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Abstract

This thesis deals with the development of numerical methods for solving nonconvex optimisa-

tion problems by means of decomposition and continuation techniques. We first introduce a novel

decomposition algorithm based on alternating gradient projections and augmented Lagrangian re-

laxations. A proof of local convergence is given under standard assumptions. The effect of different

stopping criteria on the convergence of the augmented Lagrangian loop is investigated. As a second

step, a trust region algorithm for distributed nonlinear programs, named TRAP, is introduced. Its

salient ingredient is an alternating gradient projection for computing a set of active constraints in

a distributed manner, which is a novelty for trust region techniques. Global convergence as well

as local almost superlinear convergence are proven. The numerical performance of the algorithm

is assessed on nonconvex optimal power flow problems. The core of this thesis is the development

and analysis of an augmented Lagrangian algorithm for tracking parameter-dependent optima. De-

spite their interesting features for large-scale and distributed optimisation, augmented Lagrangian

methods have not been designed and fully analysed in a parametric setting. Therefore, we propose

a novel optimality-tracking scheme that consists of fixed number of descent steps computed on

an augmented Lagrangian subproblem and one dual update per parameter change. It is shown that

the descent steps can be performed by means of first-order as well as trust region methods. Us-

ing the Kurdyka-Lojasiewicz property, an analysis of the local convergence rate of a class of trust

region Newton methods is provided without relying on the finite detection of an optimal active-

set. This allows us to establish a contraction inequality for the parametric augmented Lagrangian

algorithm. Hence, stability of the continuation scheme can be proven under mild assumptions. The

effect of the number of primal iterations and the penalty is analysed by means of numerical ex-

amples. Finally, the efficacy of the augmented Lagrangian continuation scheme is successfully

demonstrated on three examples in the field of optimal control. The first two examples consists of

a real-time NMPC algorithm based on a multiple-shooting discretisation. In particular, it is shown

that our C++ software package is competitive with the state-of-the-art codes on NMPC problems

with long prediction horizons, and can address a more general class of real-time NMPC prob-

lems. The third case study is the distributed computation of solutions to multi-stage nonconvex
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optimal power flow problems in a real-time setting.

Keywords: Decomposition, continuation, nonconvex optimisation, parametric optimisation,

alternating minimisations, trust region methods, augmented Lagrangian methods,

Kurdyka-Lojasiewicz property, optimal control, nonlinear model predictive control.



Résumé

Cette thèse porte sur le développement de méthodes numériques basées sur des techniques de

décomposition et de continuation pour la résolution de problèmes non-convexes. En premier lieu,

nous proposons un algorithme de décomposition qui utilise des projections de gradients alternées

appliquées à des relaxations du type Lagrangien augmenté. Une preuve de convergence locale

est établie sous des conditions standards. L’effet de différents critères d’arrêt sur la convergence

de la boucle du Lagrangian augmenté est analysé. Dans un deuxième temps, un algorithme à

région de confiance est présenté pour la résolution de problèmes non-linéaires distribués. Son

ingrédient essentiel est une projection de gradient alternée pour le calcul d’un ensemble de con-

traintes actives de façon distribuée. La convergence globale et une convergence presque super-

linéaire localement sont prouvées. La performance numérique de l’algorithme est évaluée sur

des problèmes de flux de puissance optimale non-convexes. La partie centrale de cette thèse est

le développement et l’analyse d’un algorithme de Lagrangien augmenté pour le suivi d’optima

dépendant de paramètres. Malgré leur potentiel pour les problèmes d’optimisation de grande taille

ou distribués, les méthodes de Lagrangien augmenté n’ont pas été réellement étudiées dans un

cadre paramétrique. C’est pourquoi nous proposons un nouvel algorithme de continuation qui con-

siste en un nombre fixe de pas de descente sur un problème de Lagrangian augmenté, suivis d’un

pas dual par changement de paramètre. On montre que les pas de descente peuvent être effectués

au moyen de méthodes du premier ordre ou à région de confiance. Avec l’aide de l’inégalité

de Kurdyka-Lojasiewicz, la convergence locale d’une classe de méthodes à région de confiance

est analysée sans recourir au fait qu’un ensemble de contraintes actives optimal a été identifié

après un nombre fini d’itérations. Ce résultat nous permet d’établir une inégalité de contraction

locale pour l’algorithme de continuation. De ce fait, sa stabilité peut être prouvée sous des condi-

tions raisonnables. L’effet du nombre d’itérations primales et de la pénalité est analysé au travers

d’exemples numériques. Finalement, l’efficacité de notre algorithme est démontrée au moyen de

trois exemples du domaine de la commande optimale. Les deux premiers exemples sont un al-

gorithme de NMPC temps-réel basé sur une discrétisation à tirs multiples. On montre que notre

code C++ est compétitif avec les méthodes de NMPC temps-réel existantes pour des horizons de
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prédiction longs, et peut être appliqué à une plus grande classe de problèmes. Le troisième exemple

est la résolution distribuée de problèmes de flux de puissance optimal non-convexes sur un horizon

de prédiction dans un contexte temps-réel.

Mots-clés: Décomposition, continuation, optimisation non-convexe, optimisation paramétrique,

minimisations alternées, méthodes à région de confiance, méthodes de Lagrangien augmenté,

propriété de Kurdyka-Lojasiewicz, commande optimale, commande prédictive non-linéaire.
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Chapter 1

Introduction

We begin with a motivational chapter that previews a few questions and challenges that will arise

later in this thesis.

1.1 Overview and motivation

Parametric problems are ubiquitous in optimisation and engineering. Indeed, optimisation prob-

lems are frequently constructed from a mathematical model of a real-world set-up and contain

quantities that are likely to vary independently from the problem formulation. These are called pa-

rameters. For instance, an economic equilibrium can be represented as a solution of a parametric

utility maximisation program with time-varying initial endowments at the market agents [50]. In

the field of power systems, the well-known Optimal Power Flow (OPF) problem has a fixed struc-

ture defined by the network topology and data with a varying power demand [93]. In signal pro-

cessing, the estimation of a time-varying signal from a sensor network can be cast as a distributed

a posteriori probability maximisation problem, in which the sensor measurements enter as param-

eters [95]. A case in point is also the Optimal Control Problem (OCP), which consists in deriving

a control input to a physical system that minimises a user-defined cost while satisfying the model’s

dynamics as well as state or input constraints. An OCP is typically parametric in the initial state of

the system or reference trajectory. Moreover, the quality of the control input depends very much

on the accuracy of the data provided to the optimal control problem. This thesis focuses on a par-

ticular family of optimal control problems, namely Nonlinear Model Predictive Control (NMPC)

problems [113]. In this setting, a dynamical system is controlled by repeatedly solving an OCP

at regular time instants as the system’s state changes. The NMPC problem contains a prediction

of the future system’s behaviour based on a dynamical model. Hence, an relevant question is the

following: under which conditions can an exact solution of the NMPC problem at a given time

instant be considered as an approximate solution of the NMPC problems at the next time instants ?
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This is especially important if one intends to develop efficient computational methods for solving

the NMPC problem in real-time.

Theoretical properties regarding the sensitivity of the solution of a Nonlinear Program (NLP)

to small changes in the parameters have been established by means of the fixed point theorem for

smooth as well as non-smooth problems [52, 137]. From an algorithmic perspective, a fundamen-

tal question in parametric optimisation, to which most of the problems mentioned in the previous

paragraph can be reduced, is how to track the solution trajectory x∗ (s) ∈ Rn of a parametric

generalised equation

0 ∈ f (x, s) + F (x) ,

where s ∈ Rp is a parameter, f : Rn×Rp → Rn is a function and F is a point-to-set map from Rn to

subsets of Rn. Tracking refers to deriving an approximate solution x̄ (s) that remains close to a solu-

tion x∗ (s) as the parameter s varies. A general concern is that the approximate solution x̄ (s) should

be generated efficiently. Various optimality-tracking techniques have been developed and are re-

ferred to as continuation, homotopy or path-following methods. The most well-known strategy is

the Euler-Newton continuation method for solving parametric nonlinear equations [3], which has

been extended to variational inequalities by [51] and achieves fourth-order accuracy in the parame-

ter difference. In the context of NMPC with least-squares objective, a path-following technique has

been proposed and analysed by [46]. It consists in solving a convex Quadratic Programming (QP)

problem per parameter update. Convexity is enforced via a Gauss-Newton approximation of the

hessian, which leads to local linear convergence on nonlinear least-squares problems [119]. Thus,

the method of [46] seems to be limited to least-squares NMPC programs, as it is difficult to enforce

convexity of the QP objective in more general instances of parametric programs.

Due to their low computational footprint, continuation methods are tailored to real-time ap-

plications [91]. Local nonlinear optimisation techniques generally require an infinite number of

iterations to reach full feasibility, and are computationally expensive. On the contrary, homotopy

methods reduce to solving a convex QP [46] or a Linear Complementarity Problem (LCP) per pa-

rameter change [51, 157]. If the problem is small, it is practically reasonable to do so. However, in

the case of large- or huge-scale programs, one may be interested in truncating the iterative process

involved in solving the subproblem at an early stage in order to satisfy hard time constraints. This

may also be required by a particular small-scale application, such as embedded optimisation for

instance [134]. Another important aspect in large-scale optimisation is parallelism, which aims at

reducing the computational time [161]. Except in very specific cases [161], parallelising or dis-

tributing the computations involved in solving a optimisation problems is generally performed

by means of decomposition methods [14, 23, 43, 61]. These techniques proceed by partitioning

17



CHAPTER 1. INTRODUCTION

a large-scale NLP into small subproblems that can be solved separately, and by iteratively co-

ordinating the subproblems’ solutions. Distributed optimisation methods fall under the umbrella

of Lagrangian decomposition, which hinges upon convexity [17]. This limitation is due to the fact

that Lagrangian decomposition consists in solving the dual of an NLP. It is well-known that a

duality gap may appear in the presence of nonconvexity [138]. Several nonconvex decomposition

strategies have been proposed to address this issue [79], but they all seem to be limited to specific

problem instances, suffer from slow local convergence and have not been analysed in a dynamic

setting. In conclusion, nonconvexity remains a challenge from the point of view of parametric as

well as distributed optimisation.

1.2 Contributions of this thesis

This thesis attempts to bridge the gap between the three concepts discussed in the previous Section,

namely continuation, decomposition and nonconvexity. It is structured as follows:

• Chapter 2: A novel nonconvex decomposition scheme is proposed and analysed. It com-

bines an augmented Lagrangian coordination with a decomposition phase based on alter-

nating gradient projections. To the author’s knowledge, such a decomposition scheme has

not appeared in the literature with this level of generality. A proof of local convergence is

derived under standard regularity and optimality conditions. Moreover, the effect of differ-

ent stopping criteria on the augmented Lagrangian subproblem is investigated. As a second

step, a novel alternating trust region algorithm, called TRAP (Trust Region with Alternat-

ing Projections) is presented. By using alternating projected gradients as activity detectors

in the Cauchy phase of a trust region method, we construct a distributed nonconvex al-

gorithm with local almost superlinear convergence. The efficacy of the method is demon-

strated by solving augmented Lagrangian subproblems constructed from real-world OPF

problems. This chapter is based on the following papers that were written in collaboration

with Colin N. Jones:

– Hours, J.-H. and Jones, C.N. An alternating trust region algorithm for distributed lin-

early constrained nonlinear programs, application to the AC optimal power flow. Jour-

nal of Optimization Theory and Applications, 2015. Accepted

– Hours, J.-H. and Jones, C.N. An augmented Lagrangian coordination-decomposition

algorithm for solving distributed nonconvex programs. In Proceedings of the 2014

American Control Conference, pages 4312–4317, Portland, Oregon, USA, June 2014
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• Chapter 3: A distributed continuation algorithm applicable to nonconvex programs is pre-

sented. It consists of a fixed number of steps of a descent method applied to a parametric

augmented Lagrangian subproblem, and a dual update per parameter change. We establish

a local contraction inequality and prove stability of the continuation scheme under mild as-

sumptions. Our analysis builds upon strong regularity for quantifying sensitivity to parame-

ter changes, and the Kurdyka-Lojasiewicz inequality to derive local convergence rates of the

descent methods. Four different descent schemes are investigated. Depending of the point

of view one may say that there are two first-order methods and two active-set strategies, or

that there are two distributed techniques and two centralised schemes. A key novelty of this

chapter is the derivation of a local convergence rate for trust region Newton methods that

does not rely on a finite activity detection property. This is relevant in a parametric setting,

as one cannot reasonably assume that the active-set at a warm-starting point is equal to the

active-set at the critical point, to which the iterates converge. Finally, a sensitivity analy-

sis with respect to the magnitude of the parameter difference, the number of descent steps

and the augmented Lagrangian penalty is presented. This chapter is based on the following

papers that were written in collaboration with Colin N. Jones:

– Hours, J.-H. and Jones, C.N. A parametric nonconvex decomposition algorithm for

real-time and distributed NMPC. IEEE Transactions on Automatic Control, 61(2),

February 2016. To appear

– Hours, J.-H. and Jones, C.N. A parametric multi-convex technique with application

to real-time NMPC. In Proceedings of the 53rd IEEE Conference on Decision and

Control, pages 5052–5057, Los Angeles, CA, USA, December 2014

• Chapter 4: Two applications of the nonconvex continuation strategy introduced in Chapter 3

in optimal control are presented. The first example is a real-time NMPC algorithm based on

a multiple-shooting discretisation and a trust region algorithm from Chapter 3. A C++ soft-

ware package has been implemented and is successfully demonstrated on two challenging

nonlinear control problems, namely a tracking NMPC example and an economic NMPC

problem. The second example is a real-world multi-stage OPF problem. It is demonstrated

that the pTRAP algorithm introduced in Chapter 3 has good scalability and warm-starting

properties. Some parts of this chapter have been submitted for publication.

– Hours, J.-H. and Shukla, H. and Jones, C.N. A parametric augmented Lagrangian

algorithm for real-time economic NMPC. 2015. Submitted to the 2016 European

Control Conference
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Finally, two topics, which are related to NMPC and parametric optimisation but not directly

linked to the core of this thesis, are presented.

• Appendix B: A novel NMPC scheme to shape the output spectrum of nonlinear systems is

presented and its theoretical properties are investigated. This chapter is based on the follow-

ing papers that were written in collaboration with Ravi Gondhalekar, Melanie N. Zeilinger,

Thomas Besselmann, Mehmet Mercangöz and Colin N. Jones:

– Hours, J.-H. and Zeilinger, M.N. and Gondhalekar, R. and Jones, C.N. Constrained

spectrum control. IEEE Transactions on Automatic Control, 60(7):1969–1974, July

2015

– Hours, J.-H. and Zeilinger, M.N. and Gondhalekar, R. and Jones, C.N. Spectrogram-

MPC: Enforcing hard constraints on system’s output spectra. In Proceedings of the

American Control Conference, pages 2010–2017, Montreal, CA, 2012

– Gondhalekar, R. and Jones, C.N. and Besselmann, T. and Hours, J.-H. and Mercangöz,

M. Constrained spectrum control using MPC. In Proceedings of the IEEE Conference

on Decision and Control, pages 1219–1226, Orlando, USA, 2011

• Appendix C: This chapter is based on the following papers that were written in collabora-

tion with Stefan Schorsch, Thomas Vetter, Marco Mazzotti and Colin N. Jones:

– Hours, J.-H. and Schorsch, S. and Jones, C.N. Parametric polytope reconstruction,

an application to crystal shape estimation. IEEE Transactions on Image Processing,

23(10):4474–4485, October 2014

– Schorsch, S. and Hours, J.-H. and Vetter, T. and Mazzotti, M. and Jones, C.N. An

optimization-based approach to extract faceted crystal shapes from stereoscopic im-

ages. Computers and Chemical Engineering, 75:171–183, 2015
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1.3 Background

We briefly recall some basic notions in variational analysis and optimisation.

1.3.1 Normal and tangent cones

The euclidean distance of a point x ∈ Rn to a set Σ in Rn is defined by

d (x,Σ) := inf
y∈Σ

‖x− y‖2 .

Given a closed and convex set Ω, the euclidean projection operator onto Ω is denoted by PΩ and is

defined by

PΩ (x) := argmin
y∈Ω

‖x− y‖2 ,

where ‖·‖2 is the euclidean norm associated with the inner product 〈·, ·〉. The indicator function of

Ω is defined by

ιΩ (x) :=

⎧⎨⎩0 , if x ∈ Ω ,

+∞ , if x /∈ Ω .
(1.1)

We define the normal cone to Ω at x ∈ Ω as

NΩ (x) :=
{
v ∈ Rd : ∀y ∈ Ω, 〈v, y − x〉 ≤ 0

}
. (1.2)

Definition 1.1 (Sub-differential of indicator function [138]). Given a convex set Ω, for all x ∈ Ω,

∂ιΩ (x) = NΩ (x) .

The tangent cone to Ω at x is defined as the closure of feasible directions at x [138]. Both

NΩ (x) and TΩ (x) are closed and convex cones. As Ω is convex, for all x ∈ Ω, NΩ (x) and TΩ (x)

are polar to each other [138].

Theorem 1.1 (Moreau’s decomposition [117]). Let K be a closed convex cone in Rd and K◦ its

polar cone. For all x, y, z ∈ Rd, the following two statements are equivalent:

1. z = x+ y with x ∈ K, y ∈ K◦ and 〈x, y〉 = 0,

2. x = PK (z) and y = PK◦ (z).

21



CHAPTER 1. INTRODUCTION

When the set Ω is nonconvex, the normal cone can still be defined, but some modifications are

needed in comparison to the convex case.

Definition 1.2 (Definition 6.3 in [138]). Let x ∈ Ω. The regular normal cone to Ω at x is the set

N̂Ω (x) := {v ∈ Rn : ∀y ∈ Ω, 〈v, y − x〉 ≤ o (‖y − x‖2)} .

The normal cone to Ω at x is the set of vectors v ∈ Rn such that there exists a sequence {xn} ⊂ Ω

converging to x and a sequence {vn} that converges to v, such that vn ∈ N̂Ω (xn).

All sets that appear in the remainder are assumed to be Clarke regular, that is

N̂Ω (x) = NΩ (x) ,

for all x ∈ Ω. It is worth noting that the definition of the normal cone 1.2 and the definition in

Lemma 1.2 coincide when the set Ω is convex.

The box-shaped set {x ∈ Rn : ∀i ∈ {1, . . . , n} , li ≤ xi ≤ ui} is denoted by B (l, u). For x ∈
Rn and r > 0, the open ball of radius r centered around x is denoted by B (x, r). Given x ∈ Ω,

where the set Ω is defined as

Ω := {x ∈ Rn : g1 (x) ≤ 0, . . . , gm (x) ≤ 0} ,

with the functions gj being continuous, the set of active constraints at x is

AΩ (x) := {j ∈ {1, . . . ,m} : gj (x) = 0} .

1.3.2 Differentiable functions, critical points and descent Lemma

Given a differentiable function f of several variables x1, . . . , xn, its gradient with respect to vari-

able xi is denoted by ∇if or ∇xif without distinction.

Lemma 1.1 (Critical point). Let f be a proper lower semicontinuous function. A necessary condi-

tion for x∗ to be a minimiser of f is that

0 ∈ ∂f (x∗) , (1.3)

where ∂f (x∗) is the sub-differential of f at x∗ [138].

Points satisfying (1.3) are called critical points. A critical point x∗ of the function f + ιΩ with

22



CHAPTER 1. INTRODUCTION

f differentiable, is said to be non-degenerate if

−∇f (x∗) ∈ ri (NΩ (x∗)) ,

where given a set S ⊆ Rn, ri (S) is its relative interior, which is defined as the interior of S within

its affine hull.

Lemma 1.2 (Descent lemma [16]). Let f : Rn → R a continuously differentiable function such

that its gradient ∇f is �L-Lipschitz continuous. For all x, y ∈ Rn,

f (y) ≤ f (x) + 〈∇f (x) , y − x〉+ �L
2
‖y − x‖22 .

Given a polynomial function f , its degree is denoted by deg (f). A semi-algebraic function is

a function whose graph can be expressed as a union of intersections of level sets of polynomials.

1.3.3 Convergent sequences

A sequence
{
xl
}

converges to x∗ at a Q-linear rate � ∈ ]0, 1[ if, for l large enough,∥∥xl+1 − x∗
∥∥
2

‖xl − x∗‖2
≤ � .

The convergence rate is said to be Q-superlinear if the above ratio tends to zero as l goes to infinity.

1.3.4 Matrix notation

Given a matrix M ∈ Rm×n, its (i, j) element is denoted by Mi,j .

1.3.5 Fundamental results

The following Lemma is a reformulation of Theorem 6.14 in [138].

Lemma 1.3 (Expression of a normal cone under constraint qualification). Let

C = {x ∈ X : F (x) = 0} ,

with X a closed set in Rn and F a continuously differentiable mapping from Rn to Rm, written as

F (x) = (f1 (x) , . . . , fm (x))� .
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Given x̄ ∈ C, if the only vector v ∈ Rm such that

−
m∑
i=1

vi∇fi (x̄) ∈ NX (x̄)

is 0 and if X is regular at x̄, then the normal cone to C at x̄ is

NC (x̄) =

{
w +

m∑
i=1

νi∇fi (x̄) : w ∈ NX (x̄) , ν ∈ Rm
}

.

The following Lemma is particularly useful in the analysis of augmented Lagrangian algo-

rithms. Its proof can be found in [135] for instance.

Lemma 1.4 (Debreu Lemma). Let H denote a symmetric n×n matrix, and let J denote an m×n

matrix. The matrix H is positive definite on the null-space of J if and only if there exists a positive

�̄ such that for all � > �̄, the matrix H + �J�J is positive definite.

The following property, which characterises a generalised equation, plays an important role in

the thesis.

Definition 1.3 (Strong regularity of a generalised equation [137]). Let Ω be a closed and convex

set in Rn and f : Rn → Rn a differentiable mapping. The generalised equation 0 ∈ f (x)+NΩ (x)

is said to be strongly regular at a solution x∗ ∈ Ω if there exists radii η > 0 and κ > 0 such that

for all r ∈ B (0, η), there exits a unique xr ∈ B (x∗, κ) such that

r ∈ f (x∗) +∇f (x∗) (xr − x∗) +NΩ (xr) ,

and the inverse mapping r 
→ xr from B (0, η) to B (x∗, κ) is Lipschitz continuous.

The strong regularity property 1.3 implies the following Theorem, which can be regarded as

a version of the implicit function theorem for generalised equations. Its proof, which is given

in [137], relies on a fixed point argument, like the implicit function theorem.

Theorem 1.2. Let Ω be a closed and convex set in Rn and f : Rn × Rp → Rn be continuously

differentiable in both variables. Given s0 ∈ Rp, assume that x0 is a solution of the parametric

generalised equation

0 ∈ f (x, s0) +NΩ (x) . (1.4)

If the generalised equation (1.4) is strongly regular at x0 with Lipschitz constant �0, then for any

ε > 0, there exists δ > 0 and κ > 0 such that for all s ∈ B (s0, κ), there exists a unique x (s) in
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B (x0, δ) such that

0 ∈ f (x (s) , s) +NΩ (x (s)) .

Moreover, given s1, s2 ∈ B (s0, κ), one has

‖x (s1)− x (s2)‖2 ≤ (�0 + ε) ‖f (x (s2) , s1)− f (x (s2) , s2)‖2 .

1.3.6 Dependency graph, colouring and parallel updates

An iterative method, which generates a sequence
{
xl
}
⊂ Rn can be represented by

xl+1 = F
(
xl
)
, (1.5)

where F is a mapping from Rn to Rn. Let xi denote the ith component of the vector x and Fi

denote the ith component of the mapping F . The execution of an iteration (1.5) can be represented

by a directed graph G = (N , E), which is called the dependency graph of F . The set of nodes

N = {1, . . . , n} corresponds to the components of x. Given two distinct nodes i and j, (i, j) is

an arc of the dependency graph G if and only if the component Fj depends on component xi. An

important question in distributed optimisation is whether it is possible to maximise the number

of parallel updates in (1.5). It can be shown that this is actually equivalent to finding an optimal

colouring of the dependency graph G [17].

Lemma 1.5 (Proposition 2.5 in [17]). Assume that the mapping F and the dependency graph G
correspond to a Gauss-Seidel sweep. The following two statements are equivalent:

• There exists an ordering of the variables x1, . . . , xn such that the update (1.5) can be com-

puted in K parallel steps.

• There exists a colouring of the dependency graph G that uses K colours, and with the prop-

erty that there exists no positive cycle with all nodes in the cycle having the same colour.

It is worth noting that the optimal colouring problem is NP-complete [68]. However, many

problems are structured and it is then possible to find an optimal colouring by inspection, as shown

later in the thesis.
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Decomposition Strategies for Nonlinear Programs

Minimising a separable, smooth and nonconvex function subject to partially separable equality

constraints [73, 74] and separable constraints

minimise
x1,...,xN

N∑
i=1

fi (xi)

s. t. C (x1, . . . , xN) = 0

x1 ∈ X1, . . . , xN ∈ XN ,

appears in many engineering problems such as Distributed Nonlinear Model Predictive Control

(DNMPC) [118], power systems [100] and wireless networking [29]. For such problems involving

a large number of agents, which result in large-scale nonconvex Nonlinear Programs (NLP), it may

be desirable to perform computations in a distributed manner, meaning that all operations are not

carried out on one single node, but on multiple nodes spread over a network and that informa-

tion is exchanged during the optimisation process. Such a strategy may prove useful to reduce the

computational burden in the case of extremely large-scale problems. Moreover, autonomy of the

agents may be hampered by a purely centralised algorithm. Case in points are cooperative tracking

using DNMPC [86] or the Optimal Power Flow problem (OPF) over a distribution network [64],

into which generating entities may be plugged or unplugged. Moreover, it has been shown in a

number of studies that distributing and parallelising computations can lead to significant speed-up

in solving large-scale NLPs [161]. Splitting operations can be done on distributed memory paral-

lel environments such as clusters [161], or on parallel computing architectures such as Graphical

Processing Units (GPU) [56].

Our objective is to develop nonlinear programming methods in which most of the computations

can be distributed and even parallelised. Some of the key features of a distributed optimisation

strategy are the following:
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(i) Distributed memory. Vectors and matrices involved in the optimisation process are stored in

different physical memories on different nodes. This requirement makes direct linear algebra

methods more difficult to apply, as they generally require the assembly of matrices on a

central unit.

(ii) Concurrency. A high level of parallel computations is obtained at every iteration.

(iii) Cheap exchange. Global communications of agents with a central node are cheap (scalars). More

costly communications (vectors) remain local between neighbouring agents. In general, the

amount of communication should be kept as low as possible. It is already clear that globali-

sation strategies based on line-search do not fit with the distributed framework [56], as these

entail evaluating a ‘central’ merit function multiple times per iteration, thus significantly

increasing communications.

(iv) Inexactness. Convergence is ‘robust’ to inexact solutions of the subproblems, since it may

be necessary to truncate the number of sub-iterations due to communication costs.

(v) Fast convergence. The sequence of iterates converges at a fast (at least linear) local rate. Slow

convergence generally results in a prohibitively high number of communications.

As we are interested in applications such as DNMPC, which require solving distributed parametric

NLPs within a limited amount of time [86], a desirable feature of our algorithm should also be

(vi) Warm-start and activity detection. The algorithm detects the optimal active-set quickly and

enables warm-starting.

Whereas a fair number of well-established algorithms exist for solving distributed convex NLPs [17],

there is, as yet, no consensus around a set of practical methods applicable to distributed nonconvex

programs. Some work [161] exists on the parallelisation of linear algebra operations involved in

solving nonconvex NLPs with IPOPT [152], but the approach is limited to very specific problem

structures and the globalisation phase of IPOPT (filter line-search) is not suitable for fully dis-

tributed implementations (requirements (iii), (iv) and (vi) are not met). Among existing strategies

capable of addressing a broader class of distributed nonconvex programs, one can make a clear dis-

tinction between Sequential Convex Programming (SCP) approaches and augmented Lagrangian

techniques.

An SCP method consists in iteratively solving distributed convex NLPs, which are local ap-

proximations of the original nonconvex NLP. To date, some of the most efficient algorithms for

solving distributed convex NLPs combine dual decomposition with smoothing techniques [118,

149]. On the contrary, an augmented Lagrangian method aims at decomposing a nonconvex aux-

iliary problem inside an augmented Lagrangian loop [30, 79, 84]. While convergence guarantees
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can be derived in both frameworks, computational drawbacks also exist on both sides. For in-

stance, it is not clear how to preserve the convergence properties of SCP schemes when every

subproblem is solved to a low level of accuracy. Hence, (iv) is not satisfied immediately. Nev-

ertheless, for some recent work in this direction, one may refer to [147]. The convergence rate

of the algorithm analysed in [147] is sublinear, thus not fulfilling (v). On the contrary, the in-

exactness issue can be easily handled inside an augmented Lagrangian algorithm, as global and

fast local convergence is guaranteed even though the subproblems are not solved to a high level

of accuracy [34, 57]. However, in practice, poor initial estimates of the dual variables can drive

the iterative process to infeasible points. Moreover, it is still not clear how the primal nonconvex

subproblems should be decomposed and solved efficiently in a distributed context. The quadratic

penalty term of an augmented Lagrangian does not allow for the same level of parallelism as a

(convex) dual decomposition. Thus, requirement (ii) is not completely satisfied. To address this

issue, we propose applying Proximal Alternating Linearised Minimisations (PALM) [21] to solve

the auxiliary augmented Lagrangian subproblems [84, 86]. The resulting algorithm inherits the

slow convergence properties of proximal gradient methods and does not readily allow for precon-

ditioning. In this chapter, a novel mechanism for handling the augmented Lagrangian subproblems

in a more efficient manner is proposed and analysed. The key idea is to use alternating gradient

projections to compute a Cauchy point in a trust region Newton method [36].

When looking at practical trust region methods for solving bound-constrained problems [158],

one may notice that the safeguarded Conjugate Gradient (sCG) algorithm is well-suited to dis-

tributed implementations, as the main computational tasks are structured matrix-vector and vector-

vector multiplications, which do not require the assembly of a matrix on a central node. Moreover,

the global communications involved in an sCG algorithm are cheap. Thus, sCG satisfies require-

ments (i), (ii) and (iii). The implementation of CG on distributed architectures has been extensively

explored [45, 56, 151]. Furthermore, a trust region update requires only one centralised objective

evaluation per iteration. From a computational perspective, it is thus comparable to a dual update,

which requires evaluating the constraints functional and is ubiquitous in distributed optimisation

algorithms. However, computing the Cauchy point in a trust region loop is generally done by means

of a projected line-search [158] or sequential search based on a sorting algorithm [32]. Whereas it

is broadly admitted that the Cauchy point computation is cheap, this operation requires a signif-

icant amount of global communications in distributed memory parallel environments, and is thus

hardly amenable to such applications [56]. This hampers the implementability of trust region meth-

ods with good convergence guarantees on distributed computing platforms, whereas many parts of

the algorithm are attractive for such implementations. The aim of this chapter is to bridge the gap

by proposing a novel way of computing the Cauchy point that is more tailored to the distributed

framework. Coordinate gradient descent methods such as PALM, are known to be parallelisable
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for some partial separability structures [17]. Moreover, in practice, the number of backtracking

iterations necessary to select a block step-size, can be bounded, making the approach suitable

for ‘Same Instruction Multiple Data’ architectures. Therefore, we propose using one sweep of

block-coordinate gradient descent to compute a Cauchy point. As shown in paragraph 2.2.2, such

a strategy turns out to be efficient at identifying the optimal active-set. It can then be accelerated

by means of an inexact Newton method. As our algorithm differs from the usual trust region New-

ton method, we provide a detailed convergence analysis in paragraph 2.2.2. Finally, one should

mention a recent paper [154], in which a trust region method is combined with alternating min-

imisations, namely the Alternating Directions Method of Multipliers (ADMM) [17], but in a very

different way from the strategy described next. The approach of [154] relies on a filter [59] and

contains centralised safeguarding mechanisms in addition to the trust region update. Moreover, a

local convergence rate is not established in [154].
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2.1 A Method of Multipliers with Alternating Proximal Gradi-
ents

In this section, we propose a first-order strategy to decompose the augmented Lagrangian sub-

problem resulting from the relaxation of coupling constraints. Taking inspiration from ADMM,

we suggest using an alternating direction method to compute an approximate first-order critical

point of the augmented Lagrangian subproblem. Alternating direction methods have recently ex-

perienced a revival of interest with the work of [11, 21]. Our strategy is related to the PALM

algorithm presented in [21]. However, in its current formulation, PALM requires knowledge of

block-wise Lipschitz constants, which makes it unpractical for many problems of interest. There-

fore, we propose resorting to a block-coordinate backtracking procedure. Similarly to PALM [21],

the salient ingredient of our algorithm is the projection onto nonconvex sets, which can be com-

puted in closed form in several cases. To make this effective, the separable nonconvex constraints

should be kept as such in the augmented Lagrangian subproblem. From a theoretical perspective,

this creates two challenges.

First, the convergence properties of the augmented Lagrangian dual loop are unclear when non-

convex constraints appear in the subproblems. Most of the existing work on augmented Lagrangian

methods for nonlinear programs deals with convex or linear constraint sets [34, 31]. To the author’s

knowledge, only one approach in the literature is applicable with nonconvex constraints in the sub-

problem [8]. Its advantage and limitations are discussed next.

Secondly, alternating minimisations may fail to converge in a nonconvex setting, as a zigzag-

ging behaviour can be observed in some cases [123]. However, as shown later, for guaranteeing

convergence of the outer loop, subsequence convergence of the inner iterates to a first-order critical

point is sufficient. Thus, our algorithm borrows the proximal regularisation mechanism of [11, 21]

in order to ensure that all limit points of the primal sequence are critical points.

We consider the following class of nonconvex programs

minimise
z1,z2

J (z1, z2) (2.1)

s. t. C (z1, z2) = 0

G1 (z1) = 0, G2 (z2) = 0

z1 ∈ Ω1, z2 ∈ Ω2 ,

where z1 ∈ Rn1 , z2 ∈ Rn2 . We define Z1, Z2, subsets of Rn1 and Rn2 respectively, and Z subset of

30



CHAPTER 2. DECOMPOSITION STRATEGIES FOR NONLINEAR PROGRAMS

Rn, as follows

Z1 := {z1 ∈ Ω1 : G1 (z1) = 0} , Z2 := {z2 ∈ Ω2 : G2 (z2) = 0} , Z := Z1 ×Z2 . (2.2)

The nonlinear program (2.1) is written in terms of two blocks of variables z1 and z2 only. How-

ever, the algorithm and analysis that follow readily extend to multiple blocks of variables. In a

distributed framework, the equality constraint C (z1, z2) = 0 models a coupling between agents

associated to variables z1 and z2. The separable equality constraints G1 (z1) = 0 and G2 (z2) = 0

may model discretised dynamics of each agent, for instance.

Assumption 2.1 (Polyhedral constraints). The sets Ω1 and Ω2 are non-empty and polyhedral. More

precisely, for every i ∈ {1, 2}, there exists a matrix Hi ∈ Rmi×ni and a vector ωi ∈ Rmi such that

Ωi = {zi ∈ Rni : Hizi ≤ ωi} , (2.3)

with mi ≥ 1.

After stating the augmented Lagrangian algorithm, we provide a proof of local convergence

to a KKT point under standard assumptions (Theorem 2.1). Similarly to the mechanism of [16],

we show that the augmented Lagrangian subproblem has a unique solution under some condi-

tions on the penalty and the Lagrange multiplier. For our specific setting, strong regularity [137]

is needed. The main difference compared to the existing proofs is that the nonlinear constraints in

the subproblem need special care. Then, the primal alternating minimizations algorithm is intro-

duced. It is proven that all limit points of the sequence generated by this algorithm are critical point

of the augmented Lagrangian, which is sufficient to ensure convergence of the outer augmented

Lagrangian loop.

2.1.1 Augmented Lagrangian with relaxation of coupling constraints

In this paragraph, we propose and analyse a special form of the method of multipliers for comput-

ing first-order critical points of the following nonconvex program

minimise
z

J (z) (2.4)

s. t. C (z) = 0

G (z) = 0

z ∈ Ω ,
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where z ∈ Rn, J : Rn → R, C : Rn → Rp and G : Rn → Rq with n, p, q ≥ 1. Problem (2.4)

corresponds to a reformulation of NLP (2.1) with z = (z�
1 , z

�
2 )

�
, n = n1 + n2 and

C (z) = C (z1, z2) , G (z) =
(
G1 (z1)

� , G2 (z2)
�)� , Ω = Ω1 × Ω2 .

From Assumption 2.11, the constraint set Ω can be written

Ω = {z ∈ Rn : Hz ≤ ω} ,

with

H :=
[
H�

1 , H
�
2

]�
, ω :=

[
ω�
1 , ω

�
2

]�
. (2.5)

The row vector i of matrix H is denoted by hi ∈ Rn.

2.1.1.1 Algorithm description

In order to compute a critical point of NLP (2.4), we propose a method of multipliers with relax-

ation of the equality constraint C (z) = 0, which models a coupling between variables z1 and z2,

as shown in (2.1). At every iteration of the proposed procedure, the main computational task is the

derivation of an approximate critical point of the partial augmented Lagrangian subproblem

minimise
z∈Ω

L� (z, μ) (2.6)

s. t. G (z) = 0 ,

with the partially augmented Lagrangian function defined as

L� (z, μ) := J (z) +
〈(
μ+

�

2
C (z)

)
, C (z)

〉
, (2.7)

where � > 0 is a penalty coefficient. In NLP (2.6), only the coupling constraint C (z) is pe-

nalised. The polyhedral constraint z ∈ Ω and equality constraint G (z) = 0 are kept as such in the

augmented Lagrangian subproblem (2.7). This algorithmic choice is relevant, as in a large num-

ber of practical cases of interest, the augmented Lagrangian subproblem (2.6) is easier to solve

than NLP (2.4). In particular, in this Section, we focus on the particular case in which the prox-

imal operator of the indicator function of the set Z defined in (2.2) is computationally cheap to

evaluate. Such ‘prox-friendly’ examples are the following:

• Box constraints, Ω = {z ∈ Rn | z ≤ z ≤ z} and G = 0.
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• Binary constraints, Ω = Rn and

G (z) =

⎛⎜⎜⎝
z1 (1− z1)

...

zn (1− zn)

⎞⎟⎟⎠
• Euclidean norm constraints, Ω = Rn and

G (z) =

(
‖z1‖22 −R1

‖z2‖22 −R2

)
, (2.8)

with R1, R2 > 0.

It worth noting that the last two instances of ‘prox-friendly’ operators are nonconvex. We intend to

solve the augmented Lagrangian subproblem by means of a decomposition approach, as detailed

later in paragraph 2.1.2.

The phases of our partial augmented Lagrangian method are stated in Algorithm 1 below.

Algorithm 1 Method of multipliers with partial constraint relaxation

1: Input: initial guess
(
(z0)

�
, (μ0)

�)� ∈ Rn+p,
2: initial tolerance on optimality of augmented Lagrangian subproblem ε(0) > 0,

3: multiplicative coefficients β� > 1 and βε < 1, initial penalty �(0) > 1.

4: Initialization: z ← z0, μ← μ0, �← �(0), ε← ε(0), k ← 0.

5: Find z ∈ Z such that d (0,∇L� (z, μ) +NZ (z)) ≤ ε
6: Update multiplier estimate μ← μ+ �C (z) and penalty coefficient �← β��
7: Shrink tolerance ε← βεε
8: Set k ← k + 1, go to 5.

The procedure starts from a primal-dual initial guess
(
(z0)

�
, (μ0)

�)�
, an initial tolerance ε(0)

on the satisfaction of the optimality conditions in the augmented Lagrangian subproblem (2.6) and

an initial penalty �(0). Given a positive tolerance ε, we define an ε-critical point of the function

L� (·, μ) + ιZ , (2.9)

where the indicator function ιZ is defined in (1.1), by

d (0,∇L� (z, μ) +NZ (z)) ≤ ε . (2.10)

At every iteration of Algorithm 1 (line 5), an ε-critical point of the function (2.9) is computed by

means of an iterative procedure, which is the alternating minimisation technique later described
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in paragraph 2.1.2. Once the stopping criterion (2.10) is satisfied, the multiplier estimate μ is up-

dated in a first-order fashion, the penalty coefficient � is increased and the criticality tolerance ε is

shrunk. In practice, the method proceeds until a specified level of feasibility, measured in terms of

the euclidean norm, of the coupling function C is obtained. In the next paragraph, under standard

assumptions, we show that the iterative procedure converges to a KKT point of the nonconvex

program (2.1), and thus Algorithm 1 terminates.

2.1.1.2 Convergence analysis

Under standard assumptions on the nonconvex programs (2.4) and (2.6), we prove local con-

vergence of Algorithm 1 to a first-order critical point of (2.4). Our analysis is along the lines

of [16]. However, the mechanism for handling inequality constraints differs from [16], in which

squared slack variables are introduced. In [8], a proof of global convergence of a method of mul-

tipliers close to Algorithm 1 is given under weak constraint qualification. Yet, the updates of the

Lagrange multipliers estimates and the penalty coefficient differ from Algorithm 1. In particular,

the dual estimates are projected onto a sufficently large box at every outer iteration. This ensures

boundedness of the sequence of multipliers. Instead, we assume that the sequence of dual estimates

is bounded. In fact, one should point out that the projection mechanism of [8] could be directly

applied in Algorithm 1. Moreover, the analysis of [8] relies on the fact that the augmented La-

grangian subproblem has an approximate KKT point for all dual iterates and penalty parameters,

which is case dependent. If this is not the case, the algorithm proposed in [8] is aborted. In fact, it is

worth noting that without this tweak, global convergence could not be guaranteed. In conclusion,

Algorithm 1 should be turned into Algorithm 3.1 in [8] in order to obtain theoretical guarantees

of global convergence. However, our local analysis of Algorithm 1 brings up important concepts,

such as strong regularity [137], which is a cornerstone of Chapter 3. Therefore, we have chosen

not to modify Algorithm 1 using the tweaks of [8].

We first require the problem functions to be sufficiently smooth.

Assumption 2.2 (Smoothness). The functions J , C and G are twice continuously differentiable in

an open set containing Ω.

The Lagrangian of NLP (2.4) is a twice continuously differentiable function L : Rn × Rp ×
Rq × Rm+ → R defined as

L (z, μ, ν, λ) := J (z) + 〈μ,C (z)〉+ 〈ν,G (z)〉+ 〈λ, (Hz − h)〉 .

Under the Linear Independence Constraint Qualification (LICQ), it can be proven that a first-order

critical point of (2.4) satisfies the well-known Karush-Kuhn-Tucker (KKT) conditions [119].
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Assumption 2.3 (Linear Independence Constraint Qualification). For all first-order critical points

z∗ of problem (2.4), the matrix [
∇C (z∗)� ,∇G (z∗)� , H�

A

]�
is full row-rank, with HA the submatrix of H whose rows are the rows of H associated with the

indices i ∈ {1, . . . ,m} such that 〈hi, z∗〉 − ωi = 0.

Thus, if z∗ is a critical point of (2.4), then it satisfies the KKT conditions, that is there exists

multipliers μ∗ ∈ Rp, ν∗ ∈ Rq and λ∗ ∈ Rm such that⎧⎪⎪⎨⎪⎪⎩
∇zL (z∗, μ∗, ν∗, λ∗) = 0

C (z∗) = 0, G (z∗) = 0

0 ≤ λ∗ ⊥ (ω −Hz∗) ≥ 0

(2.11)

The KKT relation (2.11) can be rewritten as a generalised equation in the primal-dual space

Rn × Rp × Rq,

0 ∈ F (w∗) +NΩ×Rp×Rq (w∗) , (2.12)

with w∗ =
(
(z∗)� , (μ∗)� , (ν∗)�

)�
and where

F (w) :=

⎛⎜⎝∇J (z) +∇C (z)� μ+∇G (z)� ν

C (z)

G (z)

⎞⎟⎠ ,

withw = (z�, μ�, ν�)�. In the remainder, we call a primal-dual point a first-order critical point or a

KKT point without distinction. The analysis that follows strongly relies on the strong second-order

optimality conditions [119].

Assumption 2.4 (Strong second-order optimality condition). Problem (2.4) has a KKT point

(
(z∗)� , (μ∗)� , (ν∗)� , (λ∗)�

)�
such that

〈
p,∇2

z,zL (z∗, μ∗, ν∗, λ∗) p
〉
> 0 , (2.13)
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for all p ∈ Rn \ {0} such that

∇C (z∗) p = 0, ∇G (z∗) p = 0, HA+p = 0 ,

with HA+ the submatrix of H whose rows are the rows of H associated with the indices i in

{1, . . . ,m} such that 〈hi, z∗〉 − ωi = 0 and λ∗i > 0.

We first prove that for a sufficiently large penalty coefficient � and for an appropriate multiplier

μ, the augmented Lagrangian subproblem (2.6) has a unique solution in the neighbourhood of a

KKT point of NLP (2.4). For this, we require constraint qualification of the set Z , which is the

constraint set of the augmented Lagrangian subproblem (2.6).

Assumption 2.5 (Mangasarian-Fromowitz constraint qualification). At all points z ∈ Z , the matrix

∇G (z) is full-row rank and there exists a vector w ∈ Rn \ {0} such that{
∇G (z)w = 0 ,

HAw < 0 ,
(2.14)

where HA is the submatrix of H , whose rows correspond to the active constraints at z.

Lemma 2.1. Assume that problem (2.4) satisfies Assumptions 2.2, 2.3, 2.4 and 2.5. Let

(
(z∗)� , (μ∗)� , (ν∗)� , (λ∗)�

)�
be a KKT point of NLP (2.4). There exists a positive scalar �̄, radii κ > 0 and δ > 0 such that for

all � ≥ �̄ and all μ̄ ∈ Rp such that ‖μ̄− μ∗‖2 < δ�, the subproblem

minimise
z∈Z

L� (z, μ̄) , (2.15)

has a unique critical point in B (z∗, κ).

Proof. Let μ̄ ∈ Rp and � > 0. The optimality condition of (2.15) is

0 ∈ ∇zL� (z, μ̄) +NZ (z) , (2.16)

However, by Assumption 2.5, Farkas’ lemma and Lemma 1.3,

NZ (z) =
{
∇G (z)� ν +H�λ : ν ∈ Rq, λ ∈ Rm+

}
.

Hence, the first-order optimality condition (2.16) is equivalent to the existence of ν ∈ Rq and
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λ ∈ Rm+ such that ⎧⎪⎪⎨⎪⎪⎩
0 ∈ ∇zL� (z, μ̄) +∇G (z)� ν +H�λ

0 = G (z)

0 ≤ ω −Hz .

(2.17)

Let G� : Rn × Rp × Rq × Rm × Rp → Rn × Rp × Rq × Rm be defined as

G� (z, μ, ν, π) :=

⎛⎜⎜⎜⎜⎜⎝
∇zL (z, μ, ν, λ)

μ− μ∗

�
− C (z)− π

−G (z)

ω −Hz

⎞⎟⎟⎟⎟⎟⎠ ,

where π ∈ Rp should be interpreted as a parameter. Consider the parametric generalised equation

0 ∈ G� (z, μ, ν, λ, π) +NRn×Rp×Rq×Rm
+
(z, μ, ν, λ) . (2.18)

It is easy to see that (z�, ν�, λ�)� satisfies the optimality condition (2.17) if and only if

(
z�, μ̄� + �C (z)� , ν�, λ�)�

satisfies (2.18) with π = μ̄−μ∗/�. Moreover,
(
(z∗)� , (μ∗)� , (ν∗)� , (λ∗)�

)�
is a solution of (2.18)

for π = 0. Thus, by Theorem 1.2, the result follows if we can show that

0 ∈ G� (z, μ, ν, λ, 0) +NRn×Rp×Rq×Rm
+
(z, μ, ν, λ) (2.19)

is strongly regular at
(
(z∗)� , (μ∗)� , (ν∗)� , (λ∗)�

)�
. Consider the matrix⎡⎢⎢⎢⎢⎣

∇2
z,zL (z∗, μ∗, ν∗, λ∗) ∇C (z∗)� ∇G (z∗)� H�

A+

−∇C (z∗) Ip/� 0 0

−∇G (z∗) 0 0 0

−HA+ 0 0 0

⎤⎥⎥⎥⎥⎦ , (2.20)

where HA+ is the submatrix of H , whose rows correspond to the indices i of the active constraints

at z∗ such that λ∗i > 0. It readily follows from Assumptions 2.3 and 2.4, and Lemma 1.4, that the

matrix (2.20) is nonsingular for any � sufficiently large. To show this, take vectors uz, uμ, uν and
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uλ of appropriate dimensions such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇2
z,zL (z∗, μ∗, ν∗, λ∗)uz +∇C (z∗)� uμ +∇G (z∗)� uν +H�

A+
uλ = 0

−∇C (z∗)uz + uμ/� = 0

−∇G (z∗)uz = 0

−HA+uz = 0 .

(2.21)

From the strong second-order optimality Assumption 2.4 and Lemma 1.4, it follows that there

exists a positive scalar �̄ such that for any � > �̄, the matrix

∇2
z,zL (z∗, μ∗, ν∗, λ∗) + �∇C (z∗)� ∇C (z∗) + �∇G (z∗)� ∇G (z∗) + �H�

A+
HA+

is positive definite. Then, it can be deduced from (2.21) that[
∇G (z∗)

HA+

](
∇2
z,zL (z∗, μ∗, ν∗, λ∗) + �∇C (z∗)� ∇C (z∗)

+ �∇G (z∗)� ∇G (z∗) + �H�
A+
HA+

)−1
[
∇G (z∗)

HA+

]�(
uν

uλ

)
= 0 ,

which implies that [
∇G (z∗)

HA+

]�(
uν

uλ

)
= 0 .

By means of Assumption 2.3, one can conclude that uν = 0 and uλ = 0. Using (2.21), it is then

easy to show that uz = 0 and uμ = 0.

Now consider the Schur complement⎡⎢⎢⎢⎢⎣
H�

A0

0

0

0

⎤⎥⎥⎥⎥⎦
� ⎡⎢⎢⎢⎢⎣

∇2
z,zL (z∗, μ∗, ν∗, λ∗) ∇C (z∗)� ∇G (z∗)� H

�
A+

−∇C (z∗) Ip/� 0 0

−∇G (z∗) 0 0 0

−HA+ 0 0 0

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎣

H�
A0

0

0

0

⎤⎥⎥⎥⎥⎦ , (2.22)

where HA0 is the submatrix of H , whose rows correspond to the indices i of the active constraints

at z∗ such that λ∗i = 0. Following the same argument as to show that (2.20) is nonsingular, we can

prove that the Schur complement (2.22) is positive definite for � > �̄. Hence, by the necessary and

sufficient conditions of Section 4 in [137], we obtain that the generalised equation (2.19) is strongly

regular at
(
(z∗)� , (μ∗)� , (ν∗)� , (λ∗)�

)�
if � > �̄. This yields radii δ > 0 and κ > 0 such that for
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all μ̄ ∈ Rp satisfying ‖μ̄−μ∗‖2/� < δ, there exists a unique z ∈ B (z∗, κ) ∩ Z satisfying (2.16).

We are now assured that if the sequence of multipliers and penalty coefficients satisfy the con-

ditions of Lemma 2.1, then Algorithm 1 is well-defined, that is, at every iteration k, there exists a

primal point zk satisfying

d
(
0,∇zL�(k)

(
zk, μ̄k

)
+NZ

(
zk
))

≤ ε ,

given ε > 0. Local convergence to the KKT point

(
(z∗)� , (μ∗)� , (ν∗)� , (λ∗)�

)�
defined in Lemma 2.1, follows using a limit point argument and assuming that the iterates stay

within the right neighbourhood of the KKT point. Such a localisation condition is difficult to en-

force in practice, as it requires knowledge of the radius κ > 0. Before stating the convergence

result, we need the following instrumental Lemma. It is also worth noting that the constraint set Z
is closed, since G is continuous and Ω is polyhedral.

Lemma 2.2. Let f : Rn → R denote a continuously differentiable function, and Ω denote a closed

set in Rn. Given ε > 0 and z ∈ Ω, the following holds

d (0,∇f (z) +NΩ (z)) ≤ ε ⇐⇒ ∃v ∈ Rn such that ‖v‖2 ≤ ε and −∇f (z) ∈ NΩ (z) + v .

Proof. This is a direct consequence of the definition of the distance to a set as an infimum, and the

basic properties of the infimum.

Theorem 2.1 (Local convergence to a KKT point). Assume that Assumptions 2.3, 2.5 and 2.4

hold. Assume that �(0) > �̄ and that for all k ≥ 0,

∥∥zk − z∗
∥∥
2
< κ and

∥∥μk − μ∗∥∥
2
< δ�(k) . (2.23)

If the dual sequence
{
μk
}

is bounded and all limit points of the primal sequence
{
zk
}

generated

by Algorithm 1 are regular, which means that they satisfy Assumption 2.3, then
{
zk
}

converges to

z∗ and
{
μk + �(k)C

(
zk
)}

converges to μ∗.

Proof. As the sequence
{
zk
}

is bounded, by Weierstrass’ theorem, it possesses a subsequence{
zkl
}

such that

zkl → z̃ ,
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where z̃ ∈ Ω ∩ B (z∗, κ). From Algorithm 1 and Lemma 2.2, for all l ≥ 1,

0 = ∇zL�(kl)
(
zkl , μkl

)
+ ykl + vkl ,

where ykl ∈ NZ
(
zkl
)

and
∥∥vkl∥∥

2
≤ εkl . However, by Assumption 2.5, Farkas’ lemma and

Lemma 1.3, there exists multipliers νkl ∈ Rq and λkl ∈ Rm+ such that

0 = ∇zL�(kl)
(
zkl , μkl

)
+∇G

(
zkl
)�
νkl +

∑
i∈A(zkl)

[
λkl
]
i
hi + vkl . (2.24)

For all k ≥ 1, define the multiplier μ̂k as

μ̂k := μk + �(k)C
(
zk
)
.

We first show that the sequences of multipliers
{
νkl
}

and
{
λkl
}

are bounded. For the sake of

contradiction, assume that the sequence
{
S(k)

}
defined by

S(k) := max
{∥∥μ̂k∥∥∞ ,

∥∥νk∥∥∞ ,
∥∥λk∥∥∞}

has a subsequence that tends to infinity. Note that from the expression of μ̂k, S(k) �= 0. We have

that

−∇J
(
zkl
)
+ vkl

S(kl)
= ∇C

(
zkl
)� μ̂kl

S(kl)
+∇G

(
z(kl)

)� νkl

S(kl)
+

∑
i∈A(zkl)

[
λkl
]
i

S(kl)
hi , (2.25)

with
[
λkl
]
i
= 0 if i /∈ A

(
zkl
)
. However, as the subsequence

{
zkl
}

tends to z̃, by definition of the

active-set A
(
zkl
)
, there exists l0 ≥ 1 such that for l ≥ l0,

A
(
zkl
)
⊂ A (z̃) . (2.26)

Moreover, as the sequences
{
μ̂kl/S(kl)

}
,
{
νkl/S(kl)

}
and

{
λkl/S(kl)

}
are bounded, the functions J ,

C and G are continuously differentiable, and vkl goes to zero, by extracting an appropriate subse-

quence, one obtains the existence of μ̂ ∈ Rp, ν̂ ∈ Rq and λ̂ ∈ Rm+ , among which at least one of

them is nonzero, such that

0 = ∇C (z̃)� μ̂+∇G (z̃)� ν̂ +
∑
i∈A(z̃)

[
λ̂
]
i
hi ,

which contradicts the assumption that z̃ is regular. Subsequently, the sequences
{
νkl
}

and
{
λkl
}
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are bounded. Thus, without loss of generality, as an appropriate subsequence can always be ex-

tracted, there exists ν̃ ∈ Rq and λ̃ ∈ Rm+ such that

νkl → ν̃ and λkl → λ̃ .

However, as z̃ is regular, there exists l1 ≥ 1 such that for all l ≥ 1, the matrix

∇C
(
zkl
)
∇C

(
zkl
)�

is invertible, and subsequently,

μ̂kl = −
(
∇C

(
zkl
)
∇C

(
zkl
)�)−1

∇C
(
zkl
)⎛⎜⎝∇J

(
zkl
)
+∇G

(
zkl
)�
νkl +

∑
i∈A(zkl)

[
λkl
]
i
hi + vkl

⎞⎟⎠ .

By continuity of ∇J and ∇G, by convergence of
{
νkl
}

and
{
λkl
}

and since vkl tends to zero, one

can conclude that
{
μ̂kl
}

converges to μ̃ such that

μ̃ := −
(
∇C (z̃)∇C (z̃)�

)−1 ∇C (z̃)
(
∇J (z̃) +∇G (z̃)� ν̃ +H�λ̃

)
.

By taking limit in (2.24), one obtains that

∇J (z̃) +∇C (z̃)� μ̃+∇G (z̃)� ν̃ +
∑
i∈A(z̃)

[
λ̃
]
i
hi = 0 . (2.27)

The sequences
{
μ̂kl
}

and
{
μkl
}

are bounded. Hence, as �(kl) → +∞, the limit point z̃ is feasible,

that is C (z̃) = 0. Together with (2.27), this implies that
(
z̃�, μ̃�, ν̃�, λ̃�

)�
is a KKT point of

NLP (2.4). However, by the strong second-order optimality condition (Assumption 2.4), z∗ is the

unique critical point of NLP (2.4) in B (z∗, κ). Subsequently, z̃ = z∗, and by independence of the

constraint gradients at z∗ (Assumption 2.3), μ̃ = μ∗, ν̃ = ν∗ and λ̃ = λ∗. This concludes the

proof.

Remark 2.1. As mentioned earlier, ensuring the localisation condition
∥∥zk − z∗

∥∥
2
< κ is not ob-

vious. However, warm-starting an inner method for solving an augmented Lagrangian subproblem

on the output of the previous subproblem tends to make this requirement satisfied.

Remark 2.2. Clearly, a limitation of our analysis is the assumption that the dual sequence
{
μk
}

is bounded. However, this can be guaranteed algorithmically by projecting the dual iterate μk onto

a sufficiently large box containing the origin at every outer iteration [8]. It is also worth noting the
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the Mangasarian-Fromowitz constraints qualification imply that the set of Lagrange multipliers is

bounded at a critical point. Hence, an unbounded dual sequence is a sign that these conditions are

most likely violated.

Thus, only local convergence of Algorithm 1 can be derived. This is due to conditions (2.23). How-

ever, it is worth noting that when all constraints of the augmented Lagrangian subproblem are

linear, global convergence can be guaranteed by modifying the dual and penalty updates [34,

31]. Thus, it appears that all globally convergent augmented Lagrangian methods are based ei-

ther on a different dual update than the classical first-order update in Algorithm 1, or a different

update of the penalty coefficient.

Remark 2.3. The local convergence analysis presented above allowed us to introduce generalised

equations (2.18), which turns out to be a key ingredient in order to analyse parametric properties

of the solution of a nonlinear program, as in Chapter 3.

2.1.2 Splitting the augmented Lagrangian subproblem

From a distributed optimization perspective, the dual update in Algorithm 1 acts as a coordina-

tor between the subvariables z1 and z2. In practice, it requires a local exchange of information

between computing nodes associated with variables z1 and z2. Increasing the penalty coefficient

� and shrinking the criticality tolerance ε does not need to be performed on a central unit, but

requires synchronisation between the computing nodes by means of a global clock. However, it

remains to compute an ε-critical point of the nonconvex augmented Lagrangian subproblem (2.6)

in a distributed manner. This is far from obvious and has not yet been addressed in the literature

in a nonconvex setting. To cope with this problem, we propose an alternating projected gradient

method. Alternating minimisation techniques, also known as Gauss-Seidel or Block-Coordinated

Descent (BCD) schemes, are a method of choice in distributed optimisation, as computations

can be readily parallelised under some structural assumptions on the coupling between subvari-

ables [17]. In a nonconvex setting, alternating minimisation methods suffer from a lack of pop-

ularity, partly due to their ambiguous convergence properties. Indeed, examples can be found, in

which a Gauss-Seidel procedure cycles infinitely without approaching a critical point [123]. For-

tunately, conditions on the problem structure as well as algorithmic refinements can be derived to

guarantee global convergence to first-order critical points. In [150], the subsequence convergence

of the iterates generated by a Gauss-Seidel scheme applied to a nonconvex function that consists of

the sum of nonseparable differentiable and separable nondifferentiable summands is proven under

some pseudoconvexity and quasiconvexity assumptions. A stronger convergence result has been re-

cently derived in [11]. Under a more general assumption on the problem structure and by means of

blockwise proximal regularisations, global convergence of an alternating minimisation procedure
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to a critical point is proven [11]. The results of [11] have been extended to more general descent

methods in [12]. The results presented next build upon some ideas of [11, 12]. It is worth men-

tioning that a well-known problem with Gauss-Seidel methods is their frequent non-convergence

when the number of blocks is larger than two [76]. This issue is solved by enforcing a proximal

regularisation on each block at every iteration [76, 11]. We use the same idea for the Algorithm

described in the next paragraphs.

2.1.2.1 Algorithm formulation

Aiming at distributing computations in order to compute an iterate satisfying the stopping cri-

terion (2.10), we apply Algorithm 2 below. It is essentially a special form of the very generic

Proximal Alternating Linearised Minimisations (PALM) algorithm proposed by [21].

Algorithm 2 Projected Alternating Gradients

1: Input: Primal initial points z01 ∈ Rn1 and z02 ∈ Rn2 , tolerance on criticality ε > 0, initial

curvature estimates ξ1, ξ2.
2: k ← 0
3: while d

(
0,∇zL�

(
zk, μ

)
+NZ

(
zk
))
> ε do

4: Find zk+1
1 ∈ PZ1

(
zk1 −

1

ck1
∇z1L�

(
zk1 , z

k
2 , μ

))
, where ck1 > 0 satisfies

L�
(
zk+1
1 , zk2 , μ

)
+
αk1
2

∥∥zk+1
1 − zk1

∥∥2
2
≤ L�

(
zk1 , z

k
2 , μ

)
+
〈
∇z1L�

(
zk1 , z

k
2 , μ

)
, zk+1

1 − zk1
〉

(2.28)

+
ck1
2

∥∥zk+1
1 − zk1

∥∥2
2
.

5: Find zk+1
2 ∈ PZ2

(
zk2 −

1

ck2
∇z2L�

(
zk+1
1 , zk2 , μ

))
, where ck2 > 0 satisfies

L�
(
zk+1
1 , zk+1

2 , μ
)
+
αk2
2

∥∥zk+1
2 − zk2

∥∥2
2
≤ L�

(
zk+1
1 , zk2 , μ

)
+
〈
∇z2L�

(
zk+1
1 , zk2 , μ

)
, zk+1

2 − zk2
〉

(2.29)

+
ck2
2

∥∥zk+1
2 − zk2

∥∥2
2
.

6: k ← k + 1
7: end while
8: Output: z1, z2

The procedure starts from initial points z01 ∈ Z1 and z02 ∈ Z2. At every iteration of Algorithm 2,

the subvariable z1 is updated by means of a gradient projection step, for which the step-size 1/c1 sat-
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isfies the coordinatewise sufficient decrease condition (2.28). Using the updated subvariable z1, the

subvariable z2 is modified in a similar manner, with a step-size 1/c2 satisfying the coordinatewise

sufficient decrease condition (2.29). The sequences
{
αk1
}

and
{
αk2
}

are such that for all k ≥ 0,

αk1 ∈ ]α, α̃[ and αk2 ∈ ]α, α̃[ , (2.30)

with α̃ > α > 0. They need to be specified in advance and act as tuning parameters. Nevertheless,

we have observed that the best practical performance of Algorithm 2 is obtained with very small

values of these coefficients. The sufficient decrease conditions (2.28) and (2.29) are obtained via a

backtracking procedure, which is described below for the subvariable z2.

Algorithm 3 Backtracking procedure at subvariable z2 and iteration k of Algorithm 2

Input: Variables zk+1
1 and zk2 , initial curvature estimate ξ2.

Parameters: Multiplicative coefficient β > 1, regularisation coefficient αk2 .

c2 ← ξ2

z2 ∈ PZ2

(
zk2 −

1

c2
∇z2L�

(
zk+1
1 , zk2 , μ

))
while L�

(
zk+1
1 , z2, μ

)
+
αk2
2

∥∥z2 − zk2
∥∥2
2
> L�

(
zk+1
1 , zk2 , μ

)
+
〈
∇z2L�

(
zk+1
1 , zk2 , μ

)
, z2 − zk2

〉
+

c2
2

∥∥z2 − zk2
∥∥2
2

do
c2 ← β · c2
z2 ∈ PZ2

(
zk2 −

1

c2
∇z2L�

(
zk+1
1 , zk2 , μ

))
end while
Output: ck2 ← c2

The backtracking procedure is similar for variable z1 and takes variables zk1 and zk2 on input. For

Algorithm 2 to be well-defined, one needs to make sure that Algorithm 3 terminates at every it-

eration of Algorithm 2. This is guaranteed under the condition that the gradient of the augmented

Lagrangian is Lipschitz continuous on the subvariables z1 and z2 respectively.

Assumption 2.6 (Coordinate-wise Lipschitz continuity). Given z1 ∈ Z1, the coordinate gradient

z2 
→ ∇z2L� (z1, z2, μ)

is Lipschitz continuous on Z2 with modulus �2 (z1, μ, �). Lipschitz continuity also holds for the

function

z1 
→ ∇z1L� (z1, z2, μ)
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with z2 fixed in Z2, and a modulus �1 (z2, μ, �).

We require the coordinate-wise Lipschitz constants defined in 2.6 to be upper bounded for all

points of the sequence
{
zk
}

.

Assumption 2.7 (Upper bounds on coordinate Lipschitz constants). There exists scalars �̄1 (μ, �) >

0 and �̄2 (μ, �) > 0 such that for all k ≥ 0,

�1
(
zk2 , μ, �

)
< �̄1 (μ, �) and �2

(
zk1 , μ, �

)
< �̄2 (μ, �) .

We also need to assume that the gradient of the augmented Lagrangian is Lipschitz continuous

on all bounded subsets of Rn.

Assumption 2.8 (Lipschitz continuity of gradient on bounded subsets). Given any bounded subset

S of Rn, the gradient ∇zL� is Lipschitz continuous on S with a Lipschitz constant denoted by

�S (∇zL�).

Lemma 2.3. Assume that Assumption 2.6 holds. Let k denote an iteration index of Algorithm 2. There

exists an integer jk2 ≥ 0 such that

ck2 = βj
k
2 ξ2 ,

where ξ2 > 0 is an initial estimate of the curvature coefficient c2, as shown in Algorithm 3.

Proof. As the function ∇z2L�
(
zk+1
1 , ·, μ

)
is Lipschitz continuous by Assumption 2.6, the descent

Lemma [17] yields

L�
(
zk+1
1 , z2, μ

)
≤ L�

(
zk+1
1 , zk2 , μ

)
+
〈
∇z2L�

(
zk+1
1 , zk2 , μ

)
, z2 − zk2

〉
+
�2
(
zk+1
1 , μ, �

)
2

∥∥z2 − zk2
∥∥2
2

for all z2 ∈ Z2. Hence, by taking c2 such that

c2 > �2
(
zk+1
1 , μ, �

)
+ αk2 (2.31)

the sufficient decrease condition (2.29) is fulfilled with

zk+1
2 ∈ PZ2

(
zk2 −

1

c2
∇z2L�

(
zk+1
1 , zk2 , μ

))
.

Condition (2.31) is met after at most

jk2 :=

⌈
log

(
αk
2+�2(z

k+1
1 ,μ,ρ)/ξ2

)
log β

⌉
(2.32)

45



CHAPTER 2. DECOMPOSITION STRATEGIES FOR NONLINEAR PROGRAMS

iterations of the backtracking loop, which proves that Algorithm 3 terminates.

Remark 2.4. A similar property holds for the backtracking procedure on subvariable z1 with at

most

jk1 :=

⌈
log

(
αk
1+�1(zk2 ,μ,ρ)/ξ1

)
log β

⌉
(2.33)

backtracking iterations, where ξ1 is an initial guess of the curvature estimate c1.

Algorithm 2 iterates until the stopping criterion (2.10) is met. Next, using the results of [12],

we show that Algorithm 2 terminates, and thus yields an ε-critical point of the partial augmented

Lagrangian subproblem (2.6).

2.1.2.2 Convergence analysis

Our analysis consists in showing that the sequence of augmented Lagrangian values

{
L�
(
zk1 , z

k
2 , μ

)
+ ιZ

(
zk
)}

decreases of at least a fraction of
∥∥zk − zk−1

∥∥2
2

at every iteration, and that a subgradient ofL� (·, μ)+
ιZ is bounded by

∥∥zk − zk−1
∥∥
2
. It is worth noting that these two properties imply that if the se-

quence of iterates
{
zk
}

is bounded and the sequence of objectives
{
L�
(
zk, μ

)}
is bounded be-

low, then there exists a subsequence of
{
zk
}

that converges to a critical point of the function

L� (·, μ) + ιZ .

In the remainder of the proof, we assume that the Lagrange multiplier μ and the penalty coef-

ficient � are fixed. We first state the sufficient decrease property, which is fulfilled by the sequence

of iterates generated by Algorithm 2.

Lemma 2.4 (Sufficient decrease in the augmented Lagrangian). For all k ≥ 1,

L�
(
zk1 , z

k
2 , μ

)
+ ιZ

(
zk
)
+
α

2

∥∥zk − zk−1
∥∥2
2
≤ L�

(
zk−1
1 , zk−1

2 , μ
)
+ ιZ

(
zk−1

)
(2.34)

Proof. This is a direct consequence of the definition of zk1 and zk2 as projected gradient steps onto

the sets Z1 and Z2 respectively. Indeed, this implies that

〈
∇z1L�

(
zk−1
1 , zk−1

2 , μ
)
, zk1 − zk−1

1

〉
+
ck−1
1

2

∥∥zk1 − zk−1
1

∥∥2
2
≤ 0 ,
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and that ιZ1

(
zk1
)
= 0. Putting this together with the sufficient decrease (2.28), this yields

L�
(
zk1 , z

k−1
2 , μ

)
+ ιZ1

(
zk1
)
+
αk−1
1

2

∥∥zk1 − zk−1
1

∥∥2
2
≤ L�

(
zk−1
1 , zk−1

2 , μ
)
+ ιZ1

(
zk−1
1

)
,

as ιZ1

(
zk−1
1

)
= 0. A similar reasoning for zk2 gives

L�
(
zk1 , z

k
2 , μ

)
+ ιZ2

(
zk2
)
+
αk−1
2

2

∥∥zk2 − zk−1
2

∥∥2
2
≤ L�

(
zk1 , z

k−1
2 , μ

)
+ ιZ2

(
zk−1
2

)
,

and thus (2.34) immediately follows, as αk−1
1 , αk−1

2 ≥ α.

We now derive an upper-bound on a subgradient vector of L� (·, μ) + ιZ .

Lemma 2.5 (Relative error on subgradient of augmented Lagrangian). Assume that the sequence{
zk
}

generated by Algorithm 2 is bounded. Under Assumptions 2.6, 2.7 and 2.8, there exists a

scalar Γ (μ, �) > 0 such that for all k ≥ 1, there exists vk ∈ NZ
(
zk
)

such that

∥∥vk +∇zL�
(
zk, μ

)∥∥
2
≤ Γ (μ, �)

∥∥zk − zk−1
∥∥
2
. (2.35)

Proof. From the definition of zk1 and zk2 in Algorithm 2,

zk1 ∈ argmin
z1∈Z1

〈
∇z1L�

(
zk−1
1 , zk−1

2 , μ
)
, z1 − zk−1

1

〉
+
ck−1
1

2

∥∥z1 − zk−1
1

∥∥2
2

and

zk2 ∈ argmin
z2∈Z2

〈
∇z2L�

(
zk1 , z

k−1
2 , μ

)
, z2 − zk−1

2

〉
+
ck−1
2

2

∥∥z2 − zk−1
2

∥∥2
2
,

which implies that there exists vk1 ∈ NZ1

(
zk1
)

and vk2 ∈ NZ2

(
zk2
)

such that

0 = vk1 +∇z1L�
(
zk−1
1 , zk−1

2 , μ
)
+ ck−1

1

(
zk1 − zk−1

1

)
and

0 = vk2 +∇z2L�
(
zk1 , z

k−1
2 , μ

)
+ ck−1

2

(
zk2 − zk−1

2

)
.
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Posing vk :=
((
vk1
)�
,
(
vk2
)�)�

,

∥∥vk +∇zL�
(
zk, μ

)∥∥
2
≤
(
ck−1
1 + ck−1

2

) ∥∥zk − zk−1
∥∥
2
+
∥∥∇z1L�

(
zk1 , z

k
2 , μ

)
−∇z1L�

(
zk−1
1 , zk−1

2 , μ
)∥∥

2

+
∥∥∇z2L�

(
zk1 , z

k
2 , μ

)
−∇z2L�

(
zk1 , z

k−1
2 , μ

)∥∥
2

However,

ck−1
1 = βj

k−1
1 ξ1 and ck−1

2 = βj
k−1
2 ξ2 ,

where jk−1
1 and jk−1

2 are defined by (2.33) and (2.32) respectively. As the regularisation coeffi-

cients αk−1
1 and αk−1

2 are upper bounded by α̃, and as �2
(
zk1 , μ, �

)
is upper bounded by �̄2 (μ, �)

(Assumption 2.7), one can conclude from the expressions of jk−1
1 and jk−1

2 that there exists c̄1 > 0

and c̄2 > 0 such that

ck−1
1 ≤ c̄1 and ck−1

2 ≤ c̄2 ,

for all k ≥ 1. However, the sequence
{
zk
}

is bounded, hence there exists a scalar R > 0 such that

zk ∈ B (0, R) ,

for all k ≥ 0. Subsequently,

∥∥vk +∇zL�
(
zk, μ

)∥∥
2
≤
(
c̄1 + c̄2 + �B(0,R) (∇zL�) + �̄2 (μ, �)

) ∥∥zk − zk−1
∥∥
2
,

which concludes the proof.

We can now show that Algorithm 2 terminates for any criticality tolerance ε > 0.

Theorem 2.2. Assume that the augmented Lagrangian function L� (·, μ) is bounded below on

bounded subsets of Rn. Assume that the sequence
{
zk
}

is bounded and that Assumptions 2.6, 2.7

and 2.8 hold. Given an arbitrary tolerance ε > 0, Algorithm 2 terminates with a point zk satisfying

d
(
0,∇zL�

(
zk, μ

)
+NZ

(
zk
))

≤ ε .

Proof. Combining Lemma 2.4 and Lemma 2.5, for all k ≥ 1,

∥∥vk +∇zL�
(
zk, μ

)∥∥
2
≤ Γ (μ, �)

√
2
(
L�
(
zk−1, μ

)
− L�

(
zk, μ

))
α

, (2.36)
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where vk ∈ NZ
(
zk
)
. However, the series of nonnegative terms

∑
k≥1

(
L�
(
zk−1, μ

)
− L�

(
zk, μ

))
is bounded, as the sequence

{
L�
(
zk, μ

)}
converges, since it decreases and is bounded below by

assumption. Hence,

(
L�
(
zk−1, μ

)
− L�

(
zk, μ

))
→ 0 , (2.37)

and then, by inequality (2.36),

d
(
0,∇zL�

(
zk, μ

)
+NZ

(
zk
))

→ 0 ,

which yields the result.

In conclusion, Algorithm 2 can be used as an inner solver in Algorithm 1, as the stopping

criterion at line 5 of Algorithm 1 is guaranteed to be satisfied after a sufficiently large number of it-

erations in Algorithm 2. Recall that the purpose of Algorithm 2 is to decompose the augmented La-

grangian subproblem and thus allow for distributed computations. To clarify this point, we present

the steps of the coupling between Algorithm 1 (coordination) and Algorithm 2 (decomposition) on

a distributed problem with network constraints.

2.1.3 A coordination-decomposition algorithm

We now formulate our coordination-decomposition algorithm (Algorithms 1 and 2) in the case

of several sub-variables coupled by network constraints. It is implicitly assumed that each sub-

variable is associated with a computing node. In this paragraph, our goal is to show when local

computations and communications between nodes happen as the algorithm proceeds. More pre-

cisely, we aim at solving the following class of distributed nonconvex programs with separable

objective subject to partially separable equality constraints and separable constraints

minimise
z1,...,zN

N∑
i=1

Ji (zi) (2.38)

s. t. Ci (zi, zVi
) = 0, i ∈ {1, . . . , N}

zi ∈ Zi ,

with N ≥ 2. For each i ∈ {1, . . . , N}, zVi
denotes the variables zj which are coupled with variable

zi and are called its neighbours. The Lagrange multiplier associated with the equality constraint

Ci (zi, zVi
) = 0 is denoted by μi. Without loss of generality, we assume that all coupling constraints

involving the sub-variable zi are gathered in Ci (zi, zVi
). The sets Zi are closed and ‘prox-friendly’,

that is the euclidean projection onto the set Zi can be computed in closed-form. The augmented
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Lagrangian subproblem associated with program (2.38) is

minimise
z1∈Z1,...,zN∈ZN

N∑
i=1

Ji (zi) +
〈(
μi +

�

2
Ci (zi, zVi

)
)
, Ci (zi, zVi

)
〉

. (2.39)

The coordination-decomposition method is described in Algorithm 4 below. Algorithm 4 does

Algorithm 4 Coordination-decomposition algorithm

1: Input: Initial guesses
((
z
(0)
1

)�
,
(
μ
(0)
1

)�)�
, . . . ,

((
z
(0)
N

)�
,
(
μ
(0)
N

)�)�

2: multiplicative coefficient β� > 1, initial penalty �(0) > 1.

3: Initialisation:
(
(zi)

� , (μi)
�)� ←

(
(z0i )

�
, (μ0

i )
�)�

for all i ∈ {1, . . . , N}
4: k ← 0
5: while Outer stopping criterion not met do � Central communication or synchronisation

6: Decomposition
7: while Inner stopping criterion not met do � Central communication or synchronisation

8: For all nodes i ∈ {1, . . . , N},

9: Gather zVi
from neighbours of node i � Local communications

10: Compute zi ∈ PZi

(
zi −

1

ci

(
∇Ji (zi) +∇ziCi (zi, zVi

)� (μi + �Ci (zi, zVi
))
))

11: end while
12: Coordination
13: Gather zVi

from neighbours of node i � Local communications

14: Compute μi ← μi + �Ci (zi, zVi
)

15: Update
16: �← β��
17: k ← k + 1
18: end while

not involve any matrix factorisation, which makes it a matrix free method. This feature is highly

suitable for distributed computations. From this perspective, the most expensive steps are at lines 9

and 13, as they require local exchange of data between neighbouring nodes. Communications with

a central unit or synchronisation of the computing nodes may be required by the stopping crite-

ria for the dual (outer) loop (line 5) and the primal (inner) loop (line 7). To clarify this point, we

discuss the following three stopping criteria:

1. Criticality-based criterion, d (0,∇zL� (z, μ) +NZ (z)) ≤ ε: With this condition, local con-

vergence of the dual loop is guaranteed, as proven earlier in this chapter. It is equivalent to

the existence of a vector v in NZ (z) such that

‖v +∇zL� (z, μ)‖2 ≤ ε . (2.40)
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In practice, one can solve

minimise
v∈NZ(z)

‖v +∇zL� (z, μ)‖2 ,

which is equivalent to

minimise
v1∈NZ1

(z1),...,vN∈NZN
(zN )

N∑
i=1

‖vi +∇ziL� (z, μ)‖22 ,

by Proposition 6.41 in [138]. This task amounts to finding a solution to the following prob-

lems locally on each node

minimise
zi∈NZi

(zi)
‖vi +∇ziL� (z, μ)‖2

and adding up the local objectives on a central unit at every primal iteration. A drawback of

this stopping condition is that one needs to specify a sequence of criticality tolerances ε for

each outer iteration. This is problem dependent and requires tuning. A more systematic way

of updating the criticality tolerance on the augmented Lagrangian subproblem is proposed

by [34], which is a cornerstone of the well-known LANCELOT software. However, the adap-

tation of the criticality tolerance in [34] is based on the level of satisfaction of the equality

constraint that are relaxed in the augmented Lagrangian subproblem, which requires an extra

global summation per outer iteration.

2. Eckstein and Silva’s criterion [54]: At every dual iteration, the primal alternating minimi-

sation (Algorithm 2) stops at inner iteration k if a vector vk is found in the normal cone

NZ
(
zk
)
, which satisfies

2

�

∣∣〈w − zk,∇zL�
(
zk, μ

)
+ vk

〉∣∣+ ∥∥∇zL�
(
zk, μ

)
+ vk

∥∥2
2
≤ σ

∥∥C (zk)∥∥2
2
, (2.41)

with σ ∈ [0, 1) and w is an auxiliary vector updated at every dual iteration l as follows

wl = wl−1 − �l
(
vl +∇zL�

(
zl, μ

))
.

Convergence to the dual loop is guaranteed in the convex case [54]. In the nonconvex case,

theoretical guarantees have not been published, although good performance has been re-

ported [54]. In particular, Eckstein and Silva’s stopping criterion shows superior performance

to the LANCELOT criterion in terms of gradient evaluations [54]. With respect to distributed
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computations, Eckstein and Silva’s stopping condition requires a global summation at every

iteration of Algorithm 2. The update of the vector w can be distributed.

3. Heuristic criterion: The two stopping conditions described above involve global summa-

tions, which may be costly on a distributed architecture. Therefore, one may also stop the

inner loop of Algorithm 4 after a fixed number iterations. Theoretical convergence guar-

antees of the outer loop are obviously lost when doing this. Besides, this strategy requires

synchronisation between the computing units. One could also abort primal iterations when

the innovation zk − zk−1 becomes too small, which can be checked in a distributed man-

ner. Similarly, convergence guarantees are also lost.

2.1.4 Numerical experiments

We report numerical experiments to illustrate the theoretical results of the previous paragraphs. We

consider nonconvex quadratic programs subject to linear coupling constraints and separable non-

convex constraints

minimise
z0,...,zN

N∑
i=0

〈zi, Hizi〉+ 〈gi, zi〉 (2.42)

s. t. Aizi + Bizi+1 = bi, i ∈ {0, . . . , N − 1}
‖zi‖2 = ri, i ∈ {0, . . . , N} ,

where the matrices Hi ∈ Rd×d are symmetric, ri > 0, zi ∈ Rd, Ai, Bi ∈ Rm×d, gi ∈ Rd and

bi ∈ Rm with N ≥ 1, d ≥ 1 and m ≥ 1. As mentioned earlier in this chapter, the euclidean pro-

jection onto the separable nonconvex constraint sets in problem (2.42) can be evaluated in closed

form, more precisely if z �= 0,

PS(0,r) (z) = r
z

‖z‖2
, (2.43)

where S (0, r) denote the sphere of radius r centred at the origin. If z = 0, the projection operator

is multi-valued. Following Algorithm 2, one can take any point on the sphere S (0, r). The problem

data is randomly generated. In order to prevent too ill-conditioned problems, on which a first-order

method such as Algorithm 4 can show very poor performance, the eigenvalues of matrices Hi, Ai

and Bi are kept within the interval [−1, 1].

After introducing Lagrange multipliers μi and a penalty �, the augmented Lagrangian subprob-
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lem resulting from the relaxation of the linear constraints in (2.42) is written as

minimise
z0,...,zN

〈zN , HNzN〉+ 〈gN , zN〉+
N−1∑
i=0

〈zi, Hizi〉+ 〈gi, zi〉 (2.44)

+
〈(
μi +

�

2
(Aizi + Bizi+1 − bi)

)
, (Aizi + Bizi+1 − bi)

〉
s. t. ‖zi‖2 = ri, i ∈ {0, . . . , N} .

Importantly, in the case of NLP (2.44), an alternating minimisation procedure such as the inner

loop of Algorithm 4 can be parallelised. At every iteration, the sub-variables zi with i even, are

held constant and the sub-variables with odd indices are updates in parallel. Then, the sub-variables

with an odd index are fixed to their current value and the sub-variables with even indices are up-

dated in parallel. This fact stands out when looking at the dependency graph, as defined in [17], of

the augmented Lagrangian subproblem (2.44) in Figure 2.1. To perform the update of variable zi,

one only needs to know variables zi−1 and zi+1. In conclusion, a significant level of concurrency

Figure 2.1: Dependency graph of NLP (2.44).

is obtained when applying Algorithm 4 to NLP (2.42), as its inner loop then consists of two cyclic

groups of parallel gradient projections. An important aspect of Algorithm 4 is that a finite num-

ber of primal iterations is often enough to guarantee convergence of the outer loop. This number

can be obtained via the criticality-based stopping criterion or Eckstein’s stopping criterion, which

yield theoretical convergence guarantees. One can also fix a priori the maximum number of pri-

mal alternating minimisations and analyse its effect on the convergence of the dual iterates. The

final target is to have the smallest amount of primal iterations, resulting in an ADMM-like algo-

rithm. Of course, one should keep in mind that theoretical guarantees of convergence are lost in

this case. The results of this analysis are presented in Figures 2.2 and 2.3 below, and are obtained

by running our coordination-decomposition scheme on the same random problem. The proposed

algorithm has been implemented in MATLAB.

From the numerical results of Figure 2.2, a larger number of primal iterations results in faster

convergence of the dual iterates. This is not difficult to understand as better satisfaction of the crit-

icality condition on the augmented Lagrangian subproblem is obtained. However, the convergence
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Figure 2.2: Euclidean norm of linear coupling constraints along outer iterations of Algorithm 1

for varying numbers of inner alternating minimisations (Algorithm 2), a multiplicative coefficient

β� = 2 and an initial penalty �(0) = 5.

analysis of paragraphs 2.1.2 and 2.1.1 does not provide a convergence rate of the dual variables

that depends on the number of primal iterations. Such a result is provided in Chapter 3 in a para-

metric context. From Figures 2.2 and 2.3, it appears that the rate of increase β� plays an important

role on the convergence speed of the outer loop. A larger β� results in slower convergence. At

this point, this is just an empirical observation, but the analysis of Chapter 3 gives insights into

this phenomenon. Figure 2.4 shows that for a small rate of increase β�, the smallest total number

of projected gradient steps is not necessarily obtained for the smallest possible number of primal

iterations per dual iteration. As the total number of gradient projections is proportional to the com-

putational time of Algorithm 4, one can conclude that the overall performance of Algorithm 4 is

very sensitive to the choice of parameters, which are the number of primal iterations per dual step

and the rate of increase β�. More precisely, the curves in Figure 2.5 show that the best performance

is obtained with 25 alternating minimizations per dual step and β� = 2. Again, Chapter 3 will help

clarifying this observation. One can reasonably expect that a larger amount of primal iterations

per augmented Lagrangian subproblem results in a smaller overall number of dual steps. An im-

portant question is how fast the total number of outer iterations decreases. Figure 2.5 demonstrates

that this decrease can actually be quick. For β� = 2, the number of outer iterations drops from

around 200 for 5 alternating gradient projections per augmented Lagrangian subproblem to less

than 15 for 50 inner iterations. Then, the number of outer iterations remains almost constant as the

number of primal iterations per dual step increases. In conclusion, from a certain point, increasing
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Figure 2.3: Euclidean norm of linear coupling constraints along outer iterations of Algorithm 1

for different maximum number of inner alternating minimisations (Algorithm 2), a multiplicative

coefficient β� = 15 and an initial penalty �(0) = 5.
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Figure 2.4: Total number of alternating projected gradient steps for reaching a feasibility of 10−4

in the linear coupling constraints along maximum number of primal iterations (Algorithm 2) per

dual iteration (Algorithm 1). The initial penalty is �(0) = 5 and β� ∈ {2, 5, 15}.

the number of primal iterations per dual step does not help to improve convergence of Algorithm 4.

Next, we test our coordination-decomposition strategy on randomly generated nonconvex quadratic

programs of the form (2.42) with varying number of elements N of fixed dimension d and fixed

55



CHAPTER 2. DECOMPOSITION STRATEGIES FOR NONLINEAR PROGRAMS

0 50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Number of inner iterations per outer iteration

N
um

be
r o

f o
ut

er
 it

er
at

io
ns

β�= 2

β�= 5

β�= 15

Figure 2.5: Number of dual iterations in Algorithm 4 to reach a feasibility 10−4 in the linear

coupling constraints along maximum number of primal iterations per dual iteration. The initial

penalty is �(0) = 5 and β� ∈ {2, 5, 15}.

number of constraints. We first start with d = 10,m = 5 andN ∈ {100, 200, 300, 400, 500, 600}. The

output of Algorithm 4 is compared with IPOPT in terms of objective value and feasibility of the

coupling constraints. As the problems we consider are medium to large-scale nonlinear programs,

it is critical to stop the alternating minimisations at an early stage when the dual iterate is a bad

estimate of an optimal Lagrange multiplier. Thus, we resort to Eckstein and Silva’s relative error

criterion [54] and fix the maximum number of inner steps per augmented Lagrangian subproblem

to 100. An important point here is that although the constraint set of the augmented Lagrangian

subproblem is nonconvex, it is easy to generate a vector in its normal cone. More precisely, the

constraint set is

Ω := S (0, r1)× . . .× S (0, rN) . (2.45)

Given z ∈ Ω, the normal cone to Ω at z is

NΩ (z) := NS(0,r1) (z1)× . . .×NS(0,rN ) (zN) , (2.46)

where for i ∈ {1, . . . , N},

NS(0,ri) (zi) = {αzi, α > 0} . (2.47)
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The right-hand side of the relative error criterion (2.41) involves the term

∥∥vk +∇zL�
(
zk, μk

)∥∥2
2
, (2.48)

where vk lies in the normal cone NΩ

(
zk
)
. Thus, in order to make the relative error criterion (2.41)

efficient in practice, one needs to choose vk such that the summand (2.48) is minimum. However,

by (2.46), one has

∥∥vk +∇zL�
(
zk, μk

)∥∥2
2
=

N∑
i=1

∥∥vki +∇ziL�
(
zk, μk

)∥∥2
2
.

Hence, the elements vki ∈ NS(0,ri)

(
zki
)

should be such that each term in the sum above is mini-

mum. For i ∈ {1, . . . , N}, the vector vki ∈ NS(0,ri)

(
zki
)

minimising the associated term above is

given by the solution of the one-dimensional program

minimise
αi>0

∥∥αizki +∇ziL�
(
zk, μk

)∥∥2
2
,

which is

α∗
i = −

〈
∇ziL�

(
zk, μk

)
, zk

〉∥∥zki ∥∥22 . (2.49)

In conclusion, in the case of NLP (2.44), the relative error criterion (2.41) can be written

2

�

∣∣∣∣∣
N∑
i=1

〈
wi − zki ,∇ziL�

(
zk, μ

)
−
〈
∇ziL�

(
zk, μ

)
, zki

〉∥∥zki ∥∥22 zki

〉∣∣∣∣∣ (2.50)

+
N∑
i=1

∥∥∥∥∥∇ziL�
(
zk, μ

)
−
〈
∇ziL�

(
zk, μ

)
, zki

〉∥∥zki ∥∥22 zki

∥∥∥∥∥
2

2

≤ σ
∥∥C (zk)∥∥2

2
.

For the numerical experiments reported here, we chose σ = 0.99. It is thus easy to verify if the

above inequality is satisfied at every inner iteration of Algorithm 4. One should keep in mind

that theoretical convergence guarantees of Algorithm 4 are lost when applying this criterion, as

NLP (2.44) is nonconvex. Nevertheless, it was observed that criterion (2.50) is able to significantly

reduce the number of alternating minimizations in the first outer iterations of Algorithm 4 without

compromising convergence, as shown in Fig. 2.6. In order to assess the performance of Algo-

rithm 4, we generate large-scale nonconvex QPs, either by increasing the number of subvariables

N or increasing their dimension d. Results are presented in Table 2.1. We compare against the

nonlinear solver IPOPT [152] with the linear solver MA27. The stopping tolerance in IPOPT was
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Figure 2.6

set to 10−7. It appears that the number of inner iterations can be kept constant at a relatively small

number (100 in our case) without hampering convergence of the outer loop. As the problem di-

mension increases, the number of outer iterations required to satisfy a specified feasibility level

increases. One can also observe that the number of iterations taken by IPOPT varies significantly

from one problem instance to another. The total number of iterations in IPOPT is smaller than

the total number of alternating minimisations in Algorithm 4. However, each of these iterations

is far more costly and harder to decompose, as it consists in solving a linear system via a direct

method. From Table 2.1, one can observe that IPOPT provides a lower objective value and tighter

satisfaction of the equality constraints upon convergence. Thus, our decomposition-coordination

algorithm is advisable when a moderate level of optimality is required.
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12
4

20
5

20
0

5
5

10
0

20
8.
36

·1
0−

5
−
6.
36

·1
04

1.
83

·1
0−

1
4

−
6.
56

·1
04

33
5

20
5

30
0

5
5

10
0

20
6.
70

·1
0−

5
−
9.
56

·1
04

2.
25

·1
0−

1
4

−
9.
80

·1
04

32
3

20
5

40
0

5
5

10
0

12
3.
52

·1
0−

5
−
1.
27

·1
05

2.
56

·1
0−

1
4

−
1.
31

·1
05

37
2

20
15

10
0

5
5

10
0

26
7.
17

·1
0−

5
−
1.
46

·1
04

2.
63

·1
0−

1
4

−
1.
73

·1
04

19
5

20
15

20
0

5
5

10
0

66
9.
83

·1
0−

5
−
2.
95

·1
04

3.
68

·1
0−

1
4

−
3.
49

·1
04

34
5

20
15

30
0

5
5

10
0

60
8.
69

·1
0−

5
−
4.
60

·1
04

4.
73

·1
0−

1
4

−
5.
32

·1
04

38
1

Table 2.1: Results of Algorithm 4 applied to problems of the form (2.44) for varying N . The outer

loop of Algorithm 4 is aborted when the 2-norm of the linear coupling constraints reaches 10−4.
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2.2 Trust Region with Alternating Projections (TRAP)

In this section, we introduce a novel decomposition technique that can be applied to the aug-

mented Lagrangian subproblems. Like any first order method, the performance of the alternating

direction method introduced in the previous section is generally sensitive to the problem condition-

ing. However, as the outer loop converges, the augmented Lagrangian subproblems are becoming

increasingly ill-conditioned and a tighter satisfaction of the optimality conditions is required to

guarantee convergence. Thus, a method with robust and fast local convergence properties is re-

quired as an inner solver. The alternating minimisations strategy described above does not provide

such guarantees. In order to ensure fast local convergence, a Newton model is generally a first

step. Yet, the distributed Newton subproblem should also be solved by means of a decomposi-

tion method. In principle, if the Newton subproblem is convex, Lagrangian dual decomposition

strategies can be used [23]. A major drawback of this approach is that the local convergence rate of

splitting techniques is at best linear [81, 142]. In practice, although the speed of convergence can be

enhanced by means of well-chosen preconditioners [70] or smoothing techniques [149], arbitrarily

bad performance can be obtained in terms of accuracy and speed, especially when the problem

data changes at every iteration rendering preconditioning hard. As a result, decomposition strate-

gies from the convex world should be considered as bad candidates for solving distributed Newton

subproblems arising in an SCP scheme. Dual Newton strategies [103] are probably more suitable

for this, but there is a lack of numerical experience regarding their performance when used in SQP

schemes, as well as preconditioning. A better choice for a distributed inner algorithm seems to be

the conjugate gradient [139], as it is based on sparse structured matrix-vector products, which can

be easily implemented on distributed platforms, and is guaranteed to converge after a finite number

of iterations. Moreover, with safeguarding mechanisms, it can be applied to solve indefinite linear

systems in a trust region framework [145].

Another important point is that the Newton algorithm may fail to converge from remote starting

point. Therefore, a globalisation mechanism, such as trust region or line search, is required. Line

search requires repeated evaluations of a merit function along a descent direction, which can be

cumbersome in a distributed context, as it requires multiple synchronisations per iteration. On

the contrary, a trust region procedure necessitates one single evaluation of a merit function per

iteration, which is likely to be more efficient in a distributed context where communication is ex-

pensive. These considerations lead us to consider trust region methods [145, 119] as a good starter

for a distributed nonconvex solver.

Next, we present and analyse a novel trust region strategy applicable to linearly constrained

nonlinear programs. Compared to related existing methods, the main novelty is in the Cauchy

point computation. Instead of computing a centralised gradient step via projected search, as done
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in a standard trust region approach, we resort to the alternating minimisation method described in

the previous section to compute a Cauchy point.

2.2.1 A trust region algorithm with distributed activity detection

2.2.1.1 Algorithm formulation

The problem we consider is that of minimising a partially separable objective function subject to

separable convex constraints.

minimise
w

L (w1, . . . , wN) (2.51)

s. t. wi ∈ Wi, ∀i ∈ {1, . . . , N} ,

where w := (w�
1 , . . . , w

�
N)

� ∈ Rn, with n =
∑N

i=1 ni, and W := W1 × . . . × WN , where

the sets Wi ⊂ Rni are closed and convex. The following Assumption is standard in distributed

computations [17].

Assumption 2.9 (Colouring scheme). There exists a colouring of the dependency graph of the

Gauss-Seidel sweep on the objective function L with K � N colours and no positive cycle with

all variables w1, . . . , wN in the same colour.

Consequently, by Lemma 1.5, the sub-variables w1, . . . , wN can be re-ordered and grouped

together in such a way that a Gauss-Seidel minimisation sweep on the function L can be per-

formed in parallel within K � N groups, which are updated sequentially. In the sequel, the

re-ordered variable is denoted by x = (x�
1 , . . . , x

�
K)

�
. The set W is transformed accordingly into

Ω = Ω1 × . . . × ΩK . It is worth noting that each set Ωk with k ∈ {1, . . . , K} can then be decom-

posed further into sets Wi with i ∈ {1, . . . , N}.Hence, NLP (2.51) is equivalent to

minimise
x

L (x1, . . . , xK)

s. t. xk ∈ Ωk, ∀k ∈ {1, . . . , K} .

Remark 2.5. Such a partially separable structure in the objective (Assumption 2.9) is encountered

very often in practice, for instance when relaxing network coupling constraints via an augmented

Lagrangian penalty. Thus, by relaxing the nonlinear coupling constraint C (w1, . . . , wN) = 0 and
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the local equality constraints gi (wi) = 0 of

minimise
w1,...,wN

N∑
i=1

fi (wi)

s. t. C (w1, . . . , wN) = 0

gi (wi) = 0, i ∈ {1, . . . , N}
wi ∈ Wi, i ∈ {1, . . . , N} ,

in a differentiable penalty function, one obtains an NLP of the form (2.51). In NLPs resulting from

the direct transcription of optimal control problems, the objective is generally separable and the

constraints are stage-wise with a coupling between the variables at a given time instant with the

variables of the next time instant. In this particular case, the number of groups is K = 2. In Sec-

tion 2.2.3, we illustrate this property by means of examples arising from various formulations of

the Optimal Power Flow (OPF) problem. The number of colours K represents the level of par-

allelism that can be achieved in a Gauss-Seidel method for solving (2.51). Thus, in the case of a

discretised OCP, an alternating projected gradient sweep can be applied in two steps during which

all updates are parallel.

For the sake of exposition, in order to make the distributed nature of our algorithm apparent,

we assume that every sub-variable wi, with i ∈ {1, . . . , N}, is associated with a computing node

insofar as possible. One should note that it may be difficult to make the association of the comput-

ing nodes respect the coupling topology. Two nodes are called neighbours if they are coupled in

the objective L. Our goal is to find a first-order critical point of NLP (2.51) via an iterative proce-

dure for which we are given an initial feasible point x0 ∈ Ω. The iterative method described next

aims at computing every iterate in a distributed fashion, which requires communications between

neighbouring nodes and leads to a significant level of concurrency.

Assumption 2.10. The objective function L is bounded below on {x ∈ Ω : L(x) ≤ L(x0)}.

The algorithm formulation can be done for any convex set Ω, but some features are more suit-

able for linear inequality constraints.

Assumption 2.11 (Polyhedral constraints). For all k ∈ {1, . . . , K}, the set Ωk is a non-empty

polyhedron, such that

Ωk := {x ∈ Rnk : 〈ωk,i, x〉 ≤ hk,i, i ∈ {1, . . . ,mk}} ,

with ωk,i ∈ Rnk , hk,i ∈ R for all i ∈ {1, . . . ,mk} and nk,mk ≥ 1.
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Assumption 2.12. The objective function L is continuously differentiable in an open set containing

Ω. Its gradient ∇L is uniformly continuous.

It is well-known [36] that for problem (2.51), x∗ being a critical point is equivalent to

PΩ (x∗ −∇L (x∗)) = x∗ . (2.52)

Algorithm 5 below is designed to compute a critical point x∗ of the function L + ιΩ. It is essen-

tially a two-phase approach, in which an active-set is first computed and then, a quadratic model

is minimised approximately on the current active face. Standard two-phase methods compute the

active-set by means of a centralised projected search, updating all variables centrally. More pre-

cisely, a model of the objective is minimised along the projected objective gradient, which yields

the Cauchy point. The model decrease provided by the Cauchy point is then enhanced in a refine-

ment stage. Similarly to a two-phase method, in order to globalise convergence, Algorithm 5 uses

the standard trust region mechanism. At every iteration, a model m of the objective function L is

constructed around the current iterate x as follows

m (x′) := L (x) + 〈∇L (x) , x′ − x〉+ 1

2
〈x′ − x,B (x) (x′ − x)〉 , (2.53)

where x′ ∈ Rn and B (x) is a symmetric matrix.

Assumption 2.13 (Uniform bound on model hessian). There exists B̂ > 0 such that

‖B (x)‖2 ≤ B̂ ,

for all x ∈ Ω.

The following Assumption is necessary to ensure distributed computations in Algorithm 5. It

is specific to Algorithm 5 and does not appear in the standard trust region methods [26].

Assumption 2.14 (Structured model hessian). For all i, j ∈ {1, . . . , n}, Bi,j (x) = 0 for all x ∈ Ω

if and only if the gradient of the objective function L with respect to the group of variables indexed

by i does not depend on group j for all x ∈ Ω.

Remark 2.6. It is worth noting that the partial separability structure of the objective function L

is transferred to the sparsity pattern of the model hessian B. Hence, a Gauss-Seidel sweep on the

model function m can also be carried out in K parallel steps.

The main characteristic of TRAP is the activity detection phase, which differs from the pro-

jected search in standard trust region methods [26]. At every iteration, TRAP updates the current
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Algorithm 5 Trust Region Algorithm with Alternating Projections (TRAP)

1: Constants: Initial trust region radius Δ, update parameters σ1, σ2 and σ3 such that 0 < σ1 <
σ2 < 1 < σ3, test ratios η1 and η2 such that 0 < η1 < η2 < 1, coefficients γ1 ∈ ]0, 1[ and

γ2 > 0, termination tolerance ε.
2: Input: Initial guess x, projection operators {PΩk

}Kk=1, objective function L, objective gradient

∇L.

3: while ‖PΩ (x−∇L (x))− x‖2 > ε do
4: Distributed activity detection (alternating gradient projections):
5: for k = 1 . . . , K do
6: zk ← PΩk

(
xk − αk∇km

(
z[[1,k−1]], xk, x[[k+1,K]]

))
, � In parallel in group k

7: where αk is computed according to requirements (2.55), (2.56) and (2.57).

8: end for
9: Distributed refinement (Algorithm 6):

10: Find y ∈ Ω such that

11: m (x)−m (y) ≥ γ1 (m (x)−m (z))
12: ‖y − x‖∞ ≤ γ2Δ
13: AΩk

(zk) ⊂ AΩk
(yk) for all k ∈ {1, . . . , K}.

14: Trust region update:
15: ρ← L(x)−L(y)/m(x)−m(y)

16: if ρ < η1 then � Not successful

17: (Do not update x)
18: Take Δ within [σ1Δ, σ2Δ]
19: else if ρ ∈ [η1, η2] then � Successful

20: x← y
21: Take Δ within [σ1Δ, σ3Δ]
22: Update objective gradient ∇L (x) and model hessian B (x).
23: else � Very successful

24: x← y
25: Take Δ within [Δ, σ3Δ]
26: Update objective gradient ∇L (x) and model hessian B (x)
27: end if
28: end while

active-set by computing iterates z1, . . . , zK (Lines 4 to 8). This is the main novelty of TRAP, com-

pared to existing two-phase techniques, and allows for different step-sizes α1, . . . , αK per block of

variables, which is relevant in a distributed framework, as the current active-set can be split among

nodes and does not need to be computed centrally. In the trust region literature, the point

z := (z�
1 , . . . , z

�
K)

� , (2.54)

is often referred to as the Cauchy point. We keep this terminology in the remainder of the chap-

ter. It is clear from its formulation that TRAP allows one to compute Cauchy points via independent
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projected searches on every node. Once the Cauchy points z1, . . . , zK have been computed, they

are used in the refinement step to compute a new iterate y that satisfies the requirements shown

from Lines 10 to 13. The last step consists in checking if the model decrease m(y)−m(x) is suffi-

ciently close to the variation in the objective L (Lines 16 to 27). In this case, the iterate is updated

and the trust region radius Δ increased, otherwise the radius is shrunk and the iterate frozen. This

operation requires a global exchange of information between nodes.

In the remainder, the objective gradient ∇L (x) is denoted by g (x). The model function m

is an approximation of the objective function L around the current iterate x. The quality of the

approximation is controlled by the trust region, defined as the box

B (x−Δ, x+Δ) ,

where Δ is the trust region radius.

In the rest of the chapter, we denote the Cauchy points by zk or zk (αk) without distinction,

where αk are appropriately chosen step-sizes. More precisely, following Section 3 in [26], in TRAP,

the block-coordinate step-sizes αk are chosen so that for all k ∈ {1, . . . , K}, the Cauchy points zk

satisfy⎧⎪⎪⎨⎪⎪⎩
m
(
z[[1,k−1]], zk, x[[k+1,K]]

)
≤ m

(
z[[1,k−1]], xk, x[[k+1,K]]

)
+ ν0

〈
∇km

(
z[[1,k−1]], xk, x[[k+1,K]]

)
, zk − xk

〉
‖zk − xk‖∞ ≤ ν2Δ ,

, (2.55)

with ν0 ∈ ]0, 1[ and ν2 > 0, where z[[1,k−1]] stands for
(
z�
1 , . . . , z

�
k−1

)�
, along with the condition

that there exists positive scalars ν1 < ν2, ν3, ν4 and ν5 for all k ∈ {1, . . . , K},

αk ∈ [ν4, ν5] or αk ∈ [ν3α̃k, ν5] (2.56)

where the step-sizes α̃k are such that one of the following conditions hold for every k ∈ {1, . . . , K},

m
(
z[[1,k−1]], zk (α̃k) , x[[k+1,K]]

)
> m

(
z[[1,k−1]], xk, x[[k+1,K]]

)
(2.57)

+ ν0
〈
∇km

(
z[[1,k−1]], xk, x[[k+1,K]]

)
, zk (α̃k)− xk

〉
,

or

‖zk (α̃k)− xk‖∞ ≥ ν1Δ , (2.58)

Conditions (2.55) ensure that the step-sizes αk are sufficiently small to enforce a sufficient decrease
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coordinate-wise, as well as containment within a scaled trust region. Conditions (2.56), (2.57)

and (2.58) guarantee that the step-sizes αk do not become arbitrarily small. All conditions (2.55), (2.56)

and (2.57) can be tested in parallel in each of theK groups of variables. In the next two paragraphs,

the choice of step-sizes αk ensuring the sufficient decrease is clarified, as well as the distributed

refinement step. In paragraph 2.2.2 next, the convergence properties of TRAP are analysed. Numer-

ical examples are presented in paragraph 2.2.3.

2.2.1.2 Step-sizes computation in the activity detection phase

At a given iteration of TRAP, the step-sizes αk are computed by backtracking to ensure a sufficient

decrease at every block of variables and coordinate-wise containment in a scaled trust region as

formalised by (2.55). It is worth noting that the coordinate-wise backtracking search can be run in

parallel among the variables of group k, as they are decoupled from each other. As a result, there

is one step-size per sub-variable wi in group k. Yet, for simplicity, we write it as a single step-size

αk. The reasoning of paragraph 2.2.2 can be adapted accordingly. The following Lemma shows

that a coordinate-wise step-size αk can be computed that ensures conditions (2.55), (2.56), (2.57)

and (2.58) on every block of coordinates k ∈ {1, . . . , K}.

Lemma 2.6. Assume that Assumption 2.13 holds. For all k ∈ {1, . . . , K}, an iterate zk satisfying

conditions (2.55), (2.56), (2.57) and (2.58) can be found after a finite number of backtracking

iterations.

Proof. Let k ∈ {1, . . . , K}. We first show that for a sufficiently small αk, conditions (2.55) are

satisfied. By definition of the Cauchy point zk,

zk = argmin
z∈Ωk

〈
∇km

(
z[[1,k−1]], xk, x[[k+1,K]]

)
, z − xk

〉
+

1

2αk
‖z − xk‖22 ,

which implies that

〈
∇km

(
z[[1,k−1]], xk, x[[k+1,K]]

)
, zk − xk

〉
+

1

2αk
‖zk − xk‖22 ≤ 0 ,

Hence, as ν0 ∈ ]0, 1[, it follows that

〈
∇km

(
z[[1,k−1]], xk, x[[k+1,K]]

)
, zk − xk

〉
+

1− ν0
2αk

‖zk − xk‖22 ≤

ν0
〈
∇km

(
z[[1,k−1]], xk, x[[k+1,K]]

)
, zk − xk

〉
.

However, from the descent Lemma, which can be applied since the model gradient is Lipschitz
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continuous by Assumption 2.13,

m
(
z[[1,k−1]], zk, x[[k+1,K]]

)
≤ m

(
z[[1,k−1]], xk, x[[k+1,K]]

)
+
〈
∇km

(
z[[1,k−1]], xk, x[[k+1,K]]

)
, zk − xk

〉
+
B̂

2
‖zk − xk‖22 .

By choosing

αk ≤
1− ν0

B̂
,

condition (2.55) is satisfied after a finite number of backtracking iterations. Denoting by qk the

smallest integer such that requirement (2.55) is met, αk can be written

αk = cqk · α(0) ,

where c ∈ ]0, 1[ and α(0) > 0. Then, condition (2.56) is satisfied with ν4 = α(0) and ν3 = c.

Lemma 2.6 is very close to Theorem 4.2 in [115], but the argument regarding the existence of

the step-sizes αk is different.

2.2.1.3 Distributed computations in the refinement step

In Algorithm 5, the objective gradient g (x) and model hessian B (x) are updated after every suc-

cessful iteration. This task requires exchanges of variables between neighbouring nodes, as the

objective is partially separable (Ass. 2.9). Node i only needs to store the sub-part of the objective

function L that combines its variable wi and the variables associated to its neighbours. However,

the refinement step (line 10 to 13 in Algorithm 5), in which one obtains a fraction of the model

decrease yielded by the Cauchy points z1, . . . , zK , should also be computed in a distributed man-

ner. As detailed next, this phase consists in solving the Newton problem on the subspace of free

variables at the current iteration, which is defined as the set of free variables at the Cauchy points

z1, . . . , zK . In order to achieve a reasonable level of efficiency in the trust region procedure, this

step is generally performed via the Steihaug-Toint CG, or sCG [145]. The sCG algorithm is a CG

procedure that is cut if a negative curvature direction is encountered or a problem bound is hit in

the process. Another way of improving on the Cauchy point to obtain fast local convergence is

the Dogleg strategy [119]. However, this technique requires the model hessian B to be positive

definite [119]. This condition does not fit well with distributed computations, as positive definite-

ness is typically enforced by means of BFGS updates, which are known for not preserving the

sparsity structure of the objective without non-trivial modifications and assumptions [155]. Com-
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pared to direct methods, iterative methods such as the sCG procedure have clear advantages in a

distributed framework, for they do not require assembling the hessian matrix on a central node. Fur-

thermore, their convergence speed can be enhanced via block-diagonal preconditioning, which is

suitable for distributed computations. In the sequel, we briefly show how a significant level of dis-

tributed operations can be obtained in the sCG procedure, mainly due to the sparsity structure of

the model hessian that matches the partial separability structure of the objective function. More

details on distributed implementations of the CG algorithm can be found in numerous research pa-

pers [151, 45, 56]. The sCG algorithm that is described next is a rearrangement of the standard sCG

procedure following the idea of [45]. The two separate inner products that usually appear in the CG

are grouped together at the same stage of the algorithm.

An important feature of the refinement step is the increase of the active set at every itera-

tion. More precisely, in order to ensure finite detection of activity, the set of active constraints at

the points y1, . . . , yK , obtained in the refinement phase, needs to contain the set of active con-

straints at the Cauchy points z1, . . . , zK , as formalised at line 13 of Algorithm 5. This requirement

is very easy to fulfil when Ω is a bound constraint set, as it just requires enforcing the constraint

yk,i = zk,i, i ∈
{
j ∈ {1, . . . , nk} : zk,j = xk,j or x̄k,j

}
for all groups k ∈ {1, . . . , K} in the trust region problem at the refinement step.

For the convergence analysis that follows in paragraph 2.2.2, the refinement step needs to be

modified compared to existing trust region techniques. Instead of solving the standard refinement

problem

minimise
p

〈g (x) , p〉+ 1

2
〈p,B (x) p〉

s. t. ‖p‖∞ ≤ γ2Δ

x+ p ∈ Ω

AΩ (z) ⊆ AΩ (x+ p) ,

in which the variables corresponding to indices of active constraints at the Cauchy point z are fixed

to zero, we solve a regularised version

minimise
y∈Ω

〈g (x) , y − x〉+ 1

2
〈y − x,B (x) (y − x)〉+ σ

2
‖y − z‖22 (2.59)

s. t. ‖y − x‖∞ ≤ γ2Δ

AΩ (z) ⊆ AΩ (y) ,
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where σ ∈ ]σ, σ̄[ with σ > 0, and z is the Cauchy point yielded by the procedure described in

the previous paragraph 2.2.1. The regularisation coefficient σ should not be chosen arbitrarily, as it

may inhibit the fast local convergence properties of the Newton method. This point is made explicit

in paragraph 2.2.2. The regularised trust region subproblem (2.59) can be equivalently written

minimise
p

〈gσ (x) , p〉+
1

2
〈p,Bσ (x) p〉 (2.60)

s. t. x+ p ∈ Ω

‖p‖∞ ≤ γ2Δ

AΩ (z) ⊆ AΩ (x+ p) ,

with

gσ (x) := g (x)− σ(z − x), Bσ (x) := B (x) +
σ

2
I . (2.61)

As in standard trust region methods, we solve the refinement subproblem (2.60) by means of CG

iterations, which can be distributed as a result of Assumption 2.14. In order to describe this stage

in Algorithm 6, one needs to assume that Ω is a box constraint set. In the remainder, we denote by

Z the matrix whose columns are an orthonormal basis of the subspace

V (z) := {x ∈ Rn : 〈ωk,i, xk〉 = 0, i ∈ AΩk
(zk) , k ∈ {1, . . . , K}} .

Remark 2.7. It is worth noting that the requirement m(x) − m(y) ≥ γ1 (m(x)−m(z)), with

γ1 < 1, is satisfied after all iteration of Algorithm 6, as the initial guess is the Cauchy point z and

the sCG iterations ensure monotonic decrease of the regularised model (Theorem 2.1 in [145]).

Remark 2.8. It is worth noting that the sparsity pattern of the reduced model hessian Bσ has the

same structure as the sparsity pattern of the model hessian B, as the selection matrix Z has a

block-diagonal structure. Moreover, the partial separability structure of the objective matches the

sparsity patterns of both the hessian and the reduced hessian. For notational convenience, Algo-

rithm 6 is written in terms of variables x1, . . . , xK , but it is effectively implementable in terms of

variablesw1, . . . , wN . The inner products (Lines 6 to 8) and updates (Lines 11 to 14, lines 20 to 22)

can be computed in parallel at every node, as well as the structured matrix-vector product (Line 5).

In Algorithm 6, the reduced model hessian B̂ can be evaluated when computing the product at

line 5, which requires local exchanges of vectors between neighbouring nodes, since the sparsity
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Algorithm 6 Distributed Safeguarded Conjugate Gradient (sCG)

1: Input: reduced model hessian B̂σ := Z�BσZ, reduced gradient ĝ := Z�g, initial guess ẑ :=
Z�z

2: Parameters: stopping tolerance ε̂ := ξ ‖ĝ‖2 with ξ ∈ ]0, 1[

3: Initialise x̂, p̂, v̂, r̂, t̂ and ûprev via a standard sCG iteration using z, x, Z, Bσ, B̂σ and ĝ
4: while û > ε̂2 and t̂ > 0 do
5: Compute structured matrix-vector product ŝ← B̂σr̂ � Local communications

6: for k = 1 . . . K do � In parallel among K groups

7: Compute 〈r̂k, r̂k〉 and 〈r̂k, ŝk〉
8: end for
9: û←∑K

i=k 〈r̂k, r̂k〉, δ̂ ←
∑K

k=1 〈r̂k, ŝk〉 � Global summations

10: Compute step-sizes β̂ ← û/ûprev and t̂← δ̂ − β̂2t̂
11: for k = 1 . . . K do � In parallel among K groups

12: Update conjugate direction p̂k ← r̂k + β̂p̂k and v̂k ← ŝk + β̂v̂k
13: Compute smallest step-size ak such that x̂k + akp̂k hits a bound xk, x̄k or the trust

region boundary

14: end for
15: if t̂ ≤ 0 then � Negative curvature check

16: Compute step-size â← min {a1, . . . , aK} to hit boundary of B (x−Δ, x+Δ) ∩ Ω
17: else
18: Compute standard CG step-size â← û/t̂
19: end if
20: for k = 1 . . . K do � In parallel among K groups

21: Update iterate x̂k ← x̂k + âp̂k and residual r̂k ← r̂k − âv̂k
22: end for
23: ûprev ← û
24: end while
25: Output: y ← z + Z(x̂− ẑ)

pattern of B̂ represents the coupling structure in the objective L. From a distributed implementa-

tion perspective, the more costly parts of the refinement procedure 6 are at line 9 and line 16. These

operations consist in summing up the inner products from all nodes and a minimum search over

the step-sizes that ensure constraint satisfaction and containment in the trust region. They need to

be performed on a central node that has access to all data from other nodes, or via a consensus

algorithm. Therefore, lines 9 and 16 come with a communication cost, although the amount of

transmitted data is very small (one scalar per node). In the end, one should notice that the informa-

tion that is required to be known globally by all nodes {1, . . . , N} is fairly limited at every iteration

of TRAP. It only consists of the trust region radius Δ and the step-sizes â and β̂ in the refinement

step 6. Finally, at every iteration, all nodes need to be informed of the success or failure of the

iteration so as to update or freeze their local variables. This is the result of the trust region test,
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β̂

â

zNj , xNj
Nj

r̂Nj
Nj

zj

Nj

Nj
r̂j

zj ← PΩj (xj − αj∇mj (xj))

ŝj ← Ej B̂σE�[[Nj ]]r̂Nj

r̂�j r̂j r̂�j ŝj

p̂j ← r̂j + β̂p̂j
v̂j ← ŝj + β̂v̂j

aj

x̂j ← x̂j + âp̂j
r̂j ← r̂j − âv̂j

Figure 2.7: Workflow at node j in terms of local computations, communications with the set of

neighbours Nj and a central node. Note that we use the index j for a node, and not k, which cor-

responds to a group of nodes, in which computations are performed in parallel. Thus, the nodes

in the set Nj are not in the same group as node j. Thick arrows represent communications in-

volving vectors, whereas thin arrows stand for communications of scalars. Matrix Ej is defined at

Eq. (2.66).

which needs to be carried out on a central node. In Figure 2.7, we give a sketch of the workflow at

a generic node j. One can notice that, in terms of local computations, TRAP behaves as a standard

two-phase approach on every node.

2.2.2 Convergence analysis

The analysis of TRAP that follows is along the lines of the convergence proof of trust region meth-

ods in [26], where the Cauchy point is computed via a projected search, which involves a sequence

of evaluations of the model function on a central node. However, for TRAP, the fact that the Cauchy

point is yielded by a distributed projected gradient step on the model function requires some modi-

fications in the analysis. Namely, the lower bound on the decrease in the model and the upper bound

on criticality at the Cauchy point are expressed in a rather different way. However, the arguments

behind the global convergence proof are essentially the same as in [26].

In this section, for theoretical purposes only, another first-order criticality measure different

from (2.52) is used. We utilise the condition that x∗ ∈ Ω is a first-order critical point if the pro-

jected gradient at x∗ is zero,

∇ΩL (x∗) = 0 , (2.62)
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where, given x ∈ Ω, the projected gradient is defined as

∇ΩL (x) := PTΩ(x) (−g (x)) .

Discussions on this first-order criticality measure can be found in [36]. It is equivalent to the stan-

dard optimality condition

〈g (x∗) , x− x∗〉 ≥ 0, for all x ∈ Ω . (2.63)

It follows from Moreau’s decomposition that a point x∗ satisfying (2.62) automatically satis-

fies (2.52). Consequently, it is perfectly valid to use (2.52) for the convergence analysis of TRAP.

2.2.2.1 Global convergence to first-order critical points

We start with an estimate of the block-coordinate model decrease provided by the Cauchy points

zk, k ∈ {1, . . . , K}, of Algorithm 5. For this purpose, we define for all k ∈ {1, . . . , K},

mk (x
′) := m

(
z[[1,k−1]], x

′, x[[k+1,K]]

)
, (2.64)

where x′ ∈ Rnk . This corresponds to the model function evaluated at x′ with the block-coordinates

1 to k− 1 being fixed to the associated Cauchy points z1, . . . , zk−1 and the block-coordinates k+1

to K having values xk+1, . . . , xK . Note that by definition of the function mk,

mk (zk) = mk+1 (xk+1) ,

for all k ∈ {1, . . . , K − 1}.

Lemma 2.7. There exists a constant χ > 0 with respect to the iteration index k, such that, for all

k ∈ {1, . . . , K},

mk (xk)−mk (zk) ≥ χ
‖zk − xk‖2

αk
min

{
Δ,

1

1 + ‖B(x)‖2
‖zk − xk‖2

αk

}
. (2.65)

Proof. The proof goes along the same lines as the one of Theorem 4.3 in [115]. Yet, some argu-

ments differ, due to the alternating projections. We first assume that condition (2.55) is satisfied

with

αk ≥ ν4 .

Using the variational characterisation of the projection onto a closed and convex set (2.63), we
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obtain

mk (xk)−mk (zk) ≥ ν0ν4
‖zk − xk‖22

α2
k

.

We then consider the second case in (2.56) when

αk ≥ ν3α̃k .

The first possibility (2.57) is then

mk (zk (α̃k))−mk (xk) > ν0 〈∇mk (xk) , zk (α̃k)− xk〉 .

However, by definition of the model function in Eq. (2.53), the left-hand side term in the above

inequality is equal to

〈gk (x) , zk (α̃k)− xk〉+
1

2
〈zk (α̃k)− xk, EkB (x)E�

k (zk (α̃k)− xk)〉

+
〈
z̃[[1,k−1]] − x[[1,k−1]], E[[1,k−1]]B (x)E�

k (z̃k − xk)
〉

=
1

2
〈zk (α̃k)− xk, EkB (x)E�

k (zk (α̃k)− xk)〉+ 〈∇mk (xk) , zk (α̃k)− xk〉 ,

where, given k ∈ {1, . . . , K}, the matrix Ek ∈ Rnk×n is such that for i ∈ {1, . . . , nk},

Ek (i, n1 + . . .+ nk−1 + i) = 1 , (2.66)

and all other entries are zero. This yields, by the Cauchy-Schwarz inequality

‖B (x)‖2
2

‖zk (α̃k)− xk‖22 > − (1− ν0) 〈∇mk (xk) , zk (α̃k)− xk〉

≥ 1− ν0
α̃k

‖zk (α̃k)− xk‖22

Hence,

α̃k ≥
2 (1− ν0)

1 + ‖B (x)‖2
.

The second possibility (2.58) is

‖zk (α̃k)− xk‖∞ ≥ ν1Δ .
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For this case, [115] provides the lower bound

‖zk − xk‖2 ≥ ν3ν1Δ .

Finally, inequality (2.65) holds with

χ := ν0 min {ν4, 2 (1− ν0) ν3, ν3ν1} .

From Lemma 2.7, an estimate of the decrease in the model provided by the Cauchy point z is

derived.

Corollary 2.1 (Sufficient decrease). The following inequality holds

m (x)−m (z) ≥ χ

K∑
k=1

‖zk − xk‖2
αk

min

{
Δ,

1

1 + ‖B (x)‖2
‖zk − xk‖2

αk

}
. (2.67)

Proof. This is a direct consequence of Lemma 2.7 above, as

m (x)−m (z) =
K∑
k=1

mk (xk)−mk (zk) .

from the definition of mk in Eq. (2.64).

In a similar manner to [26], the level of criticality reached by the Cauchy point z is measured by

the norm of the projected gradient of the objective, which can be upper bounded by the difference

between the current iterate x and the Cauchy point z.

Lemma 2.8 (Relative error condition). The following inequality holds

‖∇ΩL (z)‖2 ≤ K ‖B (x)‖2 ‖z − x‖2 +
K∑
k=1

(‖zk − xk‖2
αk

+ ‖gk (z)− gk (x)‖2
)

, (2.68)

where gk stands for ∇kL.

Proof. From the definition of zk as the projection of

xk − αk∇mk (xk)
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onto the closed convex set Ωk, there exists vk ∈ NΩk
(zk) such that

0 = vk +∇mk (xk) +
zk − xk
αk

.

Hence,

‖vk + gk (z)‖2 ≤ ‖gk (z)− gk (x)‖2 + ‖B (x)‖2 ‖z − x‖2 +
‖zk − xk‖2

αk

However, ∥∥∥PNΩk
(zk) (−gk (z)) + gk (z)

∥∥∥
2
≤ ‖vk + gk (z)‖2 ,

and by Moreau’s decomposition theorem,

−gk (z) = PNΩk
(zk) (−gk (z)) + PTΩk

(zk) (−gk (z)) .

Thus, ∥∥∥PTΩk
(zk) (−gk (z))

∥∥∥
2
≤ ‖gk (z)− gk (x)‖2 + ‖B (x)‖2 ‖z − x‖2 +

‖zk − xk‖2
αk

.

As the sets {Ωk}Kk=1 are closed and convex,

TΩ (z) = TΩ1 (z1)× . . .× TΩK
(zK) .

Subsequently,

‖∇ΩL (z)‖2 ≤
K∑
k=1

∥∥∥PTΩk
(zk) (−gk (z))

∥∥∥
2

and inequality (2.68) follows.

Based on the estimate of the model decrease (2.67) and the relative error bound (2.68) at

the Cauchy point z, one can follow the standard proof mechanism of trust region methods quite

closely [26]. Most of the steps are proven by contradiction, assuming that criticality is not reached. The

nature of the model decrease (2.67) is well-suited to this type of reasoning. Hence, most of the ideas

of [26] can be adapted to our setting.

Lemma 2.9. If Assumptions 2.10, 2.12 and 2.13 are satisfied, then the sequence of iterates yielded
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by Algorithm 5 satisfies that for all k ∈ {1, . . . , K},

lim inf
‖zk − xk‖2

αk
= 0 , (2.69)

Proof. For the sake of contradiction, assume that there exists a block index k0 ∈ {1, . . . , K} and

ε > 0 such that ∥∥zlk0 − xlk0
∥∥
2

αlk0
≥ ε

for all iteration indices l ≥ 1. Using Corollary 2.1, the standard proof mechanism of trust region

methods [26] can be easily adapted to obtain (2.69).

We are now ready to state the main Theorem of this section. It is claimed that all limit points

of the sequence
{
xl
}

generated by TRAP are critical points of (2.51).

Theorem 2.3 (Limit points are critical points). Assume that Assumptions 2.10, 2.12 and 2.13

hold. If x∗ is a limit point of
{
xl
}

, then there exists a subsequence {li} such that⎧⎨⎩ lim
i→+∞

∥∥∇ΩL
(
zli
)∥∥

2
= 0

zli → x∗
. (2.70)

Moreover, ∇ΩL (x∗) = 0, meaning that x∗ is a critical point of L+ ιΩ.

Proof. Let
{
xli
}

be a subsequence of
{
xl
}

such that xli → x∗. If for all k ∈ {1, . . . , K}∥∥zlik − xlik
∥∥
2

αlik
→ 0 , (2.71)

then the proof is complete, via Lemma 2.8 and the fact that the step-sizes αk are upper bounded

by ν5. In order to show (2.71), given ε > 0 one can assume that there exists k0 ∈ {1, . . . , K} such

that for all i ≥ 1,
∥∥∥zlik0−x

li
k0

∥∥∥
2/α

li
k0

≥ ε. One can then easily combine the arguments in the proof of

Theorem 5.4 in [26] with Corollary 2.1 and Lemma 2.8 in order to obtain (2.70).

Theorem 2.3 above proves that all limit points of the sequence
{
xl
}

generated by TRAP are

critical points. It does not actually claim convergence of
{
xl
}

to a single critical point. However,

such a result can be obtained under standard regularity assumptions [119], which ensure that a

critical point is an isolated local minimum.
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Assumption 2.15 (Strong second-order optimality condition). The objective function L is twice

continuously differentiable and its hessian ∇2L (x) is denoted byH (x). The sequence
{
xl
}

yielded

by TRAP has a non-degenerate limit point x∗ such that for all v ∈ NΩ (x∗)⊥, where

NΩ (x∗)⊥ := {v ∈ Rn : ∀w ∈ NΩ (x∗) , 〈w, v 〉= 0} , (2.72)

one has

〈v,H (x∗) v〉 ≥ κ ‖v‖22 , (2.73)

where κ > 0.

Theorem 2.4 (Convergence to first-order critical points). If Assumptions 2.13, 2.10, 2.12 and 2.15

are fulfilled, then the sequence
{
xl
}

generated by TRAP converges to a non-degenerate critical

point x∗ of L+ ιΩ.

Proof. This is an immediate consequence of Corollary 6.7 in [26].

2.2.2.2 Active-set identification

In most of the trust region algorithms for constrained optimisation, the Cauchy point acts as a pre-

dictor of the set of active constraints at a critical point. Therefore, a desirable feature of the novel

Cauchy point computation in TRAP is finite detection of activity, meaning that the active set at the

limit point is identified after a finite number of iterations. In this paragraph, we show that TRAP is

equivalent to the standard projected search in terms of identifying the active set at the critical point

x∗ defined in Theorem 2.4.

Lemma 2.10. As Ω is a polyhedral set, given one of its faces F , there exists faces F1, . . . ,FK of

Ω1, . . . ,ΩK respectively, such that F = F1 × . . .×FK [163].

Remark 2.9. Given a point x ∈ Ω, there exists a face F of Ω such that x ∈ ri (F). The normal

cone to Ω at x is the cone generated by the normal vectors to the active constraints at x. As the set

of active constraints is constant on the relative interior of a face, one can write without distinction

NΩ (x) or N (F).

The following Lemma is similar in nature to Lemma 7.1 in [26], yet with an adaptation in order

to account for the novel way of computing the Cauchy point. In particular, it is only valid for a suf-

ficiently high iteration count, contrary to Lemma 7.1 of [26], which can be written independently

of the iteration count. This is essentially due to the fact that the Cauchy point is computed via an

alternating projected search, contrary to [26], where a centralised projected search is performed.
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Lemma 2.11. Assume that Assumptions 2.13, 2.10, 2.12 and 2.15 hold. Let x∗ be a non-degenerate

critical point of (2.51) that belongs to the relative interior of a face F∗ of Ω. Let {F∗
k}Kk=1 be faces

of {Ωk}Kk=1 such that F∗ = F∗
1 × . . .×F∗

K and thus x∗k ∈ ri (F∗
k ), for all k ∈ {1, . . . , K}.

Assume that xl → x∗. For l sufficiently large, for all k ∈ {1, . . . , K} and all αk > 0, there

exists εk > 0 such that

xlk ∈ B (x∗k, εk) ∩ ri (F∗
k ) =⇒ PΩk

(
xlk − tk∇mk

(
xlk
))

∈ ri (F∗
k ) ,

for all tk ∈ ]0, αk].

Proof. Similarly to the proof of Lemma 7.1 in [26], the idea is to show that there exists a neigh-

bourhood of x∗k such that if xlk lies in this neighbourhood, then

xlk − αk∇mk

(
xlk
)
∈ ri (F∗

k +N (F∗
k )) .

Lemma 2.11 then follows by using the properties of the projection operator onto a closed convex

set and Theorem 2.3 in [26].

For simplicity, we prove the above relation for k = 2. It can be trivially extended to all indices

k in {3, . . . , K}. Let α2 > 0 and l ≥ 1.

xl2 − α2∇m2

(
xl2
)
= xl2 − α2g2

(
xl
)
− α2E2B

(
xl
)
E�

1

(
zl1 − xl1

)
,

where the matrix Ek is defined in (2.66). As x∗ is non-degenerate,

x∗ − α2g (x
∗) ∈ ri (F∗) + ri (N (F∗)) .

However, as the sets {F∗
k}Kk=1 are convex, one has [138]

ri (F∗) = ri (F∗
1 )× . . . ri (F∗

K) and N (F∗) = N (F∗
1 )× . . .×N (F∗

K) .

Hence,

x∗2 − α2g2 (x
∗) ∈ ri (F∗

2 ) + ri (N (F∗
2 )) = int (F∗

2 +N (F∗
2 )) ,

by Theorem 2.3 in [26]. By continuity of the objective gradient g, there exists δ2 > 0 such that

∥∥xl − x∗
∥∥
2
< δ2 =⇒ xl2 − α2g2

(
xl
)
∈ int (F∗

2 +N (F∗
2 )) .
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However, as shown beforehand (Lemma 2.9),

lim
l→+∞

∥∥zl1 − xl1
∥∥
2
= 0 .

Moreover, E2B
(
xl
)
E�

1 is bounded above (Ass. 2.13), subsequently for l sufficiently large,

xl2 − α2∇m2

(
xl2
)
∈ int (F∗

2 +N (F∗
2 )) ⊆ ri (F∗

2 +N (F∗
2 )) ,

by Theorem 2.3 in [26]. Then, Lemma 2.11 follows by properly choosing the radii εk so that

K∑
k=1

ε2k =
(
min {δk}Kk=1

)2

.

We have just shown that, for a sufficiently large iteration count l, if the primal iterate xl is

sufficiently close to the critical point x∗ and on the same face F∗, then the set of active constraints

at the Cauchy point zl is the same as the set of active constraints at x∗.

Theorem 2.5. If Assumptions 2.13, 2.10, 2.12 and 2.15 are fulfilled, then the following holds

lim
l→+∞

∥∥∇ΩL
(
xl
)∥∥

2
= 0 .

Moreover, there exists l0 such that for all l ≥ l0,

AΩ

(
xl
)
= AΩ (x∗) .

Proof. The reasoning of the proof of Theorem 7.2 in [26] can be applied using Lemma 2.11 and

line 13 in Algorithm 5. The first step is to show that the Cauchy point z identifies the optimal

active set after a finite number of iterations. This is guaranteed by Theorem 2.2 in [26], since

∇ΩL
(
zl
)
→ 0 by Theorem 2.3, and the sequence

{
xl
}

converges to a non-degenerate critical

point by Theorem 2.4. Lemma 2.11 is used to show that if xl is sufficiently close to x∗, then the

Cauchy point zl remains in the relative interior of the same face, and thus the active constraints do

not change after some point.

Theorem 2.5 shows that the optimal active set is identified after a finite number of iterations,

which corresponds to the behaviour of the gradient projection in standard trust region meth-

ods. This fact is crucial for the local convergence analysis of the sequence
{
xl
}

, as a fast local

convergence rate cannot be obtained if the dynamics of the active constraints does not settle down.
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2.2.2.3 Local convergence rate

In this paragraph, we show that the local convergence rate of the sequence
{
xl
}

generated by TRAP

is almost Q-superlinear, in the case where a Newton model is approximately minimised at every

trust region iteration, that is

B = ∇2L ,

in model (2.53). Similarly to (2.61), one can define

Hσ := H +
σ

2
I . (2.74)

To establish fast local convergence, a key step is to prove that the trust region radius is ultimately

bounded away from zero. It turns out that the regularisation of the trust region problem (2.59) plays

an important role in this proof. As shown in the next Lemma 2.12, after a sufficiently large number

of iterations, the trust region radius does not interfere with the iterates and an inexact Newton step

is always taken at the refinement stage (Line 10 to 13), implying fast local convergence depending

on the level of accuracy in the computation of the Newton direction. However, Theorem 7.4 in [26]

cannot be applied here, since due to the alternating gradient projections, the model decrease at

the Cauchy point cannot be expressed in terms of the projected gradient on the active face at the

critical point.

Lemma 2.12. If Assumptions 2.13, 2.10, 2.12 and 2.15 are fulfilled, then there exists an index

l1 ≥ 1 and Δ∗ > 0 such that for all l ≥ l1, Δl ≥ Δ∗.

Proof. The idea is to show that the ratio ρ converges to one, which implies that all iterations are

ultimately successful, and subsequently, by the mechanism of Algorithm 5, the trust region radius

is bounded away from zero asymptotically. For all l ≥ 1,

∣∣ρl − 1
∣∣ =

∣∣∣∣L (yl)− L
(
xl
)
−
〈
g
(
xl
)
, yl − xl

〉
− 1

2

〈
yl − xl, H

(
xl
) (
yl − xl

)〉∣∣∣∣
m (xl)−m (yl)

. (2.75)
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However,

ml
(
xl
)
−ml

(
yl
)
= ml

(
xl
)
−ml

(
zl
)
+ml

(
zl
)
−ml

(
yl
)

≥
η

2

∥∥zl − xl
∥∥2
2
+
σ

2

∥∥yl − zl
∥∥2
2

≥
min

{
η, σ

}
2

(∥∥zl − xl
∥∥2
2
+
∥∥yl − zl

∥∥2
2

)
≥

min
{
η, σ

}
2

max
{∥∥zl − xl

∥∥2
2
,
∥∥yl − zl

∥∥2
2

}
,

and

∥∥pl∥∥
2
≤
∥∥yl − zl

∥∥
2
+
∥∥zl − xl

∥∥
2

≤ 2max
{∥∥yl − zl

∥∥
2
,
∥∥zl − xl

∥∥
2

}
.

Hence,

ml
(
xl
)
−ml

(
yl
)
≥

min
{
η, σ

}
8

∥∥pl∥∥2
2
.

Moreover, using the mean-value theorem, one obtains that the numerator in (2.75) is smaller than

1

2
ψl
∥∥pl∥∥2

2
,

where

ψl := sup
τ∈[0,1]

∥∥H (
xl + τpl

)
−H

(
xl
)∥∥

2
. (2.76)

Subsequently, we have

∣∣ρl − 1
∣∣ ≤ 4

min
{
η, σ

}ψl ,
and the result follows by showing that pl converges to zero. Take l ≥ l0, where l0 is as in Theo-

rem 2.5. Thus, pl ∈ N (F∗)⊥. However, from the model decrease, one obtains

1

2

〈
pl, H

(
xl
)
pl
〉
≤
〈
−g

(
xl
)
, pl
〉
.

From Theorem 2.4, the sequence
{
xl
}

converges to x∗, which satisfies the strong second-order

optimality condition 2.15. Hence, by continuity of the hessian ∇2L and the fact that AΩ

(
xl
)
=
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AΩ (x∗), one can claim that there exists l1 ≥ l0 such that for all l ≥ l1, for all v ∈ NΩ

(
xl
)⊥

=

N (F∗)⊥,

〈
v,H

(
xl
)
v
〉
≥ κ ‖v‖22 .

Thus, by Moreau’s decomposition, it follows that

κ

2

∥∥pl∥∥2
2
≤
〈
PTΩ(xl)

(
−g

(
xl
))

+ PNΩ(xl)
(
−g

(
xl
))
, pl
〉

≤
∥∥∥PTΩ(xl)

(
−g

(
xl
))∥∥∥

2

∥∥pl∥∥
2
,

since pl ∈ N (F∗)⊥. Finally, pl converges to zero, as a consequence of Lemma 2.8 and the fact

that
∥∥zl − xl

∥∥
2

converges to 0, by Lemma 2.8 and the fact that the step-sizes αk are upper bounded

for k ∈ {1, . . . , K}.

The refinement step in TRAP actually consists of a truncated Newton method, in which the New-

ton direction is generated by an iterative procedure, namely the distributed sCG described in Algo-

rithm 6. The Newton iterations terminate when the residual ŝ is below a tolerance that depends on

the norm of the projected gradient at the current iteration. In Algorithm 6, the stopping condition

is set so that at every iteration l ≥ 1, there exists ξl ∈ ]0, 1[ satisfying∥∥∥Z l
(
Z l
)� (

gσl

(
xl
)
+Hσl

(
xl
)
pl
)∥∥∥

2
≤ ξl

∥∥∥Z l
(
Z l
)�
g
(
xl
)∥∥∥

2
. (2.77)

The local convergence rate of the sequence
{
xl
}

generated by TRAP is controlled by the sequences{
ξl
}

and
{
σl
}

, as shown in the following Theorem.

Theorem 2.6 (Local linear convergence). Assume that the direction p yielded by Algorithm 6

satisfies (2.77) if ‖p‖∞ ≤ γ∗Δ and AΩ (x) = AΩ (x+ p), given γ∗ ∈ ]0, γ2[. Under Assump-

tions 2.13, 2.10, 2.12 and 2.15, for a sufficiently small σ̄, the sequence
{
xl
}

generated by TRAP

converges Q-linearly to x∗ if ξ∗ < 1 is sufficiently small, where

ξ∗ := lim sup
l→+∞

ξl .

If ξ∗ = 0, the Q-linear convergence ratio can be made arbitrarily small by properly choosing σ̄,

resulting in almost Q-superlinear convergence.

Proof. Throughout the proof, we assume that l is sufficiently large so that the active-set is AΩ (x∗)

and that pl satisfies condition (2.77). This is ensured by Lemma 2.12 and Theorem 2.5, as the

sequence
{
pl
}

converges to zero. Thus, we can write Z l = Z∗. The orthogonal projection onto
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the subspace N (F∗)⊥ is represented by the matrix Z∗ (Z∗)�. A first-order development yields a

positive sequence
{
δl
}

converging to zero such that

∥∥Z∗ (Z∗)� g
(
xl+1

)∥∥
2
≤
∥∥Z∗ (Z∗)�

(
g
(
xl
)
+H

(
xl
)
pl
)∥∥

2
+ δl

∥∥pl∥∥
2

≤ 2δl

κ

∥∥Z∗ (Z∗)� g
(
xl
)∥∥

2
+
∥∥Z∗ (Z∗)�

(
gσl

(
xl
)
+Hσl

(
xl
)
pl
)∥∥

2

+ σ̄

∥∥∥∥Z∗ (Z∗)�
(
pl

2
+ zl − xl

)∥∥∥∥
2

≤
(
2δl

κ
+ ξl

)∥∥Z∗ (Z∗)� g
(
xl
)∥∥

2

+ σ̄

(
1

κ
+

∥∥Z∗ (Z∗)�
(
zl − xl

)∥∥
2∥∥Z∗ (Z∗)� g (xl)

∥∥
2

)∥∥Z∗ (Z∗)� g
(
xl
)∥∥

2
.

where the second inequality follows from the last inequality in Lemma 2.12, and the definition

of gσ in Eq. (2.61) and Hσ in Eq. (2.74). However, from the computation of the Cauchy point

described in paragraph 2.2.1 and Assumption 2.13, the term∥∥Z∗ (Z∗)�
(
zl − xl

)∥∥
2∥∥Z∗ (Z∗)� g (xl)

∥∥
2

is bounded by a constant C > 0. Hence,∥∥Z∗ (Z∗)� g
(
xl+1

)∥∥
2∥∥Z∗ (Z∗)� g (xl)

∥∥
2

≤ 2δl

κ
+ ξl + σ̄

(
1

κ
+ C

)
.

Moreover, a first-order development provides us with a constant Υ > 0 such that

∥∥Z∗ (Z∗)� g
(
xl
)∥∥

2
≤
(
B̂ +Υ

)∥∥xl − x∗
∥∥
2
.

There also exists a positive sequence
{
εl
}

converging to zero such that

∥∥Z∗ (Z∗)� g
(
xl+1

)∥∥
2
≥
∥∥Z∗ (Z∗)�H (x∗)

(
xl+1 − x∗

)∥∥
2
− εl

∥∥xl+1 − x∗
∥∥
2
.

However, since xl+1 − x∗ lies in N (x∗)⊥, Z∗ (Z∗)�
(
xl+1 − xl

)
= xl+1 − xl. Thus, by Assump-

tion (2.73),

∥∥Z∗ (Z∗)� ∇L
(
xl+1

)∥∥
2
≥ (κ− εl)

∥∥xl+1 − x∗
∥∥
2
,
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which implies that, for l sufficiently large, there exists ε̄ ∈ ]0, κ[ such that

∥∥Z∗ (Z∗)� g
(
xl+1

)∥∥
2
≥ (κ− ε̄)

∥∥xl+1 − x∗
∥∥
2
.

Finally, ∥∥xl+1 − x∗
∥∥
2

‖xl − x∗‖2
≤ B̂ +Υ

κ− ε̄

(
2δl

κ
+ ξl + σ̄

(
1

κ
+ C

))
,

which yields the result.

2.2.3 Numerical experiments

The optimal AC power flow constitutes a challenging class of nonconvex problems for benchmark-

ing optimisation algorithms and software. It has been used very recently in the testing of a novel

adaptive augmented Lagrangian technique [39]. The power flow equations form a set of nonlinear

coupling constraints over a network. Some distributed optimisation strategies have already been

explored for computing OPF solutions, either based on convex relaxations [104] or nonconvex

heuristics [100]. As the convex relaxation may fail in a significant number of cases [25], it is also

relevant to explore distributed strategies for solving the OPF in its general nonconvex formula-

tion. Naturally, all that we can hope for with this approach is a local minimum of the OPF prob-

lem. Algorithm 5 is tested on the augmented Lagrangian subproblems obtained via a polar coordi-

nates formulation of the OPF equations, as well as rectangular coordinates formulations. Our TRAP

algorithm is run as an inner solver inside a standard augmented Lagrangian loop [16] and in the

more sophisticated LANCELOT dual loop [34]. More precisely, if the OPF problem is written in the

following form

minimise
x

f (x) (2.78)

s. t. g (x) = 0

x ∈ X ,

where X is a bound constraint set, an augmented Lagrangian loop consists in computing an ap-

proximate critical point of the auxiliary program

minimise
x∈X

L�(x, μ) := f(x) +
(
μ+

�

2
g(x)

)�
g(x) (2.79)
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with μ a dual variable associated to the power flow constraints and � > 0 a penalty parame-

ter, which are both updated after a finite sequence of primal iterations in (2.79). Using the standard

first-order dual update formula, only local convergence of the dual sequence can be proven [16]. On

the contrary, in the LANCELOT outer loop, the dual variable μ and the penalty parameter � are up-

dated according to the level of satisfaction of the power flow (equality) constraints, resulting in

global convergence of the dual sequence [34]. In order to test TRAP, we use it to compute ap-

proximate critical points of the subproblems (2.78), which are of the form (2.51). The rationale

behind choosing LANCELOT instead of a standard augmented Lagrangian method as the outer loop

is that LANCELOT interrupts the inner iterations at an early stage, based on a KKT tolerance that

is updated at every dual iteration. Hence, it does not allow one to really measure the absolute

performance of TRAP, although it is likely more efficient than a standard augmented Lagrangian

for computing a solution of the OPF program. Thus, for all cases presented next, we provide

the results of the combination of TRAP with a basic augmented Lagrangian and LANCELOT. The

augmented Lagrangian loop is utilised to show the performance of TRAP as a bound-constrained

solver, whereas LANCELOT is expected to provide better overall performance. All results are com-

pared to the solution yielded by the nonlinear interior-point solver IPOPT [152] with the sparse

linear solver MA27. Finally, it is important to stress that the results presented in this Section are

obtained from a preliminary MATLAB implementation, which is designed to handle small-scale

problems. The design of a fully distributed software would involve substantial development and

testing, and is thus beyond the scope of this study.
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2.2.3.1 Optimal AC power flow in polar coordinates

We consider the AC-OPF problem in polar coordinates

minimise
∑
g∈G

cg0 + cg1p
G
g + c2

(
pGg
)2

(2.80)

s. t.∑
g∈Gb

pGg =
∑
d∈Db

PD
d +

∑
b′∈Bb

pLbb′ +GB
b v

2
b∑

g∈Gb

qGg =
∑
d∈Db

QD
d +

∑
b′∈Bb

qLbb′ − BB
b v

2
b

pLbb′ = Gbbv
2
b + (Gbb′ cos (θb − θb′) +Bbb′ sin (θb − θb′)) vbvb′

qLbb′ = −Bbbv
2
b + (Gbb′ sin (θb − θb′)− Bbb′ cos (θb − θb′)) vbvb′(

pLbb′
)2

+ (qbb′)
2 + sbb′ =

(
SMbb′

)2
vLb ≤ vb ≤ vUb

pL ≤ pGg ≤ pU

qL ≤ qGg ≤ qU

sbb′ ≥ 0 ,

which corresponds to the minimisation of the overall generation cost, subject to power balance

constraints at every bus b and power flow constraints on every line bb′ of the network, where G
denotes the set of generators and Gb is the set of generating units connected to bus b. The variables

pGg and qGg are the active and reactive power output at generator g. The set of loads connected to bus

b is denoted by Db. The parameters PD
d and QD

d are the demand active and reactive power at load

unit d. The letter Bb represents the set of buses connected to bus b. Variables pLbb′ and qLbb′ are the

active and reactive power flow through line bb′. Variables vb and θb denote the voltage magnitude

and voltage angle at bus b. Constants vLb , vUb are lower and upper bounds on the voltage magni-

tude at bus b. Constants pL, pU , qL and qU are lower and upper bounds on the active and reactive

power generation. It is worth noting that a slack variable sbb′ has been added at every line bb′ in

order to turn the usual inequality constraint on the power flow through line bb′ into an equality

constraint. The derivation of the optimal power flow problem in polar form can be found in [162].

As a simple numerical test example for TRAP, we consider a particular instance of NLP (2.80)

on the 9-bus transmission network shown in Fig. 2.8. As in (2.79), the augmented Lagrangian sub-

problem is obtained by relaxing the equality constraints associated with buses and lines in (2.80).

The bound constraints, which can be easily dealt with via projection, remain unchanged. One

should notice that NLP (2.80) has partially separable constraints and objective, so that LANCELOT
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could efficiently deal with it, yet in a purely centralised manner. In some sense, running TRAP

in a LANCELOT outer loop can be seen as a first step towards a distributed implementation of

LANCELOT for solving the AC-OPF problem. It is worth noting that the dual updates only require

exchange of information between neighbouring nodes and lines. However, each LANCELOT dual

update requires a central communication, as the norm of the power flow constraints need to be com-

pared with a running tolerance [34]. For the 9-bus example in Fig. 2.8, the Cauchy search of TRAP

1�

4�

9�

5�

6�

3�

7�
8�

2�

Figure 2.8: The 9-bus transmission network from http://www.maths.ed.ac.uk/
optenergy/LocalOpt/.

on the augmented Lagrangian subproblem (2.79) can be carried out in five parallel steps. This can

be observed by introducing local variables for every bus b ∈ {1, . . . , 9},

xb := (vb, θb)
� ,

and for every line

bb′ ∈
{
{1, 4} , {4, 5} , {4, 9} , {8, 9} , {2, 8} , {7, 8} , {6, 7} , {3, 6} , {5, 6}

}
,
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with the line variable ybb′ being defined as

ybb′ := (pbb′ , qbb′ , sbb′)
� .

The line variables ybb′ can be first updated in three parallel steps, which corresponds to

{
y{2,8}, y{6,7}, y{4,9}

}
,
{
y{7,8}, y{3,6}, y{4,5}

}
,
{
y{8,9}, y{5,6}, y{1,4}

}
.

Then, the subset

{x1, x2, x3, x5, x7, x9}

can be updated, followed by the subset

{x4, x6, x8} .

As a result, backtracking iterations can be run in parallel at the nodes associated with each line

and bus. If a standard trust region Newton method would be applied, the projected search would

have to be computed on the same central node without a bound on the number iterations. Thus,

the activity detection phase of TRAP allows one to reduce the number of global communications

involved in the whole procedure. The results obtained via a basic augmented Lagrangian loop and

a LANCELOT outer loop are presented in Tables 2.2 and 2.3 below. The data is taken from the

archive http://www.maths.ed.ac.uk/optenergy/LocalOpt/. In all Tables of this

Section, the first column corresponds to the index of the dual iteration, the second column to the

number of iterations in the main loop of TRAP at the current outer step, the third column to the

total number of sCG iterations at the current outer step, the fourth column to the level of KKT

satisfaction obtained at each outer iteration, and the fifth column is the two-norm of the power

flow equality constraints at a given dual iteration. To obtain the results presented in Tables 2.2

and 2.3, the regularisation parameter σ in the refinement stage 6 is set to 1 · 10−10. For Table 2.2,

the maximum number of iterations in the inner loop (TRAP) is fixed to 300 and the stopping tol-

erance on the level of satisfaction of the KKT conditions to 1 · 10−5. For Table 2.3 (LANCELOT),

the maximum number of inner iterations is set to 100 for the same stopping tolerance on the KKT

conditions. In Algorithm 6, a block-diagonal preconditioner is applied. It is worth noting that the

distributed implementation of Algorithm 6 is not affected by such a change. To obtain the results

of Table 2.2, the initial penalty parameter � is set to 10 and is multiplied by 30 at each outer it-

eration. In the LANCELOT loop, it is multiplied by 100. In the end, an objective value of 2733.55

up to feasibility 1.64 · 10−8 of the power flow constraints is obtained, whereas the interior-point
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Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.

count per inner it.

1 79 388 2.01 · 10−7 0.530
2 2 40 2.71 · 10−10 0.530
3 300 2215 2.39 · 10−2 0.292
4 101 2190 6.50 · 10−4 6.56 · 10−3

5 123 2873 2.10 · 10−3 5.02 · 10−6

6 56 1194 4.14 · 10−2 1.11 · 10−10

Table 2.2: Results for the 9-bus AC-OPF (Fig. 2.8) using a standard augmented Lagrangian outer

loop and TRAP as primal solver. Note that the cumulative number of CG iterations is relatively

high, since the refinement stage was not preconditioned.

Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.

count per inner it.

1 37 257 7.29 · 10−2 0.530
2 5 25 1.01 · 10−2 0.530
3 6 71 3.23 · 10−5 0.530
4 100 1330 8.30 · 10−3 4.33 · 10−2

5 100 1239 1.80 · 10−3 2.53 · 10−3

6 100 2269 4.33 · 10−2 2.69 · 10−5

7 64 1541 3.2 · 10−3 1.64 · 10−8

Table 2.3: Results for the 9-bus AC-OPF (Fig. 2.8) using a LANCELOT outer loop and TRAP

as primal solver. Note that the cumulative number of CG iterations is relatively high, since no

preconditioner was applied in the refinement step.

solver IPOPT, provided with the same primal-dual initial guess, yields an objective value of 2733.5

up to feasibility 2.23·10−11. From Table 2.2, one can observe that a very tight KKT satisfaction can

be obtained with TRAP. From the figures of Tables 2.2 and 2.3, one can extrapolate that LANCELOT

would perform better in terms of computational time (6732 sCG iterations in total) than a basic aug-

mented Lagrangian outer loop (8900 sCG iterations in total), yet with a worse satisfaction of the

power flow constraints (1.64 · 10−8 against 1.11 · 10−10). Finally, one should mention that over a

set of hundred random initial guesses, TRAP was able to find a solution satisfying the power flow

constraints up to 1 · 10−7 in all cases, whereas IPOPT failed in approximately half of the test cases,

yielding a point of local infeasibility.
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2.2.3.2 Optimal AC power flow on distribution networks

Algorithm 5 is then applied to solve two AC-OPF problems in rectangular coordinates on distri-

bution networks. Both 47-bus and 56-bus networks are taken from [64]. Our results are compared

against the nonlinear interior-point solver IPOPT [152], which is not amenable to a fully distributed

implementation, and the SOCP relaxation proposed by [64], which may be distributed (as convex)

but fails in some cases, as shown next. It is worth noting that any distribution network is a tree, so a

minimum colouring scheme consists of two colours, resulting in four parallel steps for the activity

detection in TRAP.

2.2.3.2.1 On the 56-bus AC-OPF: An objective value of 233.9 is obtained with feasibility

8.00 · 10−7, whereas the nonlinear solver IPOPT yields an objective value of 233.9 with feasibility

5.19 · 10−7 for the same initial primal-dual guess.

In order to increase the efficiency of TRAP, following a standard recipe, we build a block-

diagonal preconditioner from the hessian of the augmented Lagrangian by extracting block-diagonal

elements corresponding to buses and lines. Thus, constructing and using the preconditioner can be

done in parallel and does not affect the distributed nature of TRAP. In Fig. 2.9, the satisfaction of

the KKT conditions for the bound constrained problem (2.79) is plotted for a preconditioned refine-

ment phase and non-preconditioned one. One can conclude from Fig. 2.9 that preconditioning the

1 6 11 16 21 26 31 36 41 46 51
1e−4

1e−3

1e−2

1e−1

1

K
K

T

Iteration count

Figure 2.9: KKT satisfaction vs iteration count in the fourth LANCELOT subproblem formed on

the AC-OPF with 56 buses. When using a centralised projected search as activity detector (dotted

grey) and TRAP (full black). Curves obtained with a preconditioned sCG are highlighted with

triangle markers.
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refinement phase does not only affect the number of iterations of the sCG Algorithm 6 (Fig. 2.12),

but also the performance of the main loop of TRAP. From a distributed perspective, it is very ap-

pealing, for it leads to a strong decrease in the overall number of global communications. Finally,

from Fig. 2.9, it appears that TRAP and a centralised trust region method (with centralised projected

search) are equivalent in terms of convergence speed. From Fig. 2.10, TRAP proves very efficient at
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Figure 2.10: Active-set history in the first LANCELOT iteration for the 56-bus AC-OPF. Activity

detection in TRAP: TRAP (full black), centralised projected search (dashed grey with triangles).

identifying the optimal active set in a few iterations (more than 10 constraints enter the active-set in

the first four iterations and about 20 constraints are dropped in the following two iterations), which

is a proof of concept for the analysis of paragraph 2.2.2. Alternating gradient projections appear to

be as efficient as a projected search for identifying an optimal active-set, although the iterates travel

on different faces, as shown in Fig. 2.10. In Fig. 2.11, the power flow constraints are evaluated after

a run of TRAP on program (2.79). The dual variables and penalty coefficient are updated at each

outer iteration. Overall, the coupling of TRAP with the augmented Lagrangian appears to be suc-

cessful and provides similar performance to the coupling with a centralised trust region algorithm.

Tables 2.4 and 2.5 are obtained with an initial penalty coefficient ρ = 10 and a multiplicative

coefficient of 20.

2.2.3.2.2 On the 47-bus AC-OPF: A generating unit was plugged at node 12 (bottom of the

tree) and the load at the substation was decreased to 3 pu. On this modified problem, the SOCP

relaxation provides a solution that does not satisfy the nonlinear equality constraints. An objec-

tive value of 502.3 is obtained with feasibility 2.57 · 10−7 for both the AL loop (Tab. 2.6) and
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Figure 2.11: Norm of power flow constraints on the 56-bus network against dual iterations of

a LANCELOT outer loop with TRAP as primal solver. Inner solver: TRAP (full black), centralised

trust region method (dashed grey with cross markers).
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Figure 2.12: Cumulative sCG iterations vs iteration count in the first LANCELOT subproblem

formed on the AC-OPF with 56 buses. Results obtained with TRAP as inner solver (full black),

with a centralised trust region method (dashed grey). Results obtained with a preconditioned re-

finement stage are highlighted with cross markers.

the LANCELOT loop (Tab. 2.7). The SOCP relaxation returns an objective value of 265.75, but

physically impossible, as the power flow constraints are not satisfied. The nonlinear solver IPOPT
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Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.

count per inner it.

1 122 1382 8.45 · 10−9 6.68
2 189 4486 6.71 · 10−9 1.49 · 10−1

3 139 11865 9.87 · 10−8 8.79 · 10−4

4 49 3958 6.75 · 10−6 7.92 · 10−6

5 9 936 5.45 · 10−7 4.58 · 10−9

Table 2.4: Results for the 56-bus AC-OPF of [64] using a (local) augmented Lagrangian outer loop

with TRAP as primal solver.

Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.

count per inner it.

1 100 924 9.74 · 10−2 6.42
2 133 3587 2.40 · 10−3 3.60 · 10−1

3 54 4531 1.03 · 10−4 4.00 · 10−3

4 10 858 4.20 · 10−6 1.02 · 10−3

5 42 3288 4.37 · 10−6 2.32 · 10−4

6 13 916 1.82 · 10−5 4.35 · 10−5

7 40 6878 3.70 · 10−7 8.16 · 10−6

8 6 420 4.64 · 10−6 4.97 · 10−7

Table 2.5: Results for the 56-bus AC-OPF of [64] using a LANCELOT outer loop with TRAP as

primal solver.

Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.

count per inner it.

1 275 3267 1.33 · 10−7 5.80
2 300 7901 1.39 · 10−1 1.12 · 10−1

3 180 18725 2.13 · 10−6 9.47 · 10−5

4 26 3765 5.55 · 10−8 6.63 · 10−9

Table 2.6: Results for the 47-bus AC-OPF of [64] using an augmented Lagrangian outer loop

with TRAP as primal solver.

yields an objective value of 502.3 with feasibility 5.4 · 10−8.
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Outer iter. # inner it. # cum. sCG Inner KKT PF eq. constr.

count per inner it.

1 180 1147 8.64 · 10−2 5.35
2 300 7128 2.23 3.12 · 10−1

3 215 11304 4.65 · 10−5 2.97 · 10−3

4 9 423 6.05 · 10−5 3.28 · 10−5

5 8 503 1.11 · 10−8 7.90 · 10−7

6 2 177 4.64 · 10−6 4.03 · 10−8

Table 2.7: Results for the 47-bus AC-OPF of [64] using a LANCELOT outer loop with TRAP as

primal solver.
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Chapter 3

A Parametric Decomposition Algorithm for Non-

convex Programs

This chapter focuses on parametric nonconvex problems with separable objective, coupling con-

straints and separable constraints

minimise
x1,...,xN

N∑
i=1

fi (xi) (3.1)

s.t. C (x1, . . . , xN , σ) = 0

g1 (x1, s1) = 0, . . . , gN (xN , sN) = 0

x1 ∈ Ω1, . . . , xN ∈ ΩN ,

where σ, s1, . . . , sN are parameters. Our goal is to develop a decomposition algorithm to track

local optima of NLP (3.1) as the parameters σ and s1, . . . , sN change. By tracking, we mean that

the algorithm output should stay close to a critical point of (3.1) for different values of the param-

eters. In the literature, the most important family of optimality-tracking algorithms is the class of

predictor-corrector methods [3]. When there are no inequality constraints, the KKT conditions of

NLP (3.1) can be written as a nonlinear equation F (w, s) = 0, where w is a primal-dual unknown

vector and s is a parameter. Given an approximation w̄ of a solution to the parametric equation for

a parameter s̄, the predictor-corrector scheme builds a new approximate solution w̃ for a parameter

s̃ �= s̄ by solving the linearised equation

F (w̄, s̄) +∇wF (w̄, s̄) (w̃ − w̄) +∇sF (w̄, s̄) (s̃− s̄) = 0 ,
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which yields

w̃ = w̄ −∇wF (w̄, s̄)−1 ∇sF (w̄, s̄) (s̃− s̄)︸ ︷︷ ︸
Predictor

−∇wF (w̄, s̄)−1 F (w̄, s̄)︸ ︷︷ ︸
Corrector

.

The second term in the left hand side of the equality above corresponds to a tangential predictor

of the solution to the nonlinear equation for parameter s̃. It can be obtained by linearisation of the

solution around s̄ and the implicit function theorem. The third term is a corrector and is similar to

a Newton step to solve the nonlinear equation. When inequality constraints are present, the inverse

∇wF (w̄, s̄)−1
can be interpreted as the resolution of one Newton subproblem with linearised con-

straints. If the parameter s appears linearly in the nonlinear equation F (w, s) = 0, which turns

into F (w) + Ts = 0, one obtains

F (w̄) +∇wF (w̄, s̄) (w̃ − w̄) + T s̃ = 0 ,

and then

w̃ = w̄ −∇wF (w̄, s̄)−1 F (w̄, s̃) .

This last equality corresponds to computing an approximate solution w̃ for a parameter s̃ by apply-

ing one Newton iteration initialised at the suboptimal solution w̄. In the case of a convex objective

and nonlinear equality constraints, such a predictor-corrector scheme with a positive semidefinite

hessian approximation is proposed and analysed in [148]. In the particular case of NMPC problems

with least-squares tracking cost, the hessian approximation can be computed by means of a Gauss-

Newton approximation, which guarantees positive semi-definiteness [119]. However, for a general

cost, such as an economic objective for instance, the Gauss-Newton approximation is not as effec-

tive. One could use the exact hessian in a Newton subproblem, but the resulting quadratic problem

would be nonconvex, and thus the approach would not be computationally efficient, despite recent

progress in this direction [128]. However, the approach of [128], which makes use of a mirrored

version of the exact hessian in order to ensure positive definiteness, does not have a solid theoretical

foundation, despite its good performance in some practical cases. The purpose of this chapter is to

propose and analyse an optimality-tracking algorithm, which makes use of exact second order in-

formation and comes with stability guarantees. This is also relevant in the context of decomposition

methods and distributed optimisation, as the sparsity pattern of the exact hessian of the Lagrangian

reflects the coupling topology. Hence, distributed linear algebra techniques can be readily applied.

A practical implementation of distributed optimisation techniques may be cumbersome de-

pending on the target computational platform. The main difficulty stems from the fact that agents
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need to communicate at every iteration of the algorithm. Thus, one needs to develop mechanisms

to coordinate and synchronise communications. Some of these aspects may be more stringent de-

pending on the set-up. For instance, if we are to implement a distributed optimisation method on

a multi-core chip, such as a GPU, communication between cores is more reliable and comes at a

higher rate than when the hardware and memory are spread around different locations, as it is the

case clusters and distributed embedded optimisation for instance. This aspect is even more strin-

gent if a distributed algorithm is to be applied in a real-time setting, where the computation time

may be constrained very tightly, due to communication delays. Cumulating both the real-time and

distributed aspects puts very strong constraints on an optimality-tracking algorithm. Therefore, the

effect of a limited communication rate on the tracking performance is to be properly investigated.
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3.1 A Parametric Augmented Lagrangian Algorithm

3.1.1 Problem formulation and algorithm description

The following class of parametric NLPs with separable cost, partially separable equality constraints

and separable inequality constraints is considered

minimise
x1,...,xN

J (x) :=
N∑
i=1

Ji (xi) (3.2)

s.t. Qc (x1, . . . , xN) = 0,

gi (xi) + Tisk = 0,

xi ∈ Ωi, i ∈ {1, . . . , N} ,

where x := (x�
1 , . . . , x

�
N)

� ∈ Rn, with n =
∑N

i=1 ni ≥ 2 and xi ∈ Rni . The vectors xi model

different agents, while the function Qc : Rn → Rmc represents constraint couplings.

Remark 3.1. For clarity, the definition of NLP (3.2) is restricted to constraint couplings. However,

cost couplings can be addressed by the approach described in the sequel.

The functions Ji : Rni → R and gi : Rni → Rqi are individual cost and constraint functionals at

agent i ∈ {1, . . . , N}. In an NMPC context, the nonlinear equality constraint involving gi models

the dynamics of agent i over a prediction horizon. The vector sk is a parameter, which lies within

a set S ⊆ Rp and varies with k.

Remark 3.2. When it comes to NMPC, the parameter sk stands for a state estimate or a reference

trajectory and the index k represents a time instant.

The matrices Ti ∈ Rqi×p are constant. The linear dependence of the local equality constraints

in the parameter sk is not restrictive, as extra variables can be introduced in order to obtain this

formulation. For all s ∈ S, we define the equality constraints functional G : Rn → Rm with

m = mc +
∑N

i=1 qi, given x ∈ Rn as follows

G (x, s) :=
(
Qc (x)

� , (g1 (x) + T1s)
� , . . . , (gN (x) + TNs)

�)� .

For all i ∈ {1, . . . , N}, the constraint sets Ωi are assumed to be bounded boxes. Note that such

an assumption is not restrictive, as slack variables can always be introduced. Critical points of

NLP (3.2) are denoted by w∗
k or w∗ (sk) without distinction.

Remark 3.3. It is worth noting that the problem formulation (3.2) does not encompass standard

NMPC programs, which typically involve terminal weights and constraints that group together
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all sub-systems states. Thus, in order to obtain a separable objective subject to partially separa-

ble constraints, one may resort to the NMPC design proposed by [77], which does not involve

any terminal conditions, but is based on a sufficiently long prediction horizon to ensure closed-

loop stability under the optimal NMPC control law. Another possibility is to extend the distributed

invariance design procedure of [37] to the nonlinear case via a standard linearisation and level-

set shrinking argument. One could also design box-shaped terminal sets and separable terminal

quadratic penalties using the approach outlined in [102].

3.1.1.1 A descent-based scheme for parametric nonconvex programs

For every index k, a critical point of the parametric NLP (3.2) is computed approximately. The key

idea is to track parameter-dependent local optima of program (3.2) by computing saddle points of

the parametric augmented Lagrangian

L� (x, μ, s) := J (x) +
(
μ+

�

2
G (x, s)

)�
G (x, s) , (3.3)

subject to x ∈ Ω, where Ω := Ω1 × Ω2 × . . . × ΩN and μ := (μ�
c , μ

�
1 , . . . , μ

�
N)

� ∈ Rm+q,

with q :=
∑N

i=1 qi, is a dual variable associated with the equality constraints

Qc (x) = 0, g1 (x1) + T1sk = 0, . . . , gN (xN) + TNsk = 0

respectively. The penalty � > 0 remains constant for every index k. In the remainder of this chap-

ter, sub-optimality of a variable is highlighted with a ·̄, and criticality with a ·∗. Under appropriate

constraint qualifications, an approximate KKT point (x̄(sk+1)
�, μ̄(sk+1)

�)� of (3.2) is constructed

by applying a descent method to the parametric augmented Lagrangian function (3.3) at sk+1 after

initialising the primal iterations at x̄ (sk), and updating the dual variable in a first-order fashion, as

described in Algorithm 7 below.

Algorithm 7 Optimality-tracking descent-based algorithm

Input: Suboptimal primal-dual solution
(
x̄ (sk)

� , μ̄ (sk)
�)�

, parameter sk+1, augmented La-

grangian function L� (·, μ̄k, sk+1) + ιΩ
Descent phase: Apply M iterations of a descent method (Algorithm 8, 9, 10 or 11) initialised

at x̄ (sk) to minimise the augmented Lagrangian function L� (·, μ̄k, sk+1) + ιΩ and obtain a

suboptimal primal iterate xM

x̄ (sk+1) ← xM

Dual update: μ̄(sk+1) ← μ̄ (sk) + �G (x̄ (sk+1) , sk+1)

By descent method, we mean that every iteration guarantees that the objective decreases, which

is the augmented Lagrangian in the case of Algorithm 7. There exists several good candidates for
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a descent method applicable to minimise the augmented Lagrangian. Next, we describe two cen-

tralised strategies (Algorithms 8 and 9), namely a projected gradient algorithm and a trust region

method, as well as two distributed strategies (Algorithms 10 and 11), which are an alternating

projected gradient algorithm and the TRAP method described in Chapter 2.

Algorithm 7 can be regarded as a way to resolve some issues raised by the optimality-tracking

scheme of [157], which is based on the following augmented Lagrangian

minimise
x≥0

L� (x, μ̄k, sk+1) := J (x) +
〈
μ̄k +

�

2
G (x, sk+1) , G (x, sk+1)

〉
,

associated with the problem formulation

minimise
x≥0

J (x)

s.t. G (x, sk+1) = 0 .

In [157], a critical point of the following quadratic programming problem is to be computed for

every index k,

minimise
x≥0

〈∇xL� (x̄k, μ̄k, sk+1) , x− x̄k〉+
1

2

〈
x− x̄k,∇2

xxL� (x̄k, μ̄k, sk+1) (x− x̄k)
〉
, (3.4)

via a Projected Successive OverRelaxation (PSOR) [111], which provably converges linearly to a

critical point of (3.4) when the hessian matrix

∇2
xxL� (x̄k, μ̄k, sk+1) (3.5)

is positive definite (Corollary 2.2 in [111]). When matrix (3.5) is not positive definite, it can still be

proven that all limit points of the sequence generated by PSOR are critical points of (3.4), but ex-

istence of a limit point is not guaranteed (Theorem 2.1 in [111]). However, from the second-order

optimality conditions and Lemma 1.4, one can only deduce that the matrix

∇xxL� (x
∗ (μ̄k, sk+1) , μ̄k, sk+1) + � (Z∗)� Z∗

is positive definite, where the rows of the matrix Z∗ are the coordinate vectors corresponding to

the active nonnegativity constraints at the critical point x∗ (μ̄k, sk+1). Thus, the matrix (3.5) is not

guaranteed to be positive definite as long as the optimal active-set has not been identified, and

strong guarantees on the convergence of the PSOR iterations are lost. Moreover, interior-point

or active-set methods tailored to convex quadratic programs cannot be applied in the framework

of [157]. Moreover, the convergence of PSOR is likely to be slow without an appropriate tuning,
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which may be hard to obtain.

We now state the four descent schemes applied to the parametric augmented Lagrangian in

Algorithm 7. We start with the two centralised methods and then move to the two distributed algo-

rithms.

3.1.1.2 Projected gradient on the parametric augmented Lagrangian

The parametric augmented Lagrangian is minimised by means of projected gradient steps. It is

important to note that Algorithm 8 is initialised at the previous suboptimal primal point x̄ (sk) and

stops after M ≥ 1 iterations. The step-size is adjusted at every iteration by backtracking. The

stopping criterion, which is applied to stop the backtracking loop is designed to ensure sufficient

decrease of the parametric augmented Lagrangian at every iteration.

Algorithm 8 Projected gradient on the parametric augmented Lagrangian

Constants: Suboptimal primal variable x̄ (sk) and objective function L� (·, μ̄k, sk+1) + ιΩ.

Parameters: Initial curvature estimate c(0) > 0, regularisation parameter r > 0 and multiplica-

tive coefficient β > 1.

Warm-start: x← x̄ (sk)
for l = 1, . . . ,M do

Backtracking:
c← c(0)

while L� (x̃, μ̄k, sk+1) > L� (x, μ̄k, sk+1)+ 〈∇L� (x, μ̄k, sk+1) , x̃− x〉+ c− r

2
‖x̃− x‖22 do

x̃← PΩ

(
x− 1

c
∇L� (x, μ̄k, sk+1)

)
c← βc

end while
x← x̃

end for
Output: xM = x

The backtracking loop starts with a curvature estimate c(0). If the gradient ∇L� (·, μ̄k, sk+1) is

Lipschitz continuous over Ω, using the descent Lemma, it is easy to see that the backtracking loop

stops after a finite number of iterations, as shown in Chapter 2 in a similar context.

3.1.1.3 Trust region methods on the parametric augmented Lagrangian

It is well-known that first-order methods such as the projected gradient (Algorithm 8) can be very

ineffective when applied to ill-conditioned problems [119]. Moreover, their local convergence rate

is at best linear and convergence can be arbitrarily slow. A natural way to accelerate convergence

is to use the gradient projection to identify an active set and solve a Newton subproblem inexactly
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on the current subspace [33, 116]. This is justified, since the gradient projection algorithm iden-

tifies an optimal active-set after a finite number of iterations [28]. We use this activity detection

mechanism in a trust region setting [36]. A standard trust region method applied to the parametric

augmented Lagrangian L� (·, μ̄k, sk+1) + ιΩ is described in Algorithm 9 below.

Algorithm 9 Trust region algorithm on the parametric augmented Lagrangian

1: Constants: Initial trust region radius Δ, update coefficients σ1, σ2 and σ3 such that 0 < σ1 <
σ2 < 1 < σ3, test ratios η1 and η2 such that 0 < η1 < η2 < 1, coefficients γ1 ∈ ]0, 1[ and

γ2 > 0 and regularisation coefficient r.
2: Input: Suboptimal primal variable x̄ (sk) and objective function L� (·, μ̄k, sk+1) + ιΩ.

3: Warm-start: x← x̄ (sk)
4: for l = 1, . . . ,M do
5: Active set identification:
6: Compute the Cauchy point z ← PΩ (x− α∇L� (x, μ̄k, sk+1)) according to require-

ments (3.7), (3.9) and (3.10).

7: Refinement:
8: Find y ∈ Ω by approximately solving via sCG iterations initialised at z

minimise
y∈Ω

m� (y, μ̄k, sk+1) +
r

2
‖y − z‖22

s.t. ‖y − x‖∞ ≤ γ2Δ

AΩ (z) ⊆ AΩ (y)

to ensure m� (x, μ̄k, sk+1)−m� (y, μ̄k, sk+1) ≥ γ1 (m� (x, μ̄k, sk+1)−m� (z, μ̄k, sk+1)).
9: Trust-region update:

10: ρ← L� (x, μ̄k, sk+1)− L� (y, μ̄k, sk+1)

m� (x, μ̄k, sk+1)−m� (y, μ̄k, sk+1)
11: if ρ < η1 then � Not successful

12: (Do not update x)
13: Pick Δ within [σ1Δ, σ2Δ]
14: else if ρ ∈ [η1, η2] then � Successful

15: x← y
16: Pick Δ within [σ1Δ, σ3Δ]
17: Update objective gradient ∇L� (x, μ̄k, sk+1) and model hessian B� (x, μ̄k, sk+1)
18: else � Very successful

19: x← y
20: Pick Δ within [Δ, σ3Δ]
21: Update objective gradient ∇L� (x, μ̄k, sk+1) and model hessian B� (x, μ̄k, sk+1)
22: end if
23: end for
24: Output: xM = x

Given the dual variable μ̄k and the parameter sk+1, at every iteration l of Algorithm 9, a model
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m� (·, μ̄k, sk+1) of the objective L� (·, μ̄k, sk+1) is constructed around the current iterate x as fol-

lows

m� (x
′, μ̄k, sk+1) := L� (x, μ̄k, sk+1) + 〈∇L� (x, μ̄k, sk+1) , x

′ − x〉 (3.6)

+
1

2
〈x′ − x,B� (x, μ̄k, sk+1) (x

′ − x)〉 ,

where x′ ∈ Rn and B� (x, μ̄k, sk+1) ∈ Rn×n is a symmetric matrix. In Algorithm 9, the first phase

consists in computing a gradient projection step yielding the so-called Cauchy point z. For the

usual convergence guarantees to hold, one needs the step-size α to be sufficiently small to ensure

sufficient decrease and containment in a scaled trust region{
m� (z, μ̄k, sk+1) ≤ m� (x, μ̄k, sk+1) + ν0 〈∇L� (x, μ̄k, sk+1) , z − x〉
‖z − x‖∞ ≤ ν2Δ ,

(3.7)

where ν0 ∈ ]0, 1[ and ν2 > 0. One also has to make sure that the step-size α does not become too

small. Therefore, it should as well satisfy

α ∈ [ν4, ν5] or α ∈ [ν3α̃, ν5] , (3.8)

where ν3, ν4, ν5 > 0 and α̃ > 0 is such that

m� (z (α̃) , μ̄k, sk+1) > m� (x, μ̄k, sk+1) + ν0 〈∇L� (x, μ̄k, sk+1) , z (α̃)− x〉 (3.9)

or

‖z (α̃)− x‖∞ > ν1Δ , (3.10)

where 0 < ν1 < ν2.

Compared to standard trust region methods [36], we slightly modify the refinement step by

adding a proximal regularisation term to the model, which is

r

2
‖y − z‖22 .

This quadratic regularisation actually plays a significant role in the analysis of Section 3.2. The

refinement phase is typically computed by means of safeguarded Conjugate Gradient (sCG) it-

erations [145], which are initialised at the Cauchy point z, and along which the model function
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m� (·, μ̄k, sk+1) is strictly decreasing (Theorem 2.1 in [145]), so that the inequality

m� (x, μ̄k, sk+1)−m� (y, μ̄k, sk+1) ≥ γ1 (m� (x, μ̄k, sk+1)−m� (z, μ̄k, sk+1))

is always satisfied whenever the sCG iterations are aborted.

The projected gradient and trust region algorithms described above are not suitable for dis-

tributed optimisation, as they both rely on centralised backtracking procedures. However, they are

still relevant for centralised parametric optimisation and can be regarded as background to the

methods shown next. In the next two paragraphs, we describe two decomposition strategies for

solving the parametric augmented Lagrangian problem.

3.1.1.4 Alternating projected gradients in parametric augmented Lagrangian

This is essentially Algorithm 2 of Chapter 2 applied to the parametric augmented Lagrangian. In

order to make the distributed nature of the algorithm more straightforward, we add some assump-

tions on the coupling function Qc.

Assumption 3.1 (Sparse coupling [17]). The subvariables x1, . . . , xN can be re-ordered and grouped

together in such a way that a Gauss-Seidel sweep on the function ‖Qc‖22 can be performed in P

steps among which all subvariables are updated in parallel, where P � N . The re-ordered and

grouped subvariables are denoted by χ1, . . . , χP , so that the re-arranged vector χ is defined by

χ := (χ�
1 , . . . , χ

�
P )

�. More precisely, for i ∈ {1, . . . , P}, we have

χi =
(
x�
i1
, . . . , x�

ipi

)�
,

where pi ≥ 1 is the number of decoupled subvariables in group i. In this paragraph, it is assumed

that NLP (3.2) has been re-arranged accordingly and that

Ω = Ω̃1 × . . .× Ω̃P ,

where Ω̃i = Ωi1 × . . .× Ωipi
.

Remark 3.4. Assumption 3.1 is standard in distributed computations [17]. It encompasses a large

number of practical problems of interest. For consensus problems, in which coupling constraints

x1 − xi = 0 appear for i ∈ {2, . . . , N}, one has P = 2 updates, corresponding to the update of

χ1 = x1 followed by the parallel updates of χ2 = (x�
2 , . . . , x

�
N). When the coupling graph is a tree,

such as in the case of a distribution network, one also obtains P = 2. Our approach is likely to be

more efficient when P is small relative to N .
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Remark 3.5. Next, we write L� (x, μ̄k, sk+1) or L� (χ, μ̄k, sk+1) without distinction.

We define the blockwise parametric augmented Lagrangian function at group i ∈ {1, . . . , P},

where P � N by Assumption 3.1,

L
(i)
�,μ̄k,sk+1

:= L� (χ1, . . . , χi−1, ·, χi+1, . . . , χP , μ̄k, sk+1) (3.11)

and a quadratic model at χi, encompassing all subvariables of group i, given a curvature coefficient

ci > 0,

q (·;χi, ci) := L
(i)
�,μ̄k,sk+1

(χi) +
〈
∇L(i)

�,μ̄k,sk+1
(χi) , · − χi

〉
+
ci
2
‖· − χi‖22 .

Given an iteration index l ≥ 1, we define

L
(i,l)
�,μ̄k,sk+1

:= L�

(
χ
(l+1)
1 , . . . , χ

(l+1)
i−1 , ·, χ(l)

i+1, . . . , χ
(l)
P , μ̄k, sk+1

)
.

For every group of agents indexed by i ∈ {1, . . . , P}, a regularisation coefficient ri > 0 is cho-

sen. In practice, such a coefficient should be taken as small as possible. Algorithm 10 below splits

the parametric augmented Lagrangian problem.

Algorithm 10 Alternating projected gradient on the parametric augmented Lagrangian

1: Constants: Regularisation coefficients {ri}Pi=1, initial curvature coefficients
{
c
(0)
i

}P
i=1

, back-

tracking coefficient β > 1
2: Input: Suboptimal primal subvariables χ̄1 (sk) , . . . , χ̄P (sk), objective L� (·, μ̄k, sk+1) + ιΩ
3: Warm-start: χ1 ← χ̄1 (sk) , . . . , χP ← χ̄P (sk)
4: for l = 1, . . . ,M do
5: Loop over groups:
6: for i = 1, . . . , P do
7: Backtracking at group i: � In parallel among decoupled subvariables xi1 , . . . , xipi
8: χ̃i ← χi, ci ← c

(0)
i

9: while L(i,l)
�,μ̄k,sk+1

(χ̃i) +
ri
2
‖χ̃i − χi‖22 > q (χ̃i;χi, ci) do

10: χ̃i ← PΩ̃i

(
χi −

1

ci
∇L(i,l)

�,μ̄k,sk+1
(χi)

)
11: ci ← β · ci
12: end while
13: χi ← χ̃i
14: end for
15: end for
16: Output: χM1 ← χ1, . . . , χ

M
P ← χP
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Each step of the alternating minimisation among the P groups of decoupled subvariables con-

sists of backtracking projected gradient steps in parallel for each of the P groups. Similarly to

Chapter 2, one can show that the backtracking loop stops after a finite number of recursions under

a blockwise Lipschitz continuity assumption on the gradient of the parametric augmented La-

grangian.

Remark 3.6. Incremental approaches are broadly applied in NMPC, for fully solving an NLP takes

a significant amount of computational resources and may result in unacceptable time delays. Yet,

existing incremental NMPC strategies [46, 159] are based on Newton predictor-corrector steps,

which require factorisation of a KKT system. This is a computationally demanding task for large-

scale systems that cannot be readily carried out in a distributed context. Therefore, Algorithm 10

can be interpreted as a distributed incremental improvement technique for NMPC.

Remark 3.7. Note that the active-set at z∗ (sk+1) may be different from the active-set at z∗ (sk).

Hence, Algorithm 10 should be able to detect active-set changes quickly. This is the role of the al-

ternating gradient projections. It is well-known that a standard gradient projection method allows

for fast activity detection [28]. Moreover, it has been shown in Chapter 2 that alternating gradient

projections enjoy the same desirable property.

3.1.1.5 TRAP on the parametric augmented Lagrangian (pTRAP)

The TRAP algorithm that was presented in Section 2.2.1 of Chapter 2. As described in Algo-

rithm 11 below, it can be applied to the parametric augmented Lagrangian.
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Algorithm 11 pTRAP

1: Constants: Initial trust region radius Δ, update constants σ1, σ2 and σ3 such that 0 < σ1 <
σ2 < 1 < σ3, test ratios η1 and η2 such that 0 < η1 < η2 < 1, coefficients γ1 ∈ ]0, 1[ and

γ2 > 0
2: Input: Suboptimal primal subvariables χ̄1 (sk) , . . . , χ̄P (sk), objective L� (·, μ̄k, sk+1) + ιΩ
3: Warm-start: χ1 ← χ̄1 (sk) , . . . , χP ← χ̄P (sk)
4: for l = 1, . . . ,M do
5: Distributed activity detection (alternating gradient projections):
6: for i = 1 . . . , P do
7: zi ← PΩ̃i

(
χi − αi∇im�

(
z[[1,i−1]], χi, χ[[i+1,P ]], μ̄k, sk+1

))
, � In parallel in group i

8: where αi is computed according to requirements (2.55), (2.56) and (2.57).

9: end for
10: Distributed refinement (Algorithm 6):
11: Find y1 ∈ Ω1, . . . , yP ∈ ΩP by applying distributed sCG iterations initialised at the Cauchy

12: points z1, . . . , zP to the problem

minimise
y1∈Ω1,...,yP∈ΩP

m� (y, μ̄k, sk+1) +
r

2

P∑
i=1

‖yi − zi‖22

s.t. ∀i ∈ {1, . . . , P} , ‖yi − χi‖∞ ≤ γ2Δ

∀i ∈ {1, . . . , P} ,AΩ (zi) ⊆ AΩ (yi) ,

13: guaranteeingm� (χ, μ̄k, sk+1)−m� (y, μ̄k, sk+1) ≥ γ1 (m� (χ, μ̄k, sk+1)−m� (z, μ̄k, sk+1))
14: Trust region update:

15: ρ← L� (χ, μ̄k, sk+1)− L� (y, μ̄k, sk+1)

m� (χ, μ̄k, sk+1)−m� (y, μ̄k, sk+1)
16: if ρ < η1 then � Not successful

17: (Do not update χ)
18: Pick Δ within [σ1Δ, σ2Δ]
19: else if ρ ∈ [η1, η2] then � Successful

20: χ1 ← y1, . . . , χP ← yP
21: Pick Δ within [σ1Δ, σ3Δ]
22: Update objective gradient ∇L� (χ, μ̄k, sk+1) and model hessian B� (χ, μ̄k, sk+1).
23: else � Very successful

24: χ1 ← y1, . . . , χP ← yP
25: Pick Δ within [Δ, σ3Δ]
26: Update objective gradient ∇L� (χ, μ̄k, sk+1) and model hessian B� (χ, μ̄k, sk+1)
27: end if
28: end for
29: Output: χM1 ← χ1, . . . , χ

M
P ← χP
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After M trust region iterations, which may be successful or not, the process is aborted. The

rationale for using pTRAP instead of Algorithm 10 is that better performance in terms of stability

of the tracking scheme can be expected, as justified by the analysis of Section 3.2.

The main features of each algorithm presented above are summarised in Tab. 3.1 below.

First-order Active-set Distributed Fast local Convergence

method method strategy convergence analysis

Algorithm 8 �
Paragraph 3.2.1.1,

Theorem 3.2

Algorithm 9 � �
Paragraph 3.2.1.3,

Theorem 3.6

Algorithm 10 � �
Paragraph 3.2.1.2,

Theorem 3.3

Algorithm 11 � � �
Paragraph 3.2.1.4,

Theorem 3.8

Table 3.1: Comparison of Algorithm 8, 9, 10 and 11.
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3.2 Local Analysis and Contraction Properties

In this section, we investigate the stability properties of Algorithm 7. By stability, we mean that the

distance of the suboptimal primal-dual point w̄ (sk) yielded by Algorithm 7 to a KKT point w∗ (sk)

remains at least bounded as the parameter sk varies with k. This is not automatically guaranteed,

since Algorithm 7 consists in a fixed number of iterations M of a descent method, which outputs a

suboptimal primal solution and a single dual update is performed. Therefore, Algorithm 7 is both

primal and dual suboptimal. However, the iterative process is initialised at a primal-dual optimal

warm-start, which may not be too far from a KKT point under some conditions that are to be

characterised next. We expect that some conditions on the parameter difference sk+1 − sk, the

number of primal iterations M and the penalty parameter can be derived to ensure stability of the

optimality-tracking Algorithm 7. Algorithms 8, 9, 10 and 11 have in common that they enforce a

decrease of the parametric augmented Lagrangian at every iteration. In order to investigate the local

behaviour of Algorithm 7, we first derive local convergence rates for Algorithms 8, 9, 10 and 11.

In the analysis that follows, we prove that the sequence of iterates generated by a descent

method such as Algorithm 8, 9, 10 or 11, converges to a critical point of the parametric augmented

Lagrangian. In the nonconvex case, only subsequence convergence can generally be proven for

Algorithm 8 and 9 under weak assumptions, and the convergence properties of alternating minimi-

sation techniques such as the ones of Algorithm 10 and 11 are obscure. To circumvent the problem,

we resort to the results and tools introduced by [10, 11, 12], among which the cornerstone is the

Kurdyka-Lojasiewicz (KL) inequality [11]. The role of the KL inequality in optimisation is known

since the work of [2], who used it to obtain strong convergence results for the iterates of de-

scent methods on analytic cost functions. It has been extended to more general descent schemes

by [12]. In this section, we show that this property along with the results of [10] can be employed

to derive novel converge rates for trust region methods (Algorithm 9 and 11), which are at the heart

of our analysis.

The second ingredient is a regularity property of the optimality conditions of NLP (3.2) with

respect to parameter variations, namely Robinson’s strong regularity [137]. It is a key property in

parametric optimisation and has already appeared in related works [148, 157].

3.2.1 Convergence and local analysis of the primal descent methods

Although they also produce a non-increasing sequence of objectives, Algorithms 9 and 11, which

are essentially active-set strategies, are very different from Algorithms 8 and 10. As shown in Sec-

tion 2.2 of Chapter 2, they enjoy a fast local convergence rate (almost super-linear) that cannot be

achieved by Algorithms 8 and 10. Nevertheless, this fast convergence property only holds when
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the active-set has settled down, so that the algorithm becomes an inexact Newton method on a

face that contains a critical point. Obviously, in the context of parametric optimisation, one cannot

reasonably assume that the primal warm-start x̄ (sk) lies on a face containing a critical point of the

parametric augmented Lagrangian at sk+1, as active-set changes are likely to occur when the pa-

rameter varies from sk to sk+1. One can only ensure that the primal warm-start x̄k is close to a crit-

ical point of the parametric augmented Lagrangian. Therefore, we feel a strong need to derive new

local convergence rates for Algorithms 9 and 11, which are independent of the active-set dynamics.

First, based on [12], we present the convergence properties of Algorithms 8 and 10. Then, us-

ing some ideas of [10], we provide novel local convergence rates for Algorithms 9 and 11. Some

structural assumptions on the problem data are required for our results to hold. More precisely,

NLP (3.2) is assumed to be semi-algebraic.

Assumption 3.2. The functionsQc, Ji and gi are multivariate polynomials. For each i ∈ {1, . . . , N},

deg (Ji) ≥ 2.

Remark 3.8. From a control perspective, this implies that the theoretical developments that follow

are valid when NLP (3.2) is obtained via discretisation of optimal control problems with polyno-

mial dynamics and quadratic costs for instance.

As Qc, Ji and gi are multivariate polynomials, the function L� (·, μ̄k, sk+1) is a multivariate

polynomial, whose degree is assumed to be larger than 2. We define

dL := deg (L� (·, μ, s)) ≥ 2 . (3.12)

It has been shown that semi-algebraic functions satisfy the KL inequality at their critical

points [20]. The following Theorem is a formulation of the KL property for a multivariate poly-

nomial function over a polyhedron. This matches the parametric augmented Lagrangian subprob-

lem. In this particular case, the Lojasiewicz exponent can be explicitly computed. It is proven to

be a simple function of the degree of the polynomial and its dimension. Theorem 3.1 that follows

is an extension of the result of [41] to the case of a multivariate polynomial over a polyhedral set.

Theorem 3.1. Let L : Rn → R be a polynomial function of degree deg (L) ≥ 2 with n ≥ 1. Let

Ω be a non-trivial polyhedral set in Rn. Assume that all restrictions of L to faces of Ω that are not

vertices, have degree larger than two. Given x∗ a critical point of L + ιΩ, there exists constant

δ > 0 and c > 0 such that for all x ∈ B (x∗, δ) ∩ Ω and all v ∈ NΩ (x),

‖∇L (x) + v‖2 ≥ c |L (x)− L (x∗)|θ(deg(L),n) , (3.13)
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where

θ (d, n) := 1− 1

d (3d− 3)n−1 . (3.14)

Proof. Let x∗ be a critical point of L + ιΩ. From [10], as L + ιΩ is a semi-algebraic function,

there exists a radius δ′ > 0, a constant c′ > 0 and a coefficient θ′ ∈ (0, 1) such that for all

x ∈ B (x∗, δ′) ∩ Ω and all v ∈ NΩ (x),

‖∇L (x) + v‖2 ≥ c′ |L (x)− L (x∗)|θ′ . (3.15)

Define θ′f as the infimum of all θ′ for which (3.15) is satisfied. Our goal is to show that

θ′f ≤ θ (deg (L) , n) ,

as it directly implies that (3.13) is satisfied. One can assume that θ′f > 0, since for θ′f = 0 the proof

would be immediate. For the sake of contradiction, assume that

θ′f > θ (deg (L) , n) .

Hence, one can pick θ̃ ∈
(
θ (deg (L) , n) , θ′f

)
and c′′ > 0, and construct a sequence {(xn, vn)}

satisfying for all n ≥ 1, ⎧⎪⎨⎪⎩
xn ∈ B

(
x∗,

1

n

)
∩ Ω, vn ∈ NΩ (xn)

‖∇L (xn) + vn‖2 < c′′ |L (xn)− L (x∗)|θ̃
. (3.16)

Without loss of generality, one can find a face F of Ω, which is not a vertex and contains x∗, and a

subsequence {xnk
} such that

xnk
∈ riF ,

for k large enough and satisfying (3.16). Moreover, for all x ∈ riF , there exists p ∈ RdF such that

x = x∗ + Zp ,

where Z ∈ Rn×dF is a full column-rank matrix, with dF the dimension of the affine hull of F . As

the face F is not a vertex, dF ≥ 1. Subsequently, one can define a polynomial function L∗ : RdF →
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R as follows

L∗ (p) := L (x∗ + Zp) .

From the results of [41] (no matter whether 0 is a critical point of L∗ or not, see Remark 3.2

in [11]), as deg (L∗) ≥ 2 by assumption, there exists a radius δ∗ > 0 and a constant c∗ > 0 such

that for all p ∈ B (0, δ∗)

‖∇L∗ (p)‖2 ≥ c∗ |L∗ (p)− L∗ (0)|θ(deg(L∗),dF ) .

However, deg (L∗) ≤ deg (L) and dF ≤ n, which implies that

θ (deg (L∗) , dF) ≤ θ (deg (L) , n) , (3.17)

from the definition of θ in (3.14). As L∗ is a continuous function, the radius δ∗ can always be

chosen such that

|L∗ (p)− L∗ (0)| < 1 .

This implies that for all p ∈ B (0, δ∗),

‖∇L∗ (p)‖2 ≥ c∗ |L∗ (p)− L∗ (0)|θ(deg(L),n) .

Hence, there exists K ≥ 1 such that for all k ≥ K,

‖∇L (xnk
) + vnk

‖2 ≥
1

‖Z‖2
‖Z� (∇L (xnk

) + vnk
)‖2

≥ 1

‖Z‖2
‖Z� (∇L (x∗ + Zpnk

) + vnk
)‖2

≥ 1

‖Z‖2
‖∇L∗ (pnk

)‖2

≥ c∗

‖Z‖2
|L (xnk

)− L (x∗)|θ(deg(L),n) .

The third inequality follows from Z�vnk
= 0, as vnk

is in the normal cone to F . However, since c′′

can be chosen equal to c∗/‖Z‖2 as Ω has finitely many faces, the above implies that

|L (xnk
)− L (x∗)|θ(deg(L),n) < |L (xnk

)− L (x∗)|θ̃ .

This leads to a contradiction for k large enough so that |L (xnk
)− L (x∗)| < 1, as θ̃ > θ (deg (L) , n)
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by assumption.

Corollary 3.1. Under Assumption 3.2, given μ ∈ Rm, s ∈ S and � > 0, L� (·, μ, s) + ιΩ satis-

fies inequality (3.13) around all its critical points with radius δ > 0 and constant c > 0, where

L� (·, μ, s) is the parametric augmented Lagrangian defined in (3.3).

Proof. This is an immediate consequence of Theorem 3.1, as the function L� (·, μ, s) is a multi-

variate polynomial by Assumption 3.2.

For the analysis of the first-order descent schemes 8 and 10, we also require that the gradient

of the parametric augmented Lagrangian is Lipschitz continuous on all bounded subsets of Rn.

Assumption 3.3 (Lipschitz continuity of gradient on bounded subsets). Given E a bounded subset

in Rn, a Lagrange multiplier μ ∈ Rm, a parameter s ∈ S and a penalty � > 0, the gradient

x 
→ ∇xL� (x, μ, s)

is Lipschitz continuous on E . Its Lipschitz constant is denoted by �E (μ, s, �).

Our study of Algorithms 8 and 10 is along the lines of [12]. Regarding Algorithms 9 and 11,

the proof is based on a novel mechanism compared to the results of [10], [11], [12] or [21], as the

activity detection and refinement process deserves a special treatment. Contrary to Algorithms 8

and 10, we do not resort to the KL inequality 3.13 to establish convergence to a critical point, but

instead the KL property is a key tool to obtain a novel local convergence rate compared to existing

results on trust region methods in the literature.

3.2.1.1 Convergence of Algorithm 8

In this paragraph, we analyse the asymptotic behaviour of the sequence
{
xl
}
l≥0

generated by Al-

gorithm 8 whenM = ∞. In order to apply Theorem 2.9 in [12], two ingredients are needed, which

are a sufficient decrease property and a relative error condition.

Lemma 3.1 (Sufficient decrease in Algorithm 8). Assume that the sequence
{
xl
}

is bounded. For

all l ≥ 1,

L�
(
xl+1, μ̄k, sk+1

)
+ ιΩ

(
xl+1

)
+
r

2

∥∥xl+1 − xl
∥∥2
2
≤ L�

(
xl, μ̄k, sk+1

)
+ ιΩ

(
xl
)
. (3.18)

Proof. As a direct consequence of Assumption 3.3 and the descent Lemma, the backtracking loop

in Algorithm 8 (Lines 5 to 10) terminates after a finite number of iterations with a curvature esti-
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mate cl and an iterate

xl+1 = PΩ

(
xl − 1

cl
∇L�

(
xl, μ̄k, sk+1

))
satisfying

L�
(
xl+1, μ̄k, sk+1

)
+
r

2

∥∥xl+1 − xl
∥∥2
2
≤ L�

(
xl, μ̄k, sk+1

)
+
〈
∇L�

(
xl, μ̄k, sk+1

)
, xl+1 − xl

〉
+
cl

2

∥∥xl+1 − xl
∥∥2
2
.

By definition of xl+1 as the projection of

xl − 1

cl
∇L�

(
xl, μ̄k, sk+1

)
onto the closed convex set Ω, we have

xl+1 = argmin
x∈Ω

〈
∇L�

(
xl, μ̄k, sk+1

)
, x− xl

〉
+
cl

2

∥∥x− xl
∥∥2
2
,

hence, as xl ∈ Ω,

〈
∇L�

(
xl, μ̄k, sk+1

)
, x− xl

〉
+
cl

2

∥∥x− xl
∥∥2
2
≤ 0 ,

and thus,

L�
(
xl+1, μ̄k, sk+1

)
+
r

2

∥∥xl+1 − xl
∥∥2
2
≤ L�

(
xl, μ̄k, sk+1

)
,

which yields the sufficient decrease on L� (·, μ̄k, sk+1) + ιΩ, as ιΩ
(
xl
)
= ιΩ

(
xl+1

)
.

Lemma 3.2 (Relative error condition). Assume that the sequence
{
xl
}

is bounded. There exists a

positive scalar γ (μ̄k, �, sk+1) such that

∃vl+1 ∈ NΩ

(
xl+1

)
,
∥∥∇xL�

(
xl+1, μ̄k, sk+1

)
+ vl+1

∥∥
2
≤ γ (μ̄k, �, sk+1)

∥∥xl+1 − xl
∥∥
2

(3.19)

for all l ≥ 0.

Proof. From the definition of xl+1, there exists a vector vl+1 in NΩ

(
xl+1

)
such that

0 = vl+1 +∇xL�
(
xl, μ̄k, sk+1

)
+ cl

(
xl+1 − xl

)
,
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which implies that

vl+1 +∇xL�
(
xl+1, μ̄k, sk+1

)
= cl

(
xl − xl+1

)
+∇xL�

(
xl+1, μ̄k, sk+1

)
−∇xL�

(
xl, μ̄k, sk+1

)
.

As the sequence
{
xl
}

is bounded, there exists R > 0 such that xl ∈ B (0, R) for all l ≥ 0. More-

over, the backtracking procedure (lines 5 to 10) of Algorithm 8 terminates after a finite number of

iterations

jl :=

⌈
log (r + �B(0,R)(μ̄k,sk+1,ρ)/c(0))

log β

⌉
,

where c(0) is an initial guess in the backtracking loop, as defined in Algorithm 8. Hence,

cl ≤ βj
l+1c(0) .

In conclusion, by Assumption 3.3,

∥∥vl+1 +∇xL�
(
xl+1, μ̄k, sk+1

)∥∥
2
≤
(
�B(0,R) (μ̄k, sk+1, �) + βj

l+1c(0)
)∥∥xl+1 − xl

∥∥
2
.

Theorem 3.2. TakingM = ∞ in Algorithm 8, if the primal sequence
{
xl
}

is bounded, then it con-

verges to a critical point x∞ (μ̄k, sk+1) of L� (·, μ̄k, sk+1) + ιΩ. Moreover, there exists a constant

C > 0 such that if x̄k ∈ B (0, δ), where δ is defined in Theorem 3.1,

∥∥xM − x∞ (μ̄k, sk+1)
∥∥
2
≤ CM−ψ(dL,n) ‖x̄k − x∞ (μ̄k, sk+1)‖2 , (3.20)

where

ψ (d, n) :=
1

d (3d− 3)n−1 − 2
, (3.21)

with d, n ≥ 2.

Proof. By Theorem 3.1, the function L� (·, μ̄k, sk+1)+ ιΩ satisfies the KL property. Moreover, suf-

ficient decrease is guaranteed by Lemma 3.1 along with a relative error condition in Lemma 3.2. As

the sequence
{
xl
}

is assumed to be bounded, global convergence to a critical point of

L� (·, μ̄k, sk+1) + ιΩ

is a direct consequence of Theorem 2.9 in [12]. The results of [10] and [12] provide an asymptotic
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convergence rate estimate, which is a function of the Lojasiewicz exponent

θ (dL, n)

defined in (3.14), which only depends on the dimension of NLP (3.2) and the degree of the poly-

nomial functions involved in it. This is an important point in our analysis, as μ̄k and sk are varying.

As n ≥ 2 and dL ≥ 2,

θ (dL, n) ∈
(
1

2
, 1

)
.

Inequality (3.22) is then a direct consequence of Theorem 2 in [10] as the initial primal iterate is

x̄k.

Remark 3.9. The R-convergence rate estimate (3.22) shows that the convergence of the primal se-

quence
{
xl
}

is locally sublinear. It is not surprising, as Algorithm 8 is a first-order method. How-

ever, the convergence rate (3.22) has a rather theoretical flavour, as it does not explicitly depend

on the problem conditioning, and good performance may still be obtained in particular cases.

3.2.1.2 Convergence of Algorithm 10

Like in Chapter 2, we assume blockwise Lipschitz continuity of the gradient of the parametric

augmented Lagrangian, in addition to Assumption 3.3.

Assumption 3.4 (Blockwise Lipschitz continuity of augmented Lagrangian gradient). For all i ∈
{1, . . . , P}, given χ1 ∈ Ω̃1, . . . , χi−1 ∈ Ω̃i−1 and χi+1 ∈ Ω̃i+1, . . . , χP ∈ Ω̃P , the coordinate

gradient

χi 
→ ∇χi
L� (χ1, . . . , χi−1, χi, χi+1, . . . , χP , μ̄k, sk+1)

is Lipschitz continuous with modulus �i (χ1, . . . , χi−1, χi+1, . . . , χP , μ̄k, sk+1, �).

Assumption 3.5 (Upper bounds on blockwise Lipschitz constants). For all i ∈ {1, . . . , P}, there

exists scalars �̄i (μ̄k, sk+1, �) such that for all l ≥ 1,

�i
(
χl1, . . . , χ

l
i−1, χ

l
i+1, . . . , χ

l
P , μ̄k, sk+1, �

)
≤ �̄i (μ̄k, sk+1, �) .

Under assumptions that are identical to 3.4 and 3.5, the sufficient decrease and relative error

conditions have been proven in paragraph 2.1.2 of Chapter 2. Hence, we just state a convergence

theorem for Algorithm 10.
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Theorem 3.3. Taking M = ∞ in Algorithm 10, if the primal sequence
{
χl
}

is bounded, then it

converges to a critical point χ∞ (μ̄k, sk+1) of L� (·, μ̄k, sk+1)+ιΩ. Moreover, there exists a constant

C > 0 such that if χ̄ (sk) ∈ B (0, δ), where δ is defined in Theorem 3.1,

∥∥χM − χ∞ (μ̄k, sk+1)
∥∥
2
≤ CM−ψ(dL,n) ‖χ̄ (sk)− χ∞ (μ̄k, sk+1)‖2 , (3.22)

where the function ψ has been defined in (3.21).

For Algorithm 8 and its distributed version, Algorithm 10, the theory developed in [10] and [12]

has been readily applied. However, for the trust region Algorithms 9 and 11, the sufficient decrease

and relative error conditions need to be expressed in a different way from Lemmas 3.1 and 3.2 for

the KL property to be used properly. We tackle this issue in the next two paragraphs.

3.2.1.3 Local analysis of Algorithm 9

The arguments of [26] can be directly applied to ensure convergence of the sequence
{
xl
}

gener-

ated by Algorithm 9 to a critical point of L� (·, μ̄k, sk+1) + ιΩ when M = ∞. For this, similar as-

sumptions to the ones of Section 2.2 in Chapter 2 should be satisfied in addition to Assumption 3.2.

Assumption 3.6. For all k ≥ 0, the parametric augmented Lagrangian L� (·, μ̄k, sk+1) is bounded

below on the set

{x ∈ Ω : L� (x, μ̄k, sk+1) ≤ L� (x̄ (sk) , μ̄k, sk+1)} .

Assumption 3.7 (Bounded model hessian). For all k ≥ 0, there exists a scalar B̄� (μ̄k, sk+1) such

that

∀x ∈ Ω, ‖B� (x, μ̄k, sk+1)‖2 ≤ B̄� (μ̄k, sk+1) .

For clarity, we state the convergence theorem of Algorithm 9. Its proof readily follows from [26]

under the strong second-order optimality condition [119].

Theorem 3.4. Assume that Assumptions 3.6 and 3.7 hold. Taking M = ∞ in Algorithm 9, if

the sequence
{
xl
}

has a limit point x∞ (μ̄k, sk+1), at which the strong second-order optimal-

ity condition is fulfilled (Assumption 2.15), then it converges to x∞ (μ̄k, sk+1), a critical point of

L� (·, μ̄k, sk+1) + ιΩ.

The standard results on trust region Newton methods show that the sequence
{
xl
}

converges to

x∞ (μ̄k, sk+1) at a superlinear rate, once the active-set at xl is equal to the active-set at the critical
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point x∞ (μ̄k, sk+1) [26, 110]. Obviously, for Algorithm 9, such a convergence rate is not very

interesting, as the active-set at x̄ (sk) may not be the same as the one at x∞ (μ̄k, sk+1) and may also

change in the early iterations. We know [26] that it settles down to the active-set at x∞ (μ̄k, sk+1) af-

ter a finite number of iterations, but such an analytic expression of this number is hard to establish.

Our result holds when the trust region model m� (·, μ̄k, sk+1) is a Newton model, that is

∀x ∈ Ω, B� (x, μ̄k, sk+1) = ∇2L� (x, μ̄k, sk+1) .

This is needed to ensure that the trust region radius is ultimately bounded away from zero ( [26,

110] and Chapter 2). We first establish that the step-size α that is computed during the activity

detection phase (lines 5 to 6) is bounded from below.

Lemma 3.3 (Lower bound on Cauchy step-size). Under Assumptions 3.6 and 3.7, there exists a

scalar α > 0 such that for all iteration indices l ≥ 0 of Algorithm 9, αl ≥ α.

Proof. From (3.8),

αl ≥ ν4 or αl ≥ ν3α̃
l ,

where α̃l fulfills (3.9) or (3.10). We only need to study the second case, that is αl ≥ ν3α̃
l. From

the properties of the projection onto a closed convex set,

−
〈
∇xL�

(
xl, μ̄k, sk+1

)
, zl

(
α̃l
)
− xl

〉
≥
∥∥zl (α̃l)− xl

∥∥2
2

α̃l
,

where

zl
(
α̃l
)
= PΩ

(
xl − α̃l∇xL�

(
xl, μ̄k, sk+1

))
.

Combining the inequality above with condition (3.9) yields

1

2

〈
zl
(
α̃l
)
− xl,∇2L�

(
xl, μ̄k, sk+1

) (
zl
(
α̃l
)
− xl

)〉
≥ 1− ν0

α̃l
∥∥zl (α̃l)− xl

∥∥2
2
,

and then, via the Cauchy-Schwarz inequality,

α̃l ≥ 2 (1− ν0)

B̄� (μ̄k, sk+1)
.
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Thus, for all l ≥ 1,

αl ≥ min

{
ν4, ν3

2 (1− ν0)

B̄� (μ̄k, sk+1)

}
.

The last case to consider is when α̃l satisfies (3.10). From existing results on trust region Newton

methods [26, 110], we know that the trust region radius Δl is asymptotically bounded away from

0 (Theorem 7.4 in [26], Theorem 5.3 in [110]). Hence, there exists Δ̄ > 0 such that for all l ≥ 1,

Δl ≥ Δ̄ .

Subsequently, for all l ≥ 0,

∥∥zl (α̃l)− xl
∥∥
∞ ≥ ν1Δ̄ .

As the sequence
{
∇xL�

(
xl, μ̄k, sk+1

)}
is bounded, since

{
xl
}

converges (Theorem 3.4) and

L� (·, μ̄k, sk+1) is twice differentiable, the above inequality also implies that α̃l is bounded from

below.

As
{
xl
}

is convergent and all iterations are ultimately successful (when taking M = ∞ in

Algorithm 9), we can recast the sequence
{
xl
}

as the subsequence of successful iterations only

(the iterate xl does not change if the iteration is unsuccessful). The key ingredient of our analysis

is the sequence
{
ul
}

defined by

ul := max
{∥∥yl − xl

∥∥
2
,
∥∥zl − xl

∥∥
2

}
. (3.23)

Lemma 3.4 (Sufficient decrease (Algorithm 9)). There exists a scalar κ1 > 0 such that for all

l ≥ 0,

L�
(
xl, μ̄k, sk+1

)
− L�

(
xl+1, μ̄k, sk+1

)
≥ κ1

(
ul
)2

. (3.24)

Proof. From the definition of
{
xl
}

as the sequence of successful iterations in Algorithm 9,

xl+1 = yl .
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Hence,

L�
(
xl, μ̄k, sk+1

)
− L�

(
xl+1, μ̄k, sk+1

)
= m�

(
xl, μ̄k, sk+1

)
− L�

(
yl, μ̄k, sk+1

)
≥ η1

(
m�

(
xl, μ̄k, sk+1

)
−m�

(
yl, μ̄k, sk+1

))
≥ η1

(
m�

(
xl, μ̄k, sk+1

)
−m�

(
zl, μ̄k, sk+1

)
+m�

(
zl, μ̄k, sk+1

)
−m�

(
yl, μ̄k, sk+1

) )
.

However,

m�

(
xl, μ̄k, sk+1

)
−m�

(
zl, μ̄k, sk+1

)
≥ −ν0

〈
∇xL�

(
xl, μ̄k, sk+1

)
, zl − xl

〉
≥ ν0
αl
∥∥zl − xl

∥∥2
2
.

As m�

(
zl, μ̄k, sk+1

)
−m�

(
yl, μ̄k, sk+1

)
≥ 0, it follows from (3.8) that

L�
(
xl, μ̄k, sk+1

)
− L�

(
xl+1, μ̄k, sk+1

)
≥ η1ν0

ν5

∥∥zl − xl
∥∥2
2
. (3.25)

However, the refinement phase of Algorithm 9 (lines 7 to 8) yields

m�

(
zl, μ̄k, sk+1

)
−m�

(
yl, μ̄k, sk+1

)
≥ r

2

∥∥yl − zl
∥∥2
2
.

Hence,

L�
(
xl, μ̄k, sk+1

)
− L�

(
xl+1, μ̄k, sk+1

)
≥η1 min

{
ν0
ν5
,
r

2

}(∥∥zl − xl
∥∥2
2
+
∥∥yl − zl

∥∥2
2

)
≥η1 min

{
ν0
ν5
,
r

2

}
max

{∥∥zl − xl
∥∥2
2
,
∥∥yl − zl

∥∥2
2

}
.

However, by the triangle inequality,

∥∥yl − xl
∥∥
2
≤ 2max

{∥∥zl − xl
∥∥
2
,
∥∥yl − zl

∥∥
2

}
.

Subsequently,

L�
(
xl, μ̄k, sk+1

)
− L�

(
xl+1, μ̄k, sk+1

)
≥ η1

4
min

{
ν0
ν5
,
r

2

}∥∥yl − xl
∥∥2
2
. (3.26)
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Combining inequalities (3.25) and (3.26), we obtain

L�
(
xl, μ̄k, sk+1

)
− L�

(
xl+1, μ̄k, sk+1

)
≥ η1

ν0
ν5

max
{∥∥zl − xl

∥∥2
2
,
∥∥yl − xl

∥∥2
2

}
,

which corresponds to (3.24) by posing

κ1 := η1
ν0
ν5

.

Similarly, a relative error condition can be expressed in terms of the sequence
{
ul
}

.

Lemma 3.5 (Relative error condition (Algorithm 9)). Under Assumptions 3.6 and 3.7, there exists

a scalar κ2 > 0 such that for all l ≥ 0,

∃vl+1 ∈ NΩ

(
xl+1

)
,
∥∥vl+1 +∇xL�

(
xl+1, μ̄k, sk+1

)∥∥ ≤ κ2u
l . (3.27)

Proof. By definition of the Cauchy point zl, there exists a vector v ∈ NΩ

(
zl
)

such that

0 = v +∇xL�
(
xl, μ̄k, sk+1

)
+
zl − xl

αl
,

which yields

∥∥v +∇xL�
(
xl, μ̄k, sk+1

)∥∥
2
≤ 1

α

∥∥zl − xl
∥∥
2
,

by Lemma 3.3. Hence, by the reverse triangle inequality and Assumption 3.7,

∥∥v +∇xL�
(
xl+1, μ̄k, sk+1

)∥∥
2
≤ 1

α

∥∥zl − xl
∥∥
2
+ B̄� (μ̄k, sk+1)

∥∥yl − xl
∥∥
2

≤ 2max

{
1

α
, B̄� (μ̄k, sk+1)

}
ul . (3.28)

From the definition of the refinement phase in Algorithm 9 (lines 7 to 8),

AΩ

(
zl
)
⊆ AΩ

(
xl+1

)
.

As Ω is a polyhedral set, this implies

NΩ

(
zl
)
⊆ NΩ

(
xl+1

)
,
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and v ∈ NΩ

(
xl+1

)
. The relative error condition (3.27) follows by posing vl+1 := v and

κ2 := 2max

{
1

α
, B̄� (μ̄k, sk+1)

}
.

Theorem 3.5. Under Assumptions 3.2, 3.6 and 3.7, the series∑
l≥0

ul

is bounded.

Proof. The proof is based on the arguments of [10], but adapts to the new role played by the

sequence
{
ul
}

defined in (3.23). Without loss of generality, one can assume that

L� (x
∞ (μ̄k, sk+1) , μ̄k, sk+1) = 0 ,

where x∞ (μ̄k, sk+1) has been defined in Theorem 3.4. Then, the sufficient decrease inequality 3.24

implies that the objective sequence
{
L�
(
xl, μ̄k, sk+1

)}
is positive and decreases to 0. As the se-

quence
{
xl
}

converges to the critical point x∞ (μ̄k, sk+1) (Theorem 3.4), there exists an integer

l1 ≥ 1 such that for all l larger than l1,

xl ∈ B (x∞ (μ̄k, sk+1) , δ) ,

where δ is defined in Theorem 3.1. Hence, by inequality (3.13),

L�
(
xl, μ̄k, sk+1

)θ(dL,n) ≤ 1

c

∥∥vl +∇xL�
(
xl, μ̄k, sk+1

)∥∥
2

≤ κ2
c
ul−1 , (3.29)

where the last inequality follows from Lemma 3.5. However, by convexity of the function

t 
→ −t1−θ
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for t > 0, it comes

L�
(
xl
)1−θ(dL,n) − L�

(
xl+1

)1−θ(dL,n) ≥ (1− θ (dL, n))L�
(
xl, μ̄k, sk+1

)−θ(dL,n) (L� (xl, μ̄k, sk+1

)
− L�

(
xl+1, μ̄k, sk+1

) )
≥ (1− θ (dL, n))L�

(
xl, μ̄k, sk+1

)−θ(dL,n) κ1 (ul)2
≥ cκ1 (1− θ (dL, n))

κ2

(
ul
)2

ul−1
,

where the second inequality follows from Lemma 3.4 and the third inequality follows from (3.29). At

this point, one can follow the same mechanism as in [10] and show by induction that for a fixed

ω ∈ (0, 1),

l∑
j=l1

ul ≤ ω

1− ω
ul1−1 +

κ2
ω (1− ω) cκ1 (1− θ (dL, n))

(
L�
(
xl1 , μ̄k, sk+1

)
− L�

(
xl+1, μ̄k, sk+1

))
,

(3.30)

for all l ≥ l1, which yields the result via Assumption 3.6.

Based on the upper bound (3.30) on the tail of the series
∑

l≥0 u
l and the results of [10], a local

convergence rate estimate for Algorithm 9 can now be derived.

Theorem 3.6 (Local convergence rate of Algorithm 9). Let
{
xl
}

be the sequence generated by

Algorithm 9 (successful and unsuccessful iterations). There exists a radius η > 0 and a constant

C > 0 such that if x̄k ∈ B (x∞ (μ̄k, sk+1) , η),∥∥xM − x∞ (μ̄k, sk+1)
∥∥
2
≤ CS (M)−ψ(dL,n) ‖x̄k − x∞ (μ̄k, sk+1)‖2 , (3.31)

where

S (M) := # {l ∈ {0, . . . ,M} : l successful iteration in Algorithm 9} . (3.32)

Proof. Given l ≥ 1, define the sequence
{
Γl
}

as

Γl :=
+∞∑
j=l

uj .
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It is well-defined by Theorem 3.5. Moreover,

∥∥xl − x∞ (μ̄k, sk+1)
∥∥
2
≤

+∞∑
j=l

∥∥xj − xj+1
∥∥
2

≤ Γl ,

by definition of Γl and ul in (3.23). From inequality (3.30) with ω ∈ (0, 1), it comes

Γl ≤ 1

1− ω
ul−1 +

κ2
ω (1− ω) cκ1 (1− θ (dL, n))

L�
(
xl, μ̄k, sk+1

)1−θ(dL,n)
≤ 1

1− ω
ul−1 +

κ2
ω (1− ω) cκ1 (1− θ (dL, n))

(κ2
c

) 1−θ(dL,n)
θ(dL,n) (

ul−1
) 1−θ(dL,n)

θ(dL,n)

≤ 1

1− ω

(
Γl−1 − Γl

)
+

κ2
ω (1− ω) cκ1 (1− θ (dL, n))

(κ2
c

) 1−θ(dL,n)
θ(dL,n) (

Γl−1 − Γl
) 1−θ(dL,n)

θ(dL,n) ,

where the second inequality follows from (3.29). At this point, the reasoning in the proof of Theo-

rem 2 in [10] can be directly applied to obtain the local convergence rate (3.31) after recasting the

sequence
{
xl
}

as the sequence of successful and unsuccessful iterations in Algorithm 9.

3.2.1.4 Local analysis of Algorithm 11

Similarly to Algorithm 9, Algorithm 11 proceeds by activity detection and refinement. Hence,

we obtain a local convergence rate via the same reasoning as for Algorithm 9, except that the

derivation of the sufficient decrease and relative error inequalities is slightly different due to the

alternating projections (lines 5 to 9). The convergence of the sequence
{
χl
}

to a critical point of

L� (·, μ̄k, sk+1) + ιΩ when M = ∞ follows from the analysis in paragraph 2.2.2 of Chapter 2.

Theorem 3.7. Under Assumptions 2.15, 3.6 and 3.7, by taking M = ∞ in Algorithm 11, the

sequence
{
χl
}

converges to χ∞ (μ̄k, sk+1), a critical point of L� (·, μ̄k, sk+1) + ιΩ.

Lemma 3.6 (Lower bounds on Cauchy step-sizes). For all i ∈ {1, . . . , P}, there exist scalars

αi > 0 such that for all l ≥ 0, αli ≥ αi.

Proof. The proof is almost the same as for Lemma 3.3. In the case where αli ≥ ν3α̃
l
i and α̃li

satisfies (2.56), using the same reasoning as in the proof of Lemma 2.7 in paragraph 2.2.1, one can

show that

α̃li ≥
2 (1− ν0)

B̄� (μ̄k, sk+1)
.
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Lemma 2.12 in paragraph 2.2.2 shows that the trust region radius is bounded way from zero, hence

α̃li is also bounded from below in the case where

∥∥zli (α̃li)− χli
∥∥
∞ ≥ ν1Δ

l .

We recast the sequence
{
xl
}

generated by Algorithm 11 as the subsequence of successful iter-

ations. The sequence
{
ul
}

is constructed in the same way as in the previous paragraph

ul := max
{∥∥zl − χl

∥∥
2
,
∥∥yl − χl

∥∥
2

}
for l ≥ 0.

Lemma 3.7 (Sufficient decrease(Algorithm 11)). There exists a scalar κ1 > 0 such that for all

l ≥ 0,

L�
(
χl, μ̄k, sk+1

)
− L�

(
χl+1, μ̄k, sk+1

)
≥ κ1

(
ul
)2

. (3.33)

Proof. The proof proceeds as for Lemma 3.4, the only difference being in the derivation of the

lower bound on

m�

(
χl, μ̄k, sk+1

)
−m�

(
zl, μ̄k, sk+1

)
.

For every i ∈ {1, . . . , P}, we have

m�

(
zl[[1,i−1]], χ

l
i, χ

l
[[i+1,P ]]μ̄k, sk+1

)
−m�

(
zl[[1,i−1]], z

l
i, χ

l
[[i+1,P ]]μ̄k, sk+1

)
≥ ν0
αli

∥∥zli − χli
∥∥2
2

≥ ν0
ν5

∥∥zli − χli
∥∥2
2
.

Hence,

m�

(
χl, μ̄k, sk+1

)
−m�

(
zl, μ̄k, sk+1

)
≥ ν0
ν5

∥∥zl − χl
∥∥2
2
.

The reasoning is then the same as in the proof of Lemma 3.4.

Lemma 3.8 (Relative error condition (Algorithm 11)). Under Assumptions 3.6 and 3.7, there exists

a scalar κ2 > 0 such that for all l ≥ 0,

∃vl+1 ∈ NΩ̃

(
χl+1

)
,
∥∥vl+1 +∇χL�

(
χl+1, μ̄k, sk+1

)∥∥ ≤ κ2u
l . (3.34)
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Proof. Let i ∈ {1, . . . , P} and l ≥ 0. From the definition of the Cauchy point zli at subblock i,

there exists vi ∈ NΩ̃i

(
zli
)

such that

0 = vi +∇χi
m�

(
zl[[1,i−1]], χ

l
i, χ

l
[[i+1,P ]], μ̄k, sk+1

)
+
zli − χli
αli

= vi +∇χi
L�
(
χl, μ̄k, sk+1

)
+ EiB�

(
χl, μ̄k, sk+1

)
E�

[[1,i−1]]

(
zl[[1,i−1]] − χl[[1,i−1]]

)
+
zli − χli
αli

.

Hence,

∥∥vi +∇χi
L�
(
χl, μ̄k, sk+1

)∥∥
2
≤ B̄� (μ̄k, sk+1)

∥∥zl − χl
∥∥
2
+

1

αi

∥∥zli − χli
∥∥
2
.

By taking vl+1 := (v�
1 , . . . , v

�
P )

�
, we obtain

∥∥vl+1 +∇χL�
(
χl, μ̄k, sk+1

)∥∥
2
≤ P

(
B̄� (μ̄k, sk+1) +

1

min {αi : i ∈ {1, . . . , P}}

)∥∥zl − χl
∥∥
2
.

In conclusion, by the reverse triangle inequality and Assumption 3.7,

∥∥vl+1 +∇χL�
(
χl+1, μ̄k, sk+1

)∥∥
2
≤ P

(
B̄� (μ̄k, sk+1) +

1

min {αi : i ∈ {1, . . . , P}}

)∥∥zl − χl
∥∥
2

+ B̄� (μ̄k, sk+1)
∥∥yl − χl

∥∥
2

(3.35)

and the relative error inequality (3.34) follows by posing

κ2 := 2P

(
B̄� (μ̄k, sk+1) +

1

min {αi : i ∈ {1, . . . , P}}

)
.

The local convergence rate for Algorithm 11 is proven using the mechanism of the previous

paragraph. The proof is the same as for Theorem 3.6.

Theorem 3.8 (Local convergence rate of Algorithm 11). Let
{
χl
}

be the sequence generated by Al-

gorithm 11. There exists a radius η > 0 and a constantC > 0 such that if χ̄k ∈ B (χ∞ (μ̄k, sk+1) , η),∥∥χM − χ∞ (μ̄k, sk+1)
∥∥
2
≤ CS (M)−ψ(dL,n) ‖χ̄k − χ∞ (μ̄k, sk+1)‖2 , (3.36)

where

S (M) := # {l ∈ {0, . . . ,M} : l successful iteration in Algorithm 11} . (3.37)
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With the convergence rates of Theorems 3.2, 3.3, 3.6 and 3.8, we are equipped for analysing

the stability of Algorithm 7.

3.2.2 Local primal-dual contraction

Given a parameter s ∈ S, KKT points w∗ (s) =
(
x∗ (s)� , μ∗ (s)�

)�
of the parametric nonlinear

program (3.2) satisfy x∗ (s) ∈ Ω and{
0 ∈ ∇xJ (x∗ (s)) +∇xG (x∗ (s) , s)� μ∗ (s) +NΩ (x∗ (s))

G (x∗ (s) , s) = 0
. (3.38)

Relation (3.38) can be re-written as the generalised equation

0 ∈ F (w, s) +NΩ×Rm (w) , (3.39)

where

F (w, s) :=

(
∇xJ (x) +∇xG (x, s)� μ

G (x, s)

)
, w =

(
x

μ

)
.

In order to analyse the behaviour of the KKT points of (3.2) as the parameter sk evolves, the

generalised equation (3.39) needs to satisfy some regularity assumptions. This is captured by the

strong regularity concept [137], which has already been introduced in Chapter 1.3 and applied in

Chapter 2, and is stated again here for clarity.

Definition 3.1 (Strong regularity,[137]). Let Ω be a compact convex set in Rn and f : Rn → Rn a

differentiable mapping. A generalised equation 0 ∈ f (x) + NΩ (x) is said to be strongly regular

at a solution x∗ ∈ Ω if there exists radii η > 0 and κ > 0 such that for all r ∈ B (0, η), there exits

a unique xr ∈ B (x∗, κ) such that

r ∈ f (x∗) +∇f (x∗) (xr − x∗) +NΩ (xr) , (3.40)

and the inverse mapping r 
→ xr from B (0, η) to B (x∗, κ) is Lipschitz continuous.

Remark 3.10. In the case of a polyhedral constraint set Ω, it is worth noting that strong regularity

incorporates active-set changes in its definition, as the normal cone is taken at xr in Eq. (3.40). The

set of active constraints at xr may be different from the one at x∗. Nevertheless, Lipschitz continuity

of the solution is still preserved locally.

Remark 3.11. As the constraint set Ω in (3.2) is polyhedral, it can be shown that strong regularity
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of a KKT point of (3.2) is equivalent to linear independence constraints qualification and strong

second-order optimality [49], which are standard assumptions in nonlinear programming [119].

As the parameter sk changes, strong regularity is assumed for every index k.

Assumption 3.8. For all parameters sk ∈ S and associated solutions w∗
k, the generalised equa-

tion (3.39) is strongly regular at w∗
k.

From Assumption 3.8, it can be proven that the nonsmooth manifold formed by the solutions

to the parametric program (3.2) is locally Lipschitz continuous. The first step to achieve this fun-

damental property is the following Theorem proven in [137].

Theorem 3.9. There exists radii δA > 0 and rA > 0 such that for all k ∈ N and all s ∈ B (sk, rA),

there exists a unique w∗ (s) ∈ B (w∗
k, δA) such that

0 ∈ F (w∗ (s) , s) +NΩ×Rm (w∗ (s))

and for all s, s′ ∈ B (sk, rA),

‖w∗ (s)− w∗ (s′)‖2 ≤ λA ‖F (w∗ (s′) , s)− F (w∗ (s′) , s′)‖2 , (3.41)

where λA is a Lipschitz constant associated with the strong regularity mapping of (3.39).

Remark 3.12. Theorem 3.9 is actually a refinement of Theorem 2.1 in [137], as the radii δA and

rA are assumed not to depend on the parameter sk ∈ S.

Relation (3.41) does not exactly correspond to Lipschitz continuity. This point is addressed by

the following Lemma.

Lemma 3.9. There exists λF > 0 such that for all w ∈ Ω× Rm,

∀s, s′ ∈ S, ‖F (w, s)− F (w, s′)‖2 ≤ λF ‖s− s′‖2 . (3.42)

Proof. Let w ∈ Ω× Rm and s, s′ ∈ S.

F (w, s)− F (w, s′) =

(
(∇xG (x, s)−∇xG (x, s′))� μ

G (x, s)−G (x, s′)

)

=

⎛⎜⎜⎜⎜⎝
0

T1 (s− s′)

. . .

TN (s− s′)

⎞⎟⎟⎟⎟⎠ .
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Hence, (3.42) holds with

λF = N ·max {‖T1‖2 , . . . , ‖TN‖2} .

Algorithm 7 is designed to track the nonsmooth solution manifold by traveling from neighbour-

hood to neighbourhood, where Lipschitz continuity of the primal-dual solution holds. Such track-

ing procedures have been analysed thoroughly in the unconstrained case by [46] for a Newton-type

method, in the constrained case by [157] for an augmented Lagrangian approach and in [148] for an

adjoint-based SCP method. These previous tracking strategies are purely centralised second-order

strategies and do not readily extend to solving NLPs in a distributed manner. Our Algorithm 7 pro-

poses a novel way of computing predictor steps along the solution manifold via a decomposition

approach, which is tailored to convex constraint sets with closed-form projection operators. Such a

class encompasses boxes, the non-negative orthant, semi-definite cones and balls for instance. The

augmented Lagrangian framework is particularly attractive in this context, as it allows one to pre-

serve ‘nice’ constraints via partial penalisation.

Algorithm 7 is a truncated scheme both in the primal and dual space, as only M primal iter-

ations of a descent method are applied, which are followed by a single dual update. By means of

warm-starting, it tracks the nonsmooth solution manifold of the parametric program (3.2). At a

given index k, the primal-dual point w̄k is suboptimal. Thus, a natural question is whether the sub-

optimality gap remains stable, as the parameter sk varies with k, that is if the sub-optimal iterate

remains close to the KKT manifold, or converges to it. Intuitively, one can guess that if sk evolves

slowly and the number of primal iterations M is large enough, stability of the sub-optimality error

is expected. This section provides a formal statement about the sub-optimality gap and demon-

strates that its evolution is governed by the penalty parameter �, the number of primal iterations

M and the magnitude of the parameter difference sk+1 − sk, which need to be carefully chosen

according to the results provided later in the Chapter.

As the overall objective is to analyse the stability of the sub-optimality error ‖w̄k − w∗
k‖2, a

unique critical point w∗
k should be defined at every index k. This is one of the roles of strong regu-

larity. Given a critical point w∗
k for problem (3.2) at sk, its strong regularity (Assumption 3.8) im-

plies that there exists a unique critical point for problem (3.2) at sk+1, assuming that ‖sk+1 − sk‖2
is small enough.

Assumption 3.9. For all k ≥ 0, ‖sk+1 − sk‖2 ≤ rA.

Remark 3.13. In an NMPC setting, this assumption is satisfied if the sampling frequency is fast

enough compared to the system’s dynamics.
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Lemma 3.10. For all k ≥ 0 and sk ∈ S, given w∗
k such that

0 ∈ F (w∗
k, sk) +NΩ×Rm (w∗

k) ,

there exists a unique w∗
k+1 ∈ B (w∗

k, δA) such that

0 ∈ F
(
w∗
k+1, sk+1

)
+NΩ×Rm

(
w∗
k+1

)
.

Proof. This is an immediate consequence of Assumption 3.9 and strong regularity of w∗
k for all

k ≥ 0.

3.2.2.1 An auxiliary generalised equation

In Algorithm 7, the primal loop, which is initialised at x̄k (or the reordered variable χ̄k), con-

verges to x∞ (μ̄k, sk+1) (or χ∞ (μ̄k, sk+1)), a critical point of L� (·, μ̄k, sk+1) + ιΩ, by Theo-

rems 3.2, 3.3, 3.4 and 3.7. The following generalised equation characterises critical points of the

augmented Lagrangian function L� (·, μ̄, s) + ιΩ in the primal-dual space:

0 ∈ H� (w, d� (μ̄) , s) +NΩ×Rm (w) , (3.43)

where given μ∗
k ∈ Rm, one defines d� (μ̄) := (μ̄− μ∗

k) /� and

H� (w, d� (μ̄) , s) :=

⎛⎝ ∇xJ (x) +∇xG (x, s)� μ

G (x, s) + d� (μ̄) +
μ∗
k − μ

�

⎞⎠ .

Lemma 3.11. Let μ̄ ∈ Rm, � > 0 and s ∈ S. The primal point x∗(μ̄, s) is a critical point of

L�(·, μ̄, s) + ιΩ if and only if the primal-dual point

w∗ (d� (μ̄) , s) =

(
x∗ (μ̄, s)

μ̄+ �G (x∗ (μ̄, s) , s)

)

satisfies (3.43).

Proof. The necessary condition is clear. To prove the sufficient condition, assume that

w∗ (d� (μ̄) , s) =
(
x∗ (d� (μ̄) , s)

� , μ∗ (d� (μ̄) , s)
�)�
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satisfies (3.43). The second half of (3.43) implies that

μ∗ (d� (μ̄) , s) = μ̄+ �G (x∗ (d� (μ̄) , s) , s) .

Putting this expression in the first part of (3.43), one obtains that x∗ (d� (μ̄) , s) is a critical point

of L� (·, μ̄, s) + ιΩ.

In the sequel, a primal-dual point satisfying (3.43) is denoted by w∗ (d� (μ̄) , s) or w∗ (μ̄, s)

without distinction. As x∞ (μ̄k, sk+1) is a critical point of L� (·, μ̄k, sk+1) + ιΩ, one can define

w∞ (d�(μ̄k), sk+1) :=

(
x∞ (μ̄k, sk+1)

μ̄k + �G (x∞(μ̄k, sk+1), sk+1)

)
, (3.44)

which satisfies (3.43). Note that the generalised equation (3.43) is parametric in s and d�(·), which

represents a normalised distance between a dual variable and an optimal dual variable at index

k. Assuming that the penalty parameter � is well-chosen, the generalised equation (3.43) can be

proven to be strongly regular at a given solution.

Lemma 3.12 (Strong regularity of (3.43)). There exists �̃ > 0 such that for all � > �̃ and k ≥
0, (3.43) is strongly regular at w∗

k = w∗ (0, sk).

Proof. As Ω is polyhedral, this follows from strong regularity of (3.39) for all k ≥ 0 and the same

arguments as in the proof of Lemma 2.1 in Chapter 2.

Assumption 3.10. The penalty parameter satisfies � > �̃.

From the strong regularity of (3.43) at w∗
k, using Theorem 2.1 in [137], one obtains the follow-

ing local Lipschitz property of a solution w to (3.43).

Lemma 3.13. There exists radii δB > 0, rB > 0 and qB > 0 such that for all k ∈ N,

∀d ∈ B (0, qB) , ∀s ∈ B (sk, rB) , ∃! w∗ (d, s) ∈B (w∗
k, δB) ,

0 ∈ H� (w
∗ (d, s) , d, s) +NΩ×Rm (w∗ (d, s))

and for all d, d′ ∈ B (0, qB) and all s, s′ ∈ B (sk, rB),

‖w∗ (d, s)− w∗ (d′, s′)‖2 ≤ λB ‖H� (w
∗ (d′, s′) , d, s)−H� (w

∗ (d′, s′) , d′, s′)‖2 ,

where λB > 0 is a Lipschitz constant associated with (3.43).
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Note that, given w ∈ Ω× Rm, d, d′ ∈ Rm and s, s′ ∈ S, one can write

H� (w, d, s)−H� (w, d
′, s′) = F (w, s)− F (w, s′) +

(
0

d− d′

)
,

which, from Lemma 3.9, implies the following Lemma.

Lemma 3.14. There exists λH > 0 such that for all w ∈ Ω × Rm, for all d, d′ ∈ Rm and all

s, s′ ∈ Rm,

‖H� (w, d, s)−H� (w, d
′, s′)‖2 ≤ λH

∥∥∥∥∥
(
d

s

)
−
(
d′

s′

)∥∥∥∥∥
2

. (3.45)

Proof. After straightforward calculations, one obtains the Lipschitz property with

λH :=
√

max
{
λ2F , 1

}
+ λF .

3.2.2.2 Derivation of the contraction inequality

In this paragraph, it is proven that under some conditions, which are clarified next, the optimal-

ity tracking error ‖w̄k − w∗
k‖2 of Algorithm 7 remains within a specified bounded interval if the

parameter sk varies sufficiently slowly with k.

First, note that given a sub-optimal primal-dual solution w̄k+1 and a critical point w∗
k+1,∥∥w̄k+1 − w∗

k+1

∥∥
2
≤‖w̄k+1 − w∞ (d� (μ̄k) , sk+1)‖2 +

∥∥w∞ (d� (μ̄k) , sk+1)− w∗
k+1

∥∥
2
, (3.46)

wherew∞ (d�(μ̄k), sk+1) has been defined in (3.44). The analysis then consists of bounding the two

right hand side terms in (3.46). The first one can be upper-bounded by applying strong regularity

of (3.43) and the second one using the convergence rate of the primal loop in Algorithm 7.

Lemma 3.15. If ‖sk+1 − sk‖2 satisfies

‖sk+1 − sk‖2 < min

{
rB,

qB�

λAλF

}
, (3.47)

where rB and qB have been defined in Lemma 3.13, and ‖w̄k − w∗
k‖2 < qB�, then,

∥∥w∞ (d� (μ̄k) , sk+1)− w∗
k+1

∥∥
2
≤ λBλH

�

(
‖w̄k − w∗

k‖2 + λAλF ‖sk+1 − sk‖2
)
. (3.48)
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Proof. Note that w∗
k+1 can be rewritten w∗

k+1 = w∗ (d� (μ∗
k+1

)
, sk+1

)
, which is a solution to (3.43)

at sk+1.

∥∥d� (μ∗
k+1

)∥∥
2
=

∥∥μ∗
k+1 − μ∗

k

∥∥
2

�

≤ λFλA
�

‖sk+1 − sk‖2

< qB ,

by applying Theorem 3.9, Lemma 3.9 and from hypothesis (3.47). Moreover,

‖d�(μ̄k)‖2 =
‖μ̄k − μ∗

k‖2
�

≤ ‖w̄k − w∗
k‖2

�

< qB .

Now, as ‖sk+1 − sk‖2 < rB one can apply Lemmas 3.13 and 3.14 to obtain

∥∥w∞ (μ̄k, sk+1)− w∗
k+1

∥∥
2
≤ λBλH

∥∥d� (μ̄k)− d�
(
μ∗
k+1

)∥∥
2

≤ λBλH
�

(
‖μ̄k − μ∗

k‖2 +
∥∥μ∗

k+1 − μ∗
k

∥∥
2

)
≤ λBλH

�

(∥∥w̄k − w∗
k

∥∥
2
+ λAλF

∥∥sk+1 − sk
∥∥
2

)
,

by Theorem 3.9.

In the following Lemma, using the convergence rate estimates presented in Theorems 3.2

or 3.3, we derive a bound on the first summand ‖w̄k+1 − w∞(d�(μ̄k), sk+1)‖2 when the primal

point x̄k+1 is computed via Algorithm 9 or 11 respectively.

Lemma 3.16. Assume that
{
xl
}

has been generated by Algorithm 8 or 10. If ‖sk+1 − sk‖2 < rB,

‖w̄k − w∗
k‖2 < qB� and

(
1 +

λHλB
�

)
‖w̄k − w∗

k‖2 + λHλBrB < η ,
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where η has been defined in Theorem 3.2 or 3.3, then

∥∥w̄k+1 − w∞ (d� (μ̄k) , sk+1)
∥∥
2
≤ C (1 + �λG)M

−ψ(dL,n)
(
λBλH ‖sk+1 − sk‖2 (3.49)

+
∥∥w̄k − w∗

k

∥∥
2

(
1 +

λBλH
�

))
,

where λG > 0 is the Lipschitz constant of G (·, sk+1) on the ball containing the convergent se-

quence
{
xl
}

.

Proof. From Algorithm 7, it follows that

‖w̄k+1 − w∞ (d� (μ̄k) , sk+1)‖2 ≤
∥∥∥∥∥
(

x̄k+1 − x∞ (μ̄k, sk+1)

� (G (x̄k+1, sk+1)−G (x∞ (μ̄k, sk+1) , sk+1))

)∥∥∥∥∥
2

≤ (1 + �λG) ‖x̄k+1 − x∞ (μ̄k, sk+1)‖2 .

In order to apply Theorem 3.2 or 3.3, one first needs to show that x̄k lies in the ball B (x∞ (μ̄k, sk+1) , η),∥∥x̄k − x∞ (μ̄k, sk+1)
∥∥
2
≤
∥∥x̄k − x∗ (0, sk)

∥∥
2
+
∥∥x∗ (0, sk)− x∞ (μ̄k, sk+1)

∥∥
2

(3.50)

≤
∥∥w̄k − w∗

k

∥∥
2
+ λHλB

(
‖d� (μ̄k)‖2 + ‖sk+1 − sk‖2

)
≤
(
1 +

λHλB
�

)
‖w̄k − w∗

k‖2 + λHλB ‖sk+1 − sk‖2

< δ ,

where the second step follows from strong regularity of (3.43) at w∗ (0, sk) and the hypotheses

mentioned above. Thus one can use the R-convergence rate estimate of Theorem 3.2 or 3.3 and

apply the inequalities in (3.50) to obtain (3.49).

A related Lemma can be stated when Algorithm 9 or 11 is applied to minimise the parametric

augmented Lagrangian.

Lemma 3.17. Assume that
{
xl
}

has been generated by Algorithm 9 or 11. If ‖sk+1 − sk‖2 < rB,

‖w̄k − w∗
k‖2 < qB� and

(
1 +

λHλB
�

)
‖w̄k − w∗

k‖2 + λHλBrB < η ,

134



CHAPTER 3. A PARAMETRIC DECOMPOSITION ALGORITHM FOR NONCONVEX PROGRAMS

where η has been defined in Theorem 3.6 or 3.8, then

∥∥w̄k+1 − w∞ (d� (μ̄k) , sk+1)
∥∥
2
≤ C (1 + �λG)S (M)−ψ(dL,n)

(
λBλH ‖sk+1 − sk‖2 (3.51)

+
∥∥w̄k − w∗

k

∥∥
2

(
1 +

λBλH
�

))
,

where λG > 0 is the Lipschitz constant of G (·, sk+1) on the ball containing the convergent se-

quence
{
χl
}

and S (M) has been defined in (3.32) or (3.37) respectively.

Proof. The reasoning is the same as for the proof of Lemma 3.16, except that Theorems 3.6 or 3.8

are applied.

Regarding the first-order methods described in Algorithms 8 and 10, by gathering the results

of Lemmas 3.15 and 3.16, one can state the following Theorem, which provides an upper-bound

on the sub-optimality error at index k + 1, expressed as a linear combination of the sub-optimality

error at index k and the magnitude of the parameter difference.

Theorem 3.10 (Contraction with Algorithms 8 and 10). Assume that x̄k+1 has been generated via

Algorithm 8 or 10. Given an index k, if the primal-dual error ‖w̄k − w∗
k‖2, the number of primal

iterations M , the penalty parameter � and the parameter difference ‖sk+1 − sk‖2 satisfy

• ‖sk+1 − sk‖2 < min

{
rA, rB,

qB�

λAλF

}
,

• ‖w̄k − w∗
k‖2 < qB� ,

• � > �̃ ,

• (
1 +

λHλB
�

)
‖w̄k − w∗

k‖2 + λHλBrB < η , (3.52)

then the following contraction inequality is satisfied at all indices k ≥ 0:

∥∥w̄k+1 − w∗
k+1

∥∥
2
≤ βw (�,M) ‖w̄k − w∗

k‖2 + βs (�,M) ‖sk+1 − sk‖2 , (3.53)

where

βw (�,M) := C (1 + �λG)

(
1 +

λBλH
�

)
M−ψ(dL,n) +

λBλH
�

, (3.54)
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and

βs (�,M) := C (1 + �λG)λBλHM
−ψ(dL,n) +

λBλHλAλF
�

. (3.55)

Proof. This is a direct consequence of Lemmas 3.15 and 3.16.

Remark 3.14. Note that the last hypothesis (3.52) may be quite restrictive, since ‖w̄k − w∗
k‖2

needs to be sufficiently small for it to be satisfied. However, in many cases the radius η is large

(+∞ for strongly convex functions).

A related contraction inequality can be derived when the trust region Algorithms 9 or 11 are

applied in order to compute χ̄k+1.

Theorem 3.11 (Contraction with Algorithms 9 and 11). Assume that x̄k+1 has been generated via

Algorithm 9 or 11. Given an index k, if the primal-dual error ‖w̄k − w∗
k‖2, the number of primal

iterations M , the penalty parameter � and the parameter difference ‖sk+1 − sk‖2 satisfy

• ‖sk+1 − sk‖2 < min

{
rA, rB,

qB�

λAλF

}
,

• ‖w̄k − w∗
k‖2 < qB� ,

• � > �̃ ,

• (
1 +

λHλB
�

)
‖w̄k − w∗

k‖2 + λHλBrB < η , (3.56)

then the following contraction inequality is satisfied at all indices k ≥ 0:

∥∥w̄k+1 − w∗
k+1

∥∥
2
≤ βw (�,M) ‖w̄k − w∗

k‖2 + βs (�,M) ‖sk+1 − sk‖2 , (3.57)

where

βw (�,M) := C (1 + �λG)

(
1 +

λBλH
�

)
S (M)−ψ(dL,n) +

λBλH
�

, (3.58)

and

βs (�,M) := C (1 + �λG)λBλHS (M)−ψ(dL,n) +
λBλHλAλF

�
. (3.59)

Proof. This is a direct consequence of Lemmas 3.15 and 3.17.
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Remark 3.15. It is worth noting that Theorem 3.11 does not make use of the specific nature of

Algorithms 9 and 11, which benefit from the fast local convergence of Newton’s method once the

active-set has settled down. However, if the warm-start x̄k is sufficiently close to x∞ (μ̄k, sk+1) and

lies on the same active face, then from Theorem 2.6,

‖x̄k+1 − x∞ (μ̄k, sk+1)‖ ≤ εM ‖x̄k − x∞ (μ̄k, sk+1)‖2 ,

where ε ∈ (0, 1) can be made arbitrarily small. Subsequently, the contraction coefficients become

βw (�,M) := C (1 + �λG)

(
1 +

λBλH
�

)
εM +

λBλH
�

and

βs (�,M) := C (1 + �λG)λBλHε
M +

λBλHλAλF
�

.

Compared to the expressions (3.58) and (3.59), the coefficients βw (�,M) and βs (�,M) can be

made smaller than one with a much smaller number of primal iterations, for a fixed penalty �. Thus,

if the optimal active-set is rapidly identified, which is generally the case with gradient projections,

then the tracking performance of Algorithm 7 with Algorithm 9 or 11 is improved compared to the

case where Algorithm 8 or Algorithm 10 are used as primal solvers.

In order to ensure stability of the sequence of sub-optimal iterates w̄k, the parameter difference

‖sk+1 − sk‖2 has to be sufficiently small and the coefficient βw (�,M) needs to be strictly less

than 1. This is clearly satisfied if the penalty parameter � is sufficiently large to make λBλH/� small

in (3.54) (or (3.58)). Yet the penalty parameter � also appears in 1 + �λG. Hence it needs to be

balanced by a large enough number of primal iterations M in order to make the first summand

in (3.54) (or (3.58)) small. More precisely, enforcing βw (�,M) < 1 is equivalent to

CλGM
−ψ(dL,n)�2 +

(
CM−ψ(dL,n) (1 + λGλBλH)− 1

)
�+ λBλH

(
1 + CM−ψ(dL,n)

)
< 0 .

(3.60)

The minimum of the second order polynomial in � (3.60) is attained at

�min =
1

2λG

(
1

CM−ψ(dL,n)
− 1− λGλBλH

)
.
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For making �min positive, the number of primal iterations M needs to be sufficiently large, so that

M−ψ(dL,n) <
1

C (1 + λGλBλH)
.

One can readily show that the minimum of (3.60) is negative if

C2M−2ψ(dL,n) (λBλHλG − 1)2 − 2CM−ψ(dL,n) (1 + 3λBλGλH) + 1 > 0 ,

which is also satisfied for a sufficiently large M . The same analysis applies to the second coef-

ficient βs (�,M) in order to mitigate the effect of the parameter difference ‖sk+1 − sk‖2 on the

sub-optimality error at k + 1.

Corollary 3.2 (Boundedness of the error sequence). Assume that � and M have been chosen so

that βw (�,M) and βs (�,M) are strictly less than 1, and � > �̃. Let rw > 0 such that

η −
(
1 +

λHλB
�

)
rw − λHλBrs > 0

and rw < qB�, with rs > 0 such that

rs <
(1− βw(�,M))rw

βs(�,M)
.

If ‖w̄0 − w∗
0‖2 < rw and for all k ≥ 0,

‖sk+1 − sk‖2 ≤ min

{
rs, rA, rB,

qB�

λAλF

}
, (3.61)

then for all k ≥ 0, the error sequence satisfies

‖w̄k − w∗
k‖2 < rw .

Proof. The proof proceeds by a straightforward induction. At k = 0, ‖w̄0 − w∗
0‖2 < rw by as-

sumption. Let k ≥ 0 and assume that ‖w̄k − w∗
k‖2 < rw. As ‖sk+1 − sk‖2 < rA, by applying The-

orem 3.9, there exists a unique w∗
k+1 ∈ B (w∗

k, δA), which satisfies (3.39). As ‖sk+1 − sk‖2 satisfies

(3.61), ‖w̄k − w∗
k‖2 < qB�, � > �̃ and (3.56) is satisfied, from the choice of rw and rs, we have

∥∥w̄k+1 − w∗
k+1

∥∥
2
≤ βw (�,M)

∥∥w̄k − w∗
k

∥∥
2
+ βs (�,M) ‖sk+1 − sk‖2

≤ βw (�,M) rw + βs (�,M) ‖sk+1 − sk‖2
≤ rw ,
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as

‖sk+1 − sk‖2 ≤ rs <
(1− βw (�,M)) rw

βs (�,M)
.

It is worth noting that from the choice of rw and rs, the condition (3.56) that is needed for the

contraction (3.57), is also recursively satisfied.

3.2.2.3 Improved contraction via continuation

In Algorithm 7, only one dual update is performed to move from parameter sk to parameter

sk+1. This contrasts with standard augmented Lagrangian methods, in which the Lagrange mul-

tiplier μ and the penalty parameter � are updated after every sequence of primal iterations. Intu-

itively, one would expect that applying several dual updates instead of just one, drives the subop-

timal solution w̄k+1 closer to the optimal one w∗
k+1, thus enhancing the tracking performance as

the parameter sk varies. However, as the number of primal iterations M is fixed a priori, it is not

obvious at all why this would happen, as primal iterations generally need to become more accurate

when the dual variable moves closer to optimality, as shown in Chapter 2. Therefore, we resort to

an homotopy mechanism [3] so as to fully take advantage of property (3.57).

The parameter s can be seen as an extra degree of freedom in Algorithm 7, which can also be

updated along the iterations of Algorithm 7. More precisely, instead of carrying out a sequence of

primal descent steps to find a critical point of L� (·, μ̄k, sk+1) + ιΩ directly at the parameter sk+1,

one moves from sk towards sk+1 step by step, with each step corresponding to a dual update and

a sequence of primal iterations. The proposed approach can be seen as a form of ‘tracking in the

tracking’. More precisely, one defines a finite sequence
{
sjk
}

of D parameters along an homotopy

path {(1− τ) sk + τsk+1 : τ ∈ [0, 1]} by

sjk :=

(
1− j

D

)
sk +

j

D
sk+1, j ∈ {0, . . . , D} , (3.62)

where D ≥ 2. This modification results in Algorithm 12 below. At every step j, the parameter

s is first updated. A sequence of descent steps is then applied given the current parameter s and

multiplier μ, which is updated at the end of step j. In a sense, Algorithm 12 consists in repeatedly

applying Algorithm 7 on an artificial dynamics defined by the homotopy steps.

The rationale behind Algorithm 12 is that it allows for a stronger contraction effect on the

sub-optimality error
∥∥w̄k+1 − w∗

k+1

∥∥
2

than Algorithm 7, as formalised by the following Theorem.

Lemma 3.18 (Optimality along the homotopy path). Given an index k ≥ 0, for all j ∈ {1, . . . , D},
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Algorithm 12 Homotopy-based optimality tracking algorithm

Input: Suboptimal primal-dual solution
(
x̄ (sk)

� , μ̄�
k

)�
, parameters sk and sk+1.

s← sk, μ← μ̄k, xwms ← x̄k
Continuation loop:

for j = 1 . . . D do
s← s+

sk+1 − sk
D

Primal updates:

Compute M iterations of Algorithm 8, 10, 9 or 11 initialised at xwms and obtain xM

xwms ← xM

Dual update: μ← μ+ �G
(
xM , s

)
end for
x̄ (sk+1) ← xwms; μ̄k+1 ← μ

there exists a unique primal-dual variable w∗ (sjk) ∈ B (w∗
k, rA) satisfying

0 ∈ F
(
w∗ (sjk) , sjk)+NΩ×Rm

(
w∗ (sjk)) . (3.63)

Proof. This comes directly from the strong regularity of (3.39), Assumption 3.9 and

∥∥sjk − sk
∥∥
2
≤ ‖sk+1 − sk‖2 ,

for all j ∈ {1, . . . , D}.

Remark 3.16. Note that the parametric program (3.2) at parameter sjk, j ∈ {1, . . . , D}, is feasi-

ble, by strong regularity of (3.39) at w∗ (s0k), since
∥∥sjk − sk

∥∥
2
< rA. However, in general, for an

arbitrarily large parameter difference ‖sk+1 − sk‖2, this is not true, as the set of parameters for

which NLP (3.2) is feasible is generally not convex.

Theorem 3.12 (Improved contraction via continuation). Assume that � > �̃ and that � and M

have been chosen so that βw (�,M) , βs (�,M) < 1. Given an index k ≥ 0, if ‖w̄k − w∗
k‖2 < rw,

where rw satisfies the assumptions of Corollary 3.2, and ‖sk+1 − sk‖2 satisfies (3.61), then the

primal-dual sub-optimal variable w̄k+1 yielded by Algorithm 12 satisfies the following inequality

∥∥w̄k+1 − w∗
k+1

∥∥
2
≤ βDw (�,M) ‖w̄k − w∗

k‖2 + βs (�,M)

∑D−1
i=0 βiw (�,M)

D
‖sk+1 − sk‖2 .

(3.64)

Proof. For all j ∈ {1, . . . , D}, define

μ̄jk := μ̄j−1
k + �G

(
z̄jk, s

j
k

)
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with μ̄0
k := μ̄k and where z̄jk is obtained after M iterations of Algorithm 8, 10, 9 or 11 on

L�
(
·, μ̄j−1

k , sjk
)
+ ιΩ. Thus, one can define a sub-optimal primal-dual variable

w̄jk :=
((
z̄jk
)�
,
(
μ̄jk
)�)�

for the homotopy parameter sjk. By applying Corollary 3.2, we obtain that for all j ∈ {0, . . . , D − 1},

∥∥w̄jk − w∗ (sjk)∥∥2 < rw < qB� ,

since

∥∥sj+1
k − sjk

∥∥
2
=

‖sk+1 − sk‖2
D

< min

{
rs, rA, rB,

qB�

λAλF

}
.

It can also be readily shown that for all j ∈ {0, . . . , D − 1},(
1 +

λHλB
�

)∥∥w̄jk − w∗ (sjk)∥∥2 + λHλB
∥∥sj+1

k − sjk
∥∥
2
< η . (3.65)

Subsequently, one can apply the same reasoning as for proving Theorem 3.10, and get that for all

j ∈ {0, . . . , D − 1},

∥∥w̄j+1
k − w∗ (sj+1

k

)∥∥
2
≤ βw (�,M)

∥∥w̄jk − w∗ (sjk)∥∥2 + βs (�,M)
∥∥sj+1

k − sjk
∥∥
2
. (3.66)

By iterating inequality (3.66) from j = 0 to D − 1, we obtain

∥∥w̄k+1 − w∗
k+1

∥∥
2
≤ βw (�,M)

∥∥w̄D−1
k − w∗ (sD−1

k

)∥∥
2
+
βs (�,M)

D
‖sk+1 − sk‖2

≤ . . .

≤ βDw (�,M)
∥∥w̄0

k − w∗ (s0k)∥∥2 + βs (�,M)

∑D−1
j=0 β

j
w (�,M)

D
‖sk+1 − sk‖2 ,

which is exactly inequality (3.64).

As βw (�,M) < 1, βs (�,M) < 1 and D ≥ 2, it follows that

βDw (�,M) < βw (�,M)
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and

βs (�,M)

∑D−1
i=0 βiw (�,M)

D
< βs (�,M) ,

which implies that the contraction (3.64) is stronger than (3.57). In practice, the coefficients

βw (�,M) and βs (�,M) in (3.57) can be reduced by an appropriate tuning of the penalty � and

the number of primal steps M . Yet this approach is limited, as previously discussed. Therefore,

Algorithm 12 provides a more efficient and systematic way of improving the optimality track-

ing performance. Superiority of Algorithm 12 over Algorithm 7 is demonstrated on a numerical

example in Section 3.3.
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3.3 Computational Considerations and Numerical Experiments

By making use of partial penalisation, Algorithm 7 allows for a more general problem formula-

tion than the related tracking algorithm of [157], in which the primal QP sub-problem is assumed

to have non-negativity constraints only. Moreover, the approach of [157] is likely to be efficient

only when the sub-optimal solution lies on the optimal active face so as to guarantee positive def-

initeness of the hessian of the augmented Lagrangian. In practice, such a requirement seems to

be unrealistic in the case of large reference changes or disturbances. In contrast, our framework

can handle any polynomial nonconvex objective subject to convex constraint set Ωi, for which the

projection is easy to evaluate. This happens when Ωi is a ball, an ellipsoid, a box, the non-negative

orthant or even second-order conic constraints and the semi-definite cone. However, the theoretical

properties derived in Section 3.2 seem to be limited to polyhedral constraint sets.

Remark 3.17. For many nonconvex sets, such as spheres or mixed-integer sets, the projection

can be obtained in closed-form. However, the analysis of Section 3.2 does not readily extend, as

Robinson’s strong regularity is defined for closed convex sets [137].

Remark 3.18. In a distributed framework, any convex polyhedral set Ωi could be handled by

Algorithm 7, as a non-negative slack variable can be introduced for each agent.

Algorithm 7 can be further refined by introducing local copies of the variables. Considering the

NLP

minimise J (x1, . . . , xP )

s.t. G (x1, . . . , xP ) = 0

x1 ∈ Ω1, . . . , xP ∈ ΩP ,

variables yi can be incorporated in the equality constraints, resulting in

minimise J (y1, . . . , yP )

s.t. G (y1, . . . , yP ) = 0

yi − xi = 0 ∀i ∈ {1, . . . , P}
x1 ∈ Ω1, . . . , xP ∈ ΩP .

Subsequently, at iteration l + 1 of Algorithm 8 or 10, some of the steps are given by

minimise
xi∈Ωi

ν�
i

(
yl+1
i − xi

)
+
�

2

∥∥yl+1
i − xi

∥∥2
2
+
αi
2

∥∥xi − xli
∥∥2
2
,
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where νi is a dual variable associated with the equality constraint yi − xi = 0. This step can be

rewritten

minimise
xi∈Ωi

∥∥∥∥xi − 1

αi + �

(
αix

l
i + �yl+1

i + νi
)∥∥∥∥

2

,

which corresponds to projecting

1

αi + �

(
αix

l
i + �yl+1

i + νi
)

onto Ωi. This type of an approach is useful if the minimisation over the yi variables is tractable,

for instance when J is multi-convex and G is multilinear, and the projection onto Ωi is cheap to

compute.

Algorithms 7 and 12 are tested on two nonlinear systems, a DC motor (centralised) in para-

graph 3.3.1 and a formation of three unicycles (distributed) in paragraph 3.3.2. The effect of the

penalty parameter � and the sampling period Δt is analysed, assuming that a fixed number of

iterations can be performed per second. Thus, given a sampling period Δt, the number of com-

munications between the P groups of agents is limited to a fixed value, which models practical

limitations of distributed computations. In particular, it is shown that the theoretical results proven

in Section 3.2 are able to predict the practical behaviour of the combined system-optimiser dy-

namics quite well, and that tuning the optimiser’s step-size � and the system’s step-size Δt has an

effect on the closed-loop trajectories.

From a practical perspective, the purpose of the simulations that follow is to investigate the

effect of a limited computational power or limited communication rate on the closed-loop perfor-

mance of our scheme. This is of particular importance in the case of distributed NMPC problems,

as in practice, only a limited number of packets can be exchanged between the P groups of agents

within a fixed amount of time, which implies that a suboptimal solution is yielded by Algorithm 10

or 11.

Remark 3.19. In the following examples, the first optimal primal-dual solution w∗
0 is computed

using the distributed algorithm 4. A random perturbation is then applied to this KKT point.

3.3.1 DC motor

The first example is a DC motor with continuous-time bilinear dynamics

ẋ = Ax+ Bx · u+ c ,
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where

A =

(
−Ra/La 0

0 −B/J

)
, B =

(
0 −km/La

km/J 0

)
,

c =

(
ua/La

−τl/J

)
,

and the parameters are borrowed from the experimental identification presented in [42]:

La = 0.307 H, Ra = 12.548 Ω, km = 0.22567 Nm/A2, J = 0.00385 Nm.sec2 ,

B = 0.00783 Nm.sec, τl = 1.47 Nm, ua = 60 V .

The first component of the state variable x1 is the armature current, while the second compo-

nent x2 is the angular speed. The control input u is the field current of the machine. The control

objective is to make the angular speed track a piecewise constant reference xref
2 = ±2 rad/sec, while

satisfying the following state and input constraints:

x =

(
−2 A

−8 rad/sec

)
, x =

(
5 A

1.5 rad/sec

)
,

u = 1.27 A, u = 1.4 A .

The continuous-time NMPC problem for reference tracking is discretised at a given sampling

period Δt using an explicit Euler method, which results in a bilinear NLP. Although the consistency

of the explicit Euler integrator is 1, only the first control input is applied to the real system, implying

that the prediction error with respect to the continuous-time dynamics is small for sufficiently small

sampling periods Δt. For simulating the closed-loop system under the computed NMPC control

law, the MATLAB integrator ode45 is used with the sampling period Δt. The prediction horizon

is fixed at 30 samples. This is a key requirement for the analysis that follows, as explained later.

In general, the computational power of an embedded computing platform is quite limited,

meaning that the total number of primal steps that can be computed within one second by Al-

gorithms 7 and 12 is fixed and finite. Later on, we refer to this number as the computational power,

expressed in proj/sec. The results plotted in Figs. 3.1, 3.2, 3.3 and 3.4 are obtained for a computa-

tional power of 2 · 103 proj/sec. In Fig. 3.1, it clearly appears that a better tracking performance is

obtained for Δt = 0.018 sec, compared to a lower sampling period (Δt = 0.004 sec) or a larger

sampling period (Δt = 0.04 sec). The effect of the system’s step-size Δt on the performance of

Algorithm 7 given a fixed computational power is demonstrated more clearly in Fig. 3.5.

Another key parameter is the penalty coefficient �, which can also be interpreted as a step-size
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Figure 3.1: Angular speed against time for increasing sampling periods Δt and a fixed com-

putational power 2 · 103proj/sec: 0.004 sec (top), 0.018 sec (middle) and 0.04 sec (bottom). The

sub-optimal trajectory obtained with Algorithm 7 is plotted in dashed red, while the full NMPC

trajectory obtained using IPOPT (for the same Δt) is in blue.

for the optimiser. In order to demonstrate the effect of � on the efficacy of our optimality tracking

splitting scheme, the sampling period Δt is fixed at 0.018 sec given a computational power of

2 · 103 proj/sec, which implies that the total number of primal iterations is M = 36, and � is made

vary within {20, 100, 1 · 103}. Figure 3.2 shows that a better tracking performance is obtained with

� = 100 than with � = 20 or � = 1 · 103. This can be deduced from the expression of the coeffi-

cient βw (�,M) in Eq. (3.54), as explained in paragraph 3.2.2.2. The optimal choice of the penalty
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Figure 3.2: Angular speed against time for increasing penalty parameters � and a fixed computation

power 2 · 103proj/sec: 20 (top), 100 (middle) and 1000 (bottom). The sub-optimal trajectory obtained

with Algorithm 7 is plotted in dashed red, while the full NMPC trajectory obtained using IPOPT

(for the same Δt) is in blue.

parameter is known to be critical to the convergence speed of ADMM, which is very similar to

the optimality tracking splitting schemes of Algorithms 10 or 11, since they can be interpreted as

truncated Gauss-Seidel procedures in an augmented Lagrangian. To our knowledge, this effect has

only been observed for ADMM-type techniques when dealing with convex programs. When solv-

ing nonconvex programs using augmented Lagrangian techniques, it is commonly admitted that �

should be increased at every dual iteration in order to ensure convergence to a KKT point. Taking �
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too large is known to result in ill-conditioning. For Algorithm 7, the analysis is different, as � does

not only affect the algorithm at the level of linear algebra, but does impact the contraction of the

primal-dual sequence, and thus the convergence speed over time, or tracking performance. Thus

our study provides a novel interpretation of the choice of� via a parametric analysis in a nonconvex

framework. The effect of the optimiser step-size � on the closed-loop performance fully appears in

Fig. 3.6. Satisfaction of the KKT conditions of the parametric augmented Lagrangian problem

2 2.5 3 3.5 4 4.5 5

10−4

10−2

100

102

ωk

Time (s)

Figure 3.3: Optimality of bound constrained augmented Lagrangian program for different sam-

pling periods Δt and a fixed computation power 2 · 103 proj/sec: 0.004 sec (black), 0.018 sec (red)

and 0.04 sec (blue).

minimise
x∈B(x,x)

L� (x, μ̄k, sk+1)

is measured along the closed-loop trajectory by computing

ωk := ‖πB(z,z) (z̄ (μ̄k−1, sk)−∇L� (z̄ (μ̄k−1, sk) , μ̄k−1, sk))− z̄ (μ̄k−1, sk) ‖2 ,

which is plotted in Fig. 3.3. Over time, convergence towards low criticality values is faster for

Δt = 0.18 sec, than for shorter sampling period (Δt = 0.004 sec) or larger sampling period

(Δt = 0.04 sec). The same effect can be observed for the feasibility of the nonlinear equality

constraints G (·, sk), as pictured in Fig. 3.4.

From the results presented in Figures 3.1, 3.2, 3.3 and 3.4, one may conclude that sampling
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Figure 3.4: Norm of equality constraints ‖G (z̄k, sk)‖2 for different sampling periods Δt and a

fixed computation power 2 · 103 proj/sec: 0.004 sec (black), 0.018 sec (red) and 0.04 sec (blue).

faster does not necessarily result in better performance of Algorithm 7. This behaviour is con-

firmed by Figure 3.5. For every computational power within {1 · 103, 2 · 103, 3 · 103, 4 · 103}, the

sampling period is made to vary from Δt = 2 · 10−3 sec to Δt = 4 · 10−2 sec. The tracking perfor-

mance is assessed by computing the normalised L2-norm of the difference between the full-NMPC

output trajectory obtained with IPOPT [152] and the output signal obtained with Algorithm 7 (at

the same sampling period), on a fixed time interval between 2 sec and 4 sec. More precisely, the

optimality tracking error is defined by

E :=

√√√√ 1

Ns

Ns∑
k=1

(y∗k − ȳk)
2 ,

where {y∗k} is the system output signal obtained with IPOPT, {ȳk} is the system output signal ob-

tained with Algorithm 7 (for the same Δt) and Ns is the number of time samples. For a fast sam-

pling rate, the error E appears to be quite large (1 · 100), as the warm-starting point is close to the

optimal solution but only few primal steps can be evaluated, resulting in little improvement of the

initial guess in terms of optimality. This effect can even be justified further by Theorem 3.10: as the

number of primal iterations M is fixed by the sampling period, the term M−ψ(dL,n) in the expres-

sion of βw (�,M) and βs (�,M) is not sufficiently small to dampen the effect of the term 1 + �λG,

and thus the contraction (3.57) becomes looser, thus degrading the closed-loop performance. As
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the sampling becomes slower, more primal iterations can be carried out and subsequently, the error

E is reduced. The same reasoning as before on βw (�,M) and βs (�,M) can be made. However,

if the sampling frequency 1/Δt is too low, the initial guess is very far from the optimal point, to

the point that Assumption 3.9 may not be satisfied anymore, hence the error increases again. Thus,

at every computational power, an optimal sampling period is obtained. As the computation power

increases, the optimal Δt appears to decrease and the associated optimality tracking error E drops.

Remark 3.20. Note that we compare the behaviour of our parametric optimisation algorithm on

NLPs of fixed dimension, no matter what the sampling period is, as the number of prediction sam-

ples has been fixed. This means that the prediction time changes as the sampling period varies,

which may have an effect on the closed-loop behaviour. However, it is important to remember that

the error E is measured with respect to the closed-loop trajectory under the optimal full-NMPC

control law computed at the same sampling period.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.0410−2

10−1

100

E

Sampling period Δt (s)

Figure 3.5: Evolution of the optimality tracking error E against sampling period for different

computation power: 1·103 primal iterations per sec.(red), 2 · 103 (black),3 · 103 (blue) and 4 · 103
(green).

An interesting aspect of the nonconvex splitting Algorithm 7 is that the step-size � has an effect

on the closed-loop behaviour of the nonlinear dynamics, as shown in Fig. 3.6. Given fixed sam-

pling period and computational power, the tracking performance can be improved by tuning the

optimiser step-size �. In a sense, � can now be interpreted as a tuning parameter for the NMPC

controller. In particular, for a fixed number of primal iterations M , choosing � too large makes
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Figure 3.6: Evolution of the optimality tracking errorE against penalty parameter � for 2·103 proj/sec

and Δt = 0.018 sec.

the numerical value of the contraction coefficients βw (�,M) and βs (�,M) blow up, subsequently

degrading the tracking performance. From the arguments developed in paragraph 3.2.2.3, one can

reasonably expect Algorithm 12 to track the time-dependent optima more accurately than Algo-

rithm 7. This is confirmed by Fig. 3.7.

3.3.2 Collaborative tracking of unicycles

The second example is a collaborative tracking problem based on NMPC. Three unicycles are

controlled so that a leader follows a predefined path, while two followers maintain a fixed forma-

tion. This control objective can be translated into the cost function of an NMPC problem, which is

then written∫ T

0

∥∥x(1) (t)− xr (t)
∥∥2
Q1

+
∥∥u(1) (t)∥∥2

R1
+
∥∥u(2) (t)∥∥2

R2
+
∥∥u(3) (t)∥∥2

R3

+
∥∥x(1) (t)− x(2) (t)− d1,2

∥∥2
Q1,2

+
∥∥x(1) (t)− x(3) (t)− d1,3

∥∥2
Q1,3

dt,

where Q1, Q1,2, Q1,3, R1, R2, R3 are positive definite matrices, d1,2, d1,3 are vectors that define the

formation between unicycles 1, 2 and 3 and xr is a reference path. All agents 1, 2 and 3 follow the
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Figure 3.7: Evolution of the optimality tracking error E against sampling period Δt. Algorithm 7

for 3 · 103 proj/sec in black, for 4 · 103 proj/sec in blue. Algorithm 12 with 3 homotopy steps for

3 · 103 proj/sec in dashed red, with 4 homotopy steps for 4 · 103 proj/sec in red.

standard unicycle dynamics ⎧⎪⎪⎨⎪⎪⎩
ẋ1 = u1 cos x3

ẋ2 = u1 sin x3

ẋ3 = u2

,

subject to input constraints

u1 ∈ [0, 0.5] , u2 ∈
[
−π
2
,
π

2

]
.

The continuous-time NMPC problem is discretised using a Runge-Kutta integrator of order 4 [78],

while the closed-loop system is simulated with the MATLAB adaptive step-size integrator ode45. In

the resulting finite-dimensional NLP, two cost coupling terms appear between agents 1 and 2, as

well as agents 1 and 3. This can be addressed by the splitting Algorithm 7. Moreover, the whole pro-

cedure then consists in a sequence of alternating steps between agent 1 and the group {2, 3}, which

can compute descent steps in parallel without requiring any communication. For this particular

NLP with cost-couplings, the dual updates can be performed in parallel. Results of the collabora-

tive tracking NMPC are presented in Figures 3.8 and 3.9. The number of iterations/communications
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Figure 3.8: Trajectories of the three-unicycles formation for 300 proj/sec, Δt = 0.20 sec and � =
3 · 103.
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Figure 3.9: Evolution of the formation error between unicycles 1 and 2 for Algorithm 7 (blue),

compared with the formation error obtained with the full NMPC (IPOPT, black).

per second has been fixed at 300 and the sampling period set to Δt = 0.20 sec. Within the sampling

period, this results in M = 60 exchanges of packets between agent 1 and agents 2, 3, which per-
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form their computations in parallel. The penalty parameter was � = 3 ·103. The formation-keeping

NMPC has been first simulated with the unicycles in closed-loop with the full-NMPC control law,

computed using IPOPT with accuracy 1 · 10−7, which is purely centralised, hence not very interest-

ing from a practical point of view, in this particular case. The full-NMPC trajectory is plotted in

black in Fig. 3.8, while the one obtained using Algorithm 7 is represented in blue. The closed-loop

formation error

ε1,2 :=
∥∥x(1) − x(2) − d1,2

∥∥
2

is plotted in Fig. 3.9. At every reference change, the error rises, but decreases again as the tracking

converges. The performance could be further improved by tuning the penalty � or performing a

few homotopy steps as in Algorithm 12.
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Chapter 4

Applications in Optimal Control

Two applications of the parametric algorithms studied in Chapter 3 are presented. The first ex-

ample consists of the parametric optimal control problem as it arises in NMPC. In order to turn

the infinite-dimensional problem into a finite-dimensional NLP that can be solved by the TRAP

algorithm introduced in Chapter 2 for instance, the so-called direct approaches resort to different

discretisation techniques. In a collocation scheme, the state trajectory and its approximation are

collocated at quadrature points, which are chosen to minimise the integral of the residuals between

the approximate and the true state profile [133, 98], thus resulting in a small discretisation er-

ror. The equality constraints are written in terms of the approximate state profile and interpolation

polynomials, so that the continuous-time OCP is directly turned into a large and sparse NLP. It can

be shown that collocations are implicit Runge-Kutta integrators. They are thus A-stable and recom-

mended for stiff systems. On the contrary, in a shooting scheme, equality constraints are evaluated

by means of explicit or implicit integrators, which has a tendency to increase the nonlinearity in

the problem and induce ill-conditioning. Interesting discussions on the advantages and drawbacks

of the different discretisation methods in NMPC can be found in [160, 47]. In the remainder, we

present a multiple shooting strategy based on the method of multipliers. In the static case, it is a

tailored implementation of the LANCELOT algorithm [34] for solving the partially separable NLP

resulting from the multiple shooting discretisation. Regarding online NMPC, we resort to the para-

metric augmented Lagrangian algorithm analysed in Chapter 3. In the context of decomposition

strategies for optimal control, it is worth pointing out that the evaluation of the multiple shooting

constraints can be easily parallelised.

Our second example is the multi-stage AC-OPF problem, in which different AC-OPF prob-

lems are coupled in time via dynamical storage systems. The purpose of solving the AC-OPF is

to compute power set-points for all generating units in a power network so as to minimise a spe-

cific operating cost. Solving the AC-OPF is challenging, as the network model yields nonlinear

equality constraints, which make the NLP nonconvex. Thus, computing a global optimum in the
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case of large networks is almost intractable, although some advances have recently been made via

semidefinite relaxations [108], moment relaxations [97] or second-order cone relaxations [64]. In

practice, nonlinear solvers are widely used in order to determine local minima that satisfy the non-

linear power flow constraints [164]. However, as claimed in Chapter 2, as the AC-OPF can be

extremely large (10, 000 nodes), distributed optimisation techniques become highly relevant, as

shown in [105]. Motivated by the work of [69], we consider the optimal power flow problem over

distribution networks with storage elements at buses. This leads to a finite-horizon optimal control

problem, which we are interested in solving via distributed optimisation techniques in a real-time

context. This is motivated by the high sampling rates needed by recent applications in power sys-

tems [15], which entail truncating the iterations of a large-scale solver in order to meet the time

requirements and reduce latency.

4.1 A Direct Optimal Control Algorithm Based on Augmented
Lagrangian

In this section, a novel multiple shooting algorithm based on an augmented Lagrangian technique

is presented. It differs quite significantly from the initial approach of [19], in which sequential

quadratic programming (SQP) is applied to solve the NLP resulting from the multiple shooting

discretisation. In fact, it is worth noting that all subsequent development on multiple shooting

has always been based on SQP [109, 101], especially in an online setting [91]. This is proba-

bly justified by the fact that SQP methods are particularly efficient on NLPs, in which the level

of nonlinearities in the constraints is high. They also benefit from local superlinear convergence

when a quasi-Newton approximation is applied [119]. However, despite recent progress [27, 40],

the convergence of SQP methods is not robust to inexact solutions of the subproblems, which is

required for large-scale or distributed optimisation. In optimal control, the quadratic programming

subproblems are highly structured. Hence, efficient resolution techniques, such as the dual Newton

strategy implemented in QPDUNES, can be applied to reduce the computation time on large-scale

problems [61], but computational results are lacking in terms of global efficiency of the result-

ing SQP algorithm and its scalability properties have not been assessed with respect to existing

large-scale interior-point solvers for instance. Besides, the line-search globalisation, which is a

core ingredient in the existing SQP software, is not advisable in a distributed setting, due to its

high cost in terms of communications.

On the contrary, augmented Lagrangian methods are well-suited to large-scale or distributed

programs. This is mainly due to the fact that they can be implemented matrix-free and that their

convergence is not hampered by inexact solutions of the subproblems [34, 57]. These two features
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are also valuable for real-time optimisation, where early termination is often required to satisfy

hard time constraints. Moreover, in Chapter 3, in the context of online distributed optimisation,

contraction of the iterates yielded by a parametric augmented Lagrangian scheme has been estab-

lished and expressed as a function of the number of iterations and the penalty coefficient. To our

knowledge, such an analysis has not been carried out for online distributed SCP methods. Thus, it

is still not very clear whether a splitting technique such as ADMM could be terminated at an early

stage when solving a parametric distributed convex QP, while ensuring stability of the suboptimal-

ity error. In the context of multiple shooting, augmented Lagrangian approaches are also attractive,

since evaluating the gradient of the augmented Lagrangian is less costly than computing the ja-

cobian of the shooting constraints, as shown next. However, augmented Lagrangian techniques

suffer from a slower local convergence rate (linear or superlinear) than SQP techniques (super-

linear or quadratic). The first-order dual update is also a weakness, as the process can be driven

towards infeasible points when applied to solve difficult nonlinear problems. In contradiction with

the disappointing outlook on augmented Lagrangian algorithms in optimal control given by [60],

we show that the parametric algorithm described in Chapter 3 is very promising and competitive

with the state-of-the-art in real-time NMPC.

4.1.1 The optimal control problem and its multiple shooting discretisation

The problem we consider is that of finding state and input profiles (x∗ (·) , u∗ (·)) satisfying the

necessary conditions of optimality of the optimal control problem

minimise
u(·)

∫ T

0

l (x (t) , u (t)) dt (4.1)

s.t. x (0) = x̂0 ,

ẋ (t) = f (x (t) , u (t)) ,

∀t ∈ [0, T ] , x (t) ∈ X , u (t) ∈ U ,

where T ∈ ]0,+∞[, f : Rnx×nu → Rnx and l : Rnx×nu → R are continuously differentiable on

X × U and x̂0 ∈ Rnx , which stands for a state estimate. The sets X and U are assumed to be

box constraint sets. For clarity of exposition, we do not consider any Mayer term and terminal

constraint. Path constraints g (x (t) , u (t)) ≤ 0 could be incorporated into problem (4.1), but we

discard them for simplicity.

In order to transform the OCP (4.1) into a finite-dimensional NLP, direct methods proceed by

parameterising the continuous control profile u (·) using a finite number of parameters, whose opti-

mal values can be computed by means of a nonlinear solver. Similarly to [109], we resort to a piece-
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wise constant parameterisation of the control profile, which is written at all time instants t ∈ [0, T ],

u (t) =
N−1∑
i=0

qiι[ti,ti+1] (t) ,

where N ≥ 1, {qi}N−1
0 ⊂ Rnu and the mesh {ti}Ni=0 ⊂ [0, T ] is such that t0 := 0 and tN := T . In

order to parameterise the state profile x (·), shooting nodes {si}Ni=0 ⊂ Rnx and shooting constraints

are introduced for each interval [ti, ti+1] as follows

si+1 − x (ti+1; si, qi) = 0, i ∈ {0, N − 1} , (4.2)

where x (·; si, qi) is the solution of the boundary value problem{
∀t ∈ [ti, ti+1] , ẋ (t) = f (x (t) , qi)

x (ti) = si .
(4.3)

The role of the shooting constraints is to ensure continuity of the state profile at the ends of every

shooting interval. The objective of the OCP (4.1) is also subdivided according to the mesh {ti}Ni=0

as follows ∫ T

0

l (x (t) , u (t)) dt =
N−1∑
i=0

∫ ti+1

ti

l (x (t) , u (t)) dt

=
N−1∑
i=0

y (ti+1; si, qi) ,

where y (·; si, qi) is the solution of the boundary value problem{
∀t ∈ [ti, ti+1] , ẏ (t; si, qi) = l (x (t; si, qi) , qi)

y (ti; si, qi) = 0 ,
(4.4)

which is coupled with (4.3) via the state x (·; si, qi). Finally, the NLP resulting from the multiple-
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shooting discretisation is

minimise
{si}Ni=0,{qi}

N−1
i=0

N−1∑
i=0

y (ti+1; si, qi) (4.5)

s.t. s0 − x̂0 = 0,

si+1 − x (ti+1; si, qi) = 0,

si ∈ X , qi ∈ U , i ∈ {0, . . . , N − 1} ,

where for all i ∈ {0, . . . , N − 1}, x (·; si, qi) and y (·; si, qi) are solutions of the following aug-

mented boundary value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∀t ∈ [ti, ti+1] , v̇ (t; si, qi) = F (v (t; si, qi) , qi) :=

(
f (x (t; si, qi) , qi)

l (x (t; si, qi) , qi)

)

v (ti; si, qi) =

(
si

0

)
.

(4.6)

where the augmented state is denoted by

v (t; si, qi) :=

(
x (t; si, qi)

y (t; si, qi)

)
∈ Rnx+1 .

It is worth noting that NLP 4.5 has a partially separable structure, as the shooting node si is only

coupled with nodes si−1 and si+1. The primal optimiser of NLP (4.5) is defined by

z :=
(
s�0 , q

�
0 , . . . , s

�
N−1, q

�
N−1, s

�
N

)� ∈ RN(nx+nu)+nx , (4.7)

and the dual optimiser associated with the equality constraints, as

μ := (μ0,1, . . . , μ0,nx , . . . , μN,1, . . . , μN,nx)
� ∈ R(N+1)nx . (4.8)

The primal box constraint set corresponding to variable z is denoted by

Z := X × U × . . .× U × X . (4.9)
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4.1.2 The augmented Lagrangian algorithm

Instead of linearising the shooting constraint (4.2) with respect to the shooting node si and control

qi as in [109, 91], we relax it by means of an augmented Lagrangian penalty and thus introduce

L� (z, μ, x̂0) :=
(
μ0 +

�

2
(s0 − x̂0)

)�
(s0 − x̂0) +

N∑
i=1

L� (v (ti; si−1, qi−1) , si, μi) , (4.10)

where the local augmented Lagrangian is defined by

L� (v (t; s, q) , s
′, ν) := y (t; s, q) +

(
ν +

�

2
(s′ − x (t; s, q))

)�
(s′ − x (t; s, q)) ,

for s, s′ ∈ Rnx , q ∈ Rnu , ν ∈ Rnx and � > 0.

Remark 4.1. One could use different penalty coefficients for each of the shooting intervals. In-

creasing the penalty has a tendency to cause numerical difficulties. Hence, smaller penalties could

be applied where tight satisfaction of the shooting constraints may not be necessary.

The augmented Lagrangian algorithm has already been presented in Chapter 2 and 3. There-

fore, we briefly recall the main phases without going into details.

4.1.2.1 Dual updates

The dual variables associated with the shooting constraints are updated in a first-order fashion at

very iteration k of an outer loop

μk+1
i = μki + �k

(
ski − x

(
ti; s

k
i−1, q

k
i−1

))
, i ∈ {1, . . . , N} (4.11)

and

μk+1
0 = μk0 + �k

(
sk0 − x̂0

)
, (4.12)

where the shooting nodes
{
ski
}N
i=0

and inputs
{
qki
}N
i=0

are obtained by computing an approximate

critical point of the bound-constrained augmented Lagrangian subproblem

minimise
{si}Ni=0,{qi}

N−1
i=0

(
μk0 +

�k

2
(s0 − x̂0)

)�

(s0 − x̂0) +
N∑
i=1

L�k
(
v (ti; si−1, qi−1) , si, μ

k
i

)
(4.13)

s.t. si ∈ X , qi ∈ U , i ∈ {0, . . . , N − 1}
sN ∈ X
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and the penalty �k is increased. As explained in Chapter 2, the accuracy of the first-order optimality

conditions in (4.13) at zk is tightened after every outer iteration k.

The outer loop that we have just described only ensures local convergence of the primal-dual

sequence
{((

zk
)�
,
(
μk
)�)�}

to a KKT point of (4.5). Global convergence guarantees can be ob-

tained by adapting the dual update to the level of satisfaction of the shooting constraints [34]. This

adaptive update scheme has been successfully applied in the LANCELOT software [35]. More pre-

cisely, given a positive tolerance εk, if

∥∥sk0 − x̂0
∥∥2
2
+

N∑
i=1

∥∥ski − x
(
ti; s

k
i−1, q

k
i−1

)∥∥2
2
≤
(
εk
)2

, (4.14)

then the dual updates (4.11) and (4.12) are performed, the penalty �k remains unchanged and the

tolerance on feasibility εk as well as the tolerance on optimality in (4.13) are shrunk. If condi-

tion (4.14) is not satisfied, roughly speaking if the gradient of a local dual function is not suffi-

ciently accurate, then the penalty �k is increased in order to drive the process towards feasibility at

the next outer iteration.

In an online NMPC context where a fixed number of iterations is required, only one dual update

is computed once a new state estimate x̃0 is available. Given the primal-dual warm-start

w̄ (x̂0) :=
(
s̄0 (x̂0)

� , q̄0 (x̂0)
� , . . . , s̄N−1 (x̂0)

� , q̄N−1 (x̂0)
� , s̄N (x̂0) , μ̄0 (x̂0)

� , . . . , μ̄N (x̂0)
�
)�

,

the suboptimal primal point z̄ (x̃0) is obtained after M iterations of a descent algorithm applied to

the augmented Lagrangian subproblem (4.13) at x̃0, while the dual point μ̄ (x̃0) is computed in the

following way:

μ̄i (x̃0) = μ̄i (x̂0) + � (si (x̃0)− x (ti; si−1 (x̃0) , qi−1 (x̃0))) , i ∈ {1, . . . , N} , (4.15)

and

μ̄0 (x̃0) = μ̄0 (x̂0) + � (s0 (x̃0)− x̃0) , i ∈ {1, . . . , N} , (4.16)

given a fixed penalty �.

4.1.2.2 Primal updates

Remarkably, the partially separable structure of problem (4.13) makes it suitable for alternating

minimisations, either over the entire loop, as in Algorithm 10, or only for activity detection, as

in Algorithm 11. This is illustrated in Fig. 4.1 below. In the static case, similarly to [35], a trust
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4

Figure 4.1: Scheme of alternating minimisation in the augmented Lagrangian subproblem resulting

from the multiple-shooting discretisation. Two sets of parallel steps are required for updating all

shooting nodes and inputs.

region quasi-Newton method is applied to find an approximate critical point of the augmented La-

grangian. In the dynamic case, where x̂0 is updated at every time instant, the trust region iterations

are cut after a fixed count, along the lines of Algorithm 9.

Remark 4.2. It is worth pointing out that the first-order methods 8 and 10 could be applied in the

context of multiple shooting, but their performance is likely to be worsened by the ill-conditioning

of NLP (4.5), due to the shooting constraints that are evaluated by integration of the nonlinear

dynamics.

In the context of multiple-shooting, computing gradients is generally done via sensitivity anal-

ysis, as explained next. However, obtaining second-order information can be computationally very

expensive. Therefore, we resort to a quasi-Newton scheme. In order to take advantage of the par-

tial separability of the problem, we resort to Symmetric Rank One (SR1) updates. More precisely,

our goal is to have a quasi-Newton scheme, in which the blockwise structure of the hessian of the

augmented Lagrangian is preserved, as depicted in Fig. 4.2 below. In the exact hessian, the over-

lapping (grey) blocks may be even sparser. The partially separable augmented Lagrangian (4.10)

can be rewritten

L� (z, μ, x̂0) =
N−1∑
i=0

φi (si, qi, si+1)

=
N−1∑
i=0

φi (Eiz) ,
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Figure 4.2: Sparsity structure of the hessian of the augmented Lagrangian.

where the group functions φi are defined by

φi (si, qi, si+1) :=

⎧⎨⎩
(
μ0 +

�

2
(s0 − x̂0)

)�
(s0 − x̂0) + L� (v (t1; s0, q0) , s1, μ1) , if i = 0 ,

L� (v (ti+1; si, qi) , si+1, μi+1) , if i ∈ {1, . . . , N − 1} ,

and given i ∈ {0, . . . , N − 1}, the matrix Ei ∈ R(2nx+nu)×(N(nx+nu)+nx) is

Ei =
[
0(2nx+nu)×(nx+nu)i I(2nx+nu)×(2nx+nu) 0(2nx+nu)×(N−i−1)·(nx+nu)

]
.

Hence, the hessian of the multiple-shooting augmented Lagrangian is given by

∇2
z,zL� (z, μ, x̂0) =

N−1∑
i=0

E�
i ∇2φi (Eiz)Ei .

Each of the hessians ∇2φi (Eiz) corresponds to the group of shooting variables {si, qi, si+1}. For

the remainder, for each i ∈ {0, . . . , N − 1}, we introduce a variable

ri :=
(
s�i , q

�
i , s

�
i+1

)�
. (4.17)
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Instead of computing an SR1 estimate of the full hessian ∇2
z,zL� (z, μ, x̂0), we perform quasi-

Newton approximations of the group matrices ∇2φi (ri) separately for i ∈ {0, . . . , N − 1}. If the

quasi-Newton matrix at the shooting group i, corresponding to variables {si, qi, si+1}, at iteration

k of Algorithm 9 or 11 is denoted by Bk
i , the SR1 update is

Bk+1
i =

⎧⎪⎨⎪⎩
Bk
i if

〈
θki , s

k
i

〉
≤ β

∥∥θki ∥∥2 ∥∥ski ∥∥2
Bk
i +

θki
(
θki
)�〈

θki , s
k
i

〉 otherwise ,
(4.18)

where β ∈ (0, 1) and

ski := rk,+i − rki

θki := yki − Bk
i s

k
i

yki := ∇φi
(
rk,+i

)
−∇φi

(
rki
)
,

with rk,+i corresponding to the candidate point in the trust region loop, which is generated as an

inexact solution of the trust region subproblem. The SR1 update (4.18) itself requires

N (2nx + nu) (3 (2nx + nu) + 2) +N
(
3 (2nx + nu) + 2 (2nx + nu)

2)
floating point operations, instead of

(N (nx + nu) + nx) (3 (N (nx + nu) + nx) + 2)

floating point operations if it was computed on the full matrix. Making use of partial separability

in the rank-one updates is advantageous in terms of complexity, but also produces more accurate

hessian estimates.

Remark 4.3. The SR1 update (4.18) is computed at every iteration (successful or unsuccessful)

of the trust region loop in Algorithm 9 or 11, as recommended in [119]. To obtain fast local con-

vergence, the model has to be improved along the failed directions, otherwise candidates could

again be generated in these directions, thus preventing superlinear convergence. In the context

of multiple-shooting, this means that the sensitivity analysis presented next is carried out at ev-

ery iteration. Therefore, it needs to be computationally efficient, otherwise the performance of the

algorithm may be deeply impacted.
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Subsequently, the quasi-Newton approximation of the hessian ∇2
z,zL� (z, μ, x̂0) is

B =
N−1∑
i=0

E�
i BiEi .

However, in our implementation, the matrix B is only assembled for computing a preconditioner,

since it is used in conjugate gradient (CG) iterations, which are based on structured matrix-vector

products, as addressed in the next paragraph.

4.1.2.3 Solving the trust region subproblem

The most computationally expensive step in the trust region algorithm is the refinement phase, in

which the model function is minimised on the null space of the active constraints at the Cauchy

point, as follows

minimise
p

〈∇σ
zL� (z, μ, x̂0) , Zp〉+

1

2
〈p, Z�BσZp〉 (4.19)

s.t. z + Zp ∈ Z
‖Zp‖∞ ≤ γΔ ,

where the rows of Z are an orthonormal basis of the null space of the active constraints at the

Cauchy point zC , Δ > 0 is the trust region radius, σ and γ are positive scalars, the constraints set

Z is defined in (4.9) and

∇σ
zL� (z, μ, x̂0) := ∇zL� (z, μ, x̂0)− σ (z − x) , Bσ := B +

σ

2
I .

As explained in Chapter 2, the trust region subproblem (4.19) is solved approximately by means

of PCG iterations initialised at 0, which ensure a decrease of the model function. At every PCG

iteration, the most costly operation is the matrix-vector product against the reduced quasi-Newton

approximation Z�BσZ, which is represented in Fig. 4.3. In order to make use of the block structure

of Z�BσZ, one has to know the indices of the free variables in every shooting group {si, qi, si+1}.

The worst-case complexity of the structured matrix-vector product is when all variables are free

and is equal to

2 (2nx + nu)
2N + (2nx + nu)N .

Before starting the PCG iterations, a preconditioner is built from the reduced quasi-Newton

matrix Z�BσZ. In the remainder, it is denoted by P and is a positive definite matrix. The re-

165



CHAPTER 4. APPLICATIONS IN OPTIMAL CONTROL

Z�BσZ r̂

1
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Figure 4.3: Structured product against reduced quasi-Newton hessian approximation. The size of

each block depends of the number of free variables at the corresponding shooting group.

duced quasi-Newton matrix Z�BσZ has a block-diagonal structure, as shown in Fig. 4.3 for in-

stance. Therefore, one can expect banded preconditioners to be reasonably efficient. The construc-

tion of the banded preconditioner P from the matrix Z�BσZ is depicted in Fig. 4.4. A certain

number of diagonal bands is extracted from Z�BσZ and stored in P , as shown in Fig. 4.4. It is

worth noting that the number of bands does not need to be larger than 2nx + nu, which would

correspond to having the full hessian as preconditioner. Thus, the preconditioner P is a symmet-

ric matrix stored in band format. As the preconditioner P appears in the CG iterations via linear

systems of the form

Pv = w , (4.20)

we use an LDL factorisation of P to solve (4.20), that is

P = LDL� ,

where L is a lower triangular matrix with 1 on the diagonal and D is a diagonal matrix with pos-

itive elements. The LDL factorisation is stored in band format with the matrix D in the first band
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Figure 4.4: Construction of the banded preconditioner.

and the matrix L in the lower bands. In order to make the preconditioner P positive definite, a

Gershgorin modification [119] is applied when computing the LDL factorisation. It consists in

perturbing the diagonal D so that the Gershgorin disks lie in the positive half of the real line. The

solution of (4.20) is then computing via a forward-backward solve in band format.

4.1.2.4 Gradient generation

The main advantage of introducing the augmented Lagrangian relaxation of the shooting con-

straints instead of merely linearising around the current iterate becomes clear when it comes to the

sensitivity generation. In fact the gradient of the augmented Lagrangian (4.10) with respect to the
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primal shooting variable z is given by

∇zL� (z, μ, x̂0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ0 +
�

2
(s0 − x̂0) +∇s0L� (v (t1; s0, q0) , s1, μ1)

∇q0L� (v (t1; s0, q0) , s1, μ1)

∇s1L� (v (t1; s0, q0) , s1, μ1) +∇s1L� (v (t2; s1, q1) , s2, μ2)
...

∇siL� (v (ti; si−1, qi−1) , si, μi) +∇siL� (v (ti+1; si, qi) , si+1, μi+1)

∇qiL� (v (ti+1; si, qi) , si+1, μi+1)
...

∇sNL� (v (tN ; sN−1, qN−1) , sN , μN)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4.21)

In the expression of the gradient of the multiple-shooting augmented Lagrangian (4.21), for every

shooting block i, the gradients with respect to shooting node si and control qi

∇siL� (v (ti+1; si, qi) , si+1, μi+1) and ∇qiL� (v (ti+1; si, qi) , si+1, μi+1) (4.22)

appear. The most natural way to compute the gradients in (4.22) is to apply the chain rule, which

leads to

∇siL� (v (ti+1; si, qi) , si+1, μi+1) = ∇siv (ti+1; si, qi)
� ∇vL� (v (ti+1; si, qi) , si+1, μi+1)

∇qiL� (v (ti+1; si, qi) , si+1, μi+1) = ∇qiv (ti+1; si, qi)
� ∇vL� (v (ti+1; si, qi) , si+1, μi+1) ,

where the sensitivities

∇siv (ti+1; si, qi) ∈ R(nx+1)×nx and ∇qiv (ti+1; si, qi) ∈ R(nx+1)×nu

can be obtained by integrating the state sensitivity equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀t ∈ [ti, ti+1] ,

d∇sv (t; si, qi)

dt
= ∇vF (v (t; si, qi) , qi)∇sv (t; si, qi)

∇sv (ti; si, qi) =

[
Inx

0

]
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and the input sensitivity equation⎧⎨⎩ ∀t ∈ [ti, ti+1] ,
d∇qv (t; si, qi)

dt
= ∇vF (v (t; si, qi) , qi)∇qv (t; si, qi) +∇qF (v (t; si, qi) , qi)

∇qv (ti; si, qi) = 0 ,

which requires integrating (nx + 1)×(nx + nu) ordinary differential equations. However, by doing

so, we loose the advantage provided by the augmented Lagrangian, which is the ability to apply

adjoint sensitivity analysis and thus reduce the complexity in the gradient computation. Given

i ∈ {0, . . . , N − 1}, we define a function F : R2nx+nu → R by

F (ri) := L� (v (ti+1; si, qi) , si+1, μi+1) ,

where ri has been defined in (4.17). By adjoining the augmented state dynamics (4.6), we obtain a

function

F̃ (ri) = F (ri) +

∫ ti+1

ti

〈λv (t) , F (v (t; si, qi) , qi)− v̇ (t; si, qi)〉 dt , (4.23)

where an adjoint mapping λv : R → Rnx+1 associated with the augmented state v (t; si, qi) is

introduced. The key idea is that

F̃ (ri) = F (ri) ,

since for all t ∈ [ti, ti+1],

v̇ (t; si, qi) = F (v (t; si, qi) , qi) ,

so that we can compute the gradient of F̃ in place of the gradient of F . By doing so, the ad-

joint term in (4.23) is used to cancel the terms containing the sensitivity matrices. Given j ∈
{1, . . . , 2nx + nu} a coordinate index of the vector ri, an integration by parts on the integral term

in (4.23) yields

∂jF (ri) = ∂jL� (v (ti+1; si, qi) , si+1, μi+1)︸ ︷︷ ︸
�=0 if j∈{nx+nu+1,...,2nx+nu}

(4.24)

+

∫ ti+1

ti

〈λv (t) , ∂jF (v (t; si, qi) , qi)〉 dt︸ ︷︷ ︸
�=0 if j∈{nx+1,...,nx+nu}

+ 〈λv (ti) , ∂jv (ti; si, qi)〉︸ ︷︷ ︸
�=0 if j∈{1,...,nx}

,
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by choosing the adjoint mapping λv as the solution of the adjoint boundary value problem{
λv (ti+1) = ∇vL� (v (ti+1; si, qi) , si+1, μi+1)

∀t ∈ [ti, ti+1] , λ̇v (t) = −∇vF (v (t; si, qi) , qi)
� λv (t) .

(4.25)

Integrating (4.25) backwards in time yields λv (ti). In (4.24), each of the three terms corresponds

to a different contribution:

• 〈λv (ti) , ∂jv (ti; si, qi)〉 is the gradient of F with respect to the initial condition si,

•
∫ ti+1

ti
〈λv (t) , ∂jF (v (t; si, qi) , qi)〉 dt is the gradient of F with respect to the control input qi,

• ∂jL� (v (ti+1; si, qi) , si+1, μi+1) is the gradient of F with respect to si+1.

In order to compute the integral term in (4.24), we introduce the input adjoint mapping λu : R →
Rnu as

λu (t)j :=

∫ ti+1

t

〈
λv (t) , ∂qjF (v (t; si, qi) , qi)

〉
dt ,

where j ∈ {1, . . . , nu}. Hence, the input adjoint dynamics are

λ̇u (t)j = −
〈
∂qjF (v (t; si, qi) , qi) , λv (t)

〉
subject to the final condition

λu (ti+1)j = 0 ,

for j ∈ {1, . . . , nu}. Finally, we define the full adjoint mapping λ : R → Rnx+nu+1 as

λ (t) :=
(
λv (t)

� , λu (t)
�)� ,

which is a solution of the boundary value problem⎧⎨⎩λ (ti+1) =
(
∇vL� (v (ti+1; si, qi) , si+1, μi+1)

� , 0�)�
∀t ∈ [ti, ti+1] , λ̇ (t) = −

(
∇vF (v (t; si, qi) , qi) ∇qF (v (t; si, qi) , qi)

)�
λv (t) ,

with

∇vL� (v (ti+1; si, qi) , si+1, μi+1) =

(
−μi+1 − � (si+1 − x (ti+1; si, qi))

1

)
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and

∇vF (v (t; si, qi) , qi) =

[
∇xf (x (t; si, qi) , qi) 0

∇xl (x (t; si, qi) , qi)
� 0

]
.

Subsequently, the gradient of F with respect to ri is given by

∇siF (ri) = λv (ti)

∇qiF (ri) = λu (ti)

∇si+1
F (ri) = μi+1 + � (si+1 − x (ti+1; si, qi)) ,

where λv corresponds to the first nx components of λw. Finally, the full gradient of the augmented

Lagrangian (4.10) with respect to the primal variable z is

∇zL� (z, μ, x̂0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ0 +
�

2
(s0 − x̂0) + λv (t0)

λu (t0)

μ1 + � (s1 − x (t1; s0, q0)) + λv (t1)
...

μi + � (si − x (ti; si−1, qi−1)) + λv (ti)

λu (ti)
...

μN + � (sN − x (tN ; sN−1, qN−1))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.26)

Thus, evaluating ∇zL� (z, μ, x̂0) requires

N (I (nx) + I (nu)) + 4 (N + 1)nx

floating point operations, where I (n) denotes the cost of integration of n ODEs, whereas comput-

ing the gradient of the full augmented Lagrangian via forward sensitivity analysis involves

(N + 3)nx +N
(
I
(
n2
x

)
+ I (nxnu)

)
floating point operations. In conclusion, the adjoint sensitivity analysis is particularly advisable

when the number of states and inputs is large.

To conclude this paragraph, we summarise the complexity of each phase of the algorithm

in Tab. 4.1. N (nx + nu) + nx is the problem dimension and nb is the number of off-diagonal

bands in the preconditioner. Most of the complexity estimates below are in worst case, which
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Phase Complexity (flops)

Cauchy point computation
Projected search Θ(3 (N (nx + nu) + nx))
Active-set extraction 4 (N (nx + nu) + nx)

Banded preconditioner

Build N (2nx + nu)nb
+nb (N (nx + nu) + nx) (8 + nb)

Apply (forward-backward solve) 2 (N (nx + nu) + nx) (2nb + 1)

PCG loop

Structured Matrix-vector product 2 (2nx + nu)
2N + (2nx + nu)N

Safeguarding 8 (N (nx + nu) + nx)
Directions & residuals 10 (N (nx + nu) + nx)

Integration
States NI (nx)
Adjoints N (I (nx) + I (nu))

SR1 update N (2nx + nu) (5 (2nx + nu) + 5)

Table 4.1: Worst-case complexity estimates of the main phases in the primal loop of the multiple-

shooting augmented Lagrangian algorithm.

corresponds to all variables being free. From Tab. 4.1, one can expect the algorithm to behave

well on problems with a large number of shooting nodes, as most of the phases have complexity

O (N (nx + nu) + nx). When the number of states nx or inputs nu becomes large, the bottle-

necks are the structured matrix-vector products and the SR1 updates, which both involve a term

(2nx + nu)
2
.
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4.1.3 Software description

Based on the multiple-shooting algorithm described in paragraphs 4.1.1 and 4.1.2, a C++ software

package has been implemented. Its architecture is presented in the class diagram in Fig. 4.5. The

code is designed to solve continuous-time optimal control problems of the form

minimise
x(·),u(·)

∫ tf

t0

l (x (t) , u (t) , yr (t) , ur (t)) dt+ V (x (T )) (4.27)

s.t. ∀t ∈ [t0, tf ] , ẋ (t) = f (x (t) , u (t))

∀t ∈ [t0, tf ] , g (x (t) , u (t)) ≤ 0

∀t ∈ [t0, tf ] , x ≤ x (t) ≤ x̄, u ≤ u (t) ≤ ū ,

where the functions l, f and g are differentiable, yr and ur are output and input references and V

is a Mayer term.

One of the salient ingredients of the code is C++ template classes, which are used in order to

avoid virtual methods, which can seriously impact code performance if called at a high rate. We

think this is important in our context, since several function and gradient evaluations are carried

out per time instant in a real-time setting, by calling the user-defined methods:

• MyDynamics that implements the right hand side of the dynamics f (x (t) , u (t)) as well

as its state and input jacobians,

• MyTrackCost that implements the objective l (x (t) , u (t) , yr (t) , ur (t)) as well as its

state and input gradients,

• MyPathConstraint implementing the path-constraint g (x (t) , u (t)) as well as its state

and input gradients,

• MyMayer implementing the Mayer term V and its gradient,

• MyTrajectory that implements the references yr and ur.

The user-defined classes are then combined with the rest of the code via the template classes:

• AugODEquation implementing the augmented dynamics from the classes MyDynamics

and MyTrackCost as well as its adjoint,

• ExplicitRKintegrator containing explicit Runge-Kutta integrators [44],

• MuShoot implementing the evaluation of the shooting constraints and objective,
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• NonlinOCPsolver containing the trust region and augmented Lagrangian algorithms

and aggregating the classes ActivityDetector for computing the Cauchy point and

PreconRefine for performing the safeguarded PCG iterations.

The banded preconditioner is implemented in the class Preconditioner. The number of bands

can be set by the user.

Figure 4.5: Class diagram of the C++ software for solving continuous-time OCPs via multiple-

shooting and augmented Lagrangian. The box T stands for C++ template class.
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4.1.4 Numerical experiments

The efficacy of the algorithm and software presented in paragraphs 4.1.2 and 4.1.3 is assessed by

means of numerical examples. In particular, in a real-time setting, we compare the performance of

our software with the existing codes for online NMPC, which are based on the so-called real-time

iteration [46] and are available in the ACADO toolkit [91]. The basic principle of the real-time it-

eration is to solve a single convex QP per time instant, which is constructed from the jacobian and

gradient of a multiple-shooting NLP. The real-time iteration consists of:

• a preparation phase, during which integration and sensitivity analysis are performed, along

with a condensing step leading to a small-scale convex QP [91],

• a feedback phase, during which the convex QP is solved via a tailored convex QP solver such

as QPOASES [58], FORCES [48] or QPDUNES [62].

The purpose of sparse convex QP solvers such as QPDUNES is to avoid condensing the QP, as

it becomes a computational bottleneck when solving NMPC problems with long prediction hori-

zons [61]. It is important to note that all the QP solvers in the ACADO toolkit use direct linear

algebra operations. Therefore, one can reasonably expect their scalability to be limited, especially

for QPOASES and FORCES. We actually demonstrate this last point on an NMPC problem with long

horizon. Contrary to the real-time iteration strategy, in principle, our algorithm performs several

integrations and sensitivity generations per time step. However, this is not necessarily a draw-

back. First, the adjoint sensitivity analysis is much cheaper than the forward sensitivity analysis

used in the real-time iteration [153]. Secondly, one can easily reduce the number of primal iter-

ations by enforcing a looser stopping criterion based on the satisfaction of the KKT conditions

of the parametric augmented Lagrangian subproblem. Such a strategy proves effective in practice,

as demonstrated in the following examples. Finally, the evaluation of the shooting constraints and

gradients can be easily parallelised [99], hence reducing the computational burden when dealing

with large-scale programs.

4.1.4.1 Inverted pendulum

We consider the application of our real-time NMPC algorithm to control an inverted pendulum, as

shown in Fig. 4.6 below and whose dynamics is⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẍ =

ml sin (θ) θ̇2 +mg cos (θ) sin (θ) + u

M +m−m (cos θ)2
,

θ̈ = −ml cos (θ) sin (θ)θ̇
2 + u cos θ + (M +m) g sin θ

l
(
M +m−m (cos θ)2

) ,

(4.28)
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where x is the horizontal position of the cart, θ the angular position of the pendulum and u the

force applied to the cart, which is the control input. The model parameters are

m = 0.1kg, M = 1kg, l = 0.5m ,

from [130], where m is the mass of the inverted pendulum, M is the mass of the chart and l the

length of the pendulum.

θ

x

u

Figure 4.6: Schematic illustrating the inverted pendulum.

The control objective is to move the inverted pendulum from the stable equilibrium θ = 0 to

the unstable one θ = π and stabilise it while satisfying the following state and input constraints

−2 ≤ x ≤ 2, − 20 ≤ u ≤ 20 .

After transforming Eq. (4.28) into

ż (t) = f (z (t) , u (t))

:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z2 (t)

ml sin (z3 (t)) z4 (t)
2 +mg cos (z3 (t)) sin (z3 (t)) + u (t)

M +m−m (cos z3 (t))
2

z4 (t)

−ml cos (z3 (t)) sin (z3 (t))z4 (t)
2 + u (t) cos z3 (t) + (M +m) g sin z3 (t)

l
(
M +m−m (cos z3 (t))

2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with

z :=
(
x ẋ θ θ̇

)�
.

The control problem can be easily formalised as an NMPC program for tracking the input and state
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references

ur = 0 and zr =
(
0 0 π 0

)�
,

which leads to

minimise
z,u

∫ t0+T

t0

(z (t)− zr)�Q (z (t)− zr) + (u (t)− ur)�R (u (t)− ur) dt (4.29)

+ z (T )� Pz (T )

s.t. z (t0) = ẑ0 ,

ż (t) = f (z (t) , u (t)) ,

− 2 ≤ z1 (t) ≤ 2 ,

− 20 ≤ u (t) ≤ 20 .

where Q, R and P are positive definite matrices defined as

Q = diag (10, 10, 0.1, 0.1) , R = (0.01) , P = Q .

For the NMPC stability guarantees to hold [77], the OCP (4.29) is to be solved fully at every

time instant as the parameter ẑ0 varies. Instead, we apply the parametric tracking Algorithm 7

coupled with the trust region loop 9 to find an approximate critical point of the parametric aug-

mented Lagrangian subproblem. Stability of the optimality-tracking error follows from the analysis

in Chapter 3.

As a first scenario, the prediction horizon is set to T = 1 sec along with N = 20 shooting

intervals. The multiple-shooting discretisation yields a small-scale NLP with 104 variables and 84

nonlinear equality constraints. The shooting contraints and adjoints are evaluated via 1 step of an

explicit Runge-Kutta integrator of order 4. The inverted pendulum dynamics is simulated using 10

steps of a 4th order explicit Runge-Kutta integrator. The maximum number of trust region iterations

is set to 5 and the penalty to 60. We use the banded preconditioner with 6 bands. It is worth noting

that with 8 bands, the entire nonzero part of the SR1 approximation is taken into accout. Results

are shown in Fig. 4.7, Fig. 4.8, Fig. 4.9, Fig. 4.10 and Fig. 4.11.

The trajectories plotted in Fig 4.7 show that although a very limited number of iterations are

carried out, the suboptimal NMPC controller is able to stabilise the inverted pendulum around the

desired unstable set-point. The suboptimal trajectory is also close to the one obtained by running

the LANCELOT outer loop until a tight feasibility is obtained. The euclidean norm of the multiple-

shooting constraints is plotted in Fig. 4.8, along with the KKT satisfaction on the augmented
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Figure 4.7: Angular, horizontal position and control input of inverted pendulum using MUTRAL

with T = 1 sec and N = 20. The sub-optimal trajectories obtained with Algorithm 9 are plotted

in dashed red, while the full NMPC trajectories obtained using a complete augmented Lagrangian

dual loop are plotted in blue.

Lagrangian subproblem in Fig. 4.9. One can observe that a relatively low satisfaction of the KKT

conditions is sufficient to obtain a suitable control law. Figures 4.10 and 4.11 show that the compu-

tation time of our algorithm is directly correlated to the cumulative number of PCG iterations. For

some problem instances, this number can be very low (around 1), while for some others it is close to

50. This is mainly due to the loose tolerance on the KKT conditions and the warm-starting effect.

On a 2.5 GHz processor with an 8GB memory, over a horizon of 4 sec, we compare average

computation times of our algorithm, called MUTRAL for multiple-shooting via trust-region and

augmented Lagrangian, ACADO-FORCES, ACADO-QPDUNES and ACADO-QPOASES. With MU-

TRAL, we obtained an average computation time of 230μs and a worst-case computation time of

552μs.

From Tab. 4.2, it appears that for a short horizon and small NMPC problem, MUTUAL is not the

most suitable code. As a second scenario, we set the prediction horizon to 3 sec withN = 60 shoot-

ing intervals, which results in a larger NLP with 304 variables and 244 equality constraints. We

keep the KKT tolerance at 0.1, the penalty at 60 and the number of bands at 6. However, we

truncate the maximum number of trust region iterations and set it to 3. The resulting closed-loop
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Figure 4.8: Euclidean norm of shooting constraints using MUTRAL with T = 1 sec and N = 20.
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Figure 4.9: KKT satisfaction on augmented Lagrangian subproblem using MUTRAL with T = 1
sec and N = 20.

MUTRAL ACADO-FORCES ACADO-QPDUNES ACADO-QPOASES

Average over first 4 sec 230μs 199μs 97μs 80μs

Table 4.2: Computation times of different online NMPC software on the inverted pendulum NMPC

problem with horizon T = 1 sec and N = 20 shooting intervals.

trajectory and input are shown in Fig. 4.12. It is worth noting that the error with respect to the

full NMPC trajectory with the same horizon is smaller than with horizon T = 1 sec and N = 20
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Figure 4.10: Solving times using MUTRAL with T = 1 sec and N = 20.
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Figure 4.11: Cumulative PCG iterations using MUTRAL with T = 1 sec and N = 20.

shooting intervals.

MUTRAL yields an average computation time of 352μs and a worst case time of 771μs. A

comparison with the other NMPC codes is given in Tab. 4.3 below. It appears that MUTRAL per-

forms better on average than ACADO-FORCES and ACADO-QPOASES, and is very close to ACADO-

QPDUNES.

At this point, a natural question should be raised: does increasing the number of trust region it-

erations help reducing the error with respect to the full NMPC trajectory ? Given the same penalty

ρ and number of bands in the preconditioner, we vary the maximum number of trust region it-
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Figure 4.12: Angular, horizontal position and control input of inverted pendulum using MUTRAL

with T = 3 sec and N = 60. The sub-optimal trajectories obtained with Algorithm 9 are plotted

in dashed red, while the full NMPC trajectories obtained using a complete augmented Lagrangian

dual loop are plotted in blue.
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Figure 4.13: Euclidean norm of shooting constraints using MUTRAL with horizon T = 3 sec and

N = 60 shooting intervals.
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Figure 4.14: KKT satisfaction on augmented Lagrangian subproblem using MUTRAL with horizon

T = 3 sec and N = 60 shooting intervals.
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Figure 4.15: Solving times using MUTRAL with horizon T = 3 sec and N = 60 shooting intervals.

MUTRAL ACADO-FORCES ACADO-QPDUNES ACADO-QPOASES

Average over 4 sec 352μs 745μs 312μs 407μs

Table 4.3: Computation times of different online NMPC softwares on the inverted pendulum

NMPC problem with horizon 3 sec and 60 shooting intervals.

erations and record the tracking error with respect to the optimal NMPC input and closed-loop

NMPC trajectory. The tolerance on the KKT conditions of the parametric augmented Lagrangian
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Figure 4.16: Cumulative PCG iterations using MUTRAL with horizon T = 3 sec and N = 60
shooting intervals.

subproblem is deliberately set to a low level (10−4). Results are plotted in Fig. 4.17.
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Figure 4.17: Closed-loop state and input tracking errors versus number of trust region iterations.

After a few trust region iterations, the closed-loop state and input error drop quickly. Further

increasing the number of trust region iterations does not help in improving the performance of the

tracking scheme. Such a behaviour, which is very different from the results obtained in Chapter 3,

is a consequence of the fast local convergence rate of the quasi-Newton method and the fast activity

detection properties of the gradient projection.
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4.1.4.2 Real-time economic NMPC on a bioreactor

In this paragraph, we consider a nonlinear continuous-time model of bioreactor for culture fermen-

tation. The system has five states and one input. The system dynamics is given in Eq. (4.30).

ẋ1 = −Dx1 + μ (x) x1 (4.30a)

ẋ2 = D (u− x2)−
μ (x) x1
Yxs

(4.30b)

ẋ3 = −Dx3 + (αμ (x) + β) x1 (4.30c)

ẋ4 =
u

T
(4.30d)

ẋ5 =
x1
T

(4.30e)

where

μ (x) = μm

(
1− x3

Pm

)
x2

Km + x2 +
x22
Ki

.

For the sake of brevity, we do not discuss details about the model and numerical values of param-

eters and refer to [129]. We consider the following economic stage-cost

l (x, u) =
−Dx3
T

.

The input is subject to lower and upper bound,

u = 28.7 g/L ≤ u ≤ ū = 40.0 g/L .

The control objective is to maximise the average productivity. It is known that for system (4.30), the

maximum productivity is obtained when operating in periodic mode [121]. Therefore, we enforce

periodicity constraints in the ENMPC problem, as follows

x (0) = x (T ) .

Our software MUTRAL has been tested on a processor with 2.5 GHz and 8 GB of RAM. For this

simulation, the maximum number of trust region M was set to 3. The penalty � was set to 100 and

a banded preconditioner with 10 bands was used. In the ENMPC problem, a prediction horizon of

T = 48 hours with N = 20 shooting intervals was set. In order to simulate the system, we applied

a fourth-order explicit Runge-Kutta scheme (RK4) with 20 steps. The evaluation of the shooting
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constraints was performed with 1 step of RK4.

The closed-loop trajectory and the suboptimal ENMPC input are shown in Fig 4.18. An av-

erage productivity of 3.08 g/L·h is obtained, which is a bit lower than the productivity given by

the periodic trajectory proposed in [92] (3.11 g/L·h), but larger than the steady-state productivity

(3.0 g/L·h). It is worth noting that the system operates in almost periodic mode under our suboptimal

ENMPC control law.

Computational results are shown in Fig. 4.19. An average solving time of 213μs was ob-

tained. It appears that the cumulative number of sCG iterations per time step is quite low, which is

a result of our preconditioning. This is interesting, as sCG iterations are one of the main computa-

tional burdens in MUTRAL.

In conclusion, on small scale tracking NMPC problems, MUTRAL does not appear to be as effi-

cient as the ACADO toolkit [91]. However, when the problem dimension increases, MUTRAL shows

superior performance to ACADO coupled with the interior-point convex QP solver FORCES or the

parametric active-set convex QP solver QPOASES. Nevertheless, the combination between ACADO

and the dual Newton strategy QPDUNES leads to faster computation times than MUTRAL on NMPC

problems with long horizons. These results should be tempered in two ways. First, concerning the

real-time algorithm, MUTRAL can be applied to a broader range of NMPC problems than ACADO,

which is still limited to NMPC problems with least-squares objectives due to the Gauss-Newton

approximation, as shown in paragraph 4.1.4.2. Secondly, the ACADO code has reached a more

advanced stage of development than our software package MUTRAL, which is still prototypical.
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Figure 4.18: Closed-loop trajectories for the bioreactor example.
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Figure 4.19: Solving times and cumulative PCG iterations for the bioreactor example.
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4.2 Multi-stage Optimal AC Power Flow Problems

The AC-OPF problem has been considered in Chapter 2 in order to assess the performance of the

distributed algorithm TRAP. We now intend to analyse the practical performance of the distributed

optimality tracking algorithm pTRAP (Algorithm 11). For this, we recast a single instance of the

AC-OPF problem into a multi-stage AC-OPF problem over a prediction horizon by incorporat-

ing dynamical entities in the network, namely batteries. The dynamics of the storage elements

introduces coupling between time instants over the prediction horizon. Subsequently, we obtain

a finite-horizon discrete-time optimal control problem with nonlinear coupling constraints. The

varying parameters are the demand at every node of the network and the battery states. The solu-

tion of the multi-stage AC-OPF problem provides power set-points for the generating units in the

network as well as injections at the storage elements, which minimise the overall generation cost.

This study focuses on real-world distribution networks [55]. In particular, we carry out nu-

merical experiments on a 7-bus network and a 47-bus network, from which the 7-bus network is

extracted. The network topologies are shown in Fig. 4.20 and 4.21 below. The network data is

given in Tab. A.1 in Appendix A.

Figure 4.20: Tolopogy of the 47-bus network [55].

Distribution networks are radial networks that are composed of buses and lines. They have a

tree topology. The root is a substation, which is connected to a transmission network and has a

fixed voltage. A distribution network is represented by graph (N , E), where N denotes the set of

vertices or nodes, and E represents the set of edges or lines. A bus is attached to every node in

N . Each node is indexed by an integer i ∈ {0, . . . , n}, where 0 is the substation index and 1, . . . , n

are the indices of the other nodes. A line is represented by a pair of indices (i, j) ∈ E , where j lies

188



CHAPTER 4. APPLICATIONS IN OPTIMAL CONTROL

G

1


2


3


4


5


6
 7


Figure 4.21: Topology of the 7-bus network.

on the unique path from bus i to the substation vertex 0. The impedance of line (i, j) is denoted by

zij = rij + ixij ,

where the real part rij and the imaginary part xij are expressed in Ohms (Ω). The physics of ra-

dial networks is described by the branch-and-flow model, which consists of the following set of

equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ (i, j) ∈ E : Sij = si +
∑
h: h→i

(Shi − zhiIij) ,

0 = s0 +
∑
h: h→0

(Sh0 − zh0Ih0) ,

∀ (i, j) ∈ E : vi − vj = 2�{z̄ijSij} −
(
r2ij + x2ij

)
Iij ,

∀ (i, j) ∈ E : Iij =
|Sij|2
vi

,

(4.31)

where Sij is the complex power flowing through line (i, j), si is the complex power injected at bus

i, vi denotes the squared magnitude of its complex voltage and Iij represents the squared mag-

nitude of the complex current through line (i, j). The nonlinearity in the branch-and-flow model

comes from the last equality, which relates the complex current Iij and the complex power though

line ij with the squared voltage magnitude vi at the origin of the line. We define the global variables

S := (Sij)(i,j)∈E , I := (Iij)(i,j)∈E , s := (si)i∈N and v := (vi)i∈N . (4.32)

Next, the branch-and-flow model is represented by the nonlinear equality constraint

B (S, I, s,v) = 0 , (4.33)
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where S, I, s and v have been defined in Eq. (4.32). The voltages vi and complex power injections

si are subject to bound constraints

vi ≤ vi ≤ v̄i, �{si} ≤ �{si} ≤ �{s̄i} , �{si} ≤ �{si} ≤ �{s̄i} .

An important point is that there are a few generating units in the distribution network. The subset

of generators is denoted by G. As claimed earlier, the storage elements are batteries with linear

dynamics [69]

b (t+Δt) = b (t) + r (t) ·Δt , (4.34)

where b (t) is the state of charge at time t, r (t) is the rate of charge at time t and Δt is the sampling

period. The state and rate of charge are constrained as follows

b ≤ b (t) ≤ b̄, r ≤ r (t) ≤ r̄ .

It is with noting that −r (t) corresponds to the complex power injected into the network by the

storage element. The subset of nodes equipped with batteries is denoted by B. The vector of in-

jections at time t is denoted by r (t). Some nodes in the network consume active and reactive

power. The vector of predicted active and reactive power demands at all nodes at time t is denoted

by
(
Pd (t)

� ,Qd (t)
�)�

. In order to control the batteries so as to minimise the overall generation

cost and meet the power demand, we create the multi-stage AC-OPF problem

minimise
s,v,I,S,r,b

T ·Δt∑
t=0

∑
i∈G

ci (si (t)) (4.35)

s.t.

∀t ∈ {1, . . . , T} , B (S (t) , I (t) , s (t) , v (t)) + Trr (t) + Td
(
Pd (t)

Qd (t)

)
= 0 ,

B (S (0) , I (0) , s (0) , v (0)) + Trr (0) + Td
(

̂Pd (0)

̂Qd (0)

)
= 0 ,

∀t ∈ {0, . . . , T − 1} , ∀i ∈ B, bi (t+Δt) = bi (t) + ri (t) ·Δt ,
∀i ∈ B, bi (0) = b̂i ,

∀t ∈ {0, . . . , T} , ∀i ∈ N , �{si} ≤ �{si (t)} ≤ �{s̄i} , �{si} ≤ �{si (t)} ≤ �{s̄i} ,

∀t ∈ {0, . . . , T} , ∀i ∈ N , vi ≤ vi (t) ≤ vi ,

∀t ∈ {0, . . . , T} , ∀i ∈ B, bi ≤ bi (t) ≤ bi, ri ≤ ri (t) ≤ ri ,
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where T is a prediction horizon, the functions ci : R2 → R correspond to generation costs at spe-

cific buses, Tr and Td are matrices of appropriate dimensions,
{
b̂i

}
i∈B

are the initial battery states

and (
̂Pd (0)

̂Qd (0)

)

corresponds to the real demand varying over time.

In practice, the multi-stage AC-OPF program is a large-scale NLP due to the size of the net-

work and the prediction horizon T . Moreover, a limited amount of time is generally allocated to the

computation of the OPF solutions. Therefore, parametric distributed optimisation algorithms such

as pTRAP are relevant. We consider two multi-stage AC-OPF problems: the 7-bus network with

batteries at all nodes over a prediction horizon of 12 hours and the 47-bus network with batteries

at all nodes over a prediction horizon of 6 hours. The real-world demand data is taken from the

European Network of Transmission System Operators for Electricity (www.entsoe.eu). We in-

troduce a mismatch of 2% between the predicted demand that appears in the multi-stage AC-OPF

and the actual demand. The demand curves are plotted in Fig. 4.22 in the case of the 7-bus network

and Fig.4.23 regarding the 47-bus network.
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Figure 4.22: Total predicted and actual demand curves over the 7-bus distribution network.

For the 7-bus network with T = 12 hours, which results in an NLP with 643 variables and

415 equality constraints, we compare the generation obtained by solving the AC-OPF with IPOPT

without batteries to the generation yielded by IPOPT applied to NLP (4.35) and the generation pro-

vided by Algorithm 7 coupled with 150 and 300 trust region iterations in pTRAP. The generation
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Figure 4.23: Total predicted and actual demand curves over the 47-bus distribution network.

curves are plotted in Fig. 4.24. As expected, the storage integration has a peak-shaving effect. The

solutions obtained with our suboptimal algorithm have the same shape as the one yielded by IPOPT

and move closer to the optimal solution as the number of trust region iterations increases. This

conclusion is corroborated by the storage profiles shown in Fig. 4.25.
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Figure 4.24: Total generation curves for the 7-bus distribution network. Comparison between the

generation obtained via IPOPT without batteries, IPOPT with batteries and via Algorithm 7 coupled

with 150 and 300 iterations of pTRAP with batteries.

As our algorithm outputs a suboptimal solution, the nonlinear power flow constraints are not

satisfied. However, in order to make the suboptimal power set-points and injections applicable in

practice, a sufficient level of feasibility is required, otherwise voltage collapse can occur. From
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Figure 4.25: Total state of charge over the 7-bus network. Comparison between the storage ob-

tained via IPOPT without batteries, IPOPT with batteries and via Algorithm 7 coupled with 150 and

300 iterations of pTRAP.

Fig. 4.26, we can conclude that this requirement is almost met by increasing the number of trust

region iterations. In theory, one can further improve the feasibility level by adjusting the penalty

coefficient, as shown in Chapter 3
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Figure 4.26: Euclidean norm of AC power flow constraints of the 7-bus network obtained by means

of Algorithm 7 coupled with 150 and 300 iterations of pTRAP.

The 47-bus distribution network encompasses 9 generating units. Over a horizon of 6 hours,

it results in an NLP with 2285 variables and 1451 constraints. Per time step, 100 iterations of
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pTRAP are carried out along with on dual update. The penalty is set to 180. Results are shown in

Fig. 4.27, 4.28 and 4.29. They are in line with the results obtained on the 7-bus network, although

the storage dynamics are different, as the storage elements have a tendency to discharge even when

demand is low.
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Figure 4.27: Total generation curves for the 47-bus distribution network. Comparison between the

generation obtained via IPOPT without batteries, IPOPT with batteries and via Algorithm 7 coupled

with 150 and 300 iterations of pTRAP with batteries.

5 10 15 200

5

10

S
to

ra
ge

 (p
u)

Time (hours)

ipopt
p−trap

Figure 4.28: Total state of charge over the 47-bus network. Comparison between the storage ob-

tained via IPOPT without batteries, IPOPT with batteries and via Algorithm 7 coupled with 150 and

300 iterations of pTRAP.

In conclusion, when tuned appropriately, pTRAP yields sub-optimal solutions to the AC-OPF

problem, which seem to be suitable in terms of satisfaction of the nonlinear power flow con-
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Figure 4.29: Euclidean norm of AC power flow constraints of the 47-bus network obtained by

means of IPOPT and Algorithm 7 coupled with 100 iterations of pTRAP.

straints. From our numerical experiments, it can be concluded that the number of trust region itera-

tions can be reduced to a certain level without threatening stability of the tracking scheme. This can

be regarded as an advantage for computing an AC-OPF solution in real-time when a sufficiently

good warm-start is provided to pTRAP.
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Conclusions

This thesis has been focused on the development of numerical methods for solving parametric

nonconvex problems based on decomposition and continuation strategies.

In Chapter 2, a novel decomposition algorithm applicable to nonconvex programs has been

presented and analysed. It is based on alternating projected gradient steps computed on a sequence

of augmented Lagrangian relaxations with nonconvex sublevel sets. A proof of local convergence

to a critical point of the NLP has been derived. One of its salient ingredient is the proximal reg-

ularisation of the alternating subproblems. We have tested several stopping criteria for the primal

alternating minimisations. Even though Eckstein and Silva’s stopping criterion appears to be suc-

cessfully applicable in a nonconvex setting, a heuristic-based criterion shows superior performance

in terms of the total number of projected gradient steps on a specific class of nonconvex QPs. In

the second part of Chapter 2, we have introduced a novel trust region algorithm, named TRAP,

which is applicable to linearly constrained nonlinear problems. In comparison with existing trust

region methods, the key difference lies in the Cauchy point computation. The Cauchy point is not

generated by a centralised projected search, but by means of alternating projected gradient steps on

the model. This ingredient makes the Cauchy phase implementable in a distributed setting. From a

distributed perspective, the bottleneck of the algorithm is still the update of the trust region radius,

which requires one centralised evaluation of the objective per iteration. However, it is important

to stress that in a distributed framework, this can be carried out more easily than a line-search

globalisation. Efficacy of the algorithm has been successfully demonstrated on nonconvex optimal

power flow problems.

Augmented Lagrangian methods consist of solving inexactly a nonconvex problem at every

dual iteration. As a consequence, despite their advantages in large-scale and distributed settings,

their applicability in a real-time context seems to be hampered. As an attempt to remedy this

issue, Chapter 3 has been devoted to the development and theoretical analysis of continuation al-

gorithms based on the augmented Lagrangian. We have introduced a novel parametric augmented

Lagrangian scheme, which consists of a fixed number of primal descent steps and a first-order dual

update. The primal steps can be performed via a distributed algorithm, a first-order method or an
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active-set trust region method. Four descent algorithms have been introduced. Two of them are first-

order schemes, based on either a centralised projected gradient or distributed alternating gradient

projections. The two other techniques are a centralised trust-region Newton method and the TRAP

algorithm of Chapter 2 for the distributed case. A novelty of the trust region methods presented

in this chapter is the proximal regularisation of the subproblem with respect to the Cauchy point,

which appears to play a role in the convergence analysis. By combining the Kurdyka-Lojasiewicz

with some ingredients of [10], a novel local convergence rate has been derived for the two trust

region algorithms. In comparison with the existing literature on trust region Newton methods, its

key novelty is that it does not rely on the finite detection of an optimal active-set. This allowed us to

establish a local contraction inequality for the parametric augmented Lagrangian algorithm. From

this inequality, stability of the tracking scheme has been proven. A novel homotopy mechanism

for improving the performance of the optimality-tracking technique has also been proposed and

justified by means of the theory. Numerical experiments have been performed on a centralised as

well as a distributed example. The theoretical developments explain the numerical results quite

well. In particular, the effect of the sampling period on the optimality-tracking performance given

a fixed computational power can be explained from the contraction inequality.

In Chapter 4, the efficacy of the continuation algorithms of Chapter 3 has been demonstrated

on two examples in the field of optimal control. First, a novel multiple-shooting algorithm has been

developped by combining an augmented Lagrangian relaxation of the shooting constraints with a

trust region quasi-Newton method. In particular, it has been shown that the augmented Lagrangian

offers interesting possibilities from the perspective of sensitivity generation. Using adjoint sensi-

tivity analysis, its gradient with respect to the shooting variables can be generated more efficiently

than via the sensitivity analysis techniques applied in SQP-based multiple-shooting. Moreover, we

have shown that the complexity of all the computational phases allow for a good scalability when

the prediction horizon increases. Our multiple-shooting algorithm has been fully implemented in

a C++ software package, named MUTRAL. Its performance has been compared to the ACADO

toolkit on a challenging NMPC problem. The results show that MUTRAL outperforms the com-

binations ACADO-FORCES and ACADO-QPOASES on NMPC problems with long horizons, and

provides similar computational performance to ACADO-QPDUNES. It is worth pointing out that the

parametric algorithm of MUTRAL can be applied to a larger number of NMPC problems, including

economic NMPC programs, as shown in paragraph 4.1.4.2, than ACADO, which is still limited to

NMPC problems with least-squares objectives. As a second example, we have tested a parametric

version of the distributed algorithm TRAP on multi-stage AC-OPF problems. Results show that

the number of trust region iterations per time step can be kept relatively low, while ensuring a

reasonable tracking performance. This conclusion is interesting from the perspective of distributed

optimisation, as each primal iteration has a cost in terms of communications, which cannot be
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neglected in a practical implementation.
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Origin End Real part of line impedance Imaginary part of line impedance

bus bus r (Ω) x (Ω)

1 2 0.259 0.808
2 13 0 0.001
2 3 0.031 0.092
3 4 0.046 0.092
3 14 0.092 0.031
3 15 0.214 0.046
4 20 0.336 0.061
4 5 0.107 0.183
5 26 0.061 0.015
5 6 0.015 0.031
6 27 0.168 0.061
6 7 0.031 0.046
7 32 0.076 0.015
7 8 0.015 0.015
8 40 0.046 0.015
8 39 0.244 0.046
8 41 0.107 0.031
8 35 0.076 0.015
8 9 0.031 0.031
9 10 0.015 0.015
9 42 0.153 0.046
10 11 0.107 0.076
10 46 0.229 0.122
11 47 0.031 0.015
11 12 0.076 0.046
15 18 0.046 0.015
15 16 0.107 0.015
16 17 0 0.001
18 19 0 0.001
20 21 0.122 0.092
20 25 0.214 0.046
21 24 0 0.001
21 22 0.198 0.046
22 23 0 0.001
27 31 0.046 0.015
27 28 0.107 0.031
28 29 0.107 0.031
29 30 0.061 0.015
32 33 0.046 0.015
33 34 0.031 0.010
35 36 0.076 0.015
35 37 0.076 0.046
35 38 0.107 0.015
42 43 0.061 0.015
43 44 0.061 0.015
43 45 0.061 0.015

Table A.1: Line data of 47-bus network [55].
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Constrained Spectrum Control

B.1 Introduction

Many methods for system analysis and controller design commonly applied in industry are typi-

cally based on the system’s response to exogenous harmonic excitations at specific frequencies. In

the linear time-invariant (LTI) case, the closed-loop behavior of the system in terms of perfor-

mance and robustness is closely related to its harmonic response. However, in the case of con-

strained and nonlinear systems, even though it is possible to achieve specific control objectives

such as tracking or stabilisation, the system’s response to excitations at specific frequencies is dif-

ficult to characterise and even harder to control. Recently, the harmonic response of convergent

nonlinear systems was analysed via the Frequency Response Function in [1], yet to the authors’

knowledge, this approach does not provide any controller design method.

A standard approach for the control of constrained systems is Model Predictive Control (MPC)

[132], but most MPC approaches do not facilitate designing the harmonic response of the closed-

loop system. Recent work on power converters has shown that frequency information can be in-

corporated into an MPC optimisation problem for the purpose of reducing the harmonics level in

an output signal. In [38], the spectrum of the load current is shaped by using a band-pass filter and

by penalising the filter output in the cost function of an MPC problem. In this chapter, we propose

an MPC method for shaping the harmonic response of a constrained nonlinear system. We extend

the idea of loop-shaping linear-quadratic regulator (LQR) techniques [7] by defining spectrum

constraints, which are enforced within a receding-horizon optimal control problem. Our approach

is targeted towards band-wise spectrum constraints. With the proposed method, a given frequency

band can be kept below a certain level while the system is operating in closed-loop and the typically

considered pointwise-in-time input and output constraints are guaranteed to also be enforced. The

damping effect can be captured by computing the time-localised spectrum of the output signal us-

ing the STFT, for instance. Therefore, in this chapter, the frequency shaping is performed by con-
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straining the squared magnitude of the STFT, called the spectrogram. In this context the notion of

a system’s harmonic response is based solely on the system’s output trajectory. Thus, constrained

nonlinear systems can be accommodated, despite the standard notion of a transfer function not

being appropriate.

In this chapter, the constrained spectrum control approach first proposed in [71, 89] for LTI sys-

tems is extended to constrained nonlinear systems. Conditions for recursive feasibility and stability

of the proposed spectrum constrained NMPC scheme are derived via an ellipsoidal invariant set that

ensures satisfaction of the constraints on the spectrogram as well as the standard pointwise-in-time

state and input constraints, and that can be computed using semidefinite-programming (SDP). Fi-

nally, the efficacy of the proposed approach is demonstrated on a nonlinear oscillator with hard

constraints on the spectrogram as well as the usual pointwise-in-time state and input constraints.

B.2 Notation

We denote by ρ (A) the spectral radius of a matrix A, and by 1 a vector with all elements equal to

1. Both the Euclidian 2-norm in Rn and the induced 2-norm in Rn×n are denoted by ‖·‖2. The open

ball centred at a point a ∈ Rn with radius r > 0 is denoted as B (a, r). Given a positive definite ma-

trixM and a positive scalar β, we define the ellipsoid E (M,β) := {x ∈ Rn : 〈x,Mx〉 ≤ β}. The

set of square-integrable functions from a segment [a, b] to C is denoted as L2 ([a, b] ,C). The sets

of strictly positive and strictly negative integers are denoted by Z+ and Z−, respectively.

B.3 Spectrum constrained NMPC

In this section we demonstrate how frequency features can be incorporated into a receding horizon

optimal control problem by constraining the magnitude of a filter output. The proposed approach

is targeted at nonlinear systems and builds upon the ideas introduced in [89] for the LTI case.

B.3.1 Problem formulation

Consider a discrete-time constrained nonlinear system

xk+1 = f(xk, uk) , (B.1)

xk ∈ X , uk ∈ U ,

where xk ∈ Rn and uk ∈ Rm. The constraint sets X and U are assumed to be polyhedral and to

contain the origin in their interiors.
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Assumption B.1. The mapping f is twice continuously differentiable and f(0, 0) = 0.

Let the linearisation about the origin be defined as

x
(L)
k+1 = ALx

(L)
k + BLuk . (B.2)

Assumption B.2 (Stabilisability). The pair (AL, BL) is stabilisable.

Let K be a linear state-feedback gain that stabilises the linearised system (B.2), implying that

the origin is locally exponentially stable under xk+1 = f(xk, Kxk), that is

∃r > 0, ∃c1 > 0, ∃γ ∈ ]0, 1[ such that ‖x0‖2 < r =⇒ ∀k ≥ 0, ‖xk‖2 ≤ c1γ
k ‖x0‖2 . (B.3)

In the sequel, we denote ĀL := AL + BLK. Note that a gain K such that ρ
(
ĀL
)
< 1 exists

by Assumption B.2. The system’s output, whose frequency components are to be constrained, is

defined as follows: {
∀ k ∈ Z+, zk := Cxk +Duk

∀ k ∈ Z−, zk := 0 ,
(B.4)

where C ∈ R1×n and D ∈ R1×m.

Remark B.1. For clarity of the presentation, we consider constraints involving a single output, al-

though the extension to multiple outputs is direct. Note that the output (B.4) may describe an actual

system output, or any linear combination of actual outputs, system states, and control inputs.

The spectral content of the output signal {zk} is constrained via a design parameter

F ∈ L2 ([−π, π] ,C)

called a frequency profile, as shown in (B.7). It is assumed that such a frequency profile F(ω) can

be defined as the Fourier transform of the impulse response of an LTI filter{
ξk+1 = Aξk + Bzk
ψk = Cξk +Dzk ,

(B.5)

where A ∈ Rq×q, B ∈ Rq×1, C ∈ R1×q, and D ∈ R.

Assumption B.3 (Stability and observability). The pair (CA,A) is observable and ρ (A) < 1.
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Remark B.2. For the LTI filter (B.5), either a Finite Impulse Response (FIR) filter or a stable

Infinite Impulse Response (IIR) filter can be chosen. While FIR filters are simple to implement,

and stable, filters with higher selectivity require higher filter orders, which results in larger state

dimensions. In contrast, IIR filters can be designed to be more selective for smaller filter orders,

i.e. state dimension. However, in both cases, increasing the frequency resolution requires observ-

ing the signal for an increasing time length. In the remainder of the chapter we use FIR filters,

although the methodology can be applied immediately when using stable IIR filters.

Time-localised spectrum constraints are based on a windowing of the output signal {zk}. A

window is defined by its length M ∈ Z+ and a windowing signal {fp}, p ∈ Z that satisfies fp = 0

if |p| > M . Choosing an appropriate time-domain window allows one to mitigate spectral leakage

caused by the finite signal length [9]. Windows that tend to zero at the boundaries of the selected

time interval, such as the Hamming window, are a good way to mitigate this problem.

The salient ingredient of the spectrum constrained MPC formulation derived in the sequel is

the STFT Z(ω, τ) of the windowed signal {zk} at time τ ∈ Z:

Z(ω, τ) :=
+∞∑
i=−∞

zifi−τe
−jωi . (B.6)

The goal is to constrain the amplitude of frequency components of the signal {zk} to lie in a given

frequency band [ωL, ωU ]. This is achieved by enforcing hard constraints on the STFT Z(ω, τ)

weighted by the frequency profile F(ω) in a receding horizon optimal control problem. Such con-

straints are described via the spectrogram of {zk}, or more precisely via

S (τ) :=
1

2π

∫ π

−π
|F (ω)Z (ω, τ)|2 dω , (B.7)

where τ ∈ Z. A spectrogram constraint at prediction time τ involves samples from time τ −M

until time τ +M . Compared to a standard MPC set-up, the model prediction is therefore extended

before prediction time 0 and after prediction time N . The resulting spectrum constrained NMPC

problem is formulated as follows

minimise
u0,...,uN−1

N−1∑
p=0

l (xp, up) + VN (xN) (B.8a)

subject to :
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System dynamics on {0, . . . , N + 2M}

xp+1 = f (xp, up) ∀p ∈ {0, . . . , N − 1} (B.8b)

xp+1 = f (xp, Kxp) ∀p ∈ {N, . . . , N + 2M} (B.8c)

zp = Cxp +Dup ∀p ∈ {0, . . . , N − 1} (B.8d)

zp = (C +DK) xp ∀p ∈ {N, . . . , N + 2M} (B.8e)

Spectrogram constraints on {−M, . . . , N +M}

S (p) ≤ α ∀p ∈ {−M, . . . , N +M} (B.8f)

Polyhedral constraints on {0, . . . , N − 1}

xp ∈ X, up ∈ U ∀p ∈ {0, . . . , N − 1} (B.8g)

Terminal constraint

xN ∈ S , (B.8h)

where l (·, ·) is a continuous positive-definite stage-cost and S ⊂ Rn is an appropriate compact

invariant set under the nonlinear dynamics (B.1), derived in Section B.4. The terminal penalty VN

is assumed to be continuous positive-definite and to satisfy the following standard terminal cost

decrease assumption

Assumption B.4 (Terminal cost decrease). For all x in the terminal set S,

VN (f (x,Kx))− VN (x) ≤ −l (x,Kx) . (B.9)

Remark B.3. The solution of the spectrum constrained NMPC program (B.8) depends on the

pre-designed stabilising control law K.

Remark B.4. Throughout the rest of the text, prediction steps are indexed using the p, while steps

of the closed-loop system are indexed by k.

The two main challenges of the proposed spectrum constrained NMPC scheme are the deriva-

tion of a tractable formulation of program (B.8), specifically the spectrum constraint (B.8f), and

the computation of the terminal constraint set (B.8h). Next, it is shown that a convex quadratic

formulation of the constraints (B.8f) can be derived. As this step has been described in detail in

[89], only the main result is stated in this chapter.
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Remark B.5. At first glance it may seem that the spectrogram constraint leads to a time-dependent

control law, as for each given state the spectrogram is a function of past states. However, the spec-

trum constrained NMPC problem can be reformulated to provide a time invariant control law

by considering an augmented system with a state including both the actual system state and the

relevant portion of the output history.

B.3.2 Properties of the closed-loop spectrum

The spectrogram constraint (B.8f) enforces that the predicted output trajectory {zp}, p = 0, . . . , N ,

contributes to the entire, past and present, output trajectory, in such a manner that the spectrogram

constraint S (τ) of (B.7) is satisfied for all τ ∈ Z. Thus, the spectrum of the entire closed-loop sys-

tem output {zk}, k ∈ Z+, is constrained in a time-localised fashion. Assuming that the spectrum

constrained NMPC problem (B.8) is recursively feasible, which is proven later in Section B.4, this

notion of closed-loop spectrum shaping is formalised in Theorem B.1.

Theorem B.1. If Problem (B.8) is recursively feasible, then for any τ ≥ 0, S (τ) ≤ α, where S (·)
is computed on the output of system (B.1) in closed-loop with the optimal control law obtained

from (B.8).

Proof. This is a direct consequence of the spectrogram constraint S (−M) ≤ α in (B.8), which

incorporates only the first state in the model prediction, and recursive feasibility of (B.8), proven

in Theorem B.3.

B.3.3 Tractability of spectrum constraints

The key ingredient for the convex quadratic reformulation of the spectrogram constraint is Par-

seval’s theorem [120], which is applied to the output signal of the filter at every prediction in-

stant. This allows for the transformation of a spectrogram constraint into an infinite horizon time-

domain constraint, of which a finite horizon formulation can be obtained. Such a technique has

been applied in a filter weighting context in [127].

Theorem B.2 ([89], Quadratic spectrum constraints). For any time τ ≥ 0,

1

2π

∫ π

−π
|F (ω)Z (ω, τ)|2 dω =

τ+M∑
k=τ−M

〈(
ξτk
zk

)
, Pk

(
ξτk
zk

)〉
+
〈
ξττ+M ,Pξττ+M

〉
(B.10)

where

• {ξτk} is the sequence of states of the filter (B.5) under input {fk−τzk}, the output signal

windowed around time τ . Without loss of generality, we assume that ξττ−M = 0.
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• ∀k ∈ {τ −M, . . . , τ +M},

Pk :=

(
C�

fk−τD�

)(
C fk−τD

)
� 0 . (B.11)

• P � 0 is the unique solution of the discrete-time Lyapunov equation

P = (CA)� CA+A�PA , (B.12)

that exists by Assumption B.3.

As a result, the spectrum constrained NMPC problem (B.8) can be reformulated as a quadrat-

ically constrained nonlinear program, which can subsequently be solved using nonlinear interior-

point solvers, such as IPOPT [152].

B.4 Recursive feasibility of spectrum constrained NMPC

In this section, an invariant set for the dynamics xk+1 = f (xk, Kxk) is derived. This set ensures re-

cursive feasibility of NMPC problem (B.8). The standard notion of an invariant set must be adapted

to the added requirements imposed by the spectrogram, since the terminal constraint should not

only be invariant in order to ensure recursive feasibility, but also, containment of the predicted state

xp in the terminal set S at time p ≥ N should guarantee satisfaction of the spectrogram constraint

at time p +M , as a spectrogram constraint involves M samples backwards in time [89]. In the

sequel, we propose that an invariant set for the nonlinear dynamics (B.1) with these properties, can

be computed by solving an SDP. The derivation of such an invariant set is performed in Lemmas

B.1, B.2, B.3 and B.4. The main result is stated in Theorem B.3. Stability of the closed-loop sys-

tem under the spectrum constrained NMPC control law then follows from a standard optimal cost

decrease argument.

The following Lemma shows that the spectrogram computed at time p +M for the nonlinear

dynamics is upper-bounded by the sum of a quadratic function of ‖xp‖2, depending on the filter

matrices (A,B) and the linearised model. By choosing xp small enough, the difference between

the spectrogram of the output of the linearised system and the output of the nonlinear dynamics can

be made arbitrarily small. Let g (x) := f (x,Kx)−ĀLx. By Assumption B.1, g satisfies g (0) = 0,

and ‖g(x)‖2/‖x‖2 → 0 when x→ 0.

Lemma B.1. Given r satisfying (B.3), there exists a constant c > 0 such that for all p ≥ N

xp ∈ B (0, r) =⇒ S (p+M) ≤ 〈xp,Rxp〉+ c ‖xp‖22 , (B.13)
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where R is defined as

R := H�
2M

(
P 0

0 0

)
H2M +

2M−1∑
l=0

H�
l PlHl (B.14)

with Pl defined in (B.11) and

Hl :=

(∑l−1
k=0 AkB (C +DK) Āl−k−1

L

(C +DK)ĀlL

)
.

for l ∈ {0, . . . , 2M}.

Proof. It holds that xp ∈ B (0, r). For i ∈ N, i ≥ 1, define

h (xp, . . . , xp+i−1) :=
i−1∑
j=0

ĀjLg(xp+i−1−j) , (B.15)

where the sequence of states {xp, . . . , xp+i−1} is obtained by applying the nonlinear dynamics

xk+1 = f (xk, Kxk) to xp. Since xp ∈ B (0, r), ‖g (xp+i−1−j)‖2 can be bounded by a linear func-

tion in ‖xp‖2, using exponential stability (B.3) of the origin under the control law K and applying

the triangle inequality:

‖g (xp+i−1−j)‖2 ≤ c1γ
i−1−j(1 +

∥∥ĀL∥∥2) ‖xp‖2 , (B.16)

where γ ∈ ]0, 1[ is defined in (B.3). From the triangle inequality,

‖h (xp, . . . , xp+i−1)‖2 ≤
i−1∑
j=0

∥∥ĀjL∥∥2 ‖g(xp+i−1−j)‖2 ,

which implies that for all i ≥ 1, there exists η(i) > 0 such that

‖h (xp, . . . , xp+i−1)‖2 ≤ η(i) ‖xp‖2 . (B.17)

From Theorem B.2, there exist matrices P̃k ∈ Rn(k−p+1)×n(k−p+1) such that

S (p+M) =

p+2M∑
k=p

〈
Xp:k, P̃kXp:k

〉
, (B.18)

whereXp:k :=
(
x�
p , . . . , x

�
k

)�
for k ∈ {p, . . . , p+ 2M}. For k ∈ {p+ 1, . . . , p+ 2M}, by writing
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xk = Āk−pL xp + h(xp, . . . , xk−1), one obtains

S(p+M)− 〈xp,Rxp〉 =
p+2M∑
k=p+1

2
〈
X

(ĀL)
p:k , P̃kX

(h)
p:k

〉
+

p+2M∑
k=p+1

〈
X

(h)
p:k , P̃kX

(h)
p:k

〉
,

where

X
(ĀL)
p:k :=

(
x�
p ,
(
ĀLxp

)�
, . . . ,

(
Āk−pL xp

)�)�
,

X
(h)
p:k :=

(
0�, h (xp)

� , . . . , h (xp, . . . , xk−1)
�)�

and R is defined in (B.14). It then follows that

S (p+M)− 〈xp,Rxp〉 ≤ max
k

∥∥∥P̃k∥∥∥
2

p+2M∑
k=p+1

∥∥∥X(h)
p:k

∥∥∥
2

(
2
∥∥∥X(ĀL)

p:k

∥∥∥
2
+
∥∥∥X(h)

p:k

∥∥∥
2

)
. (B.19)

From (B.17) and (B.19), we can directly deduce the existence of c > 0 such that

S (p+M)− 〈xp,Rxp〉 ≤ c ‖xp‖22 .

Note that the constant c does not depend on xp.

In the sequel, the matrix R is assumed to be positive definite. Such an assumption is satisfied,

for instance by the linear system presented in [89]. The following Lemma shows that by choosing

xp appropriately in a neighbourhood of the origin, the spectrogram constraint at time p+M is

satisfied.

Lemma B.2. Let p ≥ N . For all δ ∈ (0, α),

xp ∈ E (R, α− δ) ∩ B
(
0,min

{√
δ

c
, r

})
=⇒ S (p+M) ≤ α ,

where r is defined via (B.3).

Proof. Let δ ∈ ]0, α[ and xp ∈ E (R, α− δ) ∩ B
(
0,min

{√
δ
c
, r
})

. Hence

S (p+M) ≤ 〈xp,Rxp〉+ c ‖xp‖22 ≤ α− δ + c

(√
δ

c

)2

≤ α .
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In the remainder, we fix δ ∈ ]0, α[. For less conservatism, δ should be chosen as close as pos-

sible to α. First, a set, which is invariant under the linearised closed-loop dynamics xk+1 = ĀLxk,

is computed, guaranteeing satisfaction of the spectrogram constraint at time p +M , by enforcing

containment in the neighbourhood of the origin defined in Lemma B.2.

Lemma B.3. There exists a matrix S � 0 such that E (S, 1) is invariant under the linearised

dynamics x(L)k+1 = ĀLx
(L)
k and

E (S, 1) ⊆ E (R, α− δ) ∩ B
(
0,min

{√
δ

c
, r

})
. (B.20)

Proof. The proof of existence is constructive. A matrix S guaranteeing (B.20) can be computed by

solving an SDP analogous to the one given in Theorem 3 in [89] with two additional constraints:

• the ‘spectrogram-ellipsoid’ is shrunk, resulting in the containment constraint

E (S, 1) ⊆ E (R, α− δ) ,

which can be formulated as an LMI in S−1.

• the containment

E (S, 1) ⊆ B
(
0,min

{√
δ

c
, r

})
,

which can also be expressed as an LMI in S−1.

The following Lemma guarantees invariance of a sub-level set of E (S, 1) under the nonlinear

dynamics. Its proof follows the arguments described in [114].

Lemma B.4. There exists κ ∈ ]0, 1[ such that E (S, κ) is invariant under the nonlinear dynamics

xk+1 = f (xk, Kxk).

Proof. Define

d (x) := 〈f (x,Kx) ,Sf (x,Kx)〉 − 〈x,Sx〉 − 2
〈
x,SĀLg (x)

〉
− 〈g (x) ,Sg (x)〉 .
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From the invariance of E (S, 1), it is clear that for all x ∈ E (S, 1), d (x) < 0. Note that the function

d is continuous and that E(S, 1) is compact. Hence one can define

d∞ := max
x∈E(S,1)

d(x) < 0 . (B.21)

For all x ∈ E (S, 1),

〈f (x,Kx) ,Sf (x,Kx)〉 ≤ d∞ + 〈g (x) ,Sg (x)〉+ 2
〈
g (x) ,SĀLx

〉
+ 〈x,Sx〉 .

From the definition of g, 〈g (x) ,Sg (x)〉 + 2
〈
g (x) ,SĀLx

〉
→ 0 when x → 0. Then, there exists

σ > 0 such that

∀x ∈ B (0, σ) ,
∣∣〈g (x) ,Sg (x)〉+ 2

〈
g (x) ,SĀLx

〉∣∣ ≤ −d∞ .

Let κ > 0 such that E (S, κ) ⊆ E (S, 1) ∩ B (0, σ). Hence,

x ∈ E(S, κ) =⇒ 〈f (x,Kx) ,Sf (x,Kx)〉 ≤ κ ,

which proves that E (S, κ) is invariant under the nonlinear dynamics (B.1).

Theorem B.3. The spectrogram-MPC problem formulated onto the nonlinear system (B.1) with

terminal constraint xN ∈ E (S, κ) is recursively feasible.

Proof. The proof follows the same lines as in the linear case. As the set E (S, κ) is invariant under

the nonlinear dynamics, shifting the optimal sequence from the current step and appending the

LQR solution u = Kx provides a feasible solution to problem (B.8) at the next time instant. Sat-

isfaction of the spectrogram constraint computed on the nonlinear dynamics at time N + M is

guaranteed by Lemmas B.1 and B.2 and the appropriate choice of the terminal constraint formu-

lated in Lemmas B.3 and B.4.

Theorem B.4. The closed-loop nonlinear system under the spectrogram-MPC control law is lo-

cally asymptotically stable, with basin of attraction equal to the feasible set of the spectrum con-

strained NMPC problem (B.8).

Proof. Stability of the closed-loop system follows from recursive feasibility and the fact that the

terminal cost satisfies the standard decrease Assumption (B.4).
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B.5 Numerical Example

Oscillations are very common in mechanical systems and are responsible, e.g., for fatigue and

failure of engines, and thus control techniques for active vibration damping are required [126]. In

this section, an example illustrating the efficacy of the proposed spectrum constrained NMPC ap-

proach for damping resonance frequencies in constrained nonlinear systems is presented. In prac-

tice, many oscillatory dynamical systems can be modelled as linear resonators with a nonlinear

restoring force [122]. Therefore, we consider the constrained nonlinear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ẋ1

ẋ2

)
=

(
0 x2

−ω2
0 (x1 + εx21) −2νω0x2

)
+

(
0

100

)
u

z =
(
1 0

)(x1
x2

)
|x1| ≤ 15, |x2| ≤ 100

|u| ≤ 100 ,

(B.22)

where ε = 0.1, ω0 = 2π · 12 rad/sec and ν = 2 · 10−4. System (B.22) is first controlled to track a

piecewise constant reference signal zref = ±0.5 using a standard NMPC formulation without spec-

trogram constraints. The continuous dynamics are sampled at 50 Hz and discretised by applying

a Runge-Kutta method of order four. The linearised model around the origin is given by (B.2) with

AL =

(
0 1.00

−5.68 · 103 0.0030

)
, BL =

(
0

100

)
.

The stabilising control law used in the spectrum constrained NMPC problem is

K =
(
−0.87 −0.14

)
.

The stage cost of (B.8) is defined as a quadratic function l (x, u) := 〈x,Qx〉 + 〈u,Ru〉 with

Q = 100 · I and R = 1.

When the system output tracks the upper constant reference +0.5, a resonance can be observed

around 12.1 Hz, whereas when tracking the lower reference −0.5, the resonance is obtained around

10.5 Hz, as shown in the time domain trajectory in Fig. B.1(a) and the spectrogram in Fig. B.2(a).

Spectrogram constraints are then incorporated into the NMPC problem. A 3rd order Butterworth

filter has been chosen with a window length M = 25, the prediction horizon being N = 30. The

spectrogram constraint parameter α is set to 0.1. A constraint is first enforced at 10.5 Hz, which re-
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sults in the spectrogram in Fig. B.2(b). The constraint on the first resonance is then removed and a

constraint at 12.1 Hz is added, resulting in the spectrogram in Fig. B.2(c). Finally, both resonances

are constrained, as shown in the spectrogram of Fig. B.2(d). The corresponding closed-loop tra-

jectories are shown in Fig. B.1(a), (b), (c) and (d) respectively. The spectrum constrained NMPC

strategy proves effective at damping nonlinear resonances. It should be noted that a waterbed effect

can be observed in spectrograms (b) and (d), where damping the first resonance seems to amplify

the second one, and damping both resonances results in some energy transfer to lower and higher

frequencies.
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(a)

z

(b)

z

(c)

z

(d)

z

Time (s)

Figure B.1: Closed-loop output trajectories: Without spectrum constraint (a), with spectrum con-

straints at 10.5 Hz (b), with spectrum constraints at 12.1 Hz (c), and with spectrum constraints at

both frequencies (d).
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(a)

 

(b)

(c)

(d)

Time (s)

Figure B.2: Spectrograms of the output signal of the closed-loop system: No spectrum constraint

(a), spectrum constraint at 10.5 Hz (b), at 12.1 Hz (c), and at both resonances (d).
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Appendix C

Parametric Polytope Reconstruction, an Appli-

cation to Crystal Shape Estimation

C.1 Introduction

Monitoring the CSD (Crystal Size Distribution) during a crystallisation process is of critical impor-

tance for the quality of the end product, the chemical properties of the crystal, and the efficiency of

the manufacturing process. In order to estimate crystal shapes in-situ, several techniques exist such

as laser backscattering, yet these techniques rely on the assumption that the particles are spheri-

cal and can thus not be applied in the case of highly non-spherical particles such as needles for

instance. Recently, the interest in in-situ imaging-based methods for crystal shape estimation has

increased [106, 143, 125]. Such techniques allow one to record the sizes and shapes of the crystals

rapidly. Yet obtaining quantitative information about the crystal shape generally requires image

segmentation.

In order to estimate the shape of a three-dimensional object from multiple views when the ob-

ject pose is unknown, model-based methods have been successfully applied [5]. Such approaches

rely on fitting a shape prior with images obtained from multiple views by minimising a re-projection

error, providing an estimate of the object pose and shape. A few model-based approaches exist for

crystal shape estimation from images, a survey is given in Section C.2 of this Chapter. Yet they all

have drawbacks in terms of accuracy or in-situ applicability. In this Chapter, we propose a novel

method to estimate crystal shapes from two orthogonal microscope views. The salient ingredient is

a modelling of crystals as convex parametric polytopes. Moreover, the ‘weak-perspective’ assump-

tion [4] allows one to take images of crystals as projections of the parametric polytope. Crystal

shape estimation can thus be formalised as a polytope reconstruction problem.

Reconstructing a polytope from its projections onto hyperplanes is a long-standing problem

that appears in different forms. More generally, the polytope reconstruction problem is part of a
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field of mathematics called geometric tomography, which deals with ‘the retrieval of information

about a geometric object from data about its sections, or projections, or both’ [65]. Polytope re-

construction problems appear in medical imaging [136], computer-aided design [156], computer

vision [144] and computational geometry [18, 66, 112, 72]. The reconstruction technique always

depends on the set-up and the type of projection data provided. From a theoretical point of view,

in [112], the authors addressed the problem of reconstructing a 3-polytope1 given one of its pro-

jections and two associated triangulations, and derive conditions under which such a 3-polytope

exists. With a limited amount of information in the projections data, namely the number of vis-

ible edges, [18] derived some conditions under which a polytope can produce the given set of

projections. From a more applied point of view, a field in which 3D reconstruction appears quite

often is computer tomography, in which one seeks to recover the shape of an object from X-ray

images. An algorithm for reconstructing any convex body in Rn from its brightness function, the

function giving the volume of its projections onto hyperplanes has been provided by [67].

In some cases, the polytope reconstruction problem is also closely related to the estimation

of the polytope spatial orientation. Regarding this question, a few studies exist. In special cases,

assuming that the correspondence between the vertices of the 3-polytope and the vertices of the

2-polytope is known, it is possible to estimate the rotation of the 3-polytope by applying stan-

dard results in projective geometry [136]. The case where the correspondence is unknown is more

involved and conditions under which the computation of the rotation is possible are explored in

[66] based on Gröbner bases. The method proposed in this Chapter avoids computing correspon-

dence points between the crystal model and data projections, which makes it quite promising for a

real-time application.

In the first part of this Chapter, a brief survey of existing approaches to crystal shape esti-

mation from images is provided and our vision set-up is presented. Then the proposed technique

is presented and it is shown that the shape estimation problem can be recast as nonlinear least-

squares. Technical details regarding the parameterisation of the vertices of the parametric polytope

are also exposed. Finally, the effectiveness of our approach is demonstrated on artificially gener-

ated images as well as real images produced by a real-world vision set-up.

C.2 Vision methods for crystal shape estimation

C.2.1 State of the art

Existing vision methods for estimating three-dimensional crystal shapes range from complex tech-

niques such as tomography or laser backscattering to more basic ones such as in-situ video mi-

1An n-polytope is a polytope in Rn.
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croscopy. A survey of existing techniques is provided by [106]. Details about imaging instruments

used for the monitoring of crystallisation processes are given in [143]. Recently there has been a

lot of interest in image-based methods, which allow one to easily visualise the crystal shape and

acquire data quickly, but require a significant amount of processing in order to extract quantitative

information. Several algorithms for crystal shape estimation from in-situ images have been pro-

posed [143, 107]. Both [143] and [107] are model-based approaches that estimate a shape parame-

ter from image data and a prior model of the crystal. Such approaches have been commonly applied

in computer vision to measure shapes of complex objects using stereoscopic imaging [5]. Stereo-

imaging techniques have been applied to estimate simple crystal shapes such as spheres or cubes,

yet no systematic method to estimate complex shapes exist yet.

In [143], the three-dimensional crystal morphology is estimated from tomographic images of

crystals obtained via confocal microscopy. Such a tomographic approach provides very accurate

results, yet crystals need to be fluorescent coated, which makes the approach difficult to apply in-

situ. The M-SHARC (Model-Based Shape Recognition for Crystals) algorithm proposed by [107]

extracts shape information from a single image and a wire-frame model consisting of a set of ver-

tices and a set of lines. The salient ingredient of the M-SHARC algorithm is linear feature detection

and matching. One of its main advantages is speed (10 images per minute), which makes it appli-

cable in a real-time in-situ context. More recently, a stereological method has been proposed by

[124] in order to estimate the shape of any 3D convex body from several 2D projections. It has

been successfully tested in a crystallisation process. The essential ingredient of the method is a

maximum likelihood estimator based on an appropriate shape descriptor.

C.2.2 Proposed approach

The main challenge of in-situ microscopic imaging techniques is to infer three-dimensional infor-

mation from two-dimensional data in an efficient way. Stereoscopic imaging techniques are gen-

erally applied to solve such 3D reconstruction problems. In this Chapter, the stereoscopic imaging

set-up consists of two cameras photographing suspended particles which are pumped through a

glass-walled cell that avoids optical distortion effects from two perpendicular directions, as shown

in Figure C.1. The magnification is such that 1 pixel corresponds to 1.15μm. Images are captured

at a rate of 5 Hz and have a resolution of 5 MP. Xenon flash lamps with a very short decay time

assure that no motion blur, which might occur due to the movement of crystals, is visible on the

recorded images. As the size of the crystals is small compared to the length of the cameras to the

flow-through cell, the ‘weak-perspective’ projection model [4] is chosen for the image formation,

so that the obtained images can be taken as scaled projections of the crystal.

Similarly to [143] and [107], the approach described in this Chapter is a model-based proce-
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Figure C.1: Schematic drawing of the flow through cell. The light from the xenon flash lamps

passes through the cell. Orthogonal projections of crystals in suspension are captured by the two

cameras. A pre-processing is applied to each pair of images so as to extract pairs of single crys-

tals. Hence crystals are analysed one by one.

dure. A facetted crystal is modelled by a parametric polytope as defined in Section C.4. Particle

models are based on crystallographic data, i.e. crystal unit cell parameters, and a set of experimen-

tally observed facets that are to be included. Crystal facets are commonly identified by their Miller

indices [22]. Using the geometry of the unit cell, a normal vector in Cartesian space, which defines

a facet plane, can be calculated for each Miller index. These facet vectors make the parameter

matrix A as used in the parametric polytope definition (Eq. (C.1)). As not all crystal facets are con-

sidered to grow independently, a matrix B is defined which relates the growth of some faces and

reduces the degrees of freedom in the model. Finally, the relative distance of each group of facets

to the origin of the polytope is defined by the shape parameter t as introduced in Eq. (C.1). Thus

estimating the three-dimensional crystal shape amounts to computing the shape parameter t from

data points extracted from the set of two images.

As often in stereoscopic imaging techniques, evaluating the orientation of the crystal is an

important issue. Contrary to the M-SHARC algorithm, which requires certain assumptions on the

crystal orientation, the technique proposed in this Chapter allows one to automatically estimate the
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crystal orientation and shape from the pair of images.

C.3 Notation

We denote by convE the convex hull of a set E. We denote by dH (E,F ) the Hausdorff distance

between two sets E and F . 1n is the vector in Rn with all coordinates equal to 1. Similarly 0n
stands for the vector in Rn with all coordinates equal to 0. In is the identity matrix in Rn.

C.4 Basic definitions in polyhedral geometry

In this section, we present some basic definitions in polyhedral geometry, which can be found in

[163].

Definition C.1 (Polyhedron). A polyhedron P in Rd is the intersection of finitely many closed

half-spaces in Rd.

P :=
{
x ∈ Rd : Ax ≤ b

}
,

where A ∈ Rm×d, b ∈ Rm and the inequality ≤ is row-wise. The rows of A are denoted by a�
i ,

i ∈ {1, . . . ,m}.

In the sequel, we denote the polyhedral set
{
x ∈ Rd : Ax ≤ b

}
by P (A, b).

Definition C.2 (Polytope). A polytope is a bounded polyhedron. A polytope in Rd is called a d-

polytope.

Definition C.3 (Parametric polytope). A parametric polytope P (A,Bt), where t ∈ Rp, is the

polyhedral set

P (A,Bt) :=
{
x ∈ Rd : Ax ≤ Bt

}
. (C.1)

Assumption C.1. The shape parameter t lies in a p-polytope T .

Remark C.1. Assumption C.1 ensures that the shape parameter is bounded. In practice, this mod-

els the fact that crystals can be measured up to a fixed maximal size.

Remark C.2. In the sequel, Rd is sometimes referred to as the data space and Rp as the parameter

space.
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Remark C.3 (Rotated parametric polytope). The parametric polytope P (A,Bt) can be rotated by

R ∈ SOd (R), resulting in the rotated parametric polytope

P (AR�, Bt) :=
{
x ∈ Rd : AR�x ≤ Bt

}
.

Definition C.4 (Projection of a polytope onto a hyperplane). The projection of a polytope P ⊂ Rn

onto a hyperplane H = {x ∈ Rn : a�x = b} is denoted by πHP and is defined as

πHP := {x ∈ H : ∃λ ∈ R, x+ λa ∈ P} .

Similarly, the projection from Rd+p onto Rd is defined by the function πRd , and onto Rp by πRp .

Remark C.4. The n× n matrix defining the projection onto H is denoted by PH.

Definition C.5 (Affine hull). Let S := {xi}N−1
i=0 be a set of points in Rd. The affine hull of S, de-

noted by aff S, is the smallest affine set that contains S. It can be shown that aff S is the set of all

affine combinations of elements of S

aff S :=
{ N−1∑

i=0

λixi :
N−1∑
i=0

λi = 1, xi ∈ S, i ∈ {0, . . . , N − 1}
}
.

Definition C.6 (Polyhedral partition). Let P be a p-polytope. A finite family of p-polytopes

{P1, . . . , Pr}

is a polyhedral partition of P if {
P = ∪ri=1Pi

∀i �= j, intPi ∩ intPj = ∅
,

where intP stands for the interior of P . In the remainder of the Chapter, when referring to a

polyhedral partition, we use the symbol � instead of ∪ to show that the union is disjoint.

C.5 Description of the shape parameter estimation technique

In this section, we address the general problem of estimating the shape parameter t̃ of a rotated

parametric d-polytope P
(
AR̃�, Bt̃

)
from N of its projections onto hyperplanes

{H1, . . .HN}
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in Rd. As it appears later in Section C.8, the hyperplanes {H1, . . .HN} model the N different

views of a crystal, represented as a parametric polytope. Following Definition C.4, the projections

of P
(
AR̃�, Bt̃

)
onto H1, . . . ,HN−1 and HN are denoted by

{
πH1P

(
AR̃�, Bt̃

)
, . . . , πHN

P
(
AR̃�, Bt̃

)}
.

A quick look at Fig. C.2 shows that estimating the shape parameter t̃ goes together with estimat-

Figure C.2: Illustration of the parametric polytope reconstruction problem: Estimate the shape

parameter t̃ from projections onto hyperplanes H1, H2 and H3. The polytope projections

πH1P
(
AR̃�, Bt̃

)
, πH2P

(
AR̃�, Bt̃

)
and πH3P

(
AR̃�, Bt̃

)
are plotted as dark areas.

ing the orientation R̃ of P
(
AR̃�, Bt̃

)
. The main concept of our shape estimation algorithm is to

calculate the pair of parameters
(
t̂, R̂

)
, which result in the best fitting of the projections of the

model polytope {
πH1P

(
AR̂�, Bt̂

)
, . . . , πHN

P
(
AR̂�, Bt̂

)}
with the data polytopes {

πH1P
(
AR̃�, Bt̃

)
, . . . , πHN

P
(
AR̃�, Bt̃

)}
. (C.2)
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In the sequel, the data polytopes πHi
P
(
AR̃�, Bt̃

)
are denoted by Di, for i ∈ {1, . . . , N}.

Remark C.5. The data polytopes {Di}Ni=1 are extracted from a single set of N different projec-

tions of the same parametric polytope, or N different 2D images of the same crystal, as explained

in Section C.8.

Such an approach is very frequent in Computer Vision for estimating the shape parameter of

a three-dimensional object from multiple-view images. The key idea to minimise the re-projection

error between a parametric model of the object and data points extracted from the images. Hence

a metric measuring the discrepancy between the projected model polytope and the data polytopes

should be defined in order to obtain an accurate estimate t̂ of the shape parameter t̃ in the l2-sense,

that is minimising the error
∥∥t̃− t̂

∥∥
2
. In the remainder, it is shown how an appropriate metric can

be constructed in order to measure and then minimise the discrepancy between the parametric

polytopes {
πH1P

(
AR̂�, Bt̂

)
, . . . , πHN

P
(
AR̂�, Bt̂

)}
and the data polytopes {

πH1P
(
AR̃�, Bt̃

)
, . . . , πHN

P
(
AR̃�, Bt̃

)}
.

Remark C.6. Note that the data polytopes {Di}Ni=1 are in Rd−1, whereas the parametric poly-

tope lies Rd. Thus the polytopic shape estimation problem consists in inferring complex geometric

information on a d-dimensional polytopic object from (d − 1)-dimensional data, with very few

assumptions on the problem structure.

C.5.1 Choice of the re-projection error

We propose defining the re-projection error as the average distance of the projected vertices of

the parametric polytope to the data polytopes plus the average distance of the vertices of the data

polytopes to the projected parametric model polytope. It is shown later that this comes from the

definition of the re-projection error as an averaged version of the Hausdorff distance between the

projected parametric model polytope and data polytopes. Thus the re-projection error should be

interpreted as an approximation of the distance between a model set and data sets.

The sets of vertices of the parametric model P (A,Bt) and the data Di for i ∈ {1, . . . , N}, are

defined as

extrP (A,Bt) :=
{
v1 (t) , . . . , vNv(t) (t)

}
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and

extrDi :=
{
w

(i)
1 , . . . , w

(i)
Mi

}
.

The proposed re-projection error is then given by

Δ
(
P (AR�, Bt) , {Di}Ni=1

)
:=

1

N

N∑
i=1

( βi
Nv (t)

Nv(t)∑
j=1

d (πHi
Rvj (t) , Di)

2
(C.3)

+
γi
Mi

Mi∑
k=1

d
(
w

(i)
k , πHi

P (AR�, Bt)
)2 )

,

where N is the number of hyperplanes, the coefficients βi > 0 and γi > 0 such that βi + γi = 1

are relative weighting coefficients.

Remark C.7. The relative weighting coefficients βi and γi may help tuning the re-projection error

in some practical cases.

Finally, obtaining an estimate of R̃ and t̃ consists in minimising the re-projection error

Δ
(
P (AR�, Bt) , {Di}Ni=1

)
,

which results in the nonlinear program

minimiset,R Δ
(
P (AR�, Bt) , {Di}Ni=1

)
(C.4a)

Constraints on the shape parameter

t ∈ T (C.4b)

Rotation matrix

R ∈ SOd (R) . (C.4c)

where T is defined in Assumption C.1. At this point, two challenges appear. First, the vertices

vj (t) of the parametric polytope P (A,Bt) should be expressed as a function of the shape param-

eter t. It is shown in Section C.6 that the vertices vj (t) are piecewise affine (PWA) functions of

the shape parameter t defined over a polyhedral partition �Ll=1Tl of the parameter polytope T . Sec-

ondly, by using an appropriate parameterisation of the rotation matrix R, the nonlinear constraint

R ∈ SOd (R) can be transformed into box constraints on a parameter α, as addressed in Sec-
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tion C.7. Once these two problems have been resolved, the nonlinear program can be recast as a

constrained nonlinear least-squares problem.

Remark C.8 (Re-projection error as a Hausdorff distance). The re-projection error appearing in

the objective (C.4) can be viewed as a sum of pseudo-Hausdorff distances between the projections

of the model polytope and data polytopes, via the following Lemma, of which the proof can be

derived easily.

Lemma C.1. Let P1 = conv {v1, . . . , vn} and P2 = conv {w1, . . . , wm}.

dH (P1, P2) = max
{

max
i=1,...,n

d (vi, P2) , max
j=1,...,m

d (wj, P1)
}
, (C.5)

where d (v, P ) = minx∈P d (v, x).

From (C.5), the objective of (C.4) is obtained by replacing the max operator with the L2-

norm. Lemma C.1 essentially means that the distance between two polytopic sets can be expressed

as a function of the distances of the vertices of one polytope to the other polytope and vice-

versa. Therefore, parametric vertices vi (t) and data vertices w(i)
k appear in the expression of the

re-projection error, and constraints guaranteeing containment in the model or data polytopes need

to appear in the minimisation of the re-projection error. The Hausdorff metric has been successfully

employed for comparing a model set and an image set in model matching algorithms such as [94].

C.5.2 A nonlinear least-squares problem for parametric polytope shape estimation

After deriving a parameterisation of the vertices of the parametric polytope P (A,Bt), as explained

in Section C.6 and of the rotation R, as in Section C.7, the nonlinear program (C.4) can be trans-

formed into a finite set of constrained nonlinear least-squares problems. More precisely, an estimate

of the shape parameter is obtained by solving

J∗ = minimisel∈{1,...,L} Jl ,

where L is the number of polytopes in the polyhedral partition of T and Jl is defined over each

partition polytope Tl as

Jl := min
t,α,{

y
(1)
i

}
,...,

{
y
(N)
i

}
{
z
(1)
j

}
,...,

{
z
(N)
j

}

1

N

N∑
k=1

( βk
N l
v

N l
v−1∑
i=0

∥∥∥PHk
R (α) vi (t)− y

(k)
i

∥∥∥2
2
+

γk
Mk

Mk−1∑
j=0

∥∥∥w(k)
j − PHk

R (α) z
(k)
j

∥∥∥2
2

)

(C.6a)
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Containment in (d− 1)-dimensional data polytopes:

y
(1)
i ∈ D1

. . .

y
(N)
i ∈ DN , i ∈ {0, . . . , Nv − 1} (C.6b)

Containment in parametric polytope P (t):

Az
(1)
j ≤ Bt, j ∈ {0, . . . ,M1 − 1}

. . .

Az
(N)
j ≤ Bt, j ∈ {0, . . . ,MN − 1} (C.6c)

Polyhedral constraint on shape parameter:

t ∈ Tl (C.6d)

Box constraints on rotation parameter:

α ∈ [αU , αL] , (C.6e)

where {PHk
}Nk=1 are the matrices of the projections onto {H1, . . . ,HN} respectively.

The special orthogonal constraint R�R = I vanishes, but a nonlinear expression of the rota-

tion matrix R (α) appears in the objective of the nonlinear program. Another important change

compared to (C.4) is that the number of vertices N l
v of the parametric polytope P (A,Bt) does not

depend on t anymore. This results from the fact that the shape parameter t lies in a fixed polytope

Tl of the polyhedral partition, as clarified in Section C.6.

One of the key aspects of the proposed shape estimation procedure is that the minimisation of

the re-projection error does not involve correspondences between points of the parametric model

polytope and points in the data polytopes, which is generally the case in most of the reconstruction

techniques based on model matching [131, 5], and often leads to binary optimisation problems,

which are notoriously hard to solve. This is a direct consequence of the choice of the re-projection

error, which is basically taken as an approximated distance between a model set and data sets, and

Lemma C.1.
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C.6 A partition of the parameter polytope

In this section, we clarify the motivation for computing a polyhedral partition of the parameter

polytope T and present basic results in polyhedral geometry, which are essential to the proposed

partition generating algorithm. First, one can note that

πHi
P (AR�, Bt) = conv {πHi

Rvk (t)}Nv(t)
k=1 ,

where {vk (t)}Nv(t)
k=1 are the vertices of P (A,Bt). As the shape parameter t varies in T , the vertices

{vk (t)}Nv(t)
k=1 of P (A,Bt) can split or merge. Thus the first step of our method is to identify regions

of the parameter polytope T in which the set of parametric vertices does not change. More pre-

cisely, every parametric vertex vk (t) can be represented as a PWA function of the shape parameter

t, that is

vk (t) :=M
(l)
k t, for t ∈ Tl . (C.7)

We aim at identifying the regions Tl, appearing in (C.7) of the parameter polytope T , which we

call critical regions, in which the vertices of P (A,Bt) can be expressed via a fixed set of matrices{
M

(l)
k

}
in Rd×p.

It is shown that each critical region is a polyhedron in the parameter space Rp. The main con-

cept of the partition generating algorithm is to enumerate the faces of a cone defined in mixed

data-parameter space, project them onto the parameter space and generate a partition of the pa-

rameter polytope from the set of projected faces intersected with the parameter polytope T . After

introducing some basic facts about faces of polyhedra, the partition generating algorithm is pre-

sented and it is proven that its output is a partition of the parameter polytope T .

C.6.1 Preliminaries

Most of the following definitions can be found in [163] and [13].

Definition C.7 (Face). A subset F in Rd is called a p-face of a polyhedron P (A, b) if there exists

a supporting hyperplane H of P (A, b) such that{
F = P (A, b) ∩H
dim aff F = p

. (C.8)

0-faces are called vertices, 1-faces are called edges. In the case of a p-polytope, (p− 1)-faces are

called facets.
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Definition C.8 (Sub-matrix). Let A ∈ Rm×n and I ⊆ {1, . . . ,m}. The sub-matrix of A built by

stacking the rows of A of indices contained in I is noted AI .

Given a subset I ⊆ {1, . . . ,m}, we note

PI := {x ∈ P (A, b) : AIx = bI} .

The notion of equality set introduced in [96] plays an important role in the computational aspects

of our algorithm.

Definition C.9 (Equality set). Let P (A, b) be a d-polytope defined by the intersection of m hyper-

planes. Let E ⊆ {1, . . . ,m} and

G (E) := {i ∈ {1, . . . ,m} : ∀x ∈ PE, 〈ai, x〉 = bi} .

E is an equality set of P (A, b) if and only if E = G (E).

The following Theorem, proven in [96], states that there is a one-to-one correspondence be-

tween faces of a polyhedron and its equality sets.

Theorem C.1 (Equality set to face correspondence). IfE is an equality set of a d-polytope P (A, b),

then PE is a face of P (A, b). Furthermore, if F is a face of P (A, b), then there exists a unique

equality set E such that F = PE .

A polyhedral cone C in data-parameter space can be defined from a parametric polytope

P (A,Bt), as follows:

C :=

{(
x

y

)
∈ Rd+p :

[
A −B

](x
y

)
≤ 0

}
.

In the remainder, the polyhedral cone C is assumed to be full-dimensional, that is dim aff C =

d+ p.

C.6.2 Basic results

In this paragraph, basic results about faces of the cone C and vertices of the parametric polytope

P (A,Bt) are presented. The main idea is that each parametric vertex of P (A,Bt) can be associ-

ated with a unique p-face of the cone C. This fact is clarified and proven in Lemma C.2, where it

is shown that the set of parameters for which a parametric vertex exists is given by the projection

of a p-face onto the parametric space. A polyhedral partition of the parameter polytope T can then

be built from the set of faces of C associated with the set of vertices of P (A,Bt).
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Lemma C.2. For all t ∈ T and for all v ∈ P (A,Bt), there exists a unique p-face F of C such

that

v = πRd (F ∩ S (t)) ,

where

S (t) :=

{(
x

y

)
∈ Rd+p : y = t

}
.

If F is a p-face of C such that dim aff F ∩ S (0) = p, then the set of parameters t such that

πRd (F ∩ S (t)) ∈ extrP (A,Bt) is πRd (F ) ∩ T .

Proof. Let t ∈ T and v ∈ extrP (A,Bt). By definition of a vertex as a 0-face of P (A,Bt), there

exists a supporting hyperplane Ht of P (A,Bt) such that v = P (A,Bt) ∩ Ht. This implies that

we can find a supporting hyperplane H of C such that

v = πRd (C ∩ S (t)) ∩ πRd (H ∩ S (t))

= πRd (C ∩H ∩ S (t)) . (C.9)

As dim aff v = 0 and v is obtained as a projection from Rd+p onto Rd, where p independent

components are removed, dim aff C ∩H ≤ p. From the last equality in (C.9), one can deduce that{(
x

t

)
∈ Rp+1 : t ∈ T, x = v

}
= C ∩H ∩

⋃
t∈Rp

S (t) .

As

dim aff

{(
v

t

)
∈ Rp+1 : t ∈ T, x = v

}
= p ,

it follows that dim aff C ∩H ≥ p. Finally dim aff C ∩H = p. As H is a supporting hyperplane of

C, C ∩H is a p-face of C. Assume that there exists two different p-faces of C, F1 and F2 such that

v = πRd(F1 ∩ S(t)) = πRd(F2 ∩ S(t)) . (C.10)

Thus πRd((F1∪F2)∩S(t)) = v. As previously observed, this implies that dim aff F1∩F2 ≤ p. Yet,

dim aff F1 ∩ F2 > p, which is a contradiction. In conclusion, F1 = F2, meaning that the p-face

associated with v is unique.
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We then prove the second statement of the Lemma. Let F be a p-face ofC such that dim aff F∩
S(0) = p. So, if πRd (F ∩ S (t)) is non-empty, then it is a vertex of P (A,Bt).

{t ∈ T : F ∩ S (t) �= ∅} =

{
t ∈ T : ∃x ∈ Rd,

(
x

t

)
∈ F

}
= πRp (F ) ∩ T . (C.11)

In conclusion, a unique p-face of C is associated to each vertex of the parametric polytope

P (A,Bt). We are only interested in p-faces such that the dimension of their intersection with

S (0) is p, so that they correspond to vertices of the parametric polytope P (A,Bt). The number of

such p-faces of C is denoted by nF and their set is

{F1, . . . , FnF
} .

The vertex of P (A,Bt) associated with the j-th p-face of C is denoted by vFj
.

Definition C.10. Let J ⊆ {1, . . . , nF}.

TJ :=
{
t ∈ T : extrP (A,Bt) =

{
vFj

}
j∈J

}
.

Theorem C.2 (Polyhedral partition of T ). {TJ}J∈2{1,...,nF } is a polyhedral partition of the param-

eter polytope T .

Proof. Let J ∈ 2{1,...,nF }.

TJ = T ∩
(⋂
j∈J

πRp (Fj)
)
.

As the projection of a polyhedron is a polyhedron and an intersection of polyhedra is a polyhedron,

the set TJ is a polyhedron. Let J ∈ 2{1,...,nF } and K ∈ 2{1,...,nF } such that J �= K. Assume for the

sake of contradiction that intTJ ∩ intTK �= ∅ and take t ∈ intTJ ∩ intTK . It follows that

extrP (A,Bt) = {πRd(Fj ∩ S (t))}j∈J
= {πRd (Fk ∩ S (t))}k∈K ,

which leads to a contradiction, since πRd (Fj ∩ S (t)) = πRd (Fk ∩ S (t)) implies Fj = Fk, by

Lemma C.2, which states that the pre-image of each vertex is a unique p-face of the cone C. Sub-
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sequently, the sets TJ are all disjoint. It remains to show that every t ∈ T belongs to a polytope

TJ . This follows again from Lemma C.2.

Once a polyhedral partition T = �Ll=1Tl has been computed, a parametric representation of the

vertices of P (A,Bt) can be derived. More precisely, the PWA function (C.7) defining the vertices

of P (A,Bt) can be explicitly computed. For a partition polytope Tl, the set of parameterisation

matrices M
(l)
k does not change, since the vertices are obtained by projecting the same set of faces

of C. More precisely, the matrices M
(l)
k are derived by calculating the Chebychev center t

(l)
C of the

polytope Tl [24], and extracting d active constraints for each vertex of P
(
A,Bt

(l)
C

)
, which results

in a matrix M
(l)
k ∈ Rd×p after stacking the active constraints.

C.6.3 Computational geometry aspects

It has been shown that the parameter polytope T can be partitioned into a family of polytopes cor-

responding to a fixed parameterisation of the vertices of the parametric polytope P (A,Bt). The

salient ingredient for computing such a partition is the set of p-faces of the cone C in data-

parameter space such that the dimension of their intersection with S (0) is p. Subsequently, Algo-

rithm 13 is made of two main steps, enumerate all p-faces F of C such that dim aff F ∩ S (0) = p

and check whether TJ is empty for J ∈ 2{1,...,nF }. The efficiency of each step can be improved

further, as detailed below.

Algorithm 13 Partition generating algorithm

Input:
• Matrices A and B,

• Parameter polytope T in half-space representation.

Enumerate all p-faces of the polyhedral cone C such that dim aff F ∩ S (0) = p.

Check emptiness of polyhedra TJ for all J ∈ 2{1,...,nF }.

Output: Polyhedral partition T = �Ll=1Tl.

C.6.3.1 Enumerating p-faces of C

In order to compute all p-faces of the polyhedral cone C, all faces of C are first listed by applying

the algorithm proposed in [63]. In this framework, faces are represented by their associated equal-

ity sets (Theorem C.1), which corresponds to the maximum set of inequalities that are active at all

points in the face, as formalised by Definition C.9. The algorithm then consists in applying a back-

track search over the set of faces ofC. The underlying idea is to partition the set of faces intom dis-

joint sets of faces, wherem is the number of inequalities of the polyhedral cone C. Each of thesem
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sets is then built recursively. Once all faces ofC have been enumerated, the p-faces can be extracted

by checking all equality sets I in {1, . . . ,m} such that rank
[
AI BI

]
= (d + p) − p = d. Fur-

thermore, the p-faces F satisfying dim aff F ∩ S (0) = p can be extracted by checking whether

rankAI = d. The appropriate p-faces are then projected on the parameter space Rp by means of

a polytope projection algorithm such as the Equality Set Projection [96], and the resulting poly-

tope is intersected with the data polytope T , which is a trivial operation, since all polytopes are in

half-space representation.

C.6.3.2 Check emptiness of polyhedra TI

This step can be performed efficiently by checking whether the diameter of the inscribed ball is

below a pre-specified tolerance. This amounts to solving a linear program, which can be done effi-

ciently by means of interior point methods. In practice, we use the MPT 3.0 function isEmptySet

[80].

C.7 Rotation parameterisation

In this section, we address the parameterisation of the rotation R of the parametric polytope

P (A,Bt) in Rd. In the context of crystal shape estimation, the data space has dimension d = 3. The

problem very often appears in vision and robotics of finding an ‘optimal’ rotation, for instance the

pose of the camera accounting for observed image points, which is very similar to our problem. In

order to apply an optimisation procedure and obtain an estimate of the optimal rotation, it is rel-

evant to use a parameterisation of the group of three-dimensional rotations SO3(R). Yet not all

parameterisations are apt and several requirements should be met. According to [82] regarding

estimation problems in vision, one of the key requirements for a rotation parameterisation is fair-

ness, which basically means that the parameterisation should not bias the sensitivity results. This

property is guaranteed if a rigid transformation of the space results in an orthogonal transformation

of the space of parameters. Three rotation representations usually prevail: Euler angles, angle-axis

and quaternions [140]. According to [140], the Euler angles representation is not fair and is thus

numerically unstable, whereas the quaternions and angle-axis representations are fair parameteri-

sations. In this Chapter, we opt for the quaternion parameterisation.

Remark C.9. Comparisons with the angle-axis parameterisation seem to show better global con-

vergence of the nonlinear optimisation algorithm results for the quaternion representation, which

confirms the observation made by [140].

The quaternion parameterisation of rotations is achieved via a mapping of S3, the unit sphere
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in R4 into the special orthogonal group SO3(R):

R (q) =
(
r1 (q) r2 (q) r3 (q)

)
, (C.12)

where

r1 (q) =

⎛⎜⎝q
2
0 + q21 − q22 − q23

2 (q1q2 + q0q3)

2 (q1q3 − q0q2)

⎞⎟⎠ , r2 (q) =

⎛⎜⎝ 2 (q1q2 − q0q3)

q20 − q21 + q22 − q23

2 (q2q3 + q0q1)

⎞⎟⎠ ,

r3 (q) =

⎛⎜⎝ 2 (q1q3 + q0q2)

2 (q2q3 − q0q1)

q20 − q21 − q22 + q23

⎞⎟⎠ .

Yet using the mapping (C.12) implies having a unit norm constraint on the quaternion in the optimi-

sation problem. Instead we propose a slight refinement, assuming that the quaternion is non-zero,

and take the following parameterisation:

R (q) =
1

‖q‖22

(
r1 (q) r2 (q) r3 (q)

)
.

It can be verified thatR (q) is in SO3 (R) for all q �= 0. The quaternion can then be constrained to lie

in [−1, 1]. Finally, when applying the quaternion formulation, the re-projection error minimisation

turns into a box-constrained nonlinear least-squares of the form (C.6).

C.8 Application to crystal shape estimation

The algorithm described in Sections C.5, C.6 and C.7 has been tested on artificially generated im-

ages of crystals and real images recorded by the set-up depicted in Fig. C.1. This corresponds to

the particular case, in which there are N = 2 views and the data dimension is d = 3. Several types

of crystals have been considered such as Acetaminophen, Ascorbic acid, Ibuprofen, L-glutamic

acid α and L-glutamic acid β. The simpler case of a cube has also been studied. Thus the proposed

approach has been tested on simple and complex crystal shapes, demonstrating its efficiency.

C.8.1 Pre-processing: Extracting matching contours

The first step is a pre-processing of each of the two images in order to sample relevant data

points. This pre-processing follows three steps:
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1. Thresholding. Global thresholding is possible due to the even brightness distribution and

high image quality.

2. Contour extraction from the binary image by applying a border following algorithm [146]. This

is performed using the openCV function cv::findCountours.

3. Find pairs of matching blobs on the two images based on the coordinates of the centroids of

each blob.

The output contours of the pre-processing are depicted in blue in Fig. C.3. After normalizing, the

Figure C.3: Pair of images of two Ibuprofen crystal in water and extracted contours, as a blue lines.

pre-processing stage yields two sets of two-dimensional data points. From the ‘weak perspective’

hypothesis, it can be assumed that the data points are samples on the boundaries of the projections

of the parametric polytope P
(
AR̃�, Bt̃

)
. The projections can be taken as projections onto the

xy-plane and the xz-plane. We denote the obtained two sets of data points by D1 =
{
d
(1)
i

}M1−1

i=0

for the xy-projection and D2 =
{
d
(2)
i

}M2−1

i=0
for the xz-projection.

Remark C.10. An additional pre-processing is to be applied to both sets of data points in order

to remove outliers from the sets of data points D1 and D2. Are considered as outliers, data points,

which are unlikely to be the vertices of the projected polytope P (AR̃�, Bt̃). The pre-processing

stage consists in computing the vertices of the convex hull of the polygonal line produced by

the Douglas-Peucker algorithm [53] applied to D1 and D2. The resulting vertices are the points

w
(i)
k in the definition of the re-projection error (C.3). In Fig. C.4, it appears that the resulting poly-

gon visually matches the data points quite well. In practice, the polygonal simplification procedure

provides visually good approximations, yet no guarantees can be made that the vertices of the con-

vex hull of the polygonal line produced by the Douglas-Peucker algorithm correspond to vertices

of the projections of the rotated parametric polytopes. Several aspects of polygonal approximation

algorithms are addressed in [75].
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Figure C.4: Output of the Douglas-Peucker applied to a pair of images of Ibuprofen. The points

extracted from the images appear as black dots. The black squares correspond to the vertices of

the polygonal line produced by the Douglas-Peucker algorithm. The convex polygon corresponds

to the convex hull of the output points of the Douglas-Peucker procedure.

C.8.2 Numerical results

The first step of our method is to compute a polyhedral partition of the parameter polytope, which

can be done offline for each family of crystals. The polyhedral computations are performed using

the toolbox MPT 3.0 [80]. Pictures of some polyhedral partitions obtained by applying the proposed

algorithm to different crystal models are shown in Fig. C.5. Some partition polytopes along with

the associated parametric polytopes are plotted in Fig. C.6. It clearly appear that from one critical

region to its neighbour the shape of the parametric polytope is very different. For each of the five

Figure C.5: Polyhedral partitions obtained for Acetaminophen, L-glutamic acid β and Ascorbic

acid.

crystal families, data sets of 200 artificial and real images have been generated and the algorithm

run on each of them. Examples of obtained fits are shown in Fig. C.7. As explained in the first part

of the Chapter, the estimated shape parameter t̂ is multiplied with a scaling constant s yielding the

size of the reconstructed polytope in μm.

For artificially generated images, the shape parameters are known, therefore the estimation

error εt can be evaluated by computing the 2-norm of the difference. Statistics for artificially gen-
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Partition polytope Tl Polytope P (A,BtlC)

Figure C.6: Examples of partition polytopes for Acetaminophen and associated parametric poly-

topes. The shape parameter tlC is taken as the Chebychev center of the partition polytope for the

grey polytopes, and a random vector around the Chebychev center for the transparent ones.

erated images are shown in Fig. C.8. It appears that in most cases the algorithm provides a very

accurate estimate of the shape parameter, since the estimation error is generally very low (less than

1%). Low estimation errors are coupled with low re-projection errors, showing that the proposed

nonlinear least-squares program is efficient for estimating the crystal shape parameter. On the con-

trary, on real crystal images, the quality of fit can only be compared in terms of the re-projection

error, since the true shapes of crystals in suspension cannot be accurately evaluated in another way,

the real shape parameters t̃ are unknown. Statistics in Fig. C.9 show low re-projection errors (less

than 5% in the case of Acetaminophen, Ibuprofen and L-glutamic acid β), yet higher than for gen-

erated images. This can be explained by the fact that real data contains a lot of outliers. Thus the

algorithm has difficulties extracting relevant data vertices and the contour fitting approach does not

perform as good as in the case of generated images. Yet visually good fits are obtained, as shown

in Fig. C.7.

C.8.3 Computational aspects of the shape parameter estimation procedure

The crystal reconstruction procedure has been implemented in MATLAB using the toolbox MPT

3.0 ([80]) for polyhedral operations and an IPOPT MEX interface built on the parallel linear solver
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Figure C.7: Fitting of different organic crystals. (a) Photographs with extracted contours (white)

and fitted projections (dashed, red). (b) Reconstructed 3D polytope. (c) calculated scaling vector

t̂. The scalar s is a multiplying constant. (d) re-projection error.
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Figure C.9: Statistics for the re-projection error εΠ for all photographed particles.

two procedures are both applied in an in-situ context, where a set of 2D views is available along

with a crystal model.

First, the M-SHARC algorithm is based on finding correspondences between data and model

primitives, which are made of linear features. Extracting linear features and finding correspon-

dences between data and model can be costly in practice. It clearly appears in Table 2 of [107]

that this step is actually the most costly part of the whole algorithm. On the contrary, our approach

avoids the correspondence finding step by an appropriate choice of the re-projection error. More-

over, the M-SHARC algorithm relies on some assumptions on the crystal orientation, which is likely

to hamper the accuracy of the method. In our approach, the orientation is estimated along with the

shape parameter. Yet, our approach is still slower than the M-SHARC algorithm due to the costly

optimisation step, in which a low objective needs to be found in order to ensure an accurate shape

estimate.

The procedure proposed by [124] is applicable to any 3D convex body. Yet the shape model is

quite restrictive, as only five types of objects are considered and the shape is modelled by two pa-

rameters, the length and elongation. Our approach is specifically targeted at any polytopic convex

body, which seems to be more adapted to the crystal shape estimation problem.
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