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Abstract—In this work we propose an approach for learning
task specifications automatically, by observing human demon-
strations. Using this allows a robot to combine representations
of individual actions to achieve a high-level goal. We hypothe-
size that task specifications consist of variables that present a
pattern of change that is invariant across demonstrations. We
identify these specifications at different stages of task completion.
Changes in task constraints allow us to identify transitions in the
task description and to segment them into sub-tasks. We extract
the following task-space constraints: (1) the reference frame in
which to express the task variables, (2) the variable of interest
at each time step, position or force at the end effector; and (3) a
factor that can modulate the contribution of force and position
in a hybrid impedance controller. The approach was validated
on a 7 DOF Kuka arm, performing 2 different tasks: grating
vegetables and extracting a battery from a charging stand.

Index Terms—learning and adaptive systems, motion control,
constraints extraction, programming by demonstration.

I. INTRODUCTION

AILY activities such as dish washing or preparing a
meal often require completing multiple actions while
interacting with different objects. When performing such tasks,
humans are able to focus on the key aspects necessary for
achieving the goal. For example when grating a vegetable they
naturally push against the grater, and focus on maintaining a
certain speed and contact force with the grating surface. More-
over, humans naturally introduce variability by repositioning
objects or by using different paths between two objects.
Consequently, obtaining a feature-based representation for
such high-level tasks requires:

1) relating these features to the objects in the task (extracting
the local frame of reference).

2) accounting for the large variability between demonstra-
tions and deciding what feature should be reproduced
(extracting task constraints with respect to trajectories,
force profiles and necessary stiffness modulation)

In this work we propose an approach for automatically
extracting continuous task constraints required for successfully
completing a task. We consider the task presented in Fig. 1,
consisting of grating a vegetable and disposing the remains.
We use Programming by Demonstration (PbD) to record a
set of kinesthetic demonstrations while varying the initial
positions of the robot and the spatial configuration of the
objects used.
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Fig. 1: From recording human demonstrations (top row), we detect the relevant frame
of reference and the direction in which to apply a hybrid force and position controller. In
this figure the robot has correctly extracted that the frame of reference is attached to the
grater and that force has to be applied along the vertical axis, whereas position control
is needed along the horizontal plane of the grater. This allows the robot to reproduce the
task even when the grater is moved to a different position and orientation (bottom row).

We use the demonstration data to extract the object to be
used in each part of the task (either o; or o2, see Fig. 1) and
the way the task should be performed (i.e. alternating force
and position control). More specifically we consider a hybrid
impedance controller:

r=J"(K(x—x,)+ F) ()

where 7 € R™ is the joint control input for an n degrees
of freedom manipulator, J is the Jacobian. The following
variables: z, € RP, the reference cartesian position, F' € RP,
the desired force and K € RP*P the stiffness matrix are
extracted from the user demonstrations. In this case the number
of dimensions is D = 3.

We aim to learn a parametrization of this control law
applicable for the whole task duration. Our approach exploits
the variability between demonstrations to learn a criterion for
determining a notion of coherence in the demonstration.

First for each time step, we extract a reference frame R in
which the variables are most consistent. In some cases this
may represent a quasi-orthogonal decomposition of position
and force control along the axes of the object, although we
continuously use a hybrid controller.

Secondly we extract the variables of interest in the selected
reference frame. Specifically, a task variable (such as the force
perceived at the end effector) might have a large variability



within a demonstration, thus indicating that it becomes im-
portant only in a given region of the task. Regions in which
a variable changes very little throughout a set of sequential
demonstrations prove coherency in that part of the task.
Therefore we focus on extracting such behaviors as the task
constraints that should be reproduced.

Third we extract the stiffness parameter K which allows us
to modulate the contribution of position and force when there
is not a decomposition as hybrid control as well as to ensure
safe interaction and proper task completion.

These task specifications change when switching from one
action to another. Typically we record demonstrations of a full
task, consisting of several such actions. Applying our method
automatically segments the demonstration data. The grating
task for example consists of 3 distinct phases: reaching for the
grater, grating and a reaching for the trash can. Two reference
frames are used (Fig. 1): object o; (the grater) for the first
two segments and object o2 (the bowl) for the third part of
the task.

Automatically obtaining this decomposition guides the
learning phase of the PbD framework. A different model
can be learnt for each atomic action (using various machine
learning techniques for motion encoding), in the local frame of
reference, using the data between two changes of constraints.
In our approach we learn from the demonstrations a time—
invariant path profile for the directions along which position
is the variable of interest (x,.). For the directions along which
force is important, we learn a dependency between the desired
force profile and the desired trajectory. For the particular task
of grating vegetables we obtain a decomposition of force and
position control. This applies to the motion along the grater’s
surface where force control is performed (thus F' becomes a
function of other variables, such as in Eq. 2, F = f(x1)),
while position is controlled on the other two axes, leading to:
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Our approach is aimed at bootstrapping information for
learning and has the following contributions:

1) it automatizes learning, by bootstrapping information
about the task, and parameterizing the learned models.
It performs automatic task segmentation and reduces the
number of the variables encoded for each segment by
extracting the important ones. This simplifies the learned
model by focusing only on the variables of interest
resulted from this decomposition (e.g. instead of learning
a full encoding of 3D force vs. 3D position model, one
simplifies the model by encoding just the force profile
corresponding to the axis where this is applied).

2) it identifies task constraints directly from variables that
can be used for control (end effector position, force and
stiffness) and offers a clear decomposition of these. This
enables a consistent encoding of all the subtasks for
using a single controller and ensures a smooth execution
by directly embedding the constraints. This is applied
through a Cartesian impedance controller, by modulating
the stiffness (e.g. having zero stiffness on one axis is

equivalent to performing pure force control on that axis).
Therefore we learn a stiffness modulation profile to be
applied online during the execution.

3) the learned skill is generalizable to different locations or
similar objects. This is achieved by learning the desired
control with respect to the determined object frame
(i.e. relating the action to the object on which this is
performed). The system is robust to perturbations due to
the time—invariant encoding.

4) it extracts task constraints without requiring any prior
information about the goal of the task, actions in the task
or models of the objects.

Next we review related work in Section II and describe the
different stages of our task constraints extraction in Section
III. We contrast the extraction of constraints for two tasks
differing in the duration and number of important variables in
Section IV. We discuss the advantages and limitations of our
approach in Section V.

II. RELATED WORK

In this work we focus on extracting artificial task constraints
as described in references [1], [2], based on the variability
observed in the demonstration data. The idea that invariants
in motion determine important task features was first used
by Bobick [3] for recognizing gestures from continuous data,
and representing them as an enchainment of states. In our
work we use the variance not only to segment data but
also to determine the relative importance between various
variables and the frame in which these are most consistent. We
reconstruct the task from a sequence of states, parameterized
with the extracted constraints. Therefore we review related
work with respect to automatic extraction of constraints, task
segmentation, and constraint—-based motion planning.

a) Automatic extraction of reference frames: In our pre-
vious work [4] we proposed extracting the reference frame
in a manipulation task with respect to a proposed metric of
imitation. Data recorded from demonstrations (arm joint an-
gles, hand cartesian position relative to the objects and gripper
status) is projected into a lower dimensionality latent space and
further encoded in a time-dependent manner using a Gaussian
Mixture Model (GMM). Gaussian Mixture Regression (GMR)
is used to reproduce the motion. In an early attempt, temporal
variations are encoded in an Hidden Markov Model (HMM)
and implicit segmentation is performed through HMM states
[5]. These implementations have the limitations of encoding
the motion in a time-dependent manner. Additionally in our
approach we focus only on the end effector state (actual posi-
tion and force, observed in the demonstration), thus making the
skill easily transferable to other robotic platforms. Moreover
we increase the task complexity and the number of encoded
constraints.

A different method of selecting a task-space is based
on three criteria [6]: a variance-based analysis of object
trajectories, attention focus on objects in the task and an
evaluation of the teacher’s discomfort during demonstration.
While this method takes into account many factors, it is
applied solely to vision—tracked human demonstrations. In our



case the demonstrations are performed kinesthetically in order
to allow the robot to experience forces that should be applied
on objects. Moreover analyzing if the human maintains an
uncomfortable posture during demonstration might reveal that
the particular action was important for the task [6]. In our
case a direct evaluation is done on robot’s proprioceptive data,
while the user chooses an arbitrary position for demonstration.

The approaches mentioned above lack information about
how the manipulation is performed that in some tasks may
be key to successful execution. Therefore we build on these
existing approaches by extracting constraints with respect to
force profiles and robot stiffness in different regions of the
task, and assess the effects this has on task completion.

Expressing the control variables in the local reference frame
attached to the object on which manipulation is performed at a
given time, allows the robot to properly execute the task when
the positions of the objects change in the scene. Moreover
this allows us to consider constraints not only as factors that
limit the robot’s motion [7], but that also add meaning to the
motion (i.e. a grating motion, characterized by a given force
and motion profile, is only meaningful when performed on a
grater and in the context of a grating scenario).

In some cases there might be multiple actions performed
on the same object. The methods presented above extract one
reference frame, but cannot disambiguate between the different
positioning needed for each action. In our work we address
this issue by also extracting an attractor frame (relative to the
reference frame extracted above).

b) Automatic extraction of force information: The ability
to successfully perform complex tasks resides in making use of
additional sensing. For example, assessing joint torque values
can be an indicator of whether the motion of the end effector
is constrained [8]. Therefore the second aspect that we address
is detecting axes in task space where force control applies and
encoding these force profiles. Typically the decision of choos-
ing an axis in task space on which to perform force control
or position control is engineered in advance. In the proposed
approach we were able to automatically determine an arbitrary
reference frame with respect to the object of interest in which
a decomposition of force and position control can be obtained
and we selected the suitable type of control that applies to
each axis. However, adding the force information, while of
high importance for the task, can be challenging depending
on the platform. Kinesthetic teaching for demonstrating the
motion might need to be used in conjunction with a haptic
device for demonstrating the required force profile [9].

Additionally the stiffness is an important parameters when
executing a task, as varying the robot’s stiffness according
to the task ensures safer interaction [10]. In our approach
we determine the required stiffness modulation as a relative
measure between the contribution of force and position on
each axis of the object. This leads to learning hybrid control
in an automatically determined frame.

c) Task segmentation: The constraints extraction topic is
complementary to performing task segmentation which on the
long term offers the possibility to easily recognize, classify
and reuse motions [11]-[13].

Typically in robot learning from demonstration of a task that

consists of several actions, each gesture is shown to the robot
separately. The main reason is that task specifications change
from action to action. In the proposed approach we are able
to automatically determine when these task specifications need
to change and the next set of specifications.

In our work we do not explicitly seek to segment the
data, however segmentation occurs naturally when the task
constraints change, resulting in meaningful segments that
encode atomic actions. This allows a flexible representation
of the task, exploiting the local behavior in each sub-task. A
vast majority of recent works in segmentation focus solely
on motion data represented by sets of joint positions or hand
positions and orientation retrieved by motion capture systems
in the case of human motion and by robots proprioception in
the case of robotic motions. However very few works focus
on segmenting task data that includes force information.

The existing approaches for motion segmentation [11] rely
on either (1) classification based on existing motion primitives
used for prior training [14]-[16]; (2) looking for changes in
a variable, like zero-crossings [17]; or (3) clustering similar
motions by means of unsupervised learning [18], [19]. The
downside of these approaches is the need of prior task knowl-
edge, which may be poor and incomplete in real-life situations.
Moreover they are sensitive to the variables encoded and have
difficulties when applied to data such as force information
where a large number of zero crossings may appear, making
the encoding of motion primitives difficult.

The first approach for segmentation can ease robot control
because of the existence of motion primitives. However while
it is safe to assume that human motions are likely to follow a
specific pattern in a known context, rather than being random
(as shown in [20]), a major drawback is the need to include
prior knowledge. It also restricts the scope of segmentation by
knowing what the task is about, such as segmenting motions
used in robot assisted surgery [15].

The second segmentation involves searching for zero ve-
locity crossings (ZVC) [17] or other changes in a variable
compared to a known state [8]. This approach is sensitive
to the variables encoded while one needs to find a way that
would ensure optimal segmentation across all task dimensions.
Regions of low variance have been alternatively used to
determine segmentation points [21]. Furthermore most of them
rely on other techniques for human motion analysis which
include [11]: Dynamic Time Warping (DTW) used in the
temporal alignment of recorded data; or HMM for analyzing
data that varies in time (such as hand movements sign language
[22]). Additionally when humans demonstrate a task to a
robot, they may stop during the demonstration to rearrange
an object or teach in a different manner. In these cases the
above mentioned approaches over-segment the data.

The third approach encompasses a more complex view of
human motion, such as learning and clustering motion primi-
tives in an incremental manner, from observing humans [18].
The method in [18] performs unsupervised segmentation based
on motion encoded through an HMM. The obtained segments
are clustered according to a measure of relative distance and
organized in a tree structure. It encodes generic motions at
the root, that gradually become more specialized close to the
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Fig. 2: Example of recorded data and computed variance over trials (V ary,;q;) and over a time window (Var,,;,) for a measured variable x;. Region A
shows data with little variance across trials (i.e. a feature of that should be reproduced). Region B shows data with large variance over trials, and low variance

over a time window (almost constant).

leaves. The algorithm allows to change the model according
to known primitives [23], and to use the same learned model
not only for recognizing, but also for generating motions [16].
While being one of the most robust implementations to date,
the approach lacks time independency in motion encoding.

These approaches, while efficient, have the shortcoming of
being task specific and requiring a considerable amount of
prior knowledge which may be poor and incomplete in real-
life situations. Thus they achieve little generalization across a
wide range of tasks. They also fail to model specific features of
the motion, focusing mainly on changes in position. Moreover
these algorithms focus on extracting motion primitives, as
opposed to learning a parametrization of a control system that
remains the same all along the task, as in our approach. This
allows learning and reproducing a task in a seamless manner.

Our approach departs from the above-mentioned imple-
mentations by: (1) taking a broader view on the task and
analyzing the motion also with respect to constraints that apply
to forces and stiffness; (2) extracting task constraints from
a low number of demonstrations, while removing the over-
segmentation; (3) finding the relevant atomic actions in a task,
without embedding any prior information about the goal of the
task, nor models of the objects.

This makes the approach suitable for tasks that encompass
switching between multiple atomic actions. Moreover we
consider continuous constraints that may apply throughout or
only on a subpart of the task. Finally, we use a single controller
throughout the task execution, while the constraints identify
values taken by the variables of the impedance controller as
the task unfolds.

d) Constraint based motion planning: Knowing the con-
straints that apply to each action that is to be performed
can lead to a better task planning [24], [25]. A constraint—
based representation of a complex task can be used by a high
level planner [26] for executing plans or for inferring motion
grammars [27] for a high-level representation.

Common ways of encoding the task sequence use: Finite
State Machines (FSM) [28], [29], Petri nets, Markov Models
[21], [30], graph and tree representations [31], [32].

In our work we consider the sequence of atomic actions
implicit in the demonstration. We therefore determine a Finite
State Machine (FSM) to execute the task. The states are not
known a priori but extracted. They correspond to the atomic
actions identified previously and encode their corresponding
constraints. Our implementation takes a low-level approach
by encoding constraints, directly in the control variables. This
guarantees the task success without knowing the conceptual
goal, and allows isolating atomic actions for individual reuse.

The task is executed using a single controller and embedding
the constraints online, during the execution.

III. METHOD

We consider a set of N demonstrations of a task performed
under changing conditions, using a number N, of objects. The
data set is a vector of L = 2 components & = {Fi 2%}
consisting of end effector measurements of force and position.
The upper indices correspond to representing the data in the
reference frame of each object o;, © € 1...N,, while the
lower indices correspond to the dimensions considered d =
1...D. The £° corresponds to the original recorded data (in
Ry), the fixed referential in the base of the robot. The data
was temporally aligned using Dynamic Time Warping (DTW),
resulting in a set of length 7'. Each demonstration is composed
of a series of T'- D - L. measurements, with t = 1...7T number
of time steps, d = 1... D, dimension of eachof the [ =1... L
components.

We postulate that if a variable (a) changes value significantly
within a single demonstration and (b) changes this value in
a systematic way across demonstrations then this variable is
significant for the task. It hence becomes a task constraint that
should be reproduced. We thus propose a criterion, computed
for all variables D - L and all objects N,, given by the
difference between the variance over the time window and
that over trials. This allows comparing the task variables in a
relative manner, without setting any hard thresholds. At each
time step the criterion is computed on each dimension as:

C (5(2“) = Varyin (E(Zi,l) —Varyia (gél) 3)

thus comparing the force and position measurements on each
axis. The obtained value is normalized C(&,,) € [-1, 1].
The variances Vari, ;o and Var,;, are defined as:

Vartmal (gdl NZ VCL’I" édl ) (4)

N
Varuin (€, (t: t+w)) Z (Var(&h(t: t+w))) (5)
The values of the two variances are normalized such that
Variriar, Varyin € [—1,1].

In a typical robotic task a minimum of D - L variables have
to be compared if using a 3D measurement of position and
force (3 groups of 2 variables). The total number of criteria
to be computed for a task is given by No = N, - L - D. The
size of the time window is an open parameter. In this case it
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Fig. 3: Comparison between the criteria computed for uni-dimensional mea-
surements of force (F) and position (x) in 2 reference frames (RF1 and RFb).

is chosen arbitrarily as being the shortest time period in which
we see noticeable changes in the task flow.

The proposed method for extracting the task constraints is
illustrated below, on an uni-dimensional measurement (D = 1)
of two variables: force F' € R and cartesian position x € R
of the robot’s end effector. For the purpose of this example
we drop the lower index d. We also consider two objects
01, 02. The data set is composed of the pair of elements:
¢ = {F* '} considered to be recorded over a number of
N demonstrations of a task (see Fig. 2 (a)). This determines
N¢ = 4 computed criteria, as shown in Fig. 3 (a).

A. Determining the Task Constraints

Using the defined criterion we extract the following task
constraints: the frame of reference (as explained in Section
III-A1), the relative importance of position and force on
each axis of the object (see Section III-A2), and a weighting
factor between the two, used to modulate the controller’s
stiffness throughout the task (Section III-A3). The procedure
is summarized in Alg. 1.

1) Extraction of the Reference Frame: For choosing a frame
of reference we compare the computed criteria and choose at
each time index ¢, t = 1...7T the value of the highest criterion
for all the variables considered max(C (ffi’l)), see Fig. 3 (b).
Thus the vector of obtained maximum values max(C(};))
is analyzed separately for each dimension d, using a time
window of arbitrary size (in this case w; = 100 time steps).
We consider that in each time window the reference frame is
given by the object o with the highest number of occurrences
of its corresponding criterion maxz(C(£7,)). In this example
there are two changes of reference frame, as shown in Fig. 4
(a): for the first 100 time steps the reference frame R is given
by object 09, for the next 200 time steps there is a change to
01, and for the rest of the motion the RF is changed to o0s.

The changes in the reference frame determine a set of
segmentation points s, s = 1....S which delimit the actions
performed on each object. In this example there are 3 actions
(one performed on object 1 and two performed on object 2)
determined by the change of RF. Each segmentation point
corresponds to a state that contains the time index ¢; when
the change occurred and the id of the reference frame used up
to that point ¢s = [ts, Rs].

2) Extraction of the Relevant Task Variables: The criterion
defined in Eq. 3 allows us to compare in a relative manner
the influence of variables of different types (like force vs.
position), and that vary across different scales, see Fig. 3 (a).
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The aim is to be able to quantify their relevance with respect
to the task, so as to give more importance to the variable of
interest in the controller and to adjust it when a change occurs.

For determining the relevant task variables, we analyze the
criterion on each dimension d using a time window of arbitrary
size (in this case wy = 100 time steps). Similarly to extracting
the reference frame, we consider the relevant variable in each
time window to be the one that has the highest occurrence
of its corresponding maximum criterion in that interval. In the
given example, there are several changes between position and
force as variables of interest (see Fig. 4 (b)).

The changes in the variable of interest determine additional
segmentation points which together with the initial points
determined by the change of reference frame delimit individual
atomic actions such as reaching movements. In the example
described above, there are 3 segmentation points correspond-
ing to the change of the variable of interest (see Fig. 4 (b)).
The first two points are identical to the segmentation points ¥q
and 1, found by the change in the reference frame. The next
point ¥3 marks a change from a force-based part of the task to
a position based part. The final point ¥4 concludes the motion.
The points are sorted according to the time index when the
segmentation occurred. The information about the variable of
interest is added to the vector ¥ = [ts, R, 7. The current
€, now contains only the data between the previous and
current segmentation points.

3) Extraction of the Stiffness Modulation Factor: Deter-
mining the axis-specific relative importance between the two
variables can be done by computing a weighting factor A that
balances the contribution of the force and position according
to the relevance determined above. Thus, for each dimension
d the value of \; € RP is given by the normalized difference
between the criterion computed for position and the one
computed for force

i = C(zq) — C(Fy) (6)

Thus the value of A € [0,1] becomes a weighting factor
for the controller’s stiffness K. Therefore we can use an



Algorithm 1 Task Constraints Extraction

Bootstrapping(Set of N demonstrations: £, = {F% z%})

1—-N
Do DTW, dataset length T’

Criteria: C(ffi,z) = Varw,-n(ﬁfi,l) - V(M’trmz(ﬁéyl)
s = 0 % number of segmentation points

% Determine the reference frame:
fort=1:w;:T do
R(t) = R; for which Crpaz = maz (CE))
if RF(t) # RF(t — 1) then '
s = s+ 1; % Create a new segmentation point
s = [ts, Ri] % add the current constraints
end if
end for

9% Determine the variable of interest:
for each dimension d =1 : D do
fort:l:wz : T do
add sz to the current constraints vector ,
¥s = [ts, Ri, &5 ;] for which Crnaz = Jmaz (C(&q.)
if €5, (t) # €5 (t — 1) then o
Insert a new segmentation point

end if
end for

% Determine the stiffness modulation factor:

for each segment s do

add A s(t) = C(€q,1(t) — €a,2(t)) to the constraints vector
ws = [tsz Ri7 g}cv Ad,s}

end for

end for

return 1.
end

impedance controller for reproducing the motion with the
factors described above representing continuously constraints,
that can be directly embedded in the robot’s control.

r=J""R-\K(z —z,)+ F) (7

The corresponding A profile for each segment of the motion
is added to the constraints vector 15 = [ts, RF, Ea ko As)

4) Choice of time—window size: In the example presented
above the size of the time window was chosen arbitrarily.
When performing manual tuning our aim was to determine
a time window that would result in avoiding very sudden
changes from an important variable to another. For example
switching from force control to position control for less that
10 ms will not have an effect on the task.

However a variable time window is desirable. We propose
a way of determining a suitable time window by comparing
the average variance with the instantaneous variance, therefore
monitoring the rate of change in the signal. For example in the
signal presented in Figure 5(a), choosing a large time window
(e.g. 1200 time steps) leads to loosing information because the
average variance in the first part of the signal is different and
not representative for the second part of the signal. Therefore
the average variance in a local time window (vary,) should
be similar with the instantaneous variance computed at each
time step (var.s). A change in the average variance determines
a step change in the instantaneous value. Therefore we can
compute a suitable time window a variable e defined as:
€ = |vary, — varys|. A significant change in this measure
determines starting a new window. According to this variable
(see Figure 5(b)) we were able to determine two windows

(w1 = 513 samples and wy = 595 samples for the given
example, based on an abrupt change in e.

B. Constraint-based Motion Learning

In our work, segmentation of the demonstrated data occurs
implicitly whenever there is a change in the extracted task
constraints. This is a natural manner of segmenting as the
points in which either the reference frame or the variables of
interest change, delimit atomic actions (e.g. the force sensed
at the end effector might be relevant in the first part of the
task while after the segmentation point, end effector’s position
could become more relevant). Segmenting and interpreting the
data in a stochastic manner allows regenerating the motion
according to the measures determined to be important as
well as finding optimal control strategies with respect to the
variables of interest (see Table I, Columns 1 and 2).

When encoding the motion profile we aim to preserve
the exact behavior seen during demonstration. We therefore
choose to encode variables that show a temporal coupling (like
position and orientation, that change synchronously towards a
target posture (the attractor)) using our Coupled Dynamical
Systems (CDS) approach [33]. This encompasses the follow-
ing advantages: (a) the motion is encoded in a time—invariant
manner and ensures asymptotical stability at the target of both
dynamical systems; (b) the motion follows the demonstrated
dynamics even if the execution starts from unknown regions
of the space, far from the demonstrated motion, without the
need to replan or re-scale the trajectory; (c) the temporal—
correlated behavior of the two variables is preserved and
thus a perturbation in one of the systems does not cause an
unsynchronized behavior, the robot being able to adapt online
to changes in the environment.

With respect to a given reference frame R extracted pre-
viously the CDS approach determines an attractor (a relative
positioning and learns the motion profile with respect to this
frame). In the given example there are two attractors with
respect to the grater object and one for the bowl.

1) Learning the motion profile: We choose to encode
the motion using a coupled dynamical system approach, as
described in [33], which allows us to preserve the coupled evo-
lution of position and orientation towards the target posture,
that was observed in the demonstrations. The force profile is
encoded separately, as a function of the position. This allows
the robot to execute the task in changing conditions and to
generalize to situations not seen during training (Fig. 1).

Each individual variable is encoded as a non-linear dynami-
cal system of the form & = f(x), which encodes the mapping
between a variable and its first derivative thus removing the
explicit time dependency. Here x and # € R represent
the cartesian position and velocity of the end effector. The
function f : RP + RP (initially unknown, but implicit in
the demonstrated behavior) is a continuous and continuously
differentiable function stable only at the attractor . The non—
linear behavior of function f is encoded using a mixture
of k Gaussians, specified by a vector 6% = [zF uk k],
representing the parameters of the GMMs (priors, means,
covariance matrices), such that P(z,|0%) represents the dy-
namics of system 1. Based on this encoding the velocity & is



State  Constraints Motion Encoding
1 [t511R17F1)\1] Ci/’] = [01,0’;,0’;]
o [tsy, R2, %, X2]  Cy, = [Co, 05]
3 [teg, R2, F,A3]  Cyg = [Cu, 0%, 0%]
Py [tog, R, @, 0] Cyy = [Ca, 05]

TABLE I: Final task parametrization for the given example, consisting of
states 105, the extracted constraints and the corresponding statistical encoding
to be used by the controller in each segment, C.,. .
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Fig. 6: Finite State Machine used for executing the task. Each state encodes
the determined constraints. We consider that the order of the demonstrated
actions is implicit for the task flow.

thus computed as & = E{p(&|z;0%)}. The model is learned
through maximization of likelihood under stability constraints
(see [33] for details).

In our case the absolute position of the attractor in each
segment is estimated from the initial set & (in Rp) as the
average of all the points from the N demonstrations, on
each dimension d, at the segmentation time tg, resulting in:
24 = avg (z4(t,)). The motion is encoded in the attractor’s

1—-N

reference frame R, such that the attractor becomes x = 0. The
motion is expressed in the attractor’s reference frame whose
axis are not necessarily aligned with those of R; and the origin
is located at z. In a grating task for example there are two
attractors with respect to the grating surface: the rop (initial
point touched on the grater) and the bottom (after passing the
blade).

Similarly we encode the rotation specified by an axis-
angle representation r € R*, as P(r,7|0F), with respect to
an estimated attractor 7. Finally P(v(z),7|0%) represents a
coupling function between the two systems, learned using
maximization of likelihood. During the execution the system
updates the dynamics of system 1 through GMR, second the
coupling is updated and this determines updating the second
system (in this case the orientation) (see Alg. 2).

The model can be further parameterized to control the speed
and amplitude of the robot’s behavior under perturbation, using
two scalars «, 5. While in the original implementation in [33]
these parameters are learned from recording good trials and
perturbed demonstrations, here we can estimate them based
on the variance information, such that in regions with high
variability the adaptation is slower than in regions with low
variability. Thus, in the proposed impedance controller, the
reference trajectory for the reaching segments is given by
the learned CDS model. This ensures that the learned model
follows the original dynamics of the demonstrated motion, and
it is stable at the target. The synchronous evolution is ensured
through the coupling function. The complete CDS encoding
of the motion in a sub-part of the task is thus specified by the
vector: C,, = [Gﬁ,ﬂf,ef,i,;,a,ﬂ].

2) Learning the force profile: For segments of the task, and
across dimensions in which the force becomes important, we
use GMM to learn a joint distribution of the variables F' and
x. We choose to encode the force profile with respect to the

Algorithm 2 Constraint-based task execution

FSM Execution(3);, C’d,i, i=1:9)
do
read robot current position g 1 and EE force £4 2
read objects positions
for all task segments s do
Use current state’s constraints s = [ts, Rs,fld ,As]
Transform data to R
% Compute the next desired robot position {x(t + 1),r(t + 1)},
% using CDS [33]* .
if current attractor x,r not reached then
% Compute next end effector position
& = BE{p(i|z;05)}
z(t+ 1) = z(t) + z(t) At
% Infer orientation based on current position
7 = E{p(rly(z); 08)};
% Compute next end effector orientation
i = E{p(#|B(r — 7);6;) };
r(t+1) =r(t) + ar(t)At
% Determine stiffness modulation based on current position
A= E{p(Alz)}
if Force important on dimension d then

% Predict force based on current position
F = B{p(F|z)}
end if
Transform all data back to RFy
Update robot’s motion (according to eq. 7)
end if
Else Go to the next state
end for
until Task completed
end

axis in which we see noticeable changes in position. In the
grating task for example, force control is performed along the
Z axis of the object; there is no modification in position along
the Y axis (i.e. along the width of the grater, but the highest
variance is observed with respect to the motion along the X
axis (the grater’s length), which therefore becomes the variable
with respect to which we encode the force profile.

We use a model comprising a mixture of X Gaussian com-
ponents, such that: p(F,z) = Y (7h-p(F, z; uk, $%)), where
k=1
7%, k. and % represent the priors, the mean and the covari-
ance matrix for the Gaussian model. These parameters are
learned through (EM) Expectation — Maximization algorithm.
The vector 0% = |7, uh, k] is added to the Cy, = [0%].
During the execution, GMR is used for predicting the force to
be applied based on the current position: E{p(F|z)}. Unlike
the encoding of position, for the force there is no attractor, as

force control is performed along a trajectory.

3) Learning the stiffness profile: We encode the stiffness
modulation factor A similarly to encoding the force, by learn-
ing a joint distribution p(\, z) using a mixture of k gaussians.
The model is parameterized by the vector 6% = [r5, k35,
representing the priors, means and covariance matrices.

C. Constraint—based Execution

We assume that the flow of atomic actions is implicit
in the demonstration, thus the reproduction is based on the
determined sequence of 1.¢ points. A finite State Machine
containing the inferred states is generated, as shown in Fig.
6. A state is generated for each change of constraints and
contains: (a) the extracted constraints, and (b) the learned
motion models, as they are summarized in Table I, Column 3.



(a) Reaching the grater

(b) Grating the whole vegetable

(c) Trashing the remains

Fig. 7: Atomic actions in the Vegetable Grating Task. The user demonstrates the task, using different starting configurations of the objects and the robot.

Typically the transition between states occurs when the
attractor of the current state is reached. This implies that
reaching the determined relative frame is the main factor for
advancing the execution. However we make the assumption
that the variables that were not determined as important for
control might still hold complementary information, useful for
state transitioning. The execution of the task based on the
extracted constraints is presented in Alg. 2.

IV. ROBOT EXPERIMENTS

This approach was validated on two robot experiments
performed using a 7 degrees of freedom (DOF) KUKA
Light Weight Robot arm (LWR), with the provided Cartesian
Impedance controller. The controller takes as parameters the
desired position, force and stiffness and it automatically ad-
just the damping and dynamics terms for stability. The two
experiments consisting of a kitchen task, grating vegetables,
and an office task removing a battery from a charging stand,
differ in duration, number of variables used for control and
objects involved. We performed a quantitative evaluation of the
extracted constraints with respect to the learned models, and
a qualitative assessment with respect to the task performance.

A. Carrot Grating Task: Task description

The task consisted of several atomic actions, presented in
Fig. 7: reaching from the initial position to the slicer (the
motion takes around 3 to 5 seconds), a repetitive slicing motion
(on average around 30 seconds), a reaching motion from the
slicer to the trashing container (on average 2 seconds).

Two objects were used: a grater (0o1) and a bowl (02). Data
was recorded from the robot at 100 Hz, using kinesthetic
demonstration and consisting of: end effector position z € R3
and orientation (r € R3*3), and external forces estimated at
the end effector (F' € R3). The objects were tracked at 100
Hz using an OptiTrack motion capture system.

The variability of the task consisted in: (1) starting each
demonstration from a different initial position of the robot,
and placing the objects in different positions in the reachable
space of the robot (we recorded data for 3 different positions
of the objects, placed on average 30, 45 and 65 cm apart from
the initial position); (2) using vegetables of different sizes and
types (we recorded data for 3 types of vegetables (carrots,
zukinis and cucumbers). The vegetables varied in length, from
a minimum of 10 cm for a carrot to a maximum of 35 c¢m for
a cucumber, and with about 2 cm in diameter); the variability
of the manipulated object affected the force applied by the
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Fig. 8: The obtained segmentation overlapped on the demonstration data

user when providing demonstrations and the duration of the
demonstration. The task lasted until the vegetable was fully
grated; (3) inherent user variability between demonstrations.
A total of N = 18 demonstrations were recorded, 6 for each
vegetable type, using 3 different objects poses.

1) Extracted Constraints: For extracting the task con-
straints we evaluated the 3D measurements of position and
force projected in the reference frame of each object. Follow-
ing the approach described in Section III, the criterion on each
axis was evaluated in a time window of width w = 200 time
steps (2 seconds) for determining the reference frame. This
resulted in one segmentation point. The motions of reaching
and grating were expressed in the reference frame of object 1,
the grater, and the motion of reaching the trash container was
expressed in the reference frame of object 2, the bowl.

Similarly, we evaluated the criterion on each dimension,
using a time window of width w = 300 time steps (3
seconds) for determining the variable of interest. The results
showed that the force on the vertical axis became important
in the second part of the task (grating and trashing), while
only position was important in the first part of the motion
(corresponding to reaching the grater). The change in the
variable of interest determined a new segmentation point. A
final point concludes the motion. Therefore 3 segmentation
points 1, were determined for this task (see Fig. 8), involving
the 3 different states.

Two attractors were determined relative to the grater: one
near the handle (Grater top); and one at the bottom of the
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grater (Grater bottom), after passing over the blade. Similarly
at the end of the motion the positioning was relative to the
trashing bowl. This allowed us to have an attractor based
encoding of the task. The learned dynamics for reaching the
grater o1 and the trash o5 respectively are shown in Fig. 9
(a) and Fig. 9 (b), with generalization across different starting
postures. Generalization with respect to a moving target is
shown in Fig. 9(c); the force and stiffness modulation are
presented in Fig. 10.

A finite state machine was generated as described in Section
III-C. The advancement of the FSM happened when the
current attractor was reached, or when the number of grating
passes was completed. For evaluation purposes the number of
times the grating was performed was an additional condition
for the transition between states 1)1 and 1)s.

2) Task Evaluation: We performed both a qualitative and

quantitative assessments and evaluate (1) the correct extraction
of task constraints; and (2) the ability of the system to

Trial 1 Trial 2

generalize to new object locations and different vegetables.

a) Evaluation of the extraction of constraints: We val-
idated whether the model had correctly extracted the dimen-
sions onto which to provide either force or position control, by
comparing the robot’s quantitative performance in executing
the task when using the proposed approach or other simple
control schemes.

For the quantitative assessment we measured the effects of
the determined variables as the determined constraints.

For evaluating the framework we compared our approach
with standard control modes: a position controller and an
impedance controller with fixed stiffness values. For these two
control modes, N = 5 different demonstrations were provided,
using gravity compensation mode (gcp) and robot’s execution
was evaluated during motion replays (Rep;,¢ = 1...5) in
the different setups: position control (pos) and impedance
control (imp). The performance under these control modes was
compared to the developed approach (amp). Several replays
were performed for each demonstrated motion. We constantly
compensated for the decrease of the vegetable’s height, during
replays. Each group of 1 demonstration followed by 5 replays
were performed on the same vegetable. A single vegetable
type was used, and the task was demonstrated using 5 passes
over the grating surface during each trial.

For all the trials we measured: the original and final weight
of the vegetable (w;nit, Ufin[g]); the original and final height
(hinit, hin[cm]). The original values were measured before

Trial 3 Trial 4 Trial 5 Trial 6 — amp

Q Q Q Q Q Q

= = I NC) I NC I NC = i

3 A A Sl s W S :

Type Contol | 4 & % a4 & % a & % a & 53 a & 5; a & g")

NI gcp 4 5 100 7 5 100 9 5 100 6 5 100 6 5 100 7 5 100

Repl pos 1 1 20 2 1 20 1 1 20 0 0 0 0 0 0 4 4 80

Rep2 imp 2 3 60 2 2 40 7 4 80 5 4 80 2 2 40 5 4 80

Rep3 imp 3 2 40 5 3 60 6 4 80 3 2 40 1 1 20 8 5 100

Rep4 imp 4 4 80 1 1 20 1 1 20 9 5 100

Rep5 imp 7 4 80 1 1 20 5 4 80

Uratiol 0] 21.00 21.62 31.08 17.78 18.07 35.86
Rratiol%) | 42.06 | 35.65 [ 35.00 [ 4230 | 26.92 | 315

TABLE II: Evaluation of the control modes. For Trials 1 - 5 we compared the demonstrated motion D; provided using the robots gravity compensation mode
(gcp), with a standard position control mode (pos), and with an impedance controller with fixed stiffness (imp). Trial 6, illustrates the performance of the

proposed controller, learned from the N = 18 demonstrations (amp).



the demonstration was performed, while the final values were
measured at the end of the last replay round. For each round
of demonstration and replay we measured the weight of the
grated part (Au[g]) with a precision of +1g and counted the
number of successful passes (SP).

We evaluated the task performance with respect to the
following computed measures:

1) Urqatio[%] the ratio of the grated vegetable (ugroted =
> Au) as a percentage of the initial weight.

2) hratio|%] the percentage of the vegetable length being
grated (hinit — hrin) With respect to the initial length.

3) SPratio|%] the percentage of successful passes (SP) out
of the total passes performed.

Results are presented in Table II. Using a standard position
controller (Trials 1 - 5) for replaying the motion gave good
results in a very low number of cases: mean (M) = 12% and
standard deviation (SD) = 10.95 successful passes, while the
amount of vegetable grated was bellow one gram per trial
(M = 0.80g, SD = 0.83). When replaying the recorded motion
using an impedance controller the number of successful passes
increased (M = 52.5%, SD = 25.16).

These results were compared against the proposed approach
(see Table II, Trial 6), using the parametrization learned
from the initial 18 demonstrations. The grating performance
was assessed using the same performance metrics as for the
standard control modes. The overall performance was better
with respect to the amount of grated vegetable, and the number
of successful passes.

b) Evaluation of the generalization ability: We tested
whether the automatic segmentation of the task and the ex-
traction of reference frame was correct and led to a correct
reproduction when the position of the objects was changed.
The robot regenerated the complete sequence and managed
to complete the overall task comprising the 3 segments even
when the objects were located in arbitrary positions and
orientations, none of which were seen during training.

The importance of being able to change the reference frame
is illustrated in Fig. 1, when using different positions and
orientations of the two objects. In this case we performed a
pure qualitative assessment by placing the objects in random
positions and orientations in the robot’s reachable space,
and using different vegetables. We measured the number of
successful passes over the grater’s surface. Similarly we tested
the functionality over a larger grating surface.

B. Battery Charger Task

We tested the ability of the proposed method to properly
extract constraints on a second task, i.e. removing a battery
from a charging stand, see Fig. 11. The task was very fast
paced. From the first segment to the last segment the task
lasted on average less than 5 seconds.

In this example we used a single object o, the battery stand.
We recorded data at 1 kHz, from human demonstrations by
using vision to track the motion of the tool and of the object.
Additionally we mounted a 6 axis force torque sensor on the
tool to record precise interaction forces (Fig. 11). The steps
of the task are shown in Fig. 17. The data-set consisted of 9
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Fig. 11: Experimental setup for removing a battery from a charging stand.
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Fig. 14: Causality relationships corresponding to the “push” and pull”
segments. The oriented arrow shows the start variable to be causal for the
end variable. An un-oriented edge shows double causality.

variables, 3D measurements of end effector position, force and
torque. We computed the criterion as described in Section III,
using a time window of 1000 time steps, for position, force
and torque on each axis of the object (see Fig. 13 and 15).

For the first part of the task (reaching) the criterion for posi-
tion was dominant on all axes. For the following part (pushing
and lifting the battery) there was a clear separation between
the two segments on the X and Z axis of the object (see Fig.
13 (a), (c), marked by changing the variable of interest (i.e
torque than force), while on the Y axis (perpendicular to the
object) torque and force were equally important with a small
relative difference in their criterion (Fig. 13 (b)).

In this case, the proposed approach, does not offer a clear
decomposition of the task, suitable for hybrid force—position
control. The method offers a relative weighting between the
importance of different variables acting on the same axis.
However to still use a hybrid controller, we should determine
the relative importance between axes, as in this case the forces
and torques acting sideways were just a reaction to the motion
of taking out the battery. For this we propose studying the
causal relation between the variables of interest determined
above, across all the NV demonstrations. This allows us to:

« have a relative weighting of the axis’s importance
o determine on which of the other axis the motion should
be conditioned on

For analyzing the causality in the data we have used an
existing Matlab toolbox [34]. Fig. 14 (a) shows the relationship
between the variables of interest determined on each axis for
the ’push” segment. The force component on the X axis along
the object (corresponding to torque around the X axis of the
end effector) was causal for the force components around other
axes. The amplitude of the causal interaction was 0.37 for
the torque around the Y axis and 0.1793 for the force on
the Z axis, thus proving that the interaction is stronger in
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(b) Pushing

(c) Lifting (d) Reaching back

Fig. 12: Atomic actions in performing the task. The task typically consists of reaching for the battery stand, applying a force that tensions the spring inside

the support (pushing), taking out the battery (lifting), and reaching away
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Fig. 13: Computed Criteria. We contrast the contribution of Position, Force and Torque as variables of interest. Segmentation obtained using time window of
various sizes: w1 = 1000 time steps; wo = 500 time steps; wz = 250 time steps. We retain the segments obtained after using the time window w1.

the XY plane of the battery charger. Secondly we studied
the connectivity of the most important variable with all the
other secondary variables (i.e the change of position on all
axis), Fig. 14, which showed a causality relation in both ways.
This allowed us to reduce the number of axis on which we
perform force control in this segment to one (the X axis) and
to automatically determine that this should be encoded based
on a change in position along that axis (it also determined a
change of position on this axis). Similarly analyzing the causal
structure in the data for the ”lifting” segment allowed us to
reduce the dimensionality of this model.

Fig. 11 shows robot reproduction and generalization to
different positions of the battery charger stand.

V. DISCUSSION

Our approach of extracting continuous soft constraints from
human demonstration was tested on a cooking task encompass-
ing 3 segments and on an office task with 4 segments. The
tasks differed in duration and the set of important variables.
The proposed method extracted the necessary information for
performing the tasks and encoded the task—flow without any
prior knowledge. The tasks were reproduced from a time—
invariant encoding, using an impedance controller parameter-
ized by the continuous constraints.

From a Human-Robot Interaction (HRI) perspective, this
method can facilitate teaching interactions as it allows the user
to demonstrate the whole task rather than individual actions.
A fragmented representation can be demanding when the user
has to actively teach the robot how to perform the task. As
multiple demonstrations are required for generalization, it is
more convenient for the user to demonstrate the whole task,
rather than individual actions, such as reaching movements.

We further discuss several aspects that could influence the
behavior of our approach.

a) Influence of other variables on segmentation points:
The approach presented above can be extended by taking into
account other variables. For the grating task we computed the
variance over trials and time window for 2 other measures:
the torques sensed at the end effector, and the end effector

Stiffness modulation on the X Axis Stiffness modulation on the Y Axis Stiffness modulation on the Z Axis

N V\JOZ\\/ /”\/ o,:~\/ /

0 1000 2000 3000 4000 CD 1000 2000 3000 4000 0 1000 2000 3000 4000

EE FOR X [N] EE FOR Y [N] EEFORZ(N]

20
{ 10
0 - — - o —
— ; = 1
Z -10| /

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
EE TQS X [Nm]

EETQS Y [Nm] EE TQS Z [Nm]

1 1, 1
0.5) ; K 05 05
A A

0.5) -0.5| -0.5|

o 1000 2000 3000 4000 ) 1000 2000 3000 4000 R 1000 2000 3000 4000

Fig. 15: Segmentation for the battery extraction task

velocity (a total of L = 4 variables). The analysis, using the
same approach presented in Section III, showed that using the
extra information provided by the velocity, or torque data did
not significantly modify the segmentation points.

b) Choice of window size: In the current implementation
the window size was chosen by the user. The size of the
window might influence the number and location of the
segmentation points obtained, therefore an automatic way of
obtaining an adaptive time window was proposed in Section
III. This however required to set a threshold of the minimum
amount of change and hence introduced yet another open
parameter. In figure 16 we show how various time window
sizes affect the variance computation.

c) Task Generalization: Automatically determining the
object of interest and expressing the motion in this frame
allows to easily generalize to new positions and orientations
of the object, as when the object position changes, this
frame changes with it, ensuring proper execution. However
the proposed approach has a two-level specification of the
reference frame, by determining an object of interest and one
or more attractors (i.e. relative positioning), with respect to
this object. There can be multiple attractors with respect to
a single object. For example in the grating task we needed
to reach the grater at a certain point above the blade, but the
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Fig. 16: The change of time window variance with respect to the window
size. This representation corresponds to the criterion for position on the X
axis of the battery task.

grating motion ended at a point just after passing the blade.
The two points determined different actions performed with
respect to the same object, and thus refining the task encoding.
Additionally relating attractors to the initial frame, rather than
storing only the attractor points with respect to the world,
allowed us to implicitly capture properties of the object, such
as rigidity.

Additionally, for the first task, we tested the developed
controller for a different grating surface and a softer vegetable.
This resulted in proper grating. However in the current imple-
mentation the choice of modeling the force as conditioned
on the position was ad-hoc, prior information. The possibility
to learn and extract automatically that there is a correlation
between these two variables and the directionality of the
correlation was explored in the second robotic experiment, in
Section III.B.

d) Stiffness modulation: Modulating the arms stiffness
is important for several reasons: (1) it allows us to apply
the determined decomposition of force and position control;
(2) proper stiffness contributes to successfully executing the
task. For example a robot that is too stiff in the grating
segment would break the carrot or other soft vegetables (like
a cucumber) during grating, while a robot that lacks sufficient
stiffness would get stuck in the graters blade and therefore
not manage to perform the task; (3) Stiffness modulation is
also important with respect to safety issues: a stiff robot is
required to be able to perform some parts of the task, but a
less stiff robot when reaching the trash for example is safer,
in case of colliding with a human. This aspect of changing the
arm stiffness is observed in humans as well, when performing
various tasks and additionally helps in reducing the energy
consumption at the joint level.

e) Ending condition for repetitive tasks: In the carrot
grating task for example, while reaching the first attractor
was important for starting the grating, still looking at the
complementary information of force indicated that at the end
of the segment the end effector was in contact.

Similarly, during the grating motion, mainly the vertical
force was the important variable for control. However the ver-
tical position of the end-effector with respect to the grater, held
complementary information for ending this action. Namely
for each grater pass we observed a decrease in height by
approximately 2mm. If the task was demonstrated until the
vegetable is fully grated, this implied finishing the grating
action at the same end effector height above the grater.

Therefore we could consider this information as an ending
condition for the repetitive motion.

VI. CONCLUSIONS

The presented approach for extracting task constraints takes
advantage of the existing variance in the demonstrated data,
and proposes a criterion for detecting regions of coherence
across demonstrations. Objects upon which an action was
performed are determined. The action is further encoded in
the local frame of reference, in a time—invariant manner,
preserving the task flow of actions.

In particular, we compared different measurements (like
position and force) and modulated their contribution to the
controller used in reproducing the motion, by using a weight-
ing factor that adapts the robot’s stiffness. Also by weighting
the relative importance of each of the task variables when
expressed in the reference system of the objects involved in
the task we can determine the suitable reference frame to be
used in each segment. Finally a set of segmentation points
were obtained by splitting the motion whenever a change in
the reference frame or in the variables of interest occurred. The
approach was validated on a kitchen task (grating vegetables),
and an office task (removing a battery from a charging stand)
achieving good generalization results, and managing to capture
the dynamics of a fast task.

The advantages of using this segmentation and feature
extraction method are firstly decreasing the task complexity by
focusing on learning just the variables that are important for
each region of the task (i.e. encode just end effector position
for a reaching motion vs. accounting for position and force
in manipulation sub-tasks) and secondly achieving efficient
generalization when the position of the objects is changed.

It determines the proper chain of actions in the task and the
conditions for the transition between actions. Automatically
extracting this information can contribute to both simplifying
the control and to automating this part of the Learning from
Demonstration procedure which was usually done manually.

A limitation of the current approach is the fact that the
method relates only the arm behavior to how the manipulation
should be performed on an object, while interacting with it,
but is not suitable for modeling effects on the object. A second
limitation is that it does not directly apply to tasks where the
”lack of change” is important (like controlling for zero force
on one axis) as being key to task completion. However this
can be addressed by studying the relative importance of each
axis, extending the approach proposed in Section III.B.
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