000216949 001__ 216949
000216949 005__ 20180501105428.0
000216949 0247_ $$2doi$$a10.5075/epfl-thesis-6599
000216949 02470 $$2urn$$aurn:nbn:ch:bel-epfl-thesis6599-9
000216949 02471 $$2nebis$$a10598807
000216949 037__ $$aTHESIS_LIB
000216949 041__ $$aeng
000216949 088__ $$a6599
000216949 245__ $$aCocycle growth for the Steinberg representation
000216949 269__ $$a2016
000216949 260__ $$aLausanne$$bEPFL$$c2016
000216949 300__ $$a127
000216949 336__ $$aTheses
000216949 502__ $$aProf. Kathryn Hess Bellwald (présidente) ; Prof. Nicolas Monod (directeur de thèse) ; Prof. Donna Testerman, Prof. Bruno Klingler, Dr Yves de Cornulier (rapporteurs)
000216949 520__ $$aThis thesis investigates the growth of the natural cocycle introduced by Klingler for the Steinberg representation. When possible, we extend the framework of simple algebraic groups over a local field to arbitrary Euclidean buildings. In rank one, the growth of the cocycle is determined to be sublinear. In higher rank, the complexity of the problem leads us to study of the geometry of buildings of dimension two, where we describe in details the relative position of three points.
000216949 6531_ $$aGroup theory
000216949 6531_ $$acohomology
000216949 6531_ $$acontinuous cohomology
000216949 6531_ $$abuilding
000216949 6531_ $$aSteinberg representation
000216949 700__ $$0245561$$aDumont, Thibaut$$g175470
000216949 720_2 $$0243578$$aMonod, Nicolas$$edir.$$g181579
000216949 8564_ $$s2779053$$uhttps://infoscience.epfl.ch/record/216949/files/EPFL_TH6599.pdf$$yn/a$$zn/a
000216949 909C0 $$0252235$$pEGG$$xU11822
000216949 909CO $$ooai:infoscience.tind.io:216949$$pDOI2$$pDOI$$pSB$$pthesis
000216949 917Z8 $$x108898
000216949 917Z8 $$x108898
000216949 918__ $$aSB$$cMATHGEOM$$dEDMA
000216949 919__ $$aEGG
000216949 920__ $$a2016-2-26$$b2016
000216949 970__ $$a6599/THESES
000216949 973__ $$aEPFL$$sPUBLISHED
000216949 980__ $$aTHESIS