed, when applying the effect of

f2 into f1, the write operation becomes weak, because it is applied on two distinct nodes, the

nodes for a1 and a2. We note however that, unlike the conservative approach, the write effect

of a.x = 2 has been fully overriden by a.x = 3.

81

Chapter 4. Effect Analysis for Programs with Callbacks

4.2.5 Application to the Analysis of Real-World Scala Code

Analyzing real-world Scala code adds practical complications that were not directly embedded

into the target language described in Section 4.2.1 and thus not originally accounted for. Here

we list several of these complications and explain how we handled them.

Java dependencies. The Scala library depends heavily on the Java library, it is thus crucial

for our analysis to handle Java code as well. Although the Scala compiler does not compile

Java source-code, it does provide an utility to read Java byte-code into one of its intermediate

representation used later in the pipeline. We were able to convert this stack-based inter-

mediate representation into our control-flow graphs, which enables us to analyze the Java

dependencies. However, due to technical limitations in this utility, some Java classes fail to

parse and thus not all dependencies are available. In such cases, the calls to those unknown

dependencies get delayed, just like imprecise method-calls, and eventually yield conditional

summaries.

Native code. Having access to all Java dependencies in the available jar files is not sufficient

to completely analyze the Scala library. Both the Java and Scala library rely on classes that

are implemented as native (C) libraries, or by the JVM itself. This is the case, for instance, for

arrays. In order to handle them correctly, Insane relies on custom, mock implementations for

these native classes and methods: it intercepts the calls to native methods and redirects them

to the stub implementations. Arrays, for example, are implemented as an instance of a class

containing one field acting as a store. Writing to the array becomes a weak update on that store.

(We thus do not distinguish between elements stored at different array indices.) This store

field is notably apparent in Figure 4.11 as store. We do not introduce numerical domains

to distinguish between array indices. We found this simplification to have limited impact on

the precision of our analysis: developers tend to prefer Scala collections over arrays. When

arrays are used, it is often as underlying storage to more complicated structures like heaps or

hashtables for which simple numerical domains would anyway not be precise enough. In our

analysis, we essentially represent arrays as instances of the ArrayStub class:

class ArrayStub[T](val length: Int) {
var store: T = _
def update(i: Int, v: T) = if (?) { store = v } else { }
def apply(i: Int) = store

}

Exceptions. Accounting for exceptional flow is a challenging precision problem, as it typi-

cally clutters the control-flow graph with several edges to exception handlers. Scala has no

checked exception and thus its compiler provides no information on which exceptions a

method call might throw. We decided to ignore exceptional flow in this version of our analyzer.

82

4.3. Compositional Analysis of Higher-Order Code

Hence, the analysis is unsound in the presence of exceptions. Currently, throwing an exception

in one program branch results in a bottom effect (indicating an impossible branch). This is

consistent with the view that the results should be valid for non-exceptional executions.

Specialization for literal values. It is also worth noting that Insane specializes Integer and

Boolean types, in order to distinguish between different literal values. Consequently, graphs

can contain nodes representing Any Int as well as IntV al (n) ∀n ∈ Int . This specialization is

both at the node and type level, we thus have that

type(BoolVal(true))� type(BoolVal(false)) =⊥

This is especially useful for boolean values, as it enables us to filter out branches protected by

unsatisfiable boolean conditions.

4.3 Compositional Analysis of Higher-Order Code

The merge operation for effect-graphs presented in the previous section enables us to analyze

programs without dynamic dispatch. Standard approaches to extend it to dynamic dispatch

are either imprecise or lose modularity. In this section, we therefore extend the basic analysis

to support dynamic dispatch (including higher-order functions and callbacks) in both a precise

and rather modular way. The methodology by which we extend the core analysis to the higher-

order case is independent of the particular domain of effect-graphs, so we present it in terms

of a framework for precise interprocedural analysis of functions with callbacks.

Our framework works on top of any abstract interpretation-based analysis whose abstract

domain R represents relations between program states. The abstract domain described in

the previous section matches these requirements. Along with a set of control-flow graphs

over statements P previously described in Figure 4.1, we assume the existence of other usual

components of such analyses: a concretization function γ : R → (S ×S) and a transfer function

Tf : (P×R) → R.

We now define a composition operator : R ×R → R for elements of the abstract domain, with

the following property:

∀e, f ∈ R . (γ(e)◦γ(f)) ⊆ γ(e f)

that is

∀s0, s1, s2 . s1 ∈ γ(e)(s0)∧ s2 ∈ γ(f)(s1) =⇒ s2 ∈ γ(e f)(s0)

In other words, must compose abstract relations in such a way that the result is a valid

approximation of the corresponding composition in the concrete domain.

83

Chapter 4. Effect Analysis for Programs with Callbacks

4.3.1 Control-Flow Graph Summarization

Summarization consists of replacing a part of the control-flow graph by a statement that over-

approximates its effects. Concretely, we first augment the language with a special summary

statement, characterized by a single abstract value:

Pext =P∪ {Smr(a ∈ R)}

Consequently, we define Tfext over Pext :

Tfext (s)(r) =
{

Tf(s)(r) if s ∈P
r a if s = Smr(a)

Let c be the control-flow graph of some procedure over Pext , and a and b two nodes of c such

that a strictly dominates b and b post-dominates a. In such a situation, all paths from entry
to b go through a and all paths from a to exit go through b. Let us consider the sub-graph

between a and b, which we denote by a ¨ b. This graph can be viewed as a control-flow graph

with a as its source and b as its sink. The summarization consists of replacing a ¨ b by a single

edge labelled with a summary statement obtained by analyzing the control-flow graph a ¨ b

in isolation.

We observe that composition over the concrete domain is associative, whereas this is generally

not the case for . Moreover, different orders of applications yield incomparable results. In

fact, the order in which the summarizations are performed plays an important role in the

overall result. When possible, left-associativity is preferred as it better encapsulates a forward

top-down analysis and can exploit past information.

4.3.2 Partial Unfolding

The control-flow graph summarization presented above is one of the building blocks of our

compositional framework. Another block is a mechanism for replacing method calls by

summaries, or unfolding, which we present here.

When faced with a call statement o.m(args), the analysis will extract information about o

from the data-flow facts and compute the set of its potential static targets To.m ⊆M. The

control-flow graphs corresponding to the targets are then included after a non-deterministic

split. It is worth noting that the set of targets To.m is generally not complete. Indeed, this

process is performed during the fix-point computation, facts about o might still grow in the

lattice during future iterations. The original call is therefore kept and annotated to exclude

targets already unfolded, as pictured in Figure 4.5. In certain situations, we can conclude

that all targets have been covered, rendering the alternative call edge infeasible and thus

removable.

84

4.3. Compositional Analysis of Higher-Order Code

a b
o : C2 CFG C2.m

o : C1
CFG C1.m

r = o.m(args) \ {C1.m,C2.m}

Figure 4.5 – Example of unfolding with Tcall = {C1.m,C2.m}.

To ensure the validity of the partial unfolding operation, we first apply a semantic-preserving

rewrite: We split the call edge, thus making it explicit which fully determined (non-virtual)

calls should be unfolded, and we record the set of unfolded targets in the original edge. This

intuitively amounts to annotating call edges with the targets that have already been unfolded.

For instance, for a set of targets T = {C1.m,C2.m}, we get

a b
r = o.m(args)

�

a b

r = o.m[C1.m](args)

r = o.m[C2.m](args)

r = o.m〈T 〉(args)

For an annotated call edge r = o.m〈T 〉(args), we can compute its targets: targets(o.m) \ T .

The fully determined call edges are displayed here for explanation purposes. In practice, we

immediately replace them with their corresponding control-flow graphs, properly instantiated

and surrounded with appropriate assign-statements for the arguments and return values:

If it is available, we can rely on abstract information on o to refine the number of potential

targets. By keeping the call statement and by recording unfolded targets, we can perform this

unfolded operation before we reach a fix-point. We argue this by making two observations:

– In the absence of precise information on the runtime type of o, we might have to unfold

too many targets. Being an over-approximation, it remains sound.

– If during the abstract interpretation the facts at a increase in a way that include new

potential targets for o.m, they will be included semantically in the alternative edge and

become candidates for unfolding. Consequently, the partial unfolding does not prevent

the discovery of other potential targets at a later stage.

85

Chapter 4. Effect Analysis for Programs with Callbacks

sealed class A {
def m1() {

val o = new A;
this.m2(o)

}

def m2(o: A) {
this.m3()
o.f()

}

// .. continuing class A

def m3() { }

def f() { }
}

class B extends A {
override def f() { .. }

}

Figure 4.6 – Example of a chain of method calls.

In certain situations, we can conclude that we have unfolded all potential targets. In such

cases, the alternative call edge becomes infeasible and can be removed. This can happen

either because the exact type is known for the receiver, some methods or classes are known to

be final, or because we parametrize the analysis to assume a closed world.

4.3.3 Combining Unfolding and Summarization

We distinguish two main kinds of summaries. A summary that contains unanalyzed method

calls is said to be conditional. In contrast, a definite summary is fully reduced down to a single

edge with a summary statement.

We now illustrate the flexibility provided by our framework through a simple example displayed

in Figure 4.6. In general, there are multiple ways to generate a definite summary from a control-

flow graph, depending on the interleaving of summarization and unfolding operations.

For instance, one way to generate a summary for A.m1 would consist of the following steps:

First, we fully summarize A.m3, A. f and B. f , then we unfold their call in A.m2, summarize

the result, unfold it in A.m1 and finally summarize it. This would represent a completely

modular approach, where summaries are reused as much as possible. Being perhaps the most

efficient way to compute a summary (as intermediate summaries for A.m2, A.m3, A. f and

B. f are small, definite effects), it is also the least precise. Indeed, in this order, we have no

precise information on o at the time of analyzing o.f() and thus we have to consider every static

targets— here A. f and B. f , leading to an imprecise summary. We note that this approach,

though generally used by traditional compositional analyses, falls short in the presence of

callbacks where the number of static targets is typically large (>1’000 for the Scala library).

In contrast, we could have waited to analyze o.f() by generating a conditional summary for

A.m2 where this.m3() is unfolded but o.f() remains unanalyzed. We refer to the decision of not

analyzing a method call as delaying.

86

4.3. Compositional Analysis of Higher-Order Code

4.3.4 Controlled Delaying

We have seen through the examples above that choosing when to unfold a method call can have

a important impact in terms of performance and precision. In our framework, we delegate

this decision to a function D(cal l ,ct x). The precision and performance of the analysis are

thus parametrized in D. We illustrate how this affects the analysis results by considering the

two extremes:

– Fixing D(. . .) = false ensures that every method is analyzed modularly, in a top-down

fashion. This will enable summaries to be reused as much as possible. However, only

relying on definite summaries hinders the precision of the overall analysis.

– In contrast, having D(. . .) = true forces the analysis to delay every method call, hence

leading to the analysis of a single, complete control-flow graph. This would in theory

lead to the most precise result, but the construction of a single complete graph is not

always possible. Recursive programs would, for instance, lead to an infinite control-flow

graph. We specifically discuss the delaying of recursive functions in the following section.

Even when available, the graphs obtained by delaying everything capture information

that is mostly irrelevant for the overall effect computation. This lack of intermediate

summarizations and simplifications results in a slow analysis.

We also note that the analysis must be able to conservatively reason about delayed method

calls in order to proceed past them. A conservative approach is to assume that, by resetting

the facts to the identity relation, we do not know anything anymore after the delayed call.

4.3.5 Handling Recursion

Assuming the underlying abstract interpretation-based analysis does terminate (which we

ensure for effect-graphs), we still need to ensure that the control-flow graph does not keep

changing due to unfoldings. For this reason, we need to take special measures for cycles in the

call-graph.

Statically detecting recursion is non-trivial, especially in the presence of callbacks. An attempt

to use a refined version of a standard class analysis proved to be overly imprecise: it flags

every higher-order functions as recursive. Therefore, Insane lazily discovers recursive methods

during the analysis when closing a loop in the progressively constructed call-graph. It then

rewinds the analysis until the beginning of the loop in the lasso-shaped call-graph in order

to handle the cycle safely. We handle recursion by ensuring that only definite summaries are

generated for methods within the cycle. In fact, we enforce termination by requiring that

D(c,ct x) returns false for any call c within the call-graph cycle.

It is worth noting that D(. . .) is constrained only for calls within the call-graph cycle: we are

free to decide to delay the analysis when the call is at the boundaries of a cycle. For example, it

87

Chapter 4. Effect Analysis for Programs with Callbacks

is critical for precision purposes to delay as much as possible the analysis of the entire cycle.

When analyzing a set of mutually recursive functions, we start by assuming that all have a

definite summary of identity, thus indicating no effect. The process then uses a standard

fix-point iterative process and builds up summaries until convergence.

4.3.6 Instantiation for Effect Graphs

We now discuss the instantiation of this framework in the context of effect graphs presented

in Section 4.2. We can quickly identify that our abstract domain is relational and thus a

candidate for use in this framework. The original statements are thus extended with a summary

statement characterized by an effect-graph:

Pext :=P∪ {Smr(G)}

We can also notice that the graph-merging operation acts as composition operator :

G1 G2 := merge G2 in G1

For the delaying decision function D, we base our decision on a combination of multiple

factors. One important factor is of course the number of targets a method currently has. We

also check whether the receiver escapes the current function, which indicates that delaying

might improve its precision. As expected, experiments indicate that this decision function

dictates the trade-off between the performance and precision of the overall analysis.

In case the call at hand is recursive, we conservatively prevent its delaying. However, we also

check whether the number of targets is not too high. In practice, we consider this upper limit

to be 50. We argue that, without the ability to delay, the effects would become overly imprecise

anyway if we exceed this many targets for a single call. In such cases, the analysis gives up and

assigns � as definite summary to all concerned functions.

4.3.7 Context Sensitivity

Compositional summaries already give us a powerful form of context sensitivity but it is not

always sufficient in practice, specifically in the presence of recursive methods relying on

callbacks. We thus had to introduce another form of context-sensitivity that specializes the

analysis of the same method for multiple call signatures. We first introduce a notion of type

signature that is recursively defined by:

TypeSig := TypeInfo×2Fields×TypeSig

TypeInfo := Type×Boolean

88

4.4. Producing Readable Effect Summaries

Type signatures represent type information about a particular object. They not only give

information about the type of the object itself, but can also provide a type signature for some

of its fields. Each type information is annotated with a flag that indicates whether subtypes

should also be considered in order to distinguish _ " T and _ = T . We define the depth of a

type signature to be the maximum depth until no field information is specified:

depth(s) := 1+max {0}∪ {depth(s f) | (f , s f) ∈ s.fields}

We also introduce TypeSigd ⊂TypeSig to represent signatures of maximum depth d . The call

context used to identify summaries is established by combining the type-estimates for the

receiver, as well as each argument.

4.4 Producing Readable Effect Summaries

We have demonstrated that summaries based on control-flow graphs are a flexible and ex-

pressive representation of heap modifications. However, such graph-based summaries are

often not directly usable as feedback to programmers, for several reasons. First, they capture

both read and write effects, whereas users are likely to be interested primarily in write effects.

Next, they can refer to internal memory cells that are allocated within a method and do not

participate directly in an effect. Last but not least, they are not in textual form and can be

difficult to interpret by developers who are used to textual representations.

To improve the usefulness of the analysis for program understanding purposes, we describe

effect summaries of methods in a more concise and textual form. For this purpose, we adopt

regular expressions because they are a common representation for the infinite sets of strings

and can, therefore, characterize access paths [Deu92]. They also have a notable tradition of

use for representing heap effects [LH88]. To generate an approximate textual representation

of graph-based summaries for our analysis, we adopt the general idea of representing graphs

by using sets of paths.

We first show how we construct a regular expression for a definite summary. For definite

summaries, a graph-based effect is available for summarizing the method. The graph not

only describes which fields can been modified, but also to which value they can be assigned.

Whereas the corresponding regular expression only describes which fields could be written

to. The task is therefore reduced to generating a conservative set of paths to fields that

might be modified. We construct the following non-deterministic finite-state automaton

(Q,Σ,δ, q0, {q f }) based on a graph effect G :

89

Chapter 4. Effect Analysis for Programs with Callbacks

es
es es

.tl
.tl

.tl

.hd
.hd

.hd

.visited.visited.visited

L1

L2

Lv

.tl

.tl.hd

.hd

q0 q0

q1

q3

q4

q1

q3

q2

q4

Figure 4.7 – Transformation steps from an effect-graph to a minimized DFA. The graph on the
left is the definite effect of an impure list traversal. The center graph is the corresponding NFA
whose accepting language represents paths to modified fields. The last graph is the minimized
DFA to be translated to a regular expression.

Q := G .V ∪ {q f , q0}

Σ := { f | v1
f→ v2 ∈G .E }

δ := G .E ∪ {q0
n→ n | n ∈G .V ∧connecting(n)}

∪{v1
f→ q f | v1

f→ v2 ∈G .I E ∧ v1 is not an inside node}

The automaton accepts strings of words where “letters” are names of the method arguments

and field accesses. Given an access path, o. f1. f2. · · · . fn−1. fn , the automaton accepts it if fn is

modified on the set of objects reached via o. f1. f2. · · · . fn−1. We exclude writes on inside nodes,

because they represent writes that are not be observable from outside, as the node represents

objects allocated within the function. Using the non-deterministic automaton, we produce

a regular expression by first determinizing it, then minimizing the obtained deterministic

automaton, and finally applying a standard transformation into a regular expression by suc-

cessive state-elimination. Figure 4.7 shows the effect-graph and the corresponding automata

(non-minimized and minimized) for the example from the end of Section 4.1. In general, we

found the passage through determinization and minimization to have a significant positive

impact on the conciseness of the final expression.

For a conditional summary, we extract the set of unanalyzed method calls, assuming that they

are all pure, then compute a (definite) effect and present the corresponding regular expression

along with the set of calls. The natural interpretation is that the regular expression captures all

possible writes, under the assumption that no function in the set has a side-effect.

Section 4.5.3 and in particular Figure 4.11 below show some of the regular expressions that

90

4.5. Evaluation on Scala Library

were built from our analysis of collections in the standard Scala library.

4.5 Evaluation on Scala Library

We implemented the analysis described in the previous sections as part of a tool called Insane.

Insane is a plugin for the official Scala compiler.

4.5.1 Overall Results

To evaluate the precision of our analysis, we ran it on the entire Scala library, composed of

approximately 58000 methods. We believe this is a relevant benchmark: due to the functional

paradigm encouraged in Scala, several methods are of higher-order nature. For instance,

collection classes typically define traversal methods that take functions as arguments, such

as filter, fold, exists, or foreach ([OM09]). It is worth noting that we assumed a closed-world in

order to analyze the library. Indeed, as most classes of the library are fully extensible, analyzing

it without this assumption would not yield interesting results. Given that even getters and

setters can be extended, most of the effects would depend on future extensions, resulting in

almost no definite summaries.

We proceeded as follows: For each method, we analyzed it using its declaration context and

classified the resulting summary as a member of one of four categories; if the summary is

definite, we look for observable effects. Depending on the presence of observable effects, the

method is flagged either as pure or impure. If the summary is conditional, we check if the

effect would be pure under the assumption that every remaining (delayed) method call is pure.

In such cases, the effect is said to be conditionally pure. Otherwise, the effect is said to be

impure. Lastly, an effect can be top if either the analysis timed out, or if more than 50 targets

are unfolded in a situation where delaying is not available (e.g, recursive methods). We used a

timeout of two minutes per function. We note that although these parameters are to some

extent arbitrary, we estimate that they correspond to reasonable expectations for the analysis

to be useful. The different categories of effects form a lattice:

pure" conditionally pure" impure"�

Figure 4.8 displays the number of summaries per category and per package. Observe that

most methods are either pure or conditionally pure, which is what we would expect in a library

that encourages functional programming.

Overall, the entire library takes short of twenty hours to be fully processed. This is mostly

due to the fact that, in this scenario, we compute a summary for each method. Due to its

modularity though, this analysis could be used in an incremental fashion, reanalyzing only

modified code and new dependencies reusing past, unchanged results. Depending on the

level of context sensitivity, past results can be efficiently reused in an incremental fashion and

91

Chapter 4. Effect Analysis for Programs with Callbacks

Package Methods Pure Cond. Pure Impure �
scala 5721 79% 11% 10% 1%
scala.annotation 41 93% 2% 2% 2%
scala.beans 25 64% 8% 28% 0%
scala.collection 5182 52% 28% 17% 4%
scala.collection.concurrent 608 40% 19% 37% 4%
scala.collection.convert 1106 62% 23% 13% 1%
scala.collection.generic 649 61% 22% 12% 5%
scala.collection.immutable 6027 58% 13% 23% 6%
scala.collection.mutable 7263 48% 18% 29% 5%
scala.collection.parallel 13842 36% 13% 37% 14%
scala.collection.script 132 86% 1% 13% 0%
scala.compat 9 22% 33% 44% 0%
scala.io 546 47% 11% 40% 2%
scala.math 1847 67% 28% 5% 0%
scala.parallel 39 77% 23% 0% 0%
scala.ref 113 58% 3% 39% 0%
scala.reflect 5862 50% 9% 40% 1%
scala.runtime 1620 61% 25% 14% 1%
scala.sys 767 44% 22% 30% 4%
scala.testing 44 52% 2% 43% 2%
scala.text 115 87% 0% 11% 2%
scala.util 1786 51% 11% 32% 6%
scala.util.parsing 2206 56% 12% 27% 5%
scala.xml 2860 56% 11% 30% 3%
Total: 58410 52% 15% 27% 6%

Figure 4.8 – Decomposition of resulting summaries per package.

92

4.5. Evaluation on Scala Library

Default

No delaying,

No CS

Pure Impure TopCond. pure

no CS

53 15 24 8

33 49 15 3

46 0 45 9

Figure 4.9 – Comparing strategies. Numbers below boxes are percentages. Running times are
166, 123 and 57 minutes respectively.

thus enables the analysis to scale well to large applications.

4.5.2 Comparative Analysis

To demonstrate the importance of some of the key features of Insane, we analyzed parts of

the Scala library in three different settings: (1) the default configuration and strategy that

ship with Insane, (2) disabled context-sensitivity, and (3) delaying and context-sensitivity both

disabled. We analyzed a representative subset of the Scala library, specifically all mutable and

immutable collections, under the three analysis configurations.

Figure 4.9 displays the decomposition of the effects for each of the analysis settings. First

of all, we can see that the default configuration used by Insane is more precise than the

alternatives. Indeed, it produces the largest number of purity guarantees. This precision,

however, has a cost; it is also the slowest configuration. In the second configuration, Insane
without context sensitivity, we first notice that although it produces a smaller number of

definite-pure guarantees, it is also able infer many conditionally pure methods. However, the

quality of those conditional summaries is likely to be worse than for the first setting, resulting

in assumptions that probably do not hold in practice. In comparison with the default Insane,

we see that some of the conditionally pure are in fact most likely impure, but that additional

precision is required to figure this out. The results for the third configuration need to be

interpreted with care. In this setting, delaying is not permitted. As a result, most methods

relying on higher-order functions are misclassified as impure. In fact, when running the

analysis in this configuration, we see that more than 50% of the methods are considered to be

impure.

4.5.3 Selected Examples

To demonstrate the precision of the analysis, we take a closer look at several methods that rely

on the library. We targeted five collections: two immutable ones (TreeSet and List) and three

93

Chapter 4. Effect Analysis for Programs with Callbacks

class Elem(val i: Int) {
var visited = false

}

def genTrav(es: TreeSet[Elem],
f: Elem ⇒ Unit) = {

es.foreach(f)
}

def grow(es: TreeSet[Elem], e: Elem) = {
es + e

}

def pureTrav(es: TreeSet[Elem]) = {
es.foreach {

e ⇒ ()
}

}

def impureTrav(es: TreeSet[Elem]) = {
es.foreach {

e ⇒ e.visited = true
}

}

Figure 4.10 – The particular four operations applied on the TreeSet collection

mutable ones (HashSet, LinkedList, and ArrayBuffer). For each of these collections, we analyze

code that performs four operations:

1. Generic Traversal: call foreach with an arbitrary closure,

2. Pure Traversal: call foreach with a pure closure,

3. Impure Traversal: call foreach with a closure modifying the collection elements,

4. Growing: build a larger collection, by copying and extending it for immutable ones, or

modifying it in place for mutable ones. The method used for growing depends on what

is available in the public interface of the collection, e.g, add, append or prepend.

Figure 4.10 shows functions corresponding to these four operations when applied to the

TreeSet collection, and summarizes the general classes of operations.

The resulting effects are converted into a readable format, as described in Section 4.4 and

displayed in Figure 4.11. We note that, in each case, producing these regular expressions takes

under five seconds. First of all, we can see that all pure traversals are indeed proved pure

and have no effect on the internal representation of the collections. Also, by assuming the

closure passed is pure, we are often able to report that a generic traversal has no effect on

the collection. The exceptions are the generic traversals of TreeSet and ArrayBuffer. In these

two cases, the computed effect is �, due to the fact that their respective traversal routines

are implemented using a recursive function with a highly dynamic dispatch within its body.

However, due to context sensitivity, We can see that we are able to obtain precise results when

the closure is determined. For impure traversal of TreeSet, the analysis has to generate and

combine no less than 27 method summaries. The fact that the resulting effect remains precise,

despite the fundamental complexity of the library shows, that the analysis servers its purpose

of combining precision and modularity through summaries, even in the case of higher-order

programs.

94

4.6. Related Work

immutable.TreeSet:

Generic trav. Any
Pure trav. Pure
Impure trav. es.tree(.right | .left)∗.key.visited
Grow Pure

immutable.List:

Generic trav. Pure (conditionally on the closure)
Pure trav. Pure
Impure trav. es.tl∗.hd.visited
Grow Pure

mutable.HashSet:

Generic trav. Pure (conditionally on the closure)
Pure trav. Pure
Impure trav. es.table.store.visited

Grow
es.tableSize | es.table.store |
es.sizemap.store | es.sizemap | es.table

mutable.LinkedList:

Generic trav. Pure (conditionally on the closure)
Pure trav. Pure
Impure trav. es.next∗.elem.visited
Grow es.next.next∗

mutable.ArrayBuffer:

Generic trav. Any
Pure trav. Pure
Impure trav. es.array.store.visited
Grow es.size0 | es.array.store | es.array

Figure 4.11 – Readable effect descriptions obtained from graph summaries from four opera-
tions performed on five kinds of collections.

In the cases of impure traversals, the effects correctly report that all elements of the collections

can be modified. Additionally, they uncover the underlying implementation structures. For

example, we can see that the HashSet class is implemented by using a flat-hash table (using

open addressing) instead of the usual array of chained buckets. It is worth noting that TreeSet
is implemented using red-black trees. For mutable collections, growing the collection indeed

has an effect on the underlying implementation. Growing immutable collections remains

pure because the modifications are applied only to the returned copy.

Overall, we believe such summaries are extremely useful, as they qualify the impurity. In

almost all cases, the programmer can rely on the result produced by Insane to conclude that

the functions have the intended effects.

4.6 Related Work

Our goals stand at the intersection of two long-standing fundamental problems:

1. effect and alias analysis for mutable linked structures; [CK88, CWZ90, JG91, MRR02,

TD03, Rou04];

95

Chapter 4. Effect Analysis for Programs with Callbacks

2. control-flow analysis [Shi88] for higher-order functional programs.

Because we considered the heap analysis to be the first-order challenge, we focused on

adapting the ideas from the first category to higher-order settings.

The analysis domain presented in this chapter builds on the work of [SR05, Sal06] who used

graphs to encode method-effect summaries, independently from aliasing relations. The

elements of this abstract domain are best understood as state transformers, rather than sets of

heaps. This observation, which is key to the applicability of the generic relational framework

described in Section 4.3, is also made by Madhavan, Ramalingam, and Vaswani [MRV11] who

formalize their analysis and applied it to C# code. The same authors extend their analysis

to provide special support for higher-order procedures [MRV12]. In contrast with our work,

[MRV12] summarizes higher-order functions by using only CFGs or a particular, fixed, normal

form: a loop around the un-analyzed invocations. Because our analysis supports arbitrary

conditional summaries, it is a strict generalization in terms of precision of summaries. Another

distinctive feature of our analysis is its support for strong updates: it is crucial for obtaining a

good approximation of many patterns commonly found in Scala code. In fact, the reduction of

CFGs to a normal form in [MRV12] relies on graph transformers being monotonic, a property

that is incompatible with strong updates. Finally, our tool also produces regular expression

summaries, delivering results that can be immediately useful to programmers.

The idea of delaying parts of the analysis has been explored before in interprocedural analy-

ses to improve context-sensitivity [CC02, YYC08] or to speed up bottom-up whole-program

analyses [JMT10]. Our work shows that this approach also brings benefits to the analysis of

programs with callbacks, and is in fact critical to its applicability.

Our analysis masks only effects that can be proved to be performed on fresh objects in given

procedure call contexts. A more ambitious idea is to mask effects across method calls of an

abstract data types, which resulted in a spectrum of techniques with different flexibility and

annotation burden [JHS86, dRE98, CN02, CD02, BLS03, FL03, BDF+04, BN05]. Our analysis

differentiates in that it is fully automated; but we do hope to benefit in the future from user

hints that express encapsulation, information hiding, or representation independence.

Separation logic [DYDG+10, BCI11] and implicit dynamic frames [SJP09, PS11] are two popular

paradigms for controlling modifications to heap regions. Nordio et al. describe an adaptation

of dynamic frames [NCM+10] for the automated verification of programs with higher-order

functions. We note that effect analysis is a separate analysis, whereas separation logic analyses

need to perform shape and effect analyses at the same time. This coupling of shape and effect,

through the notion of footprint, makes it harder to deploy separation logic-based analyses as

lightweight components that are separate from subsequent analysis phases. Moreover, the

state of the art in separation logic analyses is such that primarily linked list structures can be

analyzed in a scalable way, whereas our analysis handles general graphs and is less sensitive to

aliasing relationships.

96

4.7. Conclusion

The importance of conditional effects expressed as a function of arguments is identified in an

effect system [ROH12] for Scala, which requires some type annotations and is higher-level,

but provides more control over encapsulation and elegantly balances the expressive power

with the simplicity of annotations. The resulting system is fully modular and supports, e.g,

separate compilation.

4.7 Conclusion

Knowing the effects of program procedures is a fundamental activity for any reasoning task

involving imperative code. We have presented an algorithm, a tool, and experiments showing

that this task is feasible for programs written in Scala, a modern functional and object-oriented

language. Our solution involves a general framework for relational effect analyses designed

to support different automated reasoning strategies and to enable analysis designers to ex-

periment with trade-offs between precision and time. Building on this framework we have

introduced an abstract domain designed to track read and write effects on the heap. Combin-

ing the framework with the abstract domain, we have obtained an effect analysis for Scala. We

have implemented and evaluated the analysis on the entire Scala standard library, producing

a detailed breakdown of its 58000 functions by purity status. Finally, we have developed and

implemented a technique to produce human-readable summaries of the effects in order to

make them immediately useful to programmers. We have shown that these summaries can

concisely and naturally describe heap regions, thus producing feedback that conveys much

more information than a simple pure/impure dichotomy. Insane works on unannotated code

and can thus readily be applied to existing code bases, facilitating program understanding, as

well as subsequent deeper analyses and verification tasks.

97

Conclusions

In this thesis, we have investigated various ways of deploying advanced software-development

techniques in a way that can be useful to a broad audience. We have presented in Chapter 2 a

new framework for program synthesis; it combines transformational and counter-example-

guided approaches. Our algorithm is able to synthesize interesting recursive functions that

manipulates unbounded values. The search for solutions, however, is exponential and its

scalability is thus limited. Therefore, the problem of synthesizing general-purpose software

from scratch remains a difficult challenge.

We did however identify one of the benefits of such a framework for synthesis: To target

particular problems or domain-specific formulas, it can be extended with additional deductive

rules. In Chapter 3, we have implemented new rules to automatically repair invalid programs

by first locating the error and then synthesizing correct alternatives. We were able to repair

intricate errors within recursive functions manipulating unbounded structures. We believe

that software repair is a very useful instantiation of synthesis, which scales beyond what is

achievable by synthesis alone, due to its error localization.

In Chapter 4, we have presented ways to create hybrid programs, mixing a purely functional

part with external functions implemented with arbitrary Scala code. We have described an

analysis of side-effect that is able to characterize functions, depending on their effects. As a

result, we identify functions that remain referentially transparent, enabling their use within

Leon programs even though their body remains intractable for Leon.

Furthermore, we believe that, by targeting programs written mostly in PureScala, we are able

to propose interesting techniques and algorithms that help developers produce trustworthy

software. Because our techniques are applied during the development process, we made them

available within an integrated development environment, deployed as a public web interface.

99

A Synthesis Benchmarks and Solutions

For each synthesis benchmark, we first give a header file that contains all the necessary

definitions, including the data-structures and auxiliary abstraction functions. Then, we

provide for each benchmark the problem that we give as input to Leon and the solution that

Leon generates automatically. Benchmarks are listed in order, and we assume that all solutions

to previous benchmarks are available when synthesizing the next one.

A.1 Compiler

A.1.1 Header

import leon.lang._
import leon.lang.synthesis._
import leon._

object Compiler {
abstract class Expr
case class Plus(lhs: Expr, rhs: Expr) extends Expr
case class Minus(lhs: Expr, rhs: Expr) extends Expr
case class UMinus(e: Expr) extends Expr
case class LessThan(lhs: Expr, rhs: Expr) extends Expr
case class And(lhs: Expr, rhs: Expr) extends Expr
case class Implies(lhs: Expr, rhs: Expr) extends Expr
case class Or(lhs: Expr, rhs: Expr) extends Expr
case class Not(e : Expr) extends Expr
case class Eq(lhs: Expr, rhs: Expr) extends Expr
case class Ite(cond: Expr, thn: Expr, els: Expr) extends Expr
case class BoolLiteral(b : Boolean) extends Expr
case class IntLiteral(i: BigInt) extends Expr

abstract class Value
case class BoolValue(b: Boolean) extends Value
case class IntValue(i: BigInt) extends Value

101

Appendix A. Synthesis Benchmarks and Solutions

case object Error extends Value

def eval(e: Expr): Value = e match {
case Plus(l, r) ⇒

(eval(l), eval(r)) match {
case (IntValue(il), IntValue(ir)) ⇒ IntValue(il+ir)
case _ ⇒ Error

}

case Minus(l, r) ⇒
(eval(l), eval(r)) match {

case (IntValue(il), IntValue(ir)) ⇒ IntValue(il−ir)
case _ ⇒ Error

}

case UMinus(l) ⇒
eval(l) match {

case IntValue(b) ⇒ IntValue(−b)
case _ ⇒ Error

}

case LessThan(l, r) ⇒
(eval(l), eval(r)) match {

case (IntValue(il), IntValue(ir)) ⇒ BoolValue(il < ir)
case _ ⇒ Error

}

case And(l, r) ⇒
eval(l) match {

case b @ BoolValue(false) ⇒ b
case b: BoolValue ⇒

eval(r)
case _ ⇒

Error
}

case Or(l, r) ⇒
eval(l) match {

case b @ BoolValue(true) ⇒
b

case b: BoolValue ⇒
eval(r)

case _ ⇒
Error

}

case Implies(l, r) ⇒

102

A.1. Compiler

eval(l) match {
case b @ BoolValue(true) ⇒

eval(r)
case b @ BoolValue(false) ⇒

BoolValue(true)
case _ ⇒ Error

}

case Not(l) ⇒
eval(l) match {

case BoolValue(b) ⇒ BoolValue(!b)
case _ ⇒ Error

}

case Eq(l, r) ⇒
(eval(l), eval(r)) match {

case (IntValue(il), IntValue(ir)) ⇒ BoolValue(il == ir)
case (BoolValue(il), BoolValue(ir)) ⇒ BoolValue(il == ir)
case _ ⇒ Error

}

case Ite(c, t, e) ⇒
eval(c) match {

case BoolValue(true) ⇒ eval(t)
case BoolValue(false) ⇒ eval(t)
case _ ⇒ Error

}

case IntLiteral(l) ⇒ IntValue(l)
case BoolLiteral(b) ⇒ BoolValue(b)

}
}

A.1.2 Rewrite Implies

Problem

def rewriteImplies(in: Implies): Expr = {
choose{ (out: Expr) ⇒

eval(in) == eval(out) && !(out.isInstanceOf[Implies])
}

}

Solution

def rewriteImplies(in : Implies): Expr = {
require(in.isInstanceOf[Implies])
Or(Not(in.lhs), in.rhs)

103

Appendix A. Synthesis Benchmarks and Solutions

} ensuring {
(out : Expr) ⇒ eval(in) == eval(out) && !out.isInstanceOf[Implies]

}

A.1.3 Rewrite Minus

Problem

def rewriteMinus(in: Minus): Expr = {
choose{ (out: Expr) ⇒

eval(in) == eval(out) && !(out.isInstanceOf[Minus])
}

}

Solution

def rewriteMinus(in : Minus): Expr = {
require(in.isInstanceOf[Minus])
Plus(in.lhs, UMinus(in.rhs))

} ensuring {
(out : Expr) ⇒ eval(in) == eval(out) && !out.isInstanceOf[Minus]

}

A.2 List

A.2.1 Header

import leon.annotation._
import leon.lang._
import leon.lang.synthesis._

object List {
sealed abstract class List
case class Cons(head: BigInt, tail: List) extends List
case object Nil extends List

def size(l: List) : BigInt = (l match {
case Nil ⇒ BigInt(0)
case Cons(_, t) ⇒ BigInt(1) + size(t)

}) ensuring(res ⇒ res ≥ 0)

def content(l: List): Set[BigInt] = l match {
case Nil ⇒ Set.empty[BigInt]
case Cons(i, t) ⇒ Set(i) ++ content(t)

}

def abs(i : BigInt) : BigInt = {
if(i < 0) −i else i

104

A.2. List

} ensuring(_ ≥ 0)

def dispatch(es: (BigInt, BigInt), rest: (List, List)): (List, List) = {
(Cons(es._1, rest._1), Cons(es._2, rest._2))

}
}

A.2.2 Insert

Problem

def insert(in: List, v: BigInt) = choose {
(out: List) ⇒

content(out) == content(in) ++ Set(v)
}

Solution

def insert(in : List, v : BigInt): List = {
Cons(v, in)

} ensuring {
(out : List) ⇒ content(out) == content(in) ++ Set[BigInt](v)

}

A.2.3 Delete

Problem

def delete(in: List, v: BigInt) = choose {
(out: List) ⇒

content(out) == content(in) -- Set(v)
}

Solution

def delete(in : List, v : BigInt): List = {
in match {

case Cons(head, tail) ⇒
if (head == v) {

delete(tail, head)
} else {

Cons(head, delete(tail, v))
}

case Nil ⇒
Nil

}
} ensuring {

(out : List) ⇒ content(out) == content(in) -- Set[BigInt](v)
}

105

Appendix A. Synthesis Benchmarks and Solutions

A.2.4 Merge

Problem

def merge(in1: List, in2: List) = choose {
(out: List) ⇒

content(out) == content(in1) ++ content(in2)
}

Solution

def merge(in1 : List, in2 : List): List = {
in1 match {

case Cons(head, tail) ⇒
Cons(head, merge(tail, in2))

case Nil ⇒
in2

}
} ensuring {

(out : List) ⇒ content(out) == content(in1) ++ content(in2)
}

A.2.5 Diff

Problem

def diff(in1: List, in2: List) = choose {
(out: List) ⇒

content(out) == content(in1) -- content(in2)
}

Solution

def diff(in1 : List, in2 : List): List = {
in2 match {

case Cons(head, tail) ⇒
delete(diff(in1, tail), head)

case Nil ⇒
in1

}
} ensuring {

(out : List) ⇒ content(out) == content(in1) -- content(in2)
}

A.2.6 split

Problem

def split(in: List) : (List, List) = choose {

106

A.3. Sorted List

(out: (List, List)) ⇒
val s1 = size(out._1)
val s2 = size(out._2)

abs(s1 − s2) ≤ 1 && s1 + s2 == size(in) &&
content(out._1) ++ content(out._2) == content(in)

}

Solution

def split(in : List): (List, List) = {
in match {

case Cons(head, tail) ⇒
tail match {

case Cons(head1, tail1) ⇒
dispatch((head, head1), split(tail1))

case Nil ⇒
(Nil, Cons(head, Nil))

}
case Nil ⇒

(Nil, Nil)
}

} ensuring {
(out: (List, List)) ⇒

val s1 = size(out._1)
val s2 = size(out._2)

abs(s1 − s2) ≤ 1 && s1 + s2 == size(in) &&
content(out._1) ++ content(out._2) == content(in)

}

A.3 Sorted List

A.3.1 Header

import leon.annotation._
import leon.lang._
import leon.lang.synthesis._

object SortedListInsert {
sealed abstract class List
case class Cons(head: BigInt, tail: List) extends List
case object Nil extends List

def size(l: List): BigInt = (l match {
case Nil ⇒ BigInt(0)
case Cons(_, t) ⇒ BigInt(1) + size(t)

}) ensuring(res ⇒ res ≥ 0)

107

Appendix A. Synthesis Benchmarks and Solutions

def content(l: List): Set[BigInt] = l match {
case Nil ⇒ Set.empty[BigInt]
case Cons(i, t) ⇒ Set(i) ++ content(t)

}

def isSorted(list: List): Boolean = list match {
case Nil ⇒ true
case Cons(_, Nil) ⇒ true
case Cons(x1, Cons(x2, _)) if(x1 > x2) ⇒ false
case Cons(_, xs) ⇒ isSorted(xs)

}
}

A.3.2 Insert

Problem

def insert(in: List, v: BigInt): List = {
require(isSorted(in1))

choose { (out : List) ⇒
(content(out) == content(in) ++ Set(v)) && isSorted(out)

}
}

Solution

def insert(in : List, v : BigInt): List = {
require(isSorted(in))
in match {

case Cons(head, tail) ⇒
if (head < v) {

Cons(head, insert(tail, v))
} else if (head == v) {

insert(tail, head)
} else {

Cons(v, insert(tail, head))
}

case Nil ⇒
Cons(v, Nil)

}
} ensuring {

(out : List) ⇒ content(out) == content(in) ++ Set[BigInt](v) && isSorted(out)
}

108

A.3. Sorted List

A.3.3 Insert Always

Problem

def insertAlways(in: List, v: BigInt) = {
require(isSorted(in))

choose{ (out : List) ⇒
(content(out) == content(in) ++ Set(v)) && isSorted(out) && size(out) == size(in) + 1

}
}

Solution

def insertAlways(in : List, v : BigInt): List = {
require(isSorted(in))
in match {

case Cons(head, tail) ⇒
if (head < v) {

Cons(head, insertAlways(tail, v))
} else if (head == v) {

Cons(head, insertAlways(tail, head))
} else {

Cons(v, insertAlways(tail, head))
}

case Nil ⇒
Cons(v, Nil)

}
} ensuring {

(out : List) ⇒ content(out) == content(in) ++ Set[BigInt](v) && isSorted(out) && size(out) ==
size(in) + BigInt(1)

}

A.3.4 Delete

Problem

def delete(in: List, v: BigInt) = {
require(isSorted(in))

choose((res : List) ⇒
(content(res) == content(in) -- Set(v)) && isSorted(res)

)
}

Solution

def delete(in : List, v : BigInt): List = {
require(isSorted(in))

109

Appendix A. Synthesis Benchmarks and Solutions

in match {
case Cons(head, tail) ⇒

if (head == v) {
delete(tail, head)

} else {
Cons(head, delete(tail, v))

}
case Nil ⇒

Nil
}

} ensuring {
(res : List) ⇒ content(res) == content(in) -- Set[BigInt](v) && isSorted(res)

}

A.3.5 Merge

Problem

def merge(in1: List, in2: List) = {
require(isSorted(in1) && isSorted(in2))
choose {

(out : List) ⇒
(content(out) == content(in1) ++ content(in2)) && isSorted(out)

}
}

Solution

def merge(in1 : List, in2 : List): List = {
require(isSorted(in1) && isSorted(in2))
in1 match {

case Cons(head, tail) ⇒
insert(merge(tail, in2), head)

case Nil ⇒
in2

}
} ensuring {

(out : List) ⇒ content(out) == content(in1) ++ content(in2) && isSorted(out)
}

A.3.6 Diff

Problem

def diff(in1: List, in2: List) = {
require(isSorted(in1) && isSorted(in2))

choose {

110

A.4. Strictly Sorted Lists

(out : List) ⇒
(content(out) == content(in1) -- content(in2)) && isSorted(out)

}
}

Solution

def diff(in1 : List, in2 : List): List = {
require(isSorted(in1) && isSorted(in2))
in2 match {

case Cons(head, tail) ⇒
diff(delete(in1, head), tail)

case Nil ⇒
in1

}
} ensuring {

(out : List) ⇒ content(out) == content(in1) -- content(in2) && isSorted(out)
}

A.3.7 Insertion Sort

Problem

def insertionSort(in: List): List = {
choose { (out: List) ⇒

content(out) == content(in) && isSorted(out)
}

}

Solution

def insertionSort(in : List): List = {
in match {

case Cons(head, tail) ⇒
insert(insertionSort(tail), head)

case Nil ⇒
Nil

}
} ensuring {

(out : List) ⇒ content(out) == content(in) && isSorted(out)
}

A.4 Strictly Sorted Lists

A.4.1 Header

import leon.annotation._
import leon.lang._

111

Appendix A. Synthesis Benchmarks and Solutions

import leon.lang.synthesis._

object StrictSortedList {
sealed abstract class List
case class Cons(head: BigInt, tail: List) extends List
case object Nil extends List

def size(l: List): BigInt = (l match {
case Nil ⇒ BigInt(0)
case Cons(_, t) ⇒ BigInt(1) + size(t)

}) ensuring(res ⇒ res ≥ 0)

def content(l: List): Set[BigInt] = l match {
case Nil ⇒ Set.empty[BigInt]
case Cons(i, t) ⇒ Set(i) ++ content(t)

}

def isSorted(list: List): Boolean = list match {
case Nil ⇒ true
case Cons(_, Nil) ⇒ true
case Cons(x1, Cons(x2, _)) if(x1 ≥ x2) ⇒ false
case Cons(_, xs) ⇒ isSorted(xs)

}
}

A.4.2 Insert

Problem

def insert(in: List, v: BigInt): List = {
require(isSorted(in))

choose { (out : List) ⇒
(content(out) == content(in) ++ Set(v)) && isSorted(out)

}
}

Solution

def insert(in : List, v : BigInt): List = {
require(isSorted(in))
in match {

case Cons(head, tail) ⇒
if (head < v) {

Cons(head, insert(tail, v))
} else if (head == v) {

insert(tail, head)
} else {

112

A.4. Strictly Sorted Lists

Cons(v, insert(tail, head))
}

case Nil ⇒
Cons(v, Nil)

}
} ensuring {

(out : List) ⇒ content(out) == content(in) ++ Set[BigInt](v) && isSorted(out)
}

A.4.3 Delete

Problem

def delete(in: List, v: BigInt) = {
require(isSorted(in))

choose((res : List) ⇒
(content(res) == content(in) -- Set(v)) && isSorted(res)

)
}

Solution

def delete(in : List, v : BigInt): List = {
require(isSorted(in))
in match {

case Cons(head, tail) ⇒
if (head == v) {

tail
} else {

Cons(head, delete(tail, v))
}

case Nil ⇒
Nil

}
} ensuring {

(res : List) ⇒ content(res) == content(in) -- Set[BigInt](v) && isSorted(res)
}

A.4.4 Merge

Problem

def merge(in1: List, in2: List) = {
require(isSorted(in1) && isSorted(in2))
choose {

(out : List) ⇒
(content(out) == content(in1) ++ content(in2)) && isSorted(out)

113

Appendix A. Synthesis Benchmarks and Solutions

}
}

Solution

def merge(in1 : List, in2 : List): List = {
require(isSorted(in1) && isSorted(in2))
in1 match {

case Cons(head, tail) ⇒
merge(tail, insert(in2, head))

case Nil ⇒
in2

}
} ensuring {

(out : List) ⇒ content(out) == content(in1) ++ content(in2) && isSorted(out)
}

A.5 Unary Numerals

A.5.1 Header

import leon.lang._
import leon.lang.synthesis._

object UnaryNumerals {
sealed abstract class Num
case object Z extends Num
case class S(pred: Num) extends Num

def value(n: Num): BigInt = {
n match {

case Z ⇒ BigInt(0)
case S(p) ⇒ BigInt(1) + value(p)

}
} ensuring (_ ≥ 0)

def add(x: Num, y: Num): Num = {
choose { (r : Num) ⇒

value(r) == value(x) + value(y)
}

}
}

A.5.2 Add

Problem

def add(x: Num, y: Num): Num = {

114

A.5. Unary Numerals

choose { (r : Num) ⇒
value(r) == value(x) + value(y)

}
}

Solution

def add(x : Num, y : Num): Num = {
x match {

case S(pred) ⇒
add(pred, S(y))

case Z ⇒
y

}
} ensuring {

(r : Num) ⇒ value(r) == value(x) + value(y)
}

A.5.3 Distinct

Problem

def distinct(x: Num, y: Num): Num = {
choose { (r : Num) ⇒

r != x && r != y
}

}

Solution

def distinct(x : Num, y : Num): Num = {
S(add(y, x))

} ensuring {
(r : Num) ⇒ r != x && r != y

}

A.5.4 Mult

Problem

def mult(x: Num, y: Num): Num = {
choose { (r : Num) ⇒

value(r) == value(x) ∗ value(y)
}

}

Solution

115

Appendix A. Synthesis Benchmarks and Solutions

def mult(x : Num, y : Num): Num = {
x match {

case S(pred) ⇒
add(y, mult(pred, y))

case Z ⇒
Z

}
} ensuring {

(r : Num) ⇒ value(r) == value(x) ∗ value(y)
}

A.6 Batched Queue

A.6.1 Header

import leon.lang._
import leon.lang.synthesis._

object BatchedQueue {
sealed abstract class List[T] {

def content: Set[T] = {
this match {

case Cons(h, t) ⇒ Set(h) ++ t.content
case Nil() ⇒ Set()

}
}

def size: BigInt = {
this match {

case Cons(h, t) ⇒ BigInt(1) + t.size
case Nil() ⇒ BigInt(0)

}
} ensuring { _ ≥ 0 }

def reverse: List[T] = {
this match {

case Cons(h, t) ⇒ t.reverse.append(Cons(h, Nil[T]()))
case Nil() ⇒ Nil[T]()

}
} ensuring { res ⇒

this.content == res.content
}

def append(r: List[T]): List[T] = {
this match {

case Cons(h, t) ⇒ Cons(h, t.append(r))
case Nil() ⇒ r

116

A.6. Batched Queue

}
}

def isEmpty: Boolean = {
this == Nil[T]()

}

def tail: List[T] = {
require(this != Nil[T]())
this match {

case Cons(h, t) ⇒ t
}

}

def head: T = {
require(this != Nil[T]())
this match {

case Cons(h, t) ⇒ h
}

}
}

case class Cons[T](h: T, t: List[T]) extends List[T]
case class Nil[T]() extends List[T]

case class Queue[T](f: List[T], r: List[T]) {
def content: Set[T] = f.content ++ r.content
def size: BigInt = f.size + r.size

def isEmpty: Boolean = f.isEmpty && r.isEmpty

def invariant: Boolean = {
(f.isEmpty) =⇒ (r.isEmpty)

}

def toList: List[T] = f.append(r.reverse)
}

}

A.6.2 Dequeue

Problem

def dequeue[T](q: Queue[T]): Queue[T] = {
require(q.invariant && !q.isEmpty)

choose { (res: Queue[T]) ⇒
res.size == q.size−1 && res.toList == q.toList.tail && res.invariant

117

Appendix A. Synthesis Benchmarks and Solutions

}
}

Solution

def dequeue[T](q : Queue[T]): Queue[T] = {
require(q.invariant && !q.isEmpty)
q.f match {

case Cons(h, t) ⇒
t match {

case Cons(h1, t1) ⇒
Queue[T](Cons[T](h1, t1), q.r)

case Nil() ⇒
Queue[T](q.r.reverse, Nil[T]())

}
case Nil() ⇒

error[Queue[T]]("Impossible")
}

} ensuring {
(res : Queue[T]) ⇒ res.size == q.size − BigInt(1) && res.toList == q.toList.tail && res.invariant

}

A.7 Address Book

A.7.1 Header

import leon.annotation._
import leon.lang._
import leon.lang.synthesis._

object AddressBook {

case class Address[A](info: A, priv: Boolean)

sealed abstract class AddressList[A] {
def size: BigInt = {

this match {
case Nil() ⇒ BigInt(0)
case Cons(head, tail) ⇒ BigInt(1) + tail.size

}
} ensuring { res ⇒ res ≥ 0 }

def content: Set[Address[A]] = this match {
case Nil() ⇒ Set[Address[A]]()
case Cons(addr, l1) ⇒ Set(addr) ++ l1.content

}

def ++(that: AddressList[A]): AddressList[A] = {

118

A.7. Address Book

this match {
case Cons(h, t) ⇒ Cons(h, t ++ that)
case Nil() ⇒ that

}
} ensuring {

res ⇒ res.content == this.content ++ that.content
}

}

case class Cons[A](a: Address[A], tail: AddressList[A]) extends AddressList[A]
case class Nil[A]() extends AddressList[A]

def allPersonal[A](l: AddressList[A]): Boolean = l match {
case Nil() ⇒ true
case Cons(a, l1) ⇒

if (a.priv) allPersonal(l1)
else false

}

def allBusiness[A](l: AddressList[A]): Boolean = l match {
case Nil() ⇒ true
case Cons(a, l1) ⇒

if (a.priv) false
else allBusiness(l1)

}

case class AddressBook[A](business: AddressList[A], personal: AddressList[A]) {
def size: BigInt = business.size + personal.size

def content: Set[Address[A]] = business.content ++ personal.content

@inline
def invariant = {

allPersonal(personal) && allBusiness(business)
}

}
}

A.7.2 Merge

Problem

def merge[A](a1: AddressBook[A], a2: AddressBook[A]): AddressBook[A] = {
require(a1.invariant && a2.invariant)

choose((res: AddressBook[A]) ⇒
res.personal.content == (a1.personal.content ++ a2.personal.content) &&
res.business.content == (a1.business.content ++ a2.business.content) &&

119

Appendix A. Synthesis Benchmarks and Solutions

res.invariant
)

}

Solution

def merge[A](a1 : AddressBook[A], a2 : AddressBook[A]): AddressBook[A] = {
require(a1.invariant && a2.invariant)
AddressBook[A](a2.business ++ a1.business, a2.personal ++ a1.personal)

} ensuring {
(res : AddressBook[A]) ⇒

res.personal.content == a1.personal.content ++ a2.personal.content &&
res.business.content == a1.business.content ++ a2.business.content &&
res.invariant

}

120

B Repair Benchmarks and Solutions

For each repair benchmark, we first provide the correct program that contains all the necessary

definitions, including the data-structures and auxiliary abstraction functions. Then, we

provide for each benchmark the function in which we injected an error that we give as input

to Leon. We add a comment indicating where the error is located as well as its nature. Leon

repairs all benchmark in the way intended by the comment.

B.1 Compiler

B.1.1 Complete File

import leon.lang._
import leon.annotation._
import leon.collection._
import leon._

object Trees {
abstract class Expr
case class Plus(lhs: Expr, rhs: Expr) extends Expr
case class Minus(lhs: Expr, rhs: Expr) extends Expr
case class LessThan(lhs: Expr, rhs: Expr) extends Expr
case class And(lhs: Expr, rhs: Expr) extends Expr
case class Or(lhs: Expr, rhs: Expr) extends Expr
case class Not(e : Expr) extends Expr
case class Eq(lhs: Expr, rhs: Expr) extends Expr
case class Ite(cond: Expr, thn: Expr, els: Expr) extends Expr
case class IntLiteral(v: BigInt) extends Expr
case class BoolLiteral(b : Boolean) extends Expr

}

object Types {
abstract class Type
case object IntType extends Type

121

Appendix B. Repair Benchmarks and Solutions

case object BoolType extends Type
}

object TypeChecker {
import Trees._
import Types._

def typeOf(e :Expr) : Option[Type] = e match {
case Plus(l,r) ⇒ (typeOf(l), typeOf(r)) match {

case (Some(IntType), Some(IntType)) ⇒ Some(IntType)
case _ ⇒ None()

}
case Minus(l,r) ⇒ (typeOf(l), typeOf(r)) match {

case (Some(IntType), Some(IntType)) ⇒ Some(IntType)
case _ ⇒ None()

}
case LessThan(l,r) ⇒ (typeOf(l), typeOf(r)) match {

case (Some(IntType), Some(IntType)) ⇒ Some(BoolType)
case _ ⇒ None()

}
case And(l,r) ⇒ (typeOf(l), typeOf(r)) match {

case (Some(BoolType), Some(BoolType)) ⇒ Some(BoolType)
case _ ⇒ None()

}
case Or(l,r) ⇒ (typeOf(l), typeOf(r)) match {

case (Some(BoolType), Some(BoolType)) ⇒ Some(BoolType)
case _ ⇒ None()

}
case Not(e) ⇒ typeOf(e) match {

case Some(BoolType) ⇒ Some(BoolType)
case _ ⇒ None()

}
case Eq(lhs, rhs) ⇒ (typeOf(lhs), typeOf(rhs)) match {

case (Some(t1), Some(t2)) if t1 == t2 ⇒ Some(BoolType)
case _ ⇒ None()

}
case Ite(c, th, el) ⇒ (typeOf(c), typeOf(th), typeOf(el)) match {

case (Some(BoolType), Some(t1), Some(t2)) if t1 == t2 ⇒ Some(t1)
case _ ⇒ None()

}
case IntLiteral(_) ⇒ Some(IntType)
case BoolLiteral(_) ⇒ Some(BoolType)

}

def typeChecks(e : Expr) = typeOf(e).isDefined
}

122

B.1. Compiler

object Semantics {
import Trees._
import Types._
import TypeChecker._

def semI(t : Expr) : BigInt = {
require(typeOf(t) == (Some(IntType) : Option[Type]))
t match {

case Plus(lhs , rhs) ⇒ semI(lhs) + semI(rhs)
case Minus(lhs , rhs) ⇒ semI(lhs) − semI(rhs)
case Ite(cond, thn, els) ⇒

if (semB(cond)) semI(thn) else semI(els)
case IntLiteral(v) ⇒ v

}
}

def semB(t : Expr) : Boolean = {
require((Some(BoolType): Option[Type]) == typeOf(t))
t match {

case And(lhs, rhs) ⇒ semB(lhs) && semB(rhs)
case Or(lhs , rhs) ⇒ semB(lhs) || semB(rhs)
case Not(e) ⇒ !semB(e)
case LessThan(lhs, rhs) ⇒ semI(lhs) < semI(rhs)
case Ite(cond, thn, els) ⇒

if (semB(cond)) semB(thn) else semB(els)
case Eq(lhs, rhs) ⇒ (typeOf(lhs), typeOf(rhs)) match {

case (Some(IntType), Some(IntType)) ⇒ semI(lhs) == semI(rhs)
case (Some(BoolType), Some(BoolType)) ⇒ semB(lhs) == semB(rhs)

}
case BoolLiteral(b) ⇒ b

}
}

def b2i(b : Boolean): BigInt = if (b) 1 else 0

@induct
def semUntyped(t : Expr) : BigInt = { t match {

case Plus (lhs, rhs) ⇒ semUntyped(lhs) + semUntyped(rhs)
case Minus(lhs, rhs) ⇒ semUntyped(lhs) − semUntyped(rhs)
case And (lhs, rhs) ⇒ if (semUntyped(lhs)!=0) semUntyped(rhs) else BigInt(0)
case Or(lhs, rhs) ⇒

if (semUntyped(lhs) == 0) semUntyped(rhs) else BigInt(1)
case Not(e) ⇒

b2i(semUntyped(e) == 0)
case LessThan(lhs, rhs) ⇒

123

Appendix B. Repair Benchmarks and Solutions

b2i(semUntyped(lhs) < semUntyped(rhs))
case Eq(lhs, rhs) ⇒

b2i(semUntyped(lhs) == semUntyped(rhs))
case Ite(cond, thn, els) ⇒

if (semUntyped(cond) == 0) semUntyped(els) else semUntyped(thn)
case IntLiteral(v) ⇒ v
case BoolLiteral(b) ⇒ b2i(b)

}} ensuring { res ⇒ typeOf(t) match {
case Some(IntType) ⇒ res == semI(t)
case Some(BoolType) ⇒ res == b2i(semB(t))
case None() ⇒ true

}}

}

object Desugar {
import Types._
import TypeChecker._
import Semantics.b2i

abstract class SimpleE
case class Plus(lhs : SimpleE, rhs : SimpleE) extends SimpleE
case class Neg(arg : SimpleE) extends SimpleE
case class Ite(cond : SimpleE, thn : SimpleE, els : SimpleE) extends SimpleE
case class Eq(lhs : SimpleE, rhs : SimpleE) extends SimpleE
case class LessThan(lhs : SimpleE, rhs : SimpleE) extends SimpleE
case class Literal(i : BigInt) extends SimpleE

@induct
def desugar(e : Trees.Expr) : SimpleE = { e match {

case Trees.Plus (lhs, rhs) ⇒ Plus(desugar(lhs), desugar(rhs))
case Trees.Minus(lhs, rhs) ⇒ Plus(desugar(lhs), Neg(desugar(rhs)))
case Trees.LessThan(lhs, rhs) ⇒ LessThan(desugar(lhs), desugar(rhs))
case Trees.And (lhs, rhs) ⇒ Ite(desugar(lhs), desugar(rhs), Literal(0))
case Trees.Or (lhs, rhs) ⇒ Ite(desugar(lhs), Literal(1), desugar(rhs))
case Trees.Not(e) ⇒ Ite(desugar(e), Literal(0), Literal(1))
case Trees.Eq(lhs, rhs) ⇒

Eq(desugar(lhs), desugar(rhs))
case Trees.Ite(cond, thn, els) ⇒ Ite(desugar(cond), desugar(thn), desugar(els))
case Trees.IntLiteral(v) ⇒ Literal(v)
case Trees.BoolLiteral(b) ⇒ Literal(b2i(b))

}} ensuring { res ⇒
sem(res) == Semantics.semUntyped(e)

}

def sem(e : SimpleE) : BigInt = e match {

124

B.1. Compiler

case Plus (lhs, rhs) ⇒ sem(lhs) + sem(rhs)
case Ite(cond, thn, els) ⇒ if (sem(cond) != 0) sem(thn) else sem(els)
case Neg(arg) ⇒ −sem(arg)
case Eq(lhs,rhs) ⇒ b2i(sem(lhs) == sem(rhs))
case LessThan(lhs, rhs) ⇒ b2i(sem(lhs) < sem(rhs))
case Literal(i) ⇒ i

}

}

object Evaluator {
import Trees._

def bToi(b: Boolean): BigInt = if (b) 1 else 0
def iTob(i: BigInt) = i == 1

def eval(e: Expr): BigInt = {
e match {

case Plus(lhs, rhs) ⇒ eval(lhs) + eval(rhs)
case Minus(lhs, rhs) ⇒ eval(lhs) + eval(rhs)
case LessThan(lhs, rhs) ⇒ bToi(eval(lhs) < eval(rhs))
case And(lhs, rhs) ⇒ bToi(iTob(eval(lhs)) && iTob(eval(rhs)))
case Or(lhs, rhs) ⇒ bToi(iTob(eval(lhs)) || iTob(eval(rhs)))
case Not(e) ⇒ bToi(!iTob(eval(e)))
case Eq(lhs, rhs) ⇒ bToi(eval(lhs) == eval(rhs))
case Ite(cond, thn, els) ⇒ if (iTob(eval(cond))) eval(thn) else eval(els)
case IntLiteral(v) ⇒ v
case BoolLiteral(b) ⇒ bToi(b)

}
}

}

object Simplifier {
import Trees._
import Evaluator._

@induct
def simplify(e: Expr): Expr = {

e match {
case And(BoolLiteral(false), _) ⇒ BoolLiteral(false)
case Or(BoolLiteral(true), _) ⇒ BoolLiteral(true)
case Plus(IntLiteral(a), IntLiteral(b)) ⇒ IntLiteral(a+b)
case Not(Not(Not(a))) ⇒ Not(a)
case e ⇒ e

}
} ensuring {

res ⇒ eval(res) == eval(e)

125

Appendix B. Repair Benchmarks and Solutions

}
}

B.1.2 Desugar 1

def desugar(e: Expr): SimpleE = {
e match {

case Plus(lhs, rhs) ⇒
Neg(desugar(lhs)) // FIXME: Should be Plus(desugar(lhs), desugar(rhs))

case Minus(lhs, rhs) ⇒
Plus(desugar(lhs), Neg(desugar(rhs)))

case LessThan(lhs, rhs) ⇒
LessThan(desugar(lhs), desugar(rhs))

case And(lhs, rhs) ⇒
Ite(desugar(lhs), desugar(rhs), Literal(BigInt(0)))

case Or(lhs, rhs) ⇒
Ite(desugar(lhs), Literal(BigInt(1)), desugar(rhs))

case Not(e) ⇒
Ite(desugar(e), Literal(BigInt(0)), Literal(BigInt(1)))

case Eq(lhs, rhs) ⇒
Eq(desugar(lhs), desugar(rhs))

case Ite(cond, thn, els) ⇒
Ite(desugar(cond), desugar(thn), desugar(els))

case IntLiteral(v) ⇒
Literal(v)

case BoolLiteral(b) ⇒
Literal(b2i(b))

}
}

B.1.3 Desugar 2

def desugar(e: Expr): SimpleE = {
e match {

case Plus(lhs, rhs) ⇒
Plus(desugar(lhs), desugar(rhs))

case Minus(lhs, rhs) ⇒
Literal(0) // FIXME: Should be Plus(desugar(lhs), Neg(desugar(rhs)))

case LessThan(lhs, rhs) ⇒
LessThan(desugar(lhs), desugar(rhs))

case And(lhs, rhs) ⇒
Ite(desugar(lhs), desugar(rhs), Literal(BigInt(0)))

case Or(lhs, rhs) ⇒
Ite(desugar(lhs), Literal(BigInt(1)), desugar(rhs))

case Not(e) ⇒
Ite(desugar(e), Literal(BigInt(0)), Literal(BigInt(1)))

case Eq(lhs, rhs) ⇒
Eq(desugar(lhs), desugar(rhs))

126

B.1. Compiler

case Ite(cond, thn, els) ⇒
Ite(desugar(cond), desugar(thn), desugar(els))

case IntLiteral(v) ⇒
Literal(v)

case BoolLiteral(b) ⇒
Literal(b2i(b))

}
}

B.1.4 Desugar 3

def desugar(e: Expr): SimpleE = {
e match {

case Plus(lhs, rhs) ⇒
Plus(desugar(lhs), desugar(rhs))

case Minus(lhs, rhs) ⇒
Plus(desugar(lhs), Neg(desugar(rhs)))

case LessThan(lhs, rhs) ⇒
LessThan(desugar(lhs), desugar(rhs))

case And(lhs, rhs) ⇒
Ite(desugar(lhs), desugar(rhs), Literal(BigInt(0)))

case Or(lhs, rhs) ⇒
Ite(desugar(lhs), Literal(BigInt(1)), desugar(rhs))

case Not(e) ⇒
Ite(desugar(e), Literal(BigInt(0)), Literal(BigInt(1)))

case Eq(lhs, rhs) ⇒
Eq(desugar(lhs), desugar(rhs))

case Ite(cond, thn, els) ⇒
Ite(desugar(cond), desugar(els), desugar(thn)) // FIXME: swap then/else

case IntLiteral(v) ⇒
Literal(v)

case BoolLiteral(b) ⇒
Literal(b2i(b))

}
}

B.1.5 Desugar 4

Broken

def desugar(e: Expr): SimpleE = {
e match {

case Plus(lhs, rhs) ⇒
Plus(desugar(lhs), desugar(rhs))

case Minus(lhs, rhs) ⇒
Plus(desugar(lhs), Neg(desugar(rhs)))

case LessThan(lhs, rhs) ⇒
LessThan(desugar(lhs), desugar(rhs))

127

Appendix B. Repair Benchmarks and Solutions

case And(lhs, rhs) ⇒
Ite(desugar(lhs), desugar(rhs), Literal(BigInt(0)))

case Or(lhs, rhs) ⇒
Ite(desugar(lhs), Literal(BigInt(1)), desugar(rhs))

case Not(e) ⇒
Ite(desugar(e), Literal(BigInt(1)), Literal(BigInt(1))) // FIXME should be 0

case Eq(lhs, rhs) ⇒
Eq(desugar(lhs), desugar(rhs))

case Ite(cond, thn, els) ⇒
Ite(desugar(cond), desugar(thn), desugar(els))

case IntLiteral(v) ⇒
Literal(v)

case BoolLiteral(b) ⇒
Literal(b2i(b))

}
}

B.1.6 Desugar 5

def desugar(e: Expr): SimpleE = {
e match {

case Plus(lhs, rhs) ⇒
Plus(desugar(lhs), desugar(rhs))

case Minus(lhs, rhs) ⇒
Plus(desugar(lhs), Neg(desugar(rhs)))

case LessThan(lhs, rhs) ⇒
LessThan(desugar(lhs), desugar(rhs))

case And(lhs, rhs) ⇒
Ite(desugar(lhs), desugar(rhs), Literal(BigInt(0)))

case Or(lhs, rhs) ⇒
Ite(desugar(lhs), Literal(BigInt(1)), desugar(rhs))

case Not(e) ⇒
Ite(desugar(e), Literal(BigInt(1)), Literal(BigInt(1))) // FIXME: error 1: Should be 0

case Eq(lhs, rhs) ⇒
Eq(desugar(lhs), desugar(rhs))

case Ite(cond, thn, els) ⇒
Ite(desugar(cond), desugar(els), desugar(thn)) // FIXME: error2: swapped then/else

case IntLiteral(v) ⇒
Literal(v)

case BoolLiteral(b) ⇒
Literal(b2i(b))

}
}

B.1.7 Simplify

def simplify(e: Expr): Expr = {
e match {

128

B.2. Heap

case And(BoolLiteral(false), _) ⇒
BoolLiteral(false)

case Or(BoolLiteral(true), _) ⇒
BoolLiteral(true)

case Plus(IntLiteral(a), IntLiteral(b)) ⇒
IntLiteral(a−b) // FIXME Should be IntLiteral(a+b). Leon fixes with ’e’

case Not(Not(Not(a))) ⇒
Not(a)

case e ⇒
e

}
} ensuring {

res ⇒ eval(res) == eval(e)
}

B.2 Heap

B.2.1 Complete File

import leon.lang._
import leon.collection._

object Heaps {

sealed abstract class Heap {
val rank : BigInt = this match {

case Leaf() ⇒ 0
case Node(_, l, r) ⇒

1 + max(l.rank, r.rank)
}
def content : Set[BigInt] = this match {

case Leaf() ⇒ Set[BigInt]()
case Node(v,l,r) ⇒ l.content ++ Set(v) ++ r.content

}
}
case class Leaf() extends Heap
case class Node(value: BigInt, left: Heap, right: Heap) extends Heap

def max(i1: BigInt, i2: BigInt) = if (i1 ≥ i2) i1 else i2

def hasHeapProperty(h : Heap) : Boolean = h match {
case Leaf() ⇒ true
case Node(v, l, r) ⇒

(l match {
case Leaf() ⇒ true
case n@Node(v2,_,_) ⇒ v ≥ v2 && hasHeapProperty(n)

}) &&

129

Appendix B. Repair Benchmarks and Solutions

(r match {
case Leaf() ⇒ true
case n@Node(v2,_,_) ⇒ v ≥ v2 && hasHeapProperty(n)

})
}

def hasLeftistProperty(h: Heap) : Boolean = h match {
case Leaf() ⇒ true
case Node(_,l,r) ⇒

hasLeftistProperty(l) &&
hasLeftistProperty(r) &&
l.rank ≥ r.rank

}

def heapSize(t: Heap): BigInt = { t match {
case Leaf() ⇒ BigInt(0)
case Node(v, l, r) ⇒ heapSize(l) + 1 + heapSize(r)

}} ensuring(_ ≥ 0)

private def merge(h1: Heap, h2: Heap) : Heap = {
require(

hasLeftistProperty(h1) && hasLeftistProperty(h2) &&
hasHeapProperty(h1) && hasHeapProperty(h2)

)
(h1,h2) match {

case (Leaf(), _) ⇒ h2
case (_, Leaf()) ⇒ h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≥ v2)
makeN(v1, l1, merge(r1, h2))

else
makeN(v2, l2, merge(h1, r2))

}
} ensuring { res ⇒

hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(h1) + heapSize(h2) == heapSize(res) &&
h1.content ++ h2.content == res.content

}

private def makeN(value: BigInt, left: Heap, right: Heap) : Heap = {
require(

hasLeftistProperty(left) && hasLeftistProperty(right)
)
if(left.rank ≥ right.rank)

Node(value, left, right)
else

Node(value, right, left)

130

B.2. Heap

} ensuring { res ⇒
hasLeftistProperty(res) }

def insert(element: BigInt, heap: Heap) : Heap = {
require(hasLeftistProperty(heap) && hasHeapProperty(heap))

merge(Node(element, Leaf(), Leaf()), heap)

} ensuring { res ⇒
hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(res) == heapSize(heap) + 1 &&
res.content == heap.content ++ Set(element)

}

def findMax(h: Heap) : Option[BigInt] = {
h match {

case Node(m,_,_) ⇒ Some(m)
case Leaf() ⇒ None()

}
}

def removeMax(h: Heap) : Heap = {
require(hasLeftistProperty(h) && hasHeapProperty(h))
h match {

case Node(_,l,r) ⇒ merge(l, r)
case l ⇒ l

}
} ensuring { res ⇒

hasLeftistProperty(res) && hasHeapProperty(res)
}

}

B.2.2 Merge 1

def merge(h1: Heap, h2: Heap) : Heap = {
require(

hasLeftistProperty(h1) && hasLeftistProperty(h2) &&
hasHeapProperty(h1) && hasHeapProperty(h2)

)
(h1,h2) match {

case (Leaf(), _) ⇒ h2
case (_, Leaf()) ⇒ h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≥ v2) // FIXME swapped the branches
makeN(v2, l2, merge(h1, r2))

else
makeN(v1, l1, merge(r1, h2))

131

Appendix B. Repair Benchmarks and Solutions

}
} ensuring { res ⇒

hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(h1) + heapSize(h2) == heapSize(res) &&
h1.content ++ h2.content == res.content

}

B.2.3 Merge 2

def merge(h1: Heap, h2: Heap) : Heap = {
require(

hasLeftistProperty(h1) && hasLeftistProperty(h2) &&
hasHeapProperty(h1) && hasHeapProperty(h2)

)
(h1,h2) match {

case (Leaf(), _) ⇒ h2
case (_, Leaf()) ⇒ h2 // FIXME should be h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≥ v2)
makeN(v1, l1, merge(r1, h2))

else
makeN(v2, l2, merge(h1, r2))

}
} ensuring { res ⇒

hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(h1) + heapSize(h2) == heapSize(res) &&
h1.content ++ h2.content == res.content

}

B.2.4 Merge 3

def merge(h1: Heap, h2: Heap) : Heap = {
require(

hasLeftistProperty(h1) && hasLeftistProperty(h2) &&
hasHeapProperty(h1) && hasHeapProperty(h2)

)
(h1,h2) match {

case (Leaf(), _) ⇒ h2
case (_, Leaf()) ⇒ h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≤ v2) // FIXME should be ≥
makeN(v1, l1, merge(r1, h2))

else
makeN(v2, l2, merge(h1, r2))

}
} ensuring { res ⇒

hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(h1) + heapSize(h2) == heapSize(res) &&

132

B.2. Heap

h1.content ++ h2.content == res.content
}

B.2.5 Merge 4

def merge(h1: Heap, h2: Heap) : Heap = {
require(

hasLeftistProperty(h1) && hasLeftistProperty(h2) &&
hasHeapProperty(h1) && hasHeapProperty(h2)

)
(h1,h2) match {

case (Leaf(), _) ⇒ h2
case (_, Leaf()) ⇒ h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≥ v2)
makeN(v1, l1, merge(r1, h2))

else
makeN(v2, l1, merge(h1, r2)) // FIXME: l1 instead of l2

}
} ensuring { res ⇒

hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(h1) + heapSize(h2) == heapSize(res) &&
h1.content ++ h2.content == res.content

}

B.2.6 Merge 5

def merge(h1: Heap, h2: Heap) : Heap = {
require(

hasLeftistProperty(h1) && hasLeftistProperty(h2) &&
hasHeapProperty(h1) && hasHeapProperty(h2)

)
(h1,h2) match {

case (Leaf(), _) ⇒ h2
case (_, Leaf()) ⇒ h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 + v2 > 0) // FIXME Totally wrong, should be v1 ≥ v2
makeN(v1, l1, merge(r1, h2))

else
makeN(v2, l2, merge(h1, r2))

}
} ensuring { res ⇒

hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(h1) + heapSize(h2) == heapSize(res) &&
h1.content ++ h2.content == res.content

}

B.2.7 Merge 6

133

Appendix B. Repair Benchmarks and Solutions

def merge(h1: Heap, h2: Heap) : Heap = {
require(

hasLeftistProperty(h1) && hasLeftistProperty(h2) &&
hasHeapProperty(h1) && hasHeapProperty(h2)

)
(h1,h2) match {

case (Leaf(), _) ⇒ h1 // FIXME: swapped these cases
case (_, Leaf()) ⇒ h2 // FIXME: swapped these cases
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≥ v2)
makeN(v1, l1, merge(r1, h2))

else
makeN(v2, l2, merge(h1, r2))

}
} ensuring { res ⇒

hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(h1) + heapSize(h2) == heapSize(res) &&
h1.content ++ h2.content == res.content

}

B.2.8 Insert

def insert(element: BigInt, heap: Heap) : Heap = {
require(hasLeftistProperty(heap) && hasHeapProperty(heap))

merge(Node(element + 1, Leaf(), Leaf()), heap) // FIXME: unneeded +1

} ensuring { res ⇒
hasLeftistProperty(res) && hasHeapProperty(res) &&
heapSize(res) == heapSize(heap) + 1 &&
res.content == heap.content ++ Set(element)

}

B.2.9 Make Node

def makeN(value: BigInt, left: Heap, right: Heap) : Heap = {
require(

hasLeftistProperty(left) && hasLeftistProperty(right)
)
if(left.rank ≥ right.rank + 42) // FIXME unneeded constant

Node(value, left, right)
else

Node(value, right, left)
} ensuring { res ⇒

hasLeftistProperty(res)
}

134

B.3. List

B.3 List

B.3.1 Complete File

import leon._
import leon.lang._
import leon.collection._
import leon.annotation._

sealed abstract class List[T] {
def size: BigInt = (this match {

case Nil() ⇒ BigInt(0)
case Cons(h, t) ⇒ BigInt(1) + t.size

}) ensuring (_ ≥ 0)

def content: Set[T] = this match {
case Nil() ⇒ Set()
case Cons(h, t) ⇒ Set(h) ++ t.content

}

def contains(v: T): Boolean = (this match {
case Cons(h, t) if h == v ⇒ true
case Cons(_, t) ⇒ t.contains(v)
case Nil() ⇒ false

}) ensuring { res ⇒ res == (content contains v) }

def ++(that: List[T]): List[T] = (this match {
case Nil() ⇒ that
case Cons(x, xs) ⇒ Cons(x, xs ++ that)

}) ensuring { res ⇒ (res.content == this.content ++ that.content) && (res.size == this.size +
that.size)}

def head: T = {
require(this != Nil[T]())
this match {

case Cons(h, t) ⇒ h
}

}

def tail: List[T] = {
require(this != Nil[T]())
this match {

case Cons(h, t) ⇒ t
}

}

def apply(index: BigInt): T = {
require(0 ≤ index && index < size)

135

Appendix B. Repair Benchmarks and Solutions

if (index == 0) {
head

} else {
tail(index−1)

}
}

def ::(t:T): List[T] = Cons(t, this)

def :+(t:T): List[T] = {
this match {

case Nil() ⇒ Cons(t, this)
case Cons(x, xs) ⇒ Cons(x, xs :+ (t))

}
} ensuring(res ⇒ (res.size == size + 1) && (res.content == content ++ Set(t)))

def reverse: List[T] = {
this match {

case Nil() ⇒ this
case Cons(x,xs) ⇒ xs.reverse :+ x

}
} ensuring (res ⇒ (res.size == size) && (res.content == content))

def take(i: BigInt): List[T] = (this, i) match {
case (Nil(), _) ⇒ Nil()
case (Cons(h, t), i) ⇒

if (i == 0) {
Nil()

} else {
Cons(h, t.take(i−1))

}
}

def drop(i: BigInt): List[T] = (this, i) match {
case (Nil(), _) ⇒ Nil()
case (Cons(h, t), i) ⇒

if (i == 0) {
Cons(h, t)

} else {
t.drop(i−1)

}
}

def slice(from: BigInt, to: BigInt): List[T] = {
require(from < to && to < size && from ≥ 0)
drop(from).take(to−from)

}

136

B.3. List

def replace(from: T, to: T): List[T] = this match {
case Nil() ⇒ Nil()
case Cons(h, t) ⇒

val r = t.replace(from, to)
if (h == from) {

Cons(to, r)
} else {

Cons(h, r)
}

}

private def chunk0(s: BigInt, l: List[T], acc: List[T], res: List[List[T]], s0: BigInt): List[List[T]] =
l match {

case Nil() ⇒
if (acc.size > 0) {

res :+ acc
} else {

res
}

case Cons(h, t) ⇒
if (s0 == 0) {

chunk0(s, l, Nil(), res :+ acc, s)
} else {

chunk0(s, t, acc :+ h, res, s0−1)
}

}

def chunks(s: BigInt): List[List[T]] = {
require(s > 0)

chunk0(s, this, Nil(), Nil(), s)
}

def zip[B](that: List[B]): List[(T, B)] = (this, that) match {
case (Cons(h1, t1), Cons(h2, t2)) ⇒

Cons((h1, h2), t1.zip(t2))
case (_) ⇒

Nil()
}

def −(e: T): List[T] = this match {
case Cons(h, t) ⇒

if (e == h) {
t − e

} else {
Cons(h, t − e)

137

Appendix B. Repair Benchmarks and Solutions

}
case Nil() ⇒

Nil()
}

def --(that: List[T]): List[T] = this match {
case Cons(h, t) ⇒

if (that.contains(h)) {
t -- that

} else {
Cons(h, t -- that)

}
case Nil() ⇒

Nil()
}

def &(that: List[T]): List[T] = this match {
case Cons(h, t) ⇒

if (that.contains(h)) {
Cons(h, t & that)

} else {
t & that

}
case Nil() ⇒

Nil()
}

def pad(s: BigInt, e: T): List[T] = { (this, s) match {
case (_, s) if s ≤ 0 ⇒

this
case (Nil(), s) ⇒

Cons(e, Nil().pad(s−1, e))
case (Cons(h, t), s) ⇒

Cons(h, t.pad(s, e))
}} ensuring { res ⇒

(s > 0) =⇒ (res.size == this.size + s && res.contains(e))
}

def find(e: T): Option[BigInt] = this match {
case Nil() ⇒ None()
case Cons(h, t) ⇒

if (h == e) {
Some(0)

} else {
t.find(e) match {

case None() ⇒ None()
case Some(i) ⇒ Some(i+1)

138

B.3. List

}
}

}

def init: List[T] = (this match {
case Cons(h, Nil()) ⇒

Nil[T]()
case Cons(h, t) ⇒

Cons[T](h, t.init)
case Nil() ⇒

Nil[T]()
}) ensuring ((r: List[T]) ⇒ ((r.size < this.size) || (this.size == 0)))

def lastOption: Option[T] = this match {
case Cons(h, t) ⇒

t.lastOption.orElse(Some(h))
case Nil() ⇒

None()
}

def firstOption: Option[T] = this match {
case Cons(h, t) ⇒

Some(h)
case Nil() ⇒

None()
}

def unique: List[T] = this match {
case Nil() ⇒ Nil()
case Cons(h, t) ⇒

Cons(h, t.unique − h)
}

def splitAt(e: T): List[List[T]] = split(Cons(e, Nil()))

def split(seps: List[T]): List[List[T]] = this match {
case Cons(h, t) ⇒

if (seps.contains(h)) {
Cons(Nil(), t.split(seps))

} else {
val r = t.split(seps)
Cons(Cons(h, r.head), r.tail)

}
case Nil() ⇒

Cons(Nil(), Nil())
}

139

Appendix B. Repair Benchmarks and Solutions

def count(e: T): BigInt = this match {
case Cons(h, t) ⇒

if (h == e) {
1 + t.count(e)

} else {
t.count(e)

}
case Nil() ⇒

0
}

def evenSplit: (List[T], List[T]) = {
val c = size/2
(take(c), drop(c))

}

def insertAt(pos: BigInt, l: List[T]): List[T] = {
if(pos < 0) {

insertAt(size + pos, l)
} else if(pos == 0) {

l ++ this
} else {

this match {
case Cons(h, t) ⇒

Cons(h, t.insertAt(pos−1, l))
case Nil() ⇒

l
}

}
}

def replaceAt(pos: BigInt, l: List[T]): List[T] = {
if(pos < 0) {

replaceAt(size + pos, l)
} else if(pos == 0) {

l ++ this.drop(l.size)
} else {

this match {
case Cons(h, t) ⇒

Cons(h, t.replaceAt(pos−1, l))
case Nil() ⇒

l
}

}
}

def rotate(s: BigInt): List[T] = {

140

B.3. List

if (s < 0) {
rotate(size+s)

} else {
val s2 = s % size
drop(s2) ++ take(s2)

}
}

def isEmpty = this match {
case Nil() ⇒ true
case _ ⇒ false

}

}

@ignore
object List {

def apply[T](elems: T∗): List[T] = ???
}

@library
object ListOps {

def flatten[T](ls: List[List[T]]): List[T] = ls match {
case Cons(h, t) ⇒ h ++ flatten(t)
case Nil() ⇒ Nil()

}

def isSorted(ls: List[BigInt]): Boolean = ls match {
case Nil() ⇒ true
case Cons(_, Nil()) ⇒ true
case Cons(h1, Cons(h2, _)) if(h1 > h2) ⇒ false
case Cons(_, t) ⇒ isSorted(t)

}

def sorted(ls: List[BigInt]): List[BigInt] = ls match {
case Cons(h, t) ⇒ insSort(sorted(t), h)
case Nil() ⇒ Nil()

}

def insSort(ls: List[BigInt], v: BigInt): List[BigInt] = ls match {
case Nil() ⇒ Cons(v, Nil())
case Cons(h, t) ⇒

if (v ≤ h) {
Cons(v, t)

} else {
Cons(h, insSort(t, v))

}

141

Appendix B. Repair Benchmarks and Solutions

}
}

case class Cons[T](h: T, t: List[T]) extends List[T]
case class Nil[T]() extends List[T]

B.3.2 Pad

def pad(s: BigInt, e: T): List[T] = {
(this, s) match {

case (_, s) if s ≤ 0 ⇒
this

case (Nil(), s) ⇒
Cons(e, Nil().pad(s−1, e))

case (Cons(h, t), s) ⇒
Cons(h, t.pad(s−1, e)) // FIXME should be s, not s−1

}
} ensuring { res ⇒

(s > 0) =⇒ (res.size == this.size + s && res.contains(e))
}

B.3.3 ++

def ++(that: List[T]): List[T] = (this match {
case Nil() ⇒ that
case Cons(x, xs) ⇒ xs ++ that // FIXME forgot Cons(x, ..)

}) ensuring { res ⇒
(res.content == this.content ++ that.content) &&
(res.size == this.size + that.size)

}

B.3.4 :+

def :+(t:T): List[T] = {
this match {

case Nil() ⇒ this // FIXME forgot t
case Cons(x, xs) ⇒ Cons(x, xs :+ (t))

}
} ensuring { res ⇒

(res.size == size + 1) &&
(res.content == content ++ Set(t))

}

B.3.5 Replace

def replace(from: T, to: T): List[T] = {
this match {

142

B.3. List

case Nil() ⇒ Nil[T]()
case Cons(h, t) ⇒

val r = t.replace(from, to)
if (h != from) { // FIXME should be ==

Cons(to, r)
} else {

Cons(h, r)
}

}
}} ensuring { res ⇒

(((this.content -- Set(from)) ++ (if (this.content contains from) Set(to) else Set[T]())) == res.
content) &&

res.size == this.size
}

B.3.6 Count

def count(e: T): BigInt = {
this match {

case Cons(h, t) ⇒
if (h == e) {

t.count(e) // FIXME missing +1
} else {

t.count(e)
}

case Nil() ⇒
BigInt(0)

}
} ensuring {((this, e), _) passes {

case (Cons(a, Cons(b, Cons(a1, Cons(b2, Nil())))), a2) if a == a1 && a == a2 && b != a2 && b2
!= a2 ⇒ 2

case (Cons(a, Cons(b, Nil())), c) if a != c && b != c ⇒ 0
}}

B.3.7 Find 1

def find(e: T): Option[BigInt] = {
this match {

case Nil() ⇒ None[BigInt]()
case Cons(h, t) ⇒

if (h == e) {
Some(BigInt(0))

} else {
t.find(e) match {

case None() ⇒ None[BigInt]()
case Some(i) ⇒ Some(i) // FIXME forgot +1

}
}

143

Appendix B. Repair Benchmarks and Solutions

}
} ensuring { res ⇒

if (this.content contains e) {
res.isDefined && this.size > res.get && this.apply(res.get) == e && res.get ≥ 0

} else {
res.isEmpty

}
}

B.3.8 Find 2

Broken

def find(e: T): Option[BigInt] = {
this match {

case Nil() ⇒ None[BigInt]()
case Cons(h, t) ⇒

if (h == e) {
Some(BigInt(0))

} else {
t.find(e) match {

case None() ⇒ None[BigInt]()
case Some(i) ⇒ Some(i + 2) // FIXME +1

}
}

}
} ensuring { res ⇒

if (this.content contains e) {
res.isDefined && this.size > res.get && this.apply(res.get) == e && res.get ≥ 0

} else {
res.isEmpty

}
}

B.3.9 Find 3

def find(e: T): Option[BigInt] = {
this match {

case Nil() ⇒ None[BigInt]()
case Cons(h, t) ⇒

if (h != e) { // FIXME should be ==
Some(BigInt(0))

} else {
t.find(e) match {

case None() ⇒ None[BigInt]()
case Some(i) ⇒ Some(i+1)

}
}

144

B.3. List

}
} ensuring { res ⇒

if (this.content contains e) {
res.isDefined && this.size > res.get && this.apply(res.get) == e && res.get ≥ 0

} else {
res.isEmpty

}
}

B.3.10 Size

Broken

def size: BigInt = {
this match {

case Nil() ⇒ BigInt(0)
case Cons(h, t) ⇒ BigInt(3) + t.size // FIXME 3 −> 1

}
} ensuring { res ⇒

res ≥ 0 &&
((this, res) passes {

case Cons(_, Nil()) ⇒ 1
case Nil() ⇒ 0

})
}

B.3.11 Sum

def sum(l: List[BigInt]): BigInt = {
l match {

case Nil() ⇒ BigInt(0)
case Cons(x, xs) ⇒ BigInt(1) + sum(xs) // FIXME x + sum(xs)

}
} ensuring { res ⇒

(l, res) passes {
case Cons(a, Nil()) ⇒ a
case Cons(a, Cons(b, Nil())) ⇒ a + b

}
}

B.3.12 -

def −(e: T): List[T] = {
this match {

case Cons(h, t) ⇒
if (e == h) {

t // FIXME: t − e
} else {

145

Appendix B. Repair Benchmarks and Solutions

Cons(h, t − e)
}

case Nil() ⇒
Nil[T]()

}
} ensuring { res ⇒

res.content == this.content ++ Set(e)
}

B.3.13 Drop 1

def drop(i: BigInt): List[T] = {
(this, i) match {

case (Nil(), _) ⇒ Nil[T]()
case (Cons(h, t), i) ⇒

if (i != 0) { // FIXME: should be < 1
Cons(h, t)

} else {
t.drop(i−1)

}
}

} ensuring { res ⇒
((this, i), res) passes {

case (Cons(_, Nil()), BigInt(42)) ⇒ Nil()
case (l@Cons(_, _), BigInt(0)) ⇒ l
case (Cons(a, Cons(b, Nil())), BigInt(1)) ⇒ Cons(b, Nil())

}
}

B.3.14 Drop 2

def drop(i: BigInt): List[T] = {
require(i ≥ 0)
(this, i) match {

case (Nil(), _) ⇒ Nil[T]()
case (Cons(h, t), i) ⇒

if (i == 0) {
Cons[T](h, t)

} else {
t.drop(i) // FIXME Should be −1

}
}

} ensuring { (res: List[T]) ⇒
((this, i), res) passes {

case (Cons(a, Cons(b, Nil())), BigInt(1)) ⇒ Cons(b, Nil())
case (Cons(a, Cons(b, Nil())), BigInt(2)) ⇒ Nil()

}
}

146

B.4. Numerical

B.4 Numerical

B.4.1 Complete File

import leon._
import leon.lang._
import leon.annotation._

object Numerical {
def power(base: BigInt, p: BigInt): BigInt = {

require(p ≥ BigInt(0))
if (p == BigInt(0)) {

BigInt(1)
} else if (p%BigInt(2) == BigInt(0)) {

power(base∗base, p/BigInt(2))
} else {

power(base, p−BigInt(1))∗base
}

} ensuring {
res ⇒ ((base, p), res) passes {

case (_, BigInt(0)) ⇒ BigInt(1)
case (b, BigInt(1)) ⇒ b
case (BigInt(2), BigInt(7)) ⇒ BigInt(128)
case (BigInt(2), BigInt(10)) ⇒ BigInt(1024)

}
}

def moddiv(a: BigInt, b: BigInt): (BigInt, BigInt) = {
require(a ≥ BigInt(0) && b > BigInt(0));
if (b > a) {

(a, BigInt(0))
} else {

val (r1, r2) = moddiv(a−b, b)
(r1, r2+1)

}
} ensuring {

res ⇒ b∗res._2 + res._1 == a
}

}

B.4.2 power

def power(base: BigInt, p: BigInt): BigInt = {
require(p ≥ BigInt(0))
if (p == BigInt(0)) {

BigInt(1)
} else if (p%BigInt(2) == BigInt(0)) {

power(base∗base, p/BigInt(2))

147

Appendix B. Repair Benchmarks and Solutions

} else {
power(base, p−BigInt(1)) // FIXME: missing base∗

}
} ensuring {

res ⇒ ((base, p), res) passes {
case (_, BigInt(0)) ⇒ BigInt(1)
case (b, BigInt(1)) ⇒ b
case (BigInt(2), BigInt(7)) ⇒ BigInt(128)
case (BigInt(2), BigInt(10)) ⇒ BigInt(1024)

}
}

B.4.3 ModDiv

def moddiv(a: BigInt, b: BigInt): (BigInt, BigInt) = {
require(a ≥ BigInt(0) && b > BigInt(0));
if (b > a) {

(BigInt(1), BigInt(0)) // FIXME: should be (a, 0)
} else {

val (r1, r2) = moddiv(a−b, b)
(r1, r2+1)

}
} ensuring {

res ⇒ b∗res._2 + res._1 == a
}

B.5 Merge Sort

B.5.1 Complete File

import leon.collection._

object MergeSort {

def split(l : List[BigInt]) : (List[BigInt],List[BigInt]) = { l match {
case Cons(a, Cons(b, t)) ⇒

val (rec1, rec2) = split(t)
(Cons(a, rec1), Cons(b, rec2))

case other ⇒ (other, Nil[BigInt]())
}} ensuring { res ⇒

val (l1, l2) = res
l1.size ≥ l2.size &&
l1.size ≤ l2.size + 1 &&
l1.size + l2.size == l.size &&
l1.content ++ l2.content == l.content

}

def isSorted(l : List[BigInt]) : Boolean = l match {

148

B.5. Merge Sort

case Cons(x, t@Cons(y, _)) ⇒ x ≤ y && isSorted(t)
case _ ⇒ true

}

def merge(l1 : List[BigInt], l2 : List[BigInt]) : List[BigInt] = {
require(isSorted(l1) && isSorted(l2))
(l1, l2) match {

case (Cons(h1, t1), Cons(h2,t2)) ⇒
if (h1 ≤ h2)

Cons(h1, merge(t1, l2))
else

Cons(h2, merge(l1, t2))
case (Nil(), _) ⇒ l2
case (_, Nil()) ⇒ l1

}
} ensuring { res ⇒

isSorted(res) &&
res.size == l1.size + l2.size &&
res.content == l1.content ++ l2.content

}

def mergeSort(l : List[BigInt]) : List[BigInt] = { l match {
case Nil() ⇒ l
case Cons(_, Nil()) ⇒ l
case other ⇒

val (l1, l2) = split(other)
merge(mergeSort(l1), mergeSort(l2))

}} ensuring { res ⇒
isSorted(res) &&
res.content == l.content &&
res.size == l.size

}
}

B.5.2 Split

Broken

def split(l : List[BigInt]) : (List[BigInt],List[BigInt]) = { l match {
case Cons(a, Cons(b, t)) ⇒

val (rec1, rec2) = split(t)
(rec1, Cons(b, rec2)) // FIXME: Forgot a

case other ⇒ (other, Nil[BigInt]())
}} ensuring { res ⇒

val (l1, l2) = res
l1.size ≥ l2.size &&
l1.size ≤ l2.size + 1 &&
l1.size + l2.size == l.size &&

149

Appendix B. Repair Benchmarks and Solutions

l1.content ++ l2.content == l.content
}

Repaired

def split(l : List[BigInt]) : (List[BigInt],List[BigInt]) = { l match {
case Cons(a, Cons(b, t)) ⇒

val (rec1, rec2) = split(t)
(Cons(a, rec1), Cons(b, rec2))

case other ⇒ (other, Nil[BigInt]())
}} ensuring { res ⇒

val (l1, l2) = res
l1.size ≥ l2.size &&
l1.size ≤ l2.size + 1 &&
l1.size + l2.size == l.size &&
l1.content ++ l2.content == l.content

}

B.5.3 Merge 1

def merge(l1 : List[BigInt], l2 : List[BigInt]) : List[BigInt] = {
require(isSorted(l1) && isSorted(l2))
(l1, l2) match {

case (Cons(h1, t1), Cons(h2,t2)) ⇒
if (h1 ≤ h2)

Cons(h1, merge(t1, l2))
else

Cons(h1, merge(l1, t2)) // FIXME: h1 −> h2
case (Nil(), _) ⇒ l2
case (_, Nil()) ⇒ l1

}
} ensuring { res ⇒

isSorted(res) &&
res.size == l1.size + l2.size &&
res.content == l1.content ++ l2.content

}

B.5.4 Merge 2

def merge(l1 : List[BigInt], l2 : List[BigInt]) : List[BigInt] = {
require(isSorted(l1) && isSorted(l2))
(l1, l2) match {

case (Cons(h1, t1), Cons(h2,t2)) ⇒
if (h1 ≥ h2) // FIXME: Condition inverted

Cons(h1, merge(t1, l2))
else

Cons(h2, merge(l1, t2))
case (Nil(), _) ⇒ l2

150

B.5. Merge Sort

case (_, Nil()) ⇒ l1
}

} ensuring { res ⇒
isSorted(res) &&
res.size == l1.size + l2.size &&
res.content == l1.content ++ l2.content

}

B.5.5 Merge 3

def merge(l1 : List[BigInt], l2 : List[BigInt]) : List[BigInt] = {
require(isSorted(l1) && isSorted(l2))
(l1, l2) match {

case (Cons(h1, t1), Cons(h2,t2)) ⇒
if (h1 ≤ h2)

Cons(h1, merge(t1, l2))
else

merge(l1, t2) // FIXME: missing h2
case (Nil(), _) ⇒ l2
case (_, Nil()) ⇒ l1

}
} ensuring { res ⇒

isSorted(res) &&
res.size == l1.size + l2.size &&
res.content == l1.content ++ l2.content

}

B.5.6 Merge 4

def merge(l1 : List[BigInt], l2 : List[BigInt]) : List[BigInt] = {
require(isSorted(l1) && isSorted(l2))
(l1, l2) match {

case (Cons(h1, t1), Cons(h2,t2)) ⇒
if (h1 ≤ h2)

Cons(h1, merge(t1, l2))
else

Cons(h2, merge(l1, t2))
case (Nil(), _) ⇒ l1 // FIXME should be l2
case (_, Nil()) ⇒ l1

}
} ensuring { res ⇒

isSorted(res) &&
res.size == l1.size + l2.size &&
res.content == l1.content ++ l2.content

}

151

Bibliography

[ABD+14] Rajeev Alur, Rastislav Bodik, Eric Dallal, Dana Fisman, Pranav Garg, Garvit

Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund

Raghothaman, Shamwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando

Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis. To

Appear in Marktoberdrof NATO proceedings, 2014. http://sygus.seas.upenn.edu/

files/sygus_extended.pdf, retrieved 2015-02-06.

[ABJ+13] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund

Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-

ina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In FMCAD, pages 1–17.

IEEE, 2013.

[AGK13] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program

synthesis. In CAV, pages 934–950, 2013.

[AMP94] Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic controller synthesis for

discrete and timed systems. In Hybrid Systems, pages 1–20, 1994.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh

Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification - 23rd

International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceed-

ings, volume 6806 of LNCS, pages 171–177. Springer, 2011.

[BCI11] Josh Berdine, Byron Cook, and Samin Ishtiaq. SLAyer: Memory safety for systems-

level code. In CAV, pages 178–183, 2011.

[BDF+04] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wol-

fram Schulte. Verification of object-oriented programs with invariants. Journal of

Object Technology, 3(6):27–56, 2004.

[BGL+97] Michael Butler, Jim Grundy, Thomas Langbacka, Rimvydas Ruksenas, and Joakim

von Wright. The refinement calculator: Proof support for program refinement. In

Formal Methods Pacific, 1997.

153

Bibliography

[BKKS13] Régis William Blanc, Etienne Kneuss, Viktor Kuncak, and Philippe Suter. An

overview of the Leon verification system: Verification by translation to recursive

functions. In Scala Workshop, 2013.

[BKM02] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: automated

testing based on Java predicates. In ISSTA, pages 123–133, 2002.

[BLS03] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for

object encapsulation. In Proc. 30th ACM POPL, 2003.

[BN05] Anindya Banerjee and David A. Naumann. State based ownership, reentrance,

and encapsulation. In ECOOP, 2005.

[BTGC16] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. Optimizing syn-

thesis with metasketches. Principles of Programming Languages, 2016.

[BvW98] Ralph-Johan Back and Joakim von Wright. Refinement Calculus. Springer-Verlag,

1998.

[CC02] Patrick Cousot and Radhia Cousot. Modular static program analysis, invited paper.

In R.N. Horspool, editor, Proceedings of the Eleventh International Conference on

Compiler Construction (CC 2002), pages 159–178, Grenoble, France, April 2002.

LNCS 2304, Springer, Berlin.

[CD02] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the dis-

jointness of type and effect. In Proceedings of the 17th ACM conference on Object-

oriented programming, systems, languages, and applications, pages 292–310. ACM

Press, 2002.

[CK88] Keith D. Cooper and Ken Kennedy. Interprocedural side-effect analysis in linear

time. In PLDI, pages 57–66, 1988.

[CN02] Ana Cavalcanti and David A. Naumann. Forward simulation for data refinement

of classes. In Proceedings of Formal Methods Europe FME’2002, volume 2391 of

LNCS, pages 471–490, 2002.

[CTBB11] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodík. Angelic

debugging. In Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic, editors,

ICSE, pages 121–130. ACM, 2011.

[CWZ90] David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. Analysis of pointers

and structures. In PLDI, pages 296–310, 1990.

[Deu92] A. Deutsch. A storeless model of aliasing and its abstractions using finite repre-

sentations of right-regular equivalence relations. In James R. Cordy and Mario

Barbacci, editors, ICCL’92, Proceedings of the 1992 International Conference on

Computer Languages, Oakland, California, USA, 20-23 Apr 1992, pages 2–13.

IEEE, 1992.

154

Bibliography

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS,

pages 337–340, 2008.

[dMB09] Leonardo de Moura and Nikolaj Bjørner. Generalized, efficient array decision

procedures. In FMCAD, 2009.

[dRE98] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-oriented

proof methods and their comparison. Cambridge University Press, 1998.

[DYDG+10] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson,

and Viktor Vafeiadis. Concurrent abstract predicates. In ECOOP, pages 504–528,

2010.

[FCD15] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure trans-

formations from input-output examples. In David Grove and Steve Blackburn,

editors, Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, Portland, OR, USA, June 15-17, 2015, pages

229–239. ACM, 2015.

[FL03] Manuel Fähndrich and K. Rustan M. Leino. Heap monotonic typestates. In Inter-

national Workshop on Aliasing, Confinement and Ownership in object-oriented

programming (IWACO), 2003.

[FL11] Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract

interpretation. In Formal Verification of Object-Oriented Software, pages 10–30.

Springer, 2011.

[FP01] Pierre Flener and Derek Partridge. Inductive programming. Autom. Softw. Eng.,

8(2):131–137, 2001.

[GBC06] Andreas Griesmayer, Roderick Bloem, and Byron Cook. Repair of boolean pro-

grams with an application to C. In Thomas Ball and Robert B. Jones, editors, CAV,

volume 4144 of LNCS, pages 358–371. Springer, 2006.

[GGJ+10] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak,

and Darko Marinov. Test generation through programming in UDITA. In ICSE,

pages 225–234, 2010.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.

Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass.,

1994.

[GJTV11] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Syn-

thesis of loop-free programs. In PLDI, pages 62–73, 2011.

[GKKP13] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete comple-

tion using types and weights. In PLDI, pages 27–38, 2013.

155

Bibliography

[GMK11] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. Specification-

based program repair using SAT. In Parosh Aziz Abdulla and K. Rustan M. Leino,

editors, TACAS, volume 6605 of LNCS, pages 173–188. Springer, 2011.

[GNFW12] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Gen-

prog: A generic method for automatic software repair. TSE, 38(1):54–72, 2012.

[Hof10] Martin Hofmann. IgorII - an analytical inductive functional programming system

(tool demo). In PEPM, pages 29–32, 2010.

[Jac95] Daniel Jackson. Structuring Z specifications with views. ACM Trans. Softw. Eng.

Methodol., 4(4):365–389, 1995.

[JB06] Barbara Jobstmann and Roderick Bloem. Optimizations for LTL synthesis. In

FMCAD, pages 117–124, 2006.

[JG91] Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of types and effects.

In POPL, pages 303–310, 1991.

[JGB05] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program repair as

a game. In Kousha Etessami and Sriram K. Rajamani, editors, CAV, volume 3576

of LNCS, pages 226–238. Springer, 2005.

[JHS86] He Jifeng, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined. In ESOP’86,

volume 213 of LNCS, 1986.

[JKS13] Swen Jacobs, Viktor Kuncak, and Philippe Suter. Reductions for synthesis proce-

dures. In VMCAI, pages 88–107, 2013.

[JL87] J. Jaffar and J.-L. Lassez. Constraint logic programming. In POPL ’87: Proceedings

of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming

languages, pages 111–119, New York, NY, USA, 1987. ACM.

[JMT10] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural analy-

sis with lazy propagation. In SAS, volume 6337 of LNCS, pages 320–339. Springer,

2010.

[JSGB12] Barbara Jobstmann, Stefan Staber, Andreas Griesmayer, and Roderick Bloem.

Finding and fixing faults. JCSS, 78(2):441–460, 2012.

[KAE+09] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael

Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verifi-

cation of an OS kernel. In SOSP, pages 207–220, 2009.

[KKS12] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Constraints as control. In

POPL, pages 151–164, 2012.

156

Bibliography

[KKS13] Viktor Kuncak, Etienne Kneuss, and Philippe Suter. Executing specifications

using synthesis and constraint solving (invited talk). In Runtime Verification (RV),

2013.

[KMPS10] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Complete func-

tional synthesis. In Benjamin G. Zorn and Alexander Aiken, editors, Proceedings

of the 2010 ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages

316–329. ACM, 2010.

[KMPS12] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Software synthe-

sis procedures. CACM, 55(2):103–111, 2012.

[KMPS13] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Functional

synthesis for linear arithmetic and sets. STTT, 15(5-6):455–474, 2013.

[KS06] Emanuel Kitzelmann and Ute Schmid. Inductive synthesis of functional pro-

grams: An explanation based generalization approach. JMLR, 7:429–454, 2006.

[LB12] Francesco Logozzo and Thomas Ball. Modular and verified automatic program

repair. In Gary T. Leavens and Matthew B. Dwyer, editors, OOPSLA, pages 133–146.

ACM, 2012.

[LH88] James R. Larus and Paul N. Hilfinger. Detecting conflicts between structure

accesses. In Proc. ACM PLDI, Atlanta, GA, June 1988.

[LR15] Fan Long and Martin Rinard. Staged program repair with condition synthesis. In

Elisabetta Di Nitto, Mark Harman, and Patrick Heymans, editors, Proceedings of

the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE

2015, Bergamo, Italy, August 30 - September 4, 2015, pages 166–178. ACM, 2015.

[LS09] Dirk Leinenbach and Thomas Santen. Verifying the Microsoft Hyper-V hypervisor

with VCC. In FM, pages 806–809, 2009.

[LV09] Yoad Lustig and Moshe Y. Vardi. Synthesis from component libraries. In FOSSACS,

pages 395–409, 2009.

[MR94] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and

methods. J. Log. Program., 19/20:629–679, 1994.

[MRR02] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object

sensitivity for points-to and side-effect analyses for java. In ISSTA, pages 1–11,

2002.

[MRV11] Ravichandhran Madhavan, Ganesan Ramalingam, and Kapil Vaswani. Purity

analysis: An abstract interpretation formulation. In SAS, volume 6887 of LNCS,

pages 7–24. Springer, 2011.

157

Bibliography

[MRV12] Ravichandhran Madhavan, Ganesan Ramalingam, and Kapil Vaswani. Modular

heap analysis for higher-order programs. In SAS, volume 7460 of LNCS, pages

370–387. Springer, 2012.

[MW71] Zohar Manna and Richard J. Waldinger. Toward automatic program synthesis.

Commun. ACM, 14(3):151–165, 1971.

[MW80] Zohar Manna and Richard J. Waldinger. A deductive approach to program syn-

thesis. ACM Trans. Program. Lang. Syst., 2(1):90–121, 1980.

[NCM+10] Martin Nordio, Cristiano Calcagno, Bertrand Meyer, Peter Müller, and Julian

Tschannen. Reasoning about function objects. In Jan Vitek, editor, TOOLS (48),

volume 6141 of LNCS, pages 79–96. Springer, 2010.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof

Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

[NQRC13] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra.

Semfix: program repair via semantic analysis. In David Notkin, Betty H. C. Cheng,

and Klaus Pohl, editors, ICSE, pages 772–781. IEEE / ACM, 2013.

[Ode10] Martin Odersky. Contracts for scala. In RV, pages 51–57, 2010.

[Oka99] Chris Okasaki. Purely functional data structures. Cambridge University Press,

1999.

[OM09] Martin Odersky and Adriaan Moors. Fighting bit rot with types (experience report:

Scala collections). In FSTTCS, pages 427–451, 2009.

[PPS06] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In

VMCAI, pages 364–380, 2006.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL,

1989.

[PS11] Matthew J. Parkinson and Alexander J. Summers. The relationship between

separation logic and implicit dynamic frames. In ESOP, pages 439–458, 2011.

[PWF+11] Yu Pei, Yi Wei, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. Code-based

automated program fixing. ArXiv e-prints, 2011. arXiv:1102.1059.

[ROH12] Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight polymorphic effects.

In ECOOP, volume 7313 of LNCS, pages 258–282. Springer, 2012.

[Rou04] Atanas Rountev. Precise identification of side-effect-free methods in java. In

ICSM, pages 82–91, 2004.

158

Bibliography

[RVK15] Veselin Raychev, Martin T. Vechev, and Andreas Krause. Predicting program

properties from "big code". In Sriram K. Rajamani and David Walker, editors,

Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,

pages 111–124. ACM, 2015.

[RVY14] Veselin Raychev, Martin T. Vechev, and Eran Yahav. Code completion with statisti-

cal language models. In Michael F. P. O’Boyle and Keshav Pingali, editors, ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, page 44. ACM, 2014.

[Sal06] Alexandru D. Salcianu. Pointer Analysis for Java Programs: Novel Techniques and

Applications. PhD thesis, Massachusetts Institute of Technology, 2006.

[SDE08] Roopsha Samanta, Jyotirmoy V. Deshmukh, and E. Allen Emerson. Automatic

generation of local repairs for boolean programs. In Alessandro Cimatti and

Robert B. Jones, editors, FMCAD, pages 1–10. IEEE, 2008.

[SDK10] Philippe Suter, Mirco Dotta, and Viktor Kuncak. Decision procedures for algebraic

data types with abstractions. In POPL, pages 199–210, 2010.

[SG12] Rishabh Singh and Sumit Gulwani. Synthesizing number transformations from

input-output examples. In CAV, pages 634–651, 2012.

[SGF10] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verifica-

tion to program synthesis. In POPL, pages 313–326, 2010.

[SGF13] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Template-based pro-

gram verification and program synthesis. STTT, 15(5-6):497–518, 2013.

[SGS13] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback

generation for introductory programming assignments. In Hans-Juergen Boehm

and Cormac Flanagan, editors, ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013,

pages 15–26. ACM, 2013.

[Shi88] Olin Shivers. Control-flow analysis in scheme. In PLDI, pages 164–174, 1988.

[SJP09] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining

dynamic frames and separation logic. In ECOOP, pages 148–172, 2009.

[SKK11] Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak. Satisfiability modulo recur-

sive programs. In SAS, pages 298–315, 2011.

[SLAT+07] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodík, Vijay A.

Saraswat, and Sanjit A. Seshia. Sketching stencils. In PLDI, pages 167–178, 2007.

159

Bibliography

[SLJB08] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodík. Sketching

concurrent data structures. In PLDI, pages 136–148, 2008.

[SLTB+06] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and

Vijay A. Saraswat. Combinatorial sketching for finite programs. In ASPLOS, pages

404–415, 2006.

[Smi05] Douglas R. Smith. Generating programs plus proofs by refinement. In VSTTE,

pages 182–188, 2005.

[SNK+13] Andrej Spielmann, Andres Nötzli, Christoph Koch, Viktor Kuncak, and Yannis

Klonatos. Automatic synthesis of out-of-core algorithms. In SIGMOD, 2013.

[SOE14] Roopsha Samanta, Oswaldo Olivo, and E. Allen Emerson. Cost-aware automatic

program repair. In Markus Müller-Olm and Helmut Seidl, editors, SAS, volume

8723 of LNCS, pages 268–284. Springer, 2014.

[Sol13] Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013.

[SR05] Alexandru Salcianu and Martin C. Rinard. Purity and side effect analysis for Java

programs. In VMCAI, volume 3385 of LNCS, pages 199–215. Springer, 2005.

[Sum77] Phillip D. Summers. A methodology for LISP program construction from exam-

ples. JACM, 24(1):161–175, 1977.

[Sut12a] Philippe Suter. Programming with Specifications. PhD thesis, EPFL, December

2012.

[Sut12b] Philippe Paul Henri Suter. Programming with Specifications. PhD thesis, IC,

Lausanne, 2012.

[TD03] Oksana Tkachuk and Matthew B. Dwyer. Adapting side effects analysis for modu-

lar program model checking. In ESEC / SIGSOFT FSE, pages 188–197, 2003.

[TS05] Nikolai Tillmann and Wolfram Schulte. Parameterized unit tests. In Michel Wer-

melinger and Harald C. Gall, editors, Proceedings of the 10th European Software

Engineering Conference held jointly with 13th ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering, 2005, Lisbon, Portugal, September

5-9, 2005, pages 253–262. ACM, 2005.

[URD+13] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,

Milo M. K. Martin, and Rajeev Alur. TRANSIT: specifying protocols with concolic

snippets. In PLDI, pages 287–296, 2013.

[vEJ13] Christian von Essen and Barbara Jobstmann. Program repair without regret. In

CAV, pages 896–911, 2013.

160

Bibliography

[VYY09] Martin T. Vechev, Eran Yahav, and Greta Yorsh. Inferring synchronization under

limited observability. In TACAS, pages 139–154, 2009.

[WFKM11] Yi Wei, Carlo A. Furia, Nikolay Kazmin, and Bertrand Meyer. Inferring better

contracts. In ICSE, pages 191–200, 2011.

[Wir71] Niklaus Wirth. Program development by stepwise refinement. Commun. ACM,

14(4):221–227, 1971.

[WR99] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java pro-

grams. In Proc. 14th Annual ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications, Denver, November 1999.

[YYC08] Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise

procedure summaries. In POPL, pages 221–234. ACM, 2008.

161

Etienne Kneuss
Curriculum Vitæ

Education

EPFL, Lausanne, Switzerland PhD Computer Science 2011 – 2016
EPFL, Lausanne, Switzerland MS Computer Science 2009 – 2011
EPFL, Lausanne, Switzerland BS Computer Science 2006 – 2009

Work Experience

Research Assistant, EPFL 2011 – 2016
PhD studies under the supervision of Prof. Viktor Kuncak. My research interests are mainly di-
vided in two research areas. The first one is about the automated reasoning on recursive purely-
functional programs with high-level specifications. I have explored automated approaches for
program synthesis [3] and repair [2]. In both cases, the goal is to automatically derive an exe-
cutable implementation that satisfies an existing high-level relational specification. My second
area of interest is static analysis techniques for functional and object oriented programs written
in Scala. For instance, I investigated techniques to precisely and efficiently analyze memory side-
effects in the presence of callbacks [4]. I have also worked on static reasoning techniques for
highly-dynamic languages such as PHP [6, 5].

CTO, IMMOMIG Ltd 2005 –
I am repsonsible for the development and operation of internal tools for a company providing
web-based management solutions for real-estate agencies. These tools cover operational aspects
of any typical mid-sized company such as: ticketing and support, client-relations, finaning com-
putations and simulations, salaries computations, holidays and leaves, and invoicing and pay-
ments processing.

Publications
Conference proceedings and journal articles.

[1] Nicolas Voirol, Etienne Kneuss, and Viktor Kuncak. “Counter-example complete verification
for higher-order functions”. In: Proceedings of the 6th ACM SIGPLAN Symposium on Scala, Scala
2015, Portland, OR, USA, June 15-17, 2015. Ed. by Philipp Haller and Heather Miller. ACM,
2015, pp. 18–29. DOI: 10.1145/2774975.2774978. URL: http://doi.acm.org/10.1145/
2774975.2774978.

[2] Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. “Deductive Program Repair”. In:
Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA,
July 18-24, 2015, Proceedings, Part II. Ed. by Daniel Kroening and Corina S. Pasareanu. Vol. 9207.
LNCS. Springer, 2015, pp. 217–233. DOI: 10.1007/978- 3- 319- 21668- 3_13. URL: http:
//dx.doi.org/10.1007/978-3-319-21668-3_13.

[3] Etienne Kneuss et al. “Synthesis modulo recursive functions”. In: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems Languages & Appli-
cations, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. Ed. by
Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes. ACM, 2013, pp. 407–426. DOI:
10.1145/2509136.2509555. URL: http://doi.acm.org/10.1145/2509136.2509555.

163

[4] Etienne Kneuss, Viktor Kuncak, and Philippe Suter. “Effect Analysis for Programs with Call-
backs”. In: Verified Software: Theories, Tools, Experiments - 5th International Conference, VSTTE
2013, Menlo Park, CA, USA, May 17-19, 2013, Revised Selected Papers. Ed. by Ernie Cohen and
Andrey Rybalchenko. Vol. 8164. LNCS. Springer, 2013, pp. 48–67. DOI: 10.1007/978-3-642-
54108-7_3. URL: http://dx.doi.org/10.1007/978-3-642-54108-7_3.

[5] Etienne Kneuss, Philippe Suter, and Viktor Kuncak. “Runtime Instrumentation for Precise
Flow-Sensitive Type Analysis”. In: Runtime Verification - First International Conference, RV
2010, St. Julians, Malta, November 1-4, 2010. Proceedings. Ed. by Howard Barringer et al. Vol. 6418.
LNCS. Springer, 2010, pp. 300–314. DOI: 10.1007/978- 3- 642- 16612- 9_23. URL: http:
//dx.doi.org/10.1007/978-3-642-16612-9_23.

[6] Etienne Kneuss, Philippe Suter, and Viktor Kuncak. “Phantm: PHP analyzer for type mis-
match”. In: Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010. Ed. by Gruia-Catalin Ro-
man and Kevin J. Sullivan. ACM, 2010, pp. 373–374. DOI: 10.1145/1882291.1882355. URL:
http://doi.acm.org/10.1145/1882291.1882355.

Teaching
Teaching Assistantship

Computer Language Processing (2014)
Compiler Construction (2010, 2011, 2012, 2013)
Software Analysis & Verification (2013, 2015)
Introduction à la programation (C++) (2013)
Introduction à la programation (Java) (2013)
Informatique I / II (2011)

164

