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Abstract

An essential feature of ferroelectric thin films is the presence in them of domain structures. In
order to efficiently implement ferroelectric films into potential new ferroelectrics-based de-
vices, it is of high interest to understand the behaviour of domain structures. Some properties
of ferroelectric domain structures, such as internal structure of domain walls, orientation of
domain walls, which were investigated and formulated for bulk systems, are typically believed
to be applicable to thin films as well.

In this work, importance of thin-film-specific effects on domain structure formation is
discussed. It is shown that in thin films nonferroelastic domain walls may interact by elastic
means on distances far exceeding the domain wall width, which is sometimes considered as
the maximal range of their interaction. Theoretical study of films of practical interest shows
that the force of elastic repulsion between the walls can be strong enough to be important
during the polarization switching and for control of nonferroelastic domain structures.

Further, this work discusses mechanisms of ferroelastic domain wall orientation specific
to thin films. Typically, when a ferroelastic wall orients violating the condition of mechanical
compatibility of the domains, macroscopic elastic fields appear leading to increase of the
energy of the system restraining the deviation of the wall from the compatible state. It is shown
that in thin films this increase of the energy can be small enough to allow competition with
other contributions to the energy, such as domain wall self-energy, leading to large deviations
of the wall orientation from its compatible state.

Another investigated mechanism of ferroelastic domain wall orientation is interference
of elastic fields generated by an incompatible wall with the film-substrate misfit stresses. A
system is investigated where such interference, which leads to reduction of elastic energy of
the structure, results in deviation of the wall from its compatible state, violating the domain
wall electric neutrality as well. Using this result, the concept of elasticity-driven generation
of charged conductive domain walls is developed; the concept is supported by reports of
experimental observation of metallic-like domain wall conduction in Pb(Zr, Ti) O3 films.

A theoretical description is provided for ferroelastic structures with narrow domain in-

clusions into dominant domain state. It is obtained that in sparse structures the domain
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periodicity follows linear dependence on the film thickness, not the classical Kittel-like square
root dependence. Equilibrium parameters of the domain structure, such as periodicity of the
structure, width of the narrow inclusions, are obtained; the results for Pb(Zr, Ti) O3 films are
compared with experimental observations of the films.

Finally, antiphase boundary with local ferroelectricity in antiferroelectric is investigated.
The mechanical response of such boundary on external electric field is modelled. It is shown
that the electric field gradient can be used as the driving force for displacement of the bound-
ary. Conditions for displacement of the boundary sufficient for Scanning Probe Microscopy

observations are formulated.

Key words: ferroelectricity, thin films, domain walls, elastic domain structures control,

domain wall conductivity, antiphase boundary.
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Résumé

Une caractéristique essentielle des couches minces ferroélectriques est la présence en leur
sein de différentes structures de domaines. Afin de pouvoir intégrer efficacement les couches
minces ferroélectriques dans de possibles nouveaux appareils basés sur les matériaux fer-
roélectriques, il est trés important de comprendre le comportement de ces structures de
domaine. Certaines propriétés des structures de domaines ferroélectriques, telles que la struc-
ture interne des parois de domaine ou leur orientation, ont été étudiées et formulées pour les
systemes macroscopiques, et sont généralement considérées comme également applicables
aux couches minces.

Dans ce travail, I'importance des effets spécifiques aux couches minces agissant sur la
formation des structures de domaine est discutée. Nous montrons que, dans les couches
minces, les parois de domaine non-ferroélastiques peuvent avoir des interactions élastiques
sur des distances dépassant de loin la largeur d'une paroi de domaine, cette derniere étant
parfois considérée comme la portée maximale de leur interaction. L'étude théorique des
couches présentant un intérét pratique montre que la force de répulsion élastique entre les
parois peut étre assez forte pour jouer un role lors de la commutation de polarisation et dans
le contréle des structures de domaines non-ferroélastiques.

De plus, ce travail discute les mécanismes d’orientation des parois de domaines ferroé-
lastiques spécifiques aux couches minces. Typiquement, quand une paroi ferroélastique est
orientée en violation de la condition de compatibilité mécanique entre deux domaines voisins,
des champs élastiques macroscopiques apparaissent, conduisant a une augmentation de
I'énergie du systeme, et restreignant ainsi les possibilités de déviation de la paroi de son état
compatible. Nous montrons que, dans les couches minces, cette augmentation de 'énergie
peut étre assez petite pour permettre une compétition avec d’autres contributions a I'énergie
totale du systeme, telles que I'énergie de surface de la paroi de domaine, conduisant a de
grandes déviations de |'orientation de la paroi par rapport a I'état compatible.

Un autre mécanisme d’orientation des parois de domaines ferroélastiques que nous avons
étudié, est 'interférence entre le champ élastique généré par une paroi incompatible et les

contraintes d’incompatibilité entre la couche mince et le substrat. Nous avons étudié un
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systeme ol de telles interférences, qui conduisent a la réduction de I'énergie élastique totale
de la structure, se traduisent par la déviation de I'orientation de la paroi par rapport a son
état compatible, en violant de plus la neutralité électrique de la paroi de domaine. En se
basant sur ce résultat, nous développons le concept de génération de parois de domaines
chargées et conductrices par des moyens élastiques ; ce concept est soutenu par I'observation
expérimentale d'une conduction de type métallique par des parois de domaines dans des
couches minces de Pb(Zr, Ti) O3.

Nous présentons une description théorique pour les structures ferroélastiques consistant
en des inclusions de domaines étroits au sein d'un domaine prédominant. Nous trouvons que
dans les structures a faible fréquence spatiale d’inclusions, la périodicité des domaines dépend
linéairement de I'épaisseur du film, et ne suit pas la dépendance classique de Kittel en la racine
carrée de I'épaisseur. Nous calculons les parametres a I’équilibre de la structure de domaines,
tels que la périodicité de la structure et la largeur des inclusions étroites ; nous comparons les
résultats pour les couches de Pb(Zr, Ti)O3 avec des observations expérimentales de ces films.

Enfin, la paroi antiphase séparant deux domaines antiferroélectriques, et qui présente des
propriétés ferroélectriques locales, est étudiée. La réponse mécanique d’'une telle paroi a un
champ électrique externe est modélisée. Nous montrons que le gradient de champ électrique
peut étre utilisé en tant que force motrice pour le déplacement de la paroi. Nous formulons
les conditions de déplacement de la paroi suffisantes pour des observations par microscopie a

sonde locale.

Mots-clefs : ferroélectricité, couches minces, paroi de domaine, contrdle de la structure

des domaines élastiques, conductivité des parois de domaines, paroi antiphase.
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List of designations

Following designations were used in the work (in alphabetic order):

* a(c, ay) - lattice constants of the film. Tetragonal film: a x a x c. Rhombohedral film:

afxafxaf.

* as (a5, asy, as3) — lattice constant of the substrate. Cubic substrate: a; x as x as. Or-

thorhombic substrate: a5 x ag x as3.
* b - Burgers vector.
* c;jkl — tensor of elastic stiffness.

* D(y)-function of deviation of the domain wall: atlevel y = yy, the x-deviation of the

wall off its permissible orientation is D(yy).
e E—Young modulus.
e E=(E;, E>, E3) —electric field.
* e;j; — Levi-Civita permutation symbol.

* f(x) - dimensionless function describing the profile of polarization in the bulk material:
P(x) = Psf(x/28), ¢ — correlation length.

e G (Chapters 2,3) — Gibbs potential.

* G (Chapter 4) — shear modulus.

* gijkl (8ap) —correlation energy in tensor (in Voigt) notations.
e h—thickness of the film.

* ho — characteristic film thickness. For a/c-domain structures in tetragonal film with
lattice constants a x a x ¢, hy = 6.1A1(1 —v?)a?/(E(c — a)?), A — domain wall self-energy

per wall unit area, E — Young modulus, v — Poisson ratio.
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hs - thickness of the substrate.

L - size of sample in x-direction.

[ — period of domain structure.

P — polarization.

Pg (PL Pél ) — spontaneous polarization (in domain I, II).

p — force (per unit length, per unit area, depending on the context).
Qi jki (Qqp) — electrostriction in tensor (in Voigt) notations.

qdijki (qap) — electrostriction in tensor (in Voigt) notations. S; jmnGmnki = Qijki-
R —radius of AFM tip.

r, 2, 13 (%, y, z) — Cartesian coordinates.

Sijki1 (Sqp) — elastic compliance in tensor (in Voigt) notations.

U - energy of the system (per unit length, per unit area, per unit volume, depending on

the context).

w (Chapters 3, 4, 5, 6) — distance between domain walls, width of domain.
w (Chapter 7) — width of antiphase boundary.

yi —initial y-coordinate of antiphase boundary.

a, B, vy (Chapters 2, 3) — 2nd, 4th, 6th order dielectric stiffnesses.

a;j —tensor of density of dislocations.

a;n, — angle between (100) directions of rhombohedral unit cell.

B (Chapters 4, 5) — cubic-thombohedral angular mismatch: § = (w/2) — a,y,.
Bs;; —unsymmetrized tensor of spontaneous deformations: fs;, = 0u;/0r;.

Y (Chapter 6) — coherency factor. y = (as1 —a)/(c—a) + v(asx — @)/ (c — a) = ©; + v, (for

tetragonal film with lattice constants a x a x ¢ on a cubic substrate as x as x dag).

AP2?(x) - function describing the profile of polarization square inside the wall: AP2(x) =

P%— P%(x).
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* A¢ —angle of domain wall rotation off its permissible orientation in clockwise direction.
* £)=8.85x 107! F/m — vacuum permittivity.

* ¢4, €. — a-misfit and c-misfit strains. €, = (a— as)/ as, €. = (¢ — as)/ a; (for tetragonal film

with lattice constants a x a x ¢ on a cubic substrate ag).
* ¢y — film-substrate misfit strain.
* er —tetragonality factor. €; = (c—a)/ a (for tetragonal film with lattice constants a x a x ¢).
* ¢;; —tensor of elastic deformations.
(n an _.(a

€ (€ S,y € S € S, egci)j) —tensor of spontaneous deformation (in domain I, I, 4, c).

* x —dielectric constant. Case of electrically isotropic medium: x ;. Medium of tetragonal

symmetry: k. (measured along the polar axis), x, (measured normally to the polar axis).
e )1 —domain wall self-energy per unit area.

o u=1/V2mé) ffgo((Pé - Pz(x))/Pg) =v2/7 [ [1— f?(x)]dx - constant depending on

the polarization profile in the wall.
* v —Poisson ratio.
¢ ¢ (Chapter 3) — correlation length.
e ¢ (Chapter 6) — domain width to film thickness ratio. { = w/h.
¢ {(x,z) (Chapter 7) — displacement of antiphase boundary in y-direction.
* pp, —density of bound charge.
* 0;j - tensor of elastic stresses.

o Uf} (x, ¥; x0, yo) — elastic stress at (x, y) generated by a unit dislocation at (xo, o) having

dislocation line along r; and Burgers vector along r;.

o ® (O, Dy) — relative coherency strain. ® = (a; — a)/(c — a) (for tetragonal film with
lattice constants a x a x ¢ on a cubic substrate a; x as x as). ®; = (a1 — a)l(c — a),
D, = (asy — a)/(c — a) (for tetragonal film with lattice constants a x a x ¢ on a cubic

substrate ag; x as X ds3).
* ¢ (Chapter 3) — electrostatic potential.

¢ ¢ (Chapter 4) — angle of domain wall inclination.






Contents

Acknowledgements i
Abstract iii
Résumé \
List of designations vii
1 Introduction 1
1.1 Outlineofthethesis . ... ... ... ... . .. ... . . . ... 2
2 Fundamentals of ferroelectric domain structures 5
2.1 Domain structures in ferroelectric thinfilms . . . . . .. .. ..... ... .... 5
2.2 Domain walls in ferroelectric materials . . . . ... ... ..... ... ...... 12
3 Elastic coupling between nonferroelastic domain walls 19
3.1 Analytical description of nonferroelastic domain walls in thin freestanding films 22
3.2 Numerical description of nonferroelastic domain walls in thin films . . . . . . . 25
3.3 Interwallcoupling . ... ... ... .. ... . e 26
34 Conclusions . . . . ... 28
Appendix A. Derivation of the strain and stress components near the domain
wall in the middle of the thin free-standing film . . . . ... ... ... ... ... 29
Appendix B. Coupling between polarizationand strain . . . . .. ... ... ... 32
Appendix C. Electrostatic interaction of domainwalls . ... ... ... ..... 34
4 Mechanically incompatible ferroelastic domain walls in thin films 37
4.1 Isolated elasticdomainwallsinthinfilms. . . . .. ... .. ............ 39
4.2 Ferroelastic domain walls in non-sparse domain structures . . . .. ... .. .. 46
4.3 Conclusions . . . . . ... e 49
Appendix A. Energy of interaction between dislocations . . . . ... ... .. .. 49



Contents

Appendix B. Derivation of equation (4.17) describing domain wall shape . . . . 50

5 Inclined ferroelectric domain walls as reconfigurable metallic-like channels 53
5.1 Theoretical description of domainwallbending . . . . .. ... ... ....... 54
5.2 Comparison with numerical simulations . . ... .................. 60
5.3 Comparison with experiments . . . . . ... ... .. ..., 61
54 Conclusions . . . ... ... . 63

Appendix A. Derivation of the elastic energy vs domain wall rotation angle de-

PENAENCE . . . . . e e e e e e e e e 63

Narrow ferroelastic domains and their sparse patterns in tetragonal ferroelectric

thin films 69
6.1 Stress fields around narrow a-domain inclusions from fictitious dislocation method 70
6.2 Energetics of narrow a-domain inclusions . . .. ... ... ... ... .. ... . 73
6.3 Equilibrium and minimal a-domainwidths . . ... ... ... ... ....... 76
6.3.1 Equilibrium domainwidth . .......................... 76
6.3.2 Minimaldomainwidth ... ...... .. .. ... .. .. .. .. .. .. 77
6.4 Interaction between a-domain inclusions, equilibrium 1D pattern . . . . . . . . 78
6.5 New periodicityscalinglaw . . . ... ... ... .. .. ... .. ... .. .. .. 81
6.6 Comparisonwithexperiment . . . . . . ... ... ... ..., 83
6.6.1 Lattice constants of free - standingfilm . . . . . ... ... ... ...... 83
6.6.2 Domain widths for Pb(Zr,Ti)O3 on DyScO3 substrate . . . . ... .. ... 86
6.7 Conclusions . . . ... ... ... 87

Appendix A. Expressions for the stress field around dislocations in a semi-infinite

isotropicmedia . . .. .. ... 88

Appendix B. Energy of interaction between two dislocations . . ... ... ... 88
Moving antiphase boundaries using an external electric field 91
7.1 Equilibrium of forces at the antiphase boundary in an electric field ... .. .. 92
7.2 Displacement of an antiphase boundary induced by the electric field from an

7.3

7.4

AFMUED . . o oo 94
Retainment of the antiphase boundary displacement upon removal of the elec-

tricfield . . . . . . . e 98
Conclusions . . . . ... . . 100
Appendix A. Derivation of expressions of forces ppe, Pme + - - - - - . o o oL 100



Contents

8 Summary and Outlook 103

8.1 Outlook . . . . . . 105
Bibliography 112
List of publications 113

xiii






|§ Introduction

The field of ferroelectrics has gained an appreciable attention during the last many decades.
The main feature of ferroelectrics is the multistability of the order parameter, polarization,
which usually results from a group-subgroup phase transition under the Curie tempera-
ture. Initially, the phenomenon of ferroelectricity was discovered in 1920 in Rochelle salt
by J. Valasek [1], triggering development of new types of devices implementing the unique
features of ferroelectric materials. Since then, ferroelectric materials have found applications
in microactuators [2], acoustic sensors [3] and transducers [4], pyroelectric detectors [5], non-
volatile memories [6], and many other types of devices, with new functionality of devices in

constant development and implementation.

Ferroelectric materials are typically composed of multiple regions of different ferroelectric
states, the domains, that coexist with each other within the material. Domain walls (DWSs),
being the boundaries between domains, are essential elements of such systems. Characterized
by their structure being different from the structure of the domains themselves, domain
walls often behave in a different manner compared to the domains and, in certain systems,
bring unique properties to the ferroelectric materials and thus are the subjects of extensive
experimental and theoretical investigation. For instance, of high interest are conductive
domain walls in non-conductive ferroelectrics, controllable generation and manipulation of
which may have potential applications in nanoelectronics with reconfigurable electric circuits
[7, 8]. Besides that, domain wall motion is known to largely enhance the piezoelectric response
in certain ferroelectric materials, making as large contribution to the piezoelectric coefficient
as the domains [9]. During the polarization switching process, DW motion and the interaction
between them comes into play, impacting the switching speed and other dynamic properties

of the process. These and some other manifestations of DWs impacting the properties of



Chapter 1. Introduction

ferroelectric materials triggers necessity of investigation of domain walls and, in general, of
ferroelectric domain structures, i.e., of the structures comprised of domains and domain walls,
in order to improve existing functionalities of ferroelectrics based devices and, potentially,

develop devices with new functionalities.

During the large part of the 20th century, domain structures in ferroelectrics were in-
vestigated and described only in bulk crystals, which fitted well with the general trend of
the time when mostly bulk ferroelectric materials were used in ferroelectrics based devices.
Recently, when techniques of ferroelectric thin film fabrication advanced far enough to allow
controllable growth of the films down to atomic scales, the trends have been shifted to imple-
mentation of thin films to ferroelectrics based devices and to miniaturization of the electronic
devices. For description of ferroelectric domain patterns in thin films, some features of be-
haviour of the domain structures obtained for bulk crystals are often directly applied to the
thin films since it is believed that the influence of the effects specific to thin film geometry on
the domain structure behaviour can be neglected. While in most cases the application of such
a consideration is reasonable, some properties of domain structures that are unique features
of thin film geometry risk to be overlooked in thin films. In order to effectively implement thin
films for creation of new types of devices, it is of high interest to investigate properties specific
to systems of finite thickness or to other peculiarities of thin film geometry — which is the topic

of this thesis.

1.1 Outline of the thesis

The introduction is followed by chapter 2 of the thesis, state of the art, where the current
understanding of domain structures formation in ferroelectric bulk crystals and thin films is

discussed.

In chapter 3, long-ranged elastic interaction between nonferroelastic domain walls in thin
films is discussed on the example of 180° domain walls in PbTiOs thin films. A model taking
into account couplings between polarization, electric and elastic fields is developed. Within
this model, a simplified analytical description of the elastic fields around a domain wall is
formulated, allowing to unveil the origins of the elastic interaction and to investigate its main
features upon variation of the film thickness. The results of the analytical description are
compared with a more rigourous numerical simulations for one film thickness. For this film

thickness, the force of interaction of the walls is estimated.

In chapter 4, orientation of ferroelastic domain walls in thin films is investigated. Basic



1.1. Outline of the thesis

mechanisms leading to violation of the principle of mechanical compatibility of the wall in
thin films are formulated. The mechanisms are implemented for the theoretical description of
the inclination of 71° domain walls in BiFeOs thin films on a substrate. For consideration of
single domain wall, the shape of the wall at differing film thicknesses is investigated. For a

non-sparse domain structure, the average inclination of the domain wall is studied.

In chapter 5, a theory is developed showing the basics of elasticity-driven generation of
charged ferroelastic domain walls with metallic-like conductivity. To do it, the mechanisms
of orientation of ferroelastic domain walls in thin films, developed in chapter 4, are applied
to walls of an ultrathin a-domain inclusion in a/c-domain structure in tetragonal films on a
substrate. The conductivity of the domain walls found here confirms reports of experimental

observations of conductivity in Pb(Zr, Ti) O3 thin films.

Chapter 6 gives description of narrow domain inclusions in tetragonal films on an anisotropic
(orthorhombic) substrate. A theory is developed linking the parameters of the domain pattern,
such as the width of the inclusion and the equilibrium domain period, with film thickness and
film-substrate lattice misfits. The output of the theory is then supported by the experimental
results for Pb(Zr, Ti) O3 films on DyScOj3 substrate.

Chapter 7 discusses movement of antiphase boundaries with localized ferroelectricity by
an external electric field. Theoretical description of PbZrO3; antiphase boundaries is devel-
oped, necessary conditions for the displacement of the boundary by applied electric field
are formulated, dependence of this displacement on the experimental parameters is studied.
Besides, estimations of the retention of the displacement of the boundary on removal of the

electric field are given.






Y4 Fundamentals of ferroelectric domain

structures

Several thousands of papers have been published on observations of domain patterns in
ferroelectrics and other kinds of nonmagnetic ferroics, offering a large amount of interesting
data for many materials. Available data on domain patterns can be, in first approximation,
classified into three categories. First, we can observe domains in a sample when its history
(sample preparation, thermal record, applied forces, etc.) is not known. Second, and perhaps
given in most of the papers, is when the sample has been treated using a known and/or
planned procedure. In the third category, the sample quality and the external conditions
(e.g., thermal history) are well defined and carefully prepared so that the resulting domain
structure most likely corresponds to the minimal energy of the system; this is often referred to
as the "equilibrium domain pattern". In this chapter, overview of the current development
in theoretical description of the latter case, of equilibrium domain patterns, is given. The
description is split into two sections. In Section 2.1, the theoretical development of the
domain structures formation is given. In Section 2.2, current understanding of the properties

of domain walls is described.

2.1 Domain structures in ferroelectric thin films

In most theoretical descriptions covering equilibrium patterns, the domain structures are
obtained using the requirement of the minimum energy of the system. In bulk ferroelectrics,
thermodynamic description shows that, in the absence of macroscopic electric field, the
minimum energy of the system is attained when the ferroelectric is in the uniform single-
domain state. However, in many systems containing a ferroelectric plate, the minimum of the
energy can only be reached through formation of domain patterns with coexisting domain

states. In this section, the basic principles of domain formation are discussed.



Chapter 2. Fundamentals of ferroelectric domain structures

Among the first, the theoretical description was given to the classical situation of 180°
domain structures: a sample of uniaxial ferroelectric or of a multiaxial ferroelectric with
coexisting domains having antiparallel polarizations. In the case where no external means
(like short-circuited electrodes) are used to screen electric fields, the bound charges of the
spontaneous polarization on the surface of the sample generate a depolarizing electric field
which increases the energy of the system. The energy of the depolarizing electric field can
be reduced if the sample is split into domains. At the same time, the domain formation
increases the energy of the system by the energy of the appearing domain walls. All in all, the
balance between these two contributions to the energy will decide whether the material splits
into domains or not and determines the parameters of the domain pattern if its formation is
favourable. It is clear from electrostatic arguments that if the polarization is directed along the
longest macroscopic dimension of a ferroelectric sample, then the energy of the depolarizing
field can be rather small and a single-domain state may be readily favourable, whereas in a
ferroelectric plate with polarization normal to the plate, the energy of the depolarizing field is

larger and a multidomain state is expected.

The simplest domain pattern expected in the latter case is shown in Fig. 2.1. In real systems,
this pattern usually possesses no net polarization, i.e., the fractions of the opposite domains
are equal, and it is dense, i.e., its period ! is much smaller than the plate thickness h. For
this case, the energetic consideration of the free-standing ferroelectric plate by T. Mitsui and
J. Furuichi results in the following relation for the energy of the system U per plate unit area
[10]:

U= Udep + Uw, (2.1)
U 0.13P31 2.2)
deP = o+ KKy ’

h
Uw =217, 2.3)

where Ugep, is the energy of depolarizing electric fields, Uw is the energy of domain walls,
Ps is the value of spontaneous polarization of the ferroelectric, k. and x, are the dielectric
constants measured along the polarization and perpendicular to it, respectively, ¢ is the
vacuum permittivity, and A is the domain wall self-energy per unit area of the wall. In the
considered case, a domain structure with a smaller domain period / has a lower energy of
electric fields Ugep. On the other hand, a more dense domain pattern means a larger amount
of domain walls in the system, increasing the energy of the walls Uy. Thus, the period of the

structure is defined by the competition between these two energy contributions. Minimizing



2.1. Domain structures in ferroelectric thin films

U

Figure 2.1: Schematics of a ferroelectric plate with lamella domain structure.

the total energy with respect to the domain period / gives the square root dependence of the

equilibrium domain period leq(h) on the film thickness:

leq(h) = \/ 1560 (1 + \/KaKIAI P2 V. 2.4)

A square root dependence similar to that in Eq. (2.4) is known as the Kittel law in magnetic
systems; in ferroelectric systems it is commonly referred to as the Kittel — Mitsui — Furuichi
law. Universally, the square root dependence of the domain period on the film thickness is
often observed in other ferroelectric systems with dense patterns, governed by electrostatics

or by other mechanisms (e.g., elasticity).

In real systems, notably in thin films on a substrate, the domain structure formation is
mostly driven by elasticity. The key difference between a mechanically free bulk material
and a thin film made of the same material deposited on a dissimilar substrate, is that the
film is clamped, e.g., due to the difference in the lattice parameters of the film and of the
substrate. The problem of domain formation driven by elastic effects in thin films of ferroics
was pioneered by Roytburd [11] and later treated by many workers. These studies have made
available a good qualitative and, in many cases, quantitative mathematical description of the
phenomenon. The progress has been achieved using a number of approaches such as: (i)
consideration of dense periodical domain structures (the domain period smaller than the film
thickness) using the average mechanical energy of the systems as the basic approximation
(e.g., [11]); (ii) calculations based on analytical results for elastic Green functions (e.g., [12]);
(iii) calculations using fictitious dislocations for the description of the deformation fields
(e.g., [13-16]); (iv) Landau theory of the dense domain pattern (e.g., [17]); and (v) phase-
field calculations based on Ginzburg-Landau theory ([18, 19]). Here, the basic theoretical
development implementing approaches (i) and (iii) is given on an example of a tetragonal film

on a cubic substrate.
In general, domain formation driven by elastic effects can be described by the energy of
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Figure 2.2: Schematic representation of the contributions to the electric energy of a dense
periodic ferroelectric domain pattern. (a) Energy of the average (macroscopic) strain. (b)
Energy of microstresses at the film-substrate interface. (c) Energy of the domain walls. (d)
Contribution related to the difference in the energy of the film-substrate interface for the
domain states involved in the pattern. Dashed line-hatched areas show substrate. Open areas
show ferroelectric film. Systems of parallel lines show ferroelectric domain walls. Arrows in (d)
show the orientation of a crystallographic direction of the material in the different ferroelectric
domain states

the structure U that can be presented in the form [20]:

U = Umac + Unic + Uw + Us, (2.5)

where Unac, Unmic, Uw, and Us are the elastic energy corresponding to the average (macro-
scopic) strain in the system, the energy of microstresses at the film/substrate interface, the
energy of the domain walls, and the contribution related to the difference in the energy of the
film/substrate interface for the different domain states. These contributions are schematically

illustrated in Fig. 2.2.

Basics of the elasticity-driven domain pattern formation can be elucidated by considering
the macroscopic contribution Up, to the elastic energy of the system [11]. For example, in a
tetragonal (001) film (lattice constants along three directions a, a, and ¢) on a cubic substrate
(lattice constant a;), domain states are characterized by one of the three orientations of the
c-direction of the unit cell of the film: along [100] (domain state a;), [010] (domain state ay),

and [001] (domain state c) crystallographical directions. In a (001) film, each of the domain

8



2.1. Domain structures in ferroelectric thin films

states is described by its misfit strain €;:

€. 0 € 0 € 0
YR I P v I PRV R (2.6)
0 ea 0 €C 0 ell

e(al) _

wheree, = (a—as)/ as, €. = (c — ag)/ a,.

In the description developed by Roytburd [11] for dense domain patterns, the elastic part

of the energy of the structure is defined by the average strain of the film €3}:

av _ (a1) (az) (0
eM—aleMl +a2€M2 +aze,,, 2.7
where a1, as, and a3 are the volume fractions of domains a;, ay, and c in the structure,

respectively, a; + a2 + a3 = 1.

Within the approach of the mean strain, the elastic energy Un, of the elastically isotropic

film clamped on the substrate can be found as follows [12]:
1 E 9 9
Umae = 57772 (€07 + (€807 +2vel e, ) (2.8)

where E is the Young modulus, v is the Poisson ratio of the material. Minimization of the
elastic energy of the structure gives the equilibrium relationship between volume fractions a;,
a», and a3, depending on the film-substrate misfit strains €4, €. The results of this analysis are
summarized in Fig. 2.3, where four cases of the misfit stress relaxation by the domain structure
are considered [20]. Diagram #1 shows the case where only a and ¢ domain monovariants
are allowed in the structure: either @; = 1 (a; monovariant), or az = 1 (@, monovariant),
or a3 = 1 (c monovariant). Due to the symmetry of the problem, elastic energies of a; and
a, monovariants are equal. Diagram #2 shows the possible appearance of the a/c domain
structure leading to a more efficient release of the misfit strain: either @y #0and ag =1-a; #0,
or ap #0and a3 = 1—-ay # 0. Diagram #3 takes into account strain release by the a, / a,-variant:
a1 =1/2, ap =1/2, a3 = 0. Finally, diagram #4 allows the appearance of three-domain-state
structures: a; = ap # 0, az # 0. It was shown that such gradual introduction of new types of
domain structures, allowing to move from diagram #1 to diagram #4, leads, in general, to a

gradually more efficient release of the misfit stresses in the film.

The investigation of the properties of dense domain structures at differing film thicknesses
leads to the Kittel-like square root dependence of the domain period on the film thickness.

This and some other results obtained within this consideration, such as the volume fraction of
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Figure 2.3: Diagram shows the domain states or domain patterns having the minimal average
(macroscopical) elastic energy in a (001) tetragonal ferroelectric film as functions of the
relative coherence strain, ® = (as— a)/(c— a). The corresponding values of the substrate lattice
constants are also shown. The "3d-variant" stands for the three-domain-state structure. v is
the Poisson ratio. See the text for the description of diagrams #1, #2, #3, #4.

domains in different domain structures, are shown in Fig. 2.4 by dashed lines.

Though the obtained results provide a good coverage of the typical experimental situations,
they are still limited since the approach itself is applicable only if the domain structure of
the film is dense, i.e., if the period of the structure is smaller than the film thickness. This
condition is always violated when the film thickness is smaller than the critical thickness
specific for the considered geometry, or when the fraction of one of the domain states tends to
zero (a; — 0, az — 0 or ag — 0). Description of the domains in these situations as well as the
evaluation of the accuracy of the mean-strain approach calls for a more precise treatment of

the problem.

New types of approaches to the problem, implementing advanced methods of the theory
of elasticity, were offered by several authors. Three kinds of problems were addressed: (i)
calculation of elastic energy of the a/c-variant [12, 14], (ii) calculation of elastic energy of
the a;/ay-variant [12, 14, 15], and (iii) calculation of elastic energy of an a-domain band
inserted in a large c-domain [12]. All the problems were addressed in the approximation of
elastic isotropy of both the ferroelectric film and the substrate, whose elastic constants were
taken identical. The calculations performed in these problems involved usage of method of

fictitious dislocations and disclinations by Pertsev et al [14, 16], by Romanov with coworkers
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2.1. Domain structures in ferroelectric thin films
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Figure 2.4: Results of the mean-strain approach for domain structures in (001) tetragonal
ferroelectric film on a cubic substrate, compared with the results of numerical calculations
[14] taking into account the exact stress distribution in the film. All length are normalized on
the characteristic film thickness hy = 6.1A(1 —v?)a?/(E(c — a)?). (a) Energetically favourable
type of the domain variant at different normalized film thicknesses 1/ hy and coherency strains
® = (as;— a)/(c — a). Dashed lines show the predictions of the mean-strain theory. Solid curves
— the results of the numerical calculations [14]. Structures having maximum two domain states
are considered. (b) Normalized period I/ hgy of the a;/a,-domain pattern as a function of the
normalized film thickness. Dashed line — the 'square root law’, which, in the limit of large
film thickness, is consistent with the results the mean-strain approach. Solid curves — the
results of the numerical calculations [14]. (c) Normalized period of the a/c-domain pattern
at differing normalized film thicknesses. Dashed line — the ‘square root law’ which, in the
limit of large film thickness, is consistent with the results of the mean-strain approach with
relative coherence strain ® = 0.3. Solid curves - the results of the numerical calculations
[14] for different values of the relative coherence strain ®@. (d) Effect of the film thickness on
the dependence of the volume fraction of the c-domain state, as, on the relative coherence
strain, ®. The a/c-domain pattern is considered. Dashed lines — the results of the mean-strain
approach for i/ hy = 16.7 and in the limit &/ hy — co. Curves 1-5 show the results of numerical
calculations [14] for the normalized thicknesses h/hy = 3.3, 6.7, 10, 13.3, and 16.7, respectively.
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Chapter 2. Fundamentals of ferroelectric domain structures

[15], and usage of elastic Green functions by Pompe et al [12]. For the case of a film of an
arbitrary thickness the rigourous results can be derived only numerically. For the a;/a;-
pattern, Romanov and coworkers [15] offered an approximate analytical treatment of the
problem. The technical aspects of the theory of dislocations will be presented in Chapters 4, 5,
6. The results of these investigations are summarized in Fig. 2.4 (solid lines), where they are

given in comparison with the results obtained in the framework of dense-pattern theory.

2.2 Domain walls in ferroelectric materials

Domain walls are essential elements of domain structures. In equilibrium domain patterns,
the properties of the walls (such as the wall orientation, internal structure, etc.) are defined by
the condition of the minimal energy of the wall in the structure. In general, one can specify fol-
lowing factors controlling the orientation of the wall separating a domain pair: (i) electrostatic
energy related to differently oriented vectors of polarization in the neighbouring domains
(usually referred to as the electrical compatibility problem); (ii) elastic energy related to dif-
fering spontaneous strains in neighbouring domains (usually referred to as the mechanical
compatibility problem); (iii) energy of the wall itself. In most practical situations, factors (i)
and (ii) play the decisive role. Here the current theoretical development for description of

these two factors is given.

An arbitrarily oriented domain wall between ferroelectric domains, in general, carries a

bound charge whose density pp, according to the Poisson equation, equals
pp = —divP. (2.9)

The existence of this charge typically leads to the generation of electric fields associated with
the bound charges and to increase of the energy of the system. In this case, orientation of the
wall corresponding to the minimal energy of the system is defined by the condition of its elec-
tric neutrality (pp = 0). For a wall with normal vector n, separating two domains characterized

by spontaneous polarization vectors PIS and PISI, the condition of the wall neutrality reads

(P§ —Pg)n = 0. (2.10)

In principle, the bound charges on the wall can be compensated by free carriers. If this
is not the case, then, for a bulk sample containing a charged domain wall, the electrostatic

energy of the electric fields generated by the bound charges recalculated to the unit area of
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2.2. Domain walls in ferroelectric materials

the wall results in a large increase of the domain wall surface energy density. In this situation,
the condition of electric neutrality should be strictly fulfilled. In principle, there can be other
contributions to the energy of the system that can compensate the increase of the electric
energy. However, the electric field created by a charged wall not only contributes to the energy
of the system, but may also suppress ferroelectricity in the neighbouring domains [21], limiting
the maximum value of surface charge density beyond which the wall cannot exist. Applied
to the problem of the wall orientation, as was pointed out by Chervonobrodov and Roytburd
[22], this defines the limit to a small possible deviation of the wall from the orientation of its

electric neutrality.

For a ferroelastic domain pair, the requirement of mechanical compatibility also imposes
restrictions on the orientation of the domain wall. For a generally oriented wall between
domains having different spontaneous strain tensors, there is typically a lattice mismatch
between domains which induces elastic strains increasing the elastic energy of the system.
The condition of the minimal elastic energy of the system implies the absence of such elastic

fields, and can be expressed mathematically as follows. Let the spontaneous strain in the

(D un.
S S

of the wall due to the deformations described by the tensors €

domains be €’ and €, "’; then the transformation of any geometrical figure lying in the plane

g) and e(sl D should be identical
up to arigid body motion. Domain walls oriented so that this condition is met are sometimes
called permissible or, alternatively, stress-free walls, since no additional macroscopic elastic
strains are involved in their formation. Mathematically, the mentioned condition requires that

for any vector T lying in the plane of the wall the following condition be fulfilled [23, 24]:

AijTiszol (2.11)

_ . __Uun
Aij=€g —€s (2.12)
where A;; is the tensor describing the difference between the spontaneous deformations of

the domains.

One can distinguish four different cases of the domain boundaries, depending on the
relationships between the components of the tensor A; ;. Note that the matrix A; ; is symmetric,
thus there exist a reference frame where it can be rewritten in diagonal form, with eigenvalues
A A@ and A®), Since the volumes of the unit cells in the domains are the same, the trace

of A;j is zero, and AL+ A@ L AG) =,

(i) If all principal components A”) are zero, which means eg) = eg D then the domain wall

separates a nonferroelastic domain pair, and at any orientation the wall is stress-free.

13



Chapter 2. Fundamentals of ferroelectric domain structures

(ii) If only one of the principal components of A;; is zero (e.g., AW =0), then A® = —A®

and, in the principal axes of the matrix A; j»Eq. (2.11) reads

15 -15=0, (2.13)
defining two permissible walls which are mutually perpendicular. Here, in addition, if the
principal axes are directed along crystallographic directions of the material, then the wall has

a crystallographically prominent orientation.

(iii) If, similarly to the case (ii), one of the principal components of A;; is zero, but the
matrix A;; is not diagonal in the crystallographic reference frame, the orientation of the walls is
not crystallographically prominent and is controlled by the relation between the components
of the matrix. In this case, the permissible wall has a general orientation which in fact can
change with the temperature due the temperature dependence of the spontaneous strains of
the domains. Permissible walls of this kind have been denoted as "S walls" [23] — at the time of
their prediction it was generally believed that any permissible wall must be crystallographically

prominent, and the prefix S stood for "strange".

(iv) If none of A® equals zero and therefore detA; i#0, then Eq. (2.11) has no non-trivial
solutions and the two domains cannot be separated by a stress-free wall. These situations are

usually referred to as R cases.

Even if the relationship between components of the tensor A;; falls into the category (ii) or
(iii), it is still possible that permissible walls are not allowed in the system due to the effects of
electrostatics. If the orientation of the wall leads to a charged domain wall (pj, # 0 in Eq. (2.9)),
such a wall is, in general, energetically unfavourable. Thus, the orientation of a ferroelastic

walls is defined by both electrostatic and mechanical principles.

In bulk materials, the condition of mechanical compatibility of an electrically neutral
ferroelastic domain wall given by Eq. (2.11) must be followed strictly, since a deviation of the
wall off its permissible orientation leads to appearance of lattice mismatches on the wall and
to generation of macroscopic stresses essential rising the elastic energy of the system. At the
same time, strictly speaking, in thin films the increase of the elastic energy associated with the
wall deviation is relatively small, and it is possible that other mechanisms can compensate
this increase of the energy. Due to the lack of theoretical descriptions of such mechanisms, it
is of interest to investigate the question of possible existence of mechanically incompatible

domain walls in thin films.
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2.2. Domain walls in ferroelectric materials

For nonferroelastic domain pairs, the matching of the domains lattices is assured for all
orientations of the wall, and no macroscopic stresses are generated by the wall. Thus, in
practice, it is usually assumed that the properties of nonferroelastic domain walls are not
influenced by elastic effects. It is important to remember though that, following investigations
of the internal structure of nonferroelastic walls, there is often a presence of internal stresses

confined within the domain wall width that are originated by the effect of electrostriction [20].

The basics of the internal structure of a nonferroelastic domain wall can be shown on
example of a 180° domain wall in tetragonal BaTiOs3-like structure with one domain wall,
characterized by the second order cubic to tetragonal phase transition at the Curie temperature.
For this system, theoretical development in the framework of thermodynamic approach gives
the following expression for the Gibbs potential density G in Cartesian coordinate system (z

(r3) axis is directed along the polarization, x (r1) axis is directed normally to the domain wall):

1 2 1 4 1 2 2 2
G= EaP +ZﬁP —5811(0'11+0’22+0'33)—812(0'110'22+0’220'33+0'330'11)
(2.14)

2
L (02, + 0%+ 02 - pP? - p? op
5544(07, + 0753 073) — Q11033 Q12(011 +022)P” + Gua o]

where a and f are the second and the fourth order dielectric stiffnesses, respectively, s;; is the
compliance tensor in Voigt notations, Q;; is the electrostriction tensor in Voigt notations, g;;
is the correlation energy tensor in Voigt notations, P(x) and 0;;(x) are the polarization and
the stress profiles inside the wall, respectively. Equations obtained by minimization of the
Gibbs potential along with the constitutive equations for the problem form the following set

of relationships describing polarization and elastic stresses inside the wall:

6G_d( oG ) 2.15)
oP  dx\odP/dx)) '
oG (2.16)
=—€;i, .
60'”' H
azeij

eikmejlnm =0, (2.17)
60'"

o , (2.18)
67’]‘

where €; j(x) is the strain profile inside the wall, e; ;1 is the Levi-Civita permutation symbol.

Rewriting this set of equations for a ferroelectric of the infinite size (see, e.g., [20] for

details) leads to the following relationships coupling polarization with elastic stresses (only
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Chapter 2. Fundamentals of ferroelectric domain structures

non-zero stress components are shown):

$11Q12 — $12011

022(x) = —5————(P§ - P*(x)), (2.19)
S11 7512
s —
os(x) = SLALTQ2 (2 py (2.20)
ST~ 512
62
~gu5 7 +BlaP+ pP%) =0, 2.21)
1 2 _ 2
Bo1s L(Qu+Q)"  (Qu-Qi) ’ 2.22)
i S11t 812 S11 — $12

where Ps = /—a/f is the value of spontaneous polarization inside the domains.

Thus, in the considered domain wall, the electrostrictive coupling between elastic field
and polarization generates elastic stresses inside the wall, which reach their maximal values
when P = 0. Solution to the equation for the polarization profile (2.21) is described by the

classical hyperbolic tangent function:

2x
P(x) = Pgtanh (—) , (2.23)
tw

8
tw = \/—%, (2.24)

where tyy is the thickness of the wall.

It is important to note that, when describing the nonferroelastic domain walls internal
structure, the influence of the stresses inside the wall on the structure of the wall is very often
omitted for the sake of simplicity. In this case, when the effect of electrostriction is not taken
into consideration, the governing equation on polarization inside the wall has the same form
as Eq. (2.21) with constant B = 1, and the solution to this equation gives the same order of
magnitude for the domain wall thickness . Due to the nonferroelastic nature of the wall, it
is universally considered that, except for renormalization of the width of the wall, there is no

influence of elastic effects on the nonferroelastic domain walls.

At the same time, investigation of solution for stresses (2.19)—(2.20) obtained for an infinite
crystal shows that it is not applicable to real non-infinite ferroelectric structures. When
the finiteness of the sample is taken into consideration, it is clear that at the edges of the
sample either o2y # 0 or o33 # 0 inevitably breaks the free surface mechanical boundary
conditions, implying that in real systems the structure of a nonferroelastic domain wall cannot
be described by the one-dimensional solution given by Egs. (2.19), (2.20), and (2.23). In other

words, elastic properties of the nonferroelastic domain wall may depend on the macroscopic
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2.2. Domain walls in ferroelectric materials

dimensions of the sample, which is an interesting point for theoretical investigation.

A remark should be made, that all the properties of domain walls described in this Section
were obtained considering a ferroelectric of infinite size containing a single domain wall. The
question of the applicability of such results to real ferroelectric films of small thicknesses has
not been studied by the scientific community. There are few works that investigate some
features of domain walls in near-surface regions, e.g., variation of internal structure of the
wall near the surface [25]. As a consequence, the properties of domain walls obtained for
ferroelectric bulk materials described in this section are usually applied to thin film geometries
as well. It is of interest to investigate features of domain walls specific to the thin film geometry.

This thesis gives description to some of the features.
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8] Elastic coupling between nonferroe-

lastic domain walls

Domain walls are an essential attribute of ferroics. Their motion controls to a large extent
switching and other properties of ferromagnets and ferroelectrics [20]. The internal structure
and properties of the domain walls themselves, accessible at ease only in recent years, are of

an increasing interest for both fundamental and applied research [26-31].

The well-known correlation between film thickness and domain wall spacing entails that
interactions between adjacent domain walls become substantial upon reduction of the film
thickness. Such interaction can be of particular importance for polarization switching where,
inevitably, domain walls have to approach closely each other. The interwall interaction was
actually taken into account by calculations in [14, 32], where the results can be interpreted
as the consequence of coupling between ferroelastic (non 180°) domain walls, and possibly
detected experimentally as well [33]. However, interactions between nonferroelastic (180°) do-
main walls have been overlooked. Possible interactions between ferroelectric-nonferroelastic
domain walls are of high interest since the switching processes in ferroelectric thin films are
mainly determined by the motion of nonferroelastic walls because ferroelastic walls typically
show poor mobility [34]. Interaction between domain walls is also highly relevant for domain-
wall-based agile electronics where it is crucial to precisely control the domain wall’s position

and movement [7].

This chapter addresses the internal structure of nonferroelastic 180° walls in ferroelectric
thin films and its influence on the interaction between these walls. It is shown that 180°
domain walls in ferroelectric films can exhibit an internal structure which is very different
from that in the bulk counterparts. It is found that the elastic fields associated with the wall
extend to a distance comparable with the film thickness, which, in typical situations, is much

larger than domain wall thickness in the bulk material. Such elastic fields naturally bring about
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Chapter 3. Elastic coupling between nonferroelastic domain walls

Figure 3.1: Schematic of the problem: thin film of thickness / with a domain wall in the region
x € (=¢,&) on a substrate of thickness kg in the region (—hgs < z < 0). Two cases considered:
hs =0 (free standing film) and &g >> h (film on a substrate).

an appreciable interaction between domain walls. An essential feature of the results is that
they have been obtained for a 180° ferroelectric-nonferroelastic wall, while the elastic effects
in thin films were commonly expected so far to be important only for ferroelectric-ferroelastic
walls.

The predicted effects can be viewed as an impact of the film surface on the domain
wall structure. Some surface effects were theoretically addressed in the past, reporting the
distortion of the wall structure at distances from the surface comparable with the domain wall
thickness [25, 35]. In this chapter, in contrast, a strong modification of the elastic structure
of the wall throughout the whole film thickness is shown, implying an appreciable interwall

coupling.

In the following, first a simple analytical model is considered for the elastic structure of a
180° wall for the case of a freestanding thin film. This simple treatment captures the principal
features of the phenomenon both in freestanding thin films and in films on substrates and
allows a simple qualitative explanation of the effect to be given. Then the results of a numerical
simulation of the wall structures are presented in freestanding films and in films on substrates
using an advanced model. Based on these results the interwall coupling is evaluated to show
that the force applied to the wall due to this coupling can be comparable to that due to the
applied electric field in the switching regime. The modelling addresses the short-circuited
situation for the geometry with top and bottom electrodes, common for applications of
ferroelectric thin films. In this situation, the electrostatic effects are strongly suppressed and

are negligible with respect to the elastic effects in question.
Consider a perovskite ferroelectric film of thickness # in the tetragonal phase, either
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freestanding or placed on a substrate of thickness /g >> h (Fig. 3.1). Both top and bottom (001)
surfaces are electroded and short circuited. This model corresponds to a typical ferroelectric-
film-based device where the average depolarizing fields are screened. The film contains one
180° nonferroelastic domain wall oriented along the (100) crystallographic plane and normal
to the surface. To describe the elastic effects around the domain wall, the thermodynamic
Landau theory is used. The Cartesian reference frame is introduced with axes x, z (ry,73)
directed as shown in Fig. 3.1. The Gibbs potential density in a perovskite (0 < z < h) with cubic

to tetragonal phase transition (m3m —4mm) can be written in the form [20]

1 2 1 4 1 6 1 2 2 2
G= E(XPZ + Z'BPZ + EYPZ — 5811(011 +05, +O'33) —$12(011022 + 022033 + 0330711)

L suo? Qu2(011 +022)P? — Q110 p2y L (6P2)2+1 (apz)z
——=544073— - = - = ,
45440713 12011 22) 7 110335, 2844 ox 2811 9z

(3.1

where P; is the ferroelectric contribution to the dielectric polarization, o; is the stress tensor,
@, B, and y are the 2nd, 4th, and 6th order dielectric stiffnesses, correspondingly, g;; is the
correlation energy tensor, s;; is the compliance tensor, and Q;; is the electrostriction tensor.
Here, Voigt notation is used for compliance, electrostriction, and correlation energy tensors.
For the case of a film on a nonferroelectric substrate, the Gibbs potential in the substrate

(—hs < z < 0) can be written in the same form as in (3.1) with P, = 0, leaving only elastic terms.

The set of equations to be solved can be obtained from the Gibbs potential using relation-

ships (see, e.g., [20]):

G 0 ( oG ) A
C - 3.2)
aP,- arj 6Pi,j 6rl~
9 (—xpe a(I)+P-)—0 (3.3)
61‘,‘ b Oar,- v '
96 e Feij o, 29 _, 3.4)
- :€", . e; = ’ = y .
00,-]- Y ikm ’lnarkarl arj

where ¢ is the electrostatic potential defined at 0 < z < h, €;; = (u;,j + uj,;)/2 is the strain
tensor, u; is the deformation vector, xj, is the background dielectric constant, ¢ is the vacuum
permittivity, and e; j is the Levi-Civita symbol. Hereafter A; ; denotes derivative of A; with
respect to r;. The symmetry of the problem allows a 2D treatment with all values dependent

on Xx, z only.
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Chapter 3. Elastic coupling between nonferroelastic domain walls

3.1 Analytical description of nonferroelastic domain walls in thin

freestanding films

First, the case of a freestanding film is considered with electroded and short-circuited surfaces,

with boundary conditions:

P,(x — +00) = +Ps, (3.5)
¢(z=0)=0, ¢(z=h)=0, (3.6)
0jj(x—+o0) =0, (3.7
o13(z=h)=0, o033(z=h)=0, (3.8)
013(2=0)=0, 033(2=0)=0, (3.9

where Pg is the spontaneous polarization value.

To capture the main features and obtain an analytical description for the effect, the po-
larization is presented in the form P(x, z) = Py(x) + P1(x, z), where Py (x) is the solution to
the polarization profile in a domain wall in the bulk system and P;(x, z) is the correction
related to the finite film thickness. When calculating the elastic fields near the domain wall
that arise due to the electromechanical coupling, the impact of P (x, z) is neglected compared
to that of P, (x). As it will be seen later, such approximation provides a qualitatively correct
picture of the phenomenon. Besides, the problem is solved in the approximation of elastically
isotropic media (s44 = 2511 — 2512) which is also a reasonable approximation' for perovskite

ferroelectrics (cf. [14]).

The solution for the bulk media may be formally obtained from Egs. (3.2)-(3.5), and (3.7)
as a limiting case h — oo, for which a 1D treatment is applicable (see, e.g., [25]). For a domain

wall in the bulk, the polarization profile P, (x) can be presented as

Pyx) = Psf(%), (3.10)

where ¢ is the correlation length (2¢ has the meaning of the half-width of the wall), and
f(x) is the function describing the polarization profile: f(x — +oo) = +1. For example, for
ferroelectrics having second order phase transition not very close to a tricritical point, f(x) =

tanh(x).

IThe present analysis is restricted to the isotropic case for simplicity. Numerical simulations confirm that the
results for the isotropic case differ only slightly from that for the parameters of PbTiO3 with low elastic anisotropy.
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3.1. Analytical description of nonferroelastic domain walls in thin freestanding films

To trace the elastic effects around the domain wall, the relative strain e =€ij 6[; is intro-

duced, where e ;s the strain in the bulk of the domains. For bulk samples and freestanding

D :
films, €

is equal to the spontaneous strain €g, ;=Qi j33PS' In the case of the bulk material,
in view of clamping of all the other strain components by surrounding domains, the only

nonzero relative strain component is €] :

erb(z) = —ed AP (3.11)
11 11 52 .
PS
$2 4811812 — 282
d =4 2 q12P2. (3.12)

$11 + 812

Here the notation AP?(x) = P — PZ(x) is used, g;; is the elestrostrictive strain coefficient
(tensor in Voigt notation) determined as $;jmnGmnki = Qijki, and 6‘(1)1 is the strain in the
middle of the wall. It is seen that for a domain wall in the bulk system, the spacial scales
for the polarization profile [Eq. (3.10)] and for the deformation [Eq. (3.11)] are the same and

determined by the correlation length ¢.

For thin film geometry, according to the aforementioned model, the bulk polarization
profile Py (x) is used in Eq. (3.1), and thus the problem is reduced to the elastic subproblem
(3.4) with boundary conditions (3.7)-(3.9). The solution can be found in the framework of the
plane-stress approach using stress functions [36, 37]. For typical film thicknesses where h > ¢,

one obtains the solution for the relative in-plane strain component in the middle of the film

(see Appendix A):
. AP?(x) & (x
€l (x, h12) =€, (—P—§+uRﬁg1(ﬁ) . (3.13)
Here,
1 APz(x) \/‘ f _ P)d (3.14)
e \/ﬁf P2 '

is typically a constant of the order of unity, R = (q11/q12) ((S11 + $12)/ (S11 + 2512)) + (S12/($11 +
2512)), 81(¢) is the dimensionless function controlling the shape of the elastic effects in the

middle of the film, which has been obtained analytically in its Fourier form (see Appendix A):

(n/2) cosh(/2) — (1 + 25%) sinh(1/2)

gin)= (3.15)

1+ sinh(n)
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Chapter 3. Elastic coupling between nonferroelastic domain walls
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Figure 3.2: Normalized strain component €}, (x, h/2) calculated according to Eq. (3.13) as a
function of the distance from the wall center x for the middle cross section of a freestanding
PbTiOs film for different film thicknesses /. Dashed lines represent the x dependence of the
same component for a wall in the bulk crystal. 6‘(1)1 is the strain in the wall center in the bulk
system [Eq. (3.12)]. ¢ is the correlation length. (a) h = 25¢, (b) h = 50¢, (c) h =100, and (d)
h = 200¢.

Expression (3.13) for €], strain component consists of two terms: the first term, with the
scale x ~ 2¢&, corresponds to the exact solution for a bulk sample (3.11); the second term, with

the scale h, represents the surface-related contribution to the elastic profile.

Let us compare the two terms in Eq. (3.13). Since, typically, & > ¢, the second term is
expected to be small by the factor {/h. However, in perovskites the factor R is large (e.g.,
45 in PbTiO3), which enhances the surface effect. As a result, for typical film thicknesses
(10¢ < h < 100¢), the two terms in Eq. (3.13) are comparable. Such a high strength of the
surface effect is related to the high anisotropy of the electrostrictive tensor ¢; ;. The high value
of R in perovskites is a consequence of the fact that typically g1, > ;2 in these materials (e.g.,
for PbTiO3 q11/q12 = 24.8)

The elastic profiles for the middle cross section of the film (z = h/2), as described by
Eq. (3.13), for free-standing PbTiO3 films with different thicknesses are shown and compared

with those of the bulk system in Fig. 3.22. One can see an appreciable qualitative difference

2The values used for the ratios 2s12/s1; = —0.625, q11/q12 = 24.8 correspond to those in PbTiO3. The polariza-
tion profile is described by the function f(x) = tanh x.

24



3.2. Numerical description of nonferroelastic domain walls in thin films
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Figure 3.3: In-plane strain 6‘;1 (x, z) for a 20 nm-thick freestanding PbTiO3 film. (a) Strain dis-
tribution in xz cross section. (b) The strain at the middle cross sections of the film: numerical
simulations shown by the solid line, Eq. (3.13) shown as a dashed line.

between the elastic profiles in the film and those in the bulk system. Such a difference holds
for a broad range of film thicknesses. Therefore, we can speak here about the effect of "elastic

widening" of domain walls in ferroelectric thin films in general.

The physics behind this effect can readily be elucidated drawing analogy with the Saint-
Venant principle [36]. Essentially, the domain wall manifests itself as an inclusion of a material
with different lattice constants. The mismatch gives rise to elastic fields which, in agreement
with the Saint-Venant principle, penetrate inside the domains on distances of the order of
the film thickness. The strain distribution has the well-known structure of elastic fields from
a linear indentation [38] on a semi-infinite isotropic medium. These elastic fields are sign
changing like those from a vertical point load [37]. In the context of the considered problem,
an effective linear indentation takes place since the bulk solution does not satisfy stress-free

conditions on the surfaces [20].

3.2 Numerical description of nonferroelastic domain walls in thin
films

The above considerations capture the main features of the effect. As a support, numerical self-
consistent calculations of Egs. (3.2)-(3.9) were performed taking into account the feedback
of the elastic fields on the polarization profile and electrostatic effects. The results of the

calculations for 20 nm thick films using parameters for PbTiO33 are presented in Fig. 3.3(a)

3Parameters used for PbTiOs3: 511 = 8.0 x 10712 Pa™!, s10 = —2.5x 10712 Pa~!, 544 = 18 x 10712 Pa—1, Q11 =
0.089 m*/C%, Q12 = —0.026 m*/C?, a = —3.45 x 108 Vm/C (at T = 300 K), f = —2.9 x 108 vm®/C3, y = 1.6 x
109 vm®/C, g11 =2x10710vm?3/C, g44 =100 vm3/C, x4, = 100.
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Chapter 3. Elastic coupling between nonferroelastic domain walls

where the in-plane strain component €], (x) is shown. In agreement with the analytical
predictions, the elastic fields around the wall extend to distances of the order of the film
thickness. In Fig. 3.3(b) the analytical results are compared with the numerical ones for the
middle cross section (z = h2/2) of the film. One sees that while qualitatively the results obtained
with these two methods are in agreement, quantitatively the numerical calculations yield
larger values for both the maximal value and the width of the strain profiles, revealing some
additional contribution. The source of this contribution is traced back to the feedback of
the elastic fields on the polarization profile, which has not been taken into account in the
analytical calculations (see Appendix B), while the electrostatic contribution to the same effect

is shown to be small.

The obtained results for the freestanding film suggest that, in perovskites, the effect related

to the finite film thickness has high enough value to be observable in the TEM measurements.

Numerical calculations were also run for the case of a thin film on a thick substrate.
Equations (3.2)—(3.4) with boundary conditions (3.5)-(3.8) were solved self-consistently, with

additional boundary conditions at the bottom surface of the substrate:

6{1(Z=—hs)=0, ug(zz—hs)ZO. (3.16)

The elastic properties of the substrate were set identical to those of the film. Calculations
were run for different compressive and tensile lattice mismatches between the substrate and
the film. Lattice mismatch of magnitudes typical for ferroelectric films was shown to have

negligible impact on the relative strain fields near the domain wall*.

The results of the simulations for a film of thickness 20 nm on a substrate of thickness 100
nm are presented in Fig. 3.4. One can see that the elastic widening effect manifests itself in the
case of a film on a substrate as well, exhibiting strain values comparable to those obtained for

the free-standing film, except for the intimate vicinity of the substrate.

3.3 Interwall coupling

The effect of elastic widening of 180° nonferroelastic walls presented above implies an addi-
tional mesoscale interaction between them. The force (per unit area) between two domain

walls with distance w between them can be obtained from the energy U(w) (per unit length

4Note that according to our definition of relative strain and due to mechanical coupling of the film on the
substrate, €], — 0 at x — +oo for any mismatch
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3.3. Interwall coupling
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Figure 3.4: In-plane strain e{ 1(x,2) in 20nm-thick PbTiO3 film on a substrate. The thin film
lays at z € (0,20) nm. (a) Strain distribution in xz cross section. (b) Cross sections of €1, (%, 2)
at different constant z: in the middle of the film at z = 10 nm (thick line), at z = 5 nm (thin
line) and z = 15 nm (dashed line).

in the third dimension) of their elastic interaction:

1
p(w):EdU/dw, 3.17)

U(w) =[f c,-jklelfj(x,z)elrcl(x— w,z)dxdz, (3.18)

where c; jki 18 the stiffness tensor, elf i (x, z) is the field created by an individual domain wall
located at x = 0. Equation (3.18) implies that the elastic field of the ensemble of two domain
walls is taken as a sum of those created by individual domain walls. The integration is carried
out over all the sample including both film and substrate. Based on the numerical results,
this force is evaluated for a PbTiOs film of thickness 20 nm. Figure 3.5 shows a plot of the
normalized force E.(w) = 0.5p(w)/Ps of interaction between domain walls obtained using
Egs. (3.17) and (3.18). The parameter E, has the meaning of the electric field which creates the
same force (per unit area) on the walls as that due to the elastic interaction between domain
walls. One should mention that Fig. 3.5 does not fully describe interaction between domain
walls, since it does not take into account the interaction between the polarization profiles of
the domain walls. However, one expects that, for w > ¢, the force acting between the walls
due to the elastic widening effect will be dominating. As seen from Fig. 3.5, this force, being
equivalent to electric field of a few kV/cm, can be comparable to the coercive force acting on
the wall. This suggests a potentially strong effect of the interwall interaction on polarization

switching in thin films. Interestingly, the complicated structure of the elastic fields around
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Chapter 3. Elastic coupling between nonferroelastic domain walls
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Figure 3.5: The normalized force acting between two 180° domain walls due to the elastic
widening effects plotted vs the distance w between them. The units of equivalent out-of-plane
electric field E, which would exert the same pondermotor force on the walls are used (see the
text). Calculations are done for a 20 nm PbTiOj3 film using Egs. (3.17) and (3.18).

domain walls allows a weak attraction between the domain walls on distances between them

of the order of the film thickness.

It is important to note that the obtained elastic interaction is dominant in thin films with
electroded and short circuited surfaces since the screening of depolarizing fields leads to

negligible electrostatic interaction between domain walls (see Appendix C).

3.4 Conclusions

To conclude, it has been demonstrated that in thin ferroelectric films the elastic fields asso-
ciated with nonferroelastic domain walls extend inside the adjacent domains for a distance
comparable to the film thickness. Such elastic widening effect results in appreciable elastic
interaction between adjacent walls. It has been shown that the predicted interaction between

the walls is appreciable for film thicknesses within the range of tens of nanometres.

This interaction could have substantial impact on polarization switching and domain
pattern control in ferroelectric thin films. Particularly, the results are relevant for potential
agile electronic devices based on domain walls. The fact that domain walls interact with each

other opens new possibilities to control their positions and movement.
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3.4. Conclusions

Appendix A. Derivation of the strain and stress components near the

domain wall in the middle of the thin free-standing film

After the substitution of Eq. (3.10) into Eq. (3.1) one derives from (3.4) the simplified full set of

equations for elastically isotropic material:

€11 =811011+512022+512033+Q12PI2, (3.19)
€20 = $12011 + $11022 + 512033 + Q2P = Q12 P% (3.20)
€33 =812011+512022+511033+Q11P;2, 3.21)
€13 = (811 — S12)013 (3.22)
€11,33 +€33,11 —2€13,13 =0 (3.23)
O111+0133=0, 0131+0333=0 (3.24)

The solution to the problem consisting of Egs. (3.19-3.24) and boundary conditions (3.7-
3.9) is sought in the framework of the plane-stress approach [36, 37]. As it is customarily done
(see e.g. [25]), a stress function y(x, z) is introduced allowing to represent stress components

as:

on(x,2)=x33 013(x,2)=-)13 033(X,2)=x11 (3.25)

As aresult, all stress and strain components can be expressed through the stress function
x(x, z) using Egs. (3.19-3.22,3.25). In terms of the stress function, Eq. (3.24) is satisfied and

Eq. (3.23) is rewritten in the form:

_ Quis11—Quzsie
X +2Y 33+ X333 = ——% ——5 ——

S——AP? 1 (3.26)
=512

Here the notation AP?(x) = P§ — P;(x) is used.
In terms of Fourier components introduced as
1 [e@]
x(k,z) = — f (x,z)exp(—ikx)dx
X T”_oo X

o0 (3.27)
AFZ(k):\/LZ_n f AP?(x) exp(—ikx)dx
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Chapter 3. Elastic coupling between nonferroelastic domain walls

Equation (3.26) takes the form:

2 _ —
_2k26_7(+k4%:_wk2Ap2(k) (3.28)

4 2 2 2
0z 0z T

The free surface boundary conditions (3.8-3.9) in terms of ¥ (k, z) read:
¥(k,00=0, ¥(k,h)=0 9 ¥(k,00=0 9 y(k,h)=0 (3.29)
X y - Y X ) - Y azx y - Y azx y - .

The solution to Eq. (3.28) with the boundary conditions (3.29) can be written in the form:

k) = — 511011 — 512012 AP2(k) - ZSinh(%)kz’sinh(kz’) ~
R 2 kI + sinh(kh)
2(sinh(%) + % cosh(%)) cosh(kz’)
kh+ sinh(kh)

(3.30)

where z’' = z— h/2 is the distance from the middle of the film.

From Eq. (3.30), using Egs. (3.19-3.22,3.25) the expressions for the in-plane mechanical

strain may be readily derived as:

— AP2(k)  AP2(k
el (k,hi2) =€l |- 2( )R 2( ) (3.31)
PS PS
— (1422 sinh(n/2) + (/2) coshn/2)
g =2 < 3.32
&1tm 1+ sinh(n) ( )

The case h > ¢, which is applicable for typical film thicknesses, is of interest. In this
case the product Algé(k)”gvl(kh) can be approximated as AIA’E(O)EI(kh) since the characteristic
width of AP2(k) is much larger than that of g7 (k%) as a function of k, i.e., ¢ > 3. Thus one

readily makes the inverse fourier transform of (3.31) to get Eq. (3.13):

. AP?(x) & x
e (x, hi2)=¢), |- 2 +HRT81(3) (3.33)
1 [e.0]
=— | @ in{)d 3.34
g1() _27[—[0 g1(n) exp(in{)dn (3.34)

Having applied similar logic, from Eq. (3.30) one can derive expressions for other non-zero
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3.4. Conclusions

Figure 3.6: Numerical results for the functions g ({) and g3({) determining the profiles of
strain components eh (x) and egs (x) near the domain wall.

strain and stress components:

r 2 5 X
€33(x, h/2) = (s11 = $12) g1 P} 'NREgs(ﬁ) (3.35)
o11(x,h12) = qrP5- uR%fl(%) (3.36)
AP?(x) & x
022(x,h/2) =qTP§-(P—§+uREfz(E) (3.37)
2
033(x,h/2) = qrP5- R&Z(x) + uRifg(f) (3.38)
P2 ' h

511012 —512Q11
B St~ ST B
g3(n), fi(n) defined identically to Eq. (3.34). The analytical expressions for g5(n), f;(n) read:

where g7 = . Functions g3({), f;(() are the inverse Fourier transforms of

~ (1+ 22 sinh(/2) - (7/2) cosh(y/2)

g3(n) =2 7+ sinh() (3.39)
_ —sinh(n/2) + J cosh(n/2)

=2 3.40
him 1+ sinh(n) ( )
_ % sinh(n/2)

il 3.41
o 7+ sinh(7) (3.41)
~ —sinh(n/2) - g cosh(n/2)

=2 3.42
s 1+ sinh(n) ( )
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Chapter 3. Elastic coupling between nonferroelastic domain walls

The profiles of g1 ({), g3({) obtained after taking the inverse Fourier transforms numerically

are shown in Fig. 3.6 (the value of s12/s;; has been set —0.3125 as for PbTiOs).

Appendix B. Coupling between polarization and strain

The main source of surface-induced perturbation of polarization profile is electrostrictive
coupling between polarization and elastic strain and stress tensors. For sake of simplicity, the
back action of elastic variables on polarization is investigated for the case of the second order
phase transition, with Gibbs potential written up to the 4th power of the order parameter —
the same considerations can be applied to the first order phase transition with qualitatively

the same results.

The following Gibbs potential is considered:

Lo 1,4 1 2 2 2
G=zaPz+ZﬁPZ—5511(011+022+033)—512(011022+022033+033011)
op, 1 (3.43)

1, 2 2 1 ( )2 (
——S$44073— 011 +022)P; —Q11033P; + = — | +=
2544013 Qi2(011 +022) P; — Q11033 P 2g44 ox 2811

0P, )2
oz )’
After the substitution of Egs. (3.36-3.38) into Eq. (3.2) for this Gibbs potential, Eq. (3.2) rewrites
in the following form in the center of the film (in order to demonstrate the general trend of the
back action of elastic fields on polarization, dependence of the polarization on z-coordinate

and effect of the depolarizing fields are neglected):

& x %P,
- 1+2ﬁg(ﬁ))P§PZ(x)+P§’(x)=2P§€2W(x), (3.44)
where

pe= |- & (3.45)

S 5’ .
¢ = . 8ad , (3.46)

2P5(2qTRQ11 +2q7 Q12+ P)
KRqr

Q)= @)+ )+ ). (3.47)

g 3RO + 247002 7 B (QuAQ) + Q12 +Quf3()

For example, in PbTiO3 g({) = —0.3 /1 (() —0.3f2({) +1.2f3({). One can see that if the back effect
of elastic fields on polarization is not accounted for, i.e., if g(x/h) = 0, then the solution to
Eq. (3.44) attains the polarization profile in the bulk P;(x) (for the considered case of second-

order phase transition, the solution is classic hyperbolic tangent profile described by Eq. (2.23),
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Figure 3.7: Function I1(x) =1 - P2(x)/ Pg for the bulk polarization profile (green, thick) and
the corrected profile (blue, thin)

with tyy = 4¢).

Equation (3.44) was solved in approximation ¢ < h; the following polarization profile was

obtained:

& x X

P,(x) = Ps|1+ —g(-)|tanh — | (3.48)
h™"h 26(1-4g(0)

One can elucidate that this profile satisfies Eq. (3.44) by substituting it into (3.44) and making

the following approximations at the two characteristic scales of the x-coordinate:

* when x ~ ¢, one can set g(x/h) = g(0).

* when x ~ i, one can set P(x) = Pg, and keep only terms of the first order of smallness
(x (/h)) in Eq. (3.44).

Thus, the function g(¢) describes the back effect of elastic stresses on the polarization.
One can see that the correction to the polarization profile has smallness ({/h), and the profile
of polarization in the thin film is very close to the profile in the bulk — see Fig. 3.7 where
function IT(x) = 1 — P2(x)/ P§ is plotted for these two cases. However, despite this smallness of
correction to the polarization profile, its back influence on the elastic effects is not negligible.

The trends leading to this behaviour can be demonstrated as follows.
After the back influence on the polarization profile is obtained (Eq. (3.48)), one should
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Chapter 3. Elastic coupling between nonferroelastic domain walls

recalculate expressions for the elastic variables (3.33), (3.35)—(3.38) that are generated when
the new profile of polarization is taken into account. This task would be of increased difficulty:
in this chapter, the developed analytical theory for elastic profiles only describes the case
of polarization distribution for which the function I1(x) has width ¢ <« h. As one can see in
Fig. 3.7, the function I1(x) for the polarization profile (3.48) has now the width of the order of
the film thickness £, thus the developed theory cannot be applied directly.

Nevertheless, one can still make a conclusion that the recalculated elastic profiles will have
alarger magnitude. Note that the magnitude of the elastic stresses (3.36)—(3.38) is proportional

to the constant p introduced in Eq. (3.14):

P} (x)
2
p S

dx. (3.49)

“:\/zl_nff

—00

As a rather rough estimation, one can say that the recalculated elastic stresses will have

the same form as given by Egs. (3.36)-(3.38), with the coefficient of proportionality u =
oo

\/Zl_zrf R {O [1(x)dx renormalized with accordance to the new function II(x). In a way, the
coefficient u has a meaning of the surface area under the graph I1(x) in Fig. 3.7. The new
function I1(x) has a larger surface area under the graph, therefore the value for constant
is larger, and the magnitude of the elastic stresses (3.36)-(3.38)) is stronger. The qualitative
results of this reasoning are confirmed by numerical simulations of the system (see Section

3.2).

Appendix C. Electrostatic interaction of domain walls

The deviation of polarization profile in the film from the bulk polarization profile, described
in the previous section and having a smallness of ¢/ h, results in presence of electric fields
and in electrostatic interaction between domain walls. One can expect that the smallness of
the deviation translates into weakness of the electrostatic interaction. Here, this reasoning is

illustrated.

The procedures are followed similar to those described in the main text (Egs. (3.17) and
(3.18)). If a separate domain wall located at x = 0 creates electric field E(x, z), then the electric
field of the ensemble of the two domain walls located at x = —w/2 and at x = w/2 can be
estimated as Eeps(x,2) = E(x+ w/2,z) + E(x — w/2, z). Then, the expression for electrostatic

energy density K ,€¢ || Eensll 2/2 is used to calculate the force (per unit area) between two domain
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Figure 3.8: Normalized force of interaction between domain walls. (a) Conditioned by electro-
static effects only. (b) Conditioned by elastic effects. The value of the dielectric constant used
is k3 = 100, the film thickness & = 20 nm, the substrate thickness kg = 100 nm

walls with distance w between them:

1
p(w):EdU/dw (3.50)

Uw) =ff1<b£0(E(x+ w/2, 2)E(x — w/2,z))dxdz 3.51)

Using Egs. (3.50) and (3.51) the force of the electrostatic interaction is calculated and
compared to the elastic one, described by Eqgs. (3.17) and (3.18). In Fig. 3.8 the comparison
is shown of electrostatic and elastic forces obtained solving numerically Egs. (3.2)—(3.4) of
the main text with boundary conditions (3.5)-(3.8), (3.16) for a film of thickness 20 nm on a
substrate of thickness 100 nm — it is clear that the electrostatic interaction is few orders of

magnitude weaker.
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Mechanically incompatible ferroelas-

tic domain walls in thin films

Ferroelectric domain walls (DWs) have been one of the priority subjects of investigations in
the field of ferroelectricity due to their unique properties that may be used in ferroelectric
devices. In most cases DWs form in accordance to the principles of their electric neutrality
[20] and of the mechanical compatibility of the domains they separate [23]. There have been
a growing attention to exceptional cases, where domain structures contain DWs oriented
with violation to these requirements. For instance, controllable generation of structures with
charged DWs, forcing a wall to form in spite of nonfulfillment of the "electric’ condition on its
orientation, is seen as the principal mechanism for attaining the DW conductivity, implying a

number of potential applications in nanoelectronics with reconfigurable electric circuits.

The violation of the condition of the mechanical compatibility of the domains separated
by a wall is typically considered unlikely due to the large elastic energy penalties associated
with it. Initially, this condition was formulated for individual walls in bulk crystals, where a
small deviation of an individual DW off its permissible orientation would result in generation
of uncompensated elastic stresses propagating on macroscopic volumes, resulting in infinite
elastic energy penalties per deviated wall. This condition is widely used in thin films as well
despite the fact that, strictly speaking, the considerations formulated for the bulk crystals
do not apply to the thin films. Specifically, the elastic stresses generated by an individual
mechanically incompatible DW propagate only on finite distances from the wall in thin films,
as a consequence the elastic energy penalty associated with the wall deviation may be small
enough to have a limited impact on the DW orientation, with possibility for other mechanisms
to come to play to govern the DW orientation. For instance, numerical phase-field modelling
of BiFeOs-like thin films documented a small change of the ferroelastic DW orientation with

variation of the DW self-energy per unit area [39]. Besides, in films strained on a substrate,
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Chapter 4. Mechanically incompatible ferroelastic domain walls in thin films

generation of DW incompatibility stresses by a deviated DW does not automatically lead to
increase of the elastic energy of the structure since the interaction of the DW incompatibility
stresses with film-substrate mismatch strains decreasing energy of the structure is possible. In
PbZrTiOs films, a small deviation of a wall pair of a thin domain was reported which was linked
to relaxation of the film-substrate lattice mismatches by the DW mechanical incompatibility

elastic fields generated as a result of the deviation [40].

A question arises whether deviations of an individual DW off the mechanically compatible
state can be large in thin films. One should note that in many systems a deviation off the
mechanically compatible state is closely tied with breaking of the electric neutrality of the wall.
In order to investigate applicability of the "elastic’ condition solely on the DW orientation in
thin films, it is reasonable to focus on those systems where a deviation of the wall preserves
the DW electric neutrality. For the analysis, a system of high experimental interest is chosen, a
BiFeOj3-like rhombohedral (010)-oriented thin film on a cubic substrate with 71° ferroelastic
domain structure. Based on the analysis of this system, two mechanisms of possible DW devi-
ations in thin ferroelectric films are formulated. Firstly, a DW deviation towards minimizing
the wall self-energy is expected in systems where the elastic energy penalty resulting from the
deviation is small compared to the reduction of the wall self-energy. Besides, in films strained
on a substrate, large DW deviations can be driven by relaxation of the film-substrate mismatch

elastic stresses by the DW incompatibility elastic fields.

In the following, the applicability of the condition of mechanical compatibility of the
DW to thin films is trialled by describing the variation of the energy of domain structures
upon deviation of the 71° walls in rhombohedral BiFeO3-like thin film off their permissible
orientation. A (010)-oriented film on a cubic substrate is considered with the domain structure
comprised of domain states (111), hereafter domain I, and (111), hereafter domain II, alternat-
ing in [100]-direction. Following the requirements of the electrical neutrality of the wall and of
the mechanical compatibility of the domains separated by the wall, the DWs in the structure
have (110) orientation, inclining at the angle of 45° to the film surface [41, 42]. Deviations that
conserve the electric neutrality of the wall are restricted by the condition PIs ‘n= PISI -n, where
n is the normal to the wall, PIs and PISI are the spontaneous polarizations of domain states I
and II, respectively. Following this restriction, all deviations that keep the DW normal n in
the xy-plane do not break the requirement of the DW electric neutrality, only violating the
condition of the DW mechanical compatibility (Cartesian reference frame with axes Ox, Oy,
and Oz directed along [100], [010], and [001] directions, respectively, is introduced). Other

deviations, leading to charged DWs, are excluded from the following consideration.
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4.1. Isolated elastic domain walls in thin films

In the framework of the analysis, the part of the energy of the structure with neutral
DWs that affects the wall orientation is comprised of two contributions: the elastic energy
associated with the generation of stresses by the mechanically incompatible wall, and the DW
self-energy. The energy of the structure is calculated for an arbitrary shape of a single isolated
domain wall, which is a reasonable approximation for systems where the distance between
DWs largely exceeds the film thickness, i.e., for equilibrium sparse domain patterns and for
non-equilibrium structures with an isolated wall. In such systems, since the elastic fields
generated by incompatible DWs propagate away from the wall only on distances of the order
of the film thickness (according to the principles of elasticity), the interference of the fields
from the neighbouring DWs can be neglected. Besides, the description is given to DWs in
equilibrium non-sparse domain patterns, considering planar walls of an arbitrary inclination.
In all cases, for the calculation of the energy of the structure, the DW self-energy is taken
isotropic, dependent only on the DW surface area and independent of the wall inclination. The
equilibrium wall shape in sparse structures and the equilibrium wall inclination in non-sparse

structures are obtained imposing the requirement of the minimal energy of the structure.

4.1 Isolated elastic domain walls in thin films

First, the shape of an individual domain wall in thin films is described. The geometry of the
problem allows two-dimensional treatment with all variables depending on x and y only,
the schematics of the problem is shown in Fig. 4.1. The DW shape is defined by an arbitrary
function of deviation D(y), which describes the deviation of the DW off the mechanically
compatible state (restriction D(0) = 0 is imposed on the function). The shape of the wall
is thus described by the set coordinates (y + D(y),y), 0 < y < h, where h is the thickness of
the film (see Fig. 4.1). At all points where the local angle of the DW inclination differs from
45° (dD/dy # 0), inter-domain lattice mismatch is observed, generating elastic stresses in its
surroundings. For description of elastic stresses of the system, the method of fictitious dislo-
cations is implemented (see, e.g., [13, 14]), in framework of which the stresses in the system
oij(x,y) can be found as the elastic fields generated by fictitious dislocations equivalently

representing the lattice mismatches in the system:
aij(x,y) :ffof}(x,y;xo,yo)akz(xo,yo)dxodyo, (4.1)

where Uf; (x, ¥; X0, yo) is the elastic stress field generated by a unit dislocation located at (xg, yo),

having Burgers vector directed along r; and dislocation line along r; direction, ay; is the
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Chapter 4. Mechanically incompatible ferroelastic domain walls in thin films

Substrate

Figure 4.1: Schematics of the BiFeO3 used for calculations in sparse domain structures. Sym-
bols '+’ represent screw dislocations having positive Burgers vector density db°V/dy and
db*"®/dx, symbols -’ represent dislocations with negative Burgers vector density — see the
text. Dashed line shows the mechanically compatible orientation of the DW.

dislocations density tensor defined as [43]:

6165]1

) 4.2
61’,’ ( )

Akl = —€jjk

e;jk is the Levi-Civita permutation symbol, ,st , = 0uy/0r; is the unsymmetrized misfit strain
tensor describing spontaneous deformations of the lattices of the domains with respect to
the substrate lattice, and u; is the spontaneous displacement with respect to the unstrained

substrate.

In the considered domain structure, domains I and II are characterized by the following

unsymmetrized misfit strain tensors ,Bg ) and ﬁg h respectively:
ij ij

es 0 p es 0 —-p
I II
ﬁ(Si),-: -B e - 'Bgij): -B e B |, 4.3)
0 0 e 0 0 e

where €5 = (ay —as)/ as is the film-substrate lattice constant mismatch, ay and a are the lattice
constants of the film and of the substrate, respectively, f = 71/2 — a4y, is the film-substrate
angular mismatch, a,y is the angle between (100) directions of the perovskite unit cell of the
film.

Using Egs. (4.2) and (4.3), the system of fictitious dislocations that equivalently describes

elastic fields generated by inter-domain and film-substrate lattice mismatches was obtained.
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4.1. Isolated elastic domain walls in thin films

The system of dislocations is comprised of the sets of edge and screw dislocations at the
film-substrate interface (following [42]) and of the set of screw dislocations on the wall. The
edge dislocations in the system describe the mismatch between the lattice constants of the
film and of the substrate. It was shown (see Appendix A) that the mismatch between the film
and substrate lattice constants does not have any effect on the DW orientation, therefore edge

dislocations are excluded from the consideration.

Hereafter, only elastic fields generated by screw dislocations in the system are described.
All screw dislocations in the system have their lines directed along z. The set of the screw
dislocations situated on the film-substrate interface describes the lattice mismatch between
the rhombohedral film and the cubic substrate [42]. The second set of the screw dislocations,
situated on the domain wall, describes the mismatch between domain I and II that appears

because of different orientations of domains I and II unit cell rhombohedra.

Using Eqgs. (4.2) and (4.3), expression for stress in the structure (4.1) is rewritten in the

following form:
0ij(x,y) =03 (x, ) + 07 (%, ), (4.4)
x® sub
ai?b(x, y) = f 033 (x,y;%0,0) T (x0)dxo, (4.5)
h DW
o (xy) = f o33 (%, y; y0+ D(y0), ¥0) & (o)dyo, (4.6)
0
sub
x (x) = —Psignx, 4.7)
dbDW( ) =20 d—D =20-(cotep(y) — 1) (4.8)
dy = dy Y ' '

Here, ai;‘b (x,y) and a‘%w(x, y) are the elastic stresses generated by the sets of the screw dislo-

cations situated at the film-substrate interface and at the domain wall, respectively, d bsUb/dx
and dbPV/dy are 'Burgers vector densities’ of dislocations located at the film-substrate inter-
face and at the domain wall, respectively, and ¢(y) is the local angle of the DW inclination. In
the geometry of the problem (Fig. 4.1), non-zero components of the elastic field O'“?}Q.' (x, ¥; X0, Yo)
generated at point (x, y) by a unit screw dislocation having line along z, located at coordinates
(x0, yo) in an elastically isotropic medium with the free surface at y = h are described by

the following expressions (henceforth, the film and the substrate are considered elastically
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Chapter 4. Mechanically incompatible ferroelastic domain walls in thin films

isotropic with identical shear moduli G):

G Y=o 2h—=y-yo )
33

) ; ) = - + ’ 49
0713(% Y3 X0, o) Zn((x—xo)2+(y—yo)2 (x— X0)2 + (2h — y — yp)? (@9
o33(x, y; X0, y0) = G( 7% %o ) (4.10)
23 2\ (x—x0)2+ (Y —y0)?  (x—x0)2+ (2h—y — yp)?

The first terms of r.h.s. of Egs. (4.9) and (4.10) correspond to the stresses of a screw dislocation
located at (xp, yp) in the infinite isotropic medium [44]. The second terms of r.h.s. are added in
order to fulfil the requirement of zero 023 stress component at the mechanically free surface
(y = h), which corresponds to the elastic stresses generated by a 'mirror dislocation” with
Burgers vector of the opposite sign, in close analogy with the 'mirror charges’ method in

electrostatics (as discussed in [45]).

The energy of the domain structure is composed of the elastic energy of the stresses
oij(x,y) and of the DW self-energy. It is known that the energy of elastic fields generated by
dislocations can be equivalently represented as the energy of interaction between dislocation
lines (see, e.g., [13]). This follows along similar lines with electrostatics, where the energy
of electric fields is equivalent to the energy of interaction between charged particles. In the
following, we will discuss the elastic energy of the system from the point of view of interaction
between the dislocations in the structure. The second part of the contribution to the energy of
the system, DW self-energy, is taken dependent only in the DW surface area, and independent

of the DW inclination.

For any shape of the DW defined by the deviation function D(y), the total energy of the

system U (per unit length in z-direction) is calculated using the following expressions:

U=US+ U+ U + U, (4.11)
I dbu dbsP
Useilb:_f fE xl’O) (x]);xz’oy (xZ) dx1dx2, (4.12)
2 dx
1 h h dbDW DW
UDW EffE(yl +D(y1), y1,—— (y1) Yo+ D(y2),y2, —— (yz)) dy1dys, (4.13)
00
h oo DW
UthffE x1,0, (xl) Y2+ D(y2), y2, (yz))dxldJ/z, (4.14)
0 —oo
h
Uself = f 1+ (1+D/'(y)2dy, (4.15)
0
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4.1. Isolated elastic domain walls in thin films

where £ is the film thickness, A is the DW self-energy per unit area, Use}lb is the film-substrate
misfit elastic energy, U eDlW is the DW mechanical incompatibility energy penalty, U gllt is the
energy of interference of the elastic fields generated by film-substrate and inter-domain lattice
mismatches, Uggs is the DW self-energy which is taken proportional to the length of the wall,
E(x1,y1,b1; %2, ¥2, b2) is the energy of interaction between two screw dislocations located at
points (x1, y1) and (x2, y»), having Burgers vectors (0,0, b;) and (0,0, by), respectively. The
expression for the energy of interaction between dislocation was obtained as (see Appendix a)
biboG | ((x1— x2)* + (2h—y1 — 2)?

E(x1, v1,b1; X2, V2, b)) = In
VD52, 20 22 47 (x1 = x2)%2 + (y1 — ¥2)?

(4.16)

Analysing Egs. (4.11)—(4.15), it is possible to draw preliminary conclusions about changes
of the energy U with the DW deviation. For instance, a deviation of the DW in clockwise
direction, given by positive dD/dy, results in appearance at the DW of screw dislocations
with positive Burgers vector density dbP"V/dy. Similarly to electrostatics, generation of such
dislocations is preferable in presence of film-substrate dislocations having negative Burgers
vector density db*"?/dx, and unfavourable in presence of ones with positive Burgers vector
density (can be seen from Egs. (4.14) and (4.16)). In the geometry of the problem (see Fig. 4.1)
the interaction of such 'positive’ DW dislocations is stronger with 'negative’ film-substrate
dislocations than with ’positive’, which follows in negative energy of interaction U gllt At the
same time, a clockwise rotation of the DW is characterized by positive elastic energy of the
generated DW incompatibility elastic distortions UElW (i.e., positive energy of interaction

between the DW dislocations of the same sign) and by increase of the DW self-energy Uges

DW+

. P . int . .
proportional to the DW length. Competition between decreasing U " and increasing U

Uselr, which is the subject to analysis in the following part, defines whether the deviation of the
DW in clockwise direction is overall favourable. Along similar lines, in case of a deviation in

counter-clockwise direction, given by negative dD/d y, elastic energies U gllt and U Elw increase,

and the DW self-energy Ugejs decreases due to shortening of the DW.

The shape of the DW corresponding to the minimal energy of the system is sought using the
method of variations to the expression for the energy of the system U [Eq. (4.11)]. The criterion

for the DW shape was formulated in the form of nonlinear Fredholm integral equation:
1
f K7, 720D ()dj + f(72) = 0. (4.17)
0
Here dimensionless coordinates %; = x;/h, j; = y;/ h and dimensionless function of deviation
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Chapter 4. Mechanically incompatible ferroelastic domain walls in thin films

D(j) = D(hj)/ h were used. Kernel K(7,,J») and function f(y,) are defined as follows (see
Appendix B for derivation):

1
_ - Oe _ ~ _
K(y1,y2) =2e(yh + D(y1), y1; Y2+ D(¥2), ¥2) +2f ﬁ(ﬁ +Dn), yi;t+ D), D' (1) dt,
)
72

(4.18)
1 ~
3 de; - _ oA 1+ D'y
f(J72)=65(372+D(J72),J72)+fa—e~(l‘+D(t),t)D(t)dt+ - SEEENRT
n O Fh 1+ 0+ D)2
o (fl—f2)2+(2—J71—J72)2)
Y15 X0, 70) =1 —— e 4.20
e(X1, Y1, X2, y2) n( A AL ( )
eg(.fg,yz) =— f sign(fl)e(fl,o;)Eg,yg)dfl. 4.21)

Equation (4.17) was solved numerically for varying film thicknesses, the method of conju-
gated gradients was implemented. Following parameters for BiFeO3; were used: G = 56 GPa,
B =0.0113, A = 0.092 J/m?. Domain wall shapes corresponding to the minimal energies of
sparse domain structures in films of different thicknesses are shown in Fig. 4.2, the variation
of the DW shape with the film thickness change is observed. The average angle between the
DW and the film surface increases with the film thickness decrease, breaking the condition of
mechanical compatibility of the DW in ultrathin BiFeOs3 films. The variation of the DW shape
with the film thickness results from different thickness dependencies of the two contributions

to the energy of the structure.

It can be readily obtained from Eqgs. (4.12)-(4.15) that the elastic part of the total energy of
the system scales with the film thickness as h?, while the DW self-energy scales as h. As aresult,
with decreasing the film thickness, the DW self-energy makes an increasingly more prominent
contribution to the total energy of the structure compared to the elastic one, the DW tending
to orient closer to the orientation of the minimal length despite the increase of the elastic
energy. In the limiting case of the film thickness tending to zero, the DW orients normally to
the film surface, which corresponds to the the minimal DW self-energy Usejs (shown in Fig. 4.2
by the thick line).

In turn, increasing the thickness of the film & makes the contribution of the elastic energy
Uierllt +U eDlW more important compared to the DW self-energy. In the limiting case of the
thickness tending to infinity, the orientation of the wall is determined by the requirement of

the minimal elastic energy of the structure, which is, interestingly, differs from the orientation
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4.1. Isolated elastic domain walls in thin films
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Figure 4.2: Shapes of the bent 71° domain walls at different thicknesses of the BiFeOs film (thin
solid lines), compared to the mechanically compatible DW inclination (dashed line). The thick
line shows the DW shape in the limiting case of film thickness tending to zero, determined
by the condition of the minimal DW self-energy. Dash-dot line shows the DW shape in the
limiting case of film thickness tending to infinity, determined by the condition of the minimal
elastic energy of the system. With varying the film thickness, the wall attains a shape laying
between these two limiting cases.

of mechanical compatibility. As it was mentioned before, a rotation of the wall in the clockwise
direction from the mechanically compatible state leads to relaxation of the film-substrate
misfit stresses by the elastic fields generated by the domain wall lattice mismatches, decreasing
the elastic energy of the system and making such a rotation favourable. When the deviation of
the wall is small, the negative energy of elastic interaction between the domain wall and film-
substrate lattice mismatches U gl“ depends linearly on the angle of domain wall rotation, due to
the linear dependence of magnitude of the elastic fields generated by the wall on the rotation
angle. At the same time, there is also the positive elastic energy of the incompatibility fields
U Ic?lw, which is proportional to the square of the angle of deviation. From these considerations,
one can see that the orientation of the domain wall that corresponds to the minimal elastic
energy of the structure differs from the mechanically compatible orientation formulated in
[23], and is defined by the competition between Uierllt and Ugw. In the considered BiFeOj3;

structure, the shape of such domain wall is shown in Fig. 4.2 by the dash-dotted line.

Remarkably, each shape of the domain wall shown in Fig. 4.2 is defined by the only
parameter G h/A. The results obtained for BiFeOs sparse structures are applicable to other

rhombohedral films having a similar geometry.
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Chapter 4. Mechanically incompatible ferroelastic domain walls in thin films

4.2 Ferroelastic domain walls in non-sparse domain structures

In the previous section, the shape of an individual DW is investigated in thin films, showing
that large deviations of the wall off the mechanically compatible state are possible. At the same
time, in thin ferroelectric films non-sparse domain structures are most often observed, and
the applicability of the results obtained for an individual DW to such systems is questioned. In
the following, estimations are given to the behaviour of the DW in films having non-sparse

structures.

For the systems with non-sparse domain structures, a description for small angles of DW
deviation is developed; the validity of this approach will be shown a posteriori. Films having
periodic I-1I alternate domain structures are considered, with DWs of straight planar shape,
inclined with the same angle to the surface at all points. Similarly to the previous section, the
elastic fields in the film are described by fictitious dislocations equivalently representing the
inter-domain and film-substrate lattice mismatches. The mechanical incompatibility elastic
distortions are generated by screw dislocations located at the DW, the film-substrate mismatch
fields are generated by screw and edge dislocations at the film-substrate interface. Hereafter,
only elastic fields generated by screw dislocations are described, since, as in previous section,
edge dislocations do not have any influence on the DW orientation. Smallness of the DW
deviations allows us to consider only linear effects of the DW inclination on the incompatibility
elastic fields: for all considered DW inclinations the DW screw dislocations are fixed in the
position of the mechanically compatible wall oriented at angle 45° to the film surface, their
displacements with the domain wall deviation are neglected as a high-order effect. The Burgers
vector density of dislocations has the constant value along the DW: db°V/dy = +2B(cotp—1),
where ¢ is the angle of inclination of the DW, sign '+’ corresponds to the I-II transition between
the domains with increasing x, sign '—’ corresponds to the II-I transition between the domains

with increasing x.

The considered geometry of the non-sparse structure is shown in Fig. 4.3. Elastic stresses
are calculated using expression (4.4), with stresses generated by film-substrate screw disloca-

tions 0?‘;1’ (x, y) and stresses generated by DW screw dislocations aBW(x, y) redefined for the
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Figure 4.3: Schematics of the BiFeOs used for calculations in non-sparse domain structures.
Symbols '+’ represent screw dislocations having positive Burgers vector density db®V/dy and
db*™®/dx, symbols -’ represent dislocations with negative Burgers vector density — see the
text. Here, the signs of the dislocations on the DW are shown for the case of a small deviation
of the DW orientation in clockwise direction.

case of the non-sparse structure as follows:

w
a?lj}b(x, = —ﬁZf(—l)ka?]g. (x, y; kw + x9,0)d xg, (4.22)
ko
h
o7} (x,y) = 2B (cotp - UZf(—l)kff??(x, yikw + yo, yo)dyo, (4.23)
k
0

where w is the width of a domain. The energy of the system per one domain wall, comprised
of the elastic energy of the fields generated by screw dislocations and of the DW self-energy, is

calculated using the expression

Ah

h w
1
U= p— e f f (025(x,y) + 055 (x, y))dxdy. (4.24)

-0 0

The angle of the DW inclination corresponding to the minimal energy of the system U
[Eq. (4.24)] is computed numerically for varying thicknesses of BiFeOs film. For the calculation,
the dependence of the domain width on the BiFeOj3 film thickness is taken from Ref. [42].
Figure 4.4 shows DWs inclination angles obtained for BiFeO3 non-sparse structures, compared

with the average DW inclination angle calculated for sparse structures. In films thicker than 40
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Figure 4.4: Average angles of inclination at different thicknesses of the BiFeO3 film. Dots
represent the results obtained in framework of the model developed for sparse structures,
solid line shows the results for non-sparse structures. Dashed line shows the inclination of 45°
of mechanically compatible DW.

nm, the inclination of the DW lies within 3° from the mechanically compatible DW orientation
of 45°. With increasing the film thickness, the deviation of the DW off the mechanically
compatible state decreases, which opposes to the behaviour of the single DW. In structures
with a single wall, whole film is stressed due to the film-substrate lattice mismatch, and the DW
tends to deviate by a large angle in order to relax the 03 and o3 shear stresses and minimize
the elastic energy of the structure. In non-sparse structures, stress components 013 and g3
are essentially different from zero only within the region near the substrate of the size of the
order of the domain width. Outside this region, a deviation of the wall leads to generation of
additional elastic fields rather than relaxation. As a consequence, the deviation of the wall in
non-sparse structures is not as favourable as in the structures with a single DW. In the limiting
case of the film thickness tending to infinity, the film is characterized by dense domain pattern,
stress components 013 and o3 are absent in the whole film, and the minimal elastic energy of
the structure is given by the DW inclination of 45° to the surface since any deviation of the DW

would lead to increase of the elastic energy.
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4.3 Conclusions

To conclude, the shape of the ferroelastic DWs in films of rhombohedral geometry was in-
vestigated using BiFeO3 thin films on substrate as an example, and the applicability of the
requirement of the mechanical compatibility of the DW, conventionally used for description
of domain structures, to ultrathin films was tried. A strong deviation of the DW off the me-
chanically compatible DWs was shown in films characterized by sparse domain structures.
In ultrathin films, the DW orients normally to the film surface, which is the consequence of
following the condition of minimal DW self-energy. In thick films, the DW orients according to
the requirement of the minimal elastic energy of the system, also breaking the aforementioned
condition and generating DW incompatibility elastic distortions. The shape of the DW in thick
films corresponds to the most efficient relaxation of the film-substrate mismatch elastic fields
by DW incompatibility elastic distortions. The results obtained for rhombohedral BiFeO3 films
with sparse structures can be easily extrapolated to other materials with similar geometries. In
films with dense domain patterns, minimizing the elastic energy of the structure leads to the

mechanically compatible orientation of the DW.

Appendix A. Energy of interaction between dislocations

The energy of interaction between two dislocations can be obtained as the change of the
energy of the system as a result of creation of one dislocation in presence of the elastic field

generated by the other.

In general, a dislocation having Burgers vector b placed in an elastic field o;; interacts
with the field via the Peach-Koehler force p [46]:

pi = €ijk0jibiTk, (4.25)

where 7 is a unit vector directed along the line of the dislocation. In the elastically isotropic
medium with free surface at y = h, the energy of creation of a screw dislocation with line
directed along z with Burgers vector (0,0, b1,) at the point (x, y1) in the stress field o;;(x, y) is
equivalent to the work required to move the dislocation from the film surface (x1, h), i.e., from

the state where dislocations do not interact, to the point (x1, y1):

h

R4
Einter(x1, y1) =—fpz(x1,y)dy= —blzfmg(xl,y)dy. (4.26)
h N
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The stress fields in the problem are generated by dislocations of three types: screw dislo-
cations with lines directed along z, edge dislocations with lines directed along x, and edge
dislocations having lines along z. Notably, the elastic fields generated by edge dislocations
in the problem have zero component o3 [47], therefore, as it follows from Eq. (4.26), screw
and edge dislocations in the system do not interact with each other. Only interaction between
screw dislocations in the system results in non-zero elastic energy which may control the DW

orientation.

In order to find the energy of interaction between screw dislocations E(x1, y1, b1,; X2, ¥2, b2,),
Eq. (4.26) is used with the stress component o13(x, ¥) = by, 013(x ¥; X2, ¥2), with alg(x V; X2, ¥2)

given by Eq. (4.9). As a result, the expression (4.16) is obtained.

Appendix B. Derivation of equation (4.17) describing domain wall
shape
Introducing dimensionless coordinates X; = x;/h, y; = y;/ h and dimensionless deviation func-

tion D(§) = D(h§)/h, Egs. (4.11)—(4.16) with Burgers vector densities db*"?/dx and db°WV/dy

defined in Egs. (4.7) and (4.8), respectively, can be rewritten as follows:

2Gh2 oo 00
Zﬁ—f fe(fl,o;fg,())dfldfz
81

—00 —00

ﬁthz

ffe(yﬁD(yl) y1; 72 + D(372), y2) D' (377) D' (32)dy1 d

ZGhZ
'B ffe(xl,o y2+D(y2) yg)D (y2)51gnx1dx1dy2+/1hf\/1+(1+D’(y))2dy

(4.27)

In order to determine the shape of the domain wall that leads to the minimal energy of the

system U, the energy is rewritten in the form suitable for application of variational methods
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introducing the functional L[D](y,):

1
Gh? -
p Py f LID(M (7)Ao, (4.28)

0

_ rysub
U=Ug +

1
LIDI(») = f e(y1 + D), y1; 72 + D7), 72) D' (1) D' (72) d i
0 (4.29)

2nA ~
+es(y2 + D(32), 72) D' (y2) + ,Bzhv 1+ (1+D'(72))%.

A small variation of the function of deviation § D(§) is considered (restriction §D(0) = 0 is

imposed). One can rewrite the functional L keeping only terms of the first order of smallness:
LID+6D](y) = LID1(j%) + 6LID, 6 D] (72, (4.30)
SR 0e _ e
O0L[D,6D](y2) =f§(y1 +D(Y1), Y1; Y2 + D(¥2), ¥2)6 D(y1) D (37) D' (y2)d yh
1
: Oe
fﬁ 1+ D), 1; 72 + D(372), 72)6 D(72) D' (1) D' (72) d
0
e(1 + DGR, y1; Y2+ D(32), y2)6 D' (1) D' () d
(4.31)

e(y1 + D), y1; 2 + D7), 72) D' (77)6 D' (12) d iy

+ +
o oW~

0es _ ~ o~y e ay
+E(y2 + D(¥2), Y2)0D(y2) D' (32) + es(J2 + D(¥2), Y2)6 D' (¥2)
27A 1+ D' ()

+
G R [\ 1+ D' (7))?

Following the theory of variations, the shape of the wall defined by deviation D(j) corre-

5D (7).

sponds to the minimal energy of the system when, for any variation § D(j), the correspond-
1

ing variation of the energy is zero: f SLID,5DI( ¥2)dy, = 0. Since function e is symmetric,
0
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e(X1, y1; X2, y») = e(X2, yo; X1, Y1), the criterion on the DW shape can be rewritten as:

1
f (A(72)8D () + B(7)8D' (7)) dyia = 0, 4.32)
0

1
_ 0e o~ e 0es _ -~ -,
A() = 2[ E(J/l + D), Y1; Y2+ D(32), yo) D' (71)d 1 D' (72) + g(yz +D(32), y2) D' ()
2
0

(4.33)
1 ~
_ e o 2@ 1+D'()
B(y2) =2fe(y1+D(y1),y1;yz+D(yz),yz)D dy+es(ya+ D2, y2) + =7 =
> Pl e+ D)2
(4.34)
After integration by part, the condition attains the following form:
1 1
f fA(t)dt+B(J72) 6D (7)dy, = 0. (4.35)

0 \y2

Requirement of fulfillment of this condition for any variation of deviation § D(j) leads to the

following expression:

1
f A(B)dt+ B(y2) =0, (4.36)

23

from which the non-linear Fredholm integral equation (4.17) follows directly.
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5] Inclined ferroelectric domain walls as

reconfigurable metallic-like channels

Electronic transport at domain walls [26, 30, 48-51] or wall-interface junctions [52], a required
cornerstone for domain wall nanoelectronics, is difficult to control due to the sensitivity
of the conduction to the defect chemistry of the material [26, 53], its strong temperature
dependence [26, 49, 54], and polarization-related hysteresis effects [48, 55]. Furthermore,
displaced domain walls leave conductive footprints due to accumulated mobile defects [56],
which questions the feasibility of rewritable domain wall based circuits. Because of these
issues, electronic conductivity in domain walls since its first demonstration by Seidel et al.
[30] remained elusive with a large dispersion in the reported transport data [26, 49, 50, 55, 57].
Metallic-like conductivity at domain walls was shown only transiently in individually switched
nanodomains [58] or in so-called charged domain walls [29, 59-61], prepared individually
using a special poling procedure. Stable metallic-type conduction was so far only shown in
the case of strongly charged domain walls [29, 61, 62]. In strongly charged walls, where the
normal component of the polarization to the wall experiences a discontinuity of the order of
the spontaneous polarization, the generation of the bound charge at the domain boundary
may result in its compensation with a narrow metallic-like conductive layer leading to the
nonthermally activated transport [29]. However, the formation energy of charged domain
walls is very high [63]. In addition, strong depolarizing fields, inversely proportional to the
domain wall spacing, destabilize the walls when they are located in close proximity to each

other (e.g., < 1um for BaTiOs crystals) [59].

While strongly charged domain walls might therefore be difficult to implement in elec-
tronics, another possibility exists that offers both the high conductivity of charged walls and
the positional stability of neutral walls: when neutral ferroelectric domain walls are forced

to bend off their neutral position, these nominally uncharged walls inevitably become partly
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Chapter 5. Inclined ferroelectric domain walls as reconfigurable metallic-like channels

charged and thus may display metallic-like conductivity. The desired stability can be obtained

for bent ferroelastic walls, as shown below.

Domain walls in bulk ferroelastic crystals acquire elastically compatible orientations [23].
As it was shown in Chapter 4, a small deviation of a wall from this equilibrium orientation
results in the appearance of elastic fields of amplitude proportional to the rotation angle A¢,
implying an energy increase in the system proportional to (A¢)?. In the case of ferroelastic
thin films, a lattice mismatch with the substrate produces elastic fields that can be relaxed
by the rotation of the walls. The energy release due to this rotation is proportional to the
rotation angle A¢. Therefore, in thin films the stable orientation of ferroelastic walls is tilted
off the bulk equilibrium orientation by the angle A¢ which gives the highest overall energy
reduction. This implies a possibility to tune the orientation of ferroelectric/ferroelastic walls
in thin films via the control of the film-substrate lattice misfit and the configuration of the
domain pattern. The higher the rotation angle A¢, the higher is the charge density in the wall

and its conductivity.

Here, this reasoning is applied to the tetragonal Pb(Zr, Ti)O3 (PZT) films, and the concept
of appearance of charged domain walls is given. A simplified model is developed, in framework
of which the orientation of the wall is defined by the condition of minimal elastic energy of
the system. The features of behaviour of the domain wall driven by elasticity are confirmed by
more rigourous numerical phase-field modelings, which take into account effects of elasticity
and electrostatics on the domain wall orientation. The conclusions of the model, namely
the presence of the charged domain walls in the film, are confirmed by the experimental

investigation of real PZT films.

5.1 Theoretical description of domain wall bending

Aferroelectric (001) tetragonal film with a/c domain patterns is investigated, where c-domains
have their c-axis (the polar axis) perpendicular to the surface of the film and a-domains have
their c-axis in the plane of the film, as illustrated in Fig. 5.1. The film is clamped on a cubic
substrate with a lattice constant a; slightly exceeding the lattice constant of the ferroelectric
a (as— a < ¢ — a, where c is the larger lattice constant of the ferroelectric), which leads to
the domain structure composed of a c-monovariant with narrow a-domain inclusions [64].
Following the conditions of the domain wall electric neutrality and mechanical compatibility
(see Chapter 2.2 for explicit expressions of the conditions), the walls surrounding a-domain

inclusions are oriented by the angle 45° to the film surface. Any deviation of the walls off this
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-~ Substrate 6

Figure 5.1: Schematic drawing of a film containing c-domain and a narrow a-domain. Ficti-
tious dislocations describe the elastic fields in the ferroelastic thin film on a substrate, contain-
ing a narrow a-domain inclusion into c-domain. Symbol L denotes a-misfit dislocations with
density —e,, £ - tetragonality dislocations having density e7 under the a-domain and density
2A¢er on the right domain wall (see the text). A¢ is the rotation angle of the right domain
wall from the compatible orientation.

permissible inclination leads to violation of electrical and mechanical conditions, generating

bound charges and lattice mismatches on the domain walls.

Here, the methods developed in Chapter 4 are implemented for description of the elasticity-
driven deviation of the domain walls off their permissible orientation (hereafter, also called
rotation of the domain walls). Compared to BiFeOs films, which were investigated in Chapter
4, the impact of elastic effects on the domain structures in PZT is expected to be much stronger
[20], therefore, the energy change related to the variation of the domain wall self-energy
is neglected. For a sake of simplicity, as a mean to show the concept of elasticity-driven
generation of charged domain walls, it is assumed that the bound charge on the domain walls
is perfectly screened by the free charges, and the effects of electrostatics are excluded from the
consideration of the problem. The orientation of the domain walls in PZT films is thus solely

defined by the condition of the minimal elastic energy of the structure.

The lattice misfit between the film and the substrate, along with the lattice mismatches
on the domain walls, generate mechanical incompatibility elastic fields in the film. In the
considered system, only small angles of domain wall rotation are expected — which is shown
a posteriori. This allows us to consider only linear effects of the domain wall rotation on
the energy of the structure, and the following simplifications are made. The domain wall is

considered to always have the planar shape, with the same angle of inclination to the film
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Chapter 5. Inclined ferroelectric domain walls as reconfigurable metallic-like channels

surface in all its points. The lattice mismatches that generate the domain wall incompatibility
elastic fields are considered to be fixed at the position of the mechanically compatible domain
wall inclined by 45° to the film surface, their displacements with the domain wall rotation
are neglected as a high order effect. Following the same logic as given in Chapter 4, the
distribution of elastic stresses in the film o (x, y) is sought by implementing the method of

fictitious dislocations (see, e.g., [13, 14]):
oij(x,y) :ffaf}(x,y;xo,yo)akz(xo,yo)dxodyo, (5.1)

where Uf ]l (x, ¥; X0, Vo) is the elastic stress field generated by a unit dislocation located at (xo, o),
having Burgers vector directed along r; and dislocation line along ry direction, ay; is the

dislocations density tensor defined as [43]:

aIBSﬂ

) 5.2
ari ( )

Akl = —€jjk

e;jk is the Levi-Civita permutation symbol, Bs;, = du;/dr; is the unsymmetrized misfit strain
tensor describing spontaneous deformations of the lattices of the domains with respect to
the substrate lattice, and u; is the spontaneous displacement with respect to the unstrained

substrate.

In the considered domain structure, a- and c-domains are characterized by the following

. . . (a) (©) i .
unsymmetrized misfit strain tensors £ S and Sy respectively:

€. 0 O €. €r 0
Bs) =0 e 0| B =|-er e O], (5.3)
0 0 €4 0 0 €4

where ¢, = (a— as)/as and ¢, = (¢ — as)/ a; are a and c film-substrate lattice mismatches,

respectively, er = (c—a)/a = €, — €, is the film tetragonality factor.

Using Egs. (5.2) and (5.3), the system of fictitious dislocations that equivalently describes

elastic fields generated by inter-domain and film-substrate lattice mismatches was obtained.
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5.1. Theoretical description of domain wall bending

As a result, expression for the stress in the structure (5.1) was rewritten in the following form:

oijx,y) = Ufj (x, )+ al‘-’j (x, )+ ali)]WR (x,7) + U?JWL (x,7), (5.4)
c 3k dbi
TCRIEDY f 073 (%, y; %0,0)——dxo, (5.5)
T dx
P
db?
o?j(X,y) = Z[U?f(x,y; xo,O)—kdxo, (5.6)
T dx
I
h pPWr
T (%, y) =Zfaf-’]’-‘(x,y;yo,yo) dky dyo, (5.7)
k
0
f dpPW
T %, y) :Zfaff‘}‘(x, Y3 Yo — W, o) ——dyy, (5.8)
kg dy
db®
= (_ea; 0) O)r (59)
dx
db?
=(er —€q€71,0), (5.10)
dx
dbPVx
dy =2(AP)r- (eT,€T,0), (5.11)
dbP\Ve
dy =-2(Ad)L-(eT,€71,0), (5.12)

where I'; = (—oo, —w) U (0,00) is the range of x-coordinates corresponding to the c-domain,
I'; = (—w,0) is the range of x-coordinates corresponding to the a-domain, (A¢)g 1 are the
angles of rotation of the right (index R) and of the left (index L) domain wall in the clock-
wise direction as depicted in Fig. 5.1. In these notations, 0;?]. (x,y) and a?j (x,y) are the elas-
tic stresses generated by the sets of dislocations located at the c-domain/substrate and a-
domain/substrate interfaces, correspondingly, GZ.WR'L (x,y) are the elastic stresses generated
by the sets of dislocations located at the right (index R) and at the left (index L) domain wall.
The notation of Burgers vector density is also introduced: (db®/dx), (db%/dx), (dbPVr/d ),
and (dbPV:/dy) describe the dislocations under the c-domain, under the a-domain, at the
right domain wall, and at the left wall, respectively. In all cases, the dislocations are edge
dislocations with lines directed along z. The elastic field U‘;.‘]’.C(x, ¥; X0, Yo) describes the stresses
generated by a unit dislocation having line along z, located at point (xo, yo) in an elastically
isotropic medium with the free surface at y = h and having Burgers directed along rj. Explicit

. 3k . _ . . .
expressions for the fields o7 7 (X, y3 X0, Yo) (k =1, 2) are given in Appendix A.

Strictly speaking, expression (5.4) should also include the stress fields generated by the

set of edge dislocations at the film-substrate interface having the line directed along x and
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Chapter 5. Inclined ferroelectric domain walls as reconfigurable metallic-like channels

the Burgers vector density db/dz = (0,0,€,). This set of dislocations describes the lattice
mismatch between the film and the substrate in z-direction, and is characterized by the
uniform distribution of the dislocations at the whole film-substrate interface. However, it was
shown that this elastic field does not interfere with any of the stress contributions included in
Eq. (5.4) and thus does not have any effect on the orientation of the domain walls (see Appendix
A for details). For this reason, this type of dislocations is excluded from the consideration of

the problem.

As it can be seen from Egs. (5.4)-(5.12), there are two principal types of fictitious disloca-
tions that control the domain wall orientation: db/dx = (—¢,4,0,0), hereafter called a-misfit
edge dislocations, and db/dx = (e1,e7,0), hereafter called tetragonality edge dislocations. In
these terms, the substrate/c-domain incompatibility is described by the a-misfit dislocations,
while the incompatibility between the substrate and a-domain is explained by the superposi-
tion of a-misfit and tetragonality dislocations; the a/c-domain incompatibility is described
by tetragonality dislocations with Burgers vector density reduced by a factor of 2(A¢) g at the
right wall and —2(A¢) at the left wall. The system of dislocations controlling the domain walls
orientation is schematically shown in Fig. 5.1 for the case where only the right domain wall
deviates off its permissible orientation. Hereafter, in order to show the concept of deviation
of the domain wall off its permissible inclination, only rotation of the right domain wall is

considered.

Similarly to electric charges in electrostatics, the appearance of the domain wall fictitious
dislocations is favourable in presence of a-misfit dislocations, which have opposite sign, and
unfavourable in presence of tetragonality dislocations of the same sign. A competition between
these two interactions leads to either increase or decrease of elastic energy proportional to
the bending angle A¢ for the case of a small angle of the domain wall rotation. Besides,
introducing the domain dislocations themselves costs energy proportional to (A¢)?. The A¢-
dependencies of the aforementioned energies are clear from the fact that the elastic energy of
the system is proportional to the square of the elastic stress, which has two contributions: one
associated with the mechanical incompatibility of the wall, proportional to A¢, and the other
due to the film-substrate mismatch, which is independent of A¢. Calculations based on the
dislocation theory (elastic isotropy approximation), given in Appendix A, yields the energy of

the system in the following form:
_L o 2 2 2 (W
AUAP) = S kieT (M) =~ kaeTOAD — koe T f (ﬁ) A, (5.13)
where ® = (as; — a)/(c — a) is the relative coherency strain, k; and k» are positive coefficients
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Figure 5.2: Functions f and ®, entering Egs. (5.13) and (5.15) for domain wall rotation angle
dependence on the a-domain width to film thickness ratio w/h. The function f (solid line)
describes interaction of the domain wall with tetragonality fictitious dislocations under the
a-domain. The relative coherency strain ® (dots) enters the expression for the interaction
between domain wall and a-misfit dislocations. The relationship between ® = (as — a)/(c — a)
and a-domain width w was taken from the phase-field simulations for PZT film of thickness
h =60 nm.

satisfying the relation

kz_ T
ki 1+In4’

(5.14)

f(w/h)is a positive function that does not depend on parameters of the system except for w/h
(Fig. 5.2) — see Appendix A for the details of its calculation. This function describes the impact
of the a-domain misfit dislocations on the wall and thus it naturally goes to zero once the
domain width w goes to zero. In expression (5.13), the first term in r.h.s. is the incompatibility
energy of the wall, proportional to (A¢)?. The second and the third terms control the stress
release due to the wall rotation. The second term is the wall/c-domain misfit coupling energy
while the third is the coupling energy between the wall and the lattice misfit in the narrow
a-domain; the positive function behaviour f(w/h) — 0 once w/h — 0 (Fig. 5.2) reflects the

fact that the interaction with the a-domain vanishes when its width goes to zero.

Minimizing the energy Eq. (5.13) with respect to A¢, one can find that the equilibrium

angle of rotation depends only on two parameters: the relative coherency strain ® = (a; —
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a)/(c — a) and relative domain width w/h. It reads:

A = 1+’in4 ((D—f(%)). (5.15)

Thus, one can recognize two channels controlling the orientation of the wall: via the relative
coherency strain @ and via the a-domain width w. Analysis of Eq. (5.15) shows that a reduction
in a-domain width (and consequently also reduction of f(w/h)) leads to an increase of the
rotation angle, deviation of the wall from its compatible orientation, and generation of charged
domain wall. This reasoning is oversimplified but its consequence, namely, the increase of the

rotation angle upon reduction of the a-domain width, does hold.

One should remark that, in the real situation, ® and w are not independent and, in the case
of an equilibrium domain pattern, they are strongly correlated: a reduction of w corresponds
to that of ®. Thus, the impact of the domain width on the wall orientation will be opposed by
that of the relative coherency strain. Analysis of this competition was conducted for the case of
PZT of thickness h = 60 nm. For this, dependence of a-domain width on the coherency strain
® was taken from phase-field simulations [40]. As a result, for the case of interest (w <« h),
the impact of domain width still controls the magnitude of the domain wall rotation, while
the counteraction of that of the relative coherency strain just reduces the total effect. This
isillustrated in Fig. 5.2 where the functions f(w/h) (calculated in Appendix A) and ®(w/h)
(obtained in numerical simulations [40]) are plotted vs. (w/h). It is seen that, for w < 0.8A, the
difference ®(w/h) — f(w/h) increases on decreasing the a-domain width, implying, according

to Eq. (5.15), larger wall rotation for thinner a-domains.

The similar treatment is available for the left domain wall of the a-domain shown in Fig. 5.1.
In contrast to the right wall addressed above, at such wall the dislocations with positive Burgers
vector density db/dx appear once the wall is rotated in counter-clockwise direction [Eq. (5.12)].
This entails its counter-clockwise elasticity-driven rotation off the permissible orientation.
The trends controlling the rotation remain the same as in the case of the right domain wall. It
was shown that the angle of rotation of the left domain wall is, in general, smaller than the

angle of the right wall rotation.

5.2 Comparison with numerical simulations

The features of deviation of the domain walls in the considered a/c-structure off the permis-
sible orientation were confirmed by the numerical phase-field simulations (performed by

T. Sluka, see [40] for details) — see Fig. 5.3 where the principal conclusions of the numerical
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simulations are shown. In accordance to the predictions of the theory, the decrease of the
lattice constant of the substrate leads to decrease of the domain width and, consequently, to
increase of the angle of deviation (Fig. 5.3(a)). In a deviated domain wall, the electric neutrality
of the wall breaks, generating the bound charges. It was shown in numerical calculations
that a larger deviation of the domain wall off its mechanically compatible state leads to a
higher density of the free electrons on the wall, which compensate the generation of the bound

charges. As a consequence, a larger conductivity in narrower a-domain inclusion is predicted.

Dependence of the density of free charges on the width of the a-domain inclusion obtained
during numerical simulations, shown in Fig. 5.3(c), can be qualitatively explained in the
framework of the theory developed in Chapter 5.1. In the approximation where all bound
charges at the domain walls are compensated by free electrons, the surface density n of the
carriers on the domain wall can be found using the formula

V2Ps _ V2nPs

1 Ps .
n= —(Pg‘:) —P(S“))n: ?(cosgb—sm(p) ~ TA = S0 g

- (20-75)). G16)

where e is electron charge, P(s“) and ch) are spontaneous polarizations of a- and c-domain,
correspondingly, n is the normal to the domain wall, ¢ is the angle of the domain wall inclina-
tion. Here, results obtained in Eq. (5.15) were used. Dependence of the concentration on the

a-domain width obtained in Eq. (5.16) is shown in Fig. 5.3(c).

To sum up the theoretical description of the a/c-domain structure, in order to have stable
domain walls with non-thermally activated conduction, the presence of narrow a-domain
inclusion in the film is necessary. This can be reached in a highly tetragonal film on a cubic
substrate whose lattice parameter is slightly larger than the small lattice parameter of the film

[64]. It is demonstrated experimentally by Stolichnov et al that this concept works [40].

5.3 Comparison with experiments

In [40], highly tetragonal PZT films (Zr/Ti=10:90) were grown on DyScO3 (DSO) substrate
having a small tensile lattice mismatch with respect to the c-domains of the PZT. Twenty
nanometres of STRuO3 bottom electrodes were introduced between DSO and PZT. The 60
nm thick PZT film was mainly c-oriented having 10 nm wide a-domains (Fig. 5.4a). Ambient
conductive atomic force microscope (CAFM) measurements showed stable current traces that
closely reproduced the a-domain pattern, Fig. 5.4b,c. Ultrahigh vacuum (UHV) scanning force

microscope using conductive diamond probes showed similar results with clear conduction
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Figure 5.3: Results of the numerical simulations of PZT 60 nm films [40] at temperature 50 K.
(a) Tlustration of domain wall bending on phase field calculated a-domains of different widths.
Inclination of domain walls (boundaries between the blue and red regions) is shown with re-
spect to the ideal neutral orientation (indicated by the black lines). The domain walls bending
is larger at narrower a-domains. (b) Colour scale map of the phase-field calculated electron
concentration for different a-domain widths. (c) Plot of mean free electron concentration
at the domain walls versus the a-domain width compared with the electron concentration
obtained using the results of theoretical description developed in Chapter 5.1.

62



5.4. Conclusions

signal from a-domains. Remarkably the measured conduction at the a-domains showed very
weak temperature dependence throughout a wide temperature range from 300 down to 4 K.
cAFM scans measured under constant tip bias of —7 V at 54 K (Fig. 5.4e) and 4 K (Fig. 5.4g) are
shown with their corresponding topography maps, Fig. 5.4d,f, respectively. The a-domains
seen on the topography images are signaled in cAFM scans by clear conduction traces, while
the c-domains show no current. The current measured through the cross-section of the
conduction line (averaged over 40 lines) at 4 K (Fig. 5.4j) and 54 K (Fig. 5.4i) are similar to each
other and comparable with the ambient measurements (Fig. 5.4h). The conduction maps
were reproducible and the measured currents did not change significantly when a sequence

of maps was taken under identical conditions.

5.4 Conclusions

To conclude, the concept of elasticity-driven deviation of the ferroelastic domain wall by
relaxation of the film-substrate misfit stresses, which was developed in Chapter 4, was imple-
mented to tetragonal (001) PZT film with a/c-domain structure. Specifically, the structures
having narrow a-domain inclusions were investigated. It was shown that as a result of in-
teraction of domain walls with the film-substrate misfit elastic fields, the walls deviate off
their permissible orientation, breaking their electric neutrality. The deviation of the wall is
favourable in the presence of c-domain and unfavourable in the presence of a-domain. As
aresult, in thin films with a narrower a-domain inclusion the deviation of the walls is more
prominent. The theoretical development is supported by experimental observations of PZT
films by Stolichnov et al, where metallic-like conductivity of domain walls of narrow a-domain
inclusions was reported. The conductivity of the walls originates from the generation of free

electrons compensating the bound charges appearing at the walls during their deviation.

Appendix A. Derivation of the elastic energy vs domain wall rotation

angle dependence

To obtain expression (5.13) for the energy change during domain wall rotation, the following
logic is used. We begin with the expression for Peach-Koehler force p; with which a stress field

oj acts on a dislocation with Burgers vector b; [46]:

pi=ejk0jibTy (5.17)
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Figure 5.4: Conduction along a-domains in 60 nm thick PZT film measured by cAFM. (a)
Illustration of the a/c-domain pattern in the tetragonal film on the substrate with the AFM
tip probing the surface. The c-domains (a-domains) have their c (a) lattice parameter per-
pendicular to the surface. The colour scheme is substrate (dark gray), c-domains (blue), and
a-domains (red). Blue and red arrows show the polarization direction for c¢- and a-domains,
respectively. (b,c) Topography and conduction map measured at ambient conditions under dc
tip bias of —6.5 V. (d,e) Topography and conduction map measured at 54 K under dc tip bias of
-7 V. (f,g) Topography and conduction map measured at 4 K under dc tip bias of -7 V. (h—j)
Cross sections of the conductive traces averaged over 40 lines measured on the images (c,e,g),

respectively. The areas used for the measurements are marked on the corresponding images
with white dashed frames.

64



5.4. Conclusions

where e; i is Levi-Civita permutation symbol, 7 is the unit vector parallel to the dislocation

line.

In the framework of the problem, in the elastically isotropic medium with free surface at
¥ = h, the energy of creation of a screw dislocation with line directed along z with Burgers vec-
tor b = (by, b2, 0) at the point (x, y) in the stress field o; j (x, y) is equivalent to the work required
to move the dislocation from the film surface (x, h), i.e., from the state where dislocations do

not interact, to the point (x, y):

h

y
Einter(x,y;b) = —f p2(x,y0)dyo = —f (bro11(x, y0) + bao12(x, y0)) dyo. (5.18)
h y

To calculate the energy (5.18), the explicit expressions for the stresses generated by a

unit dislocation in semi-infinite space obtained by Head [47] in the approximation of elastic
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isotropy (dislocation is located at point (xy, yo), film surface is at y = h) are used:

E /(3x12+ /2) (zh/_ /)(3x/2+(2hl_ /)2)
afi(x,y;xo,yo)= (_y v Y Y

4”(1 _ VZ) (xIZ + J//2)2 (x12 + (Zh’ _ y/)2)2
,X’4 _ 6x/2(h/ _ y’)(2h' _ yl) _ (Zh, _ y/)sy/)

—2h
(x/2 + (Zh’ _ y1)2)3

(y/(xlz_y/Z) (zh/_y/)(xlz_(zh/_y/)Z)
4”(1 _ VZ) (xIZ + y12)2 (xIZ + (Zh’ _ yl)2)2
14 + 6x/2(hl _ y/) (zh/ _ yl) _ (h/ + 3(h/ _ yl))(zh/ _ y/)3)
(xIZ +Q2h - y/)2)3 ’
E (xl(x/z _ y/Z) B xl(x/z _ (zh/ _ yl)Z)
Aar(1-vA)\ (x2+y?)2 (2% + (2h' - y')?)?
(x12 _3(2hl _ yl)z)(hl _ y/))
(x/z +(2h - y/)2)3 ’
E (xl(xlz _ yIZ) B xl(xlz _ (2hl _ y/)Z)
47(1 — V2) (xIZ + y12)2 (xIZ + (Zh’ _ yr)z)z
X220 +3(h - y) + Q2K -y (h + y’))
(x2+@2H — y/)z)s ’
E (x’(x’2 +3y%) X% +32h -y))
47(1 — V2) (xrz 4 y/2)2 (xlz + (Zh’ _ y/)2)2
, (x/2 _ 3(2h/ _ yl)Z)(h/ _ y/))
@2+ @ -yH?s )
E (yl(xIZ _ yIZ) (Zhl _ y/) (xIZ _ (zh/ _ yI)Z)
47(1 - VZ) (xzz + y/2)2 (x/z + (Zh’ _ y/)2)2
x/4 _ 6x/2(h/ _ y/) (Zh/ _ yl) _ (Zh/ _ yl)gyl)
(xrz +(2h - yl)2)3 ’

31 . —
0'22(x, V5 Xo, _VO) =

_on'X

31 . _
015(x, y; X0, Yo) =

+4h'x

32 . —
071X, ¥ X0, Y0) =

—4h'x'

32 . —
055X, y; X0, Yo) =

+4h'x

32 . —
015X, y; X0, Yo) =

—2n

where notations x’ = x — xp, y' = y — yo, h' = h— yp are used.

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

Expressions (5.19)—(5.24) are applied directly to Egs. (5.4)—(5.12), and the distribution of

the elastic field generated by the set of dislocations is calculated. For simplicity and clearness

of the analysis of the energy of interaction between dislocations, expression (5.4) for the

stresses is rewritten in the following equivalent form:

oij(x,y)=0;

—mi T DW DW,
G oo ) o ),

(5.25)

where afjfmis(x, y) is the field generated by a-misfit dislocations (shown by symbols L in
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Fig. 5.1), and ag}(x, y) is the stress generated by the tetragonality dislocations (K in Fig. 5.1):

o0

o?j‘miS(x,y):—feaaﬁ}(x,y;xo,O)dxo, (5.26)
—00
0
aiTj(x, y) = f (eTU?}(x, ¥; Xo,0) +eTa§]2-(x, ¥; X0,0))dxo. (5.27)

—-w

Below, the case is considered where there is only rotation of the right domain wall. During
the rotation of the wall, the tetragonality dislocations appear, and the elastic energy of the
system changes via three types of interaction: interaction of the wall dislocations with the
stress generated by a-misfit dislocations AU"~¢, interaction between the wall dislocations and
the field generated by film-substrate tetragonality dislocations AU%~T, and self-interaction of
the wall dislocations with the field generated by the wall AU*~". The explicit expressions for

the change of the elastic energy as a result of these interactions are as follows:
AU (A) =AUV Y+ AUV T 1 AUV, (5.28)

h
| ~ dbPWr
AU = ngilﬁte?j (y,y;d—y)dy

- (5.29)
1
:—Eff(2A¢6TUﬁWR(y,yo)+2A(/>€T0?2WR(y,yo))dyody,
0y
T ‘ T dbPWe
AU = | Bineer (y,y; T )dy
0 - (5.30)
=—ff(ZNPGTUlTNJ’vyo)+2A¢€TU{2(y,yo))dyod%
0y
h
B B dbDWR
AUV “=fEilﬁte? (y,y; 4y )dy
0 (5.31)

hon
= —ff(ZAﬁbETUilfmiS(%J’o)+2A¢€Ta?z_mis(yryo))dyod%
oYy

where Efr‘l’t_er“’ (x,y;b), El';l’t_erT (x,y;b), and Ei';l’t;f(x, y;b) are the energies of interaction of a dislo-
cation with Burgers vector b = (b1, b»,0) and line along z with stress fields O'?].WR (x,9), aiTj (x,5)
and a?j‘mis(x, ¥), respectively (Einter (X, y;b) [Eq. (5.18)] with corresponding stress fields used

in place of 0;(x, y)).
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Substituting Egs. (5.7),(5.11),(5.26),(5.27) along with Egs. (5.19)-(5.24) into Egs. (5.28)-

(5.31) leads to the following expressions for energies of interactions:

_, (1 +In4)En?
AUV = meé(m)z, (5.32)
Eh? w
w-T _ _ 2 et
AUY-T = 1—v2€Tf(h)A¢’ (5.33)
Eh?
AUV = — - VzeTeaA(P; (5.34)

(5.35)

where f(w/h) is a positive non-dimensional function obtained numerically, depicted in
Fig. 5.2. The obtained expressions for the energies AUY~%, AU%~T and AU"~“ correspond
to the first, second and third term, respectively, of Eq. 5.13, where coefficients k; and k, are
defined as:

_ (1+In4)Eh? (5.36)
L= a-vy '
Eh?
k=173 (5.37)

A remark should be made about the interaction between the domain wall dislocations
and the dislocations on the film-substrate interface. As it was mentioned in Section 5.1, the
elastic stresses (5.25), strictly speaking, should also include the stresses generated by the
set of edge dislocations at the film-substrate interface having the line directed along x and
the Burgers vector density db/dz = (0,0,€,). This set of dislocations describes the lattice
mismatch between the film and the substrate in z-direction, and is characterized by the
uniform distribution of the dislocations at the whole film-substrate interface. It can be shown
(see, e.g., [14]) that this set of dislocation generates the uniform stress field characterized
by the only non-zero component o33 of the stress tensor. Substituting this result to the
expression (5.18) for energy of interaction of domain wall dislocations with a stress field, one
immediately comes to the conclusion that this interaction is absent, and the aforementioned

set of dislocations does not have any influence on the domain wall orientation.
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Narrow ferroelastic domains and their
sparse patterns in tetragonal ferro-

electric thin films

Ferroelastic domain structures in thin films are of high interest for both fundamental and
applied research. It is known that domain patterns to a great extent determine electrome-
chanical properties of a ferroelectric thin film, which can be profitably used for applications
ranging from tunnelling diodes to actuators and sensors [65]. The type of the ferroelastic
domains and patterns that arise in the film is determined by the symmetry of the material, the
crystallographic orientation of the film, and the mismatch between the lattice constants of the
substrate and of the thin film [20]. With the development of nanotechnology there is grow-
ing interest in individual narrow domains and domain walls [7]. Engineering of nano-scale
domain patterns for potential agile electronic applications became a hot topic [64, 66, 67].
Widespread examples are so called c/a/c domain structures, which arise in tetragonal films
when lattice constants of the substrate are between the shorter "a" and longer "c" film’s lattice
constants. A smart method to control the domain structure that appear is the use of substrates
with anisotropic mismatch strain [64, 66, 68]. The mismatch anisotropy allows to control the
direction in which the domains grow, which was not possible in case of conventionally used
substrates with square lattice termination. In the systems with small tensile mismatch for
c-domains, the fraction of a-domains is typically small and they exist in the form of narrow
inclusions into c-monovariant. A cross-hatched or parallel - stripe (lamellar) pattern may ap-
pear depending on growth conditions. These domains appear naturally and may be modified
using Piezo-Force-Microscopy (PFM) [69]. Of interest is the dependence of domain widths and
periodicity on the parameters of the system. A classical theory by Roytburd [70] suggests that
both the domain periodicity and width of the domains is proportional to the square root of the
film’s thickness in analogy to Kittel’s law for ferromagnetic systems. This theoretical prediction
has found confirmation in relatively thick ferroelectric films [7]. However in thinner films large

deviations from this law were documented [66]. The reason for this is that the classical theory
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[70] is written for a system of domains with periodicity much smaller than film thickness
(so-called dense pattern), whereas in very thin films domain spacing becomes comparable
with film thickness. A comprehensive study of periodical c/a/c domain patterns with arbitrary
domain width and fraction was offered by Pertsev etal. in Ref. 14. Individual a-domain stripe
inclusions in ¢ - monovariant were considered in Ref. 16. However these theories cover only
the case of isotropic substrates. Beside that, the complexity of the mathematical treatment
for the general case obscures the analysis in application to experimental observations. In this
context a specialized theory for domain patterns having narrow inclusions of one domain type

into the matrix of the other dominant one is of interest — which is the topic of this chapter.

In this chapter, theoretical description for narrow domain inclusions into dominant variant
is developed. The existing theory [14, 16] is generalized for the case of anisotropic substrates
and introduce simplifications related to the narrowness of the inclusions, which allows ob-
taining explicit expressions for their width and period. The chapter is organized as follows. In
section 6.1, fictitious dislocation approach is introduced, and stress fields around a narrow
inclusion is derived. Section 6.2 is devoted to energetics of narrow a-domain inclusions. In
section 6.3 the minimal and equilibrium widths of an individual narrow inclusion are derived.
In section 6.4 the interaction between the narrow inclusions is considered, their widths and

period are derived in a sparse pattern.

6.1 Stress fields around narrow a-domain inclusions from fictitious

dislocation method

Consider a cubic-to-tetragonal ferroelectric thin film on isotropic (cubic) or anisotropic (or-
thorhombic) substrate. The unit cell of the substrate in the plane of the film has rectangular
shape with the lengths ag; and as, (as; = as for cubic substrates). The dimensions of the unit
cell of the free standing material of the film are a x a x c. We will be interested in the case where
¢ > ag = asy > a, and will specifically consider a sample with narrow a-domain inclusions
into c-monovariant. As it is customarily done (see, e.g., Ref. 16), the following conventional

assumptions are made.

(i) the medium is assumed to be elastically isotropic, which is a justifiable approximation,
e. g., for perovskites in view of small anisotropy of elastic compliance and small variation of

elastic parameters from the substrate to the thin film.

(ii) the absolute value of the polarization inside domains is equal to the spontaneous
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(a) (b)
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Figure 6.1: Geometry of the problem and its representation in terms of fictitious dislocations.
(a)- Ferroelastic thin film (0 < z < h) on a substrate (z > h), (b) — Magnified area showing
Burgers vector per unit cell b = (c — a){1,0, 1}.

polarization value P in a free-standing film and it’s variation caused by strains is negligible.
This assumption, justified for typical perovskite ferroelectric films far from transition to their

parent phase [20], allows considering only the elastic sub-problem.

(iii) Domain walls of the inclusion are mechanically compatible implying that the two
domain walls of the inclusion are flat and parallel to each other. As it was show in Chapter 5,
the domain walls, in principle, may deviate off their permissible orientation by small angles.
However, incompatibility elastic fields generated by such walls are characterized by negligible
magnitudes compared to the film-substrate misfit elastic fields, therefore, the effect of domain

wall rotation on the domain structure formation can be neglected.

The relevant parameters for the fictitious dislocation model are: £ - film thickness, wy -

a-domain width, ¢ = % - relative domain width, e = <% - tetragonality factor. Besides,

relative coherency strains @; in r; and r, directions are introduced:

as1 —a aso —ad
P == p,=2 T (6.1)
c—da c—a

Consider an individual stripe of a-domain in the bulk of c-variant thin film, Fig. 6.1. The

)" in the sample can be presented in the form

ij

total stress o

0 _ ;) (@)
0 =0 +Ul.]. , (6.2)

where ag.? is the stress field inside an infinite c-monovariant and ag.’jl.) is the stress field in-
homogeneity due to an a-domain inclusion. The latter can be calculated as a stress field

generated by an a-domain inclusion embedded into the matrix with lattice constants of the
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c-monovariant everywhere (in the film and in the substrate).

In the c-monovariant the mechanical state of the film corresponds to that of a strained plate
with deformations €11 = @14 , €20 = ®2,<% , €12 = 0 and with stresses 033 = 031 =032, =0
(hereafter ¢ — a < a is used which implies <# = ©¢). According to the Young’s law the plate

will have only two nonzero stress components:

© _ Ea(@ +®v)H(h-2)

1= 12 ) (6.3)
Ea(®, +D;v)H(h-2)
(o) _
Oy = 2 , (6.4)

where E is Young’s modulus, v is Poisson ratio, H(h — z) is the Heaviside function, which is 1 if
z < hand 0 if z = h. Relationships (6.3) and (6.4) are valid for the conventional case of a hard

thick substrate.

; (@)
The expression for o

may be found using fictitious dislocation model, see Fig. 6.1.
For the fictitious dislocation model assumption (iii) implies that fictitious lattice defects are
located only at the interface between the film and the substrate [16]. The Burgers vector of the
dislocations corresponds to the displacement, caused by the transition of the inclusion from
c-state to a-state, see Fig. 6.1, (b). One finds that the system is equivalent to that containing
fictitious dislocations with Burgers vector b = (¢ — a){1,0, 1} in each unit cell on the substrate-
film interface, which corresponds to density p(x) = (c — a)/a = et of edge dislocations with

Burgers vector {1,0, 1}. Thus elastic field of the dislocation ensemble may be readily presented

in the form
wgl2 ED
oy =f o P - x,2p(0dy, (6.5)
—wgl2
p(x) =€rT. (6.6)

Here O'E.IjD )(x,2) is the elastic field around edge dislocation having Burgers vector {1,0,1}
and located in the point {0, 0, i} in the semi-infinite isotropic medium. It consists of three

contributions, calculated by Head [47]:
(ED) 2y — (1) (2 @) 3)
0 () = 0 @] +O'l.j (F) +al.]. (7). (6.7)

Here 7 = {x, z}, 0'%) describes elastic field from dislocation itself (as if it were in the bulk).

O’%.) is elastic field from its image with burgers vector {—1,0, -1} located in {0, 0, — h}. Further,
®

additional stress o; i is introduced as to satisfy mechanically free boundary conditions at the
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-0.5

o
o®_ . (arb. units)

|

| |
o
v

Yz 1.0

Figure 6.2: The distribution of the in-plane stress a(ltl) in the X Z cross-section of the sample.

Domain width to film thickness ratio ¢ =0.12

free surface z =0:

0P (x,0)=o\5P) (x,0) = 0. (6.8)

D) are given in Appendix A. As an

illustration, the distribution of the resulting in-plane stress a(ltl) in the X Z cross-section of the

Explicit expressions for the stress components of O’E.I;

sample containing a narrow a-domain inclusion into c-monovariant is shown in Fig. 6.2.

6.2 Energetics of narrow a-domain inclusions

For the case of isotropic substrate (as; = as»), the energetics of individual a-domain-stripe
inclusions into c-monovariant film was studied in Ref. 16. As the output of this theory elastic
energy of a-domain inclusion relative to the c-monovariant (per unit length in Y-direction)

was found in the form

h? B3 (~2n®(1+v)¢ + 28 arctan(§] + 1&2In[1 + &) - 21n[1+ §)

B 27(1 = v2) €9

Here ® = ®; = @, (see Eq. (6.1)). As it is expected, the a-domain inclusions with all four
possible orientations in this case are energetically equivalent: in addition to (101) orientation
of the inclusion shown in Fig. 6.1 and (101) orientation of the inclusion, both described by
fictitious dislocation with line along Y-axis, there are two more possible orientations of the

inclusions: (110) and (110) which correspond to fictitious dislocation along the X-axis.
The anisotropy of the substrate is expected to make a distinction between the a-domain
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inclusions into "easy" ones, (101) and (101), with polarization vector along the axis with longer
substrate unit-cell as; and "hard" ones - (110) and (110). To incorporate this new feature the
theory developed in Refs. 14, 16 is generalized to cover the case of anisotropic substrate. Below
"easy" domains ((101) and (101)) are considered. The result for the "hard" domains may be
then obtained by interchanging a,; and as lattice constants in the expressions for "easy"

domains.

The elastic energy excess over that of the c-monovariant may be calculated as (see Eq. (6.2)):

L 0 0@
Ua= Efo f_oosijkz(cf,-jakl —0;; o )dxdz. (6.10)

Here s; jx; is the compliance tensor. Using Eq. (6.2), the energy U, can be presented as the

sum
Us=Ugsc+Ugq (6.11)

of the energy related to the stress release (interaction of the inclusion with the stress from the
c-monovariant)

o0 (o)
Uac =f f sijkl(ag.‘;.) Ugfl))dxdz, (6.12)
0 —00

and the energy penalty related to the inclusion’s self-energy

Usa=2 [T 51000 @0 @ dxd 6.13
aa—z 0 _oosl]kl(aij akl) xXaz. ( . )
It is known that the energy of elastic fields generated by dislocations can be equivalently

represented as the energy of interaction between dislocations (see, e.g., [13]). Using this

representation, the energy penalty U,, can be rewritten as

¢

¢

hZ

Usa =~ f f Eg)y(er; 61— B)d 51 d %, (6.14)
00

where Eél.)

.1 (@;7) is the energy of interaction between two edge dislocations located at distance

h from the free surface and at distance r = 7h from each other, both having Burgers vectors
g{1,0,1}. For the derivation of Eﬁili)sl(q; 7) see Appendix B, where its explicit form is given,
Eq. (6.51).

The contributions U, and U,, are calculated to obtain:
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—h2Ee% (@, +®
ac= (it Zv)f, (6.15)
1—v2
h’Ee78()
aa = Wy (6.16)
_1 ¢ 1o 4. _ ¢
g&) = - farctan[z] + 85 In[1+ 52] In[1 + 2 11. (6.17)

One readily checks that in case ®; = @, the results (6.11) , (6.15)-(6.17) are consistent with
the result from Ref. 16 given by Eq. (6.9).

Further, following Ref. 12, the theory is extended by including a contribution to the energy,

associated with domain walls
Uw=2V2Ah (6.18)

in the energy balance. Here A is the energy density per unit area of the domain wall (DW), the
coefficient 2/2 comes from presence of 2 DWs in each inclination and their inclination of
45 degrees. In contrast to the elastic energy, Egs. (6.15) and (6.16), which scales as a square
of film thickness, DW energy, Eq. (6.18) increases linearly with . This makes DWs relatively

more costly in thinner films. One obtains for "easy" domains:

h?Ee5 (= (@1 + D2v) &+ g(8))

; +2V27h. (6.19)
1-v

Uy=Uz+ Uy =

Expression (6.19) can be cast in a form convenient for further analysis:

~ h?Ee?. (—y¢ + g(€) +0.46ho/ h)

1 1—v2 , (6.20)
y=®) + Doy, 6.21)
Al —v?
ho = 6.1(—;/). 6.22)
EeT

Here the y parameter is introduced (hereafter called coherency factor) which characterizes
the stress state of the film and takes into account anisotropy of the substrate. Also, here length
scale hy is used, which was coined by Roytburd [70] for the description of the a/c patterns
in ferroelectric thin films. For typical perovskites like PZT, hy is of the order of 1 nm. In Eq.

(6.20) the function g(¢) is given by expression (6.17). In the interval of the a-domain width
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0.02 < ¢ < 0.5, the function g(¢) may be fitted with 6% error margin by expression

g =0.17¢74, (6.23)

6.3 Equilibrium and minimal a-domain widths

6.3.1 Equilibrium domain width

Equilibrium width of the a-domain inclusion may be found from minimization of its energy

(6.19) with respect to ¢. One readily obtains
wq = hG(y), (6.24)

where G = (g’ )71 is the inverse of the derivative of the function g. An important conclusion
may be drawn that under constant mismatch, domain width scales linearly with film thickness.
However we should recall that this result is obtained for an individual inclusion, while density
of inclusions may increase with increase of film thickness, resulting in a correction to this

linear law; this issue will be addressed in section 6.4.

Using approximate relationship Eq. (6.23) and Eq. (6.24) one obtains for the equilibrium

normalized domain width

&=5y13, (6.25)

From expression (6.25) it is seen that equilibrium domain width is controlled by the
coherency factor y. The dependence of the domain width on the coherency factor is plotted
in Fig. 6.3.

As one can see from this plot, the a—domain inclusion is expected to be narrower than
a half of film thickness (implying the applicability of the approximate relationships (6.23)
and (6.25) with 6% error margin) in case where the y-parameter does not exceed 0.18. Such
situation may happen when the film fits almost perfectly on the substrate, or when a major
portion of the misfit strain is released by other mechanisms than domain formation (e.g. misfit

dislocations).
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Figure 6.3: Dependence of the a-domain width to film thickness ratio ¢ on the coherency
factor y.

6.3.2 Minimal domain width

In spite of the fact that domain wall energy is commensurate with other energies, it does
not depend on the a-domain width, which explains that the above results on the equilibrial
domain width are independent of domain wall energies !. Nevertheless, taking into account

domain wall energy has an important consequence.

Combining (6.25) with (6.20), one obtains expression for the energy of the equilibrial

inclusion

h?Ee? h
L l0.46=2 —2.16y73]. (6.26)

AU =
1—v2 h

The formation of the a-domain will occur only if its energy excess over the c-monovariant

is negative, which means AU < 0. This requirement can be formulated as

h>he=0.21hyy 3. 6.27)

Thus formation of a-domain inclusions is expected only if the film thickness exceeds a

critical value for which the power law, Eq. (6.27), is found in terms of mismatch factor y. For

n principle, Uy, may depend on w if the interaction between the opposite domain walls of the inclusion is
taken into account. However we assume such interaction to be negligible
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films with sub-critical thickness c-monovariant is the lowest-energy state.

6.4 Interaction between a-domain inclusions, equilibrium 1D pat-

tern

A system with multiple inclusions can be described using the same approach. Consider a
parallel-stripe pattern of a-domain inclusions into the c-monovariant containing n "easy"

a-domains, ((101) or (10-1)), all having width w,.

Mean energy of such system (excess over c-monovariant) per unit area is given by the sum

_ nU1 + Uint

I (6.28)

where U is coming from expressions (6.20) - (6.22), L is the length of the sample in X-direction.
Energy U;,; of all interactions between different a-domain inclusions may be presented as a
sum of interaction energies of each pair of domains:

1 n
Unne =5 Yo Uine(xi—xj), i # ], (6.29)
i=1j=1

where x; is the x-coordinate of the i th domain, Uinc(r) is the energy of interaction of two

a-domains with distance r between them.

Depending on the inclination of each individual domain in the interacting pair, there
are three distinct cases possible: bottom-to-top, top-to-top 2, and bottom-to-bottom, which
are illustrated in Fig. 6.4. We will be interested in the situation where r > w, for which an
approximation is justified where each domain is represented by a single fictitious dislocation
under it with Burgers vector erw4{1,0,+1}. In case of bottom-to-top pair, the energy of

interaction may be calculated as

:
n ) = £l (erwai ) o0

where Eiili)sl(q; 7) is the energy of interaction between two edge dislocations with parallel

Burgers vectors, expression of which is given in Appendix B, Eq. (6.51). In the two other cases

r
u(v)’(A) (r)= E((if;l (ET Wd;iﬁ), (6.31)

int

2We do not discuss interaction of the domains for the case r < 2/, where overlapping of a-domains exists.
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(a) (®) (©

Figure 6.4: Possible domain orientations in the interacting domain pair: (a) — top-to-bottom;
(b)- bottom-to-bottom; (c) — top-to-top, and their representation by fictitious dislocations.

where E?

disl(q; 7) is given by Eq. (6.52).

Using Egs. (6.29)-(6.31), one may readily calculate energy for an arbitrary sparse 3 pattern.

For the long-range interaction, in case where h/r <« 1, using this smallness in Egs. (6.30)
and (6.31), one readily obtains that interaction energy has the same long-range asymptote for

all the three cases, which is

2

2h
Uine (1) = E€% wfiﬁ. (6.32)

Hereafter we will be interested in equally spaced sparse pattern, where all distances
between the neighboring stripes are [ = L/n and / > h. In such case the energy of interaction
between i and j*" stripes becomes

Uing (1) = Eeqw? W 1(1( - ])? (6.33)

(1 —v2)

and that of all pairs U;,, calculated using (6.29) is

Uint = LESw5h* /1P, (6.34)

T
3(1-+2)
The total mean energy per unit area together with other contributions (6.28) becomes

22
o STECY 8@+ T +0.465)
B 1(1-v?)

) (6.35)

where g(¢) is the function defined in Eq. (6.17).

For the case of narrow a-domain, w,; < h/2, the approximation (6.23) is used on function

g(¢&). Minimization of Eq. (6.35) with respect to / and ¢ and following simplification of the

3where distances between each pair of inclusions is much larger than film thickness
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Figure 6.5: Diagrams for 1D domain pattern control in terms of the film thickness / and the
coherency factor y . (a) The solid curves correspond to a constant period of the pattern; the
numbers at the curves give the period measured in kg units. (b) The solid curves correspond to
a constant width of the a-domains w,; ; the numbers at the curves give the domain width w,
in hp units. The upper dashed curves show the limit of the applicability of the approximation
used in the calculation, w,;/h < 1/2. The area in (b) below the dotted curve corresponds to the
c-monovariant.

system of equations leads to:

2 mh*§? (6.36)
~1.38% 4 0.3825¢7/4 '
h
y& =0.552567"4 - 0.92%‘). (6.37)

Numerical solution for the set of Eqgs. (6.36) and (6.37) is illustrated in Fig 6.5, where
domain periodicity / (a) and width w, = k¢ (b) are plotted in the axes of the film thickness
h and coherency factor y (all lengths are in units /p). One can note that the domain period
diverges on approaching the critical thickness i, = 0.21hgy~"/3. (Eq. (6.27)) corresponding to
the dotted line in Fig 6.5(b).

In summary, the geometrical parameters of the 1D lamellar pattern, the width wy = h¢
and period / of the a-domains are controlled by the film thickness / and two material-related
parameters: the length scale hy which is a property of the ferroelectric (Eq. (6.22)) and the

coherency factor y which characterizes the stress state of the film and can be presented in the
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form (see Eq. (6.21))

ags +vagp—(1+v)a
c—a

(6.38)

where a and c are the lattice constants of the film in directions perpendicular to and along the
polarisation vector, while ag; and as; are that of the substrate in directions perpendicular to

and along the a-domain stripe respectively.

6.5 New periodicity scaling law

This section discusses the dependence of periodicity of domain structure on the film thickness.
For a fixed coherency factor y, the typical dependence /(h) obtained from Egs. (6.36) and (6.37)
is shown in Fig. 6.6. It is of interest to note that in thick films the dependence of the domain
period on the film thickness attains the linear form, which opposes the Kittel-like square root
law which is conventionally used for description of domain structures. This behaviour follows
directly from Egs. (6.36) and (6.37) once one solves them in approximation hy/h < 1. Keeping

only terms (% / h) of the first order of smallness, one can obtain:

wg = wo +2.22y"3n, wy = 1.22hy 1Y, (6.39)
I~ 1ly+3.17y"%h, Iy =1.642hgy~'3/6. (6.40)

The linear dependence [(h) described by Eq. (6.40) is shown in Fig. 6.6 by the dashed line.

It is possible to draw simple considerations that can explain why the domain structures in
the considered system do not follow the Kittel's square-root law of periodicity. One can say
that the square-root law is the characteristic feature of dense domain patterns and typically
is the result of competition of energy of the domain walls (Uy in Fig. 2.2) with, in case of
ferroelastic domain structures, the energy of microstresses (Upic in Fig. 2.2), which change
with opposite signs with variation of the domain size. It is possible to show (see, e.g., Chapter
4) that with increase of the film thickness i and with conservation of all proportions between
the lengths in the system (such as (I/h), (w;/h), etc.), the elastic energy of the structure scales
as h?, while the self-energy of a domain wall scales as h. As a consequence, in the limit of thick
films i — oo, the energy of domain walls can be neglected, and the period of domain structure
is defined by the condition of minimal elastic energy. In typical dense patterns, the minimal
elastic energy of the structure is characterized by the infinitesimally small domain period;

thus, at h — co where energy of domain walls is neglected, w,/h — 0. Further investigation of
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Figure 6.6: Period of the domain structure of narrow a-domain inclusion to c-monovariant vs
the thickness of the film, plotted for coherency factor y = 0.1. All lengths are shown in units of
the characteristic length /. The dashed line shows the linear scaling law of the periodicity
of the structure in thick films, described by Eq. (6.40). The dotted line represents the critical
thickness h. below which c-monovariant is formed instead of a/c-domain structure.
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the asymptotical behaviour of (w,/h) at large film thicknesses taking into account domain

wall self-energies gives wy/h o< h~1/2, or, more conventionally, Kittel-like w; < V.

In sharp contrast, in the structure considered in this chapter, the minimal elastic energy
is reached at non-zero values of (w,;/h) and (I/h). This section does not discuss the reasons
of preference of sparse domain structures over dense structures; nevertheless, one can see
that when in the limit of thick films (h — co) sparse domain structures are formed, lengths
corresponding to the minimal energy of the system should have linear dependence on the
film thickness — as confirmed by Eqgs. (6.36) and (6.37).

As another feature of the solution (Egs. (6.36) and (6.37)), one can see from Fig. 6.6 that,
with decreasing the film thickness, the distance between a-domain inclusions increases
to values [ > h. In this case, interaction between a-domains can be neglected, and the
conclusions made in Chapter 6.3 are applicable to this case: below the critical thickness
h¢r, described by Eq. (6.27), c-domain monovariant forms instead of the a/c-structure. As a
consequence, the dependence [(h) diverges when the film thickness decreases approaching

to h — h¢r, which is seen in Fig. 6.6.

6.6 Comparison with experiment

The above theoretical results allow predicting domain width and periodicity in (100)-oriented
tetragonal ferroelectric thin films if the lattice constants of the film and that of the substrate
are known. Importantly, the use of the actual lattice constants of the film (in a free standing
form), is required which often differ from the standard lattice parameters of the material [71].
Here a method is described, suggested and implemented by P. Yudin, of recalculation of the
free-standing film’s lattice constants using X-ray diffraction (XRD) data for the film on the
substrate. Then this method is applied using example of Pb(Zr,Ti)O3 (PZT) on Dysprosium
Scandate (DSO) substrate to match experimental data of Ref. 64 with the theory.

6.6.1 Lattice constants of free - standing film

It is known that thin films may have different stoichiometry than the bulk material and, as
a consequence, different lattice constants. This effect was particularly identified for pulsed
laser deposition (PLD) method, where the lattice constants of the grown films were often
appreciably different from those, expected from the target. For example, for STO films grown

on STO substrates, where a perfect match is expected, there was still a mismatch of some 1%
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[71]. Customarily, theoretical description of the film’s parameters (e.g. width of a-domains
in c/a/c structure) is done using lattice constants a;.r and ¢, known from literature for the
corresponding bulk material (hereafter the reference lattice constants). Meanwhile, the "true"
lattice constants entering the theoretical expressions are that of a free-standing film a and c.
Here a method of recalculation of the "true" film’s lattice constants using XRD data and the
reference lattice constants is provided. This recalculation is of particular importance for the
case of the narrow domain inclusions which are very sensitive to the mismatch between the

film and the substrate.

Consider a ferroelectric material in a free standing (stress free) state. For both the thin
film and the reference bulk material, the a and c lattice constants may be calculated using

equations (see e.g. Ref. 20):

c=ac(l+eg) 6.41)
a=ac(l+eg,)

where a. is the material’s cubic lattice constant (with temperature dependance extrapolated
from the cubic phase), ¢5;; = Q; P? are spontaneous strains, written in terms of electrostrictive
constants Q;; and spontaneous polarization P;. To trace the source of difference in lattice
constants driven by non-stoichiometry, consider the relative variation of the lattice constants

da=a—ayer and 6¢ = ¢ — ¢y, which may be derived using (6.41) to obtain

dc da. Oes, €5, dac
—_— 4 o~

c a. €5, l+eg, ac
da 6ac+5esu €51 dac

)

(6.42)

~
~

~ .

a ac €5, 1+e€g, ac

As controlled by Eq. (6.42) there are two contributions to the non-stoichiometry-driven shift
of the lattice constant: the first one related to the shift of the cubic lattice constant and the

second related to the shift of the spontaneous strain. As stated above, the expected relative

da
ac

strain, €; ~ 1%, the second contribution contains a small factor

shift of the cubic lattice constant == is of the order of 1%. In view of smallness of spontaneous

€s
1+€;

. To compete with the shift
of the cubic lattice constant the variation of the spontaneous strain must be of the order of
100%, which does not seem to be realistic. This justifies the second approximate equality in
Eq. (6.42). Thus the shift of the lattice constants is mainly due to the correction in the cubic
lattice constant, caused by non-stoichiometry of the film, while the impacts of the changes in

spontaneous polarization and electrostrictive coefficients are expected to be negligible. All in
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all, one obtains

C—Cref A~ Qref da.
c a ac

=A. (6.43)

In a thin film on a substrate, containing c/a/c pattern, lattice constants vary with position
in the film. From XRD measurements one can extract lattice constants a,, and c,, corre-
sponding to the peaks for c-domains. Here an approximation is used where the two a,, lattice
constants are equal in the two in-plane directions, which is justified for weakly anisotropic
substrate and sparse c/a/c pattern. Mechanically free condition in the out-of-plane direction

for the film yields

— E am_a _ Cm_C _
033_(1+v)(1—2v)[zv( a J+ - )] =0 (6.44)

Using Eq. (6.43), Eq. (6.44) may be presented in the form

2v(a,,—N+10-v)(x,;,—A)=0, (6.45)
am—a aAm —a
A = m ref ~ m ref, (6.46)
a Ayef
Cm—C Cm—C
K = m ref ~ m ref. (6.47)
c Cref

Expression Eq. (6.45) is readily solved with respect to A to obtain

1-v)x,, +2va Cp—C am—a
2L mo_ 54Tl g ag Tl (6.48)
1+v Cref aref

A

where typical value for the Poisson ratio v = 0.3 is used. Using Eq. (6.48) and the results of XRD
lattice constant measurements a,, and c;;, one may readily calculate the shift of the actual
film’s lattice constants a and ¢ with respect to the reference lattice constants d,.r and ¢,

known e. g. for ceramics.
Expression (6.48) is suitable for the correction of y-factor via Eq. (6.38). For v = 0.3 one
obtains

as1+0.3a5 — 1.3a,er(1+A)
(Cref — Aref)(1+A)

Y= (6.49)
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Figure 6.7: Dependence of the domain width on the film thickness. Black rounds - experi-
ment; dotted line - theoretically expected domain width for the film using ceramics lattice
constants (y=0.2, linear approximation given by Eq. (6.39) is used); solid line - theoretically
expected domain width using recalculated lattice constants for the free-standing film (y=0.015,
Eq. (6.37))

6.6.2 Domain widths for Pb(Zr,Ti)O3 on DyScOs3 substrate

Let us apply this approach to Pb(Zrg 1,Tip.9)O3 (PZT) on DyScO3 (DSO) substrate, the system
addressed in Ref. 64. For a number of samples with different film thicknesses ranging from 50
to 250 nm an analysis of domain structures was made. The films were grown using PLD method
and domain widths were measured using piezo force microscopy (PFM) and transmission
electron microscopy (TEM) imaging techniques. For the case of TEM observations, (010)
lamellae were cut out of the samples using mechanical polishing and ion milling, for more

details see Ref. 64. The dependence of the domain width on film thickness is shown in Fig. 6.7.

At room temperature in DSO a;;=0.39505 nm and a5»=0.39468 nm. The calculation using
the ceramics room temperature values for lattice constants of PZT (90/10) (a,. £=0.3914 nm,
Cref = 0.4138 nm) leads to y = 0.2 and results in the dotted line in Fig. 6.7, which is in a sharp
conflict with the observed experimental data. The XRD measurements indicated that the
true a and c indeed exceed a,.r and ¢, . To recalculate the lattice constants the XRD data
shown in Fig. 2(d) of Ref. 69 have been used, re-scaled to fit the in-plane lattice constant of the
substrate to the corresponding maximum in the reciprocal space. As a result, it was obtained
that the value of A, within experimental error margins, lies between 0.2% and 1%. In Fig. 6.7,
the theoretical dependence of a-domain width on the film thickness is plotted for y = 0.015,
which corresponds to A = 0.84%, consistent with the experimental data. The values of lattice

constants of the film corresponding to this case are: a,, = 0.39469 and ¢, = 0.41728.
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It is important to remark that for the recalculated value of y = 0.015, the theory developed
in this section predicts formation of c-monovariant in the case of the equilibrium domain
structure. It follows from Eq. (6.27) that formation of a/c-structures in the film is expected
only for thicknesses h > 5 um, which is in strong disagreement with the experimentally
obtained &, = 50 nm. It is likely that in real PZT films the formation of domain structures has

non-equilibrium character, thus, a theoretical description explaining this aspect is needed.

6.7 Conclusions

A specialized theoretical description is provided for narrow domain inclusions into a dominant
domain state in ferroelectric films. The case of a tetragonal film on an anisotropic (orthorhom-
bic) substrate is covered. Theoretical predictions demonstrate that for the considered patterns
domain periodicity and a-domain width follow the linear scaling at large film thicknesses,
lying in contrast with the classical Kittel-like square root dependence traditionally applied to
thin films. Essentially, the geometrical parameters of the 1D lamellar pattern are controlled
by the film thickness h and two material-related parameters: the length scale hy (Eq. (6.22)),
which is a property of the ferroelectric, and the coherency factor y (Eq. (6.21)), which charac-
terizes the stress state of the film. The outputs of the theory are expressions for the domain
width w,; and the domain equilibrium periodicity /. The theoretical findings were compared

with the experimental data on the domain width.

When applying the theoretical results, one should take into account that lattice constants
a and c for a thin film may be substantially different from those known for a bulk material
arer and cre¢. The effect is driven by non-stoichiometry and an approximation is justified
where the ratio between lattice constants remains the same as for the bulk: c/a = c;ef/ are-
The approach was developed allowing to obtain the "true" lattice constants of the film us-
ing XRD measurement results, and was implemented for fitting of the theoretical curves to

experimental data on a-domain width.
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Appendix A. Expressions for the stress field around dislocations in a

semi-infinite isotropic media

o E(-x*+3x%(-h+2)+x(~h+2)*+ (-h + 2)°)
e 4n(x2+(—h+z)2)2(1—1/2)
o _ _E(x*+3x*(h+2) + x(h+2)° + (h+2)°)
an(x2 + (h+ 221 —v?)
@ ERh(x*Qh+x)+6(h—-x)x*(h+2)—6x(h+x) (h+2)°+2(—h+Xx) (h+2)°+ (h+2)*)

Oy =— 3
27(x2+ (h+2)°)" (1-v?)
(1)_ VE(—h_x+Z)
2 on(x2+ (=h+2)2) (1 —v2)
) VE(h—x+Z)
Oy =

T 2n(x2+ (h+22) (1-42)
5O = VEh(=x*+2x(h+2) + (h+ 2)?)
2 a2+ h+ 22 a-v?)
S _E@+x°(=h+2) +3x(-h+2)° - (-h+2)°)
% an(x2+(-h+2?)°(1-v2)
5@ _ E(3 +x% (h+2) +3x(h+2)* - (h+2)°)
% an(x2 + (h+2%) (1 —v2)
o = Eh(x*+2x%z+6x°z(h+ 2) —6xz(h+ 2)* - (h+2)*(h +32))
% 27(x2 + (h+2)%)° (1-v2)
S _ E(-h—x+2)(-h+x+2)*
P an(a2+ (ch+ 2270 -v?)
SO E(h—x+2)(h+x+2)*
B (x4 (h+ 2270 -v2)
S Ehhi+x+ DX (—2h+x)+xBh+x)(h+2)— 2h+7x)(h+2)*+ (h+2)%)

B 2n(x2+ (h+22)° 1 -v2)

Appendix B. Energy of interaction between two dislocations

Consider two edge dislocations with Burgers vectors by = {b ,0, by ;} and by = {by «,0, b ;}
located in the points (0, k) and (r, h), respectively. The energy Egiq of interaction between

them is equivalent to the work exerted when the second dislocation is displaced from the film

88



6.7. Conclusions

surface to the point (r, k) in the elastic field o;; of the first dislocation:

h
Egis1 = —fpg(r, 2)dz, (6.50)
0

where p; is the Peach-Koehler force [46] defined as p; = e; 10 ji1b2, 1Tk, €k is the Levi-Civita

permutation symbol, 7 is the unit vector in the direction of the dislocation line.

We will be interested in two cases: (i) - by ={q,0,g} and b, = {gq,0, g} ; (ii) - b; = {q,0, g}

and b, = {g,0,—¢g}. In both cases the Peach-Koehler force component p3 has form p3 =

qa(llfD ) boy + qa(lgD )by, with expressions for stresses aﬁD ), aggD ) given in Appendix A.

In the case (i) one readily obtains:

Eq? 72— 1 4
+=log(1 + =) (6.51)

E(l)
a(1-v3) \(72+4)2 4

dist (5 7) =

where 7 =r/h.
For the case (ii) the interaction energy becomes:

2Eq®* 7 -2F+4
n(l-v3) (FP2+4)?

B (a;7) = (6.52)
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gd Moving antiphase boundaries using

an external electric field

The past decade has seen increasing attention paid to the study of domain walls, often due to
their tendency to demonstrate properties significantly different from those usually observed
in the individual domains. Tagantsev et al. [72] predicted the appearance of a ferroelectric
instability around 40K in structural domain boundaries called antiphase boundaries (hence-
forth APBs) of the incipient ferroelectric SrTiOs. More recently, spontaneous polarization
was observed at ambient temperatures in the APBs of antiferroelectric PbZrOs [31]. Along-
side, twin walls of paraelectric CaTiOj3 [27, 28, 73] and SrTiOj3 [74] were also observed to be
polar, the former having a polarization comparable to the bulk spontaneous polarization of
BaTiOs3. These observations provide for the possibility of a potential shift from using domains
to using domain walls as individual, functional entities. The low dimensionality of domain
walls would prove beneficial towards further miniaturization of devices in applications such
as information storage. In light of describing domain walls as functional entities, it becomes
necessary to analyse the possibility of displacing them. The current study thus investigates the
displacive responses from APBs in a SrTiO3-like material under the influence of an external

inhomogeneous electric field.

In contrast to common ferroelectric domain boundaries, which can be displaced using
homogeneous electric fields, polar APBs — polar regions in non-polar materials — are only
sensitive to the field gradient. Here it is theoretically demonstrated that in thin films of a SrTiO3-
like material an APB may be readily displaced using an atomic force microscopy (AFM) tip with
avoltage applied to it. Initially a flat APB is considered whose in-built polarization is aligned
normal to the plane of the film. Across this APB, an inhomogeneous electric field is generated
by placing an AFM tip in the vicinity of the APB (illustrated in Fig. 7.1), causing its displacement.

The value of the displacement is analysed as a function of parameters such as the film thickness
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Figure 7.1: Schematic of the problem statement under consideration and its geometry. The
AFM tip is initially placed at the distance y; from a flat wall. The profile of the wall is divided
into two regions: Region 1 where the wall is displaced, and Region 2 where the wall remains
flat.

and the applied voltage. The residual displacement on the subsequent removal of the applied
voltage on the AFM tip is estimated, showing the same order of magnitude as the initial

displacement.

7.1 Equilibrium of forces at the antiphase boundary in an electric
field

The profile of the displaced wall on the application of the voltage on the AFM tip can be found

through the requirement of the equilibrium of forces in each point along the wall. These forces

are the electrostatic force p,; arising from the interaction of the polarization profile with the

inhomogeneous electric field, the mechanical force p,. associated with the wall bending and

the friction force py. associated with the pinning of the movable boundary. For the latter the
max

concept of dry friction is applied, meaning that p,, = min(p,,", [pei + Pmel), where ppg™ is

the limiting friction force.

max
pe

the displacement is not large enough to overcome the maximum pinning force and, hence, the

At points far away from the AFM tip, where p,; is smaller than p the driving force for

92



7.1. Equilibrium of forces at the antiphase boundary in an electric field

wall does not displace (region 2 in Fig. 7.1). The equilibrium of forces in this region is given by

ppe+pel =0, Pme =0. (7.1)

max
pe

wall to displace. The mechanical force p;;,, now obtains a non-zero magnitude owing to a

Conversely, in region 1 from Fig. 7.1 the magnitude of p,; is larger than p causing the

curvature associated with the displaced wall, and the wall is displaced till p,, at all points in

the final profile is in equilibrium with p; and p;i**. The final state of the wall in region 1 thus
satisfies the balance of forces given by
Pel+ Pme+ Ppe =0. (7.2)

To derive the forces p,; and p,e, variational principles are used. Following Mokry et al.

[75], we start from the thermodynamic potential
U :f/ldS—fE(x, y,2)-B(y—(yi +&(x,2))dydsS, (7.3)

where 1 is the surface tension, d$ is the element of the wall’s surface, E(x, y, z) is the spatially
varying electric field from the AFM tip, 13( y) is the polarization profile in the wall centred at
¥ =0, and (x, z) is the wall’s displacement away from its initial separation from the AFM tip
(¥i)- The wall is considered to be isotropic in nature, i.e. the surface tension o is assumed to
be constant for all orientations of the wall. The current model has been developed to obtain a
preliminary idea of the behaviour of APBs and hence is limited to a linear interaction between
the polarisation profile and the field gradient. Though the higher order contributions such
as the dependence of the polarisation profile on the electrical field [76] or the interaction
between the field gradient with the dielectric susceptibility[77] might be significant, these are
not considered for this first-approximation study. Similarly, the dependence of the polarisation
profile on wall bending is also neglected. As a side note, using such higher order contributions
it might also be possible to displace walls with a variation in dielectric susceptibility such as

those observed in quartz [78].

Given the small thickness of the domain wall compared to the typical scale of the electric

field variation [72], the approximation

fE“(x, 1,2)-Ply—(yi +O)dy = (E(x,y; + &, 2) Ps)w (7.4)
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is used, where B; is the average polarization over the width of the APB (w) defined as Py =
L [ BP(y)dy. Finally, only weak bending response from the wall is considered, i.e. the deflec-
tLil:)n angle (between the normal to the wall and y-axis) is assumed to be small. In accordance
with the coordinate axes as shown in Fig. 7.1, the elemental surface area dS for a curved wall

is expressed via ¢ (x, z), allowing us to rewrite the thermodynamic potential (7.3) as
U= f A= (E(x,yi + & 2)Ps) wiy/ 1+ (Vaé)2dxdz, (7.5)

0 0
where V) = (—, —) is the two-dimensional del operator.
0x 0z

After taking the variational derivative of the thermodynamic potential (7.5) (refer Appendix

A for details) one obtains the mechanical and electrostatic parts of the force balance (refer
Egs. (7.1),(7.2)) in the form

Pme =Va- [IA=(E(x,y; + & 2)Ps) wlVa¢] (7.6)
=w ﬁiﬁ(x +&,2) (7.7)
Pel = saf » Vi yZ) . .

Thus, the electrostatic force p,;, which is the driving force for the displacement, in the
approximation considered is proportional to the field gradient. In the expression for the
mechanical force, (Eq. (7.6)) one recognizes the standard equation of an elastic membrane
[79], where the mechanical surface tension is corrected by the additional electrostatic energy
density. Hence, strictly speaking, this force is not purely mechanical, however we use this
term for the sake of simplicity. Both contributions explicitly depend on the spontaneous

polarization B; in the APB and the electric field E from the AFM tip.

7.2 Displacement of an antiphase boundary induced by the electric
field from an AFM tip

We consider the case where the polarization in the APB is oriented normally to the surface of
the film, thus it interacts with the normal component (E;) of the inhomogeneous electrical
field from the AFM tip. It is of common knowledge that the electric field under an AFM tip
with an applied voltage easily exceeds the theoretical coercive field for macroscopic domains
in conventional ferroelectrics. Thus, irrespective of the sign of the field, the polarization in the
APB at such fields is assumed to reorient itself to be aligned codirectional with the electric field,

resulting in an attractive interaction with the tip. Henceforth, only such attractive interactions
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of the APB towards the AFM tip are discussed.

The magnitude of the electric field is calculated using the expression for the field from an
AFM tip with an applied voltage in a semi-infinite crystal[80], modified by using the method
of image charges (second term within brackets in Eq. (7.8)) which corresponds to the case of a

thin film with a bottom electrode. The normal component of the electric field has thus the

following form:
2h—
E.(x,7,2) = GV wix B + wre, R
et 4n£01’:—;(\/m+ 1) | (x2+y2+ (ﬁ +R)2)32  (x2 4924 (iflﬁé + R)2)3/2

(7.8)

where V is the voltage applied to the AFM tip, £ is the thickness of the film, g is the permittivity
of the vacuum, x, and «. are the relative permittivities in directions in and out of the x-y
plane, respectively, R is the radius of the AFM tip and C, is the interfacial capacitance between
the AFM tip and the surface. Here the case is considered where the AFM tip touches the
film surface, and the interfacial capacitance is calculated accordingly using the sphere-plane

model [81].

The boundary conditions for this model were derived to ensure the absence of localised
forces at x., (x-coordinate of the point of transition from region 1 to region 2, refer Fig. 7.1)
and as well at the free surface (z = 0) and at the interface with the bottom electrode (z = h):

0 0 0
€|x:ix£, =0= £|x:ixn = £|z:0 = £|z:h~ (7.9)

Using this model and the boundary conditions, the profile of the displaced APB is calculated
starting from Egs. (7.1) and (7.2).

All parameters used for the calculations are summarized in Table 7.1. The value of p;** in

this study is estimated assuming that the main pinning source is the Peierls barrier. Owing
to lack of data on the values for the surface tension o and the Peierls barrier p;,”e“x in SrTiO3,
these are approximated from the values corresponding to 180° walls in BaTiOs. All calculations

were carried out in COMSOL Multiphysics Version 4.3a.

The profiles of the displaced wall are derived for APBs in thin films of various thicknesses
with varying initial separations (y;) and tip voltages. Figure 7.2 shows the coordinate y, of
the point on the wall lying closest to the AFM tip (at x = 0, see Fig. 7.1), in a 15 nm thick

film as a function of the applied voltage for different values of the initial separation y;. It is
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Parameter | Numerical Value(s) | Reference
Py 4.2 uC/cm? 72
A 10 mJ/m? 82
ppax 0.05 mJ/m’ 83
w 10 nm 72
R 10 nm -
74 10-50V -
Ka 5500 84
K¢ 8000 84

Table 7.1: Parameters for the calculation of displaced profiles of APBs in an SrTiOs like system.

The values of the surface tension (1) and the Peierls barrier ( p;,”e“x) are approximated from

180° walls in BaTiOs3.

found that for all separations with increasing applied voltage the wall is drawn closer to the
tip. At a certain voltage (varying with y;) the wall is seen to ’collapse’ towards the AFM tip,
which is represented by a sharp drop in the coordinate y, in Fig. 7.2. The "collapse’ occurs
when with movement of the APB towards the tip the electric attraction of the wall to the tip
increases more rapidly than it can be compensated by increase of the restoring mechanical
"force’ associated with the surface area of the wall. As seen from Fig. 7.2, for larger initial
separations y; the 'collapse’ occurs at larger voltages, which is the consequence of a generally

weaker electric attraction of more distant APBs to the AFM tip at similar voltages.

In Fig. 7.3, the coordinates y, near the free surface and near the bottom electrode are
plotted against the applied voltage for the fixed initial displacement y; (30 nm) for varying
film thicknesses. The difference in the displacements observed at the upper and the lower
interfaces is 10 % in the 50 nm thick film, and decreases with decreasing the film thickness
down to negligible values (for a non-collapsed APB) in the 15 nm thick film. The average
displacement of the wall, for the same voltage applied to the tip, is larger in thinner films.
Besides, the applied voltage required for the collapse of the wall towards the tip decreases
with the film thickness decrease. This behaviour follows from the variation in the electric
field gradient (0E,/0¢) with z. For the parameters used in the study this results in lower APB

displacements and higher collapse voltages with increasing film thickness.
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7.2. Displacement of an antiphase boundary induced by the electric field from an AFM tip
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Figure 7.2: The coordinate y, of the point on the wall lying closest to the AFM tip of radius
10 nm plotted as a function of the applied voltage for varying initial separation y; in the
15 nm thick film. For all y;, beyond a certain voltage the wall 'collapses’ towards the AFM tip,
represented by a sharp decrease in y,,.
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Figure 7.3: The coordinates y, of the point on the wall lying closest to the AFM tip of radius
10nm near the free surface (z = 0, filled symbols) and near the bottom electrode (z = h, hollow
symbols) as a function of the applied voltage for the initial separation y; = 30 nm, calculated
for three different film thicknesses h.
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7.3 Retainment of the antiphase boundary displacement upon re-

moval of the electric field

It is also to be ascertained that the displacement achieved on the application of the field is
retained even on the removal of the applied voltage. After the voltage is removed (i.e. p,; = 0),
the APB buckles back towards its initial flat profile. During the buckling the pinning force
reorients itself opposite to the direction of the local curvature of the wall at all its points, until
the new equilibrium is reached, which is described by the modified Eq. (7.2): ppe + pje =0,
where p/,,, is the mechanical force p,. (Eq. (7.6)) at E = 0. The final profile can be split into
two regions (see inset in Fig. 7.4): region 1’, where the profile buckles until the condition
IPhel = Ppe " is reached, and region 2’, where the wall profile remains unchanged, with
1Phnel < Ppe - Inorder to describe the profile of the APB after the buckling, the approximation
of a two-dimensional profile is used, which was shown to be valid in thin films (see Fig. 7.3). In
such a case, the curvature of the wall along the thickness is zero (SZTE =0), and the equilibrium

for region 1’ can be written as

2| A
@ —W, (7.10)
e

which describes the parabolic shape of the profile. The final profile of the wall after the
buckling back on the removal of the voltage is obtained from the seamless integration of this
parabola onto the profile obtained with the applied voltage (i.e. assuring continuity of ¢ and
0¢/0x between regions 1’ and 2’), and the retained displacement is thus evaluated (see inset
Fig. 7.4). The retraction of the wall on the removal of the electrical field (6¢ in Fig. 7.4 inset) is

then calculated as a percentage of the displacement with the voltage on.

Figure 7.4 shows the retraction percentage calculated for a 15 nm thick film for varying y;
after the application and subsequent removal of voltage. In all cases, the calculations indicate
that more than 50% of the displacement caused with the application of the field is retained

upon the removal of the electric field.

A remark should be made about the behaviour of the APBs in bulk crystals. It was shown
that in such systems, if compared with thin films, the application of much higher voltages on
the AFM tip is needed to reach similar displacements of the wall. Thus, thin films are more

conducive for the experimental observations of the phenomenon discussed in this chapter.
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Figure 7.4: The retraction of an APB on the removal of the applied field calculated as a per-
centage of the total displacement for a 15nm thick film, plotted against the initial applied field
from an AFM tip of radius 10nm placed at different distances (y;) from the APB. The contour of
the collapse voltage for the increasing y; is represented by the dashed arrow. Inset: [llustration
demonstrating the evolution of the profile of the APB on the application of voltage (full line)
and upon its removal (dotted line).
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7.4 Conclusions

In conclusion, drawing from previous works which predicted and observed the presence of
polar APBs, the current work provides guidelines for future experimental work related to
manipulation of polar APBs. On the application of moderate voltages (e.g., 40 V) to an AFM tip
lying in the vicinity of an APB (e.g., in 20 nm from the APB) in a SrTiO3-like material, the APB
would be attracted to the tip and, at a certain voltage, collapse towards the tip. The voltage,
upon application of which the wall collapses, decreases remarkably with decreasing the film
thickness. On removing the voltage applied on the AFM tip at least 50% of the displacement
is expected to be retained in thin films. Thin films would hence be more conducive for the
experimental observations of the moving antiphase boundaries. The high retention of the
displacement could be of high interest for the development of applications such as information

storage.

Appendix A. Derivation of expressions of forces pye, Pme

In accordance with the coordinate system presented in Fig.1 of the main text, the thermody-

namical potential of the system is given by

U= fm —(E(x,yi +& 2)Ps) wiy/ 1+ (V26)2dxdz, (7.11)

where o is the surface tension, 133 is the average polarization over the width of the APB
(w), E(x,y; + ¢, 2) is the spatially varying electric field from the AFM tip, &(x, z) is the wall’s
displacement away from its initial separation from the AFM tip (y;) and V, = 3%’ 32 is the
two-dimensional del operator. The integrand in Eq. (7.11) defines the functional that can
be minimized using variational principles in order to estimate the equilibrium profile of the
deformed wall. To this effect, on applying the Euler-Lagrange equation (Eq. (7.12)) to the

potential described in Eq.7.11, a non-linear equation is obtained:

oL oL
OL | Gziow) | @¢l0z) ~0 (7.12)
¢ 0x 0z ' ’

In this first approximation study, only weak bending response from the wall is considered,
i.e. the deflection angle (between the normal to the wall and y-axis) are approximated to be
small enough to neglect the deviation of the normal to the wall from the spatial coordinate y

at all points. From the non-linear solution, using the weak bending approximation, only linear
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terms with E or ¢ are retained to obtain Eq. (7.13):

V1+ (vzf)z) =0. (7.13)

Vo [[A—(E-By) wVaé] + w(ﬁs'g_?)

The first term on the Lh.s. in Eq. (7.13) represents the standard equation for an elastic
membrane with an additional electrostatic energy term, which has been retained despite
being a bilinear term in the linear model in case of eventual cancellation with the surface
tension. Although the first term is not purely mechanical, it is described as the mechanical

force (Eq. (7.14) or pye in the main text) for the sake of simplicity:

Pme=V2-[[A—(E-Ps) w]V,¢]. (7.14)

The second term on the Lh.s. in Eq. (7.13) describes the electrostatic force (F,; in the main
text) and describes the interaction between the electrical field gradient and the polarization
profile. By neglecting (V»¢)? as of the second order of smallness F,; can be further simplified

as follows:

_ OE
Pel = W Ps'a_f

\/1+ (sz)z) ~ w(ﬁsa%ﬁ(x,y,- +&,2)|. (7.15)
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Summary and Outlook

Some properties of ferroelectric domain patterns, such as the internal structure of domain
walls, orientation of the walls, which have been described for the case of infinite ferroelectrics,
are typically believed by the scientific community to be applicable to thin films as well. This
work shows the importance of thin-film-specific elastic effects on the formation of ferroelectric
domain structures. Theoretical findings obtained in this work can help to understand better
the properties of domain patterns in thin films and may serve as guidelines for controllable
generation of domain structures with needed properties in ferroelectric films and for their

application to potential new ferroelectrics-based devices.

It was shown that nonferroelastic domain walls may acquire elastic properties in fer-
roelectric thin films. Interaction of the domain wall, which is always stressed due to the
electrostrictive coupling of the stresses with polarization, with the surfaces of the film results
in redistribution of the elastic stresses inside the wall into the regions surrounding the wall.
The distance of propagation of the redistributed stresses away from the wall is of the order of
the film thickness. As a result, nonferroelastic domain walls can interact with each other by
elastic means on distances far exceeding the correlation length, which has been convention-
ally considered as the maximal range of interaction between nonferroelastic walls. In certain
configurations, the force of repulsion between nonferroelastic domain walls was shown to
be large enough to compete with the action of typical electric fields of coercive values for the
material. The effect may have a substantial impact on the polarization switching and domain

pattern control in ferroelectric thin films.

Further, the orientation of ferroelastic domain walls was investigated, and mechanisms
that can drive the walls off their permissible inclination were formulated. Elastic energy

penalty associated with violation of the principle of mechanical compatibility of ferroelastic
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domain walls was shown to be small enough in thin films to be comparable with other contri-
butions to the energy, namely with the possible reduction of the domain wall self-energy. It
was shown that, with decreasing the film thickness, the requirement of the minimal domain
wall length starts to play an increasingly stronger impact on the domain wall orientation,
violating the condition of mechanical compatibility in some geometries. In application to
(001) BiFeO3 rhombohedral films, large deviations of the 71° domain wall off its permissible

orientation are predicted in films of thickness < 40 nm.

Another mechanism of orientation of ferroelastic domain walls was formulated and in-
vestigated. In films on a substrate, the incompatibility elastic stresses generated by lattice
mismatches on a deviated wall may interfere with the film-substrate misfit stress, leading to
relaxation of the latter and to decrease of the elastic energy of the film. In cases where such
deviation is energetically favourable, the violation of the principle of mechanical compatibil-
ity of the wall is possible. This concept was applied to (001) tetragonal PZT thin films with
alc-domain structures. It was shown that in the structures with a narrow a-domain inclusion,
the domain walls deviate off their permissible orientation, generating bound charges on the
walls, which implies a possibility of having conductive domain walls in the systems. These pre-
dictions were supported by experimental observations of 60 nm PZT films, where metallic-like

conductivity of the deviated domain walls was reported.

A theoretical description was provided for narrow domain inclusions into a dominant
domain state in tetragonal ferroelectric films on an anisotropic (orthorhombic) substrate. It
was shown that in the limit of thick films such domain structures follow linear scaling laws of
domain periodicity and of the inclusion width, which lies in contrast to the classical Kittel-like
square root dependence conventionally applied for description of domain structures. The
parameters of the domain structure, such as periodicity of the structure, width of the narrow
inclusion, is obtained by considering the energies of interaction of narrow domain inclusions
between themselves and with the stresses of misfit between the dominant domain state and
the substrate. The correspondence of the results of the theory for PZT films to the experimental

observations was shown.

While focused mostly on properties of domain structures in ferroelectric materials, this
work contains also the investigation of an antiphase boundary, having local ferroelectric
properties, in antiferroelectric PbZrOs. The mechanical response of the boundary on the
external electric field generated by an AFM tip was modelled. It was shown that the electric
field gradient can be used as the driving force for the antiphase boundary displacement.

In thin films, the displacement of the boundary was described for varying film thicknesses,
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voltages applied on the AFM tip, and other parameters of the system. In general, the boundary
attracts to the tip when the voltage is applied, the effect being much larger in thinner films
than in thicker films and in bulk crystals. When the applied voltage exceeds some threshold
value depending on the parameters of the system, the collapse of the boundary towards the tip
is observed. Upon removal of the electric field, less than 50% of the boundary displacement
retracts due to the effect of the surface tension of the boundary, and the major part of the

displacement retains.

8.1 Outlook

Within this work, theoretical description of some thin-film-specific properties of the ferroelec-
tric domain structures was given. The next obvious step is to perform experimental analysis
which would, in perspective, confirm the main findings of the work. For instance, in-plane
deformations of the lattice surrounding a nonferroelastic domain wall in free-standing films,
discussed in Chapter 3, suggest a direct applicability of TEM measurements for detection of
the effect. Besides, the long-ranged elastic repulsion between nonferroelastic domain walls
having relatively large values (shown to be comparable with the effect of coercive field in some

materials) is of high experimental interest by itself.

The mechanisms of deviation of the ferroelastic domain wall discussed in Chapters 4, 5
may have manifestations in various ferroelectric systems. As it was shown, the application of
the concept of the wall deviation driven by the mechanisms, such as domain wall self-energy
minimization, film-substrate misfit stresses relaxation, can help to predict systems where the
controllable generation of charged domain walls is possible, with possible applications in

potential new devices with reconfigurable electric circuits.
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