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COCYCLE GROWTH FOR THE STEINBERG REPRESENTATION

Thibaut Dumont

Abstract. — This thesis investigates the growth of the natural cocycle introduced by Klingler
for the Steinberg representation. When possible, we extend the framework of simple algebraic
groups over a local field to arbitrary Euclidean buildings. In rank one, the growth of the cocycle
is determined to be sublinear. In higher rank, the complexity of the problem leads us to study the

geometry of Ã2 buildings, where we describe in detail the relative position of three points.

Key words and phrases. — Group theory, cohomology, continuous cohomology, building, Stein-
berg representation.

Résumé. — Cette thèse étudie la croissance du cocycle naturel pour le module de Steinberg.
Nous étendons les travaux de Klingler dans le cas des groups algébriques simples sur un corps local
aux immeubles euclidiens lorsque cela est possible. En rang un, la croissance du cocycle de Klingler
est sous-linéaire. En rang supérieur la complexité de la question nous entraine dans l’étude de la

géométrie des immeubles Ã2, où nous décrivons en détail la position relative de trois points.

Mots clefs. — Théorie des groupes, cohomologie, cohomologie continue, immeuble, representa-
tion de Steinberg.
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INTRODUCTION

The study of cocycle growth for isometric linear representations is a fine cohomological tool.

Bounded cohomology is a good example of a fundamental cohomology theory with a growth con-

dition, see [Mon06] for instance. The growth of 1-cocycles for unitary representations of locally

compact groups relates to renowned properties such as Kazhdan’s Property (T) or Haagerup Prop-

erty, see [BHV08] and [CTV07].

The present work investigates the growth of a particular cocycle in the following setting. Let

G be a compactly generated locally compact group with an associated word length distance dS ,

where S is a compact generating set, and let V be an isometric linear representation of G in a

complex Banach space (V, ‖ · ‖). Studying the growth of a G-equivariant n-cocycle c : Gn+1 → V

amounts to look for possible bounds of

‖c(g0, . . . , gn)‖

as (g0, . . . , gn) vary in a subset of Gn+1, and, preferably, depending on the distances between the

variables g0, . . . , gn ∈ G. In particular, bounded cohomology treats with cocycles bounded uni-

formly on the whole Gn+1. In [CTV07], the authors look at 1-cocycles of unitary representations

that are unbounded, but having some upper bound depending on dS(g0, g1), allowing the bound

to only take place outside a compact subset of G2.

The main motivation for the present research is a problem posed by Monod. In [MS04], he and

Shalom performed a procedure, called ‘quasification’, of an unbounded 1-cocycle, yielding a new

bounded cohomology class,called the median class for groups acting on a tree. The median class

has a natural generalization for various groups acting on CAT(0) cube complexes, see [CFI12].

In [Mon06, Problem P] Monod asks if a similar quasification could be applied to the cocycles

defined by Klingler in [Kli03]. The first natural step toward an answer is to determine their

growth, which is the central objectif of this thesis.

Klingler’s cocycle and the Steinberg representation

Let G be the group of F -points of a connected, simply connected, almost F -simple algebraic

group over a local field F of characteristic zero. It is a compactly generated totally disconnected

locally compact group, which possesses an interesting pre-unitary admissible representation called

the Steinberg representation St. Klingler built in [Kli03] a natural cocycle volG : Gn+1 → St for
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this G-module generating the continuous cohomology in degree n equal the F -rank of G, i.e.

Hn
c (G,St) = C · [volG].

The aim of our research is to determine the growth of volG. In rank n = 1, we obtain the following

result, (Theorem 4.2.4 and Corollary 4.2.5).

Theorem. — Let G be SL2(F ) and dS be a word metric on G. There exists a constant C > 0,

depending only on the cardinality of the residue field(1) of F , such that

‖ volG(g0, g1)‖St ≤ C ·
√

dS(g0, g1),

for all g0, g1 ∈ G.

In [GJ15], Gournay and Jolissaint independently obtained a finer and more general estimate,

which proves our bound to be asymptotically sharp. Nevertheless, we hope that our proof shed light

on the combinatorics of Klingler’s cocycle. In higher rank, the difficulty is significantly increased.

The definition of the Klingler’s cocycle volG, as well as the Steinberg representation of G, are

closely related to the Bruhat-Tits building of G. The latter is a locally finite irreducible Euclidean

building X on which G acts by type preserving automorphism. It can be endowed with a proper

CAT(0) metric d for which G acts by isometries. In the preliminary Chapter 1, we recall that the

geometries of (X, d) and (G, dS) are roughly identical, (Proposition 1.1.8), and moreover that the

cohomology of G can be fully understood from that of X by considering G-equivariant cocycles

on X. In turn, the Bruhat-Tits building X is sufficient to study the cohomology of G and the

growth of its cocycles, (Theorem 1.3.9). The second chapter explains the construction of volG,

but also how the Steinberg representation St is related to X. Briefly, Klingler [Kli04] defined

an explicit isomorphism, called the Poisson transform, between St and a subspace of the square

summable functions on the set of chambers of X, (Theorem 2.3.5). The scalar product of the latter

opens the way to estimate the norm of Klingler’s cocycle volG. Again, morally, everything takes

place in the Bruhat-Tits building X of G.

This lead us to formulate the question in the general framework of a locally finite irreducible

Euclidean building. This is the content of Chapter 3, where we detailed the case of an Ã2 building,

and of Section 2.2, where Klingler’s cocycle is described. (Both can be easily adapted to regular

buildings of type Ã1, i.e. regular trees, as done in Chapter 4.) In this setting, the 2-cocycle of

Klingler and its Poisson transform are as follows. Let X be a locally finite Euclidean building

of type Ã2 and denote ∂X the spherical building attached at infinity. To every triple (x, y, z) of

vertices of X, we associate a real function volX(x, y, z) on the set Ω := Ch(X) of chamber of ∂X.

Given a chamber ξ at infinity of an Euclidean apartment A, the volume volX(x, y, z)(ξ) is defined

by taking the oriented volume of the triangle formed by the images of x, y, z under the canonical

retraction ρ(A,ξ) onto A centered about ξ. One can think of it as a pull-back of the volume form

of A to the entire building X.

As for the Poisson transform, we follow Klingler [Kli04], and define a signed measure νC
attached to each chamber C of X, (Definition 3.4.8). The Poisson transform of volX(x, y, z) is

simply the function that integrate the latter against the measures νC , i.e.

PvolX(x, y, z)(C) =

ˆ
Ω

volX(x, y, z)dνC .

(1)provided it is at least 4,
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Hence, determining the growth of Klingler’s cocycle is equivalent to estimating

‖PvolX(x, y, z)‖2�2(Ch(X)) =
∑

C∈Ch(X)

(ˆ
Ω

volX(x, y, z)dνC

)2

in terms of the distances between the vertices x, y, z and their relative configuration in the building.

In particular, one needs to estimate the value of the Poisson transform of volX(x, y, z) at each given

chamber. The key ingredients are sector spheres Sm,n(x) and the graph theoretic metric d1 of the

1-skeleton of X, both introduced in [CMS94]. In X, any two vertices sits in a common apartment

where they determine a well defined parallelogram (Figure 1, page 37), which consists of their

convex hull for the metric d1. The shape of the former determines two non-negative integers m,n

encoding the relative position of the two vertices in X. The set of vertices in this particular position

relatively to a vertex x defines the sector sphere Sm,n(x) about x. The set Ω of chambers at infinity

can be describe as the projective limit of the latter spheres, for (m,n) varying in N2,

Ω = lim←−Sm,n(x),

which defines a natural compact topology on Ω (Sections 3.1 and 3.2), and a Borel probability

measure νx, called the visual measure with respect to x, (Section 3.4). The topology is indepen-

dent of the base point x but the visual measures do. Any two such νx, νy are always absolutely

continuous and have an explicit Radon-Nikodym derivative dνx

dνy
, (Proposition 3.4.3). A variation

of these measures is used to define νC . Our next result is an averaging formula over a large sector

sphere computing the exact value of volX(x, y, z)(C), (Theorem 3.4.10). It relies on horospherical

coordinates m(x, y, ξ), n(x, y, ξ) describing the shift of the two sectors Sectx(ξ), Secty(ξ) issuing

at x, y respectively and pointing toward ξ, (Lemma 3.2.3). They can be computed by consider-

ing the two parallelograms determined by the pairs (x, u) and (y, u) where u is any vertex of the

intersection of the two aforementioned sectors, (Lemma 3.2.7).

Theorem. — Let x = (x, y, z) ∈ X3 be a triple of vertices, C ∈ Ch(X), and let xC be vertex of

C of type 0. Then for every natural number R ∈ N, satisfying

R ≥ max{d1(x, y), d1(x, z), 2d1(x, xC)},
we have

PvolX(x)(C) = Cvol ·N−1
R,R ·

∑
u∈SR,R(x)

det

(
m(x, y, u) m(x, z, u)

n(x, y, u) n(x, z, u)

)
· dνC
dνxC

(u) · dνxC

dνx
(u),

where NR,R is the cardinal of the sphere SR,R(x) and Cvol is the constant of Proposition 3.3.3.

The contribution of each term in the above sum is not clear and is the motivation for Chapter 5.

Looking at the summand, it seems sufficient to determine how many u ∈ SR,R(x) are in a given

position relatively to the four vertices x, y, z, xC . But already understanding the relative position of

three vertices in an Ã2 building is not easy. Ramagge-Robertson-Steger and Lafforgue obtained a

description of the convex hull of three points in an Ã2 building in the articles [RRS98] and [Laf00].

In simple terms, either the three parallelograms determined by the pairs of vertices have a common

horizontal segment, or there is an equilateral triangle in the 1-skeleton connecting the three convex

hulls. In Section 5.2, we give a new proof using the graph theoretic distance of the 1-skeleton,

providing unicity of the triangle, (Theorem 5.2.8).





CHAPTER 1

PRELIMINARIES

1.1. Geometry of locally compact groups

This section is a summary of facts, well known to experts, on locally compact groups and their

geometry. The second half of the twentieth century witnessed the success of Gromov’s theory

which considered infinite groups as metric spaces. The study of their geometry and their large

scale properties yields interesting characterizations of algebraic properties. Such an approach is

part of our field of research: geometric group theory. We recall various properties of locally compact

groups following notably the book of Cornulier and la Harpe [CH15].

Convention 1.1.1. — We adopt the French convention and say that a topological space X is

compact if it is Hausdorff and if any covering of X by open sets admits a finite subcover. Through-

out this thesis topological groups are assumed Hausdorff. Consequently a locally compact group is

by definition a Hausdorff topological group in which every point has a neighborhood basis consist-

ing of compact subsets. The identity element of a multiplicative group is written 1G, but we shall

often drop the subscript G.

1.1.1. Metric on groups. — Under mild assumptions a topological group turns out to be

metrizable i.e. it admits a metric inducing the same topology, such a metric is called compatible.

However a locally compact group G may admit many metrics that are not necessarily continuous

as functions G×G → R+, but still important from the point of view of coarse geometry.

Theorem 1.1.2 (Birkhoff-Kakutani). — [CH15, Theorem 2.B.2] A topological group G is

metrizable if and only if it is first countable i.e. each point has a countable neighborhood basis.

In this case, there exists a compatible metric d on G that is left-invariant:

d(gx, gy) = d(x, y),

for all x, y, g ∈ G.

In the present thesis we are concerned with word metrics on compactly generated locally compact

groups. We warn the reader that word metrics need not be compatible.

Definition 1.1.3. — Let S be a generating subset of a group G, i.e.

G =
⋃
n∈N

(S ∪ S−1)n.
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• The word metric dS associated to S is defined as follows. For every x, y ∈ G, let dS(x, y) be

the minimal length of a word (s1, . . . , sn) with letters in S∪S−1 such that x−1y = s1s2 . . . sn.

• The length function �S associated to S is defined by �S(g) = dS(1G, g) for all g ∈ G, so that

dS(x, y) = �S(x
−1y) and therefore dS is left invariant.

• We say that a topological group G is compactly generated if there exists a compact subset

S generating G. The exhaustion of G by the compact subsets (S ∪ S−1)n shows G to be

σ-compact.

Examples 1.1.4. — Let F be a non-discrete locally compact field(1), i.e. the real numbers R,

the p-adic numbers Qp, the formal Laurent series Fp((t)), or a finite extension of these.

• Among these fields the Archimedean ones, R and C, are compactly generated as additive

groups whereas the non-Archimedean ones are not. Interestingly the compact subset S =

[0, 1] generates (R,+) but the distance dS is not continuous with respect to the standard

topology of R, i.e. not compatible. Indeed d[0,1](0, 1+ε) = 2 for all ε > 0 but d[0,1](0, 1) = 1,

[CH15, §1.D].

• The matrix groups GLn(F ) and SLn(F ) with the subspace topology of Mn(F ) ∼= Fn×n are

second countable, locally compact, and compactly generated. More generally, so is the group

of F -points of a reductive algebraic group defined over F , see [CH15, Theorem 5.A.12].

Different compact generating sets may certainly yield non-isometric distances on G, but they

are equivalent from a coarse point of view. Here are some ways to coarsely distinguish metric

spaces.

Definition 1.1.5. — Let f : X → Y be a map between metric spaces. We say that

• f is Lipschitz if there exists a constant C > 0 such that

dY (f(x), f(x
′)) ≤ C · dX(x, x′),

for all x, x′ ∈ X.

• f is bilipschitz if there exist constants C, c > 0 such that

c · dX(x, x′) ≤ dY (f(x), f(x
′)) ≤ C · dX(x, x′),

for all x, x′ ∈ X.

• f is a bilipschitz equivalence if f is bilipschitz and surjective. In this case, any set theoretic

section of f is also bilipschitz and X,Y are said to be bilipschitz equivalent.

• f is a quasi-isometry if there exist constants C, c > 0 and C ′, c′ ≥ 0 such that

c · dX(x, x′)− c′ ≤ dY (f(x), f(x
′)) ≤ C · dX(x, x′) + C ′,

for all x, x′ ∈ X, and there is R > 0 such that the R-neighborhood of f(X) covers Y . In

other words, any point of Y is at a uniform bounded distance from f(X).

• X and Y are quasi-isometric if there exist quasi-isometries f : X → Y and g : Y → X.

It is clear that bilipschitz equivalent metric spaces are quasi-isometric. A classical result of

geometric group theory says that all word metrics on a compactly generated locally compact group

are bilipschitz equivalent.

(1)We consider only commutative fields.
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Proposition 1.1.6. — [CH15, Proposition 4.B.4] Let G be a compactly generated locally compact

group with two compact generating sets S, S′. Then the identity map (G, dS) → (G, dS′) is a

bilipschitz equivalence.

Convention 1.1.7 (Local field). — In this thesis, we consider only fields of characteristic zero.

Therefore, by a local field we mean a locally compact non-Archimedean field of characteristic zero,

i.e. a finite extension of the field of p-adic numbers Qp.

The central objects of this thesis are groups like SLn(F ) of example 1.1.4 called groups of F -

points of a connected simply-connected almost F -simple algebraic group over a local field F . If G is

such a group, we always consider the topology on G induced by that of F . An important feature

of these groups is the existence of an associated metric space (X, d) called the Bruhat-Tits building

on which G acts by isometries. We postpone rigorous descriptions of these objects to Section 1.2

as this is sufficient for now. The Bruhat-Tits building of G is the non-Archimedean equivalent of

the symmetric space of a Lie group and as a general philosophy (X, d) mimics G in many ways.

One relevant fact to this preliminary chapter is that (X, d) and (G, dS) are quasi-isometric, S

being any compact generating set of G. This can be formulated as follows. For x0 ∈ X, define the

left-invariant map dx0 : G×G → R+ by

dx0(g, h) := d(gx0, hx0).

The stabilizer of x0 is generally non-trivial, hence we may have dx0(g, h) = 0 even if g 
= h.

Nevertheless dx0 satisfies all other axioms of a metric and is what we call a pseudo-metric. Note

that most of the above discussion and Definitions 1.1.5 make sense for pseudo-metrics. This is

in fact the point of view of [CH15]. The following proposition covers the main example of the

present thesis.

Proposition 1.1.8. — [Abe04, Theorem 6.6] Let G be the group of F -points of a reductive group

over a local field F . The identity map (G, dS) → (G, dx0) is a quasi-isometry for any compact

generating set S and any x0 ∈ X.

In this setting, let f be a non-negative real valued function on the n-fold product Gn. Suppose

that f satisfies the following hypothesis: there exists a real polynomial p in variables xij , for

1 ≤ i, j ≤ n, such that

f(g1, . . . , gn) ≤ p(dx0(gi, gj)),

for all g1, . . . , gn ∈ G. The minimal degree of a polynomial for which the above holds is well defined

and Proposition 1.1.8 shows that it does not depend on x0. By quasi-isometry, dx0 may even be

replaced by dS for any compact generating set of G without changing that degree. We will be

more precise later but this describes one way to control the asymptotic behavior of f(g1, . . . , gn)

as ‘d(gi, gj) tend to infinity’, which in turn does not depend on the metric considered. In practice

f is going to be the norm of a cocycle c : Gn → V , valued in a normed vector space V :

f(g1, . . . , gn) = ‖c(g1, . . . , gn)‖.

1.1.2. Totally disconnected locally compact groups. — The topological groups under con-

sideration in this thesis are totally disconnected locally compact groups.

Definition 1.1.9. — A locally compact group is totally disconnected if its connected components

are singletons. We write t.d.l.c. to abbreviate totally disconnected locally compact.



8 CHAPTER 1. PRELIMINARIES

The following is a celebrated theorem of Van Dantzig on the topology of t.d.l.c. groups.

Theorem 1.1.10 (van Dantzig). — [CH15, Theorem 2.E.6] Let G be a t.d.l.c. group, then the

set B(G) of all compact open subgroups of G form a neighborhood basis of the identity 1G.

The group GLn(F ) and its closed subgroups with the F -topology, i.e. the subspace topology of

Mn(F ) ∼= Fn×n, are σ-compact, second countable, totally disconnected locally compact groups.

In particular the group of F -points of the algebraic groups considered in the present thesis have

those properties, see [CH15, Example 2.C.12].

1.2. Buildings and groups

This section introduces the main notion of this thesis namely buildings. First we briefly recall

the various equivalent definitions of simplicial buildings and how to obtain one from the BN-pair

of a group. Then we discuss group theoretic consequences of the existence of a BN-pair as well

as actions of groups on buildings, e.g. strongly transitive actions. We also present the important

example of the Bruhat-Tits building associated to an algebraic group over a local field mentioned

in the previous section. Such groups have two important related BN-pairs yielding a spherical

building and a Euclidean one. The second part of the section covers the geometric realization

of the latter as a CAT(0) space which is a property of non-positive curvature of a metric space.

Finally we discuss some important consequences of the relation between the two buildings.

1.2.1. Simplicial buildings and Tits systems. — The theory of buildings was introduced

by Tits in the middle of the twentieth century and saw a rapid development lead by Tits him-

self [Tit74]. Buildings first appeared in a group theoretic context, for example with the theory of

semi-simple Lie groups, where they appear as a consequence of two subgroups sharing interesting

axioms and forming what is called a Tits system or a BN-pair. From there mathematicians ex-

tracted some axioms which a simplicial complex must satisfy in order to be called a building. A

simple example is the tree associated to SL2(Qp) which has the particularity to be (p+1)-regular,

see Serre’s book [Ser77]. But intuitively, when studying the geometry of regular trees, the fact

that the valency is a prime number does not matter, and in general any locally finite tree with no

leaf(2) is a building. Later building theory found even more general formulations, such as R-trees,

that we do not discuss.

Convention 1.2.1. — In this thesis we consider only locally finite, thick, irreducible buildings.

Classically a simplicial complex over a set of vertices V is a non-empty collection Δ of finite

subsets of V , called simplices, satisfying:

• every singleton {v} is a simplex, i.e. {v} ∈ Δ, and

• every subset of a simplex is also a simplex.

The cardinal(3) r ∈ N of a simplex A is called the rank of A, and r − 1 is called the dimension

of A. If A � B are simplices, the positive difference of their dimensions is called the codimension

of A in B. Finally a simplex of dimension n is called an n-simplex and the set of n-simplices of Δ

is denoted Δ(n).

(2)A leaf is a vertex of valency one, i.e. with only one neighbor.
(3)The empty set is considered to be a simplex of rank 0 and dimension −1.
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With respect to inclusion, a simplicial complex is a poset with the emptyset ∅ as a unique

minimal element. The poset structure encodes the simplicial one, and a simplicial complex may

equivalently be defined as follows, see [AB08, Appendix A.1.1]. We follow the chapters 3, 4, 5 and

the appendix A of loc. cit. for this section.

Definition 1.2.2 (Simplicial complex). — A nonempty poset (Δ,≤) is called a simplicial com-

plex if it satisfies:

• Any pair A,B ∈ Δ have a greatest lower bound.

• For every A ∈ Δ, the poset Δ≤A of elements ≤ A is isomorphic to the poset of subsets of

{1, . . . , r} for some r ∈ N.

The unique integer r associated to each A ∈ Δ by the second condition plays the role of the rank

and the terminology is easily adapted.

This definition is advantageous when defining the Coxeter complex of a Coxeter group or the

building associated to a BN-pair. For all notions surrounding Coxeter groups we refer to Bourbaki

[Bou68, GAL, Chapter IV] or to Abramenko-Brown’s book [AB08, Chapter 2].

Example 1.2.3. — Let (W,S) be a Coxeter system, i.e. S = {si | i ∈ I} is a finite generating set

of a group W admitting a presentation of the form

W = 〈S | (sisj)m(i,j) = 1, for all i, j ∈ I〉,
where m(i, j) ∈ N ∪ {∞} satisfy m(i, i) = 1 and m(i, j) ≥ 2 for all i 
= j. For every subset J ⊂ I,

the subgroup WJ generated by SJ = {si | i ∈ J} is called standard subgroup of W and its (left)

cosets are called standard cosets. The set Σ(W,S) of all standard cosets with the reverse inclusion

is a simplicial complex in the sense of the above definition, called the Coxeter complex of (W,S),

[AB08, Theorem 3.5]. Writing ≤ for the reverse inclusion, one has

wWJ ≤ w′WJ′ ⇐⇒ w′WJ ′ ⊂ wWJ ⇐⇒ J ′ ⊂ J and w′WJ ′ = wWJ ′ .

The unique standard coset of WI = W is the minimal element in this case. The Coxeter group

W acts on Σ(W,S) by poset automorphisms, thus preserving ranks. The stabilizer of a standard

coset wWJ for this action is the conjugate wWJw
−1, hence, morally, a simplex of small rank has

a large stabilizer and vice-versa. Interestingly the maximal simplices, i.e. cosets of the trivial

subgroup, are identified with the elements of the group and, therefore, they all have rank equal

to card(I) = card(S). Moreover, W acts simply transitively on the set of maximal simplices. The

poset Σ(W,S)≤A with A = {1G}, consists of the set of standard subgroups and is isomorphic to

the poset of subsets of I (or S) for the reverse inclusion.

In Example 1.2.3 the maximal simplices have the same dimension. In a finite dimensional

simplicial complex Δ with this property, the maximal simplices are called chambers and we denote

Ch(Δ) the set of chambers. Two chambers are called adjacent if they share a codimension 1 face.

This defines a graph structure on Ch(Δ), called the chamber graph of Δ. We endow it with the

graph theoretic distance denoted d. In the latter, a finite path is called a gallery and a gallery is

minimal if its length minimizes the distance between its extremities.

Definition 1.2.4 (Chamber complex). — [AB08, Appendix A.1.3] A finite dimensional sim-

plicial complex is called a chamber complex if all its maximal simplices have the same dimension

and if it is gallery connected, that is if the gallery graph is connected. In other words, any pair of

chambers can be joined by a finite sequence of successively adjacent chambers.
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The chamber graph of the Coxeter complex Σ(W,S) coincides with the well-known Cayley graph

of W with respect to the generating set S. For the definitions of simplicial subcomplex, chamber

subcomplex, simplicial map and chamber map, we refer to [AB08, Appendix A].

Definition 1.2.5. — Let Δ be a chamber complex. A simplex is called a panel if it is a codimen-

sion 1 face of a chamber. The chamber complex Δ is thin, if every panel is contained in exactly

two chambers, and Δ is called thick if every panel has at least three chambers containing it.

Some authors allow non-thick chamber complex in the definition of a building, so that Coxeter

complexes are exactly the thin buildings. We do not follow this convention, the buildings in this

thesis are assumed thick.

Definition 1.2.6 (Simplicial building). — A thick chamber complex Δ is called a building if

there is a family A of chamber subcomplexes of Δ, the elements of which are called apartments,

satisfying the following:

(B0) Every apartment is a Coxeter complex.

(B1) Any two simplices A,B ∈ Δ are contained in a common apartment.

(B2) For every pair Σ,Σ′ ∈ A of apartments both containing simplices A and B, there is an

isomorphism Σ → Σ′ fixing A and B pointwise, i.e. fixing all simplices of Δ≤A and Δ≤B .

The axiom (B2) can be replaced by either axioms (B2′) or (B2′′), [AB08, Chapter 4, §1]:
(B2′) For every pair Σ,Σ′ ∈ A of apartments both containing simplices A and C, with C a chamber

of Σ, there is an isomorphism Σ → Σ′ fixing A and C pointwise.

(B2′′) For every pair Σ,Σ′ ∈ A of apartments both containing a simplex C that is a chamber of Σ,

there is an isomorphism Σ → Σ′ fixing pointwise every simplex in Σ ∩ Σ′.

Any collection of subcomplexes satisfying the above axioms is called a system of apartments

of Δ. There is always a unique maximal system of apartments, called the complete system of

apartments. Consequently, (B0) implies that a building has unique Coxeter system (W,S) asso-

ciated to it, [AB08, Corollary 4.36], so that the maximal system of apartments consists of all

chamber subcomplexes of Δ isomorphic to Σ(W,S). Except if stated otherwise, we shall always

work with the complete system of apartments.

Another consequence is the existence (and uniqueness) of a canonical retraction ρC,Σ associated

to a chamber C and an apartment Σ ∈ A containing it. For a chamber D, let Σ′ be an apartment

containing C and D given by (B1). The isomorphism of (B2′′) turns out to be unique. We

define ρC,Σ(D) to be the image under the unique isomorphism Σ′ → Σ fixing pointwise Σ ∩ Σ′, in
particular fixing C pointwise.

Definition 1.2.7 (Canonical retraction). — The map ρC,Σ : Δ → Σ defined above is called

the canonical retraction onto Σ centered at C. It is the unique chamber map Δ → Σ sending every

apartment containing C isomorphically onto Σ by fixing its intersection with Σ.

The edges of a Cayley graph are usually labeled by the elements of the generating set. A similar

coloring can be done in a building by means of a type function, and, as a result, the underlying

simplicial structure is entirely determined by the coloring of the edges of the chamber graph. This

is a general fact for colorable chamber complexes, see Proposition A.20 in [AB08, Appendix A].

Definition 1.2.8 (Type function). — Let Δ be chamber complex of rank n and I be a finite

set with n elements. The chamber complex Δ is called colorable if it admits a type function
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τ : Δ → ΔI , that is a chamber map into the poset ΔI of all subsets of I (ordered by inclusion).

For a simplex A ∈ Δ, we say that τ(A) is the type of A and that I � τ(A) is its cotype.

In other words, τ assigns to each simplex of Δ a subset of I, and is a simplicial map sending

chambers of Δ to the unique chamber of ΔI , namely I itself. A type function is determined by

its value on the vertices of Δ and the type of a simplex is the union of the types of its vertices. A

colorable chamber complex has a unique type function up to a bijection of the set of colors [AB08,

Proposition A.14].

Proposition 1.2.9. — [AB08, Proposition 4.6] A building is colorable, moreover the isomor-

phism of axiom (B2) is type preserving.

The cotype of a panel F , a codimension 1 face of a chamber C, is in this case the type of the

unique vertex v of C not in F . In other words, we can label the edges of the chamber graph using

the cotypes of panels, similarly to Cayley graphs.

Definition 1.2.10 (i-adjacency and J-residue). — Let Δ be endowed with a type function

τ : Δ(0) → I. Two adjacent chambers C,C ′ are called i-adjacent if their common panel is of

cotype i ∈ I and we write C ∼i C
′. The edges of the chamber graph are therefore labeled(4) by

the type set I. For J ⊂ I, two chambers are called J-equivalent if there is a path in the chamber

graph using only colors of J . Such path is called a J-gallery . The J-equivalence classes are called

J-residues.

In general, this data is called a chamber system. It turns out that the chamber system determines

the entire simplicial structure of the building. See [AB08, Corollary 4.11] and [AB08, Proposition

A.20] for the following proposition.

Proposition 1.2.11. — Δ is completely determined by its underlying chamber system. More

precisely:

• For a simplex A ∈ Δ, the set Ch(Δ)≥A of chambers having A as a face is a J-residue, where

J is the cotype of A.

• Every J-residue has the form Ch(Δ)≥A for some simplex A.

• For any simplex A, we can recover A from Ch(Δ)≥A via

A =
⋂

C≥A

C

• The poset Δ is isomorphic to the set of residues in the chamber graph, ordered by reverse

inclusion.

A vertex in a building is recovered by knowing the chambers that contain it. Say a vertex x is

of type i and that C is a chamber containing x. The vertex x is surrounded by all chambers that

can be attained from C using a J-gallery where J = I � {i}.

Definition 1.2.12 (Link). — Let Δ be a building. The link of a vertex x, denote lk(x), is by

definition the set of chambers containing x.

(4)We shall use ‘colored’ and ‘labeled’ as synonyms.
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The link is often defined using the set of simplices that can be joined to x but not containing it.

The two definitions yield isomorphic chamber complexes. The link of a vertex x is easily shown to

be a building in its own right.

There is another characterization of buildings using W-metrics, proved in [AB08, Corollary

5.39]. The idea is that two chambers in a building are contained in various apartments. In each

of these isomorphic Coxeter complexes, their relative position is a well defined group element

w ∈ W . In an apartment, two chambers C,C ′ are typically connected by a minimal gallery

Γ : C0 = C, . . . , Cl = C ′, such that Cj ∼ij Cj+1 where i1, . . . , il ∈ I are the types of the gallery.

Then the group element w = si1 . . . sil is independent of the choice of gallery connecting C and C ′

and represents that relative position in the Coxeter complex.

Definition 1.2.13. — The element w ∈ W defined above is denoted δ(C,C ′) and defines the

W-metric or Weyl distance δ : Ch(Δ)× Ch(Δ) → W.

Proposition 1.2.14. — Let (W,S) be the Coxeter system associated to a building Δ and � be the

word length function of (W,S). The W-metric δ satisfies, for all C,D ∈ Ch(Δ), the following

conditions:

(W1) δ(C,D) = 1W if and only if C = D.

(W2) If δ(C,D) = w and C ′ ∈ Ch(Δ) satisfies δ(C ′, C) = s, then δ(C ′, D) = sw or w. If, in

addition, �(sw) = �(w) + 1, then δ(C ′, D) = sw.

(W3) If δ(C,D) = w, then for any s ∈ S there is a chamber C ′ ∈ Ch(Δ) such that δ(C ′, C) = s

and δ(C ′, D) = sw.

The historical source of buildings comes from Tits systems of classical groups, where a building

is associated to a group with two distinguished subgroups B and N . The discussion below follows

closely Chapter 6 of [AB08], the first section of [Gar73] and Bourbaki [Bou68, GAL].

Definition 1.2.15 (Tits system). — Let G be a group and B,N be two subgroups of G. We

say that (B,N) form a BN-pair if, together, they generate G, their intersection T := B ∩ N is a

normal subgroup of N , and the quotient W := N/T admits a finite generating set S satisfying:

(BN1) For s ∈ S and w ∈ W ,

sBw ⊂ BswBwB.

(BN2) For s ∈ S

sBs−1 � B.

By abuse, we may speak of the Tits system (G,B,N, S). In any case, W is called the Weyl group

of the BN-pair.

The generating set S is uniquely determined by the BN-pair. Expressions of the form BwB

with w ∈ W are a well defined B double cosets and G has a Bruhat decomposition

G =
⊔

w∈W

BwB.

Furthermore (W,S) is a Coxeter system and, as in Example 1.2.3, we write S = {si | i ∈ I} for

some index set I. For every J ⊂ I, the union of double cosets BWJB form a subgroup, denoted

PJ , generated by
⊔

i∈J BsiB.
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Definition 1.2.16 (Parabolic subgroup). — Let (G,B,N, S) be a Tits system. A parabolic

subgroup of G is a subgroup containing a conjugate of B. For J ⊂ I, the subgroups PJ are called

the standard parabolic subgroups. Among the proper parabolic subgroups, maximal ones are called

maximal parabolic subgroups.

Lemma 1.2.17. — [Bou68, GAL, Chapter 4, §2.6, Theorem 4] Suppose the intersection of two

parabolic subgroups P,Q is parabolic. If gPg−1 ⊂ Q, then g ∈ Q and P ⊂ Q. Consquently, a

parabolic subgroup is its own normalizer.

Proposition 1.2.18. — [Bou68, GAL, Chapter IV, §2.5] The maps J �−→ WJ �−→ PJ , are poset

isomorphisms, for the inclusion relations, from the power set of I to the set of standard subgroups

of W , and from the latter onto the set of subgroups of G containing B. Thus a subgroup of G is a

parabolic subgroup if and only if it is conjugate to a standard parabolic subgroup.

The proposition implies that the parabolic subgroups conjugate to a fixed standard parabolic

subgroup PJ correspond bijectively to the left cosets of PJ under the map

gPJg
−1 �→ gPJ . (1.1)

A Coxeter group is trivially endowed with a BN-pair with B = {1W } and N = W , the terminology

of Example 1.2.3 is coherent with the present. The building associated with a BN-pair is defined

similarly to the Coxeter complex of a Coxeter system.

Definition 1.2.19 (Standard coset). — A left coset of a standard parabolic subgroup is called

a standard (parabolic) coset. The poset of standard cosets endowed with the reverse inclusion is

denoted Δ(G,B) and is called the building associated to the Tits system(5) (G,B,N, S).

Thanks to Proposition 1.2.18, Δ(G,B) is a simplicial complex, but it also comes with a natural

action of G by left multiplication on the standard cosets, which corresponds under the map (1.1) to

the conjugation action on the parabolic subgroups. Before making the link between Tits systems

and buildings, we introduce a strong transitivity property of an action on a building. Since buildings

are colorable, there is an obvious notion of a group action by type-preserving automorphisms (of

chamber complex).

Definition 1.2.20 (Strongly transitive action). — Let G be a group acting on a building Δ

by type-preserving automorphisms and let A be a G-invariant set of apartments of Δ. We say

that G acts strongly transitively on Δ with respect to A if G acts transitively on the set of pairs

(C,A) where C is a chamber of an apartment A ∈ A. We shall often use the complete system of

apartments and omit to mention it if clear from the context.

Theorem 1.2.21. — [AB08, Theorem 6.65]

(i) Let (G,B,N, S) be a Tits system, then Δ(G,B) is a building, the G-action on left cosets is

strongly transitive and such that B is the stabilizer in G of a chamber (that representing the

coset B). Moreover, the subgroup N stabilizes an apartment Σ and acts transitively on its

chambers. The system of apartments for which G is strongly transitive is A = GΣ.

(5)The building Δ(G,B) depends not on N . The latter only determines a system of apartments of the building.
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(ii) Conversely, suppose a group G acts strongly transitively on a building Δ, with respect to

some system of apartments A. Let C be a chamber in an apartment Σ ∈ A. If B denotes

the stabilizer of C in G and N the stabilizer of Σ, then (B,N) is a BN-pair in G and Δ is

canonically isomorphic to Δ(G,B).

Strong transitivity has the two following important consequences.

Proposition 1.2.22. — [AB08, Proposition 6.6] Let G be a group acting strongly transitively on

a building Δ with respect to a system of apartments A and let Σ,Σ′ be a pair of apartments of A.

(i) Then every type-preserving automorphism φ : Σ → Σ′ is realized by an element g ∈ G, that

is g|Σ = φ.

(ii) There is an element g ∈ G such that gΣ = Σ′ and g fixes Σ ∩ Σ′ pointwise.

Corollary 1.2.23. — [AB08, Corollary 6.7] Suppose a group G acts strongly transitively on a

building Δ with respect to an apartment system A. Let S be an arbitrary set of simplices of Δ, and

denote FixG(S) its pointwise fixer, that is the set of all g ∈ G such that gA = A for all simplices

A of S. Then FixG(S) acts transitively on the set of apartments in A containing S.

1.2.2. CAT(0) geometry of Euclidean buildings. — Recall that a Coxeter group W is

called spherical if it is finite. In this case W can be realized as a finite reflexion group of a finite

dimensional real vector space. Euclidean Coxeter groups are those that can be realized as a group

of affine reflections stabilizing a locally finite hyperplane arrangement in a finite dimensional real

vector space, see [AB08, Chapter 10] or [Bou68, Chapter V].

Definition 1.2.24. — A building is called spherical or Euclidean if its underlying Coxeter system

is so.

Convention 1.2.25. — In this thesis we consider only irreducible Coxeter systems. Accordingly

a Euclidean Coxeter group Waff is the affine reflection group of an irreducible crystallographic root

system, so that its Coxeter complex can be realized as the complex of geometric simplices of a

Euclidean space, on which Waff acts simply transitively. In particular an affine Coxeter group Waff

has an associated finite Weyl group W , which can be taken as the stabilizer in W of a special

vertex. See also [AB08, §10.1-2].

Let Δ be a Euclidean building with Coxeter group W . Let |Σ(W,S)| denote the geometric

realization of the Coxeter complex mentioned above with a fixed Euclidean metric d. The geometric

realization X = |Δ| can be endowed with a unique metric inducing d on each of its apartments (in

the complete system of apartments), see [AB08, Theorem 11.16]. By abuse, we identify a Euclidean

building Δ with its geometric realization X which will provoke many abuses of notation.

The pair (X, d) is a CAT(0) metric space, i.e. d satisfies an inequality describing the fact that

triangles in X are thinner than what they would be in R2. The reference for CAT(0) geometry is

the celebrated book of Bridson and Haefliger [BH99].

A geodesic in a metric space is a map σ : I ⊂ R → X from an interval I that preserves distances.

A CAT(0) space X is uniquely geodesic and, if proper, it can be compactified by means of its visual

boundary ∂X. By definition ∂X is the set of equivalence classes of geodesic rays r : R+ → X for

the relation of being asymptotic. Two geodesic rays r, r′ are asymptotic if

sup
t∈R+

d(r(t), r′(t)) < ∞.



1.2. BUILDINGS AND GROUPS 15

The equivalence class of a geodesic ray r is often denoted r(∞) to emphasis that we think of r

as pointing in the direction of r(∞). For every base point x ∈ X, it is well known that each

class η ∈ ∂X has a unique representative starting at x. In other words, points of ∂X correspond

bijectively with the geodesic rays issuing at x.

Proposition 1.2.26. — [AB08, Chapter 11] Let X be the geometric realization of a Euclidean

building. Then the CAT(0) boundary ∂X has the structure of a spherical building. Its system of

apartments is in bijection with the complete system of apartments of X via the map A �→ ∂A.

In the previous identification, the chambers at infinity correspond bijectively with the equiva-

lence class of sectors in X, for the relation of containing a common subsector, see [AB08, §11.5].
It is well known that for each point x ∈ X in the Euclidean building, the set of sectors issuing at

x is in bijection with the chambers at infinity. Given a chamber at infinity ξ ∈ Ch(X), the unique

sector at x is denoted Sectx(ξ).

At last, we discuss the main example that will be treated in this thesis, namely Bruhat-Tits

buildings. We refer to the original article of Bruhat and Tits [BT72]. This setting is used in

[Kli03], [Kli04], [BW00, Chapter X, §2] and [Bor76, Chapter II, §3].

Example 1.2.27. — Let G be a connected, simply-connected, almost F -simple algebraic group

over a local field F . A consequence of loc. cit. is that the group G can be endowed with two

Tits systems, with the same subgroup N , (G,B,N, S) and (G,P,N, S0), for which Δ(G,B) is a

Euclidean building and Δ(G,P ) is a spherical building isomorphic to the building at infinity ∂X

of the geometric realization X = |Δ(G,B)|. The corresponding Coxeter groups are denoted Waff

and W respectively. We assume their generating sets S and S0 to satisfy:

S = S0 ∪ {s0}, so that W = 〈S0〉 < Waff = 〈S〉.
We moreover index them so that S = {si | i ∈ I} and S0 = {si | i ∈ I0} with I0 = I � {0}.

In this context of a double Tits system, the subgroups containing a conjugate of P are called

parabolic subgroups. Another name was needed for the subgroups containing B. On the one hand,

P is a generalization of the notion of Borel subgroup of an algebraic groups over an algebraically

closed field. On the other, the group B was studied by Iwahori and Matsumoto in [IM65]. It

was later called an Iwahori subgroup as a portmanteau of ‘parabolic’ and ‘Iwahori’. By draw-

ing the parallel, mathematicians came up with the name of parahoric subgroups for the groups

containing B, so that B would be a standard minimal parahoric.

The classical example is G = SLn(F ) over a local field, see [AB08, Proposition 11.105] for more

details. The Bruhat-Tits buildings X in the main example above are all locally finite: each panel

is contained in a finite number of chambers.

Definition 1.2.28. — Let Δ be a building with label set I. Then Δ is locally finite if

card({C ′ ∈ Ch(Δ) | C ′ ∼i C}) < ∞
for all types i ∈ I and chambers C ∈ Ch(Δ). We say that Δ is regular if this cardinal does not

depend on C. In this case we denote this cardinal by qi and call the set {qi | i ∈ I} the regularity

parameters of X.

If a building Δ admits a strongly transitive action of a group, then it is regular. A more

surprising fact is that, except for the type Ã1, every locally finite irreducible building is regular,

[Par05, Theorem 1.7.4]. Moreover if the Coxeter diagram of the building is simply laced the
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regularity parameters are all equal, qi = qj for all i, j ∈ I, [Par05, Corollary 1.7.2]. This includes

Euclidean buildings of type Ãn, D̃n, with n ≥ 2, and Ẽn, with n = 6, 7, 8. In particular, there is

q ∈ N such that

{C ′ ∈ Ch(Δ) | δ(C,C ′) = w} = q�(w),

for all w ∈ Waff and chambers C ∈ Ch(C), in these cases.

1.2.3. Busemann cocycle. — To conclude this section, we present the Busemann cocycle of

a CAT(0) space and recall some of its elementary features. For more details on the Busemann

cocycle, see [BH99, Part II, Chapter 8].

Definition 1.2.29 (Busemann cocycle). — Let X be a (proper, complete) CAT(0) space. For

every x, y ∈ X, the Busemann cocycle is the map B(x, y) : ∂X → R, defined by

B(x, y)(η) = lim
z→η

d(y, z)− d(x, z),

for all η ∈ ∂X. The notation is ambiguous but make sense when X = X � ∂X is endowed with

the cone topology. A more satisfactory version is perhaps

B(x, y)(η) = lim
t→∞ d(y, r(t))− d(x, r(t)),

for any geodesic ray r : R+ −→ X in the equivalence class of η, i.e. r(∞) = η.

Proposition 1.2.30. — The Busemann cocycle satisfies:

• B(x, x) = 0,

• |B(x, y)(η)| ≤ d(x, y),

• B(x, y) = −B(y, x),

• B(x, y) = B(x, z)−B(y, z),

• B(x, y)(η) = B(gx, gy)(gη)

for all x, y, z ∈ X, η ∈ ∂X and g ∈ Isom(X).

Example 1.2.31. — The Busemann cocycle of R2 is easy to compute. Let x, y ∈ R2, η ∈ ∂R2

and v be the unit vector such that t �→ r(t) = x+ tv is the geodesic ray in the class η starting at x.

Then

B(x, y)(η) = lim
t→∞ ‖y − (x+ tv)‖ − ‖x− (x+ tv)‖

= lim
t→∞

‖−→xy − tv‖2 − ‖tv‖2
‖−→xy − tv‖+ ‖tv‖

= lim
t→∞

‖−→xy‖2 − 2t〈−→xy, v〉+ t2‖v‖2 − t2‖v‖2
‖−→xy − tv‖+ ‖tv‖

= lim
t→∞

1
t ‖
−→xy‖2 − 2〈−→xy, v〉

‖−→xy
t − v‖+ ‖v‖

= −〈−→xy, v〉.
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1.3. Group cohomology

This section contains the many aspects of group cohomology we shall need and some links

between them. To begin with, the classical algebraic cohomology of groups was historically intro-

duced in connection with topology and fundamental groups. Later the theory took a more abstract

turn in which the bar-resolution yields a fairly simple description of it [Bro94]. In the context of

topological groups, the bar-resolution can be extended naively in various ways to define continuous

cohomology and bounded continuous cohomology. On the other hand techniques of relative homo-

logical algebras produce categorical constructions where powerful tools such as spectral sequences

are available. Fortunately, the particular flavor of t.d.l.c. groups simplifies the situation greatly

and the naive approach is sufficient, at least at the level of the present work.

Convention 1.3.1. — The vector spaces we consider are over C and topological vector spaces are

implicitly assumed to be locally convex topological vector spaces, (Hausdorff by Convention 1.1.1).

By a G-module we mean a complex representation (π, V ) of a group G. We shall make the standard

abuse of omitting either π or V when speaking of the representation. The set of maps between

two sets X,V is denoted F (X,V ), and, if X,V are topological spaces, the set of continuous maps

is denoted C(X,V ). If V = C we write F (X) and C(X) instead.

1.3.1. Continuous cohomology. — Let G be a group and V be a G-module. For every n ∈ N,

let Fn(G, V ) be the vector space of functions from the (n+1)-fold product Gn+1 into V endowed

with the G-action:

(g · f)(x0, . . . , xn) = gf(g−1x0, . . . , g
−1xn), (1.2)

for all g, x0, . . . , xn ∈ G, where on the right hand side the G-action on V is implicit between the

letters g and f . The differential dn : Fn(G, V ) → Fn+1(G, V ) is given by the classical alternate

sum

dnf(x0, . . . , xn+1) =

n+1∑
i=0

(−1)if(x0, . . . , x̂i, . . . , xn+1), (1.3)

where x̂i means that we omit the ith variable, is G-equivariant, and satisfies dn+1 ◦ dn = 0.

Definition 1.3.2. — The (homogeneous) bar resolution is the complex F •(G, V ) defined by :

F •(G, V ) : 0 −→ F 0(G, V )
d0

−−→ F 1(G, V )
d1

−−→ F 2(G, V )
d2

−−→ . . . (1.4)

We speak of the augmented bar resolution if we introduce the morphism ε : V → F (G, V ) sending

v to the constant function g �→ v that is

0 −→ V
ε−−→ F 0(G, V )

d0

−−→ F 1(G, V )
d1

−−→ F 2(G, V )
d2

−−→ . . . (1.5)

The (abstract) algebraic cohomology of G with coefficient module V is the graded vector space

obtained by taking the cohomology of the G-invariants of the bar resolution:

0 −→ F 0(G, V )G
d0

−−→ F 1(G, V )G
d1

−−→ F 2(G, V )G
d2

−−→ . . . (1.6)

In other words,

H•
alg(G, V ) := H(F •(G, V )G). (1.7)
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The bar resolution is an injective resolution of V and it is well known that the above cohomology

does not depend on the choice of such. Suppose G is a topological group and V a topological vector

space. One may wish to capture these topological aspects in order to define a notion of ‘continuous

cohomology’. The naive possibility is to replace Fn(G, V ) by the vector space of continuous

functions Cn(G, V ) := C(Gn+1, V ) and proceed exactly as above.

Definition 1.3.3. — Let G be a topological group and V a G-module that is also a topological

vector space. The continuous cohomology of G with coefficient module V is defined by

H•
c(G, V ) := H(C•(G, V )G). (1.8)

Readily the algebraic cohomology is a particular case of the continuous cohomology by forgetting

that G and V carry topologies. Indeed let G be a group and endow it with the discrete topology.

We write Gδ the resulting discrete topological group, then

H•
alg(G, V ) = H•

c(Gδ, V ).

So far we imposed no restriction on the continuity of the action map α : G× V → V , which needs

to be done for a more categorical formulation. For instance, the authors of [BW00, Chapter IX]

consider the category CG,topof topological G-modules, i.e. G-modules for which α is continuous. For

totally disconnected locally compact groups, there is also a notion of smooth cohomology and of

continuous smooth cohomology presented in the book of Borel and Wallach [BW00, Chapter X].

Fortunately for us, the various cohomologies coincide in our framwork, see Proposition 1.3.7. Bet-

ter, for the algebraic groups considered here, the cohomology is computable using the Bruhat-Tits

building, see Theorem 1.3.9.

1.3.2. Smooth and admissible representations of t.d.l.c. groups. — The smooth and

admissible representations arise naturally for totally disconnected locally compact groups. In

accordance with [BW00, Chapter X], t.d.l.c. groups are assumed countable at infinity(6) and

metrizable for this paragraph, a hypothesis satisfied by the groups with which we are concerned.

Definition 1.3.4 (Smooth representation). — Let (π, V ) be a complex representation of a

t.d.l.c. group G. A vector in V is called smooth if its stabilizer in G is open. The subspace of

smooth vectors is denoted V ∞ and is G-invariant. The restriction of π to the smooth vectors is

denoted π∞. The representation (π, V ) is called smooth if V = V ∞. We also say that V is a

smooth G-module.

Definition 1.3.5 (Admissible representation). — A smooth representation V is called ad-

missible if V K is finite dimensional for all compact open subgroups K of G.

Since G is t.d.l.c., van Dantzig’s Theorem 1.1.10 shows that v ∈ V being a smooth vector is

equivalent to each of the conditions:

• v is fixed by an open subgroup of G.

• v is fixed by a compact open subgroup of G.

(6)In [CH15, Remark 2.A.2] it is mentioned that a (Hausdorff) locally compact space X is σ-compact if and only

if it is countable at infinity, i.e. there is a countable exhaustion {Kn | n ∈ N} of X by compact subsets satisfying

Kn ⊂ int(Kn+1) for all n ≥ 0.
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Therefore V ∞ is the directed union of its subspaces of the form V K with K a compact open

subgroup of G. Let Vδ be V with the discrete topology, then the smoothness of V is equivalent to

the continuity of the action map G× Vδ → Vδ. Indeed one can prove that the latter is continuous

if and only if every stabilizer is open. However Vδ is not a topological vector space over C (for the

standard topology of C), hence Vδ is not a topological G-module. On the other hand, V , if smooth,

can always be endowed with its finest locally convex topology for which it is a topological G-module

according to [BW00, Chapter X, §1.3]. If V is moreover admissible, then its finest locally convex

topology is that of the strict inductive limit of the finite dimensional subspaces V K with K ranging

among the compact open subgroups. Since G is assumed t.d.l.c. and metrizable, it has a countable

basis of identity neighborhoods {Kn | n ∈ N} consisting of compact open subgroups. Therefore

the inductive limit is well defined using the sequence {V Kn | n ∈ N}.

Definition 1.3.6 (Smooth topological G-module). — Let V ∈ CG,top be a topological G-

module. Endow the space V ∞ of smooth vectors of V with the inductive limit topology given

by the subspaces V K , with K compact open subgroup, these being endowed with the subspace

topology induced by V . Then V is called a topological smooth G-module if V = V ∞ as topological

vector spaces. The category of smooth topological G-modules is denoted C∞
G,top.

By analogy, let CG,alg be the category of G-modules, and C∞
G,alg be the category of smooth G-

modules in the sense of Definition 1.3.4. The latter category together with CG,top and C∞
G,top have

enough invectives(7), therefore the derived functors of the functor taking the G-invariants define a

cohomology in each category. We denote them

H•
top(G, V ), H•

top,∞(G, V ), and H•
alg,∞(G, V ), (1.9)

whenever V is a G-module in the corresponding category. (In [BW00], they are denoted H•
ct,

H•
d and H•

e respectively.)

Proposition 1.3.7. — Let V be a G-module that is also a Banach space. Then Definition 1.3.6

and the discussion above it give V ∞ the same topology and all cohomologies of (1.9) with coefficient

module V ∞ are canonically isomorphic to H•
c(G, V ∞) and to H•

c(G, V ) as well.

Proof. — This follows from the results of Chapter IX and X of [BW00], notably Proposition 1.6

of Chapter X and its §5. That the topologies are the same follows from the content of [BW00,

Chapter X, §1.2-1.3]. En route, it is shown that the complex used in (1.8), with the compact-open

topology on Cn(G, V ), is an injective resolution of V in the category CG,top.

Let G be the group of F -rational points of a connected, simply-connected, almost F -simple

algebraic group over a local field F . Let X be the Bruhat-Tits building of G of the previous

section. Recall that X is an irreducible locally finite building of Euclidean type, identified with the

geometric realization of paragraph 1.2.2 and on which G acts by type-preserving automorphisms.

Since X is contractible, the cohomology of G can be related to the cohomology of two complexes

defined in terms of X. The first is the complex of G-equivariant simplicial cochains described in

[BW00, Chapter X, §§1.10-1.12 and §2]. The finite dimensionality of X, among other things, has

the following consequences.

(7)see Lemma 1.6 of Chapter IX, Proposition 1.5 of Chapter X, and §5 of the same chapter in [BW00].
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Theorem 1.3.8. — [BW00, Chapter X, Theorem 2.4] Let G be as above and V be a G-module

that is also a Banach space, then Hn
c (G, V ) vanishes for all n > rankF (G). Let B be an Iwahori

subgroup, i.e. the stabilizer of a chamber of X. If V B is finite dimensional, e.g. if V is admissible,

then Hn
c (G, V ) is finite dimensional for all n ∈ N. If moreover V has no non-zero B-invariant

vectors then H•
c(G, V ) = 0.

The second complex also uses the action of G on X and that the stabilizers of simplices, i.e.

the parahoric subgroups, are compact open. Fix a base vertex x0 ∈ X with stabilizer K in G, the

G-orbit of x0 is identified with the discrete G-space G/K thanks to K being an open subgroup.

Again, let V be a G-module which is also a Banach space, the space C((G/K)n+1, V ) is isomorphic

to the space of continuous functions f on Gn+1 that are K-invariant on the right, that is

f(g0k, . . . , gnk) = f(g0, . . . , gn),

for all k ∈ K and g0, . . . , gn ∈ G. We endow it with the G-action given by (1.2) and denote

Cn(G/K, V ) the resulting G-submodule of Cn(G, V ).

Theorem 1.3.9. — If G and V are as above, the inclusion map Cn(G/K, V ) ↪→ Cn(G, V ) induces

an isomorphism

H•
c(G, V ) ∼= H•(C•(G/K, V )G),

where the differential map of the right hand side is given by the same formula as (1.3).

Proof. — We may assume V to be a smooth topological G-module thanks to Proposition 1.3.7.

Now, Lemma 2.6 of [BW00, Chapter X] shows that Cn(G/K, V ), with the compact-open topology,

is s-injective in CG,top. To translate the notation, we refer to Chapter IX, §§1-2 of loc. cit.

Remark 1.3.10. — We can view a cocycle f ∈ Cn(G/K, V )G as a G-equivariant function on a

subset of vertices of X, namely on the G-orbit of x0, satisfying dnf = 0. Clearly, the restriction to

a G-orbit of a G-equivariant function f : Xn+1 → V , defined on the whole building, and satisfying

the cocycle identity, gives a cocycle for the above cohomology. The previous theorems says in

particular that any cohomology class for the (continuous) bar resolution of G can be obtained in

this way.



CHAPTER 2

THE STEINBERG REPRESENTATION AND THE NATURAL

COCYCLE OF KLINGLER

This chapter summarizes the two motivational articles [Kli03] and [Kli04]. Let G be the group

of F -rational points of a connected, simply-connected, almost F -simple algebraic group over a

local field F . We first give a result of Casselman describing all irreducible admissible coefficient

G-modules with non-trivial cohomology. Among them only the Steinberg representation St is

unitarizable and non-trivial. The cohomology of G with coefficient St vanishes in all degrees

except in the rank of G where it is one-dimensional. In [Kli03], Klingler constructed a natural

cocycle by means of the Bruhat-Tits building of G and produced ‘the’ non-trivial cohomology

class. The method involves only building theoretic tools and can be easily adapted to an arbitrary

Euclidean building. The last section investigates the unitarity of St, which was first proved by

Casselman and Borel-Serre by different non-explicit methods. Since we want to compute the growth

of the norm of the Klingler cocycle, we need a norm as explicit as possible. It is Klingler again

who found an explicit isomorphism [Kli04], called the Poisson transform, between the Steinberg

representation St and the space of smooth square summable harmonic functions on the chambers

of the Bruhat-Tits building. In Chapter 4, we shall use it to compute an explicit upper bound

to the norm of Klingler’s cocycle when the building is a regular tree. However in higher rank the

complexity is yet to be overcome.

2.1. Irreducible admissible representations

Definition 2.1.1. — Let X be a totally disconnected locally compact Hausdorff space and V

a complex vector space. A function f : X → V is locally constant if every point of X has a

neighborhood on which f is constant. The space of V -valued locally constant functions is denoted

C∞(X,V ) and simply C∞(X) when V = C.

A locally constant function is continuous for all topological vector spaces V .

Example 2.1.2. — Suppose X is the quotient of a t.d.l.c. group G by a closed cocompact sub-

group P and consider the left regular representation of G on F (X,V ). Then, according to Defi-

nition 1.3.4, a smooth function f : X → V is K-left-invariant for some compact open subgroup K

of G, thus locally constant since Kx is a neighborhood of x. Conversely, a locally constant func-

tion f is K-left-invariant for some compact open subgroup. Indeed, the compact open subgroups

form a basis of neighborhoods of the identity in G. Thus each point x ∈ X has a neighborhood of

the form Kx, with K < G compact open, on which f is constant. By compactness, we need only
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finitely many compact open subgroups to cover X; their intersection is a compact open subgroup

under which f is left invariant. If V is a topological vector space, we conclude

C∞(X,V ) = F (X,V )∞ = C(X,V )∞,

the notation is consistent.

Let G be the group of F -rational points of a connected, simply-connected, almost F -simple

algebraic group over a local field F . Let ∂X = Δ(G,P ) be the spherical building of G associated

to the Tits system (G,P,N, S0) of the previous chapter. Recall that the parabolic subgroups of G

are the conjugates of the standard parabolic subgroups PJ with J ⊂ I0, e.g. P∅ = P and PI0 = G.

If Q is conjugate to PJ , the integer prk(Q) := card(I0 � J) is called the parabolic rank of Q,

(cardinal of the cotype of PJ).

Definition 2.1.3. — Let Q be a parabolic subgroup of G, we define IndGQ, the induced represen-

tation with respect to Q, to be the left regular representation of G in the space C∞(G/Q). The

action on a locally constant function f : G/Q → C is given by

gf(x) = f(g−1x),

for all x ∈ G/Q and g ∈ G.

On the one hand, G/P is compact for the quotient topology, thanks to the Iwasawa decompo-

sition of Proposition 2.3.1, and so is G/Q. On the other hand, G is totally disconnected locally

compact, thus Example 2.1.2 applies. Since IndGQ is the smooth induction of an admissible repre-

sentation, namely of the trivial representation C of Q, and because G/Q is compact, IndGQ is an

admissible representation of G, see [BW00, Chapter X, Lemma 1.8]. For Q ⊂ Q′, the surjective

map G/Q → G/Q′ induces a G-morphism πQ′Q : IndGQ′ → IndGQ by precomposition.

Definition 2.1.4. — Let VQ denote the quotient of IndGQ by the submodule generated by the

images πQ′Q(Ind
G
Q′) where Q′ ranges among the parabolic subgroups with Q ⊂ Q′. The module

VP is called the Steinberg representation of G and is denoted St. Notice that VG = IndGG is the

space of constant functions on G, i.e. the trivial representation.

We can focus on the induced representations with respect to standard parabolic subgroups only.

We write IndGJ := IndGPJ
and VJ := VPJ

. The picture to keep in mind is the following:

I0

⊃

PI0

⊃

IndGI0 = C

⊂

�� �� C

J

⊃

PJ

⊃

IndGJ

⊂

�� �� VJ

∅ P∅ = P IndG∅ �� �� St

Theorem 2.1.5 (Casselman). — [BW00, Chapitre X, Theorem 4.12] Let V be an irreducible

admissible representation of G such that H•
c(G, V ) 
= 0. Then V is isomorphic to VQ for some

parabolic subgroup Q. The continuous cohomology Hn
c (G, V ) is one-dimensional if n = prk(Q) and

vanishes in all other degrees.
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Recall that a representation V ofG is called unitarizable or pre-unitary, if V can be endowed with

a G-invariant inner product. Interestingly, the representation St is the only non-trivial unitarizable

representation up to isomorphism. The modules VQ, for Q 
= G, and not conjugated to P , are all

non-unitarizable, see [BW00, Chapter XI, §4]. We discuss the existence of a G-invariant scalar

product for St in Section 2.3.

2.2. Natural cocycle for the Steinberg representation

Let G be the group of F -rational points of a connected, simply-connected, almost F -simple

algebraic group over a local field F with Bruhat-Tits building X, let P be the standard minimal

parabolic subgroup, and let St be the Steinberg representation of G. We saw in the previous section

that the cohomology with coefficient in the Steinberg module St is one dimensional in degree the

F -rank of G and zero in all other degrees. Any cocycle that is not a coboundary generates the

cohomology of G. Klingler [Kli03, Theorem 1], built a natural one, volX , on the Bruhat-Tits

building, giving a cocycle volG for G, see Remark 1.3.10. The construction starts by building a

G-equivariant cocycle volX valued in IndGP = C∞(G/P ), whose projection into St = VP is volX ,

the desired cocycle. If n is the F -rank of G, this is summarized in a commutative diagram of

G-maps:

Xn+1

volX

��

volX

��

Gn+1
evx0��

volG

��

volG

��
C∞(G/P )

����
St

Let Ω be the set of chambers of the spherical building ∂X, it corresponds to G/P . The naive

definition of volX(x), for x ∈ Xn+1, is to consider for every chamber at infinity ξ ∈ Ω the retraction

ρ(ξ,A) of X onto an apartment A containing a sector of ξ. Then the Euclidean convex hull of the

retraction of x in A has an oriented volume given by the volume form volA of A which is known to

satisfy the n-cocycle identity dn volA = 0. This construction can be made G-equivariant by being

careful with the choice of orientation of A.

This idea is well defined in any Euclidean building X. We present Klingler’s construction of the

cocycle in an arbitrary Euclidean building X. The cocycle is equivariant under the full group of

type-preserving automorphisms of X. For simplicity we chose to work with a Euclidean building of

dimension 2. This is not very restrictive thanks to Tits’ classification [Tit74], which shows that,

in dimension at least 3, all Euclidean buildings arise as the Bruhat-Tits building of some group of

algebraic flavor; Klingler already covered this case in [Kli03].

2.2.1. The equivariant 2-cocycle volX . — In this paragraph, we define the cocycle of Klingler,

volX , for a Euclidean building X with a type function τ : X(0) → I = Z/3Z, for which the vertices

of type 0 are special vertices. The complete system of apartments of X is denote Apt(X) and

consists of all subspaces of X isometric to R2. We transport the affine structure of R2 onto each

apartment independently of the choice of an isometry with R2.

Notation 2.2.1. — We use the following notation:

• Ω denotes Ch(∂X). We usually denote an element of Ω with the Greek letter ξ.



24 CHAPTER 2. THE STEINBERG REPRESENTATION AND THE NATURAL COCYCLE OF KLINGLER

• ΩApt(X) denotes the set of pairs (ξ, A) ∈ Ω×Apt(X) such that ξ ∈ Ch(∂A).

We first define orientations.

Definitions 2.2.2. — Let A ∈ Apt(X).

• A frame in A is an ordered triple (x, y, z) of points in the geometric realization of A such

that −→xy,−→xz are linearly independent. Equivalently x, y, z are affinely independent.

• An orientation o of A is an equivalence class of frames where two frames (x, y, z) and (x′, y′, z′)
are equivalent if the linear part of the unique affine map A → A sending (x, y, z) to (x′, y′, z′)
has positive determinant. The set of orientations of A is written Or(A) and has cardinal 2.

Remark 2.2.3. — In general, for o, o′ ∈ Or(A), we use the symbol oo′ to denote the real number

δ{o=o′} − δ{o 	=o′}. In other words,

oo′ =
{

1 if o = o′,
−1 if o 
= o′.

Example 2.2.4. — Let C be a chamber of an apartment A ∈ Apt(X). We write σ(C,A) the

orientation given by the frame (x, y, z) such that x, y, z are the vertices of C with

τ(x, y, z) := (τ(x), τ(y), τ(z)) = (0, 1, 2).

Given an orientation o of an apartment A, there is a chamber C in A such that o = σ(C,A).

Indeed two adjacent chambers of A define opposite orientations. So essentially, an orientation of

A can be represented by one of its chambers.

Definitions 2.2.5. — A choice of orientations of X is by definition a map

σ : ΩApt(X) →
⊔

A∈Apt(X)

Or(A)

such that σ(ξ, A) ∈ Or(A).

Let G be the group of all type-preserving automorphisms of X. Recall that G also acts on ∂X

by automorphism. Consider the natural actions of G on the following spaces: Ch(X), Ω, Apt(X),

ΩApt(X). There is an action of G on
⊔

A∈Apt(X) Or(A) with respect to which g ∈ G maps an

orientation o, given by a frame (x, y, z), of A ∈ Apt(X) to the orientation go of gA defined by the

frame (gx, gy, gz). If o is the orientation σ(C,A) given by a chamber C, then go = σ(gC, gA).

Definition 2.2.6. — A choice of orientations σ is called G-equivariant , or simply equivariant, if

gσ(ξ, A) = σ(gξ, gA) for all g ∈ G and (ξ, A) ∈ ΩApt(X).

Example 2.2.7. — There is an equivariant choice of orientations defined as follows. For (ξ, A) ∈
ΩApt(X), we define σ(ξ, A) := σ(Cx(ξ), A) where x is any vertex of A of type 0 and Cx(ξ) is

the initial chamber of the unique sector issuing at x pointing toward ξ. This is independent of

the choice of x ∈ A of type 0. The G-equivariance of this choice of orientations is clear since G

acts on X by type-preserving automorphisms. If G acts strongly transitively on ∂X, which is the

case if X is a Bruhat-Tits building, it acts transitively on ΩApt(X). Hence there are only two

possible equivariant choices of orientations in this case. At the other extreme, X may have trivial

automorphism group. We call σ the canonical equivariant choice of orientations.
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Definition 2.2.8. — Let o be an orientation of an apartment A of X. We view A as its geometric

realization isometric to R2 endowed with the Lebesgue measure volA = volR2 . For every triple

(x, y, z) of points in A, the oriented volume of (x, y, z) with respect to (A, o) is defined as

vol(A,o)(x, y, z) := volA(conv(x, y, z))
(
δ(x,y,z)∈o − δ(x,y,z)/∈o

)
,

where δ(x,y,z)∈o is 1 if (x, y, z) is a frame yielding the orientation o and 0 else, and conv(x, y, z)

denotes the Euclidean convex hull of {x, y, z}. We shall write x = (x, y, z) and vol(A,o)(x).

Given a pair (A, o), let e1, e2 be an orthonormal basis of A giving it the orientation o. The

oriented volume of (x, y, z) ∈ A3 is also computed with the volume form e1 ∧ e2, that is

vol(A,o)(x, y, z) =
1

2
e1 ∧ e2(

−→xy,−→xz) = 1

2
det

(
〈−→xy, e1〉 〈−→xy, e2〉
〈−→xz, e1〉 〈−→xz, e2〉

)
.

Proposition 2.2.9. — Let (A, o) and x be as in the previous definition, then

vol(gA,go)(gx) = vol(A,o)(x),

for all g ∈ G.

Proof. — The group G acts on X by isometries. Therefore g ∈ G restricted to A is an isometry

onto its image gA. In addition, the orientation o and go are compatible by construction.

The idea of Klingler cocycle consists of sending a triple x = (x, y, z) of points in X onto an

apartment by means of retraction and then to compute the oriented volume.

Definition 2.2.10. — For every (ξ, A) ∈ ΩApt(X), the canonical retraction onto A centered at

ξ is the type-preserving chamber map ρ(ξ,A) : X → A defined as follows. For x ∈ X, consider an

apartment A′ containing it and with ξ ∈ ∂A′. In particular A∩A′ contains a sector in the class ξ,

see [AB08, Theorem 11.63]. By definition ρ(ξ,A)(x) is the image of x under the unique retraction

ρC,A fixing A ∩ A′ pointwise, where C is any chamber of that intersection, see axiom (B2′′) after
Definition 1.2.6. For every x = (x, y, z) ∈ X3, we write

ρ(ξ,A)(x) := (ρ(ξ,A)(x), ρ(ξ,A)(y), ρ(ξ,A)(z)).

Remark 2.2.11. — This does not depend on the choice of A′. Given two apartments A,A′ having
ξ as a chamber at infinity, the maps ρ(ξ,A)|A′ and ρ(ξ,A′)|A are mutual inverse isometries. Note

also that ρ(gξ,gA) = g ◦ ρ(ξ,A) ◦ g−1, thus g(ρ(ξ,A)(x)) = ρ(gξ,gA)(gx), for all g ∈ G.

The next theorem enables us to define Klingler’s cocycle.

Theorem 2.2.12 (Klingler). — Let σ : ΩApt(X) → ⊔
A∈Apt(X) Or(A) be the canonical equiv-

ariant choice of orientations of Example 2.2.7. For any triple x = (x, y, z) ∈ X3 and any two pairs

(ξ, A), (ξ, A′) ∈ ΩApt(X), one has:

vol(A,σ(ξ,A))(ρ(ξ,A)(x)) = vol(A′,σ(ξ,A′))(ρ(ξ,A′)(x)).

The original proof of Klingler [Kli03, §3.1.1] is easily adapted to a general Euclidean building

(here of dimension 2) admitting a strongly transitive action of a group by type-preserving automor-

phisms (with respect to the complete system of apartments). This is the case for the Bruhat-Tits

building of a connected, simply connected, almost F -simple algebraic group over a local field F .
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Proof for strongly transitive actions. — Let Pξ be the minimal parabolic subgroup of G stabiliz-

ing ξ and let Nξ be the subgroup of all elements fixing pointwise a sector in the class ξ. If x ∈ X,

then ρ(ξ,A)(x) is the unique point lying in the intersection of the Nξ-orbit of x and A. With this

characterization, one observes that

ρ(ξ,A′) ◦ ρ(ξ,A) = ρ(ξ,A′).

The pointwise stabilizer of the intersection A ∩ A′ acts transitively on the apartments containing

it, see Corollary 1.2.23. Hence there is a g ∈ Nξ such that

g|A = ρ(ξ,A′)|A and g−1|A′ = ρ(ξ,A)|A′ .

Obviously, we have g(ξ, A) = (gξ, gA) = (ξ, A′) and, by equivariance, gσ(ξ, A) = σ(ξ, A′). There-

fore,

vol(A,σ(ξ,A))(ρ(ξ,A)(x)) = vol(gA,gσ(ξ,A))(gρ(ξ,A)(x))

= vol(A′,σ(ξ,A′))(g|A ◦ ρ(ξ,A)(x))

= vol(A′,σ(ξ,A′))(ρ(ξ,A′) ◦ ρ(ξ,A)(x))

= vol(A′,σ(ξ,A′))(ρ(ξ,A′)(x)),

as desired.

Proof in the general case. — Given x, y, z ∈ X and ξ ∈ Ω, let Ax, Ay, Az be apartments containing

x, y, z respectively, and ξ as a chamber at infinity. Let A,A′ be as in the statement. The five

apartments of

A := {A,A′, Ax, Ay, Az}
have, pairwise, their intersection containing a sector in the class ξ. Therefore, by successive ex-

traction of subsector, we can find a sector S in the global intersection of these five apartments.

The canonical choice of orientations of Example 2.2.7 gives A and A′ the orientation defined by

a single chamber in S. Now for Σ,Σ′ ∈ A , the retraction ρ(ξ,Σ)|Σ′ is an orientation-preserving

isometry fixing S pointwise. Using these isometries the result holds.

Definition 2.2.13. — If σ denote the canonical equivariant choice of orientations, the quantity

in the previous theorem depends only on x and ξ. We denote it volσX(x, y, z)(ξ). This defines a

map volσX : X3 �→ F (Ω) called Klingler’s cocycle, where F (Ω) is the space of complex functions

on Ω.

Remark 2.2.14. — If σ̄ is the opposite of the canonical equivariant choice of orientations then

volσ̄X = − volσX . Our purpose being to compute an L2-norm of this cocycle (see Chapter 2.3), it will

be clear that the norm is independent of the choice of σ or σ̄. Hence, we shall drop the exponent σ

and simply write volX .

Theorem 2.2.15 (Klingler, G-equivariance). — The map volX is a G-equivariant 2-cocycle.

If X is the Bruhat-Tits building of a connected, simply-connected, almost F -simple algebraic

group over a local field F , then the cohomology class of volG induced by volX is moreover non-trivial

in H2
c(G,St), see [Kli03, §3.1.2] for the proof.

Proof. — The cocycle relation is clear as the volume form is a 2-cocycle in R2. Let g ∈ G, x ∈ X3,

and ξ ∈ Ω. We need to show volX(gx)(gξ) = volX(x)(ξ). By definition, the right-hand side is



2.3. UNITARIZABILITY VIA THE POISSON TRANSFORM 27

vol(A,σ(ξ,A))(ρ(ξ,A)(x)) for any A with (ξ, A) ∈ ΩApt(X). But since (gξ, gA) ∈ ΩApt(X), the

left-hand side is

vol(gA,σ(gξ,gA))(ρ(gξ,gA)(gx)) = vol(gA,σ(gξ,gA))(gρ(ξ,A)(x))

= vol(gA,gσ(ξ,A))(gρ(ξ,A)(x))

= vol(A,σ(ξ,A))(ρ(ξ,A)(x)),

where the last equality is because g is an isometry.

2.3. Unitarizability via the Poisson transform

We come back to the setting of Section 2.1 and suppose that G is the group of F -points of a

connected, simply-connected, almost F -simple algebraic group over a local field F . Independently

Casselman [Cas74] and Borel-Serre [BS76, §5.10] showed that the Steinberg representation St

is unitarizable. The proof of Casselman can be found in his famous unpublished notes [Cas95].

Borel-Serre’s proof uses a long exact sequence in cohomology which eventually shows St to be

isomorphic to the space H(X)∞∩L2(G/B) of smooth square integrable harmonic functions on the

set of chambers of the Bruhat-Tits building of G. (See below for the definitions.) Knowing this,

Klingler [Kli04] defined an analogue of the classical Poisson transform for this setting of double

Tits systems, which eventually gives an explicit isomorphism with H(X)∞ ∩ L2(G/B), on which

G acts continuously by unitary operators.

The buildings X and ∂X are the buildings Δ(G,B) and Δ(G,P ) associated to the Tits systems

(G,B,N, S) and (G,P,N, S0) respectively. Here P is the minimal standard parabolic subgroup

and B is the minimal standard parahoric subgroup. The sets of involutions S0 and S are indexed

with I0 and I = I0 ∪ {0}, so that the vertices of type 0 are special, and generate the finite Weyl

group W and the affine Weyl group Waff respectively.

Recall that for its F -topology, G is a t.d.l.c. group, B is a compact open subgroup of G and

P a cocompact closed subgroup of G. The set of chambers Ch(X) and Ch(∂X) correspond to

the set G/B and G/P respectively, see paragraph 1.2.2. With their respective topologies induced

from that of G, the quotient G/B is discrete, whereas G/P is compact. Similarly to the paragraph

above Theorem 1.3.9, we identify the space of complex valued functions on G/B with the space of

continuous functions on G that are B-invariant on the right:

C(G/B) = {f : G → C | f(gb) = f(g) for all g ∈ G, b ∈ B}.

In particular, finitely supported functions on G/B correspond to compactly supported right-

B-invariant functions on G, we write Cc(G/B) the corresponding space. With respect to this

identification the Haar measure μG ofG restricted to Cc(G/B) corresponds to the counting measure

on G/B. Consequently we have G-isomorphisms, for the left regular actions of G,

F (Ch(X)) ∼= C(G/B) and �2(Ch(X)) ∼= L2(G/B),

where L2(G/B) is the closure of Cc(G/B) in L2(G,μG).

The aforementioned BN-pairs have their respective Bruhat decompositions

G =
⊔

w∈Waff

BwB and G =
⊔

w∈W

PwP,

but are also related by the Iwasawa decomposition.
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Proposition 2.3.1 (Iwasawa decomposition). — Let G,B, P,W be as above, then

G =
⊔

w∈W

BwP.

Proof. — Let x be the (special) vertex of type 0 of the (fundamental) chamber C of X represent-

ing B. By Corollary 1.2.23, the stabilizer of C, namely B, acts transitively on the apartments of

X containing C, in particular on the set of sectors issuing at x containing C as an initial chamber.

This describes the B-orbit of P in Ch(∂X). Similarly the stabilizer of a chamber in the link of x

acts transitively on the set of sectors having that chamber as initial chamber. Since G is strongly

transitive on X, the stabilizer of x, say K, is strongly transitive on lk(x). But lk(x) is a building

of type W , the chambers wB forming an apartment of lk(x), namely N ∩ lk(x), for w ∈ W . Hence,

the link lk(x) is decomposed in B-orbits according to the Bruhat decomposition

K =
⊔

w∈W

BwB.

Since every chamber at infinity is represented by a unique sector issuing at x, the B-orbits in lk(x)

determine the B-orbits in G/P = Ch(∂X). This proves the Iwasawa decomposition, which, by the

way, implies G = KP .

Remark 2.3.2. — The Iwasawa decomposition implies that the B-orbits in G/P are

Ow := BwP/P,

with w ∈ W . The proof shows that Ow consists of classes of sectors having their initial chamber

in the BwB/B, see also the comment in [Kli04, §2, Remarques, 1.](1). Note that we only used

the strong transitivity of G on the complete system of apartments. This holds generally in this

setting, see [AB08, Proposition 11.99].

Let νw be the unique Borel B-invariant probability measure on Ow. And let νB be the signed

measure on G/P given by

νB =
∑
w∈W

(−1)�(w)νw.

Definition 2.3.3 (Poisson tranform). — For f ∈ C(G/P ), the Poisson tranform of f is de-

fined by

Pf(g) =
ˆ
G/P

f(gx)dνB(x),

for all g ∈ G.

In measure theoretic terms, the Poisson transform of f is equivalently written

Pf(g) = 〈g−1f, νB〉 = 〈f, g∗νB〉, (2.1)

where 〈·, ·〉 is the natural pairing of the space of compactly supported functions with the space

of measures, g∗νB is the image measure of νB under g, and g−1f is the action of g−1 on f by

left translation. The Poisson transform of f evaluated at g ∈ G is the integral of f against the

measure g∗νB . Looking globally at the action of g on X and ∂X, we can think of g∗νw as the

unique Borel probability measure on gOw invariant under gBg−1. Hence g∗νB is the alternating

sum of the g∗νw. Intuitively the measure νB is defined by the position of the chamber B in the

(1)We point out that point 2. of the Remarques is an error without consequence.
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building X and g∗νB is defined by that of the chamber gB. This will be made rigorous in Chapter

3, see paragraph 3.4.2.

We are ready to define the space of harmonic functions on X (or rather on the chambers of X).

Definition 2.3.4 (Harmonic function). — A function φ : Ch(X) → C is harmonic if for every

chamber C ∈ Ch(X) and every type i ∈ I, the average of φ over all chambers i-adjacent to C is

zero, i.e. ∑
C′∼iC

φ(C ′) = 0.

Recall that C is always i-adjacent to itself for all i ∈ I. The space of harmonic functions is

denoted H(X).

Theorem 2.3.5 (Klingler). — The Poisson transform P : C(G/P ) → C(G) induces an isomor-

phism P : St → H(X)∞ ∩ L2(G/B) of irreducible admissible representations.

Sketch of the proof. — The full proof can be found in [Kli04]. We sketch some of the ideas. The

map is a G-morphism for the left regular action on both sides. For if g, h ∈ G, then

P(hf)(g) = 〈hf, g∗νB〉 = 〈f, (h−1g)∗νB〉 = Pf(h−1g) = h(Pf)(g),

and linearity is clear. The measure νB is B-invariant which means b∗νB = νB , for all b ∈ B.

Therefore, thanks to (2.1), Pf is B-invariant on the right, i.e.

Pf(gb) = Pf(g),

for g ∈ G and b ∈ B, so that P(C(G/P )) sits in C(G/B). Clearly smooth vectors are sent to

smooth vectors because the Poisson transform is a G-morphism. Harmonicity of Pf comes from

the measure νB . For i ∈ I, let Bi denote the standard parabolic subgroup B{i}, stabilizing the

panel of cotype i of the chamber B (i.e. the codimension 1 face opposite to the vertex of type

i of the chamber B). The chambers i-adjacent to B correspond to the left cosets of Bi/B. By

decomposing the orbits of Bi on Ch(∂X) into B-orbits, one shows∑
u∈Bi/B

u∗νB = 0,

see [Kli04, Lemme 6]. This implies∑
C∼iB

Pf(C) =
∑

u∈Bi/B

Pf(uB) = 〈f,
∑

u∈Bi/B

u∗B〉 = 0.

Now for an arbitrary chamber C ′ = gB, the proof follows from the discussion above Definition 2.3.4.

Indeed, the action of g yields:∑
C∼iC′

Pf(C) =
∑

u∈Bi/B

Pf(guB) = 〈g−1f,
∑

u∈Bi/B

u∗νB〉 = 0.

To see that the Poisson transform factors through St, we realize C∞(G/Q) as a submodule of

C∞(G/P ) for every standard parabolic subgroup Q. For i ∈ I0, it suffices to show that P vanishes

on C∞(G/Pi) where Pi denotes the standard parabolic subgroup P{i}. A similar argument to

that for harmonicity can be applied, [Kli04, Lemme 4]. We prove and discuss square summability

below.
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In [Kli04, §5], the author argues as follows. The Poisson transform evaluated at 1 = 1G can be

seen as a linear form on St:

f �→ Pf(1) = 〈f, νB〉
so that c(g) = 〈gf, νB〉 = Pf(g−1) is a matrix coefficient of St. Proposition 2.5.3 of [Cas95] states

that an admissible irreducible representation has all its matrix coefficients in L2(G,μG) if and only

if there exists at least one non-zero square integrable matrix coefficient. (Our assumptions on G

implies it has finite center.) Consequently the Poisson transform maps St into L2(G/B) if and

only if there exists one f ∈ St such that Pf ∈ L2(G/B). Indeed the linear form defined above

is non-zero since 〈1Ow
, νB〉 = 〈1Ow

, νw〉 = (−1)�(w), for all w ∈ W . The square integrability is

then proved by showing the B-invariant vectors of St to have square integrable Poisson transform,

[Kli04, §5.1]. From the proof, we realized that the only necessary ingredients were the harmonicity

of Pf and its smoothness, implied by the B-invariance. Using a Lemma due to Bruhat, one can

generalize the proof of Klingler. This was inspired by [Bro14, §3] and [Bor76, §4].

Proposition 2.3.6. — Suppose that the Bruhat-Tits building of G has regularity parameter q = qi
for all i ∈ I and let φ : Ch(X) → C be a harmonic function. If φ is smooth, i.e. invariant under

the left regular action of a compact open subgroup of G, then φ ∈ �2(Ch(X)).

Example 2.3.7. — Suppose X is a regular tree of valency q + 1, for q ∈ N, i.e. a locally finite

regular Euclidean building of type Ã1. In this case, the classical harmonicity of a function φ,

defined on the edges of X, coincides with our definition. The main ingredient for the proof of

Proposition 2.3.6 is the following. Suppose φ is a harmonic function with the following property.

There is an edge C0 of X such that, for every d ∈ N, φ is constant on the set of edges at distance

d from C0. Suppose D is at distance d ∈ N from C0, and that C is adjacent to D but at distance

d+ 1 from C0. Then φ being harmonic implies

−φ(D) =
∑

C′∼D
d(C′,C0)=d+1

φ(C ′) = q · φ(C),

whence φ(C) = − 1
qφ(D). The intuition is that, away from C, φ is spreading uniformly on the

neighboring edges. Now φ is easily shown square integrable on the set of edges by grouping them

in each sphere about C0.∑
C

|φ(C)|2 =
∑
d∈N

∑
d(C,C0)=d

|φ(C)|2 =
∑
d∈N

q−2d|φ(C0)|2
∑

d(C,C0)=d

1 = 2|φ(C0)|2
∑
d∈N

q−d.

In fact, it suffices that the uniform spreading phenomenon occurs outside a large ball about C0.

This idea can be adapted to a Bruhat-Tits building X, using the combinatorial distance d on

the set of chambers. Bruhat’s Lemma guarantees the uniform spreading phenomenon to occur

outside a large ball provided φ is smooth.

Lemma 2.3.8 (Bruhat). — [Bor76, Lemma 4.1] Let U be a compact open subgroup of G and

denote C0 the fundamental chamber of X corresponding to B. There is a constant d0 > 0 with the

following property: given a chamber C such that d(C,C0) > d0, there exists a chamber D adjacent

to C, say D ∼i C satisfying the two following conditions:

(i) d(D,C0) = d(C,C0)− 1.

(ii) the U -orbit of C contains the set of chambers i-adjacent but not equal to D.
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On the proof. — The last section of [Bor76] contains a detailed proof. We simply note that if

U = B is the stabilizer of C0, Klingler showed that we can take d0 = 1. More precisely, for a

chamber C at W-distance w = δ(C,C0) from C0, the B-orbit of C is the set of all chambers at

W-distance w of C0, namely BwB/B. In particular, his argument applies to Euclidean buildings

admitting a strongly transitive group of type-preserving automorphism. Bruhat’s Lemma, however,

relies on the fact that X is a Bruhat-Tits building of a group of algebraic type and has no clear

generalization.

Proof of Proposition 2.3.6. — Let φ : Ch(X) → C be a harmonic function invariant on the left

under the action of a compact open subgroup U . With the notation of Lemma 2.3.8, we show that∑
d(C,C0)≥d0

φ(C)2 < ∞,

where the sum is taken over the chambers of X at distance at least d0 from C0. The result follows

since the balls for d are finite (by locally finiteness of X). We claim that for every such chamber C

there exist a chamber DC and a gallery

ΓC : D0 = DC , . . . , Dl = C,

of length l ∈ N such that:

(i) d(D0, C0) = d0,

(ii) d(Di−1, C0) = d(Di, C0)− 1, for all i = 1, . . . , l, and

(iii) the U -orbit of Di contains all chambers not equal to Di−1 and having Di ∩Di−1 as a panel,

for all i = 1, . . . , l.

In particular we have l = d(C,C0)−d0 and ΓC is minimal. To prove the claim, set l := d(C,C0)−d0
and Dl := C, and apply Bruhat’s Lemma to C to obtain a chamber Dl−1 at distance d(Dl−1, C0) =

d(C,C0) − 1 and satisfying (iii). By successive applications of Bruhat’s Lemma we obtain the

desired gallery. The regularity assumptions on X implies the following regularity on the chambers.

For w ∈ Waff , the sphere of type w centered at C0 has cardinal

card({C ′ ∈ Ch(X) | δ(C ′, C0) = w}) = q�(w).

In particular, each panels is contained in exactly q+1 chambers regardless of its type. The function

φ being U -invariant and harmonic, we have, using (iii),

φ(Di) = −1

q
φ(Di−1),

for all i = 1, . . . , l. Thus,

|φ(C)| = q−l|φ(DC)|, (2.2)

with l = d(C,C0)− d0. Recall that in general �(δ(C,C ′)) = d(C,C ′), so that

card({C ′ ∈ Ch(X) | d(C ′, C0) = d}) = qdS(d),
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where S(d) denotes the number of group elements of Waff of length d ∈ N. The function S, called

the growth function of Waff , is known to be bounded by a polynomial. All together we have:∑
d(C,C0)≥d0

φ(C)2 =
∑
d≥d0

∑
d(C,C0)=d

φ(C)2

=
∑
d≥d0

q−2(d−d0)φ(DC)
2

≤ max{φ(D)2 | d(D,C0) = d0}
∑
d≥d0

q−2(d−d0)qdS(d)

= max{φ(D)2 | d(D,C0) = d0}
∑
d≥d0

q−d+2d0S(d)

= max{φ(D)2 | d(D,C0) = d0} · qd0 ·
∑
l≥0

q−lS(d0 + l).

The last series is absolutely convergent since S can be bounded by a polynomial.

Comment 2.3.9. — Suppose volX is the 2-cocycle of Klingler defined on the Bruhat-Tits build-

ing X. The G-equivariance of volX implies that volX(x, y, z) is invariant under the left regular

action of the compact open subgroup K = StabG(x) ∩ StabG(y) ∩ StabG(z). Hence so is the Pois-

son transform PvolX(x, y, z). Therefore the previous proof, with U = K, yields a bound for the

norm of the latter. We can backtrack, in [Bor76], the origin of the constant d0 which depends

on K and on the diameter of its fix point set. However, even if d0 were to grow linearly with the

distances between the points x, y, z, the above estimate has an exponential factor qd0 . The bound

is hopeless.



CHAPTER 3

BUILDING THEORETIC FORMULATION

The construction of Klingler’s natural cocycle relies mostly on the geometry of the building:

use of retractions with respect to chambers at infinity and Euclidean volume in the apartments.

It is fairly natural to extend the construction to an arbitrary Euclidean (irreducible) building X,

a more general setting than Bruhat-Tits buildings associated to groups over a local field (at least

when the rank is less than 3). The Steinberg module, however, is not defined, but we may consider

the space of harmonic �2-functions on the set of chambers of X instead. We also need a notion of

Poisson transform and, in particular, suitable measures replacing νB of Section 2.3. For this we

introduce the so-called visual measure associated to a chamber and show that it generalizes indeed

g∗νB , maybe up to a sign. However harmonicity is not clear in this context, and similarly square

summability has a priori no reason to occur, since the notion of smooth functions on the chambers

is not available. Of course if Bruhat’s Lemma 2.3.8 is available then the proof of Proposition 2.3.6

may be adapted to ensure square integrability of harmonic functions.

The success of harmonic analysis and spherical functions on locally finite regular trees, (see for

instance the book [FTN91] of Figà-Talamanca and Nebbia), lead to similar studies in abstract

Euclidean buildings. Starting with Ã2 buildings [CMS94], the harmonic analysts later developed

tools in Euclidean buildings of type Ãn, e.g. [Car01], followed by various simultaneous general-

izations including [Par06] to general Euclidean buildings. For simplicity we focus on the Ãn case,

which includes the Bruhat-Tits building of SLn+1(F ) over a local field F . A similar treatment for

other types of buildings seems reasonably possible as some of the methods used here are also avail-

able, see [Par06]. As [Car01] testifies, the notations and the combinatorics of Ãn buildings are

cumbersome if not painful. We admittedly choose to expose here only the case of an Ã2 building

for the sake of clarity. A full exposition of the (regular) Ã1 case, i.e. the case of regular tree, is

done in Chapter 4, but it should be obvious how to translate the present chapter to regular trees.

There, we determine the growth of the norm of Klingler’s 1-cocycle. For n = 2, the results of

Chapter 5 on the geometry of Ã2-buildings point in the right direction.

A treatment of higher rank may be done in future research. A point to keep in mind is that the

Weyl (Coxeter) group of a root system of type An is the symmetric group on n+1 letters, thus of

cardinal (n+ 1)!, whereas the number of roots is n(n+ 1). These two natural numbers coincide if

and only if n ≤ 2. Thus one should be careful when generalizing the present chapter.

Two ingredients we call sector coordinates and the corresponding sector spheres allow us to

describe the set Ch(∂X) of chambers at infinity as a (topological) projective limit of the sector
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spheres. This idea is mentioned and used in [CMS94]. From there Klingler’s cocycle is locally con-

stant with respect to this topology and is determined by its projection on any sphere of sufficiently

large radius.

The projective limit construction yields natural visual measures as a projective limit of the

counting measure on the sector spheres, which are of course finite since the building X is assumed

locally finite. Then we define the visual measure with respect to a chamber C, needed for the

Poisson transform. It is done via the visual measure at a special vertex x of the given chamber,

by replacing the orbits of the stabilizer of C by a local condition in the link of x. The latter

indeed generalizes the measures g∗νB of Klingler, see the proof of the Iwasawa decomposition,

Proposition 2.3.1.

Setting 3.0.1. — Let X be a (thick) locally finite Euclidean building of type Ã2. As usual, we

identify it with its natural CAT(0)-geometric realizations and shall therefore make some abuse of

notation. Recall that in this setting X is chamber regular, i.e. there is an integer q ≥ 3 such that

every panel of X is contained in exactly q + 1 chambers, see Section 1.2.2 and [Par06, §1.7].

3.1. The boundary Ω

The goal of this chapter is to present some technical tools that will allow us to understand

better the combinatorics of volX(x). They will prove themselves useful to derive a formula for the

Poisson transform of the latter, see Theorem 3.4.10. In the process we give various descriptions

of Ω, one of which induces a compact topology on it. Finally a necessary tool will be a family of

Borel measures on Ω, called visual measures.

The CAT(0) metric on X, or rather on its geometric realization, is denoted d and assumed to be

normalized so that the sides of a chamber have length 1, that is d(x, y) = 1 for all pairs of distinct

vertices x, y of a chamber. This is very specific of the fact that X is of type Ã2, the Coxeter

complex of which is the tesselation of R2 by equilateral triangles.

3.1.1. Sector coordinates and sector distance. — The spherical building ∂X is of type A2.

In the literature, the Greek letter ξ often refers to a point in the visual boundary of a CAT(0)

space. Here we use it for chambers at infinity, i.e. ξ ∈ Ω. However the vertices of ξ shall be denoted

by ξ1 and ξ2 and a generic point by η ∈ ∂X.

Notation 3.1.1. — Given a point x ∈ X, a chamber at infinity ξ ∈ Ω, and a point at infinity

η ∈ ∂X, we use the following notation:

• The unique geodesic ray issuing from x in the class of η will be denoted by rηx : R+ → X

meaning rηx(0) = x and rηx(∞) = η. By abuse, we think of a geodesic and its image in X as

a single object and hence use the notation rηx = [x, η[.

• The unique geodesic between two points x, y ∈ X is denoted by [x, y] and is characterized by

[x, y] = {p ∈ X | d(x, y) = d(x, p) + d(p, y)}.

• Let Sectx(ξ) denote the closure in X of Sectx(ξ), the unique sector at x pointing in the

direction of ξ. If ξ1, ξ2 are the vertices of ξ then

Sectx(ξ) = Sectx(ξ) ∪ [x, ξ1[∪ [x, ξ2[.
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We shall use a convenient labeling (type function) of ∂X. More precisely, we define below two

maps (−)1, (−)2 : Ω → (∂X)(0) and a type function (or a labeling) of ∂X again denoted τ so that

τ(ξi) = i for i = 1, 2.

Definition 3.1.2 (Panel of a sector). — Let x ∈ X and ξ ∈ Ω.

• For i = 1, 2, let ξi be the vertex of ξ such that rξix (1) has type τ(x) + i mod 3.

• The geodesic ray [x, ξ1[ is called the right panel of Sectx(ξ) and [x, ξ2[ is called the left panel

of Sectx(ξ).

• We may also say that [x, ξi[ is the panel of type i of Sectx(ξ).

In the previous definition, the labels of ξ1, ξ2 depend on the vertex x. To be very careful we

should have called them ξx,1, ξx,2. The next proposition shows this to be independent of x and

thus defines a type function τ : (∂X)(0) → (Z/3Z)∗ with τ(ξi) = i. Therefore, the vertices of a

chamber at infinity ξ ∈ Ω shall always be labelled so that τ(ξi) = i as above.

Proposition 3.1.3. — Let ξ ∈ Ω, and x, y be vertices of X. Then ξx,i = ξy,i, for i = 1, 2.

Proof. — A geodesic ray r is convex and isometric to a subset of R2, thus it is contained in some

apartment A. Assume r starts at some vertex x and stays in the 1-skeleton X(1) (equivalently

r(0) ∈ X(0) and r(∞) ∈ (∂X)(0)). Then r will go through vertices, the types of which will

cyclically appear as either

. . . , 0, 1, 2, 0, 1, 2, . . . or . . . , 0, 2, 1, 0, 2, 1, . . . ,

as explained in [RRS98, §1.2]. In A, two parallel geodesic rays staying in X(1) and issuing at

different vertices x, y will witness the same cycles of types, maybe shifted by τ(x)− τ(y). For the

general case, let Ax and Ay be apartments of X containing Sectx(ξ) and Secty(ξ) respectively.

If the two sectors are contained in a common apartment, i.e. if Ax = Ay is possible, they form

two pairs of parallel panels and we are in the above situation. If not, let Sectu(ξ) be a common

subsector, that is

Sectu(ξ) ⊂ Sectx(ξ) ∩ Secty(ξ) ⊂ Ax ∩Ay.

We can apply the previous case to Sectu(ξ) and Sectx(ξ) which are contained in the apartment Ax.

We conclude by doing the same with Sectu(ξ) and Secty(ξ) in Ay.

Given a sector Sectx(ξ) in an apartment A, we shall use the affine structure of the latter to assign

coordinates to the vertices in the closure of the sector (independently of the choice of an apartment

A). Let x′ and x′′ be the vertices of Cx(ξ), the initial chamber of Sectx(ξ), with τ(x′) = τ(x) + 1

mod 3 and τ(x′′) = τ(x) + 2 mod 3. In other words, x′ = rξ1x (1) and x′′ = rξ2x (1). We consider

the linearly independent vectors

v1 = −→xx′ and v2 = −→xx′′

sitting inside A. Any vertex u ∈ Sectx(ξ) is written as an affine combination u = x +mv1 + nv2
with non-negative integer coefficients m,n ∈ N. This is independent of the apartment A containing

Sectx(ξ). (For if u is contained in another sector Sectx(ξ
′) andm′, n′ are the corresponding integers,

one sees that m′ = m and n′ = n.) Thus the coordinates do not depend on a particular sector

issuing at x containing u. The degenerate situation of a vertex sitting on a panel common to two

sectors should be kept in mind.

Definitions 3.1.4 (Sector coordinates). — Let x, u be arbitrary vertices in X.
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• The (right and left) sector coordinates of u with respect to x are the non-negative integers

(m,n) describe above. We denote them (mx(u), nx(u)) or (m1
x(u),m

2
x(u)) and use each

notation according to the use of ‘left’ and ‘right’ or of the types i = 1, 2.

• We call mx(u) the right sector coordinate of u with respect to x or the sector coordinate of

type 1.

• Similarly, nx(u) is the left sector coordinate or the sector coordinate of type 2.

• The sector distance between x and u is d1(x, u) = mx(u) + nx(u).

See [Car01] for equivalent notions in Ãn buildings.

Remark 3.1.5. — Clearly, given a sector Sectx(ξ), the sector coordinates give a bijection from

the points of Sectx(ξ) onto N2, the inverse of which sends (m,n) ∈ N2 to the unique point of

Sectx(ξ) with coordinates (m,n) with respect to x.

Proposition 3.1.6. — Let x, u be vertices in X. Then,

(i) (mu(x), nu(x)) = (nx(u),mx(u)), hence d1(x, u) = d1(u, x).

(ii) d(x, u)2 = mx(u)
2 +mx(u)nx(u) + nx(u)

2.

(iii) d1(x, u)
2 = d(x, u)2 +mx(u)nx(u).

(iv) d(x, u) ≤ d1(x, u).

(v) d1 is the graph theoretic distance in the 1-skeleton of X.

Proof. — The point (i) is elementary. Let B = (v1, v2) be the basis of an apartment A containing

x, u constructed as in the paragraph above Definition 3.1.4. The Gramm matrix of B is given by

GB =

(
〈v1, v1〉 〈v1, v2〉
〈v2, v1〉 〈v2, v2〉

)
=

(
1 1/2

1/2 1

)
.

Let vt = (mx(u), nx(u)). On the one hand,

d(x, u)2 = ‖−→xu‖2 = vtGBv = mx(u)
2 +mx(u)nx(u) + nx(u)

2,

hence (ii). On the other hand,

d1(x, u)
2 = (mx(u) + nx(u))

2 = mx(u)
2 + 2mx(u)nx(u) + nx(u)

2 = d(x, u)2 +mx(u)nx(u),

proving (iii). Finally, (iv) follows from (ii), (iii), and the inequality:

(mx(u) + nx(u))
2 ≤ 2(mx(u)

2 + nx(u)
2).

The last statement certainly holds in an apartment A. On the other hand, the retraction of X

onto an apartment can only decrease the graph theoretic distance.

Definition 3.1.7 (Vertex convex hull). — The vertex convex hull of two vertices x, u ∈ X(0),

denoted Conv(0)(x, u), is by definition the set of vertices t aligned with x, u for the graph theoretic

metric d1 on the 1-skeleton X(1):

d1(x, u) = d1(x, t) + d1(t, u).

In the case of two vertices sitting on the panel of some sector, the vertex convex hull consists of

all vertices of the geodesic segment [x, y]. If x, u are not on a common wall, Conv(0)(x, u) is the

set of vertices of Conv(x, u) the smallest chamber subcomplex of X containing {x, u}. It is the

parallelogram pictured in Figure 1.

Remark 3.1.8. — This convex hull does not depend on a particular sector issuing at x contain-

ing u, or rather on a particular apartment containing x and u.
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u

x

Figure 1. Conv(0)(x, u) consists of the vertices of this parallelogram.

3.1.2. The boundary Ω as a projective limit. — The purpose of this section is to prove a

convenient characterization of Ω as a projective limit of sector spheres.

Definition 3.1.9 (Sector sphere). — Let x be a vertex of X. For every (m,n) ∈ N2, the sector

sphere of type (m,n) centered at x is defined by

Sm,n(x) = {u ∈ X(0) | (mx(u), nx(u)) = (m,n)}.

Remark 3.1.10. — The symmetry of the sector coordinates of Proposition 3.1.6 implies that

u ∈ Sm,n(x) if and only if x ∈ Sn,m(u).

The local finiteness of X ensures that each sector sphere has finite cardinal and the latter

depends not on its center.

Proposition 3.1.11 (Vertex regularity of X). — The cardinal Nm,n = |Sm,n(x)| is indepen-

dent of x ∈ X(0) and is given by:

N0,0 = 1, Nm,0 = N0,m = (q2 + q + 1)q2(m−1), and Nm,n = (q2 + q + 1)(q + 1)q2(m+n)−3.

Proof. — A helpful description of the link is given in Paragraph 3.4.2. For the complete proof, see

[CMS94, p. 218].

We fix a basis vertex x ∈ X(0) for the remainder of the section. The characterization of Ω as a

(topological) projective limit will eventually be shown to be independent of x.

Definition 3.1.12 (Projections). — Given (m,n), (m′, n′) ∈ N2 satisfying m′ ≤ m and n′ ≤ n,

we define the projection px,m,n
m′,n′ to be the map

px,m,n
m′,n′ : Sm,n(x) −→ Sm′,n′(x)

that sends u ∈ Sm,n(x) to the vertex in Conv(0)(x, u) having (m′, n′) as sector coordinates with

respect to x.
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Lemma 3.1.13. — Endow N2 with the product order:

(m′, n′) ≤ (m,n) if and only if m′ ≤ m and n′ ≤ n.

Then the projections S (x) = {px,m,n
m′,n′ | (m′, n′) ≤ (m,n) ∈ N2} form a projective system

over (N2,≤), that is

(i) px,m,n
m,n is the identity map on Sm,n(x) for all (m,n) ∈ N2, and

(ii) px,m
′,n′

m′′,n′′ ◦ px,m,n
m′,n′ = px,m,n

m′′,n′′ , whenever (m′′, n′′) ≤ (m′, n′) ≤ (m,n).

Definition 3.1.14 (Projective limit). — We denote lim←−S (x) the projective limit of S (x). It

consists of the subspace of the product

lim←−S (x) ⊂
∏

(m,n)∈N2

Sm,n(x)

of those elements compatible with the projections. More precisely, f ∈ lim←−S (x) is by definition a

map f : N2 → X such that f(m,n) ∈ Sm,n(x) for all (m,n) ∈ N2 and

px,m,n
m′,n′ (f(m,n)) = f(m′, n′), (3.1)

whenever (m′, n′) ≤ (m,n).

Let pxm,n : lim←−S (x) → Sm,n(x) denote the projection on the (m,n)-th coordinate. For every

(m′, n′) ≤ (m,n), the following diagram commutes:

lim←−S (x)

px
m,n

��
px
m′,n′

		

Sm,n(x)

px,m,n

m′,n′
��

Sm′,n′(x)

In other words, px,m,n
m′,n′ ◦ pxm,n = pxm′,n′ .

Notation 3.1.15. — Thanks to the compatibility of the projections and in order to simplify the

notations, we shall often drop the upper indices m,n in px,m,n
m′,n′ . We can think of pxm′,n′ as a

projection of the union of the larger spheres Sm,n(x), with (m′, n′) ≤ (m,n), together with the

‘celestial sphere’ lim←−S (x), onto Sm′,n′(x).

The sector spheres Sm,n(x) are endowed with the discrete topology. The product of the latter

endowed with the product topology is a compact space thanks to Tykhonov’s theorem. Endow

lim←−S (x) with the subspace topology. Since the projective limit is closed in the product, it is

compact as well. The maps pxm,n : lim←−S (x) → Sm,n(x) are continuous by the very definitions of

the product topology and the subspace topology. Indeed, if u ∈ Sm,n(x), then

(pxm,n)
−1({u}) =

{
f ∈ lim←−S (x) | pxm,n(f) = u

}
=
{
f ∈ lim←−S (x) | f(m,n) = u

}
= lim←−S (x) ∩

⎛⎝{u} ×
∏

(m′,n′)	=(m,n)

Sm′,n′(x)

⎞⎠ ,
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The projective limit lim←−S (x) is universal in the sense of the following proposition.

Proposition 3.1.16 (Universal property). — Let Y be a topological space and ϕm,n : Y →
Sm,n(x) for every (m,n) ∈ N2 be continuous maps compatible with the projections px,m,n

m′,n′ :

Sm,n(x) → Sm′,n′(x), that is

px,m,n
m′,n′ ◦ ϕm,n = ϕm′,n′ ,

for all (m′, n′) ≤ (m,n). Then there is a unique continuous map f : Y → lim←−S (x) making the

following diagram commute:

Y

ϕm,n





∃!f
��

ϕm′,n′

��

lim←−S (x)
px
m,n

��

px
m′,n′

��
Sm,n(x)

px
m′,n′

�� Sm′,n′(x)

In other words, pxm,n ◦ f = ϕm,n, for all (m,n) ∈ N2. One deduces that lim←−S (x) is the unique

terminal object of the system S (x).

Recall that there is a bijection Sectx : Ω → Sectx(Ω) sending ξ ∈ Ω to the unique sector issuing

at x in the class of ξ, namely Sectx(ξ). We now describe a topology on Sectx(Ω), the set of sectors

issuing at x.

Definition 3.1.17. — Let u ∈ X(0). We define,

• Ωx(u) = {ξ ∈ Ω | u ∈ Sectx(ξ)}, so that,

• Sectx(Ωx(u)) = {sectors at x containing u in their closure}.

Proposition 3.1.18. — The collections {Ωx(u) | u ∈ X(0)} and {Sectx(Ωx(u)) | u ∈ X(0)} form

topological bases on Ω and Sectx(Ω) respectively, with respect to which Sectx is a homeomorphism.

Moreover the resulting topology is Hausdorff.

Proof. — The statements for Ω and Sectx(Ω) are equivalent thanks to the bijection Sectx; the

homeomorphism follows easily. It is clear that⋃
u∈X(0)

Ωx(u) = Ω.

But in fact, for every (m,n) ∈ N2, we have⊔
u∈Sm,n(x)

Ωx(u) = Ω,

and the corresponding statement is true in Sectx(Ω).

We show that for any ξ in the intersection Ωx(u)∩Ωx(v), there is Ωx(w) in the intersection that

contains ξ. Let ξ ∈ Ωx(u) ∩ Ωx(v) for some u, v ∈ X(0). In particular u, v ∈ Sectx(ξ). Let w ∈
Sectx(ξ) be such that u, v ∈ Conv(0)(x,w). This is possible as soon as w ∈ Sectx(ξ) has coordinates

mx(w), nx(w) sufficiently large, say greater than the sum of those of u and v. Hence, ξ ∈ Ωx(w)

and clearly any sector at x containing w contains u and v, proving ξ ∈ Ωx(w) ⊂ Ωx(u) ∩ Ωx(v).

For the separation axiom, let ξ, ξ′ ∈ Ω be distinct. We look for two disjoint open subsets

U,U ′ ⊂ Ω with ξ ∈ U and ξ′ ∈ U ′. Since Sectx(ξ) 
= Sectx(ξ
′), there exists (m,n) ∈ N2 such that
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the respective vertices u, u′ having sector coordinates (m,n) are distinct. Therefore, Ωx(u) and

Ωx(u
′) are the desired open subsets.

Scholia 3.1.19. — Let x be a vertex of X.

(i) For every (m,n) ∈ N2, ⊔
u∈Sm,n(x)

Ωx(u) = Ω.

(ii) For every u, v ∈ X(0), if u = pxm,n(v) for some (m,n) ∈ N2, then

Ωx(v) ⊂ Ωx(u).

(iii) The condition u ∈ Conv(0)(x, v) is equivalent to u = pxm,n(v) for some (m,n) ∈ N2.

Notation 3.1.20. — We denote TΩ,x the topology on Ω of the previous proposition and TSect,x :=

Sectx(TΩ,x) that on Sectx(Ω).

Remark 3.1.21. — The topology really is defined on Sectx(Ω) and then transported to Ω via the

bijection. The situation has been complicated for notational purposes.

Let Tlim,x denote the compact topology on lim←−S (x) defined in the paragraph above Proposi-

tion 3.1.16. The next proposition assembles the pieces together as it gives an explicit homeomor-

phism between (lim←−S (x), Tlim,x) and (Sectx(Ω), TSect,x), hence they are homeomorphic to (Ω, TΩ,x)

as well.

Notation 3.1.22. — For every sector Sectx(ξ) issuing at x and every (m,n) ∈ N2, let fξ
x(m,n)

be the unique vertex in Sectx(ξ) with coordinates (m,n), that is

{fξ
x(m,n)} = Sectx(ξ) ∩ Sm,n(x).

This defines a map fx : Ω →∏
Sm,n(x) sending ξ to fξ

x . Define further fx : Sectx(Ω) →
∏

Sm,n(x)

by the commutative diagram:

Ω

fx 



Sectx �� Sectx(Ω)

fx��∏
Sm,n(x)

By definition, we have fx = fx ◦ Sect−1
x .

Proposition 3.1.23. — The maps fx : Ω → lim←−S (x) and fx : Sectx(Ω) → lim←−S (x) are home-

omorphisms. We have the following commutative diagram of homeomorphisms:

Ω

fx ��

Sectx �� Sectx(Ω)

fx��
lim←−S (x)

Proof. — The proposition first states that fx maps Ω into lim←−S (x) and does so surjectively. We

need to show that fξ
x satisfies equation (3.1), for all ξ ∈ Ω. Let (m′, n′) ≤ (m,n) ∈ N2 and

set u := fξ
x(m,n). Since the vertex convex hull Conv(0)(x, u) is contained in Sectx(ξ), it is clear

that pxm′,n′(u) ∈ Sectx(ξ). But the latter is fξ
x(m

′, n′) by definition of fξ
x , hence fξ

x satisfies (3.1).

Surjectivity is proven by noticing that, for a given f ∈ lim←−S (x), the set {f(m,n) | (m,n) ∈ N2}
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is exactly the set of all vertices of some closed sector issuing at x. This is proved in Lemma 3.1.24

below. Injectivity follows from:

ξ = ξ′ ⇐⇒ Sectx(ξ) = Sectx(ξ
′),

⇐⇒ Sectx(ξ) = Sectx(ξ
′),

⇐⇒ Sectx(ξ) ∩X(0) = Sectx(ξ
′) ∩X(0),

⇐⇒ fξ
x = fξ′

x ,

for all ξ, ξ′ ∈ Ω, where the last equivalence also uses the lemma.

Let u ∈ Sm,n(x) and ξ ∈ Ω; we have the equivalences:

ξ ∈ Ωx(u) ⇐⇒ Sectx(ξ) ∩ Sm,n(x) = {u},
⇐⇒ fξ

x(m,n) = u,

⇐⇒ fξ
x ∈ (pxm,n)

−1({u}) = lim←−S (x) ∩

⎛⎝{u} ×
∏

(m′,n′) 	=(m,n)

Sm′,n′(x)

⎞⎠ .

In other word fx(Ωx(u)) = (pxm,n)
−1({u}), thus fx is a homeomorphism and so is fx = fx ◦ Sectx

by composition of homeomorphisms.

Lemma 3.1.24. — Let f ∈∏Sm,n(x); then the following are equivalent:

(i) f ∈ lim←−S (x),

(ii) Conv(0)(x, f(n, n)) ⊂ f(N2) for all n ∈ N,

(iii)
⋃

n∈N Conv(0)(x, f(n, n)) = f(N2),

(iv) f(N2) is the set of vertices of a closed sector issuing at x,

(v) f = fξ
x , for some ξ ∈ Ω.

Proof. — The equivalence between (iv) and (v) is trivial but worth including in the statement.

Some obvious remarks concerning any f ∈∏Sm,n(x):

• f(m,n) ∈ Sm,n(x) for all (m,n) ∈ N2,

• f(m,n) = f(m′, n′) ⇐⇒ (m,n) = (m′, n′), i.e. f is injective.

• For every n ∈ N, the convex hull Conv(0)(x, f(n, n)) contains exactly one point of each sphere

Sm′,n′(x) with m′, n′ ≤ n.

• If f ∈ lim←−S (x) and m′, n′ ≤ n, the unique point in Sm′,n′(x) ∩ Conv(0)(x, f(n, n)) is

pxm′,n′(f(n, n)) = f(m′, n′).

The implications (i) =⇒ (ii) ⇐⇒ (iii) follow from the remarks.

For (i) ⇐= (ii) one needs to show

pxm′,n′(f(m,n)) = f(m′, n′),

whenever (m′, n′) ≤ (m,n). This is equivalent to showing f(m′, n′) is the unique point in

Conv(0)(x, f(m,n)) ∩ Sm′,n′(x). Set N := m + n. Since Conv(0)(x, f(N,N)) ⊂ f(N2) by hy-

pothesis, we have f(m′, n′), f(m,n) ∈ Conv(0)(x, f(N,N)) and the result follows.

For (iii) ⇐= (iv) we recall that a closed sector is convex. The converse (iii) =⇒ (iv) is more

challenging. Under the hypothesis (iii), f(n, n) ∈ Conv(0)(x, f(N,N)) for all n ≤ N , in which case
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the geodesic σN = [x, f(N)] is an extension of σn = [x, f(n)]. Let σ be the limit geodesic ray,

see the remark below, and A be an apartment containing σ. Since σ goes through each point of

the diagonal of f , namely {f(n, n) | n ∈ N} ⊂ σ(R), we have Conv(0)(x, f(n, n)) ⊂ A. But the

assertion is clear in an apartment.

Remark 3.1.25. — The limit of (σn)n∈N exists in the CAT(0)-compactification X = X � ∂X

endowed with the cone topology [BH99, Chapter II.8]. The latter can be described as follows.

Identify X with the set Rx(X) of all maps r : R+ → X with r(0) = x being either a geodesic ray,

or a geodesic for a finite time then a constant map. The identification is r �→ r(∞), associating to

r its end point. The cone topology can be defined on Rx(X) and transported to a topology on X

which does not depend on the choice of x ∈ X. The cone topology is in fact metrizable. Indeed,

the following formula defines a compatible metric on Rx(X) for which (σn)n∈N is easily shown to

be a Cauchy sequence:

D(r, r′) =
ˆ
R+

d(r(t), r′(t))e−tdt.

Remark 3.1.26. — If X is the Bruhat-Tits building of a connected, simply connected, almost

F -simple algebraic group over a local field F , we could use a result of [BT72, Proposition 2.8.3].

They showed that an increasing union of subsets each contained in an apartment is itself contained

in an apartment. However our proof works for any locally finite Ã2 building. Parkinson has a

general building theoretic proof in his thesis [Par05, Appendix B.2].

Proposition 3.1.27 (On the topology TΩ,x). — The subsets Ωx(u) are closed for all u ∈ X(0),

hence compact. Thus (Ω, TΩ,x) is a totally disconnected space. In summary, it is a profinite space.

Proof. — This is clear from the partition
⊔

u∈Sm,n(x)
Ωx(u) = Ω, with (m,n) ∈ N2.

3.2. Topological independence of the base point

In the previous section, we defined a topology TΩ,x on Ω depending on a base point x ∈ X(0)

and gave homeomorphisms:

(Ω, TΩ,x) � (lim←−S (x), Tlim,x) � (Sectx(Ω), TSect,x).
The goal of the current section is to prove that the construction is independent of x.

Proposition 3.2.1. — Let x, y ∈ X(0) be two vertices. For every u ∈ X(0) and ξ ∈ Ωx(u), there

is v ∈ X(0) satisfying

ξ ∈ Ωy(v) ⊂ Ωx(u).

Hence, TΩ,x = TΩ,y.

We shall therefore drop the subscripts x or y. To establish the proposition we recall some

notations and some technical results of [CMS94].

Notation 3.2.2. — We denote pxm,n(ξ) the unique point of Sm,n(x)∩Sectx(ξ) for all (m,n) ∈ N2

and ξ ∈ Ω. This is redundant with Notation 3.1.22 where we denoted this point fξ
x(m,n). We

wish to keep only the present notation as fx was introduced for Proposition 3.1.23, only. In other

words, thanks to the homeomorphisms above, we use the same notation for pxm,n and pxm,n ◦ fx,

that is

pxm,n(ξ) := pxm,n(f
ξ
x) = fξ

x(m,n),
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for all (m,n) ∈ N2 and ξ ∈ Ω. As before, the following diagram commutes,

Ω

px
m,n ��



fx �� lim←−S (x)

px
m,n��

Sm,n(x)

We can now forget about the fx notation and simply remember that pxm,n is the projection onto

Sm,n(x), in every possible sense.

Lemma 3.2.3. — [CMS94, Lemma 2.1] Let ξ ∈ Ω and x, y ∈ X(0). There are integers m(x, y, ξ)

and n(x, y, ξ) ∈ Z, and a natural number M = M(x, y, ξ) ∈ N such that

pxm,n(ξ) = pym+m(x,y,ξ),n+n(x,y,ξ)(ξ), (3.2)

or equivalently

fξ
x(m,n) = fξ

y (m+m(x, y, ξ), n+ n(x, y, ξ)),

for all m,n ≥ M .

Proof. — The idea is to take any point u in the intersection of Sectx(ξ) ∩ Secty(ξ) and to look at

the sector Sectu(ξ) issuing at u. It is a subsector of both sectors. Suppose u has coordinates (m,n)

in Sectx(ξ) and (k, l) in Secty(ξ). Then a vertex v of Sectu(ξ) with coordinates (i, j) satisfies :

v = pxm+i,n+j(ξ) = pyk+i,l+j(ξ).

In other words pui,j(ξ) = pxm+i,n+j(ξ) = pyk+i,l+j(ξ) for all i, j ≥ 0. Thus the pair (k−m, l−n) ∈ Z2

does not depend on the choice of u and we set (m(x, y, ξ), n(x, y, ξ)) := (k−m, l−n). The constant

M is chosen so that m,n ≥ M implies pxm,n(ξ) is in Secty(ξ). (For example, take M to be the sum

of the coordinates of u with respect to x.)

Corollary 3.2.4. — Let ξ ∈ Ω and x, y ∈ X(0). It is immediate from the definitions that

m(x, y, ξ) = −m(y, x, ξ), n(x, y, ξ) = −n(y, x, ξ) and m(x, x, ξ) = n(x, x, ξ) = 0.

Remark 3.2.5. — It is worth understanding m(x, u, ξ) and n(x, u, ξ) for a vertex u ∈ Sectx(ξ).

The hypothesis translates as

pxmx(u),nx(u)
(ξ) = u = pu0,0(ξ) and pxm+mx(u),n+nx(u)

(ξ) = pum,n(ξ),

for all (m,n) ∈ N2. Thus (3.2) implies m(x, u, ξ) = −mx(u) and n(x, u, ξ) = −nx(u).

In Lemma 3.2.3, one may use the bound M = d1(x, y), which is uniform in ξ ∈ Ω, thanks to the

following result.

Lemma 3.2.6. — [CMS94, Corollary 2.3] Let x, y ∈ X(0) and ξ ∈ Ω, then pxm,n(ξ) ∈ Sectx(ξ) ∩
Secty(ξ), for all m,n ≥ d1(x, y).

The next lemma follows immediatly.

Lemma 3.2.7. — [CMS94, Lemma 2.4] Let x, y, u be vertices in X with mx(u), nx(u) ≥ d1(x, y).

Then,

Ωx(u) ⊂ Ωy(u).

Moreover, for every ξ ∈ Ωx(u),

m(x, y, ξ) = my(u)−mx(u) = −m(y, x, ξ) and n(x, y, ξ) = ny(u)− nx(u) = −n(y, x, ξ),
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and in light of Remark 3.2.5,

m(x, y, ξ) = m(x, u, ξ)−m(y, u, ξ) and n(x, y, ξ) = n(x, u, ξ)− n(y, u, ξ).

Corollary 3.2.8. — Let x, y, u be vertices in X with, mx(u), nx(u),my(u), ny(u) ≥ d1(x, y).

Then,

Ωx(u) = Ωy(u).

In general mx(u), nx(u) ≥ 2d1(x, y) implies my(u), ny(u) ≥ d1(x, y).

Proof of Corollary 3.2.8. — The first statement is clear from Lemma 3.2.7. We show

mx(u), nx(u) ≥ 2d1(x, y) =⇒ my(u), ny(u) ≥ d1(x, y).

Indeed, write d := d1(x, y) and let ξ ∈ Ωx(u), then p1 := pxd,d(ξ) ∈ Sectx(ξ) ∩ Secty(ξ) by

Lemma 3.2.6. Therefore p1 = pyi,j(ξ) for some i, j ∈ N. Set p2 := px2d,2d(ξ) = pyi+d,j+d(ξ), the

hypothesis on u implies

(p1 = pxd,d(u) = pyi,j(u) and) p2 = px2d,2d(u) = pyi+d,j+d(u),

from which we deduce that my(u), ny(u) ≥ d.

Corollary 3.2.9 (1-cocycle relation). — Let x, y, z be vertices in X and ξ ∈ Ω. Then,

m(x, y, ξ) = m(x, z, ξ)−m(y, z, ξ) and n(x, y, ξ) = n(x, z, ξ)− n(y, z, ξ).

Proof. — Let m,n ≥ max{d1(s, t) | s, t ∈ {x, y, z}} and u := pxm,n(ξ). By Lemma 3.2.6, u is in the

intersection Sectx(ξ) ∩ Secty(ξ) ∩ Sectz(ξ). The result is an easy computation using three times

Lemma 3.2.7.

Proof of Proposition 3.2.1. — Let x, y ∈ X(0) be two base vertices and set d := d1(x, y). Let

u ∈ X(0) and ξ ∈ Ωx(u). Set v := pxmx(u)+2d,nx(u)+2d(ξ). Since both mx(v), nx(v) are greater

than or equal to 2d1(x, y), we have Ωy(v) = Ωx(v) ⊂ Ωx(u), thanks to Corollary 3.2.8 and Scholia

3.1.19. Finally ξ sits in Ωx(v) (by definition).

3.3. Factorisation of volX through large spheres

In order to understand the possible values of the Poisson transform of volX(x), we first investi-

gate the possible values of volX(x) on Ω.

Notation 3.3.1. — Whenever a function f : Ω → C is constant on each Ωx(u) for u varying in a

sector sphere Sm,n(x) centered at a vertex x, we denote f(u) the value of f(ξ) for ξ ∈ Ωx(u). The

function f is said to factor through Sm,n(x) and we have a commutative diagram:

Ω

px
m,n

��

f

��
Sm,n(x)

f
�� C

That is f ◦ pxm,n = f . We use the same convention for maps f : Ω → Z ranging in a set Z. A

function factorizing through a sphere is locally constant. Conversly, since the topology of Ω is

profinite, a locally constant function on Ω always factor through a sector sphere Sm,n(x) provided

m,n are large enough.
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Example 3.3.2. — Let x, y ∈ X(0) and m,n ≥ d1(x, y). Then the functions ξ �→ m(x, y, ξ),

ξ �→ n(x, y, ξ) factor through Sm,n(x). This is clear from Lemma 3.2.7. As a consequence, the

Radon-Nikodym derivative given by

dνx
dνy

(ξ) = q2(m(x,y,ξ)+n(x,y,ξ)),

factors through the same sphere, see Section 3.4.

Let x be a triple of vertices of X. We shall achieve the two following goals in parallel:

• Prove that the factorisation of volX(x) through a sphere Sm,n(x) occurs as soon as m,n are

greater than the diameter of x with respect to the metric d1 and provided x is one of the

vertices of the triple x. (We shall write x ∈ x.)

• Compute the value of volX(x) on Ωx(u), for u ∈ Sm,n(x), and show it to depend only on the

integers m(x, y, ξ), n(x, y, ξ) for x, y ∈ x and ξ ∈ Ωx(u).

Proposition 3.3.3. — There is a constant Cvol ∈ R, namely 1
4 , depending only on the building

X (or rather only on its type, Ã2 here), such that

volX(x, y, z)(ξ) = Cvol · det
(
m(x, y, ξ) m(x, z, ξ)

n(x, y, ξ) n(x, z, ξ)

)
,

for all x, y, z ∈ X(0) and ξ ∈ Ω.

The proof uses the following lemmas. First, we compute the volume of a triangle sitting in a

sector using the sector coordinates of the vertices. This will be useful to compute the volume after

having retracted the building via ρ(A,ξ).

Lemma 3.3.4. — There is a constant C1 ∈ R, namely 1
4 , such that for every ξ ∈ Ω and every

triple of vertices x, y, z contained in a closed sector Sectu(ξ) issuing at some u ∈ X(0), we have

volX(x, y, z)(ξ) = C1 · det
(
m(y, z, ξ) m(z, x, ξ)

n(y, x, ξ) n(z, x, ξ)

)
.

Proof. — Here everything is really happening in R2. Assume, without loss of generality, that u is

of type 0. Let u′, u′′ denote the vertices of Cu(ξ) so that τ(u, u′, u′′) = (0, 1, 2), and set v1 =
−→
uu′,

v2 =
−−→
uu′′, and B = (v1, v2). The sector coordinates of x, y, z with respect to u are the coefficients

of −→ux, −→uy, −→uz expressed in the base B. We write

[−→ux]B =

(
mu(x)

nu(x)

)
[−→uy]B =

(
mu(y)

nu(y)

)
[−→uz]B =

(
mu(z)

nu(z)

)
,

hence

[−→xy]B =

(
mu(y)−mu(x)

nu(y)− nu(x)

)
[−→xz]B =

(
mu(z)−mu(x)

nu(z)− nu(x)

)
[−→yz]B =

(
mu(z)−mu(y)

nu(z)− nu(y)

)
.

Fix an apartment A containing Sectu(ξ) and an orthonormal basis C = (e1, e2) of A so that v1 = e1
and v2 = cos(π/3)e1+sin(π/3)e2 =

√
3/2e1+1/2e2. The orientation of A given by (e1, e2) is σ(A, ξ)

(which corresponds to the orientation of the frame (u, u′, u′′), i.e. that of the base B = (v1, v2),)

since the matrix

M = [idA]CB =

(
1

√
3/2

0 1/2

)
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has positive determinant. Our choices yield

volX(x, y, z)(ξ) = volA,σ(A,ξ)(x, y, z) =
1

2
e1 ∧ e2(

−→xy,−→xz) = 1

2
det

(
〈−→xy, e1〉 〈−→xy, e2〉
〈−→xz, e1〉 〈−→xz, e2〉

)
.

The factor 1/2 comes from the dimension of A and shows the dependency on the building. More

generally in Rn the volume of the n-tetrahedron formed by a basis is 1
n! times the volume of the

n-parallelotope generated by the same basis. Since C = (e1, e2) is orthonormal, the matrix on the

right hand side is the transpose of the matrix whose columns are [−→xy]C , [−→xz]C . Therefore,

volX(x, y, z)(ξ) =
1

2
det ([−→xy]C | [−→xz]C)

=
1

2
det (M [−→xy]B | M [−→xz]B)

=
1

2
det(M) det ([−→xy]B | [−→xz]B)

=
1

4
det ([−→xy]B | [−→xz]B)

=
1

4
det

(
mu(y)−mu(x) mu(z)−mu(x)

nu(y)− nu(x) nu(z)− nu(x)

)
.

From Remark 3.2.5, we have

m(u, x, ξ) = −mu(x), m(u, y, ξ) = −mu(y), m(u, z, ξ) = −mu(z),

and similar equations for the function n. Together with the 1-cocycle relation of Corollary 3.2.9

we obtain (
mu(y)−mu(x)

nu(y)− nu(x)

)
=

(
−m(u, y, ξ) +m(u, x, ξ)

−n(u, y, ξ) + n(u, x, ξ)

)
=

(
m(y, x, ξ)

n(y, x, ξ)

)
,(

mu(z)−mu(x)

nu(z)− nu(x)

)
=

(
−m(u, z, ξ) +m(u, x, ξ)

−n(u, z, ξ) + n(u, x, ξ)

)
=

(
m(z, x, ξ)

n(z, x, ξ)

)
.

Using anti-symmetry, we conclude

volX(x, y, z)(ξ) =
1

4
det

(
m(y, x, ξ) m(z, x, ξ)

n(y, x, ξ) n(z, x, ξ)

)
.

Notice how the signs in the last equality depend on the dimension of the building.

Remark 3.3.5. — It is worth mentioning a formula making the link with the specifications of

the Busemann cocycle. With the same notations and hypothesis, the change of basis implies

e1 ∧ e2 = det(M)−1v1 ∧ v2 = 2 · v1 ∧ v2.

Consequently,

volX(x, y, z)(ξ) = v1 ∧ v2(
−→xy,−→xz)

= det

(
〈−→xy, v1〉 〈−→xy, v2〉
〈−→xz, v1〉 〈−→xz, v2〉

)
= det

(
B(x, y)(ξ1) B(x, y)(ξ2)

B(x, z)(ξ1) B(x, z)(ξ2)

)
.

This formula follows from Example 1.2.31 and was first observed by Klingler [Kli03, Appendix A,

Proposition 12].
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Lemma 3.3.6. — Let A be an apartment of X containing two vertices x, y and let ξ, ξ′ be two

opposite chambers at infinity, i.e. δ(ξ, ξ′) = s1s2s2. Then,

m(y, x, ξ′) = n(x, y, ξ) and n(y, x, ξ′) = m(x, y, ξ).

Proof of Lemma 3.3.6. — Let u be a vertex in the intersection of Sectx(ξ) and Secty(ξ). Consider

the opposite sector Sectu(ξ
′). For R ∈ N large enough, the vertex u′ ∈ A with sector coordinates

(R,R) in Sectu(ξ
′) will be such that u′ ∈ Sectx(ξ

′) ∩ Secty(ξ
′), and x, y ∈ Conv(0)(u, u′). In the

latter parallelogram, we have the following equations

mx(u) + nx(u
′) = R and nx(u) +mx(u

′) = R,

and the same equations holds for y in place of x. Lemma 3.2.7 implies

m(y, x, ξ′) = mx(u
′)−my(u

′) = R− nx(u)− (R− ny(u)) = ny(u)− nx(u) = n(x, y, ξ),

and similarly n(y, x, ξ′) = m(x, y, ξ).

Proof of Proposition 3.3.3. — Given x, y, z ∈ X(0) and ξ ∈ Ω, pick u ∈ Sectx(ξ) (or equivalently

ξ ∈ Ωx(u)) such that

mx(u), nx(u) ≥ max{d1(x, y), d1(x, z)}.
Lemma 3.2.6 implies u ∈ Sectt(ξ) for all t ∈ {x, y, z}. For every t ∈ {x, y, z}, let At be an

apartment containing Sectt(ξ), let ξt be the chamber opposite(1) to ξ in At, and denote by ρ = ρAx,ξ

the canonical retraction onto Ax centered at ξ. The retraction ρ|At : At → Ax is an isometry

fixing Sectx(ξ) ∩ Sectt(ξ) for all t ∈ {x, y, z}, hence fixing u. Consequently Sectu(ξt) is mapped

isometrically by ρ onto Sectu(ξx). We denote by t̃ the image under ρ of t, so that

x = x̃ = ρ(x), ỹ = ρ(y), and z̃ = ρ(z).

It follows from t ∈ Sectu(ξt) that t̃ ∈ Sectu(ξx), where t stands for either x, y, or z. Notice the

relation between the orientations,

σ(Ax, ξ)σ(Ax, ξx) = (−1)l(s1s2s1) = −1.

Applying the definition of volX twice,

volX(x, y, z)(ξ) = volAx,σ(Ax,ξ)(x̃, ỹ, z̃) = − volAx,σ(Ax,ξx)(x̃, ỹ, z̃) = − volX(x̃, ỹ, z̃)(ξx).

By construction of x̃, ỹ, z̃ and ξx, we have using Lemmas 3.3.4 and 3.3.6

volX(x, y, z)(ξ) = − volX(x̃, ỹ, z̃)(ξx)

= −C1 · det
(
m(ỹ, x̃, ξx) m(z̃, x̃, ξx)

n(ỹ, x̃, ξx) n(z̃, x̃, ξx)

)
= −C1 · det

(
n(x̃, ỹ, ξ) n(x̃, z̃, ξ)

m(x̃, ỹ, ξ) m(x̃, z̃, ξ)

)
= C1 · det

(
m(x̃, ỹ, ξ) m(x̃, z̃, ξ)

n(x̃, ỹ, ξ) n(x̃, z̃, ξ)

)
= C1 · det

(
m(x, y, ξ) m(x, z, ξ)

n(x, y, ξ) n(x, z, ξ)

)
,

where the last equality follows from Lemma 3.2.7 (or from the 1-cocycle identity via u) and that

ρ maps isometrically Sectu(ξt) onto Sectu(ξx). The result holds by setting Cvol = C1 = 1
4 .

(1)In the spherical building ∂X, we have δ(ξ, ξt) = s1s2s1, the longest element of W . In particular, Sectu(ξt) ⊂ At.
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A comment on the proof. Similarly to the previous lemma, we used the fact that dim(X) = 2

to multiply both columns by (−1), emphasizing the dependency on the type of X. On the other

hand, it is not clear how the antepenultimate equality should behave in other buildings, e.g. if X

is of type Ãn.

As a general philosophy the integers m(x, y, ξ), n(x, y, ξ) can be computed with the cocycle

relation via any u ∈ Sectx(ξ) ∩ Secty(ξ). It is therefore clear that they are constant on Ωx(u) as

functions of ξ. We then write m(x, y, u), n(x, y, u) for their values at some ξ ∈ Ωx(u). As always

mx(u), nx(u) being greater than d1(x, y) is a sufficient condition, see Lemma 3.2.7.

Corollary 3.3.7. — For every x, y, z ∈ X(0), the function volX(x, y, z) factors throught SR,R(x)

for all natural numbers R ≥ max{d1(x, y), d1(x, z)}. In other words, volX(x, y, z) is constant on

Ωx(u) for each u ∈ SR,R(x), and

volX(x, y, z)(u) = Cvol · det
(
m(x, y, u) m(x, z, u)

n(x, y, u) n(x, z, u)

)
.

In particular, volX(x, y, z) : Ω → R is locally constant.

3.4. Visual measures and the Poisson transform

This section introduces two kind of Borel measures on Ω called visual measures in order to

generalize the Poisson transform.

3.4.1. Visual measures on Ω with respect to a point. — The characterization of Ω as a

projective limit of finite sets, namely lim←−S (x), is very useful to define a Borel probability measure

νx on Ω associated to x called the visual measure at x. Start by endowing each sector sphere

Sm,n(x) with the uniform probability measure νm,n giving each singleton {u} weight

νm,n(u) = N−1
m,n =

1

|Sm,n(x)|
.

Lemma 3.4.1. — The measures νm,n form a projective system of measures that is

(pxm′,n′)∗(νm,n) = (px,m,n
m′,n′ )∗(νm,n) = νm′,n′ ,

for all (m′, n′) ≤ (m,n) ∈ N2, where (px,m,n
m′,n′ )∗ is the map that sends a measure on Sm,n(x) to its

image measure(2) (or pushforward measure) on Sm′,n′(x). Consequently, there is a unique Borel

probability measure νx on Ω satisfying

(pxm,n)∗(νx) = νm,n,

for all (m,n) ∈ N2. In particular,

νx(Ωx(u)) = νm,n(u) = N−1
m,n,

for all (m,n) ∈ N2 and u ∈ Sm,n(u).

(2)Let p : X → Y be a measurable map between two measurable spaces. For every measure ν on X, the image

measure of ν under p is defined by the formula p∗(ν)(B) = ν(p−1(B)) for all measurable B ⊂ Y .
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Proof. — The reference for the projective limit measure is [Bou04, Integration, Chapitre III,

§4.5]. It suffices to prove νm′,n′(u) = (px,m,n
m′,n′ )∗(νm,n)(u) for all u ∈ Sm′,n′(x). On the one hand,

νm′,n′(u) = N−1
m′,n′ . On the other hand, we have a partition

Sm,n(x) =
⊔

u∈Sm′,n′ (x)

(px,m,n
m′,n′ )

−1(u),

into subsets of cardinal Nm,n ·N−1
m′,n′ . We conclude that

(px,m,n
m′,n′ )∗(νm,n)(u) = νm,n

(
(px,m,n

m′,n′ )
−1(u)

)
=

Nm,n ·N−1
m′,n′

Nm,n
= N−1

m′,n′ .

Remark 3.4.2. — Let x be a vertex of X and νx the corresponding visual measure. The group

of automorphisms of X fixing x acts on each sector sphere Sm,n(x) preserving the probability

measure νm,n. Consequently νx is also invariant under this action.

The topology on Ω was seen to be invariant of the point of reference in the building X, (Sec-

tion 3.2). The visual measures however depend fundamentally on the point of reference. Never-

theless they are all pairwise absolutely continuous.

Proposition 3.4.3. — [CMS94, Lemma 2.5] For every x, y ∈ X(0), the measures νx and νy are

mutually absolutely continuous, i.e. they share the same null sets (subsets of measure 0). Moreover,

the Radon-Nikodym derivative of νy with respect to νx is given by

dνx
dνy

(ξ) = q2(m(x,y,ξ)+n(x,y,ξ)),

for all ξ ∈ Ω. In other words the following ‘change of variable’ formula holds:

νx(f) =

ˆ
Ω

f(ξ)dνx(ξ) =

ˆ
Ω

f(ξ)
dνx
dνy

(ξ)dνy(ξ) = νy(
dνx
dνy

f),

for all measurable f : Ω → C.

3.4.2. Visual measure on Ω with respect to a chamber. — In Chapter 2, we presented the

Poisson transform as defined by Klingler in [Kli04]. The construction of a B-invariant measure

νB was achieved by an alternating sum of B-invariant Borel probability measures on each B-orbit

of Ω. There B denoted the standard Iwahori subgroup of a group G of F -points of connected,

simply connected, almost F -simple algebraic group over a local field F . In this algebraic setting,

X was Bruhat-Tits building of G on which it acts strongly transitively, and B was the stabilizer

of a chamber C of X. Not all buildings admit a strong transitive group of automorphisms. For

instance, one can build(3) a locally finite tree with trivial automorphism group by carefully choosing

the valency of each vertex. In this case the orbits in Ω would be trivial whereas in the former case

the B-orbits were in bijection with the finite Weyl group W thanks to the Iwasawa decomposition

of Proposition 2.3.1. The proof showed that the B-orbits were characterized locally in the link of

a vertex containing the chamber C. We use this idea to generalize the measures g∗νB by working

in the link of a vertex.

Let X be a (thick) locally finite Euclidean building of type Ã2. We start by recalling the

structure of the link of a vertex x, say of type 0. In the classical case of the Bruhat-Tits building

(3)or grow if you prefer
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of SL3(F ) over a local field F , the link of a vertex is isomorphic to the incidence geometry of the

projective plane P2(k) where k is the residue field of F , i.e. a finite field of order q. In the general

case, the link is also the incidence geometry of an abstract finite projective plane. More precisely,

lk(x) is isomorphic to a bi-partite (q+1)-regular graph where the chambers of lk(x) correspond to

the edges of the graph and the partition is given by the type of the vertices. They form two sets

of cardinal q2 + q + 1 and the graph has girth = 6 = card(W ), i.e. the shortest length of a loop

is 6. One concludes that

card(lk(x)) = (q + 1)(q2 + q + 1) = (q3 + 2q2 + 2q + 1).

The link of X is a finite building of type (W, {s1, s2}). Given a chamber C ∈ lk(x), we have

card({C ′ ∈ lk(x) | δ(C,C ′) = w}) = q�(w),

for all w ∈ W , hence,

card(lk(x)) =
∑
w∈W

q�(w)

Since the cardinal of lk(x) is independent of x we shall abbreviate | lk |. We now define the analogue

of the B-orbits Ow of Section 2.3.

Notation 3.4.4. — For ξ ∈ Ω, we denote by Cx(ξ) the unique chamber in the intersection

Sectx(ξ) ∩ lk(x), that is the initial chamber of Sectx(ξ). We may refer to it as the top of Sectx(ξ).

Definition 3.4.5. — Given C ∈ lk(x), define the following open subset of Ω:

Ωx(C) := {ξ ∈ Ω | Cx(ξ) = C} = Ωx(u1) ∩ Ωx(u2),

where u1, u2 are the vertices of type 1 and 2 of C respectively.

Notation 3.4.6. — Let C be a chamber whose vertex of type 0 is x. Let ξ ∈ Ω, we denote:

• wC(ξ) := δ(C,Cx(ξ)) ∈ W .

• For w ∈ W , we define the w-orbit from C by Ow(C) = {ξ ∈ Ω | wC(ξ) = w}.

Immediately, we have the obvious decompositions

Ω =
⊔

C∈lk(x)

Ωx(C) =
⊔

w∈W

Ow(C),

which imply the following lemma.

Lemma 3.4.7. — For every w ∈ W ,

Ow(C) =
⊔

C′∈lk(x)
δ(C,C′)=w

Ωx(C
′).

Moreover, for all C ′ ∈ lk(x) and all w ∈ W ,

νx(Ωx(C
′)) =

1

| lk | and νx(Ow(C)) =
q�(w)

| lk | .
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Proof. — The first part is clear from the definitions. We show that νx(Ωx(C
′)) = νx(Ωx(C)), for

all C ′ ∈ lk(x). By finite additivity,

1 = νx(Ω) = νx

⎛⎝ ⊔
C̃∈lk(x)

Ωx(C̃)

⎞⎠ =
∑

C̃∈lk(x)

νx(Ωx(C̃)) = | lk | · νx(Ωx(C
′)),

for all C ′ ∈ lk(x). The last statement follows as easily.

We are ready to define the measure νC with the w-orbits Ow generalizing the B-orbits of

Section 2.3.

Definition 3.4.8. — Let C be a chamber in X and x be its vertex of type 0.

• The Borel probability measure νC,w is defined by restriction to Ow(C) and normalisation

of νx. More precisely,

νC,w(E) =
νx(E ∩ Ow(C))

νx(Ow(C))
,

for all measurable E ⊂ Ω or equivalently,ˆ
Ω

f(ξ)dνC,w(ξ) =

 
Ow(C)

f(ξ)dνx(ξ) =
1

νx(Ow(C))

ˆ
Ow(C)

f(ξ)dνx(ξ),

for all continuous f : Ω → C.

• The signed Borel measure νC is defined by the formula

νC :=
∑
w∈W

ε(w)νC,w =
∑
w∈W

(−1)�(w)νC,w.

As ε is a character of W , we have in particular that
∑

w∈W ε(w) = 0, so that

νC(Ω) =
∑
w∈W

ε(w)νC,w(Ω) =
∑
w∈W

ε(w) νC,w(Ow(C))︸ ︷︷ ︸
=1

= 0

• Finally |νC | =
∑

w∈W νC,w, so that |νC |(Ω) = |W | = 6.

Definition 3.4.9 (Poisson transform). — Let f : Ω → C be a measurable function. The

Poisson transform of f is the map Pf : Ch(X) → C define by integration via

Pf(C) = 〈f, νC〉 =
ˆ
Ω

f(ξ)dνC(ξ),

for all C ∈ Ch(X).

3.4.3. A Formula for the Poisson transform. — Given a chamber C of X with xC as its

type 0 vertex(4), recall the associated measure νC is given by

νC =
∑
w∈W

(−1)�(w)νC,w,

where each νC,w is a normalization of νxC
|Ow(C).

For every x ∈ X(0), the map Cx : Ω → lk(x) factors through S1,1(x) simply because it assigns

to ξ ∈ Ω the top of Sectx(ξ). (The point u ∈ Sectx(ξ) of coordinates (1, 1) clearly determines those

(4)We warn the reader that xC was denoted by the letter x in the previous section introducing νC . Here x is a

variable of volX .
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of coordinates (1, 0) and (0, 1) hence the top of Sectx(ξ).) Since the map wC : Ω → W is defined

by

wC(ξ) = δ(C,CxC
(ξ)),

it also factors through the sphere S1,1(xC).

Now the Radon-Nikodym derivative of νC with respect to νxC
becomes

dνC
dνxC

(ξ) = (−1)�(wC(ξ))q−�(wC(ξ))| lk |,

for all ξ ∈ Ω. To be precise :

dνC
dνxC

(ξ) =
∑
w∈W

δ{wC(ξ)=w}ε(w)q−�(w)| lk |.

For any u ∈ Sm,n(xC) with m,n ≥ 1, we write wC(u) and
dνC

dνxC
(u) for the corresponding images.

Also Example 3.3.2 showed the Radon-Nikodym derivative of νxC
with respect to νx,

dνxC

dνx
(ξ) = q−2(m(x,xC ,ξ)+n(x,xC ,ξ)),

to factor through Sm,n(x) provided m,n ≥ d1(x, xC).

Theorem 3.4.10. — Let x = (x, y, z) ∈ X3 be a triple of vertices, C ∈ Ch(X), and let xC be

vertex of C of type 0. Then for every natural number R ∈ N, satisfying

R ≥ max{d1(x, y), d1(x, z), 2d1(x, xC)},

we have

PvolX(x)(C) = Cvol ·N−1
R,R ·

∑
u∈SR,R(x)

det

(
m(x, y, u) m(x, z, u)

n(x, y, u) n(x, z, u)

)
· dνC
dνxC

(u) · dνxC

dνx
(u), (3.3)

where Cvol is the constant of Proposition 3.3.3.

Proof. — Under the hypothesis

R ≥ max{d1(x, y), d1(x, z)},

Corollary 3.3.7 implies that volX(x) factors through SR,R(x), i.e. is constant on each Ωx(u) when

u ranges in the sphere. Thus

PvolX(x)(C) =

ˆ
Ω

volX(x)(ξ)dνC(ξ)

=
∑

u∈SR,R(x)

volX(x)(u)

ˆ
Ωx(u)

dνC(ξ)

=
∑

u∈SR,R(x)

volX(x)(u) · νC(Ωx(u)).
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If moreover(5) R ≥ 2d1(x, xC), we have Ωx(u) = ΩxC
(u) thanks to Corollary 3.2.8. But also the

Radon-Nikodym derivatives appearing in the next computations are constant on Ωx(u). Therefore,

νC(Ωx(u)) =

ˆ
Ωx(u)

dνC(ξ)

=

ˆ
Ωx(u)

dνC
dνx

(ξ)dνx(ξ)

=

ˆ
Ωx(u)

dνC
dνxC

(ξ)
dνxC

dνx
(ξ)dνx(ξ)

=
dνC
dνxC

(u)
dνxC

dνx
(u)

ˆ
Ωx(u)

dνx(ξ)

=
dνC
dνxC

(u) · dνxC

dνx
(u) · νx(Ωx(u))

=
dνC
dνxC

(u) · dνxC

dνx
(u) ·N−1

R,R

for all u ∈ SR,R(x). A shorter proof of this computation could look like :

νC(Ωx(u)) =
dνC
dνx

(u) · νx(Ωx(u)) =
dνC
dνx

(u)N−1
R,R,

for all u ∈ SR,R(x). The result follows from the formula for volX(x, y, z)(u) given in Proposi-

tion 3.3.3. But here is the final computation nevertheless:

PvolX(x)(C) =
∑

u∈SR,R(x)

volX(x)(u) · νC(Ωx(u))

=
∑

u∈SR,R(x)

volX(x)(u) · dνC
dνxC

(u) · dνxC

dνx
(u) ·N−1

R,R

= Cvol ·N−1
R,R ·

∑
u∈SR,R(x)

det

(
m(x, y, u) m(x, z, u)

n(x, y, u) n(x, z, u)

)
· dνC
dνxC

(u) · dνxC

dνx
(u).

In this construction, the observer was located at x. Using y and z in the role of x one obtains

an averaging formula provided R satisfies the hypothesis

R ≥ max{diam({x, y, z}), 2d1(x, xC), 2d1(y, xC), 2d1(z, xC)},
where the diameter is with respect to the sector distance d1. We could take the less precise but

uniform bound

R ≥ 2 diam({x, y, z, xC}).
In the next corollary, we denote # the counting measure of a finite set and

ffl
d# denotes the

average summation on it.

Corollary 3.4.11. — Let x = (x, y, z) ∈ X3 be a triple of vertices, C ∈ Ch(X), and let xC be the

vertex of C of type 0. Then for every R ∈ N satisfying

R ≥ max{diam({x, y, z}), 2d1(x, xC), 2d1(y, xC), 2d1(z, xC)},

(5)Without loss of generality, suppose R is greater than 42, to avoid degeneracies.
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we have

PvolX(x)(C) =

 
t∈{x,y,z}

 
SR,R(t)

volX(x, y, z)(u)
dνC
dνt

(u)d#(u)d#(t),

Comments 3.4.12. — We make two comments:

(i) Trying to apply some sort of Fubini’s theorem to this last formula is desirable and could be

one way to investigate the values taken by PvolX(x). However this requires us to compare the

various spheres SR,R(t) with t ∈ {x, y, z}. We fear that after an exhaustive analysis one may

fall back on the original formula due to the 1-cocycle identity satisfied by m and n. Another

path of investigation is to try to group the positive and negative terms in the summation

over u ∈ SR,R(x).

(ii) The formula above indeed generalizes the Poisson transform of Klingler in the case of a

Bruhat-Tits building, except maybe up to a permutation of the types, hence up to a sign.

This has no real consequence for Ã2 buildings since all vertices are special. We did not

discuss whether the Poisson transform ranges in the harmonic functions on Ch(X), nor did

we approach the question of square integrability. The formula we obtained seems not to

depend on the isomorphism class of the building, but rather on the regularity parameter and

on the cardinal of the intersections of some sectors spheres. Intuitively, it should be that

the formula depends only on the relative positions of x, y, z, xC , and on q. Should this be

true, we could say that the value of PvolX(x)(C) does not depend on the building under

investigation! This would imply that it is indeed harmonic and L2 for all Ã2 buildings whose

regularity parameter q ∈ N is a prime power, because we know it to be true for Bruhat-Tits

buildings.



CHAPTER 4

THE RANK ONE CASE

In this chapter we compute the growth of Klingler’s 1-cocycle. The Bruhat-Tits building X

associated to SL2(F ) over a local field is a (q + 1)-regular tree, where q is the cardinal of the

residue field of F . In particular, q is a power of a prime number. In this case, the cocycle coincides

with the Busemann cocycle which exists for any CAT(0) space. In fact, the present context can

be extended to any regular tree without restriction on the regularity parameter q, except maybe

q ≥ 2 to ensure thickness. Independently, Gournay and Jolissaint [GJ15] obtained an explicit

bound for the norm of any harmonic 1-cocycle. Their result applies to all harmonic 1-cocycle

and makes use of the Green kernel and its inverse, something that seems unavailable for higher

rank buildings. The method presented in this chapter yields a sublinear bound as that of loc. cit.

We hope nevertheless that our explicit calculations shed light on the combinatorics of Klingler’s

cocycle.

4.1. Homogeneous trees and extended Poisson transform

Notation 4.1.1. — For q ∈ N, let X be the (q + 1)-regular (unoriented) tree identified as usual

with its geometric realization endowed with the CAT(0) metric d for which the edges have length 1.

We denote by:

• X(0) the set of vertices of X with type function τ : X(0) → Z/2Z.

• X(1) = Ch(X) the set of (open) edges.

• Ω = ∂X = Ch(∂X) the visual boundary of X as a CAT(0) space.

• rξx the unique geodesic ray issuing at x ∈ X pointing toward ξ ∈ Ω.

• B : X2 → C(Ω) the Busemann cocycle which maps (x, y) ∈ X2 to the function

ξ �→ B(x, y)(ξ) = Bξ(x, y) := lim
t→∞ d(y, rξx(t))− t.

More generally

B(x, y)(ξ) = lim
z→ξ

d(y, z)− d(x, z),

in the CAT(0) compactification of X.

The boundary Ω is endowed with the topology generated by subsets of the form

Ωx(u) = {ξ ∈ Ω | the geodesic ray rξx passes through u},
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where u ∈ X. For every R ∈ N, let SR(x) denote the sphere in X of radius R about a vertex x.

The visual measure νx centered at a vertex x is the Borel probability measure such that Ωx(u) has

measure card(SR(x))
−1, with R = d(x, u).

The construction of the Poisson transform in an Ã2 building is easily adapted to the present

setting(1). We now describe the content of this Section which is a slight generalization of our

previous constructions. In the general case we associate to each edge C a signed Borel measure νC
on Ω, following the ideas of Section 3.4. The Poisson transform of a measurable function f : Ω → C

is then the map Pf : Ch(X) → C given by

Pf(C) = 〈f, νC〉 =
ˆ
Ω

f(ξ)dνC(ξ).

Assuming Pf to be square summable on the set of edges, its �2-norm is invariant under pointwise

changes of sign. In other words, changing the sign of Pf(C) at arbitrarily many C does not

change ‖Pf‖�2 . Such a change amounts to replacing the measure νC by −νC . Thus one can adapt

the signs of the measure νC in order to get a uniform configuration. Up to a sign, the measure

νC can be described as follows. If we remove the edge C from the tree X, we are left with two

connected components T+ and T− whose visual boundaries partition ∂X = ∂T+ � ∂T−. Up to

a sign, the measure νC is the alternating sum of Borel probability measures on ∂T+ and ∂T−,
see Notation 4.1.5 and Lemma 4.1.7. In order to put this in a slightly more general context, we

introduce oriented edges and corresponding measures e �→ νe such that if e, ē are the two opposite

orientations of a common edge then νe = −νē.

Notation 4.1.2. — We denote by:

• E the set of all(2) oriented edges of X endowed with the involution e �→ ē sending an edge e

to its opposite orientation,

• o, t : E → X(0) the maps sending an edge e to its origin o(e) and target t(e) respectively.

• |E| := X(1) the set of unoriented edges, i.e. the image under the 2-to-1 map

| · | : E → |E|

forgetting the orientation, namely sending e to |e| = {o(e), t(e)}.

To define the measure νe associated to an oriented edge e ∈ E, we need the following lemma.

Lemma 4.1.3. — Let v be a vertex in X and T be the connected component containing v of the

forest obtained from X by removing at most q edges of the link of v. Then for every x, y /∈ T , we

have

Ωx(u) = Ωy(u),

for all u ∈ T � {v}. Moreover the Busemann cocycle satisfies

B(x, y)(ξ) = d(y, v)− d(x, v),

for all ξ ∈ Ωx(u).

(1)The reader is invited to do it as an exercise.
(2)two for each edge C ∈ X(1),
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Proof. — Let u ∈ T � {v}, x, y /∈ T , and ξ ∈ Ωx(u). Since rξx passes through u, the geodesic must

enter T at v, and, hence, never leave T thereafter because geodesics may not backtrack in a tree.

On the other hand we know that rξx(R) ∈ rξy for all R > 0 large enough. Therefore rξy also enters

T at v. This shows Ωx(ξ) ⊂ Ωy(ξ), and the equality holds by switching roles of x and y. The

Busemann cocycle at ξ ∈ Ω is given by

B(x, y)(ξ) = lim
z→ξ

d(y, z)− d(x, z).

Equivalently B(x, y)(ξ) is the unique integer satisfying rξx(R) = rξy(R + B(x, y)(ξ)), for all suffi-

ciently large R > 0. In fact, as soon as rξx(R) sits in the intersection of rξx and rξy, then the previous

identity holds. Since v is in that intersection the last assertion follows.

If νx denotes the visual measure at x, we have

νx(Ωx(u)) =
(
(q + 1)qd(x,u)−1

)−1

,

for all u 
= x. Recall that the Radon-Nikodym derivatives for visual measures is given by

dνx
dνy

(ξ) = qB(x,y)(ξ),

for all x, y ∈ X and ξ ∈ Ω, see Proposition 3.4.3.

Corollary 4.1.4. — Let v and T be as in Lemma 4.1.3. Then for all vertices x, y /∈ T � {v}
dνx
dνy

(ξ) = qd(y,v)−d(x,v),

for all u ∈ T � {v} and ξ ∈ Ωx(u).

Notation 4.1.5. — For every e ∈ E, we denote:

• T+
e and T−

e , the two connected components of X � {|e|}, such that the origin o(e) is in T+
e

and its target t(e) is in T−
e , see Figure 1,

• ∂T±
e , the visual boundary of T±

e , so that Ω = ∂X = ∂T+
e � ∂T−

e ,

• ν±e , the visual measure on ∂T±
e , i.e. the Borel probability measure on ∂T±

e proportional to

the (vertex) visual measure νo(e).

• νe := ν+e − ν−e and |νe| := ν+e + ν−e .

The mnemonic is to picture the edge e as being the neck of an hourglass. We think of T+
e being

filled with sand flowing into T−
e in the direction determined by e, again see Figure 1.

Remark 4.1.6. — The boundaries ∂T±
e are well defined thanks to Lemma 4.1.3. More precisely,

∂T−
e contains the classes of rays issuing at o(e) and passing through t(e), i.e.

∂T−
e = Ωo(e)(t(e)),

whereas ∂T+
e , the complement in Ω, can be written as

∂T+
e =

⊔
u∈S1(o(e))

u	=t(e)

Ωo(e)(u).

The normalizations of ν±e are done using

νo(e)(∂T
−
e ) =

1

q + 1
and νo(e)(∂T

+
e ) =

q

q + 1
.

The following lemma is now clear.



58 CHAPTER 4. THE RANK ONE CASE

∂T−
e∂T+

e
e

. . .

. . .

. . . . . .

...

...

. .
.

. .
.

Figure 1. Decomposition Ω = ∂T+
e � ∂T−

e .

Lemma 4.1.7. — Consider an edge C = |e| for some e ∈ E. Then the signed measure νC defined

as in Definition 3.4.8 is ±νe with + sign if and only if the orientation corresponding to the labelling

of C is that of e, that is if and only if o(e) is of type 0.

Definition 4.1.8 (Poisson transform). — The Poisson transform of a measurable function f :

Ω → C is the map Pf : E → C given by

Pf(e) = 〈f, νe〉 =
ˆ
Ω

f(ξ)dνe(ξ).

Readily the above Poisson transform is merely an alternating version of the Poisson transform

of previous chapters, so that the next Proposition holds.

Proposition 4.1.9. — Let f : Ω → C be a measurable function. Then Pf is antisymmetric with

respect to the map reversing orientations, that is

Pf(ē) = −Pf(e)
for all e ∈ E, thus

|Pf(e)| = |Pf(|e|)|.
If moreover Pf ∈ �2(E), then

‖Pf‖2�2(E) =
∑
e∈E

Pf(e)2 = 2 ·
∑

|e|∈|E|
Pf(|e|)2 = 2‖Pf‖2�2(|E|) = 2‖Pf‖2�2(Ch(X)).

Definition 4.1.10. — An orientation of the edges of X is a section of the forgetful map | · |. It is
equivalent to the choice of a fundamental domain E+ of the involution e �→ e. Clearly E = E+�E−,
where E− = E+.
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As mentioned above, the labeling induces an orientation of the edges of X. More precisely each

edge C is mapped to the oriented edge e ∈ E such that o(e) is of type 0 and t(e) of type 1. We

will later choose adequate orientations to perform computations.

Corollary 4.1.11. — Given an orientation of the edges with fundamental domain E+, one has

‖Pf‖2�2(E+) = ‖Pf‖2�2(|E|).

To compute the norm of a Poisson transform, we are free to pick any orientation of each edge.

The rest of the chapter aims at computing an upper bound for ‖PB(x, y)‖2�2(E) which yields the

asymptotic growth when d(x, y) tends to infinity.

4.2. Strategy and results

Let G be the group of type-preserving automorphisms of X. It acts naturally on E as well.

The G-equivariance of the Klingler cocycle, i.e. the Busemann cocycle B, implies that PB(x, y) is

invariant under the action of the intersection K[x,y] := Kx ∩Ky of the stabilisers of x and y. The

latter coincides with FixG([x, y]), the pointwise stabiliser of the geodesic segment [x, y]. Let R be

set of representatives for the action of K[x,y] onto E. We conclude

‖PB(x, y)‖2�2(E) =
∑
e∈R

PB(x, y)(e)2 · card(K[x,y]e). (4.1)

Consequently, it is desirable to identify the various K[x,y]-orbits and determine their cardinal as

well as the value of the Poisson transform of B(x, y) at those points. This is the strategy we adopt.

4.2.1. Projection. — Prior to describing the orbits precisely, we recall the notion of projection.

Let e ∈ E be an oriented edge, the distance between e and the segment [x, y] is given by

d(e, [x, y]) := d(|e|, [x, y]) = inf
t∈[x,y],t′∈|e|

d(t, t′).

The group G acts on X by isometries, consequently this distance is constant on the whole K[x,y]-

orbit of e. Similarly d(x, e) and d(y, e) enjoy the same property. These quantities determine the

relative position of x, y and e in X and should intuitively determine the value of PB(x, y)(e) up to

a sign as we shall see in the next section.

In a tree, and more generally in a CAT(0) space [BH99, Chapter II.2, Proposition 2.4], there

is a well defined notion of projection onto a closed convex subset. The projection p : X → [x, y]

has the property that the distance between any point v ∈ X and the segment [x, y] is realized by

d(v, p(v)). Let e ∈ E and suppose |e| is not contained in [x, y]. The distance d(|e|, [x, y]) is realized
by d(v, p(v)) where v is the vertex of |e| closest to [x, y]. In fact, v is itself the projection of x, or

equivalently of any point of [x, y], onto the closure of |e|. We shall write pe for the projection of e

onto [x, y], see Figure 10 for an example.

4.2.2. Orbits in E under the action of FixG([x, y]). — When sorting the possible configura-

tions of e ∈ E with respect to [x, y], it seems natural to distinguish the case where x, y and e lie

in a common apartment, i.e. on a geodesic line. This amounts to saying that either |e| ⊂ [x, y] or,

else, that pe is equal to x or y. Recall that the projection of an edge onto [x, y] is defined only for
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edges not in [x, y]. For simplicity we assume d(x, y) ≥ 2 so that the following configurations occur

and yield disjoint subsets of E:

e ∈ A1 ⇐⇒ pe = x,

e ∈ A2 ⇐⇒ |e| ⊂ [x, y],

e ∈ A3 ⇐⇒ pe = y,

e ∈ B ⇐⇒ pe 
= x, y.

We imply that pe is defined if printed. Set A := ∪iAi; we have a partition

E = A1 � A2 � A3 � B, (4.2)

into stable subsets under e �→ ē.

x y

...
...

...

...

...
...

...
...

...

. . . . . .. . . . . .

A3A1

A2

B

Figure 2. An arrangement of X emphasizing the decomposition of E with q = 4.

The motivation behind this sorting is the transitivity of FixG([x, y]) on the set of apartments

of X containing [x, y], e.g. Corollary 1.2.23. Consequently, the partition (4.2) is K[x,y]-invariant.

The orbit of an edge in A is easy to determine, whereas the case B will require more work, see

Section 4.4. We nevertheless state the main resuls and prove the case A modulo the proof of

Lemma 4.2.3 which appears in Section 4.3.

Lemma 4.2.1. — The cardinal of the K[x,y]-orbit of e ∈ A is given by:

card(K[x,y]e) =

{
qd(e,[x,y])+1 if e ∈ A1 ∪ A3,

qd(e,[x,y]) = 1 if e ∈ A2.

Proof. — Let e ∈ A. It is clear that the right hand side depends only on |e|. If e ∈ A2, then

|e| ⊂ [x, y] is fixed by K[x,y]. Assume e ∈ A1 and let w ∈ Waff be the W-distance between the edge

Cx in [x, y] having x as a vertex and |e| that is w = δ(Cx, |e|). Since K[x,y] acts transitively on

the set of apartments containing [x, y], the K[x,y]-orbit of |e| is B(Cx, w), which has cardinal q�(w).

(We warn that we are using the fact that X is a tree and not only a building.) The result follows

from �(w) = d(Cx, |e|) = d(|e|, [x, y]) + 1. The proof for e ∈ A3 is the same using Cy the unique

edge of [x, y] having y as a vertex.

Remark 4.2.2. — If we fix an apartment A containing [x, y], that is a geodesic line, and let RA

denote the set of all oriented edges e ∈ E with |e| ∈ A, the previous lemma shows RA is a set of

representatives for the orbits contained in A. In addition, we set RAi
= Ai ∩RA for i = 1, 2, 3.
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Regarding the value of PB(x, y) at edges in A, the following lemma is proved in Section 4.3.

Lemma 4.2.3. — For every e ∈ A1 ∪ A3,

|PB(x, y)(e)| ≤ 2

(q − 1)
q−d(e,[x,y]);

whereas for every e ∈ A2,

|PB(x, y)(e)| ≤ 2(q + 1)

(q − 1)
.

The main result is the following theorem.

Theorem 4.2.4. — Let X be the (q + 1)-regular tree with q ≥ 4. There exist constants

CA1 , CA2 , CA3 , CB > 0 depending only on the regularity parameter q such that for every pair

x, y ∈ X of vertices with d(x, y) ≥ 2, if Ai for i = 1, 2, 3, and B are the corresponding subsets of

oriented edges as defined in Paragraph 4.2.2, we have∑
e∈A1

|PB(x, y)(e)|2 ≤ CA1 ,∑
e∈A2

|PB(x, y)(e)|2 ≤ CA2 · d(x, y),∑
e∈A3

|PB(x, y)(e)|2 ≤ CA3 ,∑
e∈B

|PB(x, y)(e)|2 ≤ CB.

Moreover,

CA1 = CA3 =
8q2

(q − 1)3
, CA2 =

8(q + 1)2

(q − 1)2
, and CB =

16q3

(q − 1)3(q + 1)
.

Corollary 4.2.5. — Let X be the (q+1)-regular tree with q ≥ 4. Then there is a constant C > 0(3)

depending only on the regularity parameter q such that

‖PB(x, y)‖2�2(E) ≤ C · d(x, y),

for all vertices x, y ∈ X, with d(x, y) ≥ 2.

Proof of Theorem 4.2.4. — Recall that we assume d(x, y) ≥ 2 to guaranty the nonemptyness of B.
The proof of the case B is postponed to Section 4.4 where we make use of the assumptions q ≥ 4.

There, we prove some lemmas similar to those for the Case A, namely Lemma 4.2.1 and Lemma

4.2.3, and we complete the proof of the present theorem. The proof for the Ai’s follows easily by

inserting the results of Lemma 4.2.1 and Lemma 4.2.3 into equation (4.1). For instance, using the

(3)C := max{CAi
, CB | i = 1, 2, 3}.
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representative set RA1
defined in Remark 4.2.2,∑

e∈A1

PB(x, y)(e)2 =
∑

e∈RA1

PB(x, y)(e)2 · card(K[x,y]e)

≤
∑

e∈RA1

(
2

q − 1
q−d(e,[x,y])

)2

· qd(e,[x,y])+1

= q

(
2

q − 1

)2 ∑
e∈RA1

q−d(e,[x,y])

=
4q

(q − 1)2
· 2 ·

∞∑
i=0

q−i

=
8q2

(q − 1)3
=: CA1

.

The case A3 is proved in the same way. The proof for A2 is simple:∑
e∈A2

PB(x, y)(e)2 =
∑

e∈RA2

PB(x, y)(e)2 · card(K[x,y]e)︸ ︷︷ ︸
=1

≤
∑

e∈RA2

(
2(q + 1)

(q − 1)

)2

=

(
2(q + 1)

(q − 1)

)2

· 2 · d(x, y) = 8(q + 1)2

(q − 1)2︸ ︷︷ ︸
=:CA2

·d(x, y).

4.3. The case A

This section contains the proof of Lemma 4.2.3. Here is a brief summary of the section. In order

to compute the value of the Poisson transform of B(x, y) at an edge e ∈ A, we decompose the

boundary Ω into a countable union of disjoint sets on which B(x, y) is constant. This is done by

removing the edges of a geodesic line σ containing e and [x, y] to X. We are left with a countable

forest {Tk}k∈Z of trees rooted at the vertices of σ, whose boundaries partition Ω�{σ(∞), σ(−∞)}.
The νe-measure ∂Tk is easily computed and then

PB(x, y)(e) =
∑
k∈Z

f(k)νe(∂Tk),

where f(k) is the value of B(x, y) on ∂Tk. The question is therefore transposed into a technical

problem on Z.

Assumptions 4.3.1. — For the remainder of the section, we fix the vertices x, y ∈ X at distance

d = d(x, y) and a geodesic line σ : R → X passing through [x, y] parametrized so that σ(0) = x

and σ(d) = y.

As noticed in Remark 4.2.2, we only need to estimate the value of PB(x, y) at edges sitting on

σ and we may choose their orientation thanks to Proposition 4.1.9. For every i ∈ Z, let ei be the

oriented edge with origin σ(i) and target σ(i + 1). Thus it suffices to establish Lemma 4.2.3 for
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the ei’s only. Accordingly we take RA to be the set of all oriented edges supported on σ, thus our

choice of orientation is R+
A
= {ei | i ∈ Z} and R−

A
= R+

A
. The sets R+

Ai
, R−

Ai
are defined similarly(4).

For every ei ∈ R+
A
, we have

ei ∈ RA1 ⇐⇒ i < 0,

ei ∈ RA2 ⇐⇒ 0 ≤ i < d,

ei ∈ RA3
⇐⇒ d ≤ i.

The K[x,y]-orbits of R
+
A

form our choice of orientation A+, idem for A+
i .

Proposition 4.3.2. — Let rξx denote the unique geodesic ray issuing at x pointing toward ξ ∈ Ω.

For every k ∈ Z, let Ωk be the subset of ξ ∈ Ω such that the intersection of rξx and σ is the segment

[x, σ(k)], see Figure 3. Then B(x, y) is constant on Ωk for all k ∈ Z. Moreover, if f(k) denotes

its value on Ωk, we have

f(k) =

⎧⎪⎪⎨⎪⎪⎩
d if k ≤ 0,

d− 2k if 0 ≤ k ≤ d,

−d if d ≤ k.

Proof. — For every k ∈ Z, let Tk be the tree rooted at σ(k) obtained by removing from X all

(open) edges of σ, thus we have a forest

X �
⋃
k∈Z

(σ(k), σ(k + 1)) =
⊔
k∈Z

Tk.

Assume ξ ∈ Ω is not an end of σ; there exists k ∈ Z such that rξx ∩ σ = [x, σ(k)]. Thus rξx enters

Tk, namely rξx(|k|+1) ∈ Tk. Since geodesics cannot backtrack rξx stays in Tk thereafter. We are in

the situation of Lemma 4.1.3, hence σ(k) sits on both rξx and rξy, so that

B(x, y)(ξ) = d(y, σ(k))− d(x, σ(k)). (4.3)

Finally:

B(x, y)(ξ) = d(y, σ(k))− d(x, σ(k)) =

⎧⎪⎪⎨⎪⎪⎩
(d+ |k|)− |k| = d if k ≤ 0,

(d− k)− k = d− 2k if 0 ≤ k ≤ d,

(k − d)− k = −d if d ≤ k.

The proof shows that we could have picked any vertices of σ instead of x to define the Ωk.

Moreover the formula (4.3) for the Busemann cocycle holds not only for x, y but also for any pair

of vertices of σ. From this, one can easily deduce the following corollary.

Corollary 4.3.3. — Under the conditions of Proposition 4.3.2, the subset Ωk ⊂ Ω can be written

as

Ωk =
⊔

u∈Tk�{σ(k)}
Ωx(u) =

⊔
u∈S1(σ(k))
u	=σ(k±1)

Ωx(u),

and its visual measure with respect to any vertex σ(i) is given by νσ(i)(Ωk) =
q−1
q+1q

−|k−i|.

(4)R+
Ai

= RAi
∩ E+ = R

Ai∩E+ = R
A
+
i

and also R+
A

= R
A+
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...
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...
...
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...
...

...
...

...

Tk

. . . . . .

Ωk

σ(k)x = σ(0) y = σ(d)

Figure 3. Situation of Proposition 4.3.2, with q = 4.

The countable family {Ωk | k ∈ Z} is an open cover of Ω� {σ(±)} by level sets of B(x, y). We

now compute the νe-measure of Ωk.

Proposition 4.3.4. — For every i ∈ Z, let ei ∈ R+
A

be the oriented edge with origin σ(i) and

target σ(i+ 1). The νei-measure of Ωk defined in Proposition 4.3.2 is given by:

νei(Ωk) =
(q − 1)

q
·
{
q−|k−i| if k − i ≤ 0,

−q−(k−i)+1 if k − i > 0.

Proof. — This follows from the definitions of Ωk and νe, and the previous corollary.

Three real continuous functions are useful for the upcoming analysis and have their graphs

pictured in Figure 4, 5, and 6.

Definition 4.3.5. — Let f, g : R → R be the continuous real functions defined by:

f(x) =

⎧⎪⎪⎨⎪⎪⎩
d if x ≤ 0,

d− 2x if 0 ≤ x ≤ d,

−d if d ≤ x,

and g(x) = q−|x|. Define furthermore g 1
2
: R → R by:

g 1
2
(x) =

⎧⎪⎪⎨⎪⎪⎩
g(x) if x ≤ 0,

1− 2x if 0 ≤ x ≤ 1,

−g(x− 1) if 1 ≤ x.

The function g 1
2
has a symmetry about 1

2 as the notation suggests, see Figures 5 and 6. The

present definition of f extends that of Proposition 4.3.2. Similarly for g 1
2
, we have

νei(Ωk) =
(q − 1)

q
g 1

2
(k − i)

for all k, i ∈ Z by Proposition 4.3.4. The reasons behind the definition of g 1
2
on the unit interval

[0, 1] is to have a continuous symmetric function, see below. The following corollary summarizes

the above discussion.
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0

d
d
2

d

−d

f

Figure 4. Graph of f .

0

g

Figure 5. Graph of g.

0

g 1
2

Figure 6. Graph of g 1
2
.

Corollary 4.3.6. — Let i ∈ Z and ei ∈ R+
A
. Then the evaluation of the Poisson transform of

B(x, y) at ei is given by:

PB(x, y)(ei) =
(q − 1)

q

∑
k∈Z

f(k)g 1
2
(k − i). (4.4)

Proof. — The singletons {σ(±∞)} have νx-measure 0, hence are null sets with respect to νei as

well. Using σ-additivity,

PB(x, y)(ei) =

ˆ
Ω

B(x, y)(ξ)dνei(ξ)

=
∑
k∈Z

ˆ
Ωk

B(x, y)(ξ)dνei(ξ)

=
∑
k∈Z

f(k)νei(Ωk)

=
(q − 1)

q

∑
k∈Z

f(k)g 1
2
(k − i),

where the last equality uses Proposition 4.3.4.

Remark 4.3.7. — Looking at the the formula of the previous corollary the reader may wonder

why we did not group all terms in the tails of the series where f is constant equal to d for k < 0
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and −d for k ≥ d. The author concedes that he found no intelligent way to treat the resulting

finite sum and preferred summing over all Z to use the invariance under translations of its counting

measure as done in the upcoming paragraph.

4.3.1. Analysis on Z. — To finalise the case A, we need to estimate the value of the series

obtained in Corollary 4.3.6. In additions to the real functions in one variable f, g, g 1
2
introduced

in the previous section, we use the following notations.

Notation 4.3.8. — We denote:

• 〈f1, f2〉 =
∑

k∈Z f1(k)f2(k), for all f1, f2 real valued for which the series is well defined,

• τtf(x) = f(x− t) for all f : R → R and t ∈ R,

• f̌(x) = (f )̌ (x) = f(−x) for all f : R → R,

• τ̌tf(x) = f(x+ t) = τ−tf(x) for all f : R → R and t ∈ R,

• 1I the characteristic function of an interval I ⊂ R.

The linear operators τt andˇrepresent the action of t and −1 respectively for the natural action

of Isom(R) = R�O(1) = R� {±1} on the space of real valued functions on the real line.

Proposition 4.3.9. — The following identities hold when meaningful.

(i) 〈τtf1, τtf2〉 = 〈f1, f2〉 = 〈f̌1, f̌2〉,
(ii) τt ◦ τs = τt+s = τs ◦ τt,
(iii) ˇ̌f = f ,

(iv) (τtf )̌ = τ−tf̌ = τ̌tf̌ ,

(v) τt1I = 1I+t,

(vi) (1I )̌ = 1−I .

As Proposition 4.3.2 shows, the values of the Busemann cocycle yield the piecewise affine func-

tion f . Here are more notations for affine functions and their relations with the operators ˇ and τ .

Definition 4.3.10 (Affine functions). — Let p ∈ R.

• For every interval I of the form [a, b] or ]a, b] with −∞ < a < b < ∞, or ]a, b[ or [a, b[ with

−∞ < a < b ≤ ∞, we denote by Ap
I the affine function with slope p supported on I such

that Ap
I(a) = 0. In other words,

Ap
I(x) = 1I(x) · p(x− a),

for all x ∈ R.

• For every interval I of the form [a, b] or [a, b[ with −∞ < a < b < ∞, or ]a, b[, ]a, b] with

−∞ ≤ a < b < ∞, we denote by Bp
I the affine function with slope p supported on I such

that Bp
I (b) = 0. In other words,

Bp
I (x) = 1I(x) · p(x− b),

for all x ∈ R .

In proofs, we may use implicitly the properties below.

Proposition 4.3.11. — For every p ∈ R and every I ⊂ R for which Ap
I is defined, we have

(Ap
I )̌ = B−p

−I .

Furthermore,

λAp
I = Aλp

I and τλA
p
I = Ap

λ+I ,
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for all λ ∈ R. Similar statements hold for Bp
I .

Definition 4.3.12. — Let f : R → R (or f : Z → R) be a real valued function.

• We say that f has a symmetry about h ∈ R (resp. h ∈ 1
2Z) if its graph is invariant under the

central symmetry at the point (h, 0) ∈ R2. Equivalently f satisfies −f̌ = τ−2hf .

• We say that f has an axial symmetry about y = h if its graph is invariant under the reflexion

through the vertical line y = h. Equivalently f satsifies f̌ = τ−2hf .

Remark 4.3.13. — Using the formulas of Proposition 4.3.9, one can show that f is symmetric

about 0 if and only if τhf is symmetric about h ∈ R. The same holds for axial symmetries.

Proposition 4.3.14. — Let f, g, g 1
2
be as in Definition 4.3.5. Then f can be written as

f = d · 1]−∞,0[ +A−2
[0,d[ + d · 1[0,d[ − d · 1[d,∞[,

and has a symmetry at d/2. Moreover g 1
2
has a symmetry at 1

2 and g has an axial symmetry about

y = 0. In equations, this amounts to

−f̌ = τ−df, −ǧ 1
2
= τ−1g 1

2
, and ǧ = g.

Proof. — It suffices to stare at the graphs of Figures 4, 5, and 6.

Proposition 4.3.15. — For every i ∈ Z, define a linear operator

Ti =
1

2
(τ−i + τ−d+i+1).

Then Tif is symmetric about 1
2 and has same sign as g 1

2
, consequently

〈f, τig 1
2
〉 = 〈Tif, g 1

2
〉 = 〈|Tif |, |g 1

2
|〉 = ‖Tif · g 1

2
‖�1(Z) = 2‖Tif · g 1

2
‖�1(N∗).

Proof. — Using (i) of Proposition 4.3.9,

〈f, τig 1
2
〉 = 〈τ−if, g 1

2
〉.

The absolute convergence is guaranteed as f is bounded and g 1
2
is of geometric type. On the other

hand, the identities of Proposition 4.3.9 yield

〈f, τig 1
2
〉 = 〈τ−df, τ−d+i+1τ−1g 1

2
〉 by (i) and (ii),

= 〈−f̌ ,−τ−d+i+1ǧ 1
2
〉 symmetries of f and g 1

2
,

= 〈f̌ , (τd−i−1g 1
2
)̌ 〉 by (iv),

= 〈f, τd−i−1g 1
2
〉 by (i),

= 〈τ−d+i+1f, g 1
2
〉 by (i).

Taking the average, we get 〈f, τig 1
2
〉 = 〈Tif, g 1

2
〉. One easily verifies

(Tif )̌ = −τ−1Tif.

Since f and its translates are continuous and change signs only at their point of symmetry, the

same holds for the average of two translates of f . We deduce that Tif has the same sign as g 1
2
.

The remaining equalities follow easily from the signs and the symmetry about 1
2 .
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Remark 4.3.16. — Since for every, i ∈ Z,

PB(x, y)(ei) =
(q − 1)

q
〈f, τig 1

2
〉 = (q − 1)

q
‖Tif · g 1

2
‖�1(Z) ≥ 0,

our choice of orientation of the edges A+ is the set of oriented edges on which the Poisson transform

of B(x, y) is non-negative.

So far no majoration has been performed and we are still carrying the exact value of the Poisson

transform for edges in R+
A
. The next proposition computes explicitly Tif and bounds |Tif | by

affine functions.

Remark 4.3.17. — The formulation and proof of the next proposition have some redundancy.

Indeed since Tif = Td−i−1f for all i ∈ Z, the computations need only be performed for i ≥ d−1
2

which is the fixed point of i �→ d− i− 1. We included both cases for the sake of completeness. The

geometric interpretation is that edges opposite to the midpoint of [x, y] should intuitively yield

similar value, maybe up to a sign.

Proposition 4.3.18. — We have upper bounds:

|Tif | ≤ B−1
]−∞,i+1] +A1

[−i,∞[, if i < 0, (4.5)

|Tif | ≤ B−2
]−∞, 12 ]

+A2
[ 12 ,∞[, if 0 ≤ i < d, (4.6)

|Tif | ≤ B−1
]−∞,d−i] +A1

[−d+i+1,∞[, if d ≤ i. (4.7)

Moreover multiplying by |g 1
2
| and taking the �1(Z)-norm on both sides, we obtain:

‖Tif · g 1
2
‖�1(Z) ≤ 2

q

(q − 1)2
q−(|i|−1), if i < 0, (4.8)

‖Tif · g 1
2
‖�1(Z) ≤ 2

q(q + 1)

(q − 1)2
, if 0 ≤ i < d, (4.9)

‖Tif · g 1
2
‖�1(Z) ≤ 2

q

(q − 1)2
q−(i−d), if d ≤ i. (4.10)

Proof. — The statement and the proof are in two parts. We first give explicit formulas for Tif and

prove the bounds for |Tif |. Then multiplying those bounds by |g 1
2
| and compute corresponding

�1(Z)-norms.

Part 1. — The support of the piecewise affine function f consists of three intervals

]−∞, 0[, [0, d[, and [d,∞[,

with cut points at 0 and d. Their translates under τ−i and τ−d+i+1 yield four cut points namely

−i, d− i,−d+ i+ 1 and i+ 1 with possible repetitions. Using Proposition 4.3.14 and Proposition

4.3.11, we can write

τ−if = d · 1]−∞,−i[ +A−2
[−i,d−i[ + d · 1[−i,d−i[ − d · 1[d−i,∞[,

τ−d+i+1f = d · 1]−∞,−d+i+1[ +A−2
[−d+i+1,i+1[ + d · 1[−d+i+1,i+1[ − d · 1[i+1,∞[.

Therefore Tif is piecewise affine with support split into at most five intervals. Their configuration

depends on i ∈ Z and leads to four cases, see Figure 7. In each case the real line is partitioned

into five intervals I1, I2, I3, I4, I5 with possible repetitions. We replace the intervals by their index

as follows. For every subset L ⊂ {1, 2, 3, 4, 5} we write

IL := ∪�∈LI�, 1L := 1IL , and Ap
L := Ap

IL
,
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i < 0 :

0 ≤ i ≤ d−1
2 :

d−1
2 ≤ i < d :

d ≤ i :

−d+ i+ 1 i+ 1

−i d− i

−d+ i+ 1

−i

i+ 1

d− i

−i

−d+ i+ 1

d− i

i+ 1

−i d− i

−d+ i+ 1 i+ 1

Figure 7. The cut points of τ−if and τ−d+i+1f .

for p ∈ R and being careful that Ap
IL

is defined, i.e. when IL is an interval. In addition, a singleton

L = {�} ⊂ {1, 2, 3, 4, 5} is abbreviated L = �, for instance 12∪3 = 1{2,3} = 1I{2,3} = 1I2∪I3 .

Case (i): Suppose i < 0, the cut points are ordered as

−d+ i+ 1 < i+ 1 < −i < d− i,

and yield the intervals:

I1 =]−∞,−d+ i+ 1[, I2 = [−d+ i+ 1, i+ 1[,

I3 = [i+ 1,−i[, I4 = [−i, d− i[,

I5 = [d− i,∞[.

To write τ−if and τ−d+i+1f in terms of these intervals, notice that

]−∞,−i[= I1 ∪ I2 ∪ I3, [−i, d− i[= I4 and [d− i,∞[= I5,

so that

τ−if = d · 11∪2∪3 +A−2
4 + d · 14 − d · 15,

and similarly

]−∞,−d+ i+ 1[= I1, [−d+ i+ 1, i+ 1[= I2, and [i+ 1,∞[= I3 ∪ I4 ∪ I5,

so that

τ−d+i+1f = d · 11 +A−2
2 + d · 12 − d · 13∪4∪5.

Summing the two previous equations yields

2Tif = 2d · 11 +A−2
2 + 2d · 12 +A−2

4 − 2d · 15,

thus,

Tif = d · 11 +A−1
2 + d · 12 +A−1

4 − d · 15.
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We see that Tif is non-negative on I1 ∪ I2, vanishes on I3, and is non-positive on I4 ∪ I5. Indeed

A−1
2 + d · 12 ≥ 0 since I2 is of length d. In fact, A−1

2 + d · 12 = B−1
2 , see Figure 8. Consequently,

|Tif | = d · 11 +A−1
2 + d · 12 +A1

4 + d · 15,

≤ B−1
1∪2 +A1

4∪5,

which proves (4.5).

d

0−d+ i+ 1 i+ 1

−i d− i

|Tif |

B−1
1∪2 A1

4∪5

Figure 8. Case (i): graph of |Tif |.

Case (ii): Suppose 0 ≤ i ≤ d−1
2 , the cut points are ordered as

−d+ i+ 1 ≤ −i < i+ 1 ≤ d− i,

with possible equalities provided d is odd and i = d−1
2 . But this is not a problem since we consider

semi-open intervals and [a, a[= ∅ for all a ∈ R. The partition with possible empty intervals is the

following:

I1 =]−∞,−d+ i+ 1[, I2 = [−d+ i+ 1,−i[,

I3 = [−i, i+ 1[, I4 = [i+ 1, d− i[,

I5 = [d− i,∞[.

The function τ−if and τ−d+i+1f can be written as

τ−if = d · 11∪2 +A−2
3∪4 + d · 13∪4 − d · 15,

τ−d+i+1f = d · 11 +A−2
2∪3 + d · 12∪3 − d · 14∪5,

the mean of which is

Tif = d · 11 + (d+A−1
2∪3)12 + (A−1

3∪4 + d+A−1
2∪3)13 +A−1

3∪4 · 14 − d · 15.

The function (A−1
3∪4+d+A−1

2∪3)13 changes sign at 1
2 and is bounded in absolute value by B−2

]−∞, 12 ]
+

A2
[ 12 ,∞[

, see Figure 9. Therefore one can check that

|Tif | = d · 11 + (d+A−1
2∪3)12 + |A−1

3∪4 + d+A−1
2∪3| · 13 +A1

3∪4 · 14 + d · 15

≤ B−2
]−∞, 12 ]

+A2
[ 12 ,∞[,

as desired to prove (4.6) for 0 ≤ i ≤ d−1
2 .

The other two cases follows from the first two by switching the roles of −i and −d+ i+ 1. We

includ the proofs for the sake of completeness.
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d

2i+ 1

0 1−d+ i+ 1 1
2

−i

i+ 1

d− i

|Tif |

B−2

]−∞, 1
2
]

A2

[ 1
2
,∞[

Figure 9. Case (ii): graph of |Tif |.

Case (iii): Suppose 0 ≤ i ≤ d−1
2 . The proof is similar to Case (ii), we have cut points ordered as

−i ≤ −d+ i+ 1 < d− i ≤ i+ 1.

The partition with possible empty intervals is the following:

I1 =]−∞,−i[, I2 = [−i,−d+ i+ 1[,

I3 = [−d+ i+ 1, d− i[, I4 = [d− i, i+ 1[,

I5 = [i+ 1,∞[.

The function τ−if and τ−d+i+1f can be written as

τ−if = d · 11 +A−2
2∪3 + d · 12∪3 − d · 14∪5,

τ−d+i+1f = d · 11∪2 +A−2
3∪4 + d · 13∪4 − d · 15,

which yields a similar formula to that of Case (ii):

Tif = d · 11 + (A−1
2∪3 + d)12 + (A−1

2∪3 + d+A−1
3∪4)13 +A−1

3∪4 · 14 − d · 15.

By the same argument as in Case (ii), we obtain

|Tif | = d · 11 + (A−1
2∪3 + d)12 + |A−1

2∪3 + d+A−1
3∪4| · 13 +A1

3∪4 · 14 + d · 15.

≤ B−2
]−∞, 12 ]

+A2
[ 12 ,∞[,

as desired to prove (4.6) for d−1
2 ≤ i < d.

Case (iv): Suppose d ≤ i. The proof is similar to Case (i); we have cut points ordered as

−i < d− i < −d+ i+ 1 < i+ 1,

which yield the intervals:

I1 =]−∞,−i[, I2 = [−i, d− i[,

I3 = [d− i,−d+ i+ 1[, I4 = [−d+ i+ 1, i+ 1[,

I5 = [i+ 1,∞[.

We write τ−if and τ−d+i+1f in terms these intervals,

τ−if = d · 11 +A−2
2 + d · 12 − d · 13∪4∪5,

τ−d+i+1f = d · 11∪2∪3 +A−2
4 + d · 14 − d · 15.
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The mean of which is

Tif = d · 11 +A−1
2 + d · 12 +A−1

4 − d · 15,

thus,

|Tif | = d · 11 +A−1
2 + d · 12 +A1

4 + d · 15,

≤ B−1
1∪2 +A1

4∪5,

proving (4.7).

Part 2. — We now prove the upper bounds (4.8),(4.9),(4.10). Since the functions

B−1
]−∞,−j+1] +A1

[j,∞[, B−2
]−∞, 12 ]

+A2
[ 12 ,∞[ and |g 1

2
|,

have an axial symmetry about y = 1
2 , for j ≥ 1, we have∥∥∥(B−1

]−∞,−j+1] +A1
[j,∞[

)
· |g 1

2
|
∥∥∥
�1(Z)

= 2 ·
∥∥∥A1

[j,∞[ · |g 1
2
|
∥∥∥
�1(N∗)

,∥∥∥(B−2
]−∞, 12 ]

+A2
[ 12 ,∞[

)
· |g 1

2
|
∥∥∥
�1(Z)

= 2 ·
∥∥∥A2

[ 12 ,∞[ · |g 1
2
|
∥∥∥
�1(N∗)

.

The computation will give the desired bounds by replacing j = −i = |i| for i < 0 and j = −d+i+1

for d ≤ i. For the first norm we compute:∥∥∥A1
[j,∞[ · |g 1

2
|
∥∥∥
�1(N∗)

=
∑
k≥0

A1
[j,∞](k)|g 1

2
(k)|

=
∑
k≥0

1[j,∞[(k)(k − j)q−(k−1)

=
∑
k≥j

(k − j)q−(k−1)

=
∑
k≥0

kq−(k+j−1) by change of variable k → k + j,

= q−(j−1)
∑
k≥0

kq−k

= q−(j−1) q

(q − 1)2
,

whereas for the second norm we obtain:∥∥∥A2
[ 12 ,∞[ · |g 1

2
|
∥∥∥
�1(N∗)

=
∑
k≥0

A2
[ 12 ,∞[(k)|g 1

2
(k)|

=
∑
k≥1

2(k − 1

2
)q−(k−1)

=
∑
k≥0

2(k +
1

2
)q−k by change of variable k → k + 1,

=
∑
k≥0

(2k + 1)q−k

=
q(q + 1)

(q − 1)2
,

as desired.
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At last we complete the case A with the proof of Lemma 4.2.3.

Proof of Lemma 4.2.3. — It suffices to prove the lemma for edges in R+
A
, which is by definition

the set of oriented edges of the form (σ(i), σ(i + 1)) with i ∈ Z, where σ is a fixed geodesic with

σ(0) = x and σ(d) = y (cf. the paragraph below the Assumption 4.3.1). Recall that

ei ∈ R+
A1

⇐⇒ i < 0,

ei ∈ R+
A2

⇐⇒ 0 ≤ i < d,

ei ∈ R+
A3

⇐⇒ d ≤ i.

In any case we proved:

PB(x, y)(ei) =
(q − 1)

q
〈τ−if, g 1

2
〉 equation (4.4) of Corollary 4.3.6,

=
(q − 1)

q
‖Tif · g 1

2
‖�1(Z). by Proposition 4.3.15.

If 0 ≤ i < d, the bound (4.9) of Proposition 4.3.18 gives

PB(x, y)(ei) =
(q − 1)

q
‖Tif · g 1

2
‖�1(Z)

≤ (q − 1)

q
· 2 · q(q + 1)

(q − 1)2
=

2(q + 1)

(q − 1)
.

If i < 0, the vertex x sits between ei and y on the geodesic σ, so that the distance d(ei, [x, y])

is given by d(σ(i + 1), x) = d(σ(i + 1), σ(0)) = |i + 1| = |i| − 1. Applying the bound (4.8) of

Proposition 4.3.18 yields

PB(x, y)(ei) =
(q − 1)

q
‖Tif · g 1

2
‖�1(Z)

≤ (q − 1)

q
· 2 · q

(q − 1)2
q−(|i|−1)

= 2 · 1

(q − 1)
q−d(e,[x,y]).

If d ≤ i, it is y that sits on [x, σ(i)], hence d(ei, [x, y]) = d(σ(i), y) = d(σ(i), σ(d)) = i − d. The

bound (4.10) of the same proposition yields

PB(x, y)(ei) =
(q − 1)

q
‖Tif · g 1

2
‖�1(Z)

≤ (q − 1)

q
· 2 · q

(q − 1)2
q−(i−d)

= 2 · 1

(q − 1)
q−d(e,[x,y]).
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4.4. The case B

This section contains the proof of the last estimate of Theorem 4.2.4, which states the existence

of a constant CB > 0 depending on the regularity parameter q such that∑
e∈B

PB(x, y)(e)2 ≤ CB.

Recall that an oriented edge e is in B if and only if there is no geodesic line containing both |e|
and [x, y], which is equivalent to having a well defined projection pe onto [x, y] such that pe 
= x, y.

For this situation to occur we assume d(x, y) ≥ 2.

We briefly give the strategy before proceeding step by step. In the case A, the K[x,y]-orbits

in A were level sets for PB(x, y) easily described thanks to the transitivity of K[x,y] on the set of

apartments containing [x, y]. We indeed showed that the value at e ∈ A depends, up to a sign,

only on its distance to [x, y] and the number of edges at a given distance was easy to deduce. In

the present case, the value depends not only on the distance d(e, [x, y]) but also on the position

of the projection pe of |e| on the segment [x, y]. It is a priori not clear that all edges at a given

distance and projecting on a given p ∈ [x, y], lie in the same K[x,y]-orbit. We mean that it is not

clear if strong transitivity suffices to prove it as we did for A. In fact, they do sit in the same

K[x,y]-orbit. To see this, consider the tree Tp rooted at p in the forest obtained by removing the all

edges of [x, y] from X. The automorphisms of X fixing pointwise [x, y] and all the other trees in

the forest, acts on Tp as the full group of automorphisms of the rooted q-ary tree(5) Tp. The latter

is certainly transitive on each level, i.e. on the subset of vertices at given distance. In any case,

we compute the value of PB(x, y) for an arbitrary edge e ∈ B see Remark 4.4.11, identify the level

sets denoted Bk,l in Notation 4.4.13 below, and use them (instead of K[x,y]-orbits) to estimate:∑
e∈B

PB(x, y)(e)2 =
∑
k,l

PB(x, y)(ek,l)
2 card(Bk,l),

where ek,l is any edge in Bk,l, see the proof after Notation 4.4.13.

Continuing the comparison with the case A, we fix again a geodesic line σ containing [x, y] and

defining a partition {Ωσ
k | k ∈ Z} of Ω � {σ(∞), σ(−∞)}, for which B(x, y) takes value f(k) on

each Ωσ
k . We then consider a second geodesic line τ containing |e| and pe that intersects [x, y]

only at the point pe. The situation is pictured in Figure 10. This obviously requires q ≥ 3, but

we assume q ≥ 4 for a general configuration. We thus obtain another partition {Ωτ
l | l ∈ Z} of

Ω � {τ(∞), τ(−∞)}. Intersecting the latter with the former partition yields a countable family

{Ωk,l | k, l ∈ Z} of νe-measurable subsets covering Ω� {σ(±∞), τ(±∞)}. The intersection Ωk,l =

Ωσ
k ∩Ωτ

l is frequently empty and has computable νe-measure otherwise, see Proposition 4.4.6. The

end points of τ and σ are negligible and consequently,

PB(x, y)(e) =
∑
k∈Z

f(k)
∑
l∈Z

νe(Ωk,l),

which results in the formula of Corollary 4.4.7. From here, we can work the value of the formula

and proceed to an analysis of the problem transported in Z. It is without a doubt possible to

adapt the method to q = 2, 3.

After this description we proceed to concretize this strategy rigorously.

Assumptions 4.4.1. — For the remainder of the section, we assume q ≥ 4.

(5)In fact Tp starts with q − 1 edges, then is q-ary thereafter.
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• We fix vertices x, y ∈ X at distance d = d(x, y) ≥ 2 and a geodesic line σ : R → X passing

through [x, y] parametrized so that σ(0) = x and σ(d) = y.

• Also fixed is an edge e ∈ B oriented so that its target t(e) realizes the distance of |e| to [x, y].

The edge e is pointing toward [x, y].

The projection pe of e onto [x, y] satisfies d(e, [x, y]) = d(pe, t(e)).

• Let τ be a geodesic line passing through |e|, parametrized so that e = (τ(0), τ(1)), and whose

intersection with σ is reduced to the point pe, see Figure 10.

• Let ke denote the distance between x and the projection pe, and le denote the distance

between o(e) and pe.

Therefore ke, le satisfy σ(ke) = pe = τ(le), as well as

d(x, pe) = ke, d(y, pe) = d− ke, and d(e, [x, y]) = d(t(e), de) = le − 1.

Thus 1 ≤ ke ≤ d− 1 and le ≥ 1, see Figure 10.

pe = τ(le) = σ(ke)

σ

τ

τ(l)

σ(k)

Ωk,le

Ωke,le

Ωke,l

x = σ(0) y = σ(d)

e

τ(0)

Figure 10. The geodesics σ, τ in X.

Definition 4.4.2 (Trees Tσ
k and T τ

l ). — For every k ∈ Z, let T σ
k be the connected component

containing σ(k) of the space obtained by removing the edges of σ to X. Similarly for l ∈ Z define

T τ
l to be the connected component containing τ(l) of the space obtained by removing the edges

of τ .

Remark 4.4.3. — For l 
= le, the tree T τ
l rooted at τ(l) is a subset of T σ

ke
so that

T σ
ke

= (
⊔
l 	=le

T τ
l ) � (T τ

le ∩ T σ
ke
).
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Symmetrically, for k 
= ke, the tree T σ
k rooted at σ(k) is a subset of T τ

le
and

Tσ
le = (

⊔
k 	=ke

T σ
k ) � (T τ

le ∩ T σ
ke
).

The tree T τ
le
∩ T σ

ke
is nonempty since q ≥ 4.

Notice that for the trees defined above Lemma 4.1.3 applies. Since the measure νe is defined

in terms of νo(e), the point o(e) = τ(0) will serve as a reference centre. One should keep in mind

pe = τ(le) = σ(ke).

Proposition 4.4.4. — For every l ∈ Z, let Ωl be the subset of ξ ∈ Ω such that the intersection

of rξτ(0) and τ is the segment [τ(0), τ(l)]. In Figure 10, they consist of the small trees facing up

touching τ but not σ when l 
= le, whereas Ωle is the entire bottom part. For every k ∈ Z, let Ωle,k

be the subset of ξ ∈ Ωle such that the intersection of rξτ(0) and σ is [σ(ke), σ(k)]. In Figure 10,

they consist of the small trees facing down. Then B(x, y) is constant on Ωl for l 
= ke, where it

takes value f(ke), f being the function of Definition 4.3.5, and also constant on each Ωle,k where

it takes value f(k).

Proof. — It is a simple application of Lemma 4.1.3. We remark that x, y /∈ T τ
l for all l 
= le and

x, y /∈ T σ
k for all k 
= ke. One may need to be careful with Ωle,ke

.

Regarding the νe-measure of the set defined above, the upcoming proposition makes use of the

functions g, g 1
2
of Definition 4.3.5, and of h defined below.

Definition 4.4.5. — The function h : R → R defined by

h(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(x+ 1) if x ≤ −1,

1 if − 1 ≤ x ≤ 1 and x 
= 0,

0 if x = 0,

g(x− 1) if x ≥ 1,

is continuous except at x = 0 and has an axial symmetry about y = 0, namely ȟ = h. The value

of h at x = 0 will be useful for later purposes.

0

h

Figure 11. Graph of h.

Proposition 4.4.6. — We have

Ωle,ke =
⊔

u∈T τ
le
∩Tσ

ke

Ωo(e)(u),
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and for every l 
= le and k 
= ke,

Ωl =
⊔

u∈T τ
l

Ωo(e)(u) and Ωle,k =
⊔

u∈Tσ
k

Ωo(e)(u).

Moreover, the νe-measures of those sets are given by

νe(Ωl) =
(q − 1)

q
· g 1

2
(l), if l 
= le,

νe(Ωle,k) =
(q − 1)

q
· g 1

2
(l) · 1

q
· h(k − ke), if k 
= ke,

νe(Ωle,ke) =
(q − 3)

q
· g 1

2
(le).

Proof. — This follows easily using Lemma 4.1.3 and the Radon-Nikodym derivative of the visual

measures.

Corollary 4.4.7. — Under Assumptions 4.4.1 the Poisson transform of B(x, y) at e is given by

PB(x, y)(e) =
(q − 1)

q2
g 1

2
(le)

(∑
k∈Z

f(k)h(k − ke)

)
− 2

q
f(ke)g 1

2
(le).

Proof. — The boundary Ω is decomposed as the disjoint union of the sets Ωl for l 
= le, the sets

Ωle,k for k ∈ Z, and the four points σ(±∞), τ(±∞) which form a null set with respect to νo(e).

Proposition 4.4.4 guarantees B(x, y) to be constant on each set of this partition. Consequently,

using σ-additivity

PB(x, y)(e) =

ˆ
Ω

B(x, y)(ξ)dνe(ξ)

=

ˆ
Ωle,ke

B(x, y)(ξ)dνe(ξ) +
∑
k 	=ke

ˆ
Ωle,k

B(x, y)(ξ)dνe(ξ) +
∑
l 	=le

ˆ
Ωl

B(x, y)(ξ)dνe(ξ)

= f(ke)νe(Ωle,ke) +
∑
k 	=ke

f(k)νe(Ωle,k) + f(ke)
∑
l 	=le

νe(Ωl)

=
(q − 3)

q
f(ke)g 1

2
(le) +

(q − 1)

q2
g 1

2
(le)
∑
k∈Z

f(k)h(k − ke) +
(q − 1)

q
f(ke)

∑
l 	=le

g 1
2
(l),

where the last equality is due to Proposition 4.4.6 and we use h(0) = 0 to make the notation

uniform. Since g 1
2
is symmetric about 1

2 by Proposition 4.3.14, we have −g 1
2
(−l) = g 1

2
(l+1), thus

the terms in the last series cancel out except for l = −le + 1:∑
l 	=le

g 1
2
(l) = g 1

2
(−le + 1) = −g 1

2
(le).

Therefore,

PB(x, y)(e) =
(q − 3)

q
f(ke)g 1

2
(le) +

(q − 1)

q2
g 1

2
(le)
∑
k∈Z

f(k)h(k − ke)−
(q − 1)

q
f(ke)g 1

2
(le)

=
(q − 1)

q2
g 1

2
(le)
∑
k∈Z

f(k)h(k − ke)−
2

q
f(ke)g 1

2
(le),

as desired.

This corollary provides an explicit formula that we will estimate with tools of Paragraph 4.3.1.
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4.4.1. From X to Z. — We now proceed to the analysis of the formula obtain in Corollary

4.4.7. Replacing the integers ke, le by arbitrary k, l ∈ Z, we define

Sl(k) :=
(q − 1)

q2
g 1

2
(l)〈f, τkh〉 −

2

q
f(k)g 1

2
(l).

The absolute convergence of Δ(k) := 〈f, τkh〉 is clear. We apply similar averaging technics to those

performed in the case A.

Lemma 4.4.8. — For every k ∈ Z, define the operator T̃k = 1
2 (τ−k − τk−d). Then:

(i) the function Δ has a symmetry about d/2 and satisfies

Δ(k) = 〈T̃kf, h〉.
(ii) The function Sl also has a symmetry about d/2 and |Sl| has an axial symmetry about y = d/2

for all l ∈ Z.

Proof. — In order to prove (i), recall that −f̌ = τ−df and ȟ = h. Hence,

Δ(k) = 〈f, τkh〉 = 〈τ−kf, h〉 = 〈(τ−kf )̌ , ȟ〉 = 〈τkf̌ , h〉 = −〈τk−df, h〉,
which proves that Δ(k) = 〈T̃kf, h〉 at once. But continuing the development,

Δ(k) = −〈τk−df, h〉 = −〈f, τd−kh〉 = −Δ(d− k) = −Δ̌ (k − d) = −τdΔ̌ (k)

proves the claimed symmetry about d/2.

For (ii), notice that Sl is a linear combination of Δ and f ,

Sl =
(q − 1)

q2
g 1

2
(l)Δ− 2

q
g 1

2
(l)f.

Since both f and Δ are symmetric at d/2, so is Sl. The axial symmetry of |Sl| is immediate.

Recall from the Assumptions 4.4.1 that we wish to evaluate Sl(k) for 1 ≤ k ≤ d − 1. The

symmetry of Sl allows us to focus on 1 ≤ k ≤ d/2 only.

Lemma 4.4.9. — For every integer 1 ≤ k ≤ d/2, the function T̃kf has finite support, an axial

symmetry about y = 0 and the has same sign as h, that is T̃kf ≥ 0. Therefore,

Δ(k) = 〈T̃kf, h〉 = ‖T̃kf · h‖�1(Z) = 2‖T̃kf · h‖�1(N∗),

using again h(0) = 0.

Proof. — The symmetry is true in general as shown by

(T̃kf )̌ =
1

2
(τ−kf − τk−df )̌ =

1

2
(τ̌−kf̌ − τ̌k−df̌) =

1

2
(−τk−df + τ−kf) = T̃kf.

For the analysis of T̃kf , we proceed as in the proof of Proposition 4.3.18 and use its conventions.

The notable cut points of the piecewise affine function f are 0 and d. Therefore those of τ−kf and

τk−df are −k, d− k and k − d, k respectively. Since 1 ≤ k ≤ d/2 they are ordered as

k − d ≤ −k < k ≤ d− k,

with possible equalities if k = d/2. The cut points define five intervals

I1 =]−∞, k − d[, I2 = [k − d,−k[,

I3 = [−k, k[, I4 = [k, d− k[,

I5 = [d− k,∞[,
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with I2 and I4 possibly empty. Using the notations of the aforementioned proof, we can write

τ−kf = d · 11∪2 +A−2
3∪4 + d · 13∪4 − d · 15

τk−df = d · 11 +A−2
2∪3 + d · 12∪3 − d · 14∪5

Consequently

τ−kf − τk−df = (d− d)11 + (d−A−2
2∪3 − d)12 + (A−2

3∪4 + d−A−2
2∪3 − d)13

+ (A2
3∪4 + d+ d)14 + (−d+ d)15

= A2
2∪312 + (A−2

3∪4 +A2
2∪3)13 + (2d+A−2

3∪4)14.

Therefore,

T̃kf = A1
2∪312 + (A−1

3∪4 +A1
2∪3)13 + (d+A−1

3∪4)14

= A1
2 + (d− 2k)13 +B−1

4

= A1
2 + f(k)13 +B−1

4 .

d− 2k

0k − d

−k

k

d− k

T̃kf

Figure 12. Graph of T̃kf .

From this formula and the graph of T̃kf , Figure 12, we conclude that it has an axial symmetry

at y = 0 and T̃kf ≥ 0. The degenerate case k = d/2 occurs when T̃kf vanishes.

Lemma 4.4.10. — For every 1 ≤ k ≤ d/2,

Sl(k) =
−2

(q − 1)
q−kg 1

2
(l)(1− q−f(k)),

for all l ∈ Z.

Proof. — In order to simplify notations we set x := q−1 and shall uses both variables simultane-

ously. Also the reader should keep in mind that f(k) = d− 2k ≥ 0 for 1 ≤ k ≤ d/2. Since

Sl =
(q − 1)

q2
g 1

2
(l)Δ− 2

q
g 1

2
(l)f =

2(q − 1)

q2
g 1

2
(l)

(
Δ

2
− q

(q − 1)
f

)
,

we define

Σ :=
Δ

2
− q

(q − 1)
f =

Δ

2
− 1

(1− x)
f.

Lemma 4.4.9 implies
Δ(k)

2
= ‖T̃kf · h‖�1(N∗) = 〈T̃kf · 1[1,∞[, h〉.
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From the proof of that lemma and Figure 12, we have

T̃kf · 1[1,∞[ = f(k) · 1[1,k[ +B−1
[k,d−k[ = f(k) · 1[1,d−k] −A1

[k,d−k],

using, in the last equality,

A1
[k,d−k](d− k) = f(k) = B−1

[k,d−k[(k) and A1
[k,d−k](k) = 0 = B−1

[k,d−k[(d− k).

This form of T̃kf will simplify computations. Recall the well-known identities:

E1(m) :=

m∑
n=1

xn−1 =

m−1∑
n=0

xn =
1− xm

1− x
,

and

E2(m) :=

m∑
n=0

nxn−1 = x−1
m∑

n=0

nxn =
1

(1− x)2
(mxm+1 − (m+ 1)xm + 1),

for all m ∈ N.

Consequently,

Δ(k)

2
= 〈T̃kf · 1[1,∞[, h〉

=
d−k∑
n=1

f(k)q−n+1 −
d−k∑
n=k

(n− k)q−n+1

= f(k)

d−k∑
n=1

xn−1 − xk

f(k)∑
n=0

nxn−1

= f(k)E1(d− k)− xkE2(f(k)),

hence,

Σ(k) =
Δ(k)

2
− 1

(1− x)
f(k)

= f(k)E1(d− k)− xkE2(f(k))−
1

(1− x)
f(k)

=
1− xd−k

(1− x)
f(k)− 1

(1− x)
f(k)− xk

(1− x)2

(
f(k)xf(k)+1 − (f(k) + 1)xf(k) + 1

)
=

−xd−k

(1− x)
f(k)− xk

(1− x)2

(
f(k)xf(k)+1 − (f(k) + 1)xf(k) + 1

)
=

−xk

(1− x)2

(
f(k)xf(k)(1− x) + f(k)xf(k)+1 − (f(k) + 1)xf(k) + 1

)
=

−xk

(1− x)2

(
−xf(k) + 1

)
=

−q−kq2

(q − 1)2
(
1− q−k

)
.

The conclusion is

Sl(k) =
2(q − 1)

q2
g 1

2
(l)Σ(k) =

−2q−k

(q − 1)
g 1

2
(l)
(
1− q−k

)
.

Remark 4.4.11. — Going back to the geometric meaning of Sl(k), recall that PB(x, y)(e) =

Sle(ke), see Corollary 4.4.7. Since g 1
2
(l) < 0 for l ≥ 1 the previous lemma shows that the Poisson
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transform of B(x, y) takes positive value on the edge e ∈ B pointing toward [x, y] whenever ke =

d(x, pe) ≤ d/2. Thanks to the symmetry of Sl, we know that if d/2 ≤ ke ≤ d− 1 then

PB(x, y)(e) = Sle(ke) = −Sle(d− ke) = −Sle(d(y, pe)) < 0.

Corollary 4.4.12. — Let e ∈ B be an oriented edge and pe its projection onto [x, y]. Then,

|PB(x, y)(e)| ≤ 2

(q − 1)
· q−(me+d(e,[x,y])),

where me := min (d(pe, x), d(pe, y)).

Proof. — Let e ∈ B be such that ke = d(x, pe) ≤ d/2 so that me = ke. By Corollary 4.4.7 and

Lemma 4.4.10 we have

|PB(x, y)(e)| = Sle(me)

=
2

(q − 1)
q−me |g 1

2
(le)|(1− q−me)

≤ 2

(q − 1)
q−meq−le+1

=
2

(q − 1)
· q−me−d(e,[x,y]),

because d(e, [x, y]) = le−1. Assume now d/2 ≤ ke ≤ d−1. Then me = d(y, pe) = d−ke and again

|PB(x, y)(e)| = |Sle(ke)| = |Sle(d− ke)| = |Sle(me)|,

which can be estimated as in the first case.

Notation 4.4.13. — The set of edges e ∈ B oriented as in Assumptions 4.4.1 is denoted B+, it

consists of all edges pointing toward [x, y]. For every integer 1 ≤ k ≤ d − 1 and l ≥ 1 define B+
k,l

to be the set of edges e pointing toward [x, y] such that ke = k and le = l. We have

B+ =
⊔
l≥1

1≤k≤d−1

B+
k,l.

Subsets B−, B−
k,l are defined by taking the opposite orientations.

As mentioned in Remark 4.4.11, PB(x, y)(e) needs not be positive for e ∈ B+, but it is if e ∈ B+
k,l

with k ≤ d/2 or e ∈ B−
k,l with k ≥ d/2. This however is not relevant to our task. At last, we are

ready to prove the last estimate of Theorem 4.2.4.

Proof of Theorem 4.2.4 (continued). — In what follows, summing over 1 ≤ k ≤ d/2 or over d/2 ≤
k ≤ d − 1 yield the same result by symmetry, see Remark 4.4.11. We shall sum twice over

1 ≤ k ≤ d/2 possibly repeating the term d/2. Recall Corollary 4.4.12 states

|PB(x, y)(e)| ≤ 2

(q − 1)
q−kq−l+1,

for all e ∈ Bk,l with 1 ≤ k ≤ d/2. An argument similar to the proof of Lemma 4.2.1 shows

card(Bk,l) = (q − 1)ql−1.
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All together,∑
e∈B

PB(x, y)(e)2 = 2
∑
e∈B+

PB(x, y)(e)2

= 2
∑
l≥1

d−1∑
k=1

∑
e∈B

+
k,l

PB(x, y)(e)2

≤ 4
∑
l≥1

∑
1≤k≤d/2

card(Bk,l)

(
2

(q − 1)

)2

q−2kq−2(l−1)

=
16

(q − 1)2

∑
l≥1

∑
1≤k≤d/2

(q − 1)ql−1q−2kq−2(l−1)

=
16

(q − 1)

∑
l≥0

∑
1≤k≤d/2

q−2kq−l by changing l → l − 1

≤ 16

(q − 1)

∑
l≥0

q−l
∑
k≥0

q−2k

=
16

(q − 1)

(
q

(q − 1)

)(
q2

(q2 − 1)

)
=

16q3

(q − 1)3(q + 1)
=: CB.



CHAPTER 5

GEOMETRY OF Ã2-BUILDINGS

5.1. Retractions and arrowings

In an attempt to understand retractions centered at a chamber at infinity we came across an

enlightening description of what happen in an Ã2 building given by Ramagge, Robertson and

Steger [RRS98]. In an apartment, a sector can be thought of as pointing up to the chamber

at infinity it determines. One can represent this by drawing a small vector pointing ‘up’ in each

chamber of that apartment, see Figure 1. The same can be done globally in the building since

every chamber is contained in an apartment containing an equivalent sector. Thus each chamber is

endowed with a ‘small vector pointing up’. This defines a global arrowing of the chambers pointing

toward the chamber at infinity. The authors of loc. cit. indicate that we may think of the building

as hanging from the chamber at infinity with all the arrows pointing up.

Figure 1. Arrowing of an apartment with respect to a sector.
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Let X be an Ã2 building, and let ξ ∈ Ω be a chamber at infinity. Suppose A is an apartment

containing the sector Sectx(ξ) for some vertex x ∈ A. The chambers of A in the link of x are the

possible directions of Sectx(ξ) in A. They correspond naturally with the elements of the finite Weyl

group W . In the Ã2 Coxeter complex, one could use the root system of type A2 to describe these

directions, but we shall not do so here as this would not be true in Ãn, n ≥ 3. Rather we think

of an arrow as a vector in a chamber C either pointing toward a vertex of C along the bisector or

pointing in the opposite direction.

Definition 5.1.1. — An arrow is by definition a triple (C, i, ε) where C is a chamber of X,

i ∈ Z/3Z a type and ε ∈ {±1} a sign. If x is the vertex of C of type i, the arrow is geometrically

represented in C on the bisector at x, pointing toward x if ε = −1 (attracting) and pointing in the

opposite direction if ε = +1 (repulsing). An arrowing of X is by definition a set-theoretic section

s of the projection map (C, i, ε) �→ C.

In Figure 2 we represented a chamber C and the arrow (C, 1,+), where the vertex in grey is of

type 1, and Figure 3 shows (C, 0,−).

C

Figure 2. The arrow (C, 1,+).

C

Figure 3. The arrow (C, 0,−).

Definition 5.1.2. — The arrowing sξ associated to a chamber ξ ∈ Ω at infinity is defined as

follows. Let A be an apartment containing Sectx(ξ) with x ∈ X(0) and denote Cx(ξ) its initial

chamber(1), see Figure 4. The arrow of Cx(ξ) should geometrically point away from x in the

direction of Sectx(ξ), hence we set sξ(Cx(ξ)) := (Cx(ξ), i,+) where i = τ(x) is the type of x. The

arrow of the chamber i-adjacent to Cx(ξ), say C ′ ∈ A, points in the same direction but this time

toward the vertex of C ′ of type i, consequently sξ(C
′) = (C ′, i,−). On the other hand, in the

chamber C ′′, j-adjacent to C with i 
= j, the arrow points toward the vertex of C ′′ of type k 
= i, j,

so that sξ(C
′′) = (C ′′, k,−). If pi denote the bijection of the indices fixing i and exchanging the

other two, the above amounts to

sξ(C) = (C, i, ε) =⇒ sξ(C
′) := (C ′, pi(j),−ε),

for every chamber C ′ j-adjacent to C = Cx(ξ). We can extend this to the entire apartment

A yielding parallel arrows in the geometric sense. For if i1, . . . , in denote the successive types

(1)In general one would need a special vertex, say of type 0.
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appearing in a minimal gallery from C = Cx(ξ) to an arbitrary chamber C ′ of A, then

sξ(C) = (C, i, ε) =⇒ sξ(C
′) := (C ′, pin ◦ · · · ◦ pi1(i), (−1)nε).

One verifies that this depends not on the minimal gallery but only on the W-distance between C

and C ′, namely w = δ(Cx(ξ), C
′). If pw(i) denotes the index of the right hand side, the latter

becomes

sξ(C
′) = (C ′, pw(i), (−1)�(w)ε).

One checks that pww′(i) = pw ◦ pw′(i) for all w,w′, elements of the affine Weyl group Waff ,

hence the previous formula is compatible with the W-metric. Consequently we have a well defined

arrowing on A independent of the Cx(ξ) we started with. Furthermore this definition extends

to the whole building because any chamber is contained in an apartment containing a sector in

the class ξ, and any two such apartments are isometric via a retraction centered at ξ fixing their

intersection pointwise.

C′

C′′

Cx(ξ)

Sectx(ξ)

Figure 4. Arrows in the chambers neighboring Cx(ξ).

Definition 5.1.3. — Two arrows (C, i, ε), (C ′, j, ε′) are called parallel if

(C ′, j, ε′) = (C ′, pw(i), (−1)�(w)ε), (5.1)

where w = δ(C,C ′), or equivalently

(C, i, ε) = (C, pw−1(j), (−1)�(w)ε′). (5.2)

If C and C ′ are i-adjacent, we say the arrows are symmetric if i = j and ε = ε′.

Since the retraction ρ(A,ξ) maps isometrically any apartment containing ξ as a chamber at

infinity onto A by fixing their common subsector pointwise, the arrowing is equivariant with respect

to ρ(A,ξ). Precisely we mean that if sξ(C) = (C, i, ε), then

sξ(ρ(A,ξ)(C)) = (ρ(A,ξ)(C), i, ε). (5.3)

From there we can determine local conditions that the arrows of adjacent chambers must satisfy.

Proposition 5.1.4. — Let (C, i, ε) and (C ′, j, ε′) be the arrows given by sξ of two adjacent cham-

bers. Then they are either parallel or symmetric.
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Proof. — Say C,C ′ are k-adjacent, and consider a sector Sectx(ξ) representing ξ containing C

and a chamber D which is k-adjacent to C(2). If C ′ = D we are done by definition, therefore we

assume C ′ 
= D. The image of C ′ under the retraction ρ(A,ξ) is either C or D. In the first case,

the relation (5.3) yields sξ(C) = (C, j, ε′), meaning C and C ′ are symmetric. In the other case,

sξ(C
′) is likewise symmetric to sξ(D) which is parallel to sξ(C). We conclude that C and C ′ are

parallel.

Corollary 5.1.5. — [RRS98, §1.5] For every panel F there is a unique chamber D containing F

such that the arrow sξ(D) is parallel to sξ(C) for all distinct chambers C containing F as a face.

In particular, C and D sit in an apartment having ξ as a chamber at infinity, and the arrows of

chambers containing F distinct from D are all pairwise symmetric.

D

C

C ′

F

Figure 5. Arrows of adjacent chambers.

C

D

C ′

F

Figure 6. Other possible arrows.

Remark 5.1.6. — In the link of a vertex x, the initial chamber of Sectx(ξ) is the only one with

an arrow of type i and sign +1. This is clear by unicity of the sector issuing at x pointing toward ξ.

From the previous corollary and remark, we have strong local information determining the

arrows on all chambers of the link of x.

Question 5.1.7. — Suppose an arrowing s satisfies the property of Corollary 5.1.5, and that for

every vertex x of type 0, there is a unique arrow, in the link of x, with type 0 and sign +1. Can

we establish the existence of a chamber at infinity ξ ∈ Ω such that s = sξ ?

If answered affirmatively, then the chamber is unique. Indeed any other chamber ξ′ would

share a spherical apartment at infinity with ξ, which must be of the form ∂A for some Euclidean

apartment A of X. There, the arrows coincide if and only if ξ = ξ′.

Question 5.1.8. — Let sξ be the arrowing associated to ξ ∈ Ω. Is is true that two chambers C,

C ′ are contained in a common apartment containing a sector of ξ if and only if sξ(C) and sξ(C
′)

are parallel ?

(2)This is always possible starting with a sector representing ξ in an apartment containing C. Then pick a suitable

translate of the sector.
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5.1.1. Folding Diagram. — Fix a chamber at infinity ξ and its corresponding arrowing; an

arbitrary apartment A may not contain a sector of ξ. In this case, it must have a pair of adjacent

non-parallel arrows by construction. Using the local conditions, one can see that the arrows, are

arranged in a specific way, forming the folding diagram of A. The latter determines completely the

images of A under the retraction centered at ξ onto any apartment containing ξ at infinity. This

was introduced in [RRS98, §1.5], where they explain that the local conditions force the existence

of two focal points sitting on a wall of A, as pictured in Figure 7. In fact we could speak of

the folding diagram of any convex flat subset, that is a convex subset contained in at least one

apartment.

Figure 7. A folding diagram.

5.2. Convex hull of three points

In any building a pair of points is always contained in an apartment and their vertex convex

hull, i.e. convex hull with respect to the 1-skeleton metric d1, is contained in any such apartment.

However three points are generically not contained in a common flat, for example in a tree they

would form a tripod. Nevertheless, given a chamber at infinity ξ of a building of type Ã2, the

information on the relative position of three points with respect to ξ is partially contained in the

integers m(x, y, ξ),m(x, z, ξ), n(x, y, ξ), n(x, z, ξ) of Chapter 3. A description of the vertex convex

hull and the relative positions of three vertices in an Ã2 building remains desirable for our study.

In [Laf00], Lafforgue gives a result ‘extracted’ from [RRS98] and proves a similar statement for

the symmetric spaces of SL3(R) and SL3(C). Though Lafforgue claims the former result is easily

deducible from [RRS98] its proof remained unclear to us. The result can be stated as follows.

Theorem 5.2.1. — [Laf00, Theorem 3.1] Let X be a Euclidean building of type Ã2 and d1 the

graph theoretic distance on the 1-skeleton X(1). For every triple (x0, x1, x2) of vertices of X, there

exist vertices t0, t1, t2 ∈ X(0) forming an equilateral flat triangle, possibly reduced to a point, such

that the pairs (ti, ti+1) have the same shape(3) (0, p) or (p, 0) for p ∈ N, and satisfy

d1(xi, ti) + d1(ti, ti+1) + d1(ti+1, xi+1) = d1(xi, xi+1), (5.4)

for all i ∈ Z/3Z, and

max
i

(d1(ti, ti+1)) ≤ min
i
(d1(xi, xi+1)). (5.5)

(3)The shape of a pair of vertices (u, v) is a pair (m,n) ∈ N2 such that v ∈ Sm,n(x). We defined it as (mu(v), nu(v))

in Chapter 3
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Remark 5.2.2. — With the notations of Lafforgue, the theorem above is obtained by replacing

his X by the set of vertices of the building, θ by the identity and Γ by the trivial group. Then

(5.4) and (5.5) correspond to the condition (K0a) in the paper. Moreover the condition (H0) there

is clear, whereas (K0b) seems unnecessary.

Already if the vertices xi lie in a common apartment such a triangle needs not be degenerate and

seems moreover to be unique, see Figure 13 page 99. Lafforgue does not address the uniqueness of

such triangle.

Remark 5.2.3. — If the three pairwise vertex convex hulls intersect non-trivially, then any point

of the intersection satisfies the conclusion of Theorem 5.2.1. Indeed if Ci denotes the vertex convex

hull Conv(0)(xi−1, xi+1) then a vertex t is in Ci if and only if

d1(xi−1, t) + d1(t, xi+1) = d1(xi+1, xi−1).

In a regular tree, where the 1-skeleton metric and the CAT(0) metric coincide, geodesic segments

[x, y], [y, z], [z, x] always intersect non-trivially and the intersection is reduced to a point say p. The

latter is characterized by the fact that p is the projection of each of the three points on their opposite

segment. We try to implement similar ideas in the case of Ã2 buildings.

Setting 5.2.4. — For the remainder of this section, X is a locally finite Ã2 building of which

x0, x1, x2 are vertices indexed over Z/3Z . Moreover let Ci denote the vertex convex hull of

{xi+1, xi−1} for i = 0, 1, 2, see Figure 8. The unindexed intersection
⋂

Ci means it is taken over

i = 0, 1, 2, whereas Ui will denote the intersection Ci−1 ∩ Ci+1 so that xi ∈ Ui.

The next lemma is the first of a series meant to describe the possible configurations of x0, x1, x2

in the building. It implies that the intersection
⋂

Ci is a horizontal segment in each convex hull

Ci as soon as it is not empty, nor a singleton.

Lemma 5.2.5. — For every i 
= j ∈ {0, 1, 2} and every pair (u, v) ∈ Ui × Uj, we have

d1(xi, u) ≤ d1(xi, v).

Thus for every u, v ∈ ⋂Ci, we have equalities d1(xi, u) = d1(xi, v) for all i = 0, 1, 2.

Conversely if (u, v) ∈ Ui × Uj with i 
= j ∈ {0, 1, 2}, then the equality d1(xi, u) = d1(xi, v) is

equivalent to d1(xj , u) = d1(xj , v) and implies u, v ∈ ⋂Ci.

Proof. — We consider the convex hull C2 = Conv(0)(x0, x1) for definiteness and suppose u ∈ U0

and v ∈ U1. In this convex hull, we have the equivalence

d1(x0, u) ≤ d1(x0, v) ⇐⇒ d1(x1, v) ≤ d1(x1, u).

To show both inequalities at once, we prove the equivalent condition

d1(x0, u) + d1(x1, v) ≤ d1(x0, v) + d1(x1, u).

Consider two d1-geodesic paths in the 1-skeleton, namely γ0 from x0 to x2 and γ1 from x1 to x2,

passing through u and v respectively. Their existence is clear as u ∈ U0 ⊂ Conv(0)(x0, x2) and

v ∈ U1 ⊂ Conv(0)(x1, x2). In Figure 9, we pictured only the initial segments of γ1, γ2 in C2. The

sum of their lengths is

�(γ0) + �(γ1) = d1(x0, x2) + d1(x1, x2) = d1(x0, u) + d1(u, x2) + d1(x1, v) + d1(v, x2).
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U1

U0

C2
t1

t0

x1

x0

Figure 8. C2 = Conv(0)(x0, x1).

C2

x1

x0

v

γ1

α0

u

α1

γ0

Figure 9. Paths in C2.

Moreover consider α0, α1, two d1-geodesic paths from x0 to v, and x1 to u respectively, see Figure 9.

The concatenation of α0 with the end of γ1 yields a path β0 from x0 to x2 passing through v of

length

�(β0) = d1(x0, v) + d1(v, x2).

Similarly the concatenation of α1 with the end of γ0 yields a path β1 from x1 to x2 passing through

u of length

�(β1) = d1(x1, u) + d1(u, x2).

These concatenations need not be geodesic for the d1 metric, hence their length is at least that of

γ0 and γ1 respectively. Therefore, the inequality �(β0) + �(β1) ≥ �(γ0) + �(γ1) implies

d1(x0, v) + d1(x1, u) ≥ d1(x0, u) + d1(x1, v).

The converse is clear for if d1(x0, u) = d1(x0, v), then �(β0) + �(β1) = �(γ0) + �(γ1) so that �(β0) =

�(γ0) and �(β1) = �(γ1). This means that β0 and β1 are geodesic. Hence u ∈ Conv(0)(x1, x2) = C0

and v ∈ Conv(0)(x0, x2) = C1, which implies u, v ∈ ⋂Ci.

Lemma 5.2.6. — Assume
⋂

Ci is empty or reduced to a point. Then there exist ti ∈ Ui, for i =

0, 1, 2, such that

d1(ti, xi±1) = d1(Ui, xi±1) := min
u∈Ui

d1(u, xi±1), (5.6)

and (t0, t1, t2) is uniquely determined by this property. Equivalently the ti’s are determined by the

fact that Ui = Conv(0)(xi, ti).

Proof. — First notice that
⋂

Ci and the Ui’s are flat (contained in an apartment) convex subsets

because they are intersections of such. Each Ui is in particular an n-gon(4) for some n = 1, . . . , 6.

(4)A 1-gon is a vertex, a 2-gon a segment, a 3-gon a triangle, etc.
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Indeed the walls of the Ã2 Coxeter complex form angles π/3 or 2π/3, and the Euclidean formula

for the sum of angles in a Euclidean n-gon with n ≥ 3 yields

nπ

3
≤ (n− 2)π ≤ 2nπ

3
,

hence 3 ≤ n ≤ 6. We immediately rule out the possibility n = 6 because xi is a vertex of Ui at

which the angle is π
3 . Indeed Ui is a subset of the parallelogram Conv(0)(xi, xi+1) and they share

the vertex xi.

Claim. — Ui is not a 3 nor a 5-gon.

Proof of the Claim. — Suppose for contradiction that U0 is, the proof for U1, U2 is the same. The

parallelograms C2 = Conv(0)(x0, x1) and C1 = Conv(0)(x0, x2) are therefore non-degenerate and

one of the sides of U0 is horizontal, see Figure 10, in both convex hulls. We show this side to be

contained in the intersection
⋂

Ci contradicting the hypothesis. Let u, v be distinct vertices of

the aforementioned side of U0 with d1(u, v) = 1, and let F be the face they form. We show that

u sits in the vertex convex hull of x1, x2; the same argument applies to v and yields the desired

contradiction. In order to prove

d1(x2, u) + d1(u, x1) = d1(x2, x1),

we consider the chambers D0, D1 of Conv(x0, x1) having F as a codimension 1 face with D0 ⊂ U0.

Let D2 
= D0 be the chamber in Conv(x0, x2) also having F as a face. For i = 0, 1, 2, let vi
be the vertex of Di distinct from u, v. The convex hull of v0, x2 is the union of D0 and a convex

pentagon, represented pointing upward in Figure 10. The latter together with D1 forms the convex

hull of v1, x2. Fix an apartment A containing x0, x1; the retraction ρ := ρA,D1 maps isometrically

Conv(v1, x2) onto A so that ρA,D1(D2) = D0. Moreover, the image ρ(Conv(v1, x2)) stays in the

sector ofA issuing at x1 and containing Conv(x0, x1). It is mapped into the half space containingD0

delimited by the support of F . Consequently,

d1(x1, u) + d1(u, ρ(x2)) = d1(x1, ρ(x2)).

On the one hand, the retraction ρ contracts the d1 metric(5), thus

d1(x1, x2) ≥ d1(ρ(x1), ρ(x2)) = d1(x1, ρ(x2)).

On the other hand, Conv(v1, x2) is mapped isometrically onto its image, so that d1(u, x2) =

d1(u, ρ(x2)). Hence

d1(x1, x2) ≥ d1(x1, u) + d1(u, x2),

which is an equality thanks to the triangle inequality.

Consequently Ui is either reduced to {xi}, or a segment, or a parallelogram. In all cases it is of

the form Conv(0)(xi, ti) for some ti. Consequently

d1(xi, ti) = max
u∈Ui

d1(xi, u),

but since

d1(ti, xi±1) = d1(xi, xi±1)− d1(xi, ti),

(5)A finite d1-geodesic is mapped to a path of the same length. Any geodesic between the images must have at most

this length.
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we conclude

d(ti, xi±1) = min
u∈Ui

d1(u, xi±1).

The vertex ti is uniquely determined by this property because Ui = Conv(0)(xi, ti).

ρ

D0v0U0

ρ(x2)

x2

x0

x1

Figure 10. The retraction of Conv(v1, x2) onto A.

The next lemma gives a characterization of equilateral triangles in an Ã2 building. We recall

first the notion of Alexandrov angle, an important feature of CAT(0) spaces [BH99, Chapter II.3,

Proposition 3.1]. The CAT(0) metric on X is denoted d and the Alexandrov angle at x ∈ X

between two geodesic segments [x, y], [x, z] is given by

∠x(y, z) := inf
t,t′>0

∠x(σy(t), σz(t
′)),

where σy, σz are the geodesics from x to y and z respectively parametrized with σy(0) = σz(0) = x,

and ∠ denotes the comparison angle. The infimum on the right hand side is in fact a limit since

the argument of the infimum is a non-decreasing function of both variables t, t′. The Alexandrov

angles of a geodesic triangle Δ(x, y, z) are known to satisfy

∠x(y, z) + ∠y(z, x) + ∠z(x, y) ≤ π, (5.7)

with equality if and only if the triangle is flat, i.e. isometric to a Euclidean triangle [BH99, Chapter

II.2, Proposition 2.9].

Lemma 5.2.7. — In the Setting 5.2.4, the following are equivalent:

(i) The geodesic triangle Δ(x0, x1, x2) is a flat equilateral triangle with sides sitting on walls,

(ii) Ui = Conv(0)(xi, xi+1) ∩ Conv(0)(xi, xi−1) = {xi} for all i = 0, 1, 2.

Proof. — That (i) implies (ii) is clear. Thus suppose (ii) holds and consider the intersections of C1

and C2 with the link of x0. Since the intersection of the latter is reduced to x0, there exist distinct

non-adjacent chambers D1, D2 ∈ lk(x0), the closure of which contain C1 ∩ lk(x0) and C2 ∩ lk(x0)
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respectively. By the building axioms, D1, D2 lie in a common apartment. Its intersections with

the geodesic segments [x0, x1] and [x0, x2] are contained in D1, D2 respectively, hence the segments

must form an Alexandrov angle at least π
3 . By switching roles, the same hold for the Alexandrov

angles at x1 and x2. Thus equation (5.7) for x0, x1, x2 is an equality and the geodesic triangle

Δ(x0, x1, x2) is flat equilateral, i.e. sits in some apartment of X. To conclude, the only possibility

for D1 and D2 to be non-adjacent and to have [x0, x1] ⊂ D1, [x0, x2] ⊂ D2 forming an Alexandrov

angle of π
3 is that the segments are facets of a common chamber D′ ∈ lk(x0) distinct and adjacent

to both D1, D2.

Theorem 5.2.8. — Let x0, x1, x2 be vertices of X such that
⋂

Ci is empty or a singleton. Then

there exists a unique flat equilateral triangle Δ(t0, t1, t2), with ti ∈ Ui and sides sitting on walls,

such that equation (5.6) holds. In other words, the vertices ti are uniquely determined by

ti = argmin
u∈Ui

d(u, xi±1), (5.8)

or by

Ui = Conv(0)(xi, ti).

Proof. — For i = 0, 1, 2 let ti ∈ Ui be the vertices given by Lemma 5.2.6. We use the notations

C̃i := Conv(0)(ti+1, ti−1) and Ũi := C̃i+1 ∩ C̃i−1,

so that C̃i ⊂ Ci and Ũi ⊂ Ui. The former inclusion implies that
⋂

C̃i is either empty or a singleton.

Lemma 5.2.6 applied to (t0, t1, t2) yields vertices si ∈ Ũi such that Ũi = Conv(0)(ti, si). On the

one hand si ∈ Ũi ⊂ Ui hence d1(xi, si) ≤ d1(xi, ti) by maximality of ti in Ui, see Lemma 5.2.6. On

the other hand, the inequality

d1(xi, ti±1) ≥ d1(xi, ti),

of Lemma 5.2.5 shows that the convex hulls Conv(0)(ti, ti±1) consist of points at distance at least

d1(xi, ti) from xi. We conclude that d1(xi, si) = d1(xi, ti), hence si = ti, by the characterization of

ti of Lemma 5.2.6. This shows that Ũi = {ti} and we can therefore apply Lemma 5.2.7 to deduce

that Δ(t0, t1, t2) is a flat equilateral triangle whose sides are contained on walls.

Remark 5.2.9. — In the previous theorem, if Δ(t0, t1, t2) is not reduced to a singleton then its

sides are not horizontal in each corresponding convex hull. But since they sit on walls we must

have

d1(xi, xj) = d1(xi, ti) + d1(ti, tj) + d1(tj , xj), (5.9)

for all i 
= j ∈ {0, 1, 2}, see Figure 8. On the other hand the triangle Δ(t0, t1, t2) is equilateral thus

max
i

d1(ti, ti+1) ≤ min
i

d1(xi, xi+1),

by looking at the pair xi, xi+1 minimizing the right hand side.

We conjecture that the union of Δ(t0, t1, t2) and
⋃

Ci should be the vertex convex hull

Conv(0)(x0, x1, x2).

Question 5.2.10. — Is the union
⋃

Ci ∪ Δ(t0, t1, t2) convex for the graph theoretic distance d1
on the 1-skeleton?
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5.3. Relative directions

Let x, y, z be vertices of a locally finite Ã2 building X. The formula (3.3) of Theorem 3.4.10 for

the Poisson transform of volX , evaluated at a chamber C, averages a combination of

m(x, y, u), n(x, y, u),m(x, z, u), n(x, z, u)

with u ranging in a large sector sphere SR,R(x) centered at x, and the Radon-Nikodym derivative

with respect to C. In order to obtain quantitative values similar to those of Chapter 4, the first

step is to know how many vertices u of the large sphere yield given values of m(x, y, u), n(x, y, u).

As observed in Lemma 3.2.7, the latter are calculated by simply using the sector coordinates

my(u), ny(u), knowing mx(u) = nx(u) = R. This amounts to understanding the cardinal of the

intersection of two sector spheres. In [CMS94], the authors relate the cardinal of the intersection

to some structure constants of an algebra of averaging operators on the vertices, which is related

to the classical Hecke algebra. In his PhD dissertation, [Par05], Parkinson pushed the method of

the former and extended this to arbitrary buildings, see his article [Par06]. Interestingly, for fixed

i, j, k, l,m, n ∈ N, the cardinal of Sm,n(x)∩Si,j(y) does not depend on the choice of y ∈ Sk,l(x), see

[CMS94, Lemma 2.4]. The second step is to include z in the picture which increases the difficulty

greatly, as the above articles testify. Eventually one will have to work with the chamber C as well,

but we did not bring the discussion this far.

From the previous section we understand better the configuration of x, y, z in the building.

The present section aims at describing the intersection of the aforementioned spheres with respect

to a given configuration. For every u ∈ SR,R(x), the sectors at x, y, z containing u point in

various directions, but, in their links, the initial chambers of these sectors are contained, pairwise,

in common apartments. We believe that this information should suffice to determine the sector

coordinates my(u), ny(u),mz(u), nz(u). In the next paragraphs we partially implement this idea

on particular configurations of x, y, z starting with the very natural case where the three points sit

in a common apartment.

5.3.1. Two points in an apartment. — Let X be a locally finite Ã2 building and let ξ ∈ Ω

be a chamber in the spherical building at infinity. Recall that, for every x ∈ X(0), we denoted

Cx(ξ) the unique chamber of lk(x) in the sector Sectx(ξ). For a pair of vertices x, y, we would

like to understand the relative position of Cx(ξ), Cy(ξ) in an apartment containing them. Even

if there is in general no apartment containing both sectors, we may get informations from the

position of the above chambers in an apartment, using the fact that the panels of the closed

sectors Sectx(ξ), Secty(ξ) are geodesic rays pairwise asymptotic. A consequence of the CAT(0)

inequality is the convexity of the distance function between two geodesics.

Proposition 5.3.1. — [BH99, Chapter II.2, Proposition 2.2] Let σ, σ′ : [0, d] → X be geodesic

segments, then t �→ d(σ(t), σ′(t)) is a convex function.

Corollary 5.3.2. — For i = 1, 2, let ξi denote the vertex of ξ of type i and let rξix , rξiy denote the

corresponding geodesic rays starting at x and y respectively. Then the function t �→ d(rξix (t), rξiy (t))

is convex and non-increasing.

Proof. — Since the convexity needs only be checked on compact intervals, the previous proposition

ensures it. A pair of geodesic rays being asymptotic means the function t �→ d(rξix (t), rξiy (t)) is

bounded. But any convex bounded function f : R+ → R is non-increasing.
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Consequently, for two chambers Cx ∈ lk(x) and Cy ∈ lk(y), to possibly be the top of equivalent

sectors, their sides must satisfy a similar non-increasing condition, which can readily be checked

in an apartment containing them. Fortunately in a Euclidean space this condition is easily tested.

Setting 5.3.3. — For the rest of this paragraph we fix an apartment A identified with a Euclidean

space with scalar product 〈· , ·〉 inducing the Euclidean metric d, and two vertices x, y ∈ A. Let

Cx, Cy be a pair of chambers of A containing x and y respectively. They will be thought of as

variables for possible configurations in what follows. The vertices of Cx and Cy are denoted x, x′, x′′

and y, y′, y′′ respectively so that their types are given by

τ(x′) = τ(x) + 1, τ(x′′) = τ(x) + 2, τ(y′) = τ(y) + 1, and τ(y′′) = τ(y) + 2,

modulo 3. Furthermore for i = 1, 2, let rix : [0, 1] → X denote the geodesic segment from x to the

vertex of Cx of type τ(x) + i, so that r1x = [x, x′] and r2x = [x, x′′]. Similarly let rix denote the

corresponding geodesic segments for y.

We wish to determine when the real functions fi : [0, 1] → R+, for i = 1, 2, defined by

t �→ d(rix(t), r
i
y(t)),

are non-increasing, depending on x, y and on the chambers Cx, Cy, (convexity is clear by Proposi-

tion 5.3.1).

Proposition 5.3.4. — The function f1 is non-increasing if and only if

y ∈ Hx
v := {z ∈ A | 〈v, v〉 ≤ 〈−→xz, v〉},

where v = −→xx′ − −→yy′. This is equivalent to x ∈ Hy
−v. The same holds for f2 replacing v by

v′ = −→xx′′ −−→yy′′. The subset Hx
v is a closed half-space of A if and only if v 
= 0.

Proof. — Everything takes place in the Euclidean space A. We can write

f1(t) = d(r1x(t), r
1
y(t)) = ‖(x+ t · −→xx′)− (y + t · −→yy′)‖ = ‖−→yx+ tv‖,

and therefore its square is a polynomial in t of degree 2, namely

f2
1 (t) = ‖−→yx‖2 + 2t〈−→yx, v〉+ t2‖v‖2.

Therefore f1 being non-increasing is equivalent to f2
1 being so which in turn is equivalent to

(f2
1 )

′(t) ≤ 0 for all t ∈ [0, 1]. The latter inequality, namely

2〈−→yx, v〉+ 2t‖v‖2 ≤ 0,

is true for all t ∈ [0, 1] if and only if ‖v‖2 ≤ 〈−→xy, v〉, holds.

Definition 5.3.5. — We say that (Cx, Cy) is a possible configuration if the two functions f1, f2
satisfy the conditions of previous proposition, that is

y ∈ Hx
v ∩Hx

v′ ⇐⇒ x ∈ Hy
−v ∩Hy

−v′ ,

where v = −→xx′ −−→yy′ and v′ = −→xx′′ −−→yy′′.

For definiteness and computation purposes, we consider x as the origin of A and we fix a chamber

C1 at x. Furthermore, we consider the unit vectors {w1, w2} formed by the sides of C1, so that

w1 is the vector starting at x pointing towards the vertex of type τ(x) + 1 and w2 is the vector

starting at x pointing toward the vertex of type τ(x) + 2. For example if Cx = C1 then w1 = −→xx′

and w2 = −→xx′′. On the chambers of lk(x) ∩ A we write labels from 1 to 6 clockwise so that C1 is
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labeled with 1 and shares w1 as a face with the chamber labeled with 2, see Figure 11. According

to the label of Cx, the vectors −→xx′ and −→xx′′ take the values given by Table 1.

1
2

3

4

5

6

α

α+ β

β

−α

−α− β

−β w2 w1

−w1 −w2

w1 − w2−w1 + w2

Figure 11. Labelling of the chambers in lk(x) ∩A.

Label of Cx
−→xx′ −→xx′′

1 w1 w2

2 w1 w1 − w2

3 −w2 w1 − w2

4 −w2 −w1

5 −w1 + w2 −w1

6 −w1 + w2 w2

Table 1. Sides of Cx.

By translation we label the chambers of lk(y)∩A which determines a similar table for the sides

of Cy. Proposition 5.3.4 tells us to look at the vectors v = −→xx′ −−→yy′ and v′ = −→xx′′ −−→yy′′ which is

done in Table 2 and Table 3.

−→yy′ \ −→xx′ w1 −w2 −w1 + w2

w1 0 −w1 − w2 −2w1 + w2

−w2 w1 + w2 0 −w1 + 2w2

−w1 + w2 2w1 − w2 w1 − 2w2 0

Table 2. Values of v.

We now rewrite this in a suitable basis linked with the root system A2 by setting

α := w1 + w2 and β := w1 − 2w2.
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−→yy′′ \ −→xx′′ w2 w1 − w2 −w1

w2 0 w1 − 2w2 −w1 − w2

w1 − w2 −w1 + 2w2 0 −2w1 + w2

−w1 w1 + w2 2w1 − w2 0

Table 3. Values of v′.

The vector α is the sum of the sides of the chamber labeled with 1, and β is the sum of that labeled

with 3, see Figure 11. The entries of the two previous tables are linear combinations of α and β

with coefficients plus or minus 1, see Tables 4 and 5 below.

−→yy′ \ −→xx′ w1 −w2 −w1 + w2

w1 0 −α −α− β

−w2 α 0 −β

−w1 + w2 α+ β β 0

Table 4. Values of v in terms of {α, β}.

−→yy′′ \ −→xx′′ w2 w1 − w2 −w1

w2 0 β −α

w1 − w2 −β 0 −α− β

−w1 α α+ β 0

Table 5. Values of v′ in terms of {α, β}.

As Cx, Cy ranges through the chambers of lk(x)∩A and lk(y)∩A respectively, the vectors v, v′

take various values gathered in Table 6. Conversely, Table 7 shows the inverse; given values of v, v′

it yields the set of configurations of Cx, Cy realizing them. The top-left entry of the latter contains

all pairs (i, i) where i = 1, . . . , 6, this corresponds to Cy being a translate of Cx in A. Also the

symbol ∅ was used to denote that no pair Cx, Cy yields these vectors, e.g. it is impossible to have

v = α and v′ = −α.

Cx \ Cy 1 2 3 4 5 6

1 (0, 0) (0, β) (−α, β) (−α,−α) (−α− β,−α) (−α− β, 0)

2 (0,−β) (0, 0) (−α, 0) (−α,−α− β) (−α− β,−α− β) (−α− β,−β)

3 (α,−β) (α, 0) (0, 0) (0,−α− β) (−β,−α− β) (−β,−β)

4 (α, α) (α, α+ β) (0, α+ β) (0, 0) (−β, 0) (−β,−α)

5 (α+ β, α) (α+ β, α+ β) (β, α+ β) (β, 0) (0, 0) (0, α)

6 (α+ β, 0) (α+ β, β) (β, β) (β,−α) (0,−α) (0, 0)

Table 6. Values of (v, v′) from the labels of Cx, Cy.

Table 7 allow us to somehow reverse the previous discussion. Indeed, the vectors v, v′ must be

either 0 or elements of

Φ := {α, β, α+ β,−α,−β,−α− β}.
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Vectors v \ v′ 0 α α+ β β −α −α− β −β

0 (i, i) (2, 3) (1, 6) (4, 5) (3, 2) (6, 1) (5, 4)

α (6, 5) (1, 4) (1, 5) ∅ ∅ ∅ (6, 4)

α+ β (3, 4) (2, 4) (2, 5) (3, 5) ∅ ∅ ∅
β (2, 1) ∅ (2, 6) (3, 6) (3, 1) ∅ ∅
−α (5, 6) ∅ ∅ (4, 6) (4, 1) (5, 1) ∅

−α− β (4, 3) ∅ ∅ ∅ (4, 2) (5, 2) (5, 3)

−β (1, 2) (1, 3) ∅ ∅ ∅ (6, 2) (6, 3)

Table 7. Labels of (Cx, Cy) realizing (v, v′).

Thus we consider all possible intersections of the half-spaces Hx
r for r ranging in Φ, since Hx

0 = A,

and see how they cut A into convex zones, Figure 12. Any such zone Z is of the form

Z =
⋂
r∈R

Hx
r ∩

⋂
r∈Rc

(Hx
r )

c,

where R ⊂ Φ. Note that Z is closed because the complement of Hx
r strictly contains Hx

−r. Then,

thanks to Proposition 5.3.4, if y ∈ Z, the possible configurations for (Cx, Cy) are read in Table 7

by taking the entries with v, v′ varying in R ∪ {0}. Here is an example that we shall use again

later.

Example 5.3.6. — Let Z be the zone defined by R = {α, α + β,−β}, it is the shaded sector of

Figure 12. More precisely,

Z = Hx
α ∩Hx

−β ∩Hx
α+β .

The possible configurations are given by the sub-table of Table 7 obtained by keeping only the

rows and columns labeled by 0, α, α+ β,−β, that is Table 8.

Vectors v \ v′ 0 α α+ β −β

0 (i, i) (2, 3) (1, 6) (5, 4)

α (6, 5) (1, 4) (1, 5) (6, 4)

α+ β (3, 4) (2, 4) (2, 5) ∅
−β (1, 2) (1, 3) ∅ (6, 3)

Table 8. Possible configurations if y ∈ Z.

5.3.2. Three points in an apartment. — The complexity of the position of three points in

an Ã2-building was discussed in Section 5.2. It is natural to ask what can be said about the values

of volX(x, y, z) on a large sector sphere SR,R(x) when the three vertices x, y, z sit in a common

apartment, say A. The discussion of the previous section is certainly useful in this setting. However

given ξ ∈ Ω, the chambers Cx(ξ), Cy(ξ), Cz(ξ) need not lie in a common apartment, but they do

pairwise by the building axioms. In this paragraph, we discuss this case via an example, see Setting

5.3.7, in which we determine all possible configurations of the chambers at x, y, z using the results

of the previous paragraph. We proceed in two parts:

• Describe all possible relative positions of Cx(ξ), Cy(ξ), Cz(ξ) using the previous paragraph

and something we introduce below called transitions.
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1 2
345

6

Hx
−α

Hx
β

Hx
α+β

Hx
α

Hx
−β

Hx
−α−β

Figure 12. Half-spaces about x.

• Show each of these configurations to be realized by a folding diagram of Conv(x, y, z).

Our interest is the asymptotic behavior of the Poisson transform of volX(x, y, z) as the points

x, y, z get far from each other. Taking x as the reference point in Figure 12, the open strips of the

form (Hx
r ∪Hx

−r)
c, with r = α, β, α + β, are unbounded. The vertices in their union is the union

of the sector spheres Sm,n(x) ∩ A with m or n strictly smaller than 2. Therefore the asymptotic

behavior may vary depending on whether y, z stay in those strips or not. The situation we consider

for the rest of this section avoids this by staying in the complement of the strips.

Setting 5.3.7. — For the remainder of this section we assume x, y, z to be vertices sitting in a

common apartment A such that x, y, z, pairwise, have sector coordinates at least 2. Without loss

of generality, suppose that y is in the shaded area of Figure 12. Further we assume z to sit in the

sector parallel to the chamber at x labeled with 2. More precisely,

y ∈ Hx
α ∩Hx

−β ∩Hx
α+β and z ∈ Hx

α ∩Hx
β ∩Hx

α+β .

Finally suppose that the chambers at y in Conv(y, x) and Conv(y, z) respectively are adjacent,

thus labeled in A with 4 and 3 respectively. Consequently, those at z in Conv(z, x) and Conv(z, y)

are also adjacent and labeled with 5 and 6 respectively. The configuration is pictured in Figure

13. This last assumption is equivalent in A to both

z ∈ Hy
−α ∩Hy

β ∩Hy
α+β ⇐⇒ y ∈ Hz

α ∩Hz
−β ∩Hz

−α−β .

We chose a reference apartment A but in fact the setting above takes place in Conv(x, y, z) and

depends not on the choice of an apartment containing x, y, z. In Example 5.3.6, we calculated the

possible configuration of pairs Cx, Cy, which we recall in Table 9. We can proceed similarly and
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x

y

z

1 2

4 3

6
5

Figure 13. Configuration in A.

establish possible configurations for the ordered pairs Cy, Cz and Cz, Cx, see Table 10 and Table

11, using the fact that

z ∈ Hy
−α ∩Hy

β ∩Hy
α+β and x ∈ Hz

−α ∩Hz
−β ∩Hz

−α−β .

From x to y 0 α α+ β −β

0 (i, i) (2, 3) (1, 6) (5, 4)

α (6, 5) (1, 4) (1, 5) (6, 4)

α+ β (3, 4) (2, 4) (2, 5) ∅
−β (1, 2) (1, 3) ∅ (6, 3)

Table 9. Labels of possible (Cx, Cy).

From y to z 0 α+ β β −α

0 (i, i) (1, 6) (4, 5) (3, 2)

α+ β (3, 4) (2, 5) (3, 5) ∅
β (2, 1) (2, 6) (3, 6) (3, 1)

−α (5, 6) ∅ (4, 6) (4, 1)

Table 10. Labels of possible (Cy, Cz).

Remark 5.3.8. — Let D ∈ lk(x) be a chamber adjacent to the two chambers labeled with 1 and

2 in Figure 13 but not contained in A. In any apartment containing D and y, this chamber would

have label 2. However if D sits in an apartment containing z, it will have label 1. So we have to

keep in mind that Table 9 was established for pairs of chambers Cx, Cy in a common apartment

regardless of z and Cz. The same thing applies to Tables 10 and 11.
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From z to x 0 −α −α− β −β

0 (i, i) (3, 2) (6, 1) (5, 4)

−α (5, 6) (4, 1) (5, 1) ∅
−α− β (4, 3) (4, 2) (5, 2) (5, 3)

−β (1, 2) ∅ (6, 2) (6, 3)

Table 11. Labels of possible (Cz, Cx).

To treat the general case, we will encode this change of labels by transitions. Nevertheless we

start by searching for possible configurations of three coplanar chambers Cx, Cy, Cz, i.e. contained

in a common apartment. Let Nxy be the set of labels from x to y, i.e. the set of entries of Table 9,

Nyz that of Table 10, and Nzx that of Table 11. In the framework of Setting 5.3.7, we are looking

for all triples of labels of a possible configuration of Cx, Cy, Cz. A triple (ax, ay, az) ∈ {1 . . . , 6}3
is a possible configuration if and only if

(ax, ay) ∈ Nxy, (ay, az) ∈ Nyz, and (az, ax) ∈ Nzx.

Proposition 5.3.9. — The possible configurations of three chambers Cx, Cy, Cz contained in a

common apartment is given by the list of labels of Table 12.

Labels (ax, ay, az)

ax = 1 (1, 1, 1), (1, 1, 6), (1, 2, 1), (1, 2, 5)

(1, 2, 6), (1, 3, 1), (1, 3, 4), (1, 3, 5)

(1, 3, 6), (1, 4, 1), (1, 4, 4), (1, 4, 5)

(1, 4, 6), 1, 5, 5), (1, 5, 6), (1, 6, 6)

ax = 2 (2, 2, 1), (2, 2, 2), (2, 2, 5), (2, 2, 6)

(2, 3, 1), (2, 3, 2), (2, 3, 3), (2, 3, 4)

(2, 3, 5), (2, 3, 6), (2, 4, 1), (2, 4, 4)

(2, 4, 5), (2, 4, 6), (2, 5, 5), (2, 5, 6)

ax = 3 (3, 3, 3), (3, 3, 4), (3, 3, 5), (3, 3, 6)

(3, 4, 4), (3, 4, 5), (3, 4, 6)

ax = 4 (4, 4, 4), (4, 4, 5)

ax = 5 (5, 4, 5), (5, 5, 5)

ax = 6 (6, 3, 5), (6, 3, 6), (6, 4, 5), (6, 4, 6)

(6, 5, 5), (6, 5, 6), (6, 6, 6)

Table 12. Labels of possible configurations of coplanar Cx, Cy, Cz.

Proof. — The list is established by considering the oriented graph with vertices in {1, . . . , 6} and

edges Nxy ∪Nyz ∪Nzx. A possible configuration is the same as an oriented loop of lenght 3 such

that the first edge is in Nxy, the second in Nyz and the last in Nzx. For a better readability, we

draw the graph of Figure 14 instead. Loops can be read by starting on the left at some integer

between 1 to 6 and looking at all paths going to the right ending at the same integer.
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ax axay az

Nxy Nyz Nzx

1

2

3

4

5

6

1

2

3

4

5

6

Figure 14. A graph to determine the loops.

5.3.3. Transitions. — In most cases the chambers Cx, Cy, Cz, are not coplanar. As mentioned

in Remark 5.3.8, Cx ∈ lk(x) could have a certain label with respect to an apartment containing

Conv(x, y) and a different one with respect to Conv(x, z). Looking carefully at the chambers in

the links of x, y, z we can deduce a set of rules codifying the possible transitions.

Definition 5.3.10. — For every C ∈ lk(x), let (λz
x(C), λy

x(C)) be the pair of labels of C taken

with respect to an apartment containing Conv(x, z) and to one containing Conv(x, y), the pair is

called the transition of C at x. The labeling in each apartment is done according to Setting 5.3.7.

Similarly we define (λx
y , λ

z
y) and (λy

z , λ
x
z ), the transition at y and z respectively.

Below the link of x is treated in detail assuming for simplicity that x is of type 0. The labels

were introduced for computation purposes but they simply translate the value of the W-metric. Let

C1, C2 be the chambers of lk(x) ∩ Conv(x, y) and lk(x) ∩ Conv(x, z) respectively. Since τ(x) = 0,

the link of x is a finite building for the W-metric δ of X restricted to lk(x). It takes values in

the subgroup W < Waff isomorphic to the symmetric group on three elements, here generated by

s1, s2. By construction δ(C1, C2) = s1, see Figure 11.

Lemma 5.3.11. — For w1, w2 ∈ W , the cardinal of the intersection of the δ-balls

B(C1, w1) ∩B(C2, w2) = {C ∈ lk(x) | δ(C1, C) = w1, δ(C2, C) = w2},
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is given by

card(B(C1, w1) ∩B(C2, w2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (w1, w2) = (e, s1) or (s1, e),

q − 1 if w1 = w2 = s1,

q if (w1, w2) = (s2, s1s2) or (s1s2, s2),

(q − 1)q if w1 = w2 = s1s2,

q2 if (w1, w2) = (s2s1, s1s2s1) or (s1s2s1, s2s1),

(q − 1)q2 if w1 = w2 = s1s2s1,

0 else,

where q is the regularity parameter of X.

Proof. — Since δ(C1, C2) = s1, the axiom (W2) for the W -metric, Proposition 1.2.14, implies

that B(C1, w1) ∩ B(C2, w2) is nonempty if and only if w2 = w1 or w2 = s1w1. Moreover if

�(s1w1) = �(w1) + 1, then the intersection is nonempty if and only if w2 = s1w1. We can deduce

the above cases by distinguishing whether C,C1, C2 lie in a common apartment of lk(x) or not,

see Figure 16. In the first case, we can look at the q chambers s2-adjacent to C1 which covers

the case (w1, w2) = (s2, s1s2). Similarly the q-chambers s2-adjacent to C2 are in the intersection

B(C1, w1) ∩ B(C2, w2) with (w1, w2) = (s1s2, s2). Continuing so we obtain the q2 chambers in

the intersection with (w1, w2) = (s2s1, s1s2s1) and the q2 others with parameters (w1, w2) =

(s1s2s1, s2s1). On the other hand, there are q−1 chambers s1-adjacent to both C1, C2 but distinct

from the two, that is w1 = w2 = s1. These chambers are each s2-adjacent to q other chambers,

they are in the intersection given by w1 = w2 = s1s2. The latter are in turn each s1-adjacent to q

chambers in the intersection w1 = w2 = s1s2s1.

The previous lemma translates in terms of relative labels.

Corollary 5.3.12. — The values of (λz
x(C), λy

x(C)) and the number of chambers C ∈ lk(x) real-

izing it are given in Table 13. The corresponding statement for (λx
y(C), λz

y(C)) is in Table 14 and

that for (λy
z(C), λx

z (C)) in Table 15.

Transition labels (λz
x(C)), λy

x(C) number of chambers C

(1, 1) 1

(2, 2) 1

(1, 2) q − 1

(6, 6) q

(3, 3) q

(6, 3) (q − 1)q

(5, 5) q2

(4, 4) q2

(5, 4) (q − 1)q2

Table 13. Transitions at x and the number of chamber realizing them.

Let Tx, Ty, Tz be the set of transitions given by Table 13, Table 14, and Table 15 respectively. In

order for three Cx, Cy, Cz chambers, in the links of x, y, z respectively, to be a possible configuration,
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Transition labels (λx
y(C), λz

y(C)) number of chambers C

(3, 3) 1

(4, 4) 1

(3, 4) q − 1

(2, 2) q

(5, 5) q

(2, 5) (q − 1)q

(1, 1) q2

(6, 6) q2

(1, 6) (q − 1)q2

Table 14. Transitions at y and the number of chamber realizing them.

Transition labels (λy
z(C), λx

z (C)) number of chambers C

(5, 5) 1

(6, 6) 1

(5, 6) q − 1

(1, 1) q

(4, 4) q

(4, 1) (q − 1)q

(2, 2) q2

(3, 3) q2

(3, 2) (q − 1)q2

Table 15. Transitions at z and the number of chamber realizing them.

the six labels

λz
x(Cx), λ

y
x(Cx), λ

x
y(Cy), λ

z
y(Cy), λ

y
z(Cz), λ

x
z (Cz)

must satisfy the necessary conditions imposed by the sets Nxy, Nyz, Nzx, namely

(λy
x(Cx), λ

x
y(Cy)) ∈ Nxy, (λz

y(Cy), λ
y
z(Cz)) ∈ Nyz and (λx

z (Cz), λ
z
x(Cx)) ∈ Nzx.

In other words we are looking for sextuples (ax, bx, ay, by, az, bz) of labels satisfying the conditions

imposed by the sets Nxy, Nyz, Nzx and the transition conditions Tx, Ty, Tz, namely

(ax, bx) ∈ Tx, (ay, by) ∈ Ty, (az, bz) ∈ Tz and

(bx, ay) ∈ Nxy, (by, az) ∈ Nyz, (bz, ax) ∈ Nzx.

Proposition 5.3.13. — The possible configurations of three chambers Cx, Cy, Cz with labels as

above are given by Table 16 which lists equivalently all sequences of the form aybyazbzaxbx.

Proof. — The proof goes as in Proposition 5.3.9, except that we insert the transitions between the

sets Nxy, Nyz, Nzx. Consider the oriented graph with vertices {1, . . . , 6} and edges E, the union

of the transitions Tx, Ty, Tz and of the constraint sets Nxy, Nyz, Nzx. The sequences of labels

(ax, bx, ay, by, az, bz) correspond to oriented paths of length 6, such that the first edge is in Tx,

the second in Nxy, the third Ty and so on. During the computation we equivalently extracted the

sequences aybyazbzaxbx, we hope it will not cause confusion. We concatenated in that order the

oriented edges of Ty, Nyz, Tz, Nzx, Tx, Nxy. This amounts to finding all paths in the graph of Figure
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15 from left to right starting and finishing at the same integer k ∈ {1, . . . , 6}. A simple script in

Python [Pyt] using the package NetworkX [HSS08] yields the list of Table 16.

ax ayay az

NxyNyz Nzx

1

2

3

4

5

6

1

2

3

4

5

6

Ty Tz Tx

by bz bx

Figure 15. A graph to determine the possible sequences aybyazbzaxbx.

aybyazbzaxbx
ay = 1 166611, 116611, 111111

ay = 2 256611, 256612, 256622, 255511, 255512, 255522, 255611, 255612

255622, 222222, 226611, 226612, 226622, 225511, 225512, 225522

225611, 225612, 225622, 221111, 221112, 221122

ay = 3 344111, 344112, 344122, 344411, 344412, 344422, 344433, 345511

345512, 345522, 345533, 345566, 345563, 345611, 345612, 345622

345633, 345666, 345663, 346611, 346612, 346622, 346633, 346666

346663, 341111, 341112, 341122, 332222, 333222, 333322, 333333

334111, 334112, 334122, 334411, 334412, 334422, 334433, 335511

335512, 335522, 335533, 335566, 335563, 335611, 335612, 335622

335633, 335666, 335663, 336611, 336612, 336622, 336633, 336666

336663, 331111, 331112, 331122

ay = 4 444111, 444112, 444122, 444411, 444412, 444422, 444433, 444444

445511, 445512, 445522, 445533, 445544, 445554, 445555, 445566

445563, 445611, 445612, 445622, 445633, 445666, 445663, 446611

446612, 446622, 446633, 446666, 446663, 441111, 441112, 441122

ay = 5 556611, 556612, 556622, 556666, 555511, 555512, 555522, 555555

555566, 555611, 555612, 555622, 555666

ay = 6 666611, 666666

Table 16. Possible sequences aybyazbzaxbx.
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Remark 5.3.14. — The patient reader can verify that the tuples in Table 16 such that ax = bx,

ay = by, and az = bz coincide, as expected, with those of Table 12 corresponding to the coplanar

case.

Under our assumptions, see Setting 5.3.7, the pairwise convex hulls of x, y, z intersect along

their boundaries, therefore Theorem 5.2.8 applies. Let tx, ty, tz be the vertices of the corresponding

equilateral triangle, see also Figure 13. Interestingly, the triangle Δ(tx, ty, tz) seems to be forced

to stay in the red zone (Hx
−β ∩Hx

β )
c independently of y, z. (Its sides have length at most 4.)

The list obtained in Proposition 5.3.13 boils down to three different lists according the shape of

the triangle, either it is reduced to a point, or its sides are of shape (0, p), or of (p, 0) for p ≥ 1. Let

Lx be the line in A supporting the geodesic segment [x, tx] and let Ly, Lz denote the corresponding

lines in A for y, z. We have the three cases:

(a) The three lines intersect at t = tx, ty, tz, thus the triangle is degenerate.

(b) The point ty sits on Lx, thus tz ∈ Ly and tx ∈ Lz, see Figure 13.

(c) The point tz sits on Lx, thus tx ∈ Ly and ty ∈ Ly.

Case (a) is equivalent to

x ∈ SR,R(y), y ∈ SR,R(z) and z ∈ SR,R(x),

for some parameter R ∈ N. In this case we extract an exact list of labels, i.e. a list in which

all tuples of labels can be realized by a folding diagram. (The same strategy works for the other

cases.)

To see this, suppose Cy = Cy(ξ) for some ξ ∈ Ω, then the arrow of Cy starts at y, see Section 5.1,

and Cy is the unique chamber in lk(y) with this property, by uniqueness of the sector Secty(ξ). A

consequence of Lemma 5.3.11 is that Cy belongs to a branching of three roots (half-apartments

of lk(y)) as pictured in Figure 16. From the arrow of Cy, we can deduce the others, see the two

examples of Figure 17 and Figure 18. In the first, the chamber Cy has labels (ay, by) = (4, 4)

whereas in the second Cy has labels (3, 4). The arrows in the link of y impose conditions on the

retraction diagram of A, or rather on that of Conv(x, y, z), because the arrows of the two chambers

in lk(y) ∩ Conv(x, y, z) have been determined. For instance in Figure 18 the arrows tell us that

one of the focal points of the folding diagram must sit on Ly, which justifies the choice of the

above three cases. We determined all such conditions at each x, y, z for the Case (a) and drew

the numerous possible folding diagrams to exclude the tuples of Table 16 that did not satisfy those

conditions. This is summed up in the following proposition whose proof is omitted.

y

4
3

Figure 16. Branching containing Cy, where the chambers labeled 3 and 4 are in Conv(x, y, z).
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Figure 17. Link of y with

ayby = 44.

Figure 18. Link of y with

ayby = 34.

aybyazbzaxbx
ay = 1 166611

ay = 2 256611, 255522, 255612, 226612, 225622, 221112

ay = 3 344112, 344422, 344433, 345522, 345533, 345612, 345663, 346611

346666, 341111, 333222, 334122, 335622, 335633, 336612, 336663

331112

ay = 4 444111, 444412, 445512, 445554, 445563, 445611, 445666

ay = 5 555512, 555611, 555666

ay = 6

Table 17. Possible labels for non-coplanar chambers in Case (a).

Proposition 5.3.15. — Suppose we are in Case (a) and let Cx, Cy, Cz be three chambers in the

links of x, y, z respectively. Then,

• if Cx, Cy, Cz are coplanar, there exists a folding diagram compatible with Cx, Cy, Cz if and

only if the labels (ax, ay, az) of Cx, Cy, Cz appear in the list of Table 12.

• If Cx, Cy, Cz are non-coplanar, there is a folding diagram compatible with Cx, Cy, Cz if and

only if the labels (ax, bx, ay, by, az, bz) of Cx, Cy, Cz appear in the list of Table 17.

Examples 5.3.16. — We give here two examples of tuples of labels, one from Table 17 that is

realized by a folding diagram and one from Table 16 that has been excluded in the Case (a). Figure

19 shows one possible folding diagram for the labels (ay, by, az, bz, ax, bx) = (3, 4, 5, 6, 6, 3), whereas

on Figure 20 we can see that the conditions on the links fail to be realized by a folding diagram if

(ay, by, az, bz, ax, bx) = (2, 5, 5, 6, 2, 2).

Comment 5.3.17. — We only worked with the case of three coplanar points and gave a general

strategy to understand better the possible configurations of Cx(ξ), Cy(ξ), Cz(ξ) as ξ ranges in Ω.

The triangle Δ(tx, ty, tz), when non-degenerate, plays a crucial role when determining the folding

diagram of the convex hulls Conv(x, y), Conv(y, z), Conv(z, x). The folding diagram of the triangle

imposes conditions on the arrows of the chambers of the latter convex hulls. This is of course related

to the question of determining the cardinal of the intersection of three sector spheres centered at

x, y, z respectively.
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lk(x)

lk(y)

lk(z)

Figure 19. A folding diagram for the labels 345663.

Figure 20. The arrows induced by the labels 255622 fail to be realized by a folding diagram.
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