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Abstract
Metallic nanostructures interact in complex ways with light, forming the subject of plasmonics

and bringing novel physical phenomena and practical applications. The fundamental and

practical importance of plasmonics necessitates the development of a multitude of simulation

techniques. Surface integral equation (SIE) is a numerical method which is particularly suited

for simulating many plasmonic systems. In this thesis, we develop SIE-based numerical

methods for plasmonics and use them to study plasmonic systems of interest.

Electric and magnetic surface currents are the basic quantities calculated in SIE, and it is

appealing to directly compute various physical quantities directly using them. We develop a

formalism to compute optical forces and torques, polarisation charges and multipole moments

using the surface currents for better accuracy and efficiency.

Numerical simulation is all about finding the right balance between accuracy and computa-

tional cost. SIE allows to choose this tradeoff in computing the integrals for the simulation

matrix. We study the effect of the integration routine on the accuracy of the matrix and pro-

pose an optimised recipe for evaluating the integrals. Although this recipe incurs an overhead,

we show how it becomes necessary in computing some physical quantities and simulating

some systems, and how it allows simulations using a coarser discretisation.

One drawback of SIE is that it can only simulate domains for which the response of each

domain can be expressed in terms of the Green’s function for the domain. Only homogeneous

and periodic domains could be dealt with till now, limiting its applicability. We extend SIE to

simulate nanostructures embedded in the layers of a stratified medium to partly overcome

this restriction, paving the way for further improvements.

SIE has the ability to model complex and realistic geometries. We exploit this feature to study

the effect of fabrication-induced rounding on nanorods and gap antennae. We show how

rounding results in blue shift of resonances, migration of charges from corners to edges to

faces, and reduced coupling between nanostructures.

The surface current-based formalism to calculate optical forces and torques permits their

computation for particles in close proximity. We use this to study the internal forces in

compound plasmonic systems, and show the presence of strong internal forces between their

components. We also demonstrate surprising features such as force and torque reversal, and

circular polarisation-dependent behaviour in achiral systems. We then numerically investigate

the possibility of using optical torques to orient and rotate plasmonic nanostructures, relying

on surface plasmon resonance, retardation effects and circular polarisation.

Polarisation charges contain useful information about the behaviour of plasmonic systems, but
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Abstract

there are difficulties in understanding and visualising them. We discuss the complex nature of

polarisation charges and suggest various techniques to visualise them in complicated systems

in a manner which is easy to understand without loss of information.

Finally, we utilise the ability of SIE to compute accurate near fields to study the Raman

enhancement in multi-walled carbon nanotubes on coating with metal, and the analogous

quenching of Raman signal from silicon substrates.

Keywords: Plasmonics, optics, nanophotonics, plasmon resonance, simulation, numerical

methods, surface integral equation, Green’s function, stratified media, optical force, optical

torque, optical manipulation, plasmonic trapping, polarisation charges, multipole moments,

carbon nanotubes, surface-enhanced Raman scattering
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Résumé
La plasmonique étudie les interactions complexes de la lumière avec des nanostructures

métalliques ainsi que les phénomènes physiques associés et les applications pratiques qui en

résultent. Pour tirer profit de la plasmonique, il a été nécessaire de développer une grande

variété de méthodes de simulation numérique. Parmi celles-ci, la méthode des équations

intégrales de surface (en anglais surface integral equation, SIE) est particulièrement bien

adaptée à la simulation de systèmes plasmoniques. Dans cette thèse, je développe de nou-

velles méthodes numériques basées sur la SIE et les utilise pour étudier différents systèmes

plasmoniques expérimentaux.

Les courants de surface électriques et magnétiques représentent les quantités de base cal-

culées avec SIE et il est intéressant de déduire des grandeurs physiques directement de ces

courants. Ainsi, je développe un formalisme permettant de calculer les forces et moments

optiques, les charges de polarisation et les moments multipolaires directement des courants

de surface.

L’art de la simulation numérique consiste à trouver le bon équilibre entre précision et coût

de calcul. SIE permet d’ajuster cet équilibre avec le calcul des intégrales qui composent la

matrice du système. Ainsi, j’étudie l’influence des routines d’intégration sur la précision de

la matrice du système d’équations et je développe une recette optimisée pour évaluer ces

intégrales. Bien que cette nouvelle recette ait un coût calcul, je montre que son utilisation est

nécessaire pour obtenir certaines grandeurs physiques ou simuler des systèmes particuliers ;

elle offre cependant aussi la possibilité d’utiliser une maille de discrétisation plus grossière

pour une précision donnée.

Une limitation de SIE est le fait qu’elle ne peut simuler que des domaines dont la réponse

peut s’exprimer en termes de fonction de Green. Ainsi, jusqu’à présent, seuls des domaines

homogènes ou périodiques pouvaient être simulés avec SIE, limitant l’utilité de la méthode.

Dans cette thèse, j’augmente son champ d’applications en montrant comment simuler aussi

des nanostructures incluses dans des milieux stratifiés.

SIE peut modéliser des géométries complexes et réalistes. J’exploite ceci pour étudier les effets

d’arrondis sur les arrêtes induits par la fabrication des nanostructures. Je montre en particulier

que pour des nano-bâtonnets et des antennes dipolaires, ces arrondis produisent un décalage

des résonances vers le bleu et une migration des charges depuis les arrêtes vers les faces,

résultant en une diminution du couplage entre les particules.

La méthode développée pour calculer les forces et moments optiques à partir des courants

de surface permet d’étudier des particules en interaction très proche. Je l’utilise pour étudier
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Abstract

les forces internes dans des systèmes plasmoniques et démontre l’existence de forces très

importantes entre différentes parties d’un même système. Des effets surprenants, tels que

l’inversion de la force et du moment, ainsi que l’apparition d’effets liés à la polarisation

circulaire dans des géométries non-chirales, sont mis en évidence. Finalement, j’étudie la

possibilité d’orienter et de faire tourner des nanostructures en utilisant leurs résonances

plasmons, des effets de retard ainsi qu’une polarisation incidente circulaire.

Les charges de polarisation contiennent des informations utiles pour le comportement des

systèmes plasmoniques, bien qu’elles soient difficiles à visualiser. Je discute leur nature com-

plexe et suggère différentes manières originales et efficaces de les visualiser et de les rendre

intelligibles.

Finalement, j’utilise les performances de SIE pour calculer le champ proche afin de déterminer

d’une part l’exaltation du signal Raman provenant de nanotubes de carbone recouverts de

métal et d’autre part la diminution du signal Raman provenant du substrat sur lequel ces

nanotubes sont déposés.

Mots clés : Plasmonique, optique, nanophotonique, résonances plasmon, simulations, mé-

thodes numériques, intégrales de surface, fonction de Green, milieux stratifiés, forces optiques,

moments optiques, manipulations optiques, piégeage plasmonique, charges de polarisation,

moments multipolaires, nanotubes de carbone, spectroscopie Raman exhaltée.
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1 Introduction

Metals show a very rich behaviour in their interaction with light. Shine of coinage metals has

been the source of their high value, and arises from their electronic properties. Electromag-

netic fields at optical frequencies can excite propagating waves confined to metal-dielectric

interfaces (surface plasmon polaritons), as well as non-propagating electromagnetic modes

in metallic nanostructures (localised surface plasmons) [1, 2]. Plasmonics is the study of

plasmons – or more simply, the study of the interaction between coinage metals and light.

Modern interest in the optical response of metals can be traced back to the experiments of

Faraday on gold and other metals [3]. The field of plasmonics has grown considerably in the

recent years due to advances in nanoscale fabrication, uncovering novel physical phenomena

and giving rise to practical applications in the process [4–11].

The interest in nanoscale plasmonics is primarily due to two features it provides: extreme

localisation of the electromagnetic fields resulting in large field intensities and gradients; and

the versatile tunability of the plasmonic resonances. Large local intensities and extreme sensi-

tivity to local changes provide plasmonic systems with the ability to detect minute changes

in refractive index caused by the presence of chemicals. Chemical and biological sensing

is hence an area where plasmonics has found widespread application [12–23]. Strong near

fields also help to enhance fluorescence [24–33], Raman scattering [34–40], infrared absorp-

tion [41–48] and nonlinear effects [49–55]. Strong field gradients and extreme localisation

enable optical trapping and manipulation with high accuracy [56–61]. Plasmonics has also

found applications in improving the design of solar cells [62–67] and photodetectors [68–71].

With the plethora of effects and applications arises the requirement to study, design and

optimise plasmonic systems theoretically. Designing plasmonic structures with desired optical

properties has become a field of active pursuit, and the ability to accurately simulate the

optical response of these structures is of paramount importance. The search for analytical

descriptions of plasmonic effects is more than a century old [72], but the initial methods

were restricted to ideal systems due to the requirement of mathematical solutions involving

computations to be performed by humans. The advent of computers enabled the creation of

more calculation-intensive methods which could deal with more general and realistic physical
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Chapter 1. Introduction

systems. The development of simulation tools continues to be an active area of research,

especially in plasmonics where the discovery of new phenomena places novel requirements

on the simulation methods. We present an overview of the commonly used numerical methods

in plasmonics in Section 1.1.

In this thesis, we develop and improve simulation tools for plasmonic systems. They are then

used to perform numerical experiments on plasmonic systems with experimental relevance.

We achieve a better understanding of various plasmonic phenomena by this, and discover

novel and promising physical effects. The thesis content is outlined in Section 1.3.

1.1 Numerical methods in plasmonics

Various numerical methods are used to simulate the optical response of plasmonic nanostruc-

tures both in the time domain and in the frequency domain. A comprehensive review of the

computational techniques was recently published in Ref. [73]. We provide a basic description

of the common simulation methods here.

Though the goal of all these numerical methods is to solve Maxwell’s equations to obtain the

electromagnetic response [74], the solution can be performed by treating these equations

in an integral form or in a differential form. The different methods have specific strengths

and weaknesses, and the best matching numerical technique should be chosen for each

problem. The most commonly used methods in plasmonics include finite difference time

domain (FDTD), finite element method (FEM), volume integral equation (VIE) and surface

integral equation (SIE).

Finite difference time domain (FDTD) solves Maxwell’s equations in the differential form in

the time domain by discretising space and time into a structured grid [75–78]. The various

fields are evaluated at its points, and the derivatives in Maxwell’s equations are approximated

by finite differences on the grid. The time evolution of the electromagnetic field can be

traced, starting from an initial condition. FDTD is a popular numerical method thanks to the

simplicity of its description and because it allows the simulation of time-domain phenomena.

However, being a time domain method, simulating frequency-dependent effects in dispersive

materials is not straightforward [79–81]. Also, the typical implementation of FDTD using a

uniform grid can be problematic while dealing with complex surfaces and regions of high

field gradients, and non-uniform grids have to be introduced [82, 83]. Finally, since it is only

possible to discretise a finite region of space, the discretisation lattice must be terminated

carefully by introducing absorbing or perfectly matched layer boundary conditions [84–86].

Finite element method (FEM) also solves Maxwell’s equations in the differential form, but in

general it is formulated in the frequency domain [87, 88]. In this method, a finite volume of

space is discretised into elements and the field in each element is expanded over a set of basis

functions. The solution of the system is found using the Galerkin approach. Choosing triangu-

lar and tetrahedral elements allows describing complicated geometries faithfully, making the

2



1.1. Numerical methods in plasmonics

method superior to FDTD in this aspect, though it is more computationally expensive. Using

continuity-enforcing basis functions of high enough order allows matching the variation of

fields within an element well, providing good accuracy and convergence [89, 90]. Since FEM

is a frequency domain method, it can easily include dispersive effects and study frequency-

dependent phenomena. However, the issue of having to discretise a finite region of space and

requiring special boundary conditions remains. Hybrid methods such as the discontinuous

Galerkin method are used to combine the advantages of FDTD and FEM and to obtain time

domain solutions [91–95].

Solving Maxwell’s equations in the integral form can overcome some of the above issues. The

volume integral equation (VIE) method provides the integral form solution in the frequency

domain using the Green’s function [96, 97]. This approach can be used for scatterers placed

in backgrounds for which the Green’s function can be computed, such as homogeneous and

stratified media [97–101]. The rest of the domains can be arbitrary, allowing the simulation of

structures with inhomogeneous optical properties. One important consideration in VIE is the

proper treatment of singularities at source points. The most attractive feature of the method is

that it requires only the discretisation of the scatterers, and the automatic treatment of the

background means that artificial truncation of space is not required. However, unlike FDTD

and FEM, the matrices involved in VIE are dense, requiring higher costs in storing and solving

the matrices for the same number of discretised elements. Discrete dipole approximation

(DDA) is a very similar technique in which the singularity at the source is not considered

and the polarisabilities of the discretised elements are computed from the lattice dispersion

relation [102–104]. An added advantage of DDA is that fast Fourier transforms can be used to

speed up its implementation significantly [102].

Surface integral equation (SIE) can be considered a combination of finite element and vol-

ume integral methods. The surfaces of the scatterers are discretised and the fields on each

surface element are expanded over a set of basis functions. Maxwell’s equations are then

solved in the surface integral form, and the solution of the system is found using the Galerkin

approach [105–108]. SIE is the primary simulation method used in this thesis, therefore we

provide a description of the formulation used in Section 1.2. Apart from the general advan-

tages of the frequency domain methods and VIE, the most attractive feature of SIE is that

it requires the discretisation of only the boundaries of scatterers, reducing computational

overhead and allowing a more faithful representation of surfaces. However, the resultant

matrix is still dense, and SIE can only be used with domains for which the Green’s function

can be computed [109–111]. A closely related method is the boundary element method (BEM)

which uses scalar and vector potentials instead of fields and specifies the elements on the

boundary to have constant values instead of using basis functions. The solution of the system

is hence performed by point matching instead of the Galerkin approach [112–117]. Hybrid

methods combining SIE to deal with the background domain and FEM to treat inner domains

also exist [118].

In addition to the accuracy of the numerical methods, it is also important to get a correct

3
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description of the physics of the modelled systems. Plasmonic computations usually treat

domains as linear and local while describing the constitutive relations for various media.

In systems where this approximation breaks down, the computation has to be modified to

incorporate nonlinear [119–124] and nonlocal [125–127] effects. At very short length scales,

Maxwell’s equations might be inadequate to describe the electromagnetic response and a

quantum mechanical treatment might be required [128–134]. In this thesis, we will not con-

cern ourselves with such effects and restrict our attention to linear, homogeneous, isotropic

domains and follow the SIE treatment in Ref. [105].

1.2 Surface integral equation formulation

There exist different formulations to solve surface integral equations numerically, with varying

numerical accuracy [107, 108]. We will be following the formulation in Ref. [105], where

surface currents are expanded in terms of the Rao-Wilton-Glisson (RWG) basis functions [135].

The tangential boundary values of the surface integral equations are used, and the Poggio-

Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation [136–138] is chosen to combine

the integral equations over domains. We will now discuss the basics of the theoretical and

implementational aspects of the SIE formulation based on Ref. [105]. Further details can be

found there.

We describe space as a union of homogeneous isotropic domains {Ωi }, as depicted in Fig. 1.1(a).

For a domainΩi with constant electric permittivity εi and magnetic permeability µi , the wave

equation for the electric field at the frequency ω has the following form, assuming harmonic

dependence (e−iωt ) for all fields

∇×∇×Ei (r)−k2
i Ei (r) = iωµi ji (r) , (1.1)

where ki is the wavenumber in the medium, and Ei and ji are the electric field and free current

density, respectively. This equation can be solved with the help of the dyadic Green’s function

Figure 1.1 – Schematic of the SIE formulation. (a) Space is described as a union of homoge-
neous domains with constant material properties. (b) Surfaces of the domains are discretised
by a triangular mesh. (c) The surface currents are expressed in terms of RWG basis functions,
which are linear functions defined over adjacent triangles.
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1.2. Surface integral equation formulation

G which is defined using [139],

∇×∇×Gi (r,r′) = k2
i Gi (r,r′)−1δ(r− r′) . (1.2)

In a homogeneous domain, the dyadic Green’s function has the form

Gi (r,r′) =
(

1+ ∇∇
k2

i

)
e i ki |r−r′|

4π|r− r′|

=
(

1+ ∇∇
k2

i

)
Gi (r,r′) , (1.3)

where Gi (r,r′) = Gi (R = |r− r′|) is the scalar Green’s function which depends only on the

distance between the source and observation points.

Using the dyadic Green’s function, we can obtain the surface integral equation for the electric

field, known as the electric field integral equation (EFIE),iωµi

∫
∂Ωi

dS′Gi(r,r′) · Ji(r′)+
∫
∂Ωi

dS′[∇′×Gi(r,r′)] ·Mi(r′)


tan

= (Einc
i (r))tan , (1.4)

where ∂Ωi is the boundary of the domainΩi with n̂i as the outward normal. Einc
i is the incident

electric field, and Ji and Mi are the electric and magnetic surface currents, defined in terms of

the surface magnetic and electric fields as

Ji (r) = n̂i ×Hi (r) , (1.5a)

Mi (r) =−n̂i ×Ei (r) . (1.5b)

Note that the subscript tan in Eq. (1.4) corresponds to taking the tangential boundary value of

the integral.

Since the wave equation for the magnetic field

∇×∇×Hi (r)−k2
i Hi (r) =∇× ji (r) (1.6)

has a similar form as for the electric field in Eq. (1.1), the dyadic Green’s function for the

magnetic field is the same as Eq. (1.3). Using it, we can derive the magnetic field integral

equation (MFIE),iωεi

∫
∂Ωi

dS′Gi(r,r′) ·Mi(r′)−
∫
∂Ωi

dS′[∇′×Gi(r,r′)] · Ji(r′)


tan

= (Hinc
i (r))tan . (1.7)

We have to solve Eqs. (1.4) and (1.7) for the surface currents J and M. For this, we discretise the

boundary of the domain into triangles, as shown in Fig. 1.1(b). RWG functions as used as basis
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Chapter 1. Introduction

functions to expand the currents,

Ji (r) =
M∑

n=1
αi nfi n(r) , (1.8a)

Mi (r) =
M∑

n=1
βi nfi n(r) , (1.8b)

where fi n are the RWG basis functions, which are linear functions defined on triangle pairs

joined by an edge, as shown in Fig. 1.1(c) [135]. The form of the RWG functions is shown in

Using the Galerkin approach, we can use the same basis functions as testing functions and

convert Eqs. (1.4) and (1.7) to the matrix equations[
iωµi Di Ki

]
·ψi = qE

i , (1.9a)[
−Ki iωεi Di

]
·ψi = qH

i , (1.9b)

where the elements of the system matrices D and K are given by

(Di )nk =
∫
∂Ωi

dSfi n(r) ·
∫
∂Ωi

dS′Gi (r,r′) · fi k (r′) , (1.10a)

(Ki )nk =
∫
∂Ωi

dSfi n(r) ·
∫
∂Ωi

dS′
[
∇′×Gi (r,r′)

]
· fi k (r′), (1.10b)

the incidence vectors qE and qH have components

(
qE

i

)
n =

∫
∂Ωi

dSfin(r) ·Einc
i (r) , (1.11a)

(
qH

i

)
n =

∫
∂Ωi

dSfin(r) ·Hinc
i (r) , (1.11b)

and the solution vector ψi = [αi {1···M } βi {1···M }]T . The expressions for D and K containing

the dyadic Green’s function and its curl in Eqs. (1.10a) and (1.10b) can be converted to the

following method of moments-friendly form involving the scalar Green’s function and its

gradient:

(Di )nk =− 1

k2
i

∫
Sn

dS∇· fi n(r)
∫
Sk

dS′Gi (r,r′)∇′ · fi k (r′)+
∫

Sn

dSfi n(r) ·
∫
Sk

dS′Gi (r,r′)fi k (r′),

(1.12a)

(Ki )nk =
∫

Sn

dSfi n(r) ·
∫
Sk

dS′ [∇′Gi (r,r′)
]× fi k (r′), (1.12b)

where Sn (Sk ) is the surface of the pair of triangles over which fn (fk ) is defined. Note that these

integrals are 4D and can be carried out as two successive 2D integrations on the source (r′)
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and test (r) triangle pairs.

In practice, the singular nature of the Green’s function at r = r′ can be problematic for the nu-

merical evaluation of these integrals when the triangles are close to each other or overlapping.

This problem can be mitigated by singularity subtraction. The scalar Green’s function Gi (R) is

separated into a smooth and a singular part,

Gi (R) =Gsing
i (R)+Gsmooth

i (R) (1.13)

with Gsing
i (R) = 1

4π

(
1

R
− k2

i R

2

)
. (1.14)

The first term is trivially singular at R = 0, while the second results in a singularity for ∇Gi . The

singular part can be integrated analytically over r′ [140], while the smooth part is integrated

numerically without accuracy issues. In both cases, the integral over r must still be integrated

numerically.

The surface currents switch sign across a boundary since the sign of the normal gets reversed

and the tangential fields are continuous. Thus the coefficients of the RWG functions over

neighbouring domains differ only in their sign. The matrix equations for different domains

in Eq. (1.9) have common unknowns, and are combined using the PMCHWT formulation to

obtain accurate solutions [136–138],

∑
i

[
iωµi Di Ki

−Ki iωεi Di

]
·ψ=∑

i

[
qE

i

qH
i

]
. (1.15)

The resultant matrix equation can be solved using methods such as Gaussian elimination,

conjugate gradient and LU decomposition [141, 142] to find the coefficients {α,β} of the

surface currents. Once these are found, the fields anywhere in the domains can be found using

the following surface integral equations

Ei (r) = Einc
i (r)− iωµi

∫
∂Ωi

dS′Gi(r,r′) · Ji(r′)−
∫
∂Ωi

dS′[∇′×Gi(r,r′)] ·Mi(r′) , (1.16a)

Hi (r) = Hinc
i (r)− iωεi

∫
∂Ωi

dS′Gi(r,r′) ·Mi(r′)+
∫
∂Ωi

dS′[∇′×Gi(r,r′)] · Ji(r′) . (1.16b)

1.3 Outline

The contents of this thesis have been divided into two parts. Part I is dedicated to developing

advanced simulation tools based on the SIE formulation. Chapter 2 describes how to com-

pute useful physical quantities such as optical forces and torques, polarisation charges and

electric and magnetic moments directly from the SIE surface currents without intermediate

computation of the fields for improved efficiency. In Chapter 3, we analyse how the integration

7
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routine used for the computation of the SIE matrix affects the accuracy of the matrix elements

and in turn, that of the physical quantities computed using SIE such as optical cross sections,

fields and forces. We present an optimised integration recipe for the homogeneous SIE matrix

computation and extend it for periodic SIE. Chapter 4 presents an extension of SIE to simulate

nanostructures embedded in layers of stratified media.

SIE and the various tools developed in Part I are used to study some important systems

and effects in plasmonics in Part II. In Chapter 5, we study how the far-field scattering from

plasmonic nanostructures and the polarisation charges induced on them are affected by

fabrication-induced rounding of the edges and corners. Chapter 6 presents a detailed anal-

ysis of internal forces and torques in compound plasmonic systems consisting of multiple

parts. We uncover many interesting and potentially useful effects such as strong lateral forces,

wavelength-dependent force and torque switching, and response of achiral systems to cir-

cular polarisation. We present a numerical investigation in Chapter 7 of the possibility of

achieving three dimensional orientation of plasmonic nanostructures using optical torques. A

conceptual treatment of polarisation charges in plasmonic systems is presented in Chapter 8.

We discuss the meaning of complex polarisation charges and describe how to understand,

visualise and extract relevant information from charges in systems of increasing complexity.

Finally, we present a numerical study of Raman enhancement in metal-coated multiwalled

carbon nanotubes in Chapter 9. We will then end the thesis by summarising the results and

presenting an outlook on future research in Chapter 10.

8



Part IImprovements to SIE
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2 Efficient computation of secondary
quantities from SIE surface currents

Different numerical methods in electrodynamics compute a few basic quantities, and other

relevant physical quantities are calculated using them. In the case of SIE, the surface electric

and magnetic currents are the fundamental output. In this chapter, we develop a formalism to

calculate optical forces and torques, polarisation charges, and electric and magnetic moments

directly from the surface currents efficiently without intermediate calculation of the fields.

Parts of this chapter were published in peer-reviewed journal articles [61, 143].

2.1 Introduction

The basic quantities computed by SIE are the electric and magnetic surface currents at the

domain boundaries, defined using Eqs. (1.5a) and (1.5b). The parallel components of the

fields (E∥ and H∥) can be expressed directly in terms of surface currents J and M (we drop the

subscript referring to the domain):

H∥ = J× n̂ , (2.1a)

E∥ = n̂×M . (2.1b)

We can now use Maxwell’s equations to derive the perpendicular components of the fields (E⊥
and H⊥):

E⊥ =− i

ωε0εr
(∇· J)n̂ , (2.2a)

H⊥ =− i

ωµ0µr
(∇·M)n̂ , (2.2b)

whereω is the angular frequency of light and εr and µr are the relative permittivity and relative

permeability of the domain. Combining these results, we obtain the surface fields entirely in

11



Chapter 2. Efficient computation of secondary quantities from SIE surface currents

terms of the surface currents:

E =− i

ωε0εr
(∇· J)n̂+ n̂×M , (2.3a)

H =− i

ωµ0µr
(∇·M)n̂+ J× n̂ . (2.3b)

SIE expands the surface currents over each triangle in terms of RWG basis functions [135], and

the surface currents have the following forms

J = γ1(r− r1)+γ2(r− r2)+γ3(r− r3) , (2.4a)

M = δ1(r− r1)+δ2(r− r2)+δ3(r− r3) , (2.4b)

where ri are the vertices of the triangle, and γi and δi are the coefficients associated with each

vertex. The currents, and thus the surface fields, are linear functions of position over each

triangle. The physical quantities required to be computed are typically polynomial functions

over the fields, as will be seen later in this chapter. They can be reduced to polynomials over

the surface currents using Eqs. (2.3a) and (2.3b) and integrated over the triangles in the surface

mesh analytically. The following identities are used to evaluate the various required integrals

analytically:∫
T

c dST = c A , (2.5a)

∫
T

r dST = rC A , (2.5b)

∫
T

r · r dST =
[

9 rc · rc +
∑

i
ri · ri

]
A

12
, (2.5c)

∫
T

(a · r)r dST =
[

9 (a · rc )rc +
∑

i
(a · ri )ri

]
A

12
, (2.5d)

for arbitrary constant scalar c and constant vector a, where rc is the centroid and A is the area

of the triangle T .

2.2 Optical forces and torques

Propagating light waves contain momentum, which they can impart to particles [144, 145].

The more common and intuitive scenario is that of light pushing the particles in the direction

of propagation, the so-called scattering force [146]. However, it is also possible to pull particles

by certain optical beams [147]. In addition, inhomogeneities in the electric field intensity

intrinsic to the incident beam or created due to the presence of other structures interacting

with the incident field can result in a gradient force on the particle as well [146]. Such optical

forces have been used for trapping and manipulating particles since the pioneering work of
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2.2. Optical forces and torques

Ashkin [148], and have found practical applications in areas of physical and life sciences [56,

149–152]. Recently, the utilisation of complex optical landscapes, such as those produced

by nanostructures – in particular plasmonic nanostructures – has opened new possibilities

for trapping and manipulating structures at the nanoscale using near–field optical forces

[58–60, 153–164].

In the light of present and forthcoming opportunities to exploit optical forces, there is a need

for versatile numerical techniques with the ability to simulate optical forces and torques on

complicated systems with intricate geometries. Different approaches can be used to compute

optical forces, including interacting dipoles [165–168], analytical two spheres model [169],

generalised Mie theory [170] and numerical approaches using finite difference time domain

[171], to cite a few. To analyse optical forces on realistically shaped structures, the use of

numerical techniques is essential since no analytical methods are available for such general

calculations [172].

The optical force on an object placed in vacuum can be obtained by integrating the Maxwell’s

stress tensor σ on a surface S enclosing it. The conservation of momentum can be expressed

as [144]:

∂(Pmech +Pfield)i

∂t
=

∮
S

∑
j
σi j n j dS , (2.6)

where Pmech and Pfield are the mechanical and electromagnetic momenta, respectively. The

vector n̂ is the outward normal to the closed surface S, and σ is the Maxwell’s stress tensor

with components given by:

σi j = ε0Ei E j +µ0Hi H j − 1

2
(ε0Ek Ek +µ0 Hk Hk )δi j . (2.7)

If the fields have harmonic dependence (e−iωt ), the time average of the stress tensor over a

cycle can be written as

〈σi j 〉 = 1

2
Re

[
ε0Ei E∗

j +µ0Hi H∗
j −

1

2
(ε0Ek E∗

k +µ0 Hk H∗
k )δi j

]
, (2.8)

where the instantaneous fields have now been replaced by their complex amplitudes. The

time average of Pfield over an entire period is a constant. Hence its derivative vanishes and

the left hand side of Eq. (2.6) reduces to the total force on the volume enclosed by S. Thus the

time averaged optical force acting on the material is given by [173]:

〈Fi 〉 =
∮
S

〈σi j 〉 n j dS . (2.9)

The commonly used method to calculate optical forces from Eq. (2.9), illustrated in Fig. 2.1 (a),

is to choose a large number of points on a surface S enclosing the particle and perform
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Chapter 2. Efficient computation of secondary quantities from SIE surface currents

(a) (b)

Figure 2.1 – (a) The traditional approach used to calculate forces on nanostructures requires
integrating Maxwell’s stress tensor as a function of electric (E) and magnetic (H) fields over a
fictitious surface (e.g. a sphere) surrounding the structure; (b) we show that Maxwell’s stress
tensor can be obtained as a function of surface electric (J) and magnetic (M) currents directly
over the surface mesh elements.

numerical integration of the Maxwell’s stress tensor over these points. This method has a

few drawbacks. First of all, achieving sufficient numerical accuracy requires the evaluation

of fields at a large number of points on the surface, which is computationally expensive. In

addition, it is not always easy to generate points over a surface enclosing only the particle

when the particle is placed in the vicinity of some other nanostructure [174].

To overcome these difficulties, we notice that the surface of integration S can be shrunk to

just enclose the particle, so that it coincides with the outer boundary of the particle itself. We

can thus evaluate the Maxwell’s stress tensor and hence the force directly over the surface

mesh as illustrated in Fig. 2.1 (b), directly from the surface currents. There is no intermediate

computation of electric and magnetic fields using surface integrals, thereby improving both

the accuracy and the speed of calculation. Furthermore, no imaginary surface needs to be

generated around the particle and the method is able to deal with particles placed very close

to each other as well. The total optical force acting on the object will be

〈Fi 〉 =
∑

T

∫
T

〈σi j 〉 n j dST , (2.10)

where T are the triangles on the surface of the object. Substituting the forms for the surface

fields from Eqs. (2.3a) and (2.3b) in Eq. (2.10), we obtain the surface integral equation for the

optical force as:

F =
∑

T

∫
T

dST

{
(∇·M)(∇·M∗)

2ω2µ0
n̂+ (∇· J)(∇· J∗)

2ω2ε0
n̂− 1

2
(ε0M ·M∗+µ0J · J∗)n̂

+ i

ω

[
(J× n̂)(∇·M∗)+ (n̂×M)(∇· J∗)

]}
. (2.11)

From the forms of the surface currents in Eqs. (2.4a) and (2.4b), it can be seen that Eq. (2.11)

can be evaluated as a sum of quantities which can be computed analytically over the triangles
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Figure 2.2 – Relative error in force (F) and torque (T) as a function of the number of triangles
the surface is discretised into for a sphere of 30 nm radius illuminated at 390nm.

using Eqs. (2.5a) to (2.5c). Hence, once the currents are known, the force calculation takes O(N )

time only, where N is the number of triangles the surface is discretised into. In comparison,

had we created an imaginary surface surrounding the structure and evaluated fields on K

points on it, the field evaluation step would have had a time complexity of O(N K ). Note that

there is also a factor associated with the computation of Green’s tensor in the latter case, which

can become quite significant if the background is complex and the Green’s tensor evaluation

is costly.

2.2.1 Results

To demonstrate the validity of the technique, we compare our numerical results with the exact

solution given by Mie theory. The force on a silver sphere of 30 nm radius when illuminated

by a linearly polarised plane wave at 390nm is computed. Since we obtain the force on every

mesh describing the surface of the object, we can also compute the torque. This is done

for the same geometry, but the sphere is now illuminated with a circularly polarised plane

wave at the same wavelength. The dielectric constant of the sphere is taken from Johnson

and Christy [175]. The variation of the error with the discretisation of the spherical surface is

shown in Fig. 2.2. It is evident from the results that the error can be sufficiently minimised

with suitable discretisation of the structure.

After having demonstrated the accuracy of the method, we investigate a compound plasmonic

system consisting of two spheres separated by a distance d [169, 176, 177]. For the simulation,

we consider two silver spheres of 30nm radius separated by a centre to centre distance of

d = 70nm and 80nm. The wavelength dependence of the force for both separations is plotted

in Fig. 2.3. The force between the particles is attractive for the entire wavelength range. We

clearly see the signature of plasmonic resonance in the present system. The resonance blue

shifts as the gap between the spheres is increased. The z–component of the force Fz shows
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Figure 2.3 – Wavelength dependence of (a) z–component, and (b) x–component of optical
force on one sphere of a two-sphere system composed of two silver spheres of 30 nm radius
separated by a centre to centre distance of d . The system is illuminated by a plane wave
incident along z and polarised along x, as illustrated in the inset of panel (a), and the force is
computed for the sphere shown on the left.

similar magnitudes at the plasmon resonances for both separations since z is the direction

of the incident wave. Hence the force in the z–direction is primarily the radiation force and

is not affected significantly by the interaction with the other sphere, Fig. 2.3(a). However,

the x–component of the force is the internal force between the two spheres arising from the

electromagnetic interaction between them. Therefore increasing the distance between the

spheres reduces the x–component of the force Fx , as expected.

We now examine the effect of distance between the spheres more thoroughly. Figure 2.4 shows

the variation of the force between the nanoparticles for a given incident wavelength 370nm as

the separation is varied from 100 nm to 900 nm. The z–component of the force Fz saturates to

a constant value as the distance between them is increased. As explained earlier, this is the

(a) (b)
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Figure 2.4 – Distance dependence of (a) z–component, and (b) x–component of optical force
on each sphere of a two-sphere system composed of two silver spheres of 30 nm radius
separated by a centre to centre distance of d . The illumination geometry is same as that in the
inset of Fig. 2.3(a), and the wavelength of the incident light is 370nm. Particle 1 is the sphere
on the left.
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Figure 2.5 – Dependence of the y-component of torque (Ty ) on the angle of incidence (θ) for
the realistic structure shown in the inset for TM polarised plane wave illumination at 500nm.

expected behaviour since this is the radiation force. On the other hand, the x–component of

the force Fx oscillates in magnitude. This can be understood as follows. The incident field

induces dipole moments in both spheres which are very similar in magnitude and phase. The

force between two identical dipoles oscillates between attractive and repulsive depending on

the separation between them due to retardation effects [178]. Moreover, the forces on the two

spheres are equal and opposite due to the symmetry of the system, which again confirms the

numerical validity and accuracy of our formalism, Fig. 2.4(b).

We extend our formalism to calculate the torque on a realistic structure with a very com-

plex surface geometry shown in the inset of Fig. 2.5 [179]. The structure has approximate

dimensions of 50nm×30nm×30nm, and is illuminated by a TM polarised plane wave in

the xz–plane, incident at an angle θ with the z–axis. The y–component of torque is plotted

as a function of the angle of incidence in Fig. 2.5 and shows significant changes. When the

incident wave is normal to the principal axes of the system, the torque is small in magnitude.

The magnitude increases for oblique incidence. Such torque calculation as done here can be

used for understanding the motion of asymmetric particles in a optical tweezer.

Finally, we compare the force computed using our approach with an approximate formula

based on the gradient force [167, 180],

F = 1

4
Re{α}∇|E|2 , (2.12)

where α is the polarisability of the particle. The system under consideration is a gap antenna

with arms of dimensions 100 nm×40 nm×40 nm made of gold. The antenna is placed along x-

axis and illuminated by a planewave propagating along z and polarised along x, as illustrated

in the inset of Fig. 2.6. A sphere is placed at the centre of the gap and displaced by 5 nm along

y , and we look at the restoring force.
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Figure 2.6 – Restoring forces on a nanoparticle displaced from the centre of a plasmonic gap
antenna, computed using the Maxwell’s stress tensor method and using the gradient force
approximation. In (a), the gap size is 40 nm and the particle radius is 10 nm and in (b), they
are 80 nm and 30 nm respectively. Glass and gold spheres are considered.

Figure 2.6 (a) shows the comparison between the forces calculated using the gradient force

method and the Maxwell’s stress tensor method for a gap of 40 nm and the displaced particle

of radius 10 nm. We see that the gradient force approach is quite good for both the metallic

(gold) particle and the dielectric (glass) particle, though the quantitative agreement is better

for the latter. However, the situation is very different for the case of 80 nm gap and 30 nm

radius shown in Fig. 2.6. Here, though the two methods show very similar results for the glass

sphere, the mismatch is too high for the gold sphere. This shows that even when particles are

much smaller than the wavelength of light, the full Maxwell stress tensor integral is required

for accurate computation of the force.

2.2.2 Forces in dielectric media : The Abraham-Minkowski debate

Till now, we have been working with vacuum as the background medium while computing

the forces. When we move to a dielectric background such as water where experiments are

usually performed, there is confusion about the expression for the force. Fundamentally, this

confusion arises from the two commonly used definitions for the momentum of light: the

Abraham form E×H [181, 182] and the Minkowski form D×B [183].

In fact, there is a similar ambiguity in the definition of Poynting vector as well, and this can

change the computed radiative power [184]. However, this is not an issue in practice since the

scattering and absorption are usually computed normalised to the incident power, and using

the same expression for all Poynting vectors takes care of the problem. However, the case of

optical forces and torques is not that simple. Different forms of the stress tensor can result in

different values of the force if computed by direct integration. The “correct” expression for

stress tensor in dielectric media has thus been a topic of long standing controversy [145, 185,

186].
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Figure 2.7 – Scattering force on a 50 nm radius gold sphere in water computed by integrating
the Abraham and Minkowski stress tensors using the surface currents.

The expressions for the stress tensor under Abraham and Minkowski formulations are [187],

σA
i j = ε0Ei E j + 1

µ0
Bi B j − 1

2

(
ε0|E|2 + 1

µ0
|B|2

)
, (2.13)

σM
i j = Ei D j +Hi B j − 1

2
(E ·D+H ·B) . (2.14)

Note that they both reduce to Eq. (2.7) in vacuum.

Since both stress tensors have similar forms except for constant multiplicative factors, they

can both be integrated from the surface currents in similar fashion. The scattering force

computed using the two methods for a gold sphere of 50 nm radius immersed in water and

illuminated by a planewave is shown in Fig. 2.7. Not only do the Abraham and Minkowski

forces differ in magnitude, there is a difference in the qualitative features of the force plot at

lower wavelengths as well.

The reason for this difference is that stress tensors themselves do not contain the full picture.

They might omit the momentum contributions from the material medium as well as from

the interactions between light and the medium. Different stress tensors incorporate different

aspects of the interaction, and neither of them can be used naively in all circumstances [185].

Care should hence be taken to include the material contributions correctly in addition to the

stress tensor contribution while performing simulations in dielectric backgrounds, and the

correct expression of the stress tensor should be used for the situation. Once this choice has

been made, the integral of the stress tensor can be performed using the surface currents.
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2.3 Polarisation charges

Applying an electric field on an object placed in a background of a different dielectric constant

induces polarisation charges at the surfaces where permittivity changes abruptly. Numerical

evaluation of polarisation charges at nanostructure surfaces provides insights into various

aspects of the electromagnetic response of the nanostructures such as scattering, forces,

coupling, second harmonic generation and Fano resonances [188–195].

From Maxwell’s equations, the surface charge density at an interface can be expressed in terms

of the discontinuity in the normal component of the electric field at the interface,

σp = ε0(Eout −Ein) · n̂ . (2.15)

Using the normal component of the electric field found in Eq. (2.2a), this reduces to

σp =− i

ω

(
1

εr,out
− 1

εr,in

)
∇· J . (2.16)

Linearity of the RWG basis functions implies that the surface charge is constant over each

triangle. Care should be thus taken to refine the SIE surface mesh around regions where the

surface charge has large variations.

2.3.1 Results

As an example to show the usefulness of polarisation charge plots, we will look at the charges

on the gap antennae we analysed in the previous section. The polarisation charges on the

gap antennae with and without the gold sphere in the gap at the peak force wavelength are

presented in Fig. 2.8. The charge distribution on the 40 nm gap antenna in Fig. 2.8 (a) is not

(b)(a)

Figure 2.8 – Polarisation charges on the gap antennae in Fig. 2.6 at the peak force wavelength,
with and without the gold nanoparticle in the gap. In (a), the gap size is 40 nm and the particle
radius is 10 nm and in (b), they are 80 nm and 30 nm respectively.
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modified significantly by the introduction of the sphere. However, there is visible change

when the 60 nm gold sphere is introduced in the gap of the 80 nm gap antenna, shown in

Fig. 2.8 (b). The polarisation charges on the antenna arms move closer towards the gap faces.

The sphere is thus not just a passive element being influenced by the scattered fields from the

gap antenna, but affects the antenna in return as well. This explains the failure of the gradient

force approximation seen in Fig. 2.6.

2.4 Multipole moments

Though polarisation charges provide a good visualisation of the optical response of nanos-

tructures, multipole analysis of induced charges and currents provides a more quantitative

and physical understanding of the system [196–199]. Two different approaches are typically

employed to obtain the multipolar decomposition of the optical response. One method in-

volves decomposing the scattered field into the sum of orthogonal vector spherical harmonics,

and retrieving the moments from the coefficients of the basis functions [144, 200–203]. In the

second method, a series expansion is performed over the source currents, and the coefficients

of the terms in the expansion give the multipole moments [144, 197, 202–205]. We follow the

latter approach and attempt to express the multipole moments in terms of the surface currents.

The derivation will be along the same lines as [144], but using the volume integral equations

for electric field instead of the vector potential so that dielectric backgrounds can be dealt

with easily. Also, since we are interested in optical frequencies, only non-magnetic (µr = 1)

media will be considered.

Using the volume integral equation for electric field [97], the scattered field due to an object in

a volume V can be expressed in terms of the electric field within the scatterer as

Esc (r) = k2
0

∫
V

∆ε(r′) GB (r,r′) E(r′) dr′ , (2.17)

where k0 is the vacuum wavenumber, ∆ε = εr − εB is the difference between the relative

permittivities of the scatterer and the background (the dielectric contrast), and GB is the

dyadic Green’s function of the background medium given by

GB (r,r′) =
(

1+ ∇∇
k2

B

)
g B (r,r′)

=
(

1+ ∇∇
k2

B

)
exp(i kB s)

4πs
, (2.18)

where kB is the wavenumber in the background medium, and s = |r−r′| is the distance between

the source and observation points. We immediately see that the source of the scattered field

is localised within the object since the dielectric contrast is zero outside. It should also be

noted that this volume integral does not show any discontinuity across the interface since the

electric field remains finite, and we can thus work with our integration volume entirely inside
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the scatterer. Since the gradient operates on the observation coordinate r and the integral is

over the source coordinate r′, we can take the gradient operators outside the integral. We are

interested in homogeneous domains with a constant dielectric contrast for each domain, and

we can drop the explicit coordinate dependence to obtain,

Esc (r) =
(

1+ ∇∇
k2

B

)
esc (r)

=
(

1+ ∇∇
k2

B

)
k2

0

∫
V

∆ε
exp(i kB s)

4πs
E(r′) dr′ . (2.19)

We will attempt to obtain a multipole expansion over esc . Using Maxwell’s equations, the

electric field can be expressed in terms of the volume current density j as

E(r′) = i

ωε0(εr −1)
j(r′) . (2.20)

Plugging this in the previous equation and using the vacuum dispersion relation ω= k0c, we

have

esc (r) = iωµ0

∫
V

exp(i kB s)

4πs

εr −εB

εr −1
j(r′) dr′ . (2.21)

We now define the contrast current density,

jc (r′) = εr −εB

εr −1
j(r′). (2.22)

Note that the contrast current density would have been equal to the volume current den-

sity if the background was vacuum. Thus the dielectric background has been taken into

consideration in a very natural fashion. We finally obtain,

esc (r) = iω
µ0

4π

∫
V

exp(i kB s)

s
jc (r′) dr′ . (2.23)

The integrand is now identical to the one in Eq. (9.3) of [144], the quantity over which the

series expansion is performed - with the only difference that the current density has been

replaced by the contrast current density. Under the far-field approximation, we have

s ≈ r − r̂ · r′, (2.24)

where r = r r̂. Under this approximation, the scattered field reduces to

esc (r) = iω
µ0

4π

exp(i kB r )

r

∫
V

jc (r′)exp
(−i kB r̂ · r′

)
dr′ . (2.25)

Finally, we will perform a series expansion over the oscillating exponential term inside the
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integral to obtain,

esc (r) = iω
µ0

4π

exp(i kB r )

r

∑
n

(−i k)n

n!

∫
V

jc (r′)(r̂ · r′)n dr′ . (2.26)

The n = 0 term gives the electric dipole,

p = i

ω

∫
V

jc (r′) dr′ , (2.27)

where the prefactor has been added to match convention, so that we obtain the electric field

due to the dipole as

E(r) =ω2µ0GB (r,r′) ·p(r′), (2.28)

and the scattered power as

P = µ0ω
4pεB

12πc
|p|2. (2.29)

We will now convert the volume integral in Eq. (2.27) into a surface integral.

p = i

ω

∫
V

jc (r′) dr′

= i

ω

εr −εB

εr −1

∫
V

j(r′) dr′

= i

ω

εr −εB

εr

∫
V

∇′×H(r′) dr′

= i

ω

εr −εB

εr

∮
∂V −

n̂×H(r′) dS′

= i

ω

εr −εB

εr

∮
∂V −

J(r′) dS′ . (2.30)

The dipole moment can thus be found by integrating the surface electric current over the

domain boundary. Note that the integration surface lies just inside the volume (∂V −) since

J switches sign on crossing the interface. Next, we will find an alternate expression for the

dipole moment from the polarisation charges. We start with the identity

∇′ ·
[

x ′ εr (r′)−εB

εr (r′)−1
j(r′)

]
= x ′∇′ ·

[
εr (r′)−εB

εr (r′)−1
j(r′)

]
+ εr (r′)−εB

εr (r′)−1
jx (r′) . (2.31)

Now, let us integrate this identity over a volume which includes the object and its boundary

(V +). That is, unlike the previous case, the bounding surface is the outer boundary (∂V +) rather

than the inner boundary (∂V −). The LHS of the identity gets converted into a surface integral
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by Gauss’ theorem, but the integrand on the surface is identically zero because εr (r′) = εB

outside. The integral on the second term of the RHS is seen to be −iωpx by comparison with

Eq. (2.27). Thus we have

px =− i

ω

∫
V +

x ′∇′ ·
[
εr (r′)−εB

εr (r′)−1
j(r′)

]
dr′

=−ε0

∫
V +

x ′∇′ · [(εr (r′)−εB )E(r′)
]

dr′ . (2.32)

The integrand on the RHS vanishes everywhere except at the surface where it has delta function

behaviour. Integrating the delta function carefully, we obtain

px = ε0(εr −εB )
∮

∂V −

x ′E(r′) · n̂ dr′ . (2.33)

Note that the integral has to be done over the inner surface, since the normal component of

the electric field is discontinuous across the interface. Using Eq. (2.2a) for the perpendicular

component of electric field,

px =−i
εr −εB

ωεr

∮
x ′∇′ · J(r′) dS′ . (2.34)

This could also have been obtained by integrating Eq. (2.30) by parts. Finally, by comparing

with Eq. (2.16), we have

px = εB

∮
x ′σp (r′) dS′ . (2.35)

By repeating similar steps for y and z and combining the results, we obtain the following

expression for the dipole moment in terms of the polarisation charges:

p = εB

∮
r′σp (r′) dS′ . (2.36)

That is, the dipole moment is the position moment of the polarisation charges as we have in

electrostatics, but multiplied by a factor of εB . The multiplicative factor is not of particular

physical significance since it could have been absorbed by putting a different prefactor in

Eq. (2.27), but is required for consistency.

We now move on to the n = 1 term in the series expansion in Eq. (2.26),
∫
V

jc (r′)(r̂·r′) dr′. Follow-

ing [144], we write this as the sum of two quantities which are symmetric and antisymmetric

on exchanging jc and r′,

(r̂ · r′)jc = 1

2

[
(r̂ · r′)jc + (r̂ · jc )r′

]+ 1

2
(r′× jc )× r̂. (2.37)

The two terms correspond to electric quadrupole and magnetic dipole response, respectively.
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The magnetic dipole moment is given by

m = 1

2

∫
V

r′× jc (r′) dr′ . (2.38)

We will convert this into a surface integral by first expressing the contrast current in terms of

the curl of the magnetic field,

m = 1

2

εr −εB

εr

∫
V

r′× (∇′×H(r′)
)

dr′ . (2.39)

We now manipulate the integrand using vector calculus identities and Maxwell’s equations,

r′× (∇′×H
)=∇′ (r′ ·H

)+∇′× (
r′×H

)+H
(∇′ · r′

)−2
(
H ·∇′)r′

=∇′ (r′ ·H
)+∇′× (

r′×H
)− i

ωµ0

(∇′×E
)

. (2.40)

Every term on the RHS is a gradient or curl of some quantity, and their volume integrals can

be converted into surface integrals,

m = 1

2

εr −εB

εr

[∮ (
r′ ·H(r′)

)
dS′+

∮
dS′× (

r′×H(r′)
)− i

ωµ0

∮
dS′×E(r′)

]
. (2.41)

Though the result is cumbersome, the integrals can be expressed in terms of J and M, and

integrated analytically using Eqs. (2.5a) to (2.5d). The power scattered by the magnetic dipole

is

P = µ0ω
4ε3/2

B

12πc3 |m|2. (2.42)

We finally turn our attention to the remaining electric quadrupole term. Inside the domain,

we have

∇· [x ′ (r′ · r̂
)

jc
]= (

r̂ · r′
)

jc,x +
(
r̂ · jc

)
x ′ . (2.43)

Thus, ∫
V

[(
r̂ · r′

)
jc,x +

(
r̂ · jc

)
x ′] dr′ =

∮
∂V

x′(r′ · r̂) jc ·dS′ . (2.44)

Combining the similar results for y and z, and expressing the contrast current in terms of the
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electric field, we obtain the complete integral∫
V

1

2

[(
r̂ · r′

)
jc +

(
r̂ · jc

)
r′

]
dr′ =− iω

2
ε0(εr −εB )

∮
∂V

r′(r̂ · r′) (E ·dS′)

=− iω

2
εB

∮
r′(r̂ · r′)σp (r′) dS . (2.45)

We have managed to express the integral in terms of the polarisation charges as well. Based on

this, we can define the quadrupole moment tensor Q, with components

Qi j = εB

∮
(3x ′

i x ′
j − r ′2δi j )σp (r′) dr′ . (2.46)

The term being subtracted has been introduced to make the tensor traceless by conven-

tion [144], and does not affect the fields in the far-field radiation zone. The power radiated by

the quadrupole is

P = µ0ω
6ε3/2

B

1440πc3 |Q|2 . (2.47)

Electric dipole, magnetic dipole and electric quadrupole moments have thus been expressed

as surface integrals using the surface currents. In principle, further higher order moments

can also be computed following the same procedure, but it gets more and more cumbersome.

Fortunately, the contributions from the higher order moments are expected to be small

especially when the structure is subwavelength, according to the series expansion.

2.4.1 Results

We will first look at the moments on the gold dolmen structure in the inset of Fig. 2.9 (a). The

dolmen is composed of two vertical bars and a horizontal bar, each of dimensions 100 nm×
40 nm×40 nm. The vertical bars are separated by a gap of 60 nm. The horizontal bar has been

displaced from the centre of the gap between the vertical bars in plane by 20 nm along y and

out of plane (along z) by 50 nm so that the gap between the horizontal bar and the vertical

bars is 10 nm. The system is simulated with water (εB = 1.332) as the background medium,

and the permittivity data for gold is taken from Ref. [175]. The dolmen is illuminated by a

planewave propagating along −z and polarised along x.

The electric dipole, electric quadrupole and magnetic dipole moments for the system are

plotted in Fig. 2.9 (a). Since the moments themselves have different units, the radiated power

due to the multipoles is plotted instead, to be able to understand their relative magnitudes.

The sum of the radiated powers due to the three is also plotted. In addition, the scattering

cross section of the dolmen is computed by integrating the Poynting vector in the far field and
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Figure 2.9 – Electric dipole (P), magnetic dipole (M) and electric quadrupole (Q) moments
plotted in units of scattering cross section. The sum of the scattering cross sections for the
three moments and the scattering cross section found by integrating the Poynting vector in
the far field are also shown for comparison. (a) Gold dolmen structure in water with arms of
dimensions 100 nm×40 nm×40 nm. The horizontal rod is displaced from the centre of the
pair of vertical bars by 20 nm along y and by 50 nm along z. The vertical bars have a 60 nm
gap between them. The system is illuminated by a planewave in the −z direction polarised
along x. (b) Silicon sphere of radius 75 nm placed in silica.

normalising the result to the incident field Poynting vector,

Csc =
∮ 1

2 Re
[
Esc ×H∗

sc

] ·dS∣∣1
2 Re

[
Ei n ×H∗

i n

]∣∣ . (2.48)

This result is also shown for comparison.

The first spectral feature which is immediately evident is the Fano resonance, which is expected

for dolmen structures [206–208]. The scattering cross section and the electric dipole moment

show two distinct peaks with the Fano dip between them. The electric dipole gives the bulk of

the contribution towards the scattering, except near the Fano dip where the magnetic dipole

and electric quadrupole terms become relatively significant as well. The dip in the scattering

cross section is shallower than the electric dipole moment alone would indicate, due to the

contribution from the magnetic dipole and electric quadrupole terms.

Although the three moments provide a good qualitative description of the spectrum, the

quantitative agreement is not so good. In fact, adding up the scattering contributions from

the three moments gives a higher result than the far field scattering cross section itself. This

is because, unlike the multipole moments defined using vector spherical harmonics, the

moments found here do not give orthogonal fields in the radiation zone and directly adding

up the scattering cross sections is incorrect in general. We can easily see that this has to be the

case by performing a coordinate transformation. Equation (2.27) is independent of the choice

of origin of the coordinate system and arbitrary translation of the origin leaves p invariant.
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However, m does change with the choice of the origin as evident from Eq. (2.38). One could

in principle perform a translation of the coordinate system origin with a magnitude which

is large enough to make the radiated power due to the magnetic dipole itself higher than the

scattering cross section. The resolution is thus to accept that the higher order terms which

have not been considered here result in radiated fields which are non-orthogonal, and modify

the scattering cross section through cross terms. As the size of the nanostructure becomes

larger, the contribution of the higher order terms is going to increase as well. Care must thus

be taken while evaluating the magnitudes of the moments, especially for large structures. In

particular, for asymmetric structures, the choice of origin should be considered carefully to

extract useful physical information from the moments.

The next system we look at is a silicon sphere (permittivity data taken from [209]) of radius

75 nm placed in silica (εB = 1.52). The sphere is illuminated by a planewave propagating

along z and polarised along x. The origin of the coordinate system is at the centre of the

sphere. Due to symmetry, the induced electric dipole is expected to be along x, the magnetic

dipole to be along y , and the electric quadrupole to have only xz- and zx-components. These

conditions were verified to be satisfied from the numerical results which are not shown here.

The scattering cross sections computed using the different moments are plotted in Fig. 2.9 (b).

The magnetic dipole is now quite strong throughout the wavelength range, and results in the

scattering peak showing a significant red shift compared to the dipole moment itself. The

qualitative features of the scattering spectrum can be explained well using the multipolar

moments.

This example illustrates the utility of multipole moments. We will study polarisation charges

and electric dipole and quadrupole moments in more detail in Section 8.3.

2.5 Conclusion

We have developed a novel formalism for the calculation of optical forces and torques, po-

larisation charges and multipole moments utilising the SIE surface currents. The method is

straightforward, flexible and bypasses some numerical steps to allow accurate and efficient

computation. In particular, all the calculations for arbitrarily shaped objects only require

the SIE surface mesh discretisation. We have applied this formalism to compute the optical

forces on some simple as well as complicated systems to prove its validity and accuracy by

comparing it to existing calculations. We have also shown how polarisation charges and

multipole moments provide valuable physical insights into the optical response of plasmonic

systems. These tools thus promise utility in improving the efficiency and accuracy as well as

the understanding of SIE simulations, and it would be useful to extend the surface current

integral method for computing other physical quantities.
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procedure

In this chapter, we study the convergence of the integrals in the SIE formulation. We analyse

how the numerical quadratures used to compute the integrals affect the accuracy of the SIE

matrix elements and, in turn, that of the physical quantities calculated using the method.

Based on these studies, we propose an optimised algorithm for evaluation of the integrals,

which improves the accuracy of the results without significantly increasing the calculation

overhead. Parts of this chapter were published in a peer-reviewed journal article [210].

3.1 Introduction

Even though the surface integral equations themselves are completely accurate within the

realm of classical electrodynamics, any numerical implementation would only be able to

solve them approximately. The various fields and currents are expanded in terms of a finite

number of basis functions which can only approximate the actual values. There are multiple

approaches to address this problem. One method used to tackle this issue in finite element-

based methods in electromagnetics and other fields is to use basis functions which are of

higher order than linear [87, 211]. The higher order basis functions can approximate the

real fields more closely than constant or linear functions. When used in conjunction with

curved isoparametric elements to describe the domain boundaries, very good geometrical

and physical agreement can be achieved between the basis functions and the fields [212, 213].

Alternately, one could make the simulation mesh finer and finer so that the variations of the

geometry and the field over a mesh element are negligible. Unfortunately, these approaches

are complicated and increase computational costs tremendously in three dimensional prob-

lems [87]. In addition, the 4-dimensional integrals required in the calculation of the matrix

elements involving the Green’s tensor have to be done numerically. If the scatterer surface

is discretised into N elements, O(N 2) such integrals will have to be computed, and using

complicated algorithms to calculate the integrals accurately can be prohibitively expensive. It

is therefore desirable to use low-order integration routines as long as it does not compromise

the accuracy, and even validity, of the results. These integration problems are magnified by the

singular nature of the integrand for some integrals involving overlapping or nearby elements.
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In the general context of the method of moments, much work has been dedicated to improving

the integral accuracy using schemes of singularity subtraction [98, 140, 214, 215] or improved

numerical integration [216, 217].

Here we focus specifically on the relevance of these problems for the modelling of the optical

properties of metallic nanostructures. We study the link between numerical quadrature order

and integral accuracy, and how it relates to the accuracy of the physical quantities calculated by

SIE. Since we are mostly interested in finely meshed sub-wavelength structures in plasmonics,

wave effects due to the change of phase of the Green’s tensor over a triangular element are

not of primary concern. However, the singular behaviour of the Green’s tensor at the source

causes a large variation in amplitude over triangular elements close to it. It is this latter effect

which is numerically more relevant in plasmonics. Hence we will be addressing specifically

the geometric singularities rather than wave effects.

3.2 Evaluation of D and K integrals for the SIE matrix

The optical response of nanostructures to arbitrary illuminations is contained in their D and K

matrices. We refer the reader to Section 1.2 for their definition and derivation. The evaluation

of D and K matrix elements require 4D integrals according to Eqs. (1.12a) and (1.12b), which

are performed as successive 2D integrals over the source and test triangles. Two types of 2D

numerical quadratures for the triangle will be considered to study the effect of the number of

integration points on accuracy:

• Symmetrical Gaussian triangular quadratures as derived in Ref. [218], which will be

called Dunavant quadrature for short. The quadrature orders used here are nO = 1, 2,

3, 4, 5, 6, 7, 10, 13, 17 and 19, which correspond to Nq = 1, 3, 4, 6, 7, 12, 13, 25, 37, 61

and 73 integration points, respectively. The quadrature points for nO = 5 (Nq = 7) and

nO = 17 (Nq = 61) are shown in Fig. 3.1 (a) and (b) respectively. The quadrature points

can be seen to follow all the symmetries of the triangle. However, they are not placed

on the triangle uniformly. For large nO , there are more points far from the centre of

the triangle, for example. It should be noted that the different quadrature points are

assigned different weights during integration.

• Uniform subdivision of the triangle, consisting of subdividing each edge into n elements,

resulting in dividing the area into n2 congruent sub-triangles. The centres of the sub-

triangles are the Nq = n2 quadrature points. The quadrature orders used are 21, 30

and 40, corresponding to Nq = 441, 900 and 1600 integration points, respectively. The

quadrature points for nO = 21 (Nq = 441) are shown in Fig. 3.1 (c). The points are

distributed symmetrically and uniformly, and are assigned identical weights during

integration.

Note that for a given Nq , the total number of quadrature points for the 4D integral is N 2
q .

30



3.3. Accuracy of the matrix elements

(a) (b) (c)

Figure 3.1 – Quadrature points for (a) Dunavant quadrature of order nO = 5 (Nq = 7), (b)
nO = 17 (Nq = 61), and (c) uniform subdivision of order nO = 21 (Nq = 441).

The standard singularity subtraction (SSS) scheme is used for both D and K integrals. Addi-

tionally, the following techniques were also implemented to improve the accuracy:

First, within the SSS scheme, the double integrals involving 1/(4πR) which is the dominant

term in the singular Green’s function in Eq. (1.14) can be computed entirely analytically for

identical triangles in D, using the formulae of Ref. [219]. The remaining integral involving

G i (R)−1/(4πR) is then integrated numerically without any singularity issues.

Second, for non-identical triangles, it has been pointed out by Yla-Oijala and Taskinen in

Ref. [215] that there also remains a “small” logarithmic singularity for K associated with the

second term in G i
sing(R), which may cause problems in the numerical integration over the test

triangle. They also proposed to overcome this problem by changing the order of integration

and replacing the outer integral (now over the source triangle) by a line integral over its edges

(Eq. (22) in Ref. [215]). This approach was implemented and will be referred as the SSL method

(singularity subtraction with line integral). In these cases, the line integral is computed using a

standard Gauss-Legendre quadrature. The number of quadrature points on the line is chosen

to be Nl = 4nO , so that it is approximately equal to the number of points on the triangle for

Dunavant quadratures. For example, for nO = 17, we have Nl = 68 and Nq = 61.

3.3 Accuracy of the matrix elements

We first consider the accuracy of the D and K matrix elements used to construct the full SIE

interaction matrix. We focus on the integrals involving the Green’s function of the embedding

domain (with relative permittivity chosen as ε1 = 1), as they are not strongly dependent

on permittivity. For illustration purposes, we will consider a cuboid, shown in the inset of

Fig. 3.2(d), as it provides a variety of configurations between pairs of elements. To avoid

wave effects, the structure and thus the triangular elements are made much smaller than

the simulation wavelength. The cuboid dimensions are 20 nm×5 nm×5 nm whereas the

wavelength is 500 nm. The surface of the cuboid is discretised into 160 triangles. To study the

accuracy of the reaction integrals, we classify the triangle pairs (T,T ′) into the following four

groups, which we identified as having different convergence properties:
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• Identical triangles, i.e. T = T ′.

• Adjacent triangles, when T and T ′ share a common edge.

• Touching triangles, when T and T ′ share only a common vertex.

• Other triangles in all the other cases.

The cuboid example conveniently contains several pairs in each of these groups, including

both coplanar, non-coplanar, and orthogonal configurations. The integral accuracy, as esti-

mated from the relative error with respect to the value obtained for the largest quadrature

order (nO = 19), is studied as a function of the number of quadrature points Nq . Note however

that computing times scale approximately quadratically with Nq for double integrals.

Fig. 3.2 shows the results obtained for the integrals pertaining to the D matrix. It is clear that

the Dunavant quadratures outperform uniform quadratures significantly. This should not

be surprising since the Dunavant quadrature is specifically designed to capture higher order

polynomial approximations of the integrand with increasing order of integration [218]. We

will therefore only focus on Dunavant quadratures in the rest of this study. Moreover, for all

triangle pairs, relative errors of 10% or better are obtained even with a single integration point

(Nq = 1). If a higher accuracy is required, then this is easily achieved with a small number

of points for most triangle pairs, but convergence is slower for pairs with a common edge or

vertex. Overall, using Nq = 61 (order 17) for these pairs and Nq = 7 (order 5) for the others will

guarantee a relative error of 10−4 or better for the entire D matrix. In addition, for identical

triangles, we compare in Fig. 3.2(a) the SSS method with the alternative approach with 4D

analytical evaluation of the singular part of the integral [219]. The latter provides improved

precision and is also marginally faster, so should clearly be preferred.

A similar study can be carried out for the K matrix, the results of which are shown in Fig. 3.3.

The situation is slightly more complicated here. The integrals are zero for pairs of coplanar

triangles [215], which includes identical triangles, so these special cases should not be calcu-

lated but enforced to be zero and are therefore excluded from the analysis. In addition, as seen

in Fig. 3.3(a), a small number of integrals exhibit an abnormally large relative error. A closer

look indicates that these problematic integrals are in fact much smaller in magnitude than the

average integrals. This can be attributed to the cross product in Eq. (1.12b) – the magnitude

of the K matrix integral is strongly dependent on the relative orientation of the two triangles

and can become very small if one of the triangles is nearly coplanar to their relative position

vector. The errors in these elements are thus not absolutely higher than the errors in the other

elements of the matrix, and it is their low values which result in large relative error. We expect

that these are unlikely to affect the final results. A fairer estimate of the error in this case is

by normalising the absolute error to a typical magnitude of the K matrix, which we chose as

the root-mean-square average of the modulus of the non-zero matrix elements. As seen in

Fig. 3.3(a), this normalised error is of the same order as the relative error in most cases, but
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Figure 3.2 – Variation of the relative errors of the D-matrix integrals as a function of the number
of quadrature points per triangle, for a cuboid mesh of 160 triangles as shown in (d). Four cases
are distinguished depending on the pair of source and test triangles. (a) Identical triangles,
(b) adjacent triangles sharing an edge, (c) touching triangles sharing a vertex, and (d) other
triangles. The Dunavant quadrature (open symbols) is compared to the uniform triangular
quadrature (filled triangles), which is clearly much worse. In (b), the data are shown explicitly
for 48 individual pairs of triangles out of a total of 480 pairs with a common edge to highlight
the two different groups corresponding to coplanar and non-coplanar pairs (the latter are
located along sharp edges of the rectangle). In (a,c,d), we show the statistical analysis of the log
of the error over 160 (a) or 1400 (c,d) pairs of triangles, i.e. the symbols represent the geometric
mean and the error bars the standard deviation of the log of the error.

not affected by the small-magnitude integrals, so it is used in Fig. 3.3 to characterise the errors

in the K-matrix elements.

It is clear from Fig. 3.3(b) that the integrals for K can be highly inaccurate in the case of

triangles with a common edge. The normalised error can be of the order of 100% with one

integration point and remains as large as 1−10% with Nq = 61. This slow convergence is in

fact associated with a remaining logarithmic singularity in the numerical integral, which can

be overcome using the SSL method [215]. Figures 3.3(b,c) also show the errors obtained using

this SSL method. It is evident that this method improves the accuracy for adjacent triangles,
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Figure 3.3 – Variation of the errors in the K-matrix integrals as a function of the number of
integration points using Dunavant quadratures for the same cuboid mesh as in Fig. 3.2. To
avoid artificial problems with low-magnitude matrix elements, we compute the normalised
error as the absolute error normalised to the root mean square of the K -matrix elements. The
two measures are compared in (a) for 21 pairs of adjacent triangles sharing an edge (which
are necessary located along sharp edges). The other cases are shown in (b-d) as the statistical
analysis of the log of the error, like in Fig. 3.2. In (b,c) the results from the standard singularity
subtraction (SSS) and the alternative singularity subtraction with line integral (SSL) [215] are
compared.

by a factor as large as 100 when using Nl = 68, Nq = 61, which results in errors of 0.01−0.1%

only. Interestingly, as seen in Fig. 3.3(c), for triangles with only a common vertex (and for all

non-adjacent triangles), the line integral formulation does not offer any improvement and is

therefore not necessary.

Finally, we note that Figs. 3.2 and 3.3 can also be obtained for the matrices/integrals corre-

sponding to the metallic domain (with ε2 =−8.5+0.4i ). They are not shown here as they are

virtually identical to those obtained for the free-space Green’s function. This can be under-

stood because the integration problems are primary geometrical and associated with the 1/R

dependence in the Green’s function, not the exp(i kR) factor, which is anyway almost constant

over a given triangle in meshes relevant to plasmonics.

34



3.4. Proposed algorithm

3.4 Proposed algorithm

Based on these results, we propose the following algorithm to compute the SIE matrix ele-

ments to reasonable accuracy without making the computation too expensive. Two Dunavant

quadratures are used depending on accuracy requirements: nO = 5, Nq = 7 for low-precision,

and nO = 17, Nq = 61 for high-precision. The integrals are computed as follows:

• All the double integrals on identical triangles for D are computed from the full analytical

formulae [219] for the singular part of the 4D integrals and numerically with nO = 17 for

the smooth part. A lowest order would give the same accuracy for small triangles, but

would not result in significant speed improvements. For K, these integrals are zero.

• All the double integrals on triangles sharing a common edge are computed using the SSS

method with high-precision (nO = 17) quadrature for the numerical integration over test

triangles. Moreover, for K, the SSL line integral formulation proposed in Ref. [215] is used,

with a one-dimensional Gauss-Legendre quadrature with Nl = 4nO = 68 integration

points.

• All the double integrals on triangles sharing a common vertex are computed using the

SSS method and nO = 17. The line integral formulation is not needed for these.

• All other double integrals are computed using the SSS method and low-precision quadra-

ture (nO = 5).

• Finally, as pointed out in Ref. [215], the SSS method is not necessary for triangles that

are sufficiently far from each other. No singularity subtraction is therefore applied if

the following criterion is met: d > (p1 +p2)/2, where d is the centre-to-centre distance

and p1 and p2 are the perimeters of T1 and T2. The criterion is geometric rather than

wavelength-dependent because it is the fast variation in the Green’s function due to

the singular term that throttles the accuracy rather than wavelength-dependent phase

effects when the nanostructures are finely meshed compared to the wavelength.

This approach, which we will denote for short acc-SIE (accurate SIE), guarantees a relative

accuracy of 10−4 or better for the vast majority of integrals of the SIE matrix. It could be argued

that such a fine accuracy is not needed in most practical cases, but it may be important for

some aspects of the problem (such as absorption) and for some geometries (such as those

with sharp edges). One could also adjust these choices to specific needs, but it should be noted

that the limiting step for realistic calculations with a large number of degrees of freedom in the

case of homogeneous domains is not the matrix calculation but its inversion. This is because

only O(N 2) matrix elements have to be computed for a structure discretised into N triangular

elements whereas inverting the matrix requires O(N 3) operations. Compromising on matrix

accuracy may therefore not result in worthwhile gain in computing speed for challenging

problems with many degrees of freedom. However, the situation could be different in the case

of other media where Green’s tensor calculation is itself a costly operation.
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Figure 3.4 – Symmetry of the matrix elements for the cuboid mesh in Fig. 3.2(d) obtained
from the coarse (std-SIE, Nq = 1, left) and optimised (acc-SIE, Nq = 7,61 with SSL, right)
methods presented in this paper. Only a subset of 50×50 elements is shown for clarity. The
colour maps represent the number of digits agreement, i.e. α=− log10(ε) for a given error ε
between transposed elements. The relative error is considered for the D matrix (a,b), and the
normalised error for the K matrix (c,d). Note the different scales in each panel, and that the
error is larger than 100% (α< 0) for some elements in (a,c).

3.5 Validation of the proposed implementation

We will now compare the performance of this proposed optimised algorithm with the approach

previously used for plasmonics calculations (and denoted here std-SIE), where the SSL method

is not used and numerical integrations are carried out with a single integration point (Nq = 1).

3.5.1 Symmetry of matrix elements

One relatively straightforward way to assess the accuracy of the SIE matrix is to check the

symmetry properties of the matrix elements. In principle, both D and K should be symmetric,

since the Green’s tensor itself is symmetric between source and observation points in the

case of homogeneous media. This is a consequence of electromagnetic reciprocity [220]. But

numerically, the symmetry is broken when applying the singularity subtraction method, which

involves integrating over one triangle analytically and the other numerically. The error in the

symmetry of these matrices can therefore indicate their accuracy. Moreover, any significant

breakdown of the symmetry could result in unphysical predictions (for example like negative

absorption).

The degree of symmetry in the D and K matrix elements are shown in Fig. 3.4. It is evident

that the acc-SIE method shows a much higher degree of symmetry compared to the coarse

approach for all types of matrix elements. In particular, std-SIE outputs matrix elements

might have a relative difference of more than 100% compared to their symmetric counterparts.
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In comparison, all matrix elements found by acc-SIE are symmetric at least to the second

decimal, and the bulk of the matrix elements are symmetric up to four digits or more.

3.5.2 Optical properties

We now move on to study the effects of integration quadrature on the accuracy of physical

quantities calculated by SIE. We consider two sets of optical properties - optical cross sections

and surface fields. The surface fields were obtained directly from the electric and magnetic

surface currents using Eqs. (2.3a) and (2.3b). The extinction and absorption cross-sections are

then derived by integrating the relevant Poynting vectors on the particle surface [221], namely:

σext =−1

2

∫
S

Re
[(

Einc ×H∗
surf +Esurf ×H∗

inc

) ·n
]

dS, (3.1a)

σabs =−1

2

∫
S

Re
[(

Esurf ×H∗
surf

) ·n
]

dS, (3.1b)

where Einc, Hinc are the incident fields. This provides a fast and accurate way of computing

those important properties. From the surface fields, we can also derive the average field

intensity enhancement factor as : 〈|Esurf|2/|E0|2〉, where 〈 〉 denotes surface averaging. The

parallel and perpendicular components may be considered separately.

We will study two systems relevant to plasmonics, a silver sphere of 30 nm radius and a

tetrahedron of side 40 nm both embedded in water. Both systems are illuminated by plane

waves incident in the z-direction and polarised along x. The relative permittivity of water

is taken to be constant (ε = 1.77) throughout the wavelength range, whereas the relative

permittivity of silver is taken from the analytical fit to experimental data [36, 222].

The surface of the silver sphere is discretised by meshes of increasing finesse, and the structure

is simulated using both the proposed optimised algorithm (acc-SIE) and the standard method

(std-SIE). The exact optical response of the sphere on illumination by the plane wave is also

calculated using Mie theory [36] and used as a benchmark. For the system under consideration,

considering the first ten terms in the Mie expansion guarantees convergence to machine

precision.

We first consider the wavelength-dependent far-field and near-field properties, which result

from the surface plasmon resonances of the nanostructure. Fig. 3.5 summarises the main

results for a representative coarse mesh (N = 240) and a finer mesh (N = 840). Both the std-SIE

and acc-SIE approach predict the main features of the resonance, even with the relatively

coarse mesh. We do however observe discrepancies when looking more closely at the details.

Notably, the std-SIE approach exhibits significant errors in the quantitative determination of

the absorption cross-section and of the perpendicular and parallel components of the average

local field intensity enhancement factor (EF). The acc-SIE approach is much better in this

respect, although the finer mesh (N = 848) is necessary to reproduce closely the exact results.
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Figure 3.5 – Wavelength-dependence of (a-b) the far-field, and (c-d) near-field optical proper-
ties for a 60 nm diameter silver sphere in water modelled with SIE utilising the std-SIE and
acc-SIE approaches. Panels (a,c) show the results for a coarse mesh (N = 240), whereas panels
(b,d) have a finer mesh (N = 848).

This can be attributed to the fact that the coarser mesh is not yet an accurate approximation

to the spherical geometry.

In order to study the accuracy more quantitatively, we compute the error in the optical

properties for various mesh finesses. We focus on a single wavelength, 470 nm, which is close

to resonance but not at resonance to avoid placing too much emphasis on errors associated

with resonance shifts. The convergence properties of both approaches (std-SIE and acc-SIE)

are presented in Fig. 3.6. It can be seen that the std-SIE approach provides an accuracy almost

comparable to the acc-SIE approach for both the extinction cross-section and the average

field intensity on the surface. However, it is an order of magnitude less accurate in terms

of predicting the absorption cross-section and the parallel component of the surface field.

Even with a mesh refinement of 2400 triangles, the std-SIE method shows an error of 5% or

more whereas the acc-SIE is better by an order of magnitude. Although comparable accuracy

could eventually be reached with the std-SIE approach, it would require a much finer mesh
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Figure 3.6 – Comparison between the results calculated by SIE utilising the std-SIE and acc-SIE
approaches for a 60 nm diameter silver sphere in water at 470 nm, as a function of the number
of triangles on the mesh. 7 meshes of increasing finesse are considered (a). The properties
studied are the extinction (b) and absorption (c) cross sections, the average electric field
intensity (d), and the average parallel electric field intensity (e). The relative error is obtained
by comparison with the exact results of Mie theory.

and therefore, more CPU/memory resources. We note that the same conclusions would be

obtained by doing the study exactly at resonance (429 nm, not shown here).

In contrast with a sphere, a tetrahedron contains sharp corners and edges around which the

fields are expected to vary significantly. One therefore expects numerical predictions to be

much more challenging. To capture the field variations reasonably well using linear basis

functions, the mesh has to be refined near the edges and corners. The mesh we used to

simulate the tetrahedron contains 4680 triangles, and is shown in Fig. 3.7(d). The wavelength

dependence of the extinction and absorption cross sections and average surface field intensity

as computed by both the std-SIE and acc-SIE approaches are plotted in Fig. 3.7. Despite the

finesse of the mesh, the std-SIE approach clearly fails to predict any physical results. In partic-

ular, the absorption cross section is found to be negative. This sort of unphysical behaviour

arising from the inaccuracy of SIE using coarse quadratures has been reported before [223].

In comparison, the acc-SIE approach shows a smooth behaviour without any such glaring
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Figure 3.7 – Wavelength-dependence of optical properties for a silver regular tetrahedron
of 40 nm side embedded in water, computed using the std-SIE and acc-SIE approaches: (a)
Extinction cross section, (b) absorption cross section, and (c) average surface field intensity.
The mesh used for the calculation is shown in (d).

unphysical results (the accuracy of the results would nevertheless need to be checked by

considering finer meshes, but this is outside the scope of this work). The particularly poor

behaviour of the std-SIE approach can be understood from the fact that the optical proper-

ties here are likely to be very sensitive to potentially large errors in the integration of nearby

elements around the edges and corners, which play a significant role in the optical properties.

We note that sharp edges or corners may be an idealisation of realistic nanostructures, which

often exhibit some degree of rounding of the edges and corners. They are nevertheless an

important theoretical tool as rounding of the edges introduces additional parameters that are

often difficult to measure experimentally. Moreover, the modelling of structures with sharp

edges or corners will be necessary to understand the consequences of such rounding on the

optical properties.
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Figure 3.8 – Components of optical force on the c-shaped gold structure found using (a) std-SIE,
and (b) acc-SIE for different number of triangles (T) on the mesh. The geometry is illustrated
in (a), and the system is illuminated by a planewave along z with circular polarisation L.

3.5.3 Optical forces

Next, we look at the effect of the improved integration recipe on the computation of optical

forces on complicated structures. To this end, we study the optical forces on the c-shaped

gold structure shown in Fig. 3.8 (a). The structure has dimensions of 170 nm×160 nm×40 nm,

and the cross section of the arms is circular with a radius of 20 nm. The structure is placed

in vacuum and illuminated by an L-polarised wave propagating along z. Three different

triangular meshes are considered, with triangle counts of 2240, 3820 and 5700. The forces are

computed directly from the surface currents following the method developed in Section 2.2.

The forces on the structure computed by std-SIE are shown in Fig. 3.8 (a). The dominant

component of the force Fz retains its shape and magnitude on increasing the triangle count,

but the position of the peak seems to continuously shift to higher wavelengths. The lateral

force component Fx seems to be quite high – but it keeps reducing in magnitude as the

triangle count is increased, without signs of convergence. The Fy component of the force

seems negligible.

The forces computed by acc-SIE, plotted in Fig. 3.8 (b), show a very different picture. The Fz

component has retained its shape but the peak has moved further to a higher wavelength.

There is little difference between the values for the three meshes. The component Fx has

drastically reduced in magnitude, which could perhaps have been observed with std-SIE too if

the mesh had been further refined. There seems to be some difference in the values for T =
2240 and 3820, but we seem to be reaching convergence at 5700. It should be noted that it is

physically possible for such a lateral force to exist since the object is asymmetric and could

scatter asymmetrically. But the magnitude of the force due to such scattering asymmetry

should be quite weak for such small structures. We get the correct prediction from acc-SIE,

but the results of std-SIE were completely misleading.

This result shows once again that using the optimised integration recipe gives more accurate

results at much lower triangle counts. The associated increased computational cost could

thus well be offset by the reduction in the required mesh refinement.
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3.6 Extension to periodic backgrounds

The SIE formulation can be extended to periodic structures [109, 224]. The matrix formulation

remains the same, with the difference that the Green’s function is now modified to incorporate

the periodicity in the system:

Gi ,per(r,r′) =∑
t

e i ki |Rt|

4π |Rt|
exp(i k · t) , (3.2)

where the summation is performed over t, the set of translations of all unit cells. R = r−r′, and

Rt = R− t. We will consider only 2D periodicities in this section, following the treatment of

Ref. [109].

Unlike the Green’s function for a homogeneous background, the above expression does not

have a closed form and has to be performed as an infinite sum. The summation can be sped

up using Ewald’s method [225–228]. We do not go into the details here since they can be found

in Ref. [109]. What is important is that the singularity in the periodic Green’s function is of the

same form as the homogeneous Green’s function. This can be understood from Eq. (3.2) – the

singularity appears only in that term of the summation where r and r′ lie on the same unit cell

of the lattice after translation, in which case the term reduces to the homogeneous Green’s

function. The singularity subtraction can thus be performed in the same fashion as for the

homogeneous background. It should also be noted that, since the Ewald’s method truncates

the sums after a finite number of terms in the reciprocal lattice, the Green’s function found is

still not exact. We use 9 terms in the Ewald sum, following Ref. [109].

We thus implement the optimised integration recipe for periodic backgrounds in an identical

fashion. We test the optimised recipe on a system consisting of two media separated by a

planar interface. The z > 0 region is vacuum, whereas the z < 0 region is composed of material

with εr = 4. A plane wave of 600 nm propagating in the −z-direction and polarised along x is

incident on the interface. Note that it is not possible to simulate the response of this system

using homogeneous SIE since the media are unbounded. However, periodic SIE permits

the simulation by considering the space as composed of repeating unit cells. We choose

a 400 nm×400 nm square lying on the x y-plane and centred on the origin as the unit cell.

Repeating the unit cell periodically tiles the entire plane.

We compute the reflected fields at various heights using the surface integral equation for

the scattered field. To find the dependence of the error on the distance, sets of 100 random

points each are chosen chosen in the following four bins of heights : 0−10 nm, 10−100 nm,

100− 1000 nm and 1000− 10000 nm. The reflected fields are also computed analytically

using Fresnel coefficients. The relative error is found as the ratio of the norm of the difference

between the computed and analytic fields to the norm of the analytic field (which is a constant).

The relative error is averaged over all the 100 points in the height bin and plotted in Fig. 3.9 (a).

We see that acc-SIE continues to outperform std-SIE significantly at all heights. When the

mesh count is small, fields close to the interface are extremely inaccurate for std-SIE. On the
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Figure 3.9 – Relative error in the electric fields computed at different heights by std-SIE and
acc-SIE using (a) 9 terms, and (b) 25 terms in the Ewald sum for Green’s function computation.

other hand, acc-SIE gives very accurate results with errors between 1% and 0.1% from the near

zone to the far zone. Increasing the mesh size improves the accuracy for both std-SIE and

acc-SIE, but the latter retains its dominance.

However, increasing the number of triangles beyond a point does not seem to improve the

accuracy of acc-SIE as the error flattens out. The error in std-SIE is much worse, and the

triangle count would have to be increased tremendously for it to reach the flat error region.

Though the error itself is quite small, this kind of flattening would seem puzzling. After all,
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Figure 3.10 – Absorption by 30 nm radius silver spheres in a square array of periodicity 70 nm
placed in vacuum 10 nm above an interface with glass, computed using (a,b) std-SIE and (c,d)
acc-SIE. The system is illuminated from the glass side by a TM polarised planewave with an
angle of incidence of 45◦. The absorption by a sphere is normalised to the total incident energy
per unit cell, and absorption is computed in two ways : integrating the Poynting vector on the
surface from the surface currents (a,c), and taking the compliment of the sum of reflectance
and transmittance (b,d).

sufficient refinement of the mesh is supposed to achieve better and better convergence down

to machine precision. This does not happen here because, at large mesh sizes, the accuracy of

the result is not throttled by the integration routine but by the accuracy of Green’s function

computation. To see this, we have repeated the computation using 25 terms in the Ewald sum

in Fig. 3.9 (b). The error now flattens to a lower value for acc-SIE. The result for std-SIE is

nearly identical to the previous case with 9 terms, showing that the error there is limited by the

accuracy of the integration routine and finding the Green’s function to better accuracy does

not help.

Next, we consider the absorption by a square array of silver spheres above a vacuum-glass

interface. The radius of the spheres is taken to be 30 nm, and they are placed in a square

array with a periodicity of 70 nm along both x- and y-directions. The surface-to-surface

separation between adjacent spheres is thus merely 10 nm. The array is placed in vacuum

above an interface with glass (which coincides with the x y-plane), such that the sphere surface

is 10 nm above the interface. The system is illuminated by a TM polarised planewave incident

from the glass side at an incidence angle of 45◦. The absorption by a single sphere can be

computed using Eq. (3.1b), and is normalised to the total incident power reaching the interface

in a unit cell of the lattice. An alternate method to compute the absorption is by integrating
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Figure 3.11 – (a) Section of Fig. 3.10 for a mesh consisting of 592 triangles. (b) Relative error
in absorption at 390 nm (compared to the absorption calculated using 1−R −T for a mesh
consisting of 2848 triangles).

the scattered Poynting vector over the unit cell area in the far field both above and below

the interface to obtain the reflectance R and transmittance T . Conservation of energy then

requires that the absorption is given by A = 1−R −T . It should be noted that the periodicity

is too low to excite higher diffraction orders so that it is enough to compute the Poynting

vector at one point in the far field above (below) and multiply it by the area to obtain the

transmittance (reflectance). Also, the incidence is above the critical angle for the glass-air

interface so that transmittance is zero. Both these points were numerically verified.

The absorption calculated by the two methods using std-SIE and acc-SIE are plotted in Fig. 3.10

as a function of wavelength and number of triangles in the mesh (on the sphere and the

interface combined). The first thing we notice is the wavelength regime where the absorption

by the sphere calculated by the surface integral using std-SIE is negative and thus unphysical.

No such feature exists in the far-field computation or in the results calculated by acc-SIE.

Absorption peaks seem to red shift with increasing mesh refinement. Since this effect is

qualitatively the same for all the plots, this should be a result of the coarse mesh not capturing

the spherical geometry well enough rather than a problem with the integration routine.

To quantify the errors better, the absorption computed by the two methods for a mesh consist-

ing of 592 triangles is plotted in Fig. 3.11 (a). Problems with the surface integral method for

computing absorption using std-SIE are once again evident. The remaining three curves are

very similar to each other, though the absorption computed by 1−R −T using std-SIE shows

slight deviations from the other two. Figure 3.11 (b) shows the relative error in absorption at

390 nm wavelength. Since we do not have an analytic result to compare with, the absorption

calculated using 1−R −T for a mesh of 2848 triangles was used as the benchmark. The error

curves for absorption computation by the two methods using acc-SIE lie remarkably on top

of each other even now. The error in the 1−R −T calculation using std-SIE is an order of

magnitude higher, and the surface integral computation even worse. The mismatch between

values computed using the two methods for std-SIE can be seen as evidence of consistency

problems with std-SIE. By the same token, the remarkable match of the same quantities for

acc-SIE shows its superior accuracy.
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Chapter 3. Optimisation of the SIE integration procedure

3.7 Conclusion

We have analysed the effect of the integral quadrature on the accuracy of SIE matrix elements

and the physical quantities calculated by SIE. This led us to propose an optimised algorithm

to evaluate SIE matrix elements to a high accuracy, which can be applied for SIE in both

homogeneous and periodic backgrounds. Even though a coarse integration approach might

be sufficient for studying the qualitative behaviour of some systems, quantitatively it performs

poorly in comparison to the improved algorithm. The improved algorithm performs signif-

icantly better in calculating properties such as absorption, parallel fields and lateral forces

on asymmetric structures. It is necessary to use the improved algorithm to obtain any sort of

meaningful results in such challenging cases for geometries with sharp corners and edges. The

optimised algorithm involves some extra computational overhead, but achieves vastly better

accuracy for physical results, enabling the use of coarser mesh discretisation in simulations.
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4 Extension of SIE to stratified back-
grounds

In this chapter, we attempt to extend the surface integral formulation to treat nanostructures

embedded in layers of stratified media. We discuss the theoretical and implementation details

of this extension and use it to simulate plasmonic systems. Finally we discuss the shortcomings

of this simplified extension and how they can be overcome in future to obtain a more general

and efficient simulation tool for stratified backgrounds.

4.1 Introduction

Though homogeneous SIE is a very useful simulation tool, it has the fundamental limitation

that it cannot simulate some of the most common plasmonic systems involving nanostruc-

tures embedded in the layers of a stratified medium or placed on substrates. Such cases are

typically dealt with under the homogeneous SIE formulation by assuming the background to

have an effective permittivity corresponding to a weighted mean of the layers [229, 230], or by

using periodic SIE with a large enough period that the unit cells are essentially decoupled, and

discretising the layer surface within a unit cell. Both these approaches are only approximate

and have their own problems. Homogeneous SIE with the weighted layer index approximation

cannot deal with the field gradients near an interface properly or take into account experimen-

tally important illuminations that occur at surfaces, such as the evanescent field produced by

a large numerical aperture lens. In the periodic SIE approximation, it might be impossible to

achieve a periodicity which avoids coupling and higher diffraction orders at the same time.

It is also difficult to obtain the far-field radiation pattern without the periodicity effects, and

meshing the layered parts of the unit cell causes additional overhead. It is very useful to

have a simulation technique which can deal with stratified media explicitly. Volume integral

equations had been extended to deal with stratified media by computing the Green’s tensor

for stratified media [99–101, 231]. Recently, similar extensions have been made for boundary

element and surface integral methods as well [110, 111, 117].

Here, we will present a basic extension of the surface integral equation to simulate plasmonic

nanostructures embedded in layers of stratified media. It is based on the SIE formulation
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Chapter 4. Extension of SIE to stratified backgrounds

in Ref. [105], modified to incorporate the Green’s tensor for the stratified media using the

computation method in Ref. [99]. We will also show that, unfortunately, this approach is not

suitable when the scatterer approaches an interface and analyse the reasons for this failure.

4.2 Theory

We will derive the SIE formulation for stratified backgrounds, closely along the lines of the

derivation in Section 1.2. Space is still described as a union of homogeneous isotropic domains,

except that the background domain (for which we drop the domain subscript) is stratified and

thus inhomogeneous, with spatially varying permittivity ε(r) and permeability µ(r). For an

inhomogeneous domain, the wave equations for electric and magnetic fields have different

forms

∇×
[∇×E(r)

µ(r)

]
−ω2ε(r)E(r) = iωj(r) , (4.1)

∇×
[∇×H(r)

ε(r)

]
−ω2µ(r)H(r) =∇×

[
j(r)

ε(r)

]
. (4.2)

As a result, we have separate electric and magnetic dyadic Green’s functions Ge and Gh defined

by

∇×
[
∇×Ge (r,r′)

µ(r)

]
−ω2ε(r)Ge (r,r′) = 1

δ(r− r′)
µ(r)

, (4.3)

∇×
[
∇×Gh(r,r′)

ε(r)

]
−ω2µ(r)Gh(r,r′) = 1

δ(r− r′)
ε(r)

. (4.4)

Using these, we can find the surface integral equations for electric and magnetic fields EFIE

and MFIE [110, 220]iω
∫
∂Ω

dS′µ(r′)Ge(r,r′) · J(r′)− 1

ε(r)

∫
∂Ω

dS′ε(r′)[∇×Gh(r,r′)] ·M(r′)


tan

= (Einc(r))tan ,

(4.5) 1

µ(r)

∫
∂Ω

dS′µ(r′)[∇×Ge(r,r′)] · J(r′)+ iω
∫
∂Ω

dS′ε(r′)Gh(r,r′) ·M(r′)


tan

= (Hinc(r))tan .

(4.6)

It is easily verified that these equations reduce to those for the homogeneous domain given

in Eqs. (1.4) and (1.7) when ε and µ are constants. Expanding the surface currents over RWG
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4.3. Numerical implementation

basis functions and applying the Galerkin approach, we obtain the matrix equations[
iωDe Kh

]
·ψ= qE , (4.7a)[

−Ke iωDh
]
·ψ= qH , (4.7b)

where the D and K matrices for electric and magnetic fields now have different forms

De
nk =

∫
∂Ωi

dSfn(r) ·
∫
∂Ωi

dS′µ(r′)Ge (r,r′) · fk (r′) , (4.8a)

Dh
nk =

∫
∂Ωi

dSfn(r) ·
∫
∂Ωi

dS′ε(r′)Gh(r,r′) · fk (r′) , (4.8b)

Ke
nk =−

∫
∂Ωi

dS
1

µ(r)
fn(r) ·

∫
∂Ωi

dS′µ(r′)
[
∇×G

e
(r,r′)

]
· fk (r′), (4.8c)

Kh
nk =−

∫
∂Ωi

dS
1

ε(r)
fn(r) ·

∫
∂Ωi

dS′ε(r′)
[
∇×G

h
(r,r′)

]
· fk (r′). (4.8d)

We can combine the integral equations for the different domains using the PMCHWT formula-

tion {[
iωDe Kh

−Ke iωDh

]
+∑

i

[
iωµi Di Ki

−Ki iωεi Di

]}
·ψ=

[
qE

qH

]
+∑

i

[
qE

i

qH
i

]
, (4.9)

where the matrices and vectors without subscripts refer to the stratified background, and those

with subscripts refer to the various homogeneous domains embedded in it. The embedded

homogeneous domains are thus treated in an identical fashion as in homogeneous SIE. The

matrix equation can be solved similarly, to obtain the coefficients for the surface currents.

4.3 Numerical implementation

Two pieces are missing to be able to implement the above described formulation – the com-

putation of Green’s function for the stratified medium and a proper singularity subtraction

method to deal with close source and observation points. We will discuss the numerical

implementation of these now.

4.3.1 Computation of the Green’s tensor

The dyadic Green’s functions for stratified media have no closed-form expressions similar to

Eq. (1.3). Also, separate electric and magnetic dyadic Green’s functions Ge and Gh need to be

computed. The values of these functions depend not just on the relative position between

the source and the observation points but on the relative distances of the points to the layer

interfaces as well.
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Chapter 4. Extension of SIE to stratified backgrounds

The electric dyadic Green’s function for stratified media has been derived in Ref. [99] for use in

the volume integral equation formulation. We follow an identical procedure, and compute

the magnetic dyadic Green’s function in the same fashion by utilising duality. The approach

involves taking the Fourier transform of the homogeneous electric dyadic Green’s function to

work in the wavevector (k) space, and incorporating the parts corresponding to the multiple

reflections for each wavevector through generalised Fresnel coefficients. The resultant can

be transformed back to the real space (r) to obtain the dyadic Green’s function. The inverse

transform can be simplified with the use of Bessel functions to require only a one-dimensional

numerical integration over kρ , the magnitude of the parallel component of the wavevector.

However, these Sommerfeld integrals are not straightforward to integrate numerically, and

require deformation of the integration path in the complex plane to avoid singularities and to

obtain fast convergence. We refer the reader to Ref. [99] for the details of the procedure. The

required Bessel and Hankel functions for complex arguments are computed using the SLATEC

library [232].

In addition to Ge , we also require its curl in Eq. (4.8c). The curl can in principle be evaluated

using a finite differences scheme, but this would incur additional overhead and has the risk of

causing numerical inaccuracies. Hence we take the curl of the integrand of the Sommerfeld

integrals in Eq. (16) of Ref. [99] analytically to obtain

∇×Ge (r,r′) =−∇×
[

ẑẑ

k2
l

δ(R)

]
+ i

4π

∞∫
0

dkρ
[∇× fs(kρ ;r,r′)+∇× fp(kρ ;r,r′)

]

=−∇×
[

ẑẑ

k2
l

δ(R)

]
+ i

4π

∞∫
0

dkρ
[
gs(kρ ;r,r′)+gp(kρ ;r,r′)

]
. (4.10)

The components of gs and gp have been listed in Appendix A. The integrals for both the dyadic

Green’s tensor and its curl are computed simultaneously over the same integration path to

make use of the terms which get repeated in both integrals.

Finally, the magnetic dyadic Green’s function Gh and its curl can be computed by duality [111,

220]. It suffices to swap the electric permittivity and magnetic permeability of each layer, and

repeating the calculation procedure for the electric dyadic Green’s function and its curl now

give us the magnetic dyadic Green’s function and its curl. With this, we have all the dyadic

functions required to compute the matrix elements using Eqs. (4.8a) to (4.8d).

4.3.2 Singularity subtraction

Both the electric and magnetic dyadic Green’s functions and their curls have a singularity at

r = r′. To be able to deal with this analytically, we perform singularity subtraction in the same

manner as performed in volume integral schemes [100, 101]. We assume that the domain

boundaries are sufficiently far from interfaces so that the singularity only affects r and r′ in the

same layer. For source and observation points in the same layer, the electric dyadic Green’s
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function Ge is expressed as the sum of a direct term Ge
D and an indirect term Ge

I which takes

care of multiple reflections at the layer interfaces,

Ge (r,r′) = Ge
D (r,r′)+Ge

I (r,r′) . (4.11)

The direct term Ge
D is simply the homogeneous medium dyadic Green’s function for the layer,

which has the closed form expression given by Eq. (1.3). Since the scatterers are sufficiently

far from the interfaces, the indirect dyadic is composed of reflected waves which have to

propagate a finite distance, and does not have singular behaviour. The singularity is thus

entirely contained in Ge
D . But the singularity in the homogeneous dyadic Green’s function

and its curl can be dealt with perfectly by the singularity extraction scheme for homogeneous

media. Also, the direct term for the magnetic dyadic Green’s function has an identical form

since there is no difference between electric and magnetic dyadics in homogeneous media.

Based on this, we implement the following singularity subtraction scheme. For r and r′ in

the same layer, the D and K matrices in Eqs. (4.8a) to (4.8d) are evaluated without taking the

direct term in the dyadic Green’s functions into account. This is equivalent to neglecting the

ẑẑ, l̂l̂ and m̂m̂ terms in Eq. (9) of Ref. [99]. To these matrices, we add the matrix elements

in Eqs. (1.12a) and (1.12b) taking the current layer as the homogeneous medium and using

singularity subtraction. For source and observation points in different layers, this procedure is

not performed and Eqs. (4.8a) to (4.8d) are evaluated directly.

This procedure allows to build the simulation matrix without numerical difficulties, and the

description of the method is now complete.

4.4 Results

We will now study a couple of systems using the formalism developed here. First, we will look

at the optical response of a silver nanosphere of 20 nm radius placed at the centre of a glass

film. The permittivity data for silver is taken from Ref. [175]. The glass film has a thickness

of 80 nm and is surrounded by vacuum from both sides. The sphere is then illuminated by a

planewave from below by a planewave propagating in the xz-plane at an angle of θ from the

z-axis. The schematic of the system is shown in Fig. 4.1(c).

The absorption cross section of the sphere is calculated from the surface integral of the

Poynting vector according to Eq. (3.1b), and plotted in Fig. 4.1 as a function of wavelength and

angle of incidence for TE and TM polarisations. The plasmon resonance of silver results in

an absorption peak near 420 nm for both polarisations. However, the angular dependence of

absorption is very different for the two polarisations. In particular, the maximum absorption

happens for TE polarisation at normal incidence whereas TM polarisation gives a maximum

near 45◦. This difference is caused by the difference in Fresnel coefficients for TE and TM

polarisations. Due to multiple reflections of the incident wave in the glass film, the sphere

encounters a pair of waves propagating up and down. The amplitude and phase relationships
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Figure 4.1 – Absorption cross section of a silver sphere of 20 nm radius embedded at the centre
of a glass film of 80 nm thickness in vacuum as a function of wavelength and angle of incidence
for (a) TE, and (b) TM polarisation. The sphere is illuminated from below by a plane wave with
wave vector lying in the xz-plane at an angle θ from the z-axis. The schematic of the system is
shown in (c).

of the two waves is different for the two polarisations, and even the total intensity of light at

the location of the sphere is different. These differences result in significantly different angular

behaviours for absorption.

The real and imaginary parts of electric and magnetic fields in the xz-plane are plotted in

Fig. 4.2 for 418 nm wavelength and 46◦ angle of incidence (corresponding to the absorption

peak for TM polarisation, see Fig. 4.1(b)). Since the sphere is placed at the origin and the

propagation is also in the xz-plane, this is a symmetry plane for the system and some com-

ponents of fields vanish. Only Ex , Ez and Hy components are expected to be retained for TE

polarisation and only Ey , Hx and Hz for TM polarisations. It was verified that the computed

fields show this property and hence only the nonvanishing components of the fields are shown

in Fig. 4.2.

The field plots are seen to show the correct continuity behaviour at the different interfaces.

All the fields have to be continuous across the surface of the sphere except for the normal

component of the electric field in the case of TM polarisation. Similarly, except for Ez for TM

polarisation, all the fields should be continuous across the layer boundaries. These features

are borne out by the field plots, a consequence of the correct behaviour of the background
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Figure 4.2 – Real (top) and imaginary (bottom) parts of the nonvanishing components of the
electric and magnetic fields in the xz-plane for planewave illumination from the lower layer
with an incidence angle of 46◦ at 418 nm. (a-c) Ex , Ez and Hy for TM polarised incidence, and
(d-f) Ey , Hx and Hz for TE polarised incidence.

medium Green’s function at the layer boundaries. Modification of the scattered fields at layer

interfaces is also visible, most evidently in Fig. 4.2(b).

The surface charges on the sphere for the same illumination conditions is computed from the

surface currents using Eq. (2.16), and shown in Fig. 4.3. The charge distribution shows that the
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Figure 4.3 – Real (top) and imaginary (bottom) parts of the polarisation charges on the sphere
for planewave illumination from the lower layer with an incidence angle of 46◦ at 418 nm for (a)
TM polarisation, viewed in the y-direction, and (b) TE polarisation, viewed in the −z-direction.
Note that the charges for the two illuminations have been normalised separately.

two polarisations induce dipole moments in different directions. The charges computed are

also seen to be smooth to the level of mesh discretisation, another test of the consistency of

the method.

Finally, we use the formalism to compute optical forces on a dielectric sphere near an interface.

The sphere has radius r = 150 nm and a relative permittivity εr = 2. It is placed in vacuum,

30 nm above a substrate with the same permittivity as the sphere. The sphere is illuminated by

a plane wave of 633 nm wavelength from the substrate with wave vector lying in the xz-plane

at an angle θ from the z-axis. The optical force on the sphere is plotted as a function of angle

of incidence in Fig. 4.4.

At normal incidence, the force on the sphere is in the z-direction. The scattering force pushes

the sphere away from the interface, as expected. As the angle of incidence is increased, the

force increases along x and decreases along z since the transmitted wave now has momentum

along x-direction as well. Something very interesting happens near θ = 45◦. The z-component

of the force changes sign quite abruptly and the sphere is now attracted to the surface instead

of being repelled. This happens because the critical angle for the interface is 45◦, and the

field above the interface is evanescent beyond this angle. At the critical angle, there is no

momentum flow across the interface and the sphere gets dragged along the interface [233,234].

Above this angle, in addition to the lateral dragging force, the sphere experiences a strong field

gradient due to the evanescent wave and gets pulled to the surface by the gradient force [167].
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Figure 4.4 – (a) x- and (b) z- components of the optical force on a dielectric sphere (εr = 2) of
150 nm radius placed in vacuum, 30 nm above a substrate (εr = 2). The sphere is illuminated by
a plane wave of 633 nm wavelength from the substrate with wave vector lying in the xz-plane
at an angle θ from the z-axis.

As the angle is increased, the gradient gets stronger and the pulling force experienced by the

sphere increases. However, beyond a certain angle, the field drops too quickly by the time it

reaches the location of the sphere, reducing the force. As a result, there is an optimum angle of

incidence to achieve maximum pulling force. In contrast, the sideways force along x decreases

uniformly beyond the critical angle.

4.5 Shortcomings and possible improvements

Though the formulation is able to obtain useful physical results as seen in the previous section,

it suffers from multiple drawbacks which severely limit its applicability. These problems have

been overcome recently in Refs. [111, 117]. We will discuss the problems with the current

approach and the solutions they have proposed to it.

The first issue we have is that we are restricted to work with domains which are embedded

within layers of the stratified medium, sufficiently far from the interfaces. This is because

we have applied the singularity subtraction only for the direct term in the stratified medium

Green’s tensor. When the boundary of the nanostructure moves close to an interface, the

reflected Green’s tensor shows strong variations when the source point r′ tends to the observa-

tion point r. Similarly, if we have two nanostructures in adjacent layers close to the interface

separating them, the transmitted Green’s tensor has the same problems. In particular, for

the most physically useful situation of a nanostructure lying on a substrate, evaluating the

reflected Green’s function for r = r′ would result in a delta function singularity. As a result, the

formulation is completely unable to simulate this situation.

The solution to this problem is to apply singularity subtraction to the reflected and transmitted

parts of the Green’s function as well, at least to the first order. That is, the singularity in the

Green’s function corresponding to one reflection or one transmission from an interface has to

be extracted and dealt with analytically. Unless layer thicknesses are extremely small, we do
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not expect the multiple reflections to be a problem.

Singularity subtraction can be applied to the reflected and transmitted Green’s functions by

finding analytically integrable functions with the same asymptotic behaviour, similar to the

procedure performed for the homogeneous Green’s function [111, 235]. This can be achieved

by performing a series expansion of the integrand to extract the singular terms [111]. It should

be noted that the singularity subtraction for homogeneous media is typically performed under

the method of moments-friendly description of D and K matrices in terms of the scalar Green’s

function and its gradient using Eqs. (1.12a) and (1.12b), rather than the forms using the dyadic

Green’s tensor and its curl in Eqs. (1.10a) and (1.10b). However, our expressions for D and K

matrices for the stratified medium in Eq. (4.8) require the dyadic Green’s tensor and its curl. A

method of moments-friendly description of stratified medium was proposed by Chew et al. in

Ref. [236], and has been used in Ref. [111] to implement singularity subtraction. Modifying

the formulation presented here to use the matrix friendly approach and implementing the

singularity subtraction procedure should allow the simulation of nanostructures close to the

interfaces.

However, additional factors must be taken into account while simulating nanostructures lying

on layer interfaces. The stratified medium Green’s function has a discontinuity across the

interface, and this results in an ambiguity about which limit – upper or lower – should be

taken in the integrals. The resolution of this needs a careful treatment of the limiting forms

of the surface integral equations near layer boundaries [111, 117]. Properly considering the

continuity properties of the surface integral equations across the boundary shows that the

results on using the two limits are equivalent [111].

The second issue we face is that the computation is extremely slow compared to the calculation

for homogeneous media, by nearly three orders of magnitude. This makes it infeasible to

simulate finely meshed structures or to implement an optimised integration routine similar

to the one proposed in Chapter 3. We are thus forced to limit ourselves to std-SIE using

single point quadrature, and this has the prospect of resulting in serious accuracy problems

as described in Chapter 3. Since the singularity is the primary source of inaccuracy, we

could implement the optimised integration recipe for the direct Green’s function and stick

to single point quadrature for reflected and transmitted functions. This could improve the

accuracy with negligible overhead, but we will still have problems due to the fast variation of

the reflected and transmitted functions near the interfaces as described previously. Thus it is

very essential to speed up the computation of matrix elements for the stratified medium.

There are two reasons for the extreme slowness, both arising from the modified form of the

stratified medium Green’s function. The computation of stratified medium Green’s function

requires the evaluation of Bessel and Hankel functions. These functions are computed for

complex arguments using the SLATEC library [232]. Unlike the homogeneous Green’s function

which requires only the evaluation of exponentials – which can be performed using extremely

optimised algorithms by modern CPUs, the computation of Bessel and Hankel functions
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results in significant computational overhead. Having a lookup table for the special functions

should thus reduce the computation time significantly. A similar lookup table had been

implemented for computing the complementary error functions required for periodic Green’s

functions in Ref. [109], and resulted in major speedup.

The second source of slowness is the spectral integral required in the computation of the

stratified medium Green’s function. The integral itself is a source of additional overhead,

and the quadrature required for convergence increases significantly when the source and

observation points get close to an interface [235]. In this case the integrand decays very

slowly. Treating the fast varying singular term analytically and performing the spectral integral

only for the remaining part has been shown to speed up the integral evaluation [235]. That

is, implementing the singularity subtraction for secondary Green’s function offers us speed

improvements in addition to accuracy.

Once the singularity has been extracted, computing the remaining part of the Green’s function

can be performed by interpolation as well [111, 117, 237]. It should be noted that the inter-

polation table will depend on the layer structure and not be general such as the one used

for Bessel and Hankel functions. It will thus have to be computed once for each structure

being simulated. The translational invariance and rotational symmetry of the Green’s func-

tion can be used to reduce the size of the interpolation table required. The discretisation of

the interpolation table and the interpolation polynomials have been dealt with in detail in

Ref. [111].

To summarise, the primary issues with accuracy and speed of the formulation arise from the

behaviour of the stratified medium Green’s function close to the interfaces, and is a result of

treating the system in a manner which is more suitable for volume integral-based methods.

Modifying the matrix elements to a method of moments-friendly form and implementing the

singularity subtraction scheme for secondary Green’s function and speeding up the calculation

by lookup tables should render the formulation more general and practical.

4.6 Conclusion

We have extended the surface integral method to deal with nanostructures embedded in

layers of stratified media by computing the electric and magnetic dyadic Green’s functions for

the background and implementing singularity subtraction. We are able to compute various

physical properties such as absorption, near fields, surface charges and optical forces using the

method. It is however limited in applicability, primarily due to the simplicity of the singularity

subtraction scheme. We have identified the bottlenecks which prevent the method from being

more general and suggested possible solutions from recent literature, opening the possibility

of overcoming these issues.
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5 Effects of realistic rounding on optical
response of nanostructures

Achieving accurate agreement between numerical simulations and experiments requires, in

addition to a robust numerical method, accurate modelling of the geometric and physical

parameters of the system being simulated. In this chapter, we utilise SIE to study how round-

ing effects introduced by fabrication non-idealities affect the scattering from nanostructures.

The far-field scattering from nanorod antennae and gap antennae are studied, and polarisa-

tion charge shifts are analysed to explain the effects of rounding. Parts of this chapter were

published in a peer-reviewed journal article [194].

5.1 Introduction

Nanocuboids are the building blocks of many complicated nanostructures used widely in

sensing applications, such as gap antennae [238] and dolmen structures [206, 207, 239]. The

existence of a high number of discrete symmetries makes cubes particularly interesting [240,

241], and hence nanocubes and nanocube assemblies have been subject to experimental

study as well [242–245].

To achieve accurate agreement with the experimental behaviour of nanostructures, it is not

merely enough to have an accurate simulation routine; it is equally important that the object

being simulated represents the actual nanostructure accurately. Even though we would like

to design ideal nanostructures, fabrication processes introduce various non-idealities [246,

247]. Nanostructure surfaces become rough and geometric edges and corners end up being

rounded to various degrees. The simulation needs to incorporate such fabrication induced

non-idealities of the geometry. Comparing the behaviour of realistic nanostructures with their

ideal counterparts shows significant differences [179].

In particular, the different fabrication techniques [243–245, 248, 249] for cuboidal and cubic

nanostructures always introduce rounding effects, as visible in Fig. 5.1. This rounding gives rise

to the prospect of changing the optical response of the structures significantly [243, 250–255].
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5.2 Formulation of the problem

Figure 5.1 – (Left) The individual pieces which can be used to assemble the rounded cuboid.
The cuboids, quarter-cylinders and sphere-octants have been coloured blue, green and red,
respectively. (Centre) The rounded cuboid formed from the constituents. (Right) SEM image
of silver nanocubes.

In this chapter, the following procedure is used for rounding the corners and edges of cuboids

uniformly. Consider a cuboid with dimensions l ,b,h. Suppose we need to round the edges

and corners with a rounding radius of r such that 2r ≤ min(l ,b,h). This can be done ensuring

continuity and differentiability of the surfaces by making a composite structure consisting of

seven cuboids, twelve quarter-cylinders and eight sphere-octants. The assembly of a rounded

cuboid from these pieces is shown in Fig. 5.1. It is easy to verify that all boundaries between

meeting surfaces are smooth.

In all the structures considered here, the y z-plane cross section of the cuboids is kept constant

as b = h = 40 nm while the length l along the x-dimension of the structures and the radius

of rounding r are varied. In the case of the gap antenna, two such identical cuboids are

placed symmetrically such that their y z-plane surfaces face each other. In all the simulations

presented here, a plane wave propagating in the z-direction and polarised along x is used for

illuminating the structures. The nanostructures being simulated are made out of silver, unless

explicitly mentioned otherwise. The dielectric function for silver is taken from Johnson and

Christy [175]. The optical response of the nanostructures is simulated using SIE. The surface

of each structure is discretised using COMSOL such that the average area of a triangular mesh

element is approximately 5 nm2.

Scattering cross section is calculated by evaluating the flux of scattered Poynting vector on a

sphere centred at the structure and having a radius of 50µm, and normalising the result to the

incident field intensity using Eq. (2.48). Bisection method is used to locate peak scattering

wavelength with high accuracy. Polarisation charges are calculated at the structure surfaces

from the discontinuity in the normal component of electric field using Eq. (2.15). This is

performed by subdividing the surface mesh into smaller triangles and evaluating the electric

field 1 nm away from the centre of the triangles in either direction of the surface normal.
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5.3 Results and discussion

Consider a silver cube with a side length of 40 nm. Figure 5.2 shows the effect of rounding

on the scattering cross section of the cube. It can be noted that the scattering plots exhibit a

regular trend on increasing rounding radii. As the cube is gradually deformed into a sphere by

increasing the rounding radius, two major changes occur: The wavelength at which peak scat-

tering cross section is obtained blue shifts significantly while the peak value of the scattering

cross section decreases to about one-fifth of the original value. The continuous shifting of the

scattering peaks suggests that there are no numerical problems arising due to the sharpness in

the cube geometry. For additional validation, we performed analytical calculations using Mie

theory for the case of the sphere and found perfect agreement in the location of the scattering

peak. There is no such analytical treatment possible for a cube. However, various numerical

methods have been used to calculate the scattering cross sections of cubes of different sizes

and they have found the dominant scattering mode of the cube to be corner charge dominated.

The value of scattering peak wavelength we calculated for the cube agrees well with those

predicted in literature [240, 251, 256].

To understand what happens in the near field at the nanocubes for various radii of rounding,

we look at the polarisation charges at the surface. The results are shown in Fig. 5.3. For the

nanocube rounded only by 3 nm, the polarisation charges are heavily concentrated at the

corners. This is akin to the lightning rod effect [257, 258]. As the rounding radius increases,

the size of the “corner” increases as well. As a result, the charges become less localised, and

spread to the edges and faces of the rounded nanocube.

Figure 5.2 – Scattering cross section as a function of wavelength for various rounding radii (r )
of the cube.
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Figure 5.3 – Normalised polarisation charges on the surface of rounded nanocubes. From left
to right: Rounding radius of 3 nm, 9 nm, 15 nm.

The trend of lower wavelength scattering peaks being associated with more spread-out charge

distributions was also noticed in individual structures with multiple scattering peaks. As an

example, consider a thin nanocuboid of dimensions 20 nm×40 nm×40 nm rounded to a

radius of 4 nm. This structure has three prominent scattering cross section peaks occurring

with a wavelength separation of about 20 nm, as shown in Fig. 5.4. The polarisation charges

corresponding to the three scattering peaks have been shown in Fig. 5.5. There is significant

difference between the charge profiles for the three cases. The lowest wavelength peak has

polarisation charges distributed all over the square faces whereas the highest wavelength

peak has the charges concentrated at the corners. The scattering peak at the intermediate

wavelength has charges concentrated primarily at the edges. Once again, the bluer scattering

peak is seen to be associated with the more spread-out charge distribution. This correlation

Figure 5.4 – Scattering cross section as a function of wavelength for a silver cuboid of 20 nm
length, 40 nm×40 nm cross section and rounding radius of 4 nm
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5.3. Results and discussion

Figure 5.5 – Normalised polarisation charges on the surface of the 20 nm×40 nm×40 nm
antenna for the three scattering peaks in Fig. 5.4. The figures, from left to right, correspond to
the peaks from left to right, respectively.

between spreading of charge and blue shifting of scattering peak needs to be studied further.

However, we believe that the spreading of charges due to the reduction in the lightning rod

effect might be what causes the blue shift of scattering peak on rounding nanostructures.

The peak shifting behaviour for cuboids of various lengths as well as gap antennae was studied

in the same fashion. This time, cuboids made of silver as well as gold were considered.

Dielectric function for gold was obtained from Johnson and Christy as well [175]. The trend of

blue shifting of the scattering peak as a result of rounding was found in all studied structures

made of gold and silver. The peak shift (relative to the scattering peak of ideal structures) as a

function of rounding radius is presented in Fig. 5.6.

Interestingly, cuboids of different lengths show similar trends of blue shifting of peak wave-

length on rounding. However, the gap antenna shows a significantly higher blue shift. The

reason for the same can be understood by comparing the polarisation charge distributions for

Figure 5.6 – The peak wavelength shift relative to an ideal structure for various values of
rounding radii for (Left) silver and (Right) gold.
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the peak scattering wavelengths of a single cuboid and that of a gap antenna. The polarisation

charges for a single 60 nm×40 nm×40 nm nanorod (r = 3 nm) and that for an arm of a gap

antenna formed by two such nanorods separated by 10 nm (r = 3 nm and r = 9 nm) are plotted

in Fig. 5.7. As expected, for the single cuboid, the polarisation charges are concentrated at

the corners. However, for the gap antenna, the charges are seen to be spread all over the

surface facing the gap. This can be explained by the fact that there is an opposite charge at the

matching face of the other arm of the gap antenna, attracting charge on this arm towards it.

The two oppositely charged faces with charges almost uniformly spread over them acts as a

capacitor, providing high field coupling between the faces. However, when the rounding of

the cuboids is increased, the situation changes. The polarisation charges are still attracted

towards the gap face, but are now more dispersed around the curved edges. It is important to

note that the flat part of the face is what is closest to the other antenna arm, thus providing

maximum coupling. The presence of charges away from the flat region on the edges reduces

the coupling.

This reduction in coupling is what results in a larger blue shift on rounding gap antennae as

compared to rounding single cuboids. Consider a cuboid being rounded from an ideal shape

to a maximally rounded shape. This would result in a blue shift of peak scattering wavelength

by a value as seen earlier, call this shift δs . Now consider making a gap antenna out of two such

identical ideal cuboids separated by d . Due to the field coupling between the two arms, the

peak scattering wavelength for the ideal gap antenna is red shifted with respect to the peak for

the ideal rod antenna by a value δi
g . Similarly, the peak scattering wavelength for the rounded

gap antenna at the same separation d is red shifted with respect to the peak for the rounded

rod antenna by a value δr
g . Since the coupling in the case of the rounded gap antenna is less

than that of the ideal gap antenna, we expect δr
g < δi

g . The shift between the peak scattering

wavelengths of the rounded gap antenna and the ideal gap antenna is given, as illustrated in

Fig. 5.8, by δg =
(
δs +δi

g −δr
g

)
. Since δi

g > δr
g , we obtain that δg > δs . That is, the rounding

Figure 5.7 – Normalised polarisation charges at the peak scattering wavelength for (Left) a
single 60 nm× 40 nm× 40 nm cuboid with a rounding radius of 3 nm and the gap-facing
surface of a (Centre) gap antenna with two such cuboids separated by 10 nm and (Right) a
similar gap antenna but with a rounding of 9 nm.
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Figure 5.8 – The relationship between various wavelength shifts.

induced blue shift is higher for a gap antenna as compared to a single cuboid antenna.

5.4 Conclusion

It has been shown that rounding affects the scattering from nanoantennae significantly. Since

the far field scattering properties change as well, this is not merely a near field effect and

will thus change any experimental parameters of the system. The difference is particularly

significant for gap antennae, where peak scattering wavelength has been shown to shift by

up to 80 nm in the case of silver. This should be taken into consideration while simulating

nanostructures to be fabricated to have desired properties. Fabrication always introduces

rounding effects into structures, which must be estimated reasonably well and incorporated

into the simulations so that the fabricated structures behave as expected. Since peak scattering

wavelength is a regularly used quantity for sensing applications, the effect of rounding can be

significant in those applications [259, 260]. Rounding effects also need to be considered in

other problems where coupling between surfaces plays a significant role, as similar to the case

of the gap antenna, coupling can be reduced due to curvature in such cases as well.
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6 Internal forces in plasmonic nanos-
tructures

In compound plasmonic nanostructures, the presence of multiple metallic nanoparticles in

close proximity results in strong internal forces. In this chapter, we study the internal optical

forces arising in three ubiquitous plasmonic systems - the gap antenna, the dolmen, and the

split ring resonator. These internal forces show a rich behaviour with varying wavelength,

incident polarisation and geometrical parameters. There arise interesting and anomalous

features such as lateral force reversal, optical pulling force, and circular polarisation-induced

forces and torques along directions symmetry-forbidden for orthogonal linear polarisations.

Parts of this chapter were published in a peer-reviewed journal article [195].

6.1 Introduction

Theoretical studies of plasmonic optical tweezers with propagating waves concern themselves

primarily with forces in the direction of, or opposite to, the wave propagation. However,

the presence of plasmonic nanostructures can lead to the particles experiencing a lateral

force perpendicular to the direction of propagation of the incident wave as well, as seen,

for example, in nanoparticle dimers [177]. Obviously, internal forces will also arise within a

nanostructure upon illumination, especially when this nanostructure is composed of several

parts. Such internal forces have been studied only in some dimer systems [143, 177, 261–263].

In this chapter, we computationally investigate the internal forces on the individual parts

of three compound systems commonly encountered in plasmonics : the plasmonic gap

antenna, the dolmen structure, and the split ring resonator. Gap antennas were one of the

first plasmonic structures providing high field enhancement with easy tunability, and have

been utilised for optical trapping as well [59, 174, 238, 264–266]. The dolmen system has

also been of considerable interest in plasmonics since it supports a Fano resonance due to

the coupling between the dipolar mode in the horizontal arm and the quadrupolar mode

supported by the vertical arms [206–208]. Split ring resonators have been used as building

blocks for metamaterials, and have permitted the creation of effective media with interesting

physical properties such as negative refraction [267–269]. Studying the internal forces in these

representative and ubiquitous plasmonic systems will help to understand how internal forces
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arise generally in plasmonic systems.

The electromagnetic response of the nanostructures is simulated using SIE. The plasmonic

structures are modelled with the background medium as vacuum. The optical forces and

torques on the particles are computed from the surface electric and magnetic currents using

the formalism developed in Section 2.2. Surface polarisation charges are also calculated from

the surface currents using Eq. (2.16). The scattering cross section (Csc ) of the structures is

evaluated by integrating the flux of the scattered Poynting vector over a sphere of radius 50µm

around the structure and normalising it to the incident field intensity using Eq. (2.48).

6.2 Results and discussion

6.2.1 Gap antenna

We first look at the simplest of the three systems, the plasmonic gap antenna. The gap antenna

we study is symmetric with arm lengths of 600 nm and has a circular cross section with radius

20 nm. The gap size is 20 nm, and the faces of the antenna are fully rounded. The arms are

made of Drude metal with the permittivity defined by [270, 271]:

ε(ω) = ε∞−
ω2

p

ω(ω+ iγ)
, (6.1)

with the parameters ε∞ = 9.1, ωp = 9.0843 eV and γ= 0.07078 eV. The system is illuminated

by a plane wave polarised along the axis of the antenna (x-axis) and propagating in the

z-direction, as depicted in the schematic in the inset of Fig. 6.1(a).

The scattering cross section Csc of the antenna is shown in Fig. 6.1(a). The dipolar resonance

is visible at 2170 nm, with higher order scattering peaks present at 755 nm and 570 nm.

The polarisation charges induced on the structure at these three wavelengths are shown in

(a) (b)
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Figure 6.1 – (a) Scattering cross section as a function of wavelength for a symmetric gap
antenna with arm lengths of 600 nm and gap size of 20 nm, shown in inset. (b) Normalised
polarisation charges induced on the antenna arms at selected wavelengths.
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Figure 6.2 – Optical forces on the symmetric antenna arms. Different force components along
x-, y- and z-directions are considered (see axes in the inset of Fig. 6.1(a)).

Fig. 6.1(b). The imaginary part of the complex polarisation charges dominates over the real

part at the resonances, as we will discuss in more detail in Section 8.3, and is what is plotted in

Fig. 6.1(b). The charge distributions are independently normalised to the maximum charge

density at each wavelength. The charge plots clearly depict the higher order nature of the

low-wavelength peaks. In all cases, the charge concentration is very high at the gap-faces of

both arms [61, 194]. The charge distribution shows an odd symmetry about the gap centre,

resulting in opposite charges being created at the gap faces of the two arms, suggesting an

attractive force between the arms in all cases.

Indeed, the force on the arms plotted in Fig. 6.2 confirms this. The force between the two arms

in the x-direction is always attractive, and equal in magnitude as symmetry dictates. Also, the

attractive force Fx is very strong due to the large concentration of charges across the small gap,

nearly an order of magnitude stronger than the scattering force Fz at the same wavelength.

For a wide wavelength range, the lateral force trumps the scattering force in magnitude. Also

note that the force along the y-axis is zero, as expected from symmetry considerations. Typical

trapping experiments have a laser power of approximately 50 mW, focused to a spot of about

5 µm. The intensity felt by the illuminated plasmonic structure is thus nearly 1 mW/µm2,

resulting in a lateral force as strong as 20 pN, which is very high for a nano-object.

We now repeat the calculations for an asymmetric nanoantenna since symmetry breaking can

make the two arms respond differently to light, changing the force properties. The geometry

is same as earlier in all respects, except that the right arm is now shorter, measuring 400 nm,

as shown in the inset of Fig. 6.3(a). The scattering cross section for this geometry is plotted

in Fig. 6.3(a). We note that the dipolar peak has split into two, each peak corresponding to
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antenna with arm lengths of 600 nm and 400 nm, and gap size of 20 nm, shown in inset. (b)
Normalised polarisation charges induced on the antenna arms at selected wavelengths.

the excitation of one of the arms as is evident from the charge distribution at the two peaks

plotted in Fig. 6.3(b). Note that the imaginary part of the charges are plotted at the scattering

peaks due to the same reason as earlier, whereas real part of the charges are plotted at the dip

since it is dominant away from the resonances. The plots for each wavelength are normalised

independently to the maximum charge density at the wavelength. At the lower wavelength

peak, the shorter arm is excited, which in turn induces opposite charges at the gap face of the

longer arm. At the higher wavelength peak, it is the longer arm which is excited and induces

opposite charges on the longer arm. At both these wavelengths, we would expect the force

between the arms to be attractive.

However, at the scattering dip between the two peaks, we see something different. Both arms

are now individually excited by the incident light directly, and since we are at either side of the

resonance of the two arms, the dipole moments of the arms are aligned in opposite directions.

As a result, the charges on the two sides of the gap now have the same sign, and we expect a

repulsive force between the arms, a situation completely unlike the symmetric case.

The forces on the system are plotted in Fig. 6.4. Similar to the case of the symmetric antenna,

the lateral force Fx on either arm is higher than the scattering force Fz for much of the

wavelength range. It is seen that at both scattering peaks, the arms attract each other strongly.

However, at an intermediate range, the force becomes repulsive as expected from the charge

distribution. The change of force from attractive to repulsive between the two scattering peaks

of an asymmetric nanoantenna has been previously reported by Zhang et al. [262].

The behaviour of the scattering force itself is interesting. First of all, the forces on the two arms

in the z-direction are no longer equal since the symmetry has been broken. The magnitude of

the scattering force on the arm undergoing resonant excitation is higher than that of the other

arm at both scattering peaks. More interestingly, at the shorter arm resonance, the longer arm

is pulled towards the incident field rather than being pushed away by it, resulting in an optical

pulling force.
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Figure 6.4 – Optical forces on the asymmetric antenna arm.

The torque about the centre of mass of the system in the y-direction is plotted in Fig. 6.5. This

figure shows the contrast between the scattering forces acting on both arms more clearly, since

the y-component of the torque arises from the variation in the z-component of the force in

this case. For the symmetric antenna, there would have been no y-torque. Instead, what we

see here is a significant magnitude of torque – that is, the lever arm is comparable to the size

of the antenna. The sign of the torque also depends on the wavelength. Had the antenna been
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Figure 6.5 – y-component of the optical torque about the centre of mass of the asymmetric
antenna.
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a rigid system, the shorter arm would have ended up aligning in the direction of the incident

field or opposite to it depending on the wavelength of incidence. This behaviour thus offers

the possibility of optically orienting nanoparticles. Note that we are talking about wavelength-

dependent alignment in the direction of propagation here, as opposed to alignment in the

direction of polarisation using polarisation dependent optical forces [272, 273].

Though light can possess both spin and orbital momentum and impart them to particles just

as in the case of linear momentum, plane waves do not possess orbital angular momentum,

and linearly polarised waves do not possess spin angular momentum either [144, 274–278]. In

spite of this, the linearly polarised plane wave is able to transfer angular momentum to the

gap antenna under study due to the asymmetry.

Finally, we look at the dependence of the forces and torque on the losses in the system.

The asymmetric nanoantenna is simulated with two further values of loss parameter γ in

Eq. (6.1), γ= 0.10 and γ= 0.15, leaving other material and geometric parameters the same.

The change in scattering cross section of the system on varying the loss parameter is plotted

in Fig. 6.6(a). The scattering peaks become weaker in intensity and broader in wavelength

with increasing values of loss. Apart from this, all the qualitative features of the scattering

curve are retained since the imaginary part of the permittivity is still much smaller than the
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real part in the wavelength range of interest. The x- and z-components of force on the arms

plotted in Figs. 6.6(b) and 6.6(c) and the y-component of torque on the system plotted in

Fig. 6.6(d) also show only changes in magnitude with varying loss parameter. The magnitude

changes are the highest near the scattering peaks where the scattering cross section shows

the highest variation since the forces and torques on the system are directly correlated to

the scattering cross section and dipole moment induced on the structure. However, all the

qualitative features discussed previously for γ= 0.07078 eV are retained.

6.2.2 Dolmen structure

We now move on to analyse the internal forces on a more complicated system, the dolmen.

The dolmen structure we study here consists of a horizontal arm of length 120 nm and two

vertical arms of length 110 nm. All three have cross sections of 40 nm × 40 nm, and the faces

are rounded to a radius of 10 nm. The dolmen is made of gold, with permittivity data taken

from Johnson and Christy [175]. The dolmen is illuminated by a plane wave propagating in

the z-direction and polarised along the x-direction, as depicted in the inset of Fig. 6.7(b).

The scattering cross section as a function of wavelength and the gap between the horizontal
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Figure 6.7 – (a) Scattering cross section as a function of wavelength and vertical gap size for
the dolmen structure. (b) Scattering cross section of the dolmen for two representative vertical
gap sizes, 7 nm and 40 nm. Geometry depicted in inset. (c) Real and imaginary parts of the
induced polarisation charges for a dolmen with 7 nm vertical gap at the two scattering peak
wavelengths and the scattering dip wavelength. (d) Same as (c) for a vertical gap of 40 nm.
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and vertical arms of the dolmen is plotted in Fig. 6.7(a). We see two scattering peaks which

increase in separation as the gap is reduced, increasing the coupling between the horizontal

and vertical arms [265]. For clarity, the scattering cross sections for two extreme values of the

gap (7 nm and 40 nm) are shown in Fig. 6.7(b). The scattering dip is the signature of the Fano

resonance [279]. Fano resonances are known to play a crucial role in determining the forces

on asymmetric systems and in inhomogeneous fields [262, 263, 280, 281].

The normalised polarisation charge distributions at the two scattering peaks and the dip

for 7 nm gap are shown in Fig. 6.7(c), and the same for 40 nm gap in Fig. 6.7(d). Since

the polarisation charges induced on the different arms of the dolmen show different phase

relationships with the incident field at the relevant wavelengths unlike the case of the gap

antenna, both the real and imaginary parts of the polarisation charges have been shown. The

physical meaning of the real and imaginary components of charges is discussed in Section 8.2.

For both gaps, the lower wavelength peak corresponds to the anti-bonding mode. The charges

induced on the gap-faces of the horizontal and vertical arms are of the same sign, and they

clearly repel each other, forcing the charges to move away from the gap. On the other hand,

at the higher wavelength peak, we have the bonding mode being excited and the charges on

either side of the gap are opposite in sign and attract each other towards the gap. In these

scenarios, we expect repulsive and attractive forces, respectively. The charges created on the

horizontal arm are weaker at the Fano dip – more so in the case of strong coupling (small gap)

than weak coupling (large gap) – whereas the charges on the vertical arms are still significant.

The y-component of the force on the horizontal arm (arm 2) as a function of wavelength

and the gap size is shown in Fig. 6.8(a). Note that the colour scale is nonlinear. The major

feature is the band where the arm is strongly attracted to the vertical arms (negative force in

y-direction). This follows the higher wavelength peak in scattering quite well. In addition,

there is a band where it is very weakly repelled (positive force in y-direction), which follows the

lower wavelength peak in scattering. Both these features can be well-explained by the charge

distributions in the two cases, as described earlier. The relative weakness of the repulsive force
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Figure 6.8 – Optical forces on (a) horizontal arm (arm 2) of the dolmen along y-direction, and
(b) left vertical arm (arm 1) along x-direction.
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compared to the attractive force is a result of the lower dipole moment at the anti-bonding

mode, which is also evident from the scattering cross section at the two peaks.

The x-component of the force on the left vertical arm (arm 1) as a function of the same

parameters is shown in Fig. 6.8(b). Clearly, this component of the force is much weaker than

the y-component. This should not be unexpected since there is no pair of closely separated

charges across a gap here unlike in the y-direction. What would seem surprising is that for

large wavelengths, the force in the x-direction is repulsive between the vertical arms. If we

had considered the x-force to be arising purely from the interaction between anti-parallel

dipoles separated by a distance much shorter than the wavelength, we would have expected an

attractive force throughout the wavelength range. However, these arms are extended dipoles,

and the charges on the horizontal arm play a role in the x-component of the force as well.

For short wavelengths, the charges at the gap faces of the horizontal and vertical arms have

the same sign. This means that the top part of the vertical arm is subject to attractive forces

both from the top part of the other vertical arm and the far end of the horizontal arm. These

attractive forces would be stronger than the repulsion from the like charges at the bottom

part of the opposite arm due to the higher separation for this pair. As a result, the net force is

attractive. However, once we move to the higher wavelength regime, the charge distribution at

the far end of the horizontal arm will start to repel the charges at the top of the horizontal arm.

This eventually takes over since the dipole moment of the horizontal arm is stronger than that

of the vertical arms as it is fed directly by the incident field. As expected, this transition from

attractive to repulsive x-force happens around the higher wavelength scattering peak, as can

be seen from comparing Fig. 6.7(a) and Fig. 6.8(b).

For clarity, the forces on the arms for a gap of 7 nm are shown in Fig. 6.9(a) and the same

for a gap of 40 nm in Fig. 6.9(b). The attractive lateral force in the y-direction is an order of

magnitude stronger than the scattering force in the z-direction for the shorter gap. Even the

lateral force in the x-direction is comparable to the scattering force for most of the wavelength

range. Note that the scattering force is significant only on the horizontal arm for longer
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Figure 6.9 – Optical forces on the arms of the dolmen for vertical gap size of (a) 7 nm, and (b)
40 nm.
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wavelengths since the horizontal dipole is what is directly excited by the incident field and

scatters into the far field. For the larger gap, the y-forces are significantly reduced as a result of

the increased charge separation. However, the y-component of the force on the horizontal

arm is still the strongest force in the system, being stronger than the scattering force Fz . All the

non-zero components of the lateral forces have the same order of magnitude as the scattering

force.

6.2.3 Split-ring resonator

Finally, we look at the lateral forces in a split ring resonator. The structure we study here is

formed out of two concentric rings lying in the x y-plane with 10 nm gaps on each ring. The

outer ring has a radius of 140 nm whereas the inner ring has a radius of 80 nm, with both rings

having a cross sectional radius of 20 nm. The rings are aligned such that centres of the gaps on

both rings lie on the x-axis. All gap faces are fully rounded. The rings are made of Drude metal

with frequency-dependent permittivity following Eq. (6.1), with Drude parameters ε∞ = 9.5,

ωp = 8.95 eV and γ= 0.0691 eV corresponding to gold [282]. The structure is illuminated by a

plane wave propagating in the z-direction.
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Figure 6.10 – (a) Scattering cross section for different incident polarisations for the inner ring
in the split ring structure, as shown in inset. (b) Polarisation charges induced on the inner
ring at the scattering peak wavelengths. (c) and (d) show the same results as in (a) and (b),
respectively, for the outer ring.

It is instructive to see the response of the two rings individually first, since the optical response

of the split ring can be understood in terms of hybridisation of the modes of individual
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rings [283]. Figure 6.10(a) shows the scattering response of the inner ring as a function of

wavelength for linear polarisations along x- and y-axes, and two circular polarisations L and

R with opposite senses of rotation. There is a single scattering peak for polarisation along

x-axis, whereas there are two peaks for polarisation along y-axis in the wavelength range

considered. The response for the circular polarisations is just a combination of the two linear

polarisations. The imaginary parts of the polarisation charges induced for the three peaks is

shown in Fig. 6.10(b). The peaks for y-polarisation at 1880 nm and 725 nm are first and second

order charge distributions along the circumference of the ring, with strong concentration of

charges at the ends of the gap. On the other hand, the charge distribution for the x-polarisation

peak at 865 nm is the dipolar charge distribution along x-direction.

In the same vein, Fig. 6.10(c) shows the scattering response of the outer ring. Once again, we

have one scattering peak for x-polarisation and two for y-polarisation. However, there is one

difference as seen from the charge distribution plots in Fig. 6.10(d). The charge distribution for

the x-polarisation peak at 1320 nm is the dipolar distribution along the x- direction. However,

the y-polarisation peaks at 1050 nm and 720 nm show second and third order distributions

along the circumference of the ring. This should not come as unexpected, since increasing

the size of the ring red shifts the scattering spectrum. As a result, the first order peak for the

y-polarisation has red shifted outside the wavelength range considered here.

We can now look at the scattering response of the combined split ring system, shown in

Fig. 6.11(a). There are two scattering peaks for x-polarised incident light and four for y-

polarised incidence. The imaginary parts of the polarisation charge distributions for all six

peaks are shown in Fig. 6.11(b). The charge distributions for the x-polarisation peaks at 880 nm

and 1500 nm show them to be parallel and anti-parallel hybrids of the x-polarisation peaks

of the inner and outer rings. The charge distribution at the isolated y-polarisation peak at

1925 nm essentially follows the inner ring-only charge distribution at 1880 nm whereas the

peak at 1090 nm follows the outer ring-only distribution at 1050 nm. The peaks at 695 nm

and 800 nm seem to be parallel and anti-parallel hybrids of the inner and outer ring charge
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tion charges at the scattering peak wavelengths for the split ring structure.
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Figure 6.12 – Optical forces on the rings in the split ring structure for (a) x-, and (b) y-polarised
incident field.

distributions at 725 nm and 720 nm, respectively. That is, all scattering peaks of the combined

system can be understood in terms of the responses of the individual rings.

The forces on the two rings for x-polarised incident light are shown in Fig. 6.12(a). The

scattering force in the z-direction is significantly stronger than the lateral force in x-direction.

The y-component of the force is zero by symmetry. The direction of the x-component of the

lateral force on the outer ring switches from left to right (and vice-versa for the inner ring),

similar to the behaviour we had seen in the dolmen structure. Had the rings been gap-free,

there would have been no lateral force in the x-direction either. Hence the lateral forces are

created by the small charge asymmetry introduced by the gap, which is what makes the lateral

forces weak. Due to the near-dipolar nature of the charge distributions for x-polarisation, it is

difficult to qualitatively explain the origin of the switch merely using the polarisation charges

like we did earlier. Once again, as in the case of the asymmetric antenna, we have a situation

where the inner ring is pulled by the incident plane-wave rather than being pushed away from

it.

The forces for y-polarised incidence are plotted in Fig. 6.12(b). Unlike the previous case,

the lateral forces in the x-direction are comparable or larger than the scattering force in the

z-direction. This is because the charge asymmetry is higher since the charges are strongly

concentrated at the gaps. At 1925 nm where the inner gap is excited strongly, it induces

polarisation charges on the nearby regions of the outer ring, resulting in the inner ring being

pushed to the right and the outer ring to the left. At 1090 nm where the outer gap is excited,

the situation is reversed. Once again, symmetry ensures that there is no lateral force in the

y-direction.

It is interesting to compare the forces observed here with those found in the disk-ring Fano

system by Zhang and Xiao [263]. In that system, the authors had uncovered the existence of

force reversals and explained them in terms of the hybridization between the dipole modes

of the disk and the multipole modes of the ring. There are a few factors which make the two

systems very different. First of all, the disk and the ring were placed side-by-side instead of
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Figure 6.13 – Optical forces on the rings in the split ring structure for (a) L-, and (b) R-polarised
incident field.

concentrically as the rings here . As a result, the coupling between the modes of the system

happened entirely across the small gap between the disk and the ring - on the contrary, the

hybrid modes of the split ring show coupling throughout the length of the rings as is evident

from the charge distribution. Also, the charge concentration at the ring gaps and the resulting

strong attractive force near the gap were features absent in the disk-ring system. These features

make the description of forces in the split ring system more complicated. However, the basic

feature that the energy of the hybridised modes dictates the force reversals is retained, which

has been observed in systems as simple as a particle in a trap [158].

Figures 6.13(a) and 6.13(b) show the forces for L- and R-polarised incidence, respectively.

Surprisingly, we see that the y-component of the force is not zero anymore in spite of the

inversion symmetry of the structure about y-axis. In fact, it is the strongest force in the

problem for much of the wavelength range. The reason for this apparent geometrical symmetry

violation is that the force operator is not linear on the incident fields. Though the incident

and scattered fields for circular polarised incidence can be expressed as a linear combination

of the fields for x- and y-polarised incidence, the same is not true for the forces as there are

cross-terms. It is probably most intuitive to understand the origin of this force component

in terms of polarisation charges. When the incident light is x-polarised, the induced charge

distribution is even about the x-axis. On the other hand, when the incident light is y-polarised,

the charge distribution is odd. Both odd and even symmetries result in a zero net force in the y-

direction. However, if we take an arbitrary linear combination of x-and y-polarisations, which

is what happens in the case of circular polarisation, the induced charge distribution is neither

odd nor even about the x-axis, and we cannot expect zero net force anymore. The importance

of circular polarisation in the origin of y-force can be seen from the fact that the sign of the

y-force switches on switching the sense of rotation of light, whereas the other components of

force do not change. We would like to stress that the y-force is not a result of the chirality of

the structure. The split ring structure has both x y- and xz-planes as mirror symmetry planes,

so that the chirality of the structure is zero even if we consider two dimensional chirality [284].

Lateral forces arising in such structures without chirality under circular polarised illumination
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Figure 6.14 – Optical torques on the rings in the split ring structure for (a) L-, and (b) R-
polarised incident field.

is a topic with rising recent interest [285, 286].

Finally, we look at the torque on the two rings produced by L- and R-polarised light, as

shown in Figs. 6.14(a) and 6.14(b). We see a behaviour exactly opposite to the force in that,

on switching the sense of rotation of the light, only y-torque remains unchanged whereas

the other components switch sign. This should not be surprising since the y-component

of the force affects the x-and z-components of torque. In particular, the x-component of

the torque arises in the same fashion as the y-component of force, and would have been

symmetry-forbidden for x- and y-polarisations.

What is more interesting is that the sense of rotation imparted to the ring need not be the

same as that of the incident light. It is intuitive to understand particles absorbing circularly

polarised photons and rotating in the same sense as the incoming light [287]. This can be

considered analogous to the scattering forces which push the particle in the direction of wave

propagation. However, there exists the phenomenon of negative optical torque, the analogue

of optical pulling forces, where the particle ends up rotating in the opposite sense of the

angular momentum of incident light [288]. We see such behaviour in the z-component of the

torque on the inner ring. We see two distinct wavelength regimes where the z-torque imparted

has opposite signs, meaning that the ring can end up rotating in the opposite sense of the

angular momentum of the incoming photons.

As a final remark, we would like to add that though the simulations have been performed

with vacuum as the background medium, the qualitative behaviour is expected to be retained

in other backgrounds. The anomalous features uncovered here such as force reversal and

negative optical torques will be present in other media where optical trapping and tweezing

experiments are performed in, though there will be associated wavelength shifts and changes

in force magnitudes. Fabricating the plasmonic systems on soft substrates which can be

deformed by the optical forces should enable the experimental verification of these numerical

results [289–291]. Though the presence of substrates can change the optical response of the

nanostructures, the differences in optical forces and torques can be minimized by performing
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the experiments in a fluid which is index-matched to the substrate. The mechanical stresses

induced on the substrate and the material momentum contribution will also have to be taken

into account, and the Abraham-Minkowski ambiguity discussed in Section 2.2.2 will come into

the picture. Another possibility would be to perform experiments on self-assembled complex

nanoplasmonic systems which provide significant freedom of motion [292–294].

6.3 Conclusion

We have shown that in the different plasmonic systems considered here, internal forces are

significant, and even become stronger than the scattering force in the system in many cases.

Internal forces between particles can be qualitatively understood in terms of the polarisation

charges induced by the incident light. These lateral forces show a rich behaviour, switching

between regimes of attraction and repulsion, depending on wavelength and inter-particle

distance. The nonlinear nature of the force operator results in an interesting dependence

on polarisation as well, creating forces in apparently geometrically symmetry-forbidden

directions. Keeping all these in mind, lateral forces should be analysed properly along with the

scattering/trapping forces while designing trapping experiments since the lateral forces could

play a major role in directing the particles to be trapped towards or away from the trapping

sites. We have also shown strong optical torques arising in these systems as a result of the

lateral forces and also the appearance of negative optical torque, which could be utilised for

optical orientation of nanoparticles.
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7 Orientation and rotation of plasmonic
nanostructures using optical torques

We discussed the presence of strong and varied optical torques in plasmonic systems in the

previous chapter. Angular momentum in the incident light can be imparted to nanostructures

to align them along desired directions as well as to rotate them continuously. In this chapter

we analyse the possibility of utilising optical torques to achieve three dimensional orientation

and rotation of plasmonic nanoparticles.

7.1 Introduction

Plasmonic nanoparticles with anisotropic shapes show a highly orientation-dependent optical

response. It is thus beneficial to be able to align the nanoparticles in specific directions to

achieve desired properties. Since the optical forces and torques exerted on such structures are

also a function of their orientation, the optical torques can be used to align the nanoparticles

by acting as a feedback mechanism.

Along with the increasing interest in optical trapping and tweezers, many experimental demon-

strations of optical alignment of metallic structures were also performed [295–299]. Theo-

retical and numerical analysis of alignment have confined themselves primarily with two-

dimensional manipulation of orientation using the angle the major axis of the nanostructure

makes with the polarisation or limit themselves to the dipole limit [272, 273, 300, 301]. We wish

to go beyond such limitations and consider three dimensional alignment of plasmonic nanos-

tructures under plane wave incidence. Another field of experimental interest is continuous

rotation of nanostructures by transferring the angular momentum in the incident light to the

nanostructure [287, 302, 303]. Optical rotation permits achieving high angular frequencies for

trapped particles, and it might be of interest to be able to rotate anisotropic nanoparticles

about different axes.

Here we use SIE to numerically study the feasibility of achieving three-dimensional alignment

and rotation of plasmonic structures. Two simple geometries are considered - a nanorod and a

nanotorus. We delve into the direction and the stability of the alignment and its dependence on
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Chapter 7. Orientation and rotation of plasmonic nanostructures using optical torques

wavelength and polarisation. The nanostructures are modelled to be made out of silver, with

refractive index data taken from Johnson and Christy [175]. The simulations are performed

with vacuum as the background medium.

7.2 Results and discussion

7.2.1 Nanorod

The first structure we study is a silver nanorod of dimension 120 nm×40 nm×40 nm. We

will first consider the torques on the nanorod when it is displaced from the direction of

polarisation of the incident field in the plane perpendicular to the propagation direction. The

nanorod is placed on the x y-plane with the long axis along x, and illuminated by a plane wave

propagating in the z-direction and linearly polarised in the x y-plane at an angle θ from the

long axis of the rod. The schematic of the simulated system is shown in Fig. 7.1.

We obtain restoring torques on the nanorod in the z-direction, corresponding to angular

motion in the x y-plane. These torques are plotted as a function of the illumination wavelength

and the displacement angle in Fig. 7.1.

The first noticeable feature is the perfect sinusoidal behaviour of the restoring torque as a

function of angular displacement. This can be explained using the fact that both the force

and torque operators can be thought of as sesquilinear forms in the fields. That is, if the fields

are represented by a vector
∣∣ψ〉

, the torque operator has the form Re
[〈
ψ

∣∣T ∣∣ψ〉]
. If the fields

corresponding to the displacements of 0◦ and 90◦ at a certain wavelength are represented by

|0〉 and |90〉 respectively, linearity implies that the field corresponding to a displacement of θ
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Figure 7.1 – Torque on the nanorod as a function of wavelength and displacement angle for
angular displacement in the plane perpendicular to the propagation direction, as shown in
the schematic . Arrows in the density plot depict the sense of rotation of the nanorod.
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7.2. Results and discussion

is given by∣∣ψ(θ)
〉= cos(θ) |0〉+ sin(θ) |90〉 , (7.1)

The restoring torque for an angular displacement of θ is thus given by

Tz (θ) = Re
[〈
ψ(θ)

∣∣Tz
∣∣ψ(θ)

〉]
= Re[(cos(θ)〈0|+ sin(θ)〈90|) Tz (cos(θ) |0〉+ sin(θ) |90〉)] . (7.2)

Now, symmetry dictates that the torque has to vanish for θ = 0◦ and 90◦. That is, Re[〈0|Tz |0〉] =
Re[〈90|Tz |90〉] = 0. Using this in Eq. (7.2), we obtain

Tz (θ) = cos(θ)sin(θ)Re[〈0|Tz |90〉+〈90|Tz |0〉]
= sin(2θ)Re[〈0|Tz |90〉] . (7.3)

This perfectly explains the angular symmetry in the torques observed in Fig. 7.1. Note that

we have only used symmetry arguments in the above proof, and no approximations (such as

approximating the response of the nanorod as dipolar) have been made. The result is thus

general and can be extended to explain the behaviour of larger and more complicated systems

as long as they satisfy the required symmetry.

We can use this to understand the direction of stable orientation of the nanorod as well.

Though both θ = 0◦ and 90◦ result in zero torque, only one of those orientations can result in

stable equilibrium. If Iz is the moment of inertia of the nanorod about the z-axis, we have

Iz θ̈ = −Tz (θ)

= −sin(2θ)Re[〈0|Tz |90〉] , (7.4)

where the negative sign arises from the definition of the angle as the anticlockwise displace-

ment of the polarisation vector from the rod axis rather than the other way round. This means

that if Re[〈0|Tz |90〉] (which has the same sign as the restoring torque at θ = 45◦) is positive,

θ = 0◦ is the stable orientation direction and the nanorod orients itself perpendicular to the

polarisation direction; and if it is negative, θ = 90◦ is stable and the nanorod orients along the

polarisation.

A section of Fig. 7.1 for θ = 45◦ is extracted and plotted in Fig. 7.2. The torque is seen to be

negative below 570 nm and positive above. Based on the discussion above, this means that

the nanorod orients itself perpendicular to the polarisation direction at lower wavelengths

and parallel at higher wavelengths. This behaviour has been studied previously and explained

based on the nanorod being excited almost entirely along the long axis [272, 273, 304].
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Figure 7.2 – Torque on the nanorod in Fig. 7.1 for a displacement angle of 45◦. As we move
across the plasmon resonance, the dipole induced on the nanorod changes from being in-
phase with the electric field to out-of-phase, resulting in a switch in the sign of the torque.

Since one dimension of the nanorod is much longer than the others, for the wavelength range

under consideration, it can be approximated to be polarised only along the long axis with

polarisability α. As a result, the parallel component of the electric field is what polarises the

nanorod, with the induced dipole moment p =αEx x̂. Under this approximation, the torque is

given by

T = 1

2
Re

[
p×E

]
= 1

4
Re(α)|E|2 sin(2θ)ẑ . (7.5)

Note how this expression has the same form as the more general one found in Eq. (7.3). Since

the real part of the dipole moment switches sign on moving across the plasmon resonance,

the sign of the torque switches as well.

It is interesting to estimate how strong this optical torque is. For a typical laser illumination of

1mW/µm2, we see that the optical torque is of the order of 10−20N m. The moment of inertia

of the nanorod is merely of the order of 10−36kg m2. Using these numbers, we can see that the

angular frequency of oscillation is extremely high, around 108Hz. This is much higher than the

experimentally achieved rotation frequency of a few kHz [287]. Thus the optical alignment of

the nanorod is an extremely quick process, limited by the damping in the fluid rather than the

strength of the field itself. It must be noted that the relaxation times are much higher than the

time period of the light itself, so that it happens over many cycles and the variation of fields

within a cycle does not matter.

We will now consider displacing the nanorod away from the polarisation plane - that is,

changing the angle the long axis makes with the propagation direction. The rod is kept with its
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Figure 7.3 – Torque on the nanorod as a function of incident wavelength for different angular
displacements from the propagation direction in the TM plane, as shown in the schematic.
The torques are similar in both magnitude and features as in the case of displacement in the
perpendicular plane.

long axis along x, and the angle of incidence θ is varied in the xz-plane with TM polarisation

as depicted in the schematic in Fig. 7.3.

The restoring torques in the y-direction for selected angular displacements is plotted in Fig. 7.3.

The torque for θ = 45◦ is virtually identical to the one in Fig. 7.2. This should not be surprising

since the nanorod is still polarised primarily along the long axis of the rod and the angle

between this axis and the polarisation direction is the major source of the torque. As a result,

the nanorod orients parallel to the propagation direction (perpendicular to the polarisation)

for low wavelengths and perpendicular to the propagation (parallel to the polarisation) at high

wavelengths.

In the dipole approximation, according to Eq. (7.5), we have Ty (θ) = Ty (90◦ − θ). The torques

found for θ = 30◦ and 60◦ (and for θ = 15◦ and 75◦) would thus have been identical if the

approximation were fully valid. However, there is a noticeable difference between the torques

for the pairs of angles. This shows that, though the nanorod-polarisation angle is the primary

source of the torque, the higher modes in the system induced due to retardation effects along

the nanorod length have already shown their signature. Retardation effects increase as the

size of the object increases compared to the wavelength, and the pairwise differences increase

for low wavelengths as a result.

We now repeat the calculation for TE polarisation, as shown in Fig. 7.4. The resulting torques

are seen to be much weaker, by nearly three orders of magnitude. The nanorod is now being

polarised along its short axis, and the resultant dipole is in the same direction as the incident

electric field. Thus the torque now arises entirely from retardation effects due to the length of

the nanorod, and is doubly weak due to the low polarisability about the short axis.
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Figure 7.4 – Torque on the nanorod for different angular displacements from the propagation
direction in the TE plane. The torques in this case are much weaker than those seen earlier.

This suggests that orienting the nanorod along the propagation direction at low wavelengths is

not entirely stable. At high wavelengths, displacements in any direction away from the polari-

sation direction tend to return the rod to polarisation alignment. However, at low wavelengths,

only a displacement away from the propagation direction towards the polarisation direction is

guaranteed to bring it back. Displacement in the orthogonal direction results in a very weak

torque and the plane perpendicular to the polarisation direction behaves as a plane of neutral

equilibrium.

We will now look at the issue of stability more deeply. For this, the angle of incidence will

be varied freely in the first octant, as shown in Fig. 7.5. The nanorod is still placed along the

x-direction. The resultant torque vector is computed and its x-component is ignored since

Figure 7.5 – Coordinate system to study the restoring torque on the nanorod for 3D displace-
ments. The nanorod is placed with its long axis along x, and different (θ,φ) incidence angles
are considered. The torques along y- and z-directions can be used to find the net torque away
from the propagation direction.
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Figure 7.6 – Restoring torque on the nanorod for different incidence angles for (left) TE and
(right) TM polarisations. The restoring torque nearly vanishes when φ= 0◦ or φ= 90◦ for TE
polarisation, and when θ = 90◦ or φ = 90◦ for TM. Sign of the restoring torque is otherwise
independent of angle and polarisation for a given wavelength, and shows the switch around
the plasmon resonance.

that only results in the rod spinning about its own axis. From the remaining components,

the component of the torque aligning the rod with respect to the propagation direction is

extracted and plotted in Fig. 7.6 for both TE and TM polarisations.

The first observation is that the sign of the torque is the same for all angles of incidence and

both polarisations, except for the sign flip at the plasmon resonance. The sign of the restoring

torque is thus independent of polarisation. However, the component of torque vanishes (or

nearly so) for certain angles. For angles for which the torque vanishes are φ= 0◦ and φ= 90◦

for TE polarisation, and θ = 90◦ and φ= 90◦ for TM. Of these, the φ= 90◦ cases should not be

concerning since those correspond to the nanorod being perpendicular to the propagation

direction, and it could still be a stable equilibrium if the nanorod moves towards (or away

from) the plane for small displacements. However, different values of θ for φ= 0◦ (TE) and

different values of φ for θ = 90◦ (TM) correspond to non-perpendicular orientations of the

nanorod with respect to the propagation direction, and low values of torque for those cases

shows that the equilibrium is only neutral, as suspected.

The difficulty in this system is that all orientations of the nanorod perpendicular to the polari-

sation direction are equivalent in terms of optical torques, and it is not possible to pick the

propagation direction from it. One possible way to overcome this is by using circular polarisa-

tion instead of linear, so that all orientations perpendicular to the propagation direction are

now identical and the propagation direction becomes the unique direction. The results for

restoring torques for L and R polarisations for the same geometry are shown in Fig. 7.7.

We immediately see that the torques for the two circular polarisations are identical, as would

be expected from symmetry. The torques are qualitatively similar to those in the case of

linear polarisation, except that torque vanishing now happens only for the three cardinal

directions. We thus have stable alignment along propagation direction for low wavelengths

and in the polarisation plane for high wavelengths. This means that the nanorod ends up
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Figure 7.7 – Restoring torque on the nanorod for different incidence angles for (left) L and
(right) R polarisations. Both polarisations result in identical restoring torques which vanish
only for incidence along one of the coordinate axes. Restoring torques for different angular
displacements are now nearly equal in magnitude, and tend to rotate the nanorod about its
long axis at short wavelengths and its long axis at higher wavelengths.

rotating continuously due to the angular momentum in the incoming light, about the long

axis at short wavelengths and about the short axis at long wavelengths.

7.2.2 Nanotorus

Figure 7.8 – Schematic for studying restoring torques on the nanotorus. The torus is placed on
the x y-plane with its axis along z, and direction of incidence in the xz-plane.

Though stable three dimensional alignment has been achieved for the nanorod using circular

polarisation, this is accompanied by rotation of the object. To be able to achieve multiple

stable trapping directions for linearly polarised incidence, more needs to be done. The results

from the previous section suggest that using a nanostructure with higher retardation might do

the trick. We attempt this by choosing a more oblate object, a silver nanotorus of major radius

R = 80 nm and minor radius r = 20 nm. The torus is placed on the x y-plane with its axis along

z, and the angle of incidence is varied in the xz-plane as shown in Fig. 7.8.

The restoring torque as a function of wavelength and angle of incidence is plotted for TE and

TM polarisations in Fig. 7.9. The qualitative features are very similar to what was found in

the nanorod. The plasmon resonance has red shifted and the torque switching now happens

above 800 nm, with the torus orienting with its axis parallel to the propagation direction at
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Figure 7.9 – Restoring torque on the torus as a function of incident wavelength and displace-
ment angle for (left) TE and (right) TM polarisations. The torque switching behaviour is very
similar to the case of the nanorod.

higher wavelengths, and with the propagation direction passing through the plane of the torus

at lower wavelengths.

The restoring torque for TE polarisation is still weaker than in the case of TM, but the relative

magnitudes are now better. This can be seen from the section of Fig. 7.9 for θ = 45◦, plotted in

Fig. 7.10. Unlike the case of the nanorod where the two sets of torques differed by three orders

of magnitude, they are of nearly the same order here. Also to be noted is that they show the

same qualitative behaviour with wavelength, including the sign flip at the same wavelength.

This is because the torus is flat unlike the nanorod which was long, and the high polarisability

direction now has a multiplicity of two.

As a result, the nanotorus allows us to achieve stable orientation along two different directions

even for linear polarisation.

We finally look at the restoring torques on the nanotorus for circular polarisation, shown in
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Figure 7.10 – Restoring torque on the torus for θ = 45◦. The restoring torque for TE polarisation
is now relatively significant.
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Figure 7.11 – Restoring torque on the torus for circular polarisation (Both L an R polarisations
result in the same restoring torque, and thus only one figure is shown). The restoring torques
result in the torus rotating about an axis passing through the plane of the torus for low
wavelengths, and about the cylindrical symmetry axis for high wavelengths.

Fig. 7.11. Since both L and R polarisations result in the same restoring torques, only one set is

shown. The restoring torque retains the qualitative features and remains high in magnitude.

Thus we can use circularly polarised light to rotate the nanotorus about an axis that passes

through the plane of the torus at low wavelengths, and about the axis of the torus at high

wavelengths.

7.3 Conclusion

We have shown that optical torques can be used to align and rotate plasmonic nanostruc-

tures about different axes. By tailoring the optical torques suitably, it should be possible to

create plasmonic three dimensional orientation switches. Moving from two-dimensional to

three-dimensional orientation switching requires the use of retardation effects and thus the

multipolar modes in the nanostructure. Designing multimode plasmonic structures thus

offers the prospect of providing better control over the orientation using optical torques.

The results of the simulations suggests another important point : when optical experiments

are performed with anisotropic nanoparticles suspended in a fluid, for example, it should not

be assumed that they are dispersed isotropically. The incident fields can be strong enough to

orient the nanoparticles along certain directions, and their optical response would be com-

pletely different from that of an isotropically dispersed system, and can result in a seemingly

strange wavelength-dependent behaviour. Alignment effects of optical torques must thus be

taken into consideration during such optical experiments.
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8 Polarisation charges in plasmonic
systems

Numerical evaluation of polarisation charges at nanostructure surfaces provides insights into

various aspects of the electromagnetic response of the nanostructures such as scattering peak

shifts and optical forces [61, 194]. In this chapter, we explore the information contained in

the complex polarisation charges produced by electromagnetic simulations in the frequency

domain. We discuss how to understand and visualise the complete charge information in

systems of increasing complexity. We also touch upon a few pitfalls which should be avoided

while dealing with polarisation charges.

8.1 Introduction

Applying an electric field on an object placed in a background of a different dielectric constant

induces polarisation charges on the object. If all domains in the system have homogeneous di-

electric permittivities, the induced charges lie only on the surfaces where permittivity changes

abruptly between two domains. Shining monochromatic light - an electromagnetic wave

with a harmonic time dependence - on nanostructures results in the creation of polarisation

charges at the nanostructure surfaces having the same harmonic dependence as the incident

light, as long as we limit ourselves to the linear regime.

Since we are interested in a fundamental treatment, all the SIE simulations are performed

with vacuum as the background medium, and the nanostructures are made of gold. The

permittivity of gold as a function of frequency (ε(ω)) is given by the Drude formula Eq. (6.1),

with Drude parameters ε∞ = 9.5, ωp = 8.95 eV and γ= 0.0691 eV to fit the permittivity data

from Johnson and Christy [175, 282]. The scattering cross section is computed by integrating

the Poynting vector of the scattered field on a large sphere surrounding the nanostructure,

Eq. (2.48). The polarisation charge density at a point on the structure (σp (r)) is evaluated from

the divergence of surface currents using Eq. (2.16).
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8.2 Physical meaning of complex polarisation charges

Electromagnetic simulations in the frequency domain such as FEM, DDA, VIE and SIE rep-

resent the fields by complex vectors. The real and imaginary parts of the complex vectors,

combined, contain the complete details of the time evolution of these quantities. The polari-

sation charges found by these simulations are thus naturally represented as complex scalar

quantities.

Let us first discuss the physical meaning of the real and imaginary parts of the complex polari-

sation charges. The first thing that any mathematical textbook states while using the trick of

representing a physical quantity by a complex number is that only the real part of the quantity

has physical significance, and should be extracted at the end of the calculation. However,

we will show here that we should be cautious while applying this rule to the polarisation

charges we obtain from the simulations as complex scalars. The imaginary part of the complex

polarisation charge is not an unphysical mathematical tool and should not be discarded.

Why is this? The answer is that we should discard the imaginary component not at the outset

but only while computing the charges at a particular instant. When we find σp (r, t), the

polarisation charges found at a location on the structure at a given moment, we should indeed

ensure that it is real. But the output of the simulation σp (r) is not merely the polarisation

charge at t = 0; it contains the entire time evolution of the charges at the location. The surface

charges found at a time t can be evaluated as

σp (r, t ) = Re[σp (r)exp(−iωt )] . (8.1)

As is evident, the physically relevant charge at an instant is only the real part of the product of

the surface charge σp (r) and the harmonic propagation term exp(−iωt ). However, if we had

used only the real part of the complex charge σp (r) at the outset in this equation, we would

have found the wrong value of charge at time t . In particular, we have

σp (r,
T

4
) = Im[σp (r)] , (8.2)

where T is the time period of the wave. That is, only the imaginary part of σp (r) contributes

to σp (r, t ) at this instant. Had we discarded the imaginary part of σp at the outset, we would

have found the incorrect result of zero instead.

This brings us to the next point, what does time t mean in such a system where all fields

and charges have a harmonic dependence? The answer is that usually, the zero point of

time is implicitly defined by the illumination conditions. For example, suppose that we

simulate the response of our structure for plane wave illumination defined by the complex

electric polarisation vector E(r) = E0 exp(i k · r). This has already defined the zero of time by

E(0, t ) = Re[E0 exp(−iωt )]. If we added an additional phase factor E(r) = E0 exp
(
iφ

)
exp(i k · r),

all the simulation results would be identical except for all fields and charges getting the

additional phase factor of φ. This is equivalent to redefining the zero of time, and does
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not change the physics in any way. Something slightly different happens when we find the

modes of the system instead of the response to certain illumination. In this case, there is

automatically the freedom to multiply the fields and charges by an arbitrary phase since the

incident illumination is zero.

Since the zero of time has been shown to be arbitrary, we have the freedom to redefine it

as we see fit to suit our convenience. Though the values of the real and imaginary parts of

charge will change with such a shift, Eq. (8.1) will still be valid. Such time shifts can be used

to change the phase of the charge distribution and move the imaginary part of the charge to

the real part without any loss of information. As will be shown later, using such time shifts

can help understand the charge distribution on some systems better. However, care must

be taken to ensure that all charges (and fields, if they are being used) are propagated by the

same phase/time delay simultaneously. It is incorrect to modify the phase of the charges on

one part of the system while leaving another part unchanged. This could result in unphysical

results such as net charges on free standing structures.

With this introduction, we hope that the physical meaning of the complex charge is clear. We

will now move on to studying the charges on a few systems of increasing complexity to see

how best to study the charges on these systems and to understand various nuances.

8.3 Results and discussion

8.3.1 Nanorod

We will start with a simple system consisting of a single nanorod of dimensions 120 nm×
40 nm×40 nm. The nanorod is illuminated by a plane wave propagating along one of the

short axes, and polarised along the long axis.

The scattering cross section of the nanorod is shown in Fig. 8.1(a). There is a single scattering

peak in the frequency range considered, corresponding to the dipole resonance of the nanorod.

The complex polarisation charges at five different frequencies induced on the surface are also

shown. Note that for each wavelength, the real (top) and imaginary (bottom) parts of the

complex polarisation charges are normalised together to the highest value of the component

over the whole surface. At low frequencies, it is seen that the real part of the charges dominates

over the imaginary part. As the frequency is increased, the imaginary part becomes more and

more significant, and looks similar to the real part. Near the resonance peak, the imaginary

part dominates the real part. Once the scattering peak is crossed, the real part picks up

strength again, though it gains a sign flip as well. Far away from the resonance, we have again

the situation where the real part dominates the imaginary part. The nanorod at resonance is a

good example of a system in which taking only the real part of the charges at the outset would

have given a completely incorrect picture – that would have resulted in zero charge but the

charges have not vanished, only shifted in phase.
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Figure 8.1 – (a) Scattering cross section as a function of frequency for the nanorod for po-
larisation along the long axis. The real (top) and imaginary (bottom) parts of the complex
polarisation charges at five different frequencies are also shown. (b) The magnitude and phase
of the x-component of the dipole moment. The polarisation charges shown previously are
corrected to the phase of the dipole moment, and the real and imaginary parts are plotted.

The behaviour of real and imaginary parts of the charge is similar to that seen in simple

harmonic motion, since the system is similar to a classical driven oscillator [305–309]. This

parallel will become more clear on looking at the dipole moment induced on the rod. The

x-component of the dipole moment of the rod was computed from the surface currents using

the formalism developed in Section 2.4, and its amplitude and phase are shown in Fig. 8.1(b).

The phase of the dipole moment shows a smooth transition from 0 to π, passing through π/2

near the scattering peak. As explained in the previous section, adding a phase factor to the

incident field does not change the physics but adds the same phase factor to the charges. For
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each of the five frequencies shown earlier in Fig. 8.1(a), we subtract the phase of the dipole

moment at the frequency from the incident field and thus from the charges, and plot the

real and imaginary parts of the charges again. With this phase correction, we see that the

imaginary component has vanished in almost all cases. This is a signature of the system having

a single dominant mode, since the presence of a second mode with a different phase would

have resulted in non-vanishing imaginary components. In fact, we do see the emergence of

a second mode in the phase-corrected charge plot at the highest frequency (2.40 eV). Here,

the imaginary part of the charge has not vanished completely in spite of the phase correction,

and shows the signature of a higher order mode. It is interesting to note that this mode is very

weak, and its signature was not clear from the real and imaginary charge plots without phase

correction since the slight phase difference fromπ in the charges of the dominant mode results

in an imaginary part which dominates the weaker mode charges. The phase-corrected charge

plots also show a continuous migration of charges from the face to the centre on increasing

frequency, a trend that has been observed before [194].

Having demonstrated the usefulness of phase correction, we now move on to more compli-

cated systems.

8.3.2 Nanosquare

The next system which we consider is a nanosquare of dimensions 120 nm×120 nm×40 nm.

In Fig. 8.2, the scattering cross section, dipole moment and polarisation charges before and

after phase correction are shown in the same manner as in Fig. 8.1 for incident light polarised

along x-axis. The same effects described previously can be seen here as well. Due to the

symmetry in the system, y-polarised light will result in the same scattering cross section. The

charges induced will be identical in magnitude and phase too, except for being rotated by 90◦.

The situation becomes more interesting when, instead of x- or y-polarisations, the incident

wave polarisation is a linear combination of the two. A general input polarisation can be

represented by

E0(θ,ψ) = cos(θ) x̂ + sin(θ)exp
(
iψ

)
ŷ (8.3)

It is easy to see that all linear, circular and elliptical polarisations can be described by suitable

values of θ and ψ. To study the charges induced by general polarisation states, we fix the input

frequency to be 1.95 eV. The real and imaginary components of charges for certain values of θ

and ψ are shown in Fig. 8.3(a). Note that these charges are phase-corrected using the phase of

the dipole moment as before.

When the relative phase ψ between the x- and y-components of input polarisation is zero, we

see that the imaginary component of the phase-corrected charge plots is zero. This should

not be surprising since the phase correction sets the imaginary component of charge for both

x- and y-polarisations to zero and we are merely looking at a linear combination of both
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Figure 8.2 – (a) Scattering cross section of the nanosquare for incident light polarised along
x-axis, and polarisation charges at five chosen frequencies. (b) Magnitude and phase of the
dipole moment, and the polarisation charges in (a) phase corrected to the respective dipole
moments.

without additional phase offsets. Changing the value of θ changes the real part of the charge

distribution - the charges essentially get rotated by θ. Adding a phase offset of π retains these

features since it merely adds a negative sign to one of the components.

However, the situation changes when the phase ψ is nontrivial. When θ =π/4 and ψ=π/2,

we see that the real and imaginary plots have equal magnitude. Since they are geometrically

rotated by 90◦, no phase correction can result in the vanishing of one component, a situation

unlike what has been discussed till now. To understand what is going on, we plot the surface
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(a)

(b)

(c)

(d) (e)

Figure 8.3 – (a) Real (top) and imaginary (bottom) parts of polarisation charges for various
linear combinations of x- and y-polarised incidence based on Eq. (8.3). The charge plots
have been phase-corrected to the phase of the dipole moment. Instantaneous charge plots
at five different times are shown with phase correction for (θ = π/4,ψ= π/2) in (b), and for
(θ =π/4,ψ=π/8) in (c). The curve traced by the tip of the incident electric field and the dipole
moment vectors over a period are plotted without phase correction for the two cases in (d) and
(e), respectively. The black dot indicates the time t = 0, and the time evolution is colour-coded
from red to green to blue to red.

charges σp (r, t) at five instants in Fig. 8.3(b). Note that the phase correction to the dipole

moment is still applied for clarity. At t = 0, the charge distribution is such that the dipole

moment is exactly in the x-direction. With increasing time, the charges shift: the positive

charges found at the right edge of the square migrate towards the positive y-direction, whereas

the negative charges at the left edge do the reverse. This results in a rotation of the dipole

moment. At t = T /4, the charges have reoriented themselves such that the dipole moment

is now in the y-direction. This rotation continues further with time. This should not be
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surprising, since E0(θ =π/4,φ=π/2) = (x̂ + i ŷ)/
p

2 is circularly polarised illumination. The

evolution of the incident electric field and the instantaneous dipole moment as a function of

time are plotted in Fig. 8.3(d) without phase correction for the dipole moment. The colours

denote the time and t = 0 is marked separately. It can be seen that the dipole moment curve is

identical to the incident field curve, except for a rotation along the colours. The geometrical

similarity is the consequence of the polarisability along x- and y-directions being identical,

and the colour rotation is due to the phase shift between incident light and the dipole moment,

which has not been corrected for here. The rotation of the dipole moment clearly explains the

trends seen in the time evolution of the charges.

When ψ is changed to π/4, the situation changes tremendously. The instantaneous charges

for this case have been plotted in Fig. 8.3(c). The rotation of the dipole moment is no longer

uniform. For example, between t = T /4 and t = 3T /8, the instantaneous dipole moment

rotated 90◦ from +y direction to −x in a duration of T /8, in contrast with the ψ= π/2 case

which always took T /4 time for rotating the dipole moment by 90◦. The reason for this can be

understood by looking at the E and p curves in Fig. 8.3(e). The incident field is now elliptical,

with major axis inclined to the symmetry axes of the square. As a result, so is the dipole

moment. Since the colours do not traverse the points on the ellipse at constant angular

velocity, the dipole moment rotation is not uniform. The phase difference between incident

field and dipole moment also means that their instantaneous rotations have different rates.

This example goes on to show that, though the real and imaginary parts of the charge contain

the full information about the evolution of polarisation charges on the structure, visualising

the evolution is not straightforward. Additional tools such as movies and snapshots of charges

at different times, and dipole moment ellipses as we proposed here, make it easier to grasp

the complexity of the charge evolution.

8.3.3 Nanorectangle

Next, we break the symmetry of the nanosquare by turning it into a rectangle. The nanorectan-

gle has dimensions 120 nm×80 nm×40 nm. The width of 80 nm ensures that the polarisability

along y-direction is comparable to that along x in the frequency range being considered,

unlike the nanorod considered previously. As a result, the system has two resonances for

the two orthogonal polarisations, but the resonances are sufficiently close in terms of peak

intensity and position for them to have significant overlap.

The scattering cross section for x- and y-incident polarisations are plotted in Fig. 8.4(a) along

with the real and imaginary polarisation charges for both incidence conditions at six chosen

frequencies. It is clear that the relation between real and imaginary parts of charges for each

frequency is completely different for the two polarisations. The reason for this can be seen

from the dipole moment amplitude and phase for the two different polarisations, plotted in

Fig. 8.4(b). Not only is the phase of the two dipole moments different, the phase difference

between the two is not a constant either. This is a consequence of the scattering peaks being
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Figure 8.4 – (a) Scattering cross section of the nanorectangle for x- and y-polarised illumina-
tions. Real (top) and imaginary (bottom) parts of the polarisation charges are also shown for
x- (left) and y- (right) polarised incidence for selected frequencies. (b) Magnitude and phase
of the induced dipole moments.

frequency separated. It is hence not possible anymore to simultaneously phase-correct both

charge plots to let the imaginary parts of both vanish. We see once again that considering

only the real part of the charge distribution would have led us to wrong conclusions especially

about the relative magnitudes of the charges (and thus the dipole moments).

Next, as done previously, we will look at the charges on the structure arising from combinations

of x- and y-polarisations. The frequency will be fixed at 2.20 eV since the polarisability along

both directions is nearly equal in magnitude. The real and imaginary components of charges

for θ = π/4 for three different values of ψ are plotted in Fig. 8.5(a). Note that no phase
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(a)

(b)

(c)

(d)
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(g)

Figure 8.5 – (a) Real and imaginary parts of polarisation charges without phase correction at
2.20 eV for three different incident conditions corresponding to θ and ψ values indicated in
the figure. (b-d) Instantaneous charge plots at five different times for the three illuminations
in (a). (e-g) Curves traced by the incident electric field and dipole moment vectors over a
time period for the three illuminations. The black dot indicates the time t = 0, and the time
evolution is colour-coded from red to green to blue to red.
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correction has been done on any of the images in this set.

The first thing to note is that even when ψ = 0, the imaginary part of the charge does not

vanish. It is also geometrically different from the real part, implying that no phase correction

will fix it, as expected. The time evolution of the charges, plotted in Fig. 8.5(b), shows that

the surface charges rotate with time. This is a consequence of the complex polarisability of

the rectangle along x and y being different. Fig. 8.5(e) compares the evolution of the incident

electric field and dipole moment vectors, and it is evident that the two are not similar anymore

unlike the case of the nanosquare. Though the input polarisation curve is a straight line, the

dipole moment curve is an ellipse with the minor axis comparable to the major axis. The

nanorectangle is thus able to convert linearly polarised incident field into partly circularly

polarised scattered field.

For ψ=π/2, the real and imaginary parts of charges look similar except for a sign flip. This is

the signature of the polarisation charges on the structure being linear. This can be observed

in the time evolution plotted in Fig. 8.5(c). The charges seem to wax and wane rather than

move about the structure. Looking at the incident field and dipole moment plots in Fig. 8.5(f)

explains why : though the incident field moves in a circle, the dipole moment is an ellipse

with a very short minor axis, so that the dipole moment nearly moves in a line with time.

ψ=π/4 gives an intermediate situation, where both the incident field and the dipole moment

are elliptical (Figure 8.5(d,g)). But it is interesting to note that the two ellipses have opposite

senses of rotation. The colours on the two ellipses are flipped, and the dipole moment rotates

clockwise while the incident polarisation rotation is anticlockwise. This interesting behaviour

arises from the large phase difference (> π
2 ) between the dipole moments along x and y .

Since the magnitudes of the dipole moments along x and y are nearly equal for the frequency

under consideration, this means that polarisabilities along the two directions are almost

negatives of each other. As a result, the dipole moment ellipse is flipped with respect to the

incident field ellipse and the sense of rotation is reversed. It should be noted that rotation of

the dipole moment gets transmitted to the far field as circular polarisation in the scattered

field. Nanostructures like the nanorectangle which have polarisabilities along the two axes

with similar magnitudes but large phase differences can achieve relative rotation between

incident field and induced dipole moment as described above, and thus be used as polarisation

converters [310, 311].

8.3.4 Dolmen

The next structure we analyse is the dolmen, a system of considerable interest to the plasmonic

community due to the Fano resonance shown due to the interaction between the dipole

mode supported by the horizontal arm and the quadrupole mode supported by the vertical

arms [206–208, 262, 263, 279–281, 312–315]. Both the horizontal arm and the vertical arms

of the dolmen have dimensions 120 nm×40 nm×40 nm. The scattering cross section for

incident polarisation along the horizontal arm and real and imaginary components of the
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Figure 8.6 – (a) Scattering cross section of the dolmen for x-polarised incidence, and real and
imaginary parts of the polarisation charges at eight different frequencies. (b) Magnitude and
phase of the x-component of the dipole moment of the horizontal arm and y-component of
the dipole moment of the left vertical arm.

polarisation charges for selected frequencies are plotted in Fig. 8.6(a).

The scattering cross section shows the features of a Fano resonance, with two scattering peaks

and a scattering dip. As the frequency is increased, the charges on the horizontal arm behave

in a similar fashion as the single nanorod shown in Fig. 8.1(a). At low frequencies, the real

part of the charges is dominant. With increasing frequency, the imaginary part takes over,

after which the real part becomes dominant again. The behaviour of the vertical arm is more

interesting. The charges on the vertical arms change from real to imaginary to real twice. This

can be seen more clearly in the dipole moment plot in Fig. 8.6(b). The amplitude of the dipole

moment along x-direction for the horizontal arm and y-direction for the left vertical arm are
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(a) (b) (c)

(d)

Figure 8.7 – (a) Real and imaginary parts of the charge plots at 1.80 eV after phase correction to
the horizontal arm. (b) Same as (a), but phase corrected to the vertical arm. (c) Curves traced
by the incident electric field and the combined dipole moment of the horizontal arm and the
left vertical arm. (d) Time evolution of the instantaneous charge plots.

shown (the right vertical arm has charges opposite to the left). The phase of the dipole moment

of the horizontal arm changes from 0 to π as usual. But the vertical arm phase changes from 0

to 2π. This is due to the fact that the mode of the system changes from bonding to antibonding

across the Fano resonance. The charges on the horizontal and vertical bars across the gap

are attractive at low frequencies but repulsive at high frequencies. The dipole moment of the

vertical bars thus gets an additional sign flip relative to the horizontal bar (which is being fed

by the incident field directly and thus gains a phase of π across the resonance), resulting in a

total phase change of 2π. The emergence of the resonance of the vertical arms can also be

observed at high frequencies.

The phase difference between the charges on the horizontal and vertical arms means that

simultaneous phase correction is impossible in this case as well. The real and imaginary parts

of the charge plots corrected to the dipole moment phase of the horizontal and vertical arms

are shown in Fig. 8.7(a) and (b) respectively for 1.80 eV. Correcting the charge plots by the

dipole moment phase of the horizontal arm indeed results in the vanishing of the imaginary

component of the charge on the horizontal arm, but the component remains on the vertical

arm. On applying phase correction using the dipole moment of the vertical arm, the reverse

happens. This shows that in coupled systems, taking a snapshot of charges at any single

instant does not give the complete information about the charge evolution, even for simple

incidence conditions.
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The evolution of charges on the dolmen with time have been shown in Fig. 8.7(d). It is evident

that though the charge evolution of both the horizontal arm and the vertical arm are similar

to that of a single rod, they do not happen in phase. This phase difference can be visualised

better in the incident field and dipole moment evolution curves shown in Fig. 8.7(c). Note

that the dipole moments of only the horizontal arm and the left vertical arm are considered

since the dipoles in the two vertical arms cancel off each other. The dipole moment ellipse

has major axis at nearly 45 degrees, and the aspect ratio is not too high. This is a result of

the dipole moments of both arms being nearly equal in magnitude, and the phase difference

between them being significant.

8.3.5 Ellipsoid

All the systems considered until now were thin in the direction of propagation, and hence could

be considered planar. As a result, propagation of the planewave does not result in retardation

and phase variation along the thickness of the structure. To understand what happens when

this restriction is removed, we study the polarisation charges on an ellipsoid of dimensions

200 nm×250 nm×300 nm. All three dimensions are comparable to the wavelengths under

consideration, and retardation effects on the structure should be significant.

The scattering cross sections of the ellipsoid for x- and y-polarised planewaves propagating

along z are plotted in Fig. 8.8(a). For x- (y-) polarised incidence, there is a scattering peak at

2.50 eV (2.38 eV). However, the shape of the curve is quite different from that of the individual

structures considered until now, with the prominent difference that a shoulder is visible in the

scattering curve for x (y) at a higher frequency of 2.64 eV (2.59 eV). The polarisation along the

thinner dimension x gives blue shifted scattering peaks, similar to the behaviour seen for the

nanorectangle.

Polarisation charges induced on the surface at the four frequencies are shown in Fig. 8.8(a).

The real and imaginary parts of the charges are shown from both front (viewing in the direction

of y-axis, shown on the left side in each set of charge plots) and side (viewing in the direction

of −x axis, shown on the right side). Nodes can be seen in the charge distribution along the

propagation direction. The major scattering peak for both polarisations have one node each

in the charge distribution along z, whereas the charge distribution at the scattering shoulder

have two nodes each. This is a result of retardation due to the large size of the object along the

propagation direction.

The presence of the nodes along z means that the charge distribution is no longer dipolar

at the scattering peaks. The dipole moments in the top and bottom halves of the structure

cancel each other. The dipole moment induced on the structure (px for x-polarisation and

py for y-polarisation) are plotted in Fig. 8.8(b). It can be seen that the dipole moments do

not show a maximum near at the scattering peaks, but show only a minor change in strength

near the scattering shoulder. Thus the major scattering peaks are not dipolar. The induced

quadrupole moments (Qxz =Qzx for x-polarisation and Qy z =Qz y for y-polarisation) shown
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Figure 8.8 – (a) Scattering cross section of the ellipsoid for x- and y-polarised planewaves
incident along z, with the coordinate system shown in the inset of (b). Views of the real (top)
and imaginary (bottom) parts of polarisation charges on the ellipsoid when viewed from
the front (in the +y direction) and from the right side (in the −x direction) are also shown
side-by-side, for four different frequencies. (b) Magnitude and phase of the x-component of
dipole moment for x-polarisation and y-component for y-polarisation. (c) Magnitude and
phase of the xz-component of quadrupole moment for x-polarisation and y z-component for
y-polarisation.
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in Fig. 8.8(c) provide the resolution. They are seen to peak near the scattering peaks, and show

the expected relative magnitudes as well.

It should also be noted that the modes here are quite broad and overlap with each other.

The dominant charge distribution at the scattering shoulders are hexapolar, according to

the imaginary parts of the charges. But the quadrupole has not died down at this frequency,

as can be seen from looking at the real parts of the charges at these wavelengths or from

the quadrupole moment plot. When modes overlap, it can be fairly difficult to understand

the various contributions to the charges. In the case of symmetric structures such as the

ellipsoid, we can utilise the fact that different modes have different symmetries to retrieve

some information about the modes.

To achieve this, we decompose the polarisation charge distribution as a sum of odd and even

functions of the three coordinates,

σp (r) =σ+++
p (r)+σ++−

p (r)+σ+−+
p (r)+σ+−−

p (r)+σ−++
p (r)+σ−+−

p (r)+σ−−+
p (r)+σ−−−

p (r) . (8.4)

Here, the three signs in the superscript denote the odd/even nature of the function for the

three coordinates. For example, σ−+−
p (r) is odd in x, even in y and odd in z. The functions

themselves can be found by symmetric addition of the charges with the correct signs,

σabc
p (x, y, z) =σp (x, y, z)+ cσp (x, y,−z)+bσp (x,−y, z)+bcσp (x,−y,−z)+aσp (−x, y, z)

+acσp (−x, y,−z)+abσp (−x,−y, z)+abcσp (−x,−y,−z) . (8.5)

For example,

σ−+−
p (x, y, z) =σp (x, y, z)−σp (x, y,−z)+σp (x,−y, z)−σp (x,−y,−z)

−σp (−x, y, z)+σp (−x, y,−z)−σp (−x,−y, z)+σp (−x,−y,−z) . (8.6)

Now, it is easy to see that each multipolar moment vanishes for some of the functions. For

example, the only symmetrised function which can provide a nonvanishing x-component

of electric dipole (px ) is σ−++
p . Similarly, only σ−+−

p can result in nonzero Qxz . The list of all

non-vanishing components for the various symmetrised functions is provided in Table 8.1. It

should be noted that higher order modes and moments with the same symmetry properties

as a dipole/quadrupole moment will be nonvanishing for the same functions. For example,

a hexapole mode will have the same symmetry as the dipole mode and will be seen in the

same symmetrised function. Also, though none of the dipole or quadrupole moments are

nonvanishing forσ−−−
p , there can be charge distributions with octupole moments which result

in σ−−−
p .

By using a symmetric mesh for the SIE simulations, it is straightforward to generate all the

symmetrised charge functions – since the charge density is a constant for each triangle,

one only needs to add the charge densities over the sets of symmetric triangles with the
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8.3. Results and discussion

Symmetrised function Nonvanishing components
σ+++

p Qxx , Qy y , Qzz =−(Qxx +Qy y )

σ++−
p pz

σ+−+
p py

σ+−−
p Qy z =Qz y

σ−++
p px

σ−+−
p Qxz =Qzx

σ−−+
p Qx y =Qy x

σ−−−
p

Table 8.1 – List of components of electric dipole moment and quadrupole moment which do
not automatically vanish by symmetry for each of the symmetrised functions.

correct signs. The ellipsoid was simulated using a symmetric mesh, and the symmetrised

functions computed for a planewave propagating along z and linearly polarised along y are

plotted in Fig. 8.9(a) for an incident frequency of 2.55 eV. We immediately see that only σ+−+
p

and σ+−−
p are nonvanishing. This should not be surprising since the illumination condition

is symmetric about x and antisymmetric about y . Had the object been thin along z and

retardation effects been negligible, σ+−+
p would have been dominant because we do not

expect nodes in the charge distribution along the z axis. However, both σ+−+
p and σ+−−

p

are similar in magnitude and it can also be seen that σ+−+
p in fact has a hexapolar charge

distribution. The quadrupolar and hexapolar charge distributions which we had found while

looking at the charge distributions at the scattering peak and shoulder in Fig. 8.8 have nicely

separated into different symmetrised functions.

Next, we vary the direction of incidence in the xz plane to 45◦ so that the unit vector along

the propagation direction is ( 1p
2

,0, 1p
2

). The direction of polarisation is retained as y , and the

frequency is kept at 2.55 eV. The charge distribution and its decomposition into symmetrised

functions is shown in Fig. 8.9(b). The quadrupole in σ+−−
p retains its shape, and a similar

quadrupole corresponding to Qx y has arisen in σ−−+
p . In addition to the hexapole in σ+−+

p , we

also see a non-vanishing charge distribution arising in σ−−−
p . This is an analogue of the classic

octupole with charges placed at the coordinates of a cuboid with opposite signs for adjacent

vertices. We could not have got this term for normal incidence along x-or y-directions due to

symmetry, and it is thus a result of symmetry breaking in the geometry of the ellipsoid and the

illumination condition.

Finally, we move the direction of incidence out of the xz plane. We now come in the incident

direction ( 1
2 , 1

2 , 1p
2

), with light polarised along (− 1p
2

, 1p
2

,0) at the same frequency. This brings

the retardation along all axes into the picture. The charges and the symmetric decomposition

are plotted in Fig. 8.9(c). We now see that all functions are nonvanishing, though the relative

magnitudes differ. What is most interesting among these is σ+++
p , which gives diagonal

components for Q. In fact this is now the strongest among the symmetrised functions, another
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Figure 8.9 – Front (+y direction) and side (−x direction) views of the real and imaginary parts
of the polarisation charge distribution and its symmetric decomposition at 2.55 eV on the
ellipse in the inset of Fig. 8.8(b) for (a) propagation along (0,0,1), polarisation along (0,1,0), (b)
propagation along ( 1p
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), polarisation along (0,1,0), and (c) propagation along ( 1

2 , 1
2 , 1p

2
),

polarisation along (− 1p
2

, 1p
2

,0).

112



8.4. Conclusion

consequence of symmetry breaking. The various multipolar modes found earlier appear

here with different magnitudes, and the decomposition allows to visually compare them very

easily. It is impossible to obtain any such insight by looking at the total charge distribution.

Symmetric decomposition is thus a very useful tool in understanding and visualising the

charges on nanostructures, though its utility is limited to objects with symmetries.

8.4 Conclusion

Polarisation charges are a useful tool in gaining physical insight into the optical response

of plasmonic nanostructures. Both the real and imaginary parts of the complex charges

are relevant, and taking only the real part results in a misleading interpretation of physical

phenomena. The increasingly complicated behaviour of the polarisation charges on systems

possessing multiple modes, asymmetry and retardation effects makes it tricky to extract

relevant physical information from them. We have studied different plasmonic systems

and shown how techniques such as phase correction, polarisation ellipse representation

and symmetric decomposition help to visualise the charges and understand the respective

structures better. Applying a phase correction on the charges to the phase of the dominant

moment in the system permits uncovering relatively weak modes in the system with a different

phase. In the case of systems which have two modes with dipole moments in different

directions, the coloured ellipse representation for the incident field and the dipole moment

can be used to understand the time evolution of the charges on the system. Charges on systems

with symmetries can be decomposed into a sum of symmetric functions, separating the modes

with different components of electric dipole and quadrupole moments into different functions.

It should be possible to apply phase correction to each of the symmetric functions separately

and uncover the weaker modes in each of them.
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9 Raman scattering from metal-coated
multiwalled carbon nanotubes

In this chapter, we study surface-enhanced Raman scattering (SERS) from metal-coated

multiwalled carbon nanotubes using SIE. We use a Monte Carlo method to compute the

Raman signal and are able to qualitatively explain the Raman enhancement in nanotubes in

the presence of a metallic coating, and the corresponding reduction in the Raman signal from

the substrate. We also show how computing the fields in such complex systems requires the

use of the optimised integration recipe developed in Chapter 3.

9.1 Introduction

Extreme local field enhancement provided by plasmonics makes it very attractive for intensity-

dependent phenomena like Raman scattering. Signal intensity boosts provided by plasmonic

materials have long been used to study this phenomenon, and plasmonics as a field has

advanced hand in hand with surface-enhanced Raman scattering (SERS) [34–40, 316]. Metal

coated multiwalled carbon nanotubes have recently been used as a SERS substrate, and

were shown to benefit from the plasmonic response of the structure as well as the local

hotspots provided by the graininess of the metal on the surface [317–319]. Here, we study the

enhancement of the Raman scattering from the nanotubes themselves due to the metallic

coating, and contrast it with the suppression of the signal from the silicon substrate.

The nanotubes were fabricated by the group of Prof. William I. Milne, Centre for Applied

Photonics and Electronics, University of Cambridge, UK. The fabrication method involved

forming "seed" nickel nanoparticles on a silicon substrate by thermal annealing of a nickel

thin film, followed by plasma-enhanced chemical vapor deposition to grow the multiwalled

nanotubes under the nickel seeds [320–322]. SEM image of the fabricated nanotubes is shown

in Fig. 9.1(a). The typical length of the nanotubes fabricated is 500 nm and the diameter is

64 nm, with a nanotube filling fraction of 50%, corresponding to a carbon thickness of 10 nm.

Following this, the nanotubes were coated with silver. Two different kinds of coating were

applied. In the first case, the nanotubes were subject to vertical evaporation of silver, to a
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Figure 9.1 – SEM images of (a) bare multiwalled nanotubes grown on a silicon substrate using
plasma-enhanced chemical vapor deposition under nickel seed particles, (b) nanotubes with
5.2 nm vertical silver deposition, and (c) nanotubes coated on all sides by depositing silver
at an angle of 15◦ on a spinning substrate, resulting in a thickness of 18.5 nm on the silicon
base. The scalebars in all images correspond to 200 nm, and the bare nanotubes have a typical
height of 500 nm. SEM images courtesy from the group of Prof. Paul Dawson, Centre for
Nanostructured Media, Queen’s University, Belfast, UK.

thickness of 5.2 nm. This resulted in silver being deposited at the top of the nanotubes as well

as on the substrate. SEM images of the silver capped nanotubes is shown in Fig. 9.1(b). In

the second method, the evaporation was performed at an angle of 15◦ while the substrate

was rotated. The nanotubes were thus coated with silver from all sides, as seen from the SEM

image in Fig. 9.1(c). The vertical thickness of the silver coating in this case was 18.5 nm.

Raman measurements (not reproduced here) by the group of Prof. Paul Dawson at the Centre

for Nanostructured Media, Queen’s University, Belfast, UK showed that the 5.2 nm vertical

deposition of silver resulted in boosting the Raman signal from the nanotubes at 633 nm by a

factor of 4–4.5, and diminishing the signal from the substrate by a factor of 2.3. For the 18.5 nm

thick oblique deposition, the enhancement and suppression factors were 15 and 6, respectively.

We model the system using SIE to find the source of the metal-induced modification of the

signal.

9.2 Model

9.2.1 Geometric modelling

Based on the SEM images, we choose the height of the nanotube as 500 nm and the radius as

32 nm. The multiwalled nanotubes are hollow, and we assign a thickness of 10 nm to them,

which corresponds to a filling fraction of just under 50%. The top of the nanotubes is rounded

to a hemispherical shape, with the inner hollow region also being rounded in the same fashion

so that the nanotube has uniform thickness. Simulations are performed with and without the

nickel nanoparticle seeds at the top to understand their effect. In the former case, these nickel

nanoparticles are modelled as spheres of the same radius as the inner wall of the nanotube.

To take into account the interaction between adjacent nanotubes, we simulate them on a
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(a) (b) (c) (d)

Figure 9.2 – Simulation geometries of the nanotubes with different levels of metallic coating.
(a) Bare: nanotube of 32 nm radius, 10 nm inner thickness and 500 nm height, standing on a
silicon substrate with a unit cell of 160 nm × 160 nm. (b) Capped: nanotube with 5 nm silver
coating at the cap and on the substrate. (c) Coated-1: nanotube with 18.5 nm silver coating at
the cap and on the substrate, and 7.5 nm coating on the walls. (d) Grainy-4: nanotube with
18.5 nm silver coating at the cap and on the substrate, and a grainy coating on the walls. The
grains are modelled as spheres of 19.5 nm radius, distributed with their centres in a helical
pattern at a distance of 23.5 nm from the axis.

periodic array of dimensions 160 nm × 160 nm. The simulation mesh corresponding to the

bare nanotube geometry (henceforth referred to as Bare) without the nickel nanoparticle is

shown in Fig. 9.2(a).

We now take into account the effect of deposition of silver. For the case of evaporation at

normal incidence, we add a silver layer of thickness 5 nm to the substrate and a cap of the same

thickness to the top of the nanotube. The mesh (Capped) is shown in Fig. 9.2(b). For deposition

at oblique incidence with a rotating substrate, the ideal scenario is that the nanotube walls

are covered uniformly by silver. We simulate two different thicknesses of silver on the walls:

7.5 nm (Coated-1, shown in Fig. 9.2(c)), and 11.0 nm (Coated-2). In both cases, the cap of the

nanotube and the substrate are covered with 18.5 nm thick silver.

The silver deposition on the walls is not smooth and uniform in practice, as evident from

Fig. 9.1(c). We model the grains as spheres of radius r distributed with their centres in a

helical pattern at a distance of R from the nanotube axis. We consider four different levels of

graininess, from smoothest to roughest: r = 27 nm and R = 16 nm (Grainy-1); r = 25 nm and

R = 18 nm (Grainy-2); r = 22.3 nm and R = 20.7 nm (Grainy-3); and r = 19.5 nm and R = 23.5

nm (Grainy-4, shown in Fig. 9.2(d)).

The simulations are performed at the incidence wavelength of 633 nm. The permittivity of

nickel was taken from Ref. [323], that of silicon from Ref. [324] and for silver from Ref. [175].

We use the refractive index formula given by Bruna and Borini, nMWNT = 3.0+ i (C /3.0)λ with

C = 5.445µm−1 for the permittivity of the carbon nanotube [325]. Both the background and

the hollow region inside the nanotube are taken as vacuum. Simulations are performed both
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at normal incidence and at 25◦ with p polarisation to incorporate the effect of wide angle

incidence.

9.2.2 SERS computation

Since the Raman signal arises from all parts of the nanotube and the substrate, we require to

compute the average Raman signal over each domain. We do this by a Monte Carlo approach.

40,000 points are chosen uniformly randomly in the volume of the Carbon part of the nanotube,

and similarly in the substrate. Since the geometry of the nanotube is complicated and the mesh

is too discrete to be specified by mathematical formulae, we ensure that the points are inside

the correct domain by the implementation in Ref. [105] of binary space partitioning [326]. This

is not required for the silicon substrate since the boundary is flat. The substrate is semi-infinite

and needs to be truncated to do the averaging. We hence choose the limit for the substrate

Monte Carlo point sampling as 10 micron to allow the field sufficient depth to decay. For

simulations differing only in the illumination condition where the simulation mesh is identical,

the set of points used is also identical.

The Raman signal should ideally be calculated by finding the field intensity enhancement at

each point and then computing the radiated far field from it [327, 328]. However, this would

require treating each point in the Monte Carlo sampling as a separate illumination for SIE,

making this treatment prohibitively expensive. We hence make the approximation that the

Raman signal from a point is proportional to |Eloc|4, where Eloc is the local electric field at the

illumination wavelength [318]. This amounts to neglecting the Stokes shift and working at the

illumination wavelength [37].

9.3 Results and discussion

The intensity of the electric field in the xz-plane for structures without the nickel nanosphere at

the top is shown in Fig. 9.3. Since silicon is a high index material, most of the light falling on the

substrate is reflected, giving rise to a standing wave pattern. Adding the metal coating affects

the fields in multiple ways. For the Capped structure, there is a slight increase in intensity at

the cap of the nanotube as well as near the substrate interface, as seen in Fig. 9.3(b). When a

thick coating is applied, the field in the hollow centre of the tube is seen to increase since it

behaves as a reflective cavity. The graininess of the silver coating changes the outside field

significantly, but is not seen to have such an impact on the field inside the tube (Fig. 9.3(e-h)).

Next, we look at the Raman signal from the nanotubes. The 40,000 points for which |Eloc|4
is computed are split into ten sets of equal sizes. The points in each set were still uniformly

distributed within the nanotube – that is, they were not separated by region. Since each set is

a Monte Carlo sampling in itself, the results from the sets can be compared among themselves

to verify whether convergence has occurred and whether there are large variations due to

outliers. The mean value for each set is calculated, and the standard deviation of the means is
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Figure 9.3 – Intensity of the electric field in the xz-plane for normal incidence without the nickel nanosphere for (a) Bare, (b) Capped,
(c) Coated-1, (d) Coated-2, (e) Grainy-1, (f ) Grainy-2, (g) Grainy-3, and (h) Grainy-4 structures.

119



Chapter 9. Raman scattering from metal-coated multiwalled carbon nanotubes

also computed to get an estimate of the error. The mean and standard deviation are tabulated

for the different structures in Table 9.1, with incident electric field of unit intensity. For normal

incidence without nickel, the standard deviations over the ten sets are much smaller than

the corresponding means, suggesting that the Monte Carlo method has produced converged

results.

All kinds of metal coatings are seen to increase the Raman signal from the nanotube. The

Capped structure provides the lowest enhancement (a factor of 1.8), and the Coated-1 structure

provides the highest enhancement (a factor of 5.1). Counter to intuition, we see that making

the grains rougher reduces the Raman signal instead of enhancing it.

To understand the source of Raman enhancement, we plot the |Eloc|4 values for the set of

Monte Carlo points inside the nanotube for each structure in Fig. 9.4. For ease of visualisation,

all the points have been rotated to the xz-plane. This way of plotting provides better insight

into the source of the Raman signal than the cross sectional intensity plots of Fig. 9.3. For

the Bare structure in Fig. 9.4(a), the Raman intensity is essentially uniform except for the

modulation along the length of the tube due to the standing wave pattern. The Capped

structure in Fig. 9.4(b) shows enhancement at the top region where silver has been deposited.

The Coated-1 structure in Fig. 9.4(c) shows the strongest enhancement throughout the length

of the tube, once again modulated by the standing wave pattern outside. Interestingly, points

showing higher value of Raman intensity are situated closer to the inside of the tube. This

suggests that the nanotube is not passively receiving the intensity enhancement from the silver

coating but plays a role in deciding the field distribution. It therefore matters that the tube is

hollow and not filled. Also, there seems to be an optimum thickness for achieving the Raman

enhancement since increasing the thickness of the coating from 7.5 nm to 11.0 nm reduces the

Raman intensity; compare Coated-1 (Fig. 9.4(c)) and Coated-2 (Fig. 9.4(d)). As we increase the

roughness of the grains from Grainy-1 to Grainy-4 in Fig. 9.4(e to h), the hotspots are seen to

Average value of |Eloc|4 ×102

Without nickel With nickel
0◦ 25◦ 0◦ 25◦

Bare 3.83±0.07 4.43±0.04 3.13±0.08 4.54±1.77
Capped 6.92±0.21 7.40±0.21 3.45±0.10 5.77±4.44

Coated-1 19.6±0.36 19.4±0.25 17.2±0.39 20.9±8.02
Coated-2 14.8±0.29 13.5±0.15 14.1±0.31 15.5±7.85
Grainy-1 18.2±0.41 19.0±0.34 16.5±0.42 20.2±5.30
Grainy-2 17.8±0.44 18.6±0.39 15.8±0.44 19.5±5.48
Grainy-3 15.5±0.16 18.0±0.11 12.7±0.27 18.8±7.15
Grainy-4 13.8±0.23 16.8±0.61 11.0±0.25 17.6±7.16

Table 9.1 – Mean value of |Eloc|4 in the nanotube and the standard deviation over ten sets of
points in the Monte Carlo method.
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Figure 9.4 – |Eloc|4 values at the 40,000 points selected inside the nanotube in the Monte
Carlo approach for normal incidence without the nickel nanosphere for (a) Bare, (b) Capped,
(c) Coated-1, (d) Coated-2, (e) Grainy-1, (f ) Grainy-2, (g) Grainy-3, and (h) Grainy-4 structures.
Note that all the points have been rotated to the xz-plane for ease of visualisation.

move towards the outer region from the inside, but the total intensity decreases. The increase

localised fields due to the graininess are offset by the reduction in the intensity due to the

change in the shape of the metal coating. From these observations, we can conclude that the

entire metal coating takes part in the intensity enhancement rather than just the grains, a

result that seems to support the findings of Ref. [318].
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Figure 9.5 – Intensity in the xz-plane for the Coated-1 structure without the nickel nanosphere
at normal incidence computed by (a) the optimised integration recipe, and (b) the standard
single-point integration.

Qualitatively, the enhancements are not very different when the incidence angle is increased

to 25◦ and when the nickel sphere is included at the top. Oblique incidence results in a

higher intensity. This is because the incident and reflected fields now have a z-component,

and continuity of the Maxwell’s equations implies that they will penetrate the high-index

nanotubes better than the x-component. On the other hand, nickel reduces the field directly

entering the nanotube, reducing the Raman signal. One interesting feature in Table 9.1 is the

large standard deviations present in the column corresponding to oblique incidence in the

presence of nickel. It turns out that these are associated with the sharp boundary where the

nickel sphere is joined to the nanotube. Sharp domains result in high field intensities, but in

this case it is an artefact of the model and not a real physical effect [258]. However, choosing a

large number of sampling points has reduced the effect of the outliers associated with this

region, as can be seen from comparing with the other columns in Table 9.1.
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Average value of |Eloc|4 ×105

Without nickel With nickel
0◦ 25◦ 0◦ 25◦

Bare 214±9 136±6 205±8 132±5
Capped 155±6 100±5 157±6 106±4

Coated-1 8.98±0.34 0.45±0.07 10.8±0.41 0.59±0.09
Coated-2 8.49±0.48 2.83±0.73 9.82±0.56 3.07±0.77
Grainy-1 7.72±0.31 0.62±0.06 9.39±0.37 0.76±0.07
Grainy-2 8.77±0.35 1.35±0.07 10.7±0.42 1.66±0.09
Grainy-3 12.7±0.73 4.69±0.49 15.1±0.88 5.65±0.59
Grainy-4 14.6±0.84 5.42±0.57 17.4±1 6.52±0.68

Table 9.2 – Mean value of |Eloc|4 in the substrate and the standard deviation over ten sets of
points in the Monte Carlo method.

Another point to note is that this is a system in which the optimised integration recipe devel-

oped in Chapter 3 is absolutely necessary. The large size of the structure forces us to choose

a relatively coarse discretisation. Compounded by the fact that there are multiple domains

touching and in close proximity, the accuracy of the results depends a lot on the integration

routine. All the results reported here have been computed using the optimised recipe. For

comparison, we have plotted the intensity in the xz-plane for normal incidence on the struc-

ture Coated-1 without the nickel particle computed using the optimised integration recipe

and the standard procedure in Fig. 9.5. The simulation mesh and the points at which the

field is plotted are identical for both cases, and a logarithmic intensity scale is used so that

low intensity regions are clearer. The fields calculated by the standard integration method,

plotted in Fig. 9.5(b), show strange numerical artefacts inside the metal. There seem to be

closely spaced nodes and antinodes. These vanish under the computation using the optimised

integration procedure in Fig. 9.5(a), and the magnitude of the fields in other regions is also

different.

Finally, we look at the Raman signal from the silicon substrate. The means and standard

deviations are computed in the same fashion as before, and listed in Table 9.2. The general

trend is reversed – that is, the presence of silver quenches rather than enhances the Raman

signal from the substrate. This is not surprising since the presence of the metallic layer in

the direction of propagation results in reflection and absorption of the incident light. For

normal incidence without nickel, the Capped structure diminishes the Raman signal from

the substrate by a factor of 1.4. For all the other structures, the suppression factor is much

higher, ranging from to 14.7 to 27.7. Oblique incidence results in further lowered signal due to

the increased reflection. It should also be noted that unlike the results in Table 9.1, the nickel

sphere does not result in large variations because we are sufficiently far from the problem

region.
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For both the nanotubes and the silicon substrate, the results presented here agree qualitatively

with the experimental measurements. The enhancement and suppression of the signal due

to the thicker coating around the nanotubes are much higher than those for the thin vertical

coating. However, the quantitative match of the factors is not very good. Experimentally, the

presence of the metallic coating was measured to boost the Raman signal from the nanotubes

by upto a factor of 15, whereas the best result we have obtained is 5.5 (for the Coated-1

structure including the nickel nanoparticle). A similar mismatch had been noticed in the SIE

computation for Raman scattering from the outer region in Ref. [318], and was attributed

to the neglected hotspots which could arise due to tiny gaps between the silver grains and

between adjacent nanotubes. In contrast, the suppression of Raman signal in the substrate

that we have calculated is much stronger than experimentally measured.

There are multiple fronts on which the geometrical model for the simulation could be im-

proved. A comparison between the SEM image in Fig. 9.1(c) and the simulation mesh in

Fig. 9.2(d) shows that the grains on the nanotube are much smaller than we have simulated.

As seen from Fig. 9.4(e-h), reducing the grain size adds more hot spots on the outer wall of the

nanotube. It is quite plausible that by using smaller grains than we have considered and in

close proximity, we could obtain sufficiently strong hotspots to offset the intensity reduction

that has been observed. This might result in a better match with the experimentally measured

enhancement. A close look at the SEM images also reveals cracks and bumps on the silver

film on the substrate. The uniform film approximation does not capture these details, and

hotspots on the film caused by these defects could strongly enhance the Raman signal from

the substrate. This is expected to reduce the suppression factor, taking us closer to the experi-

mental values. Unfortunately, implementing these modifications in the model would require

a very refined mesh, making the SIE computation very expensive. Incorporating other features

such as anisotropic response of the carbon nanotubes and finding a better termination of the

nanotube at the top would make the model more physical, improving the quantitative results.

9.4 Conclusion

We have used a Monte Carlo method in combination with SIE to compute Raman scattering

from multiwalled carbon nanotubes and silicon substrates. The Raman signal from the

nanotubes is boosted whereas that from the substrate is diminished due to silver deposition.

We obtain a good qualitative description of the experimental results, and the quantitative

agreement can be made better by improving the simulation model. The simulation results

show that the optimised integration recipe we developed for periodic SIE in Chapter 3 is

necessary to avoid unphysical numerical artefacts.
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10 Conclusion and outlook

We are now at the end of the thesis, and this would be a good time to summarise the results of

the various chapters and ponder over what the future holds.

In Chapter 2, we developed a formalism to compute optical forces and torques, polarisation

charges and dipole moments directly from the surface currents. The method closely followed

the SIE scheme itself so that all its advantages would be retained. The power of the technique is

immediately obvious – the post-processing cost is significantly reduced, and it spares the user

of having to build a Monte Carlo point sampling scheme or an external integration surface to

compute each physical quantity. In a way, this turns SIE into a more standalone tool. Though

the quantities computed from the surface currents in this thesis are extremely useful, the

method is in no way restricted to those. In principle, any domain-specific physical quantity

can be integrated in this fashion, provided it can be expressed as a surface integral over the

fields. As outlined in the chapter, finding such an expression may not be trivial since one might

need to convert complicated volume integral expressions to surface integral forms. However,

this one-time theoretical expense is more than rewarded by the results. For instance, being

able to replace the Monte Carlo sampling for Raman enhancement by a surface integral which

takes care of all the field variations and hot spots in the structure would be extremely useful.

One immediate area where work could be done is to find surface integral expressions for

higher order multipolar moments which are quite useful in plasmonics, such as the toroidal

moments [198, 205].

We developed an optimised integration recipe to compute the SIE matrix elements in Chap-

ter 3. Multiple instances of physical systems were presented where this recipe was required

to compute optical cross sections, fields and forces accurately. For simple structures, this

method has the prospect of reducing computational expenses by producing the same level

of accuracy of results for a coarser mesh. However, the computational overhead due to the

refined integrals is a matter of concern and offers scope for improvement. Optimising the

program implementation is one way to go about it. Parallelising the matrix building process is

another possibility since the matrix elements can be computed independently of each other.

Explicitly utilising the symmetry of the structures can also help in reducing the size of the
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Chapter 10. Conclusion and outlook

matrix. Another interesting approach is to use a reduced basis formalism [329]. This essentially

involves choosing a correct set of illuminations (the reduced basis) for which the response

is computed initially, and the solutions for other wavelengths and angles of incidence can

be built in terms of these responses. Speeding up SIE using a fast multipole method is also a

possibility [330, 331].

We presented an extension of SIE to deal with scatterers embedded in stratified media in

Chapter 4. Though it can simulate free standing structures sufficiently separated from inter-

faces, it is unable to treat the most useful systems in plasmonics where scatterers lie exactly

at the layer boundaries. We thoroughly analysed the present drawbacks and their solutions

in Section 4.5, and the natural next step would be to implement these solutions. Once this

is done, the optimised integration recipe should be modified to take care of stratified media

so that various plasmonic systems can be simulated accurately. Another direction would be

to extend SIE to other kinds of backgrounds for which Green’s functions can be found, for

example graded-index media and waveguides [332, 333].

In Chapter 5, we showed how rounding the edges and corners of nanoantennae changes their

far-field and near-field properties significantly. This seems to be a universal effect seen in

other kinds of geometries as well [252]. It therefore makes sense to spend some effort on

quantifying the kinds of rounding introduced by the various fabrication procedures. Being

able to perform SIE simulations with the correct form of rounding for each fabrication method

should allow designing systems with desired properties more accurately. Another set of useful

numerical experiments to perform in this regard would be to study the effects of rounding on

nanostructures placed on substrates, since having a flat base changes the form of rounding.

We analysed the internal forces and torques in compound plasmonic structures in Chap-

ter 6. Many novel phenomena were observed, including reversals and circular polarisation

dependence of forces and torques. It will be interesting to experimentally verify these effects.

Performing the experiments would require placing the nanostructures on substrates, and

an accurate implementation of stratified SIE will be useful to guide these experiments. Also,

the force calculation method has to be modified to incorporate the material stresses in the

media, making it more general. Based on the results in the chapter, many interesting ideas can

be pursued, such as looking for nanostructures which move laterally on circularly polarised

incidence. Going beyond these effects, the force computation method is a powerful tool to

study plasmonic trapping of realistic structures and can be used to analyse effects beyond

the dipole approximation. Once the plasmonics community develops its expertise in optical

manipulation further, we can expect assembly line processing at the nanoscale using optical

forces to revolutionise nanofabrication [61]. The ability to understand and compute forces

accurately will be vital to such an endeavour.

In Chapter 7, we studied the possibility of achieving three dimensional orientation and rotation

of nanostructures using optical torques. The numerical results suggest that this should be

possible even with plane waves by utilising plasmon resonance, retardation effects and circular
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polarisation. Experimental verification of this prediction will open new possibilities for optical

manipulation.

We presented a detailed discussion of polarisation charges in plasmonic systems in Chapter 8,

describing how to understand and visualise the charges. We showed how symmetrisation and

phase correction of charges allow us to see weak modes in the system. It should be possible

to use this method to aid the computationally intensive procedure of finding the modes of

plasmonic systems, and could even work as an alternative in some situations [334]. It will also

be interesting to extend the method of searching for weak modes by combining the charges at

different frequencies, similar to the symmetric combination that we performed. This should

allow the application of the method to asymmetric systems.

We studied the Raman enhancement from metal-coated multiwalled Carbon nanotubes in

Chapter 9. The presence of metal boosts the Raman signal from the nanotubes, suppressing

the signal from the substrate at the same time. Our Monte Carlo approach is able to explain

the enhancement and suppression factors qualitatively. Obtaining good quantitative agree-

ment requires an improved model which incorporates the geometric features better. Work

in this direction should enable more accurate computation of Raman scattering and can

be instrumental for the development of other enhanced spectroscopic techniques such as

SEIRA [41–48] or fluorescence [24–33] .

The various studies presented here have interesting future prospects in terms of fundamental

understanding of plasmonics as well as practical utility. Plasmonics will continue to grow as a

field over the coming years, positively affecting the daily lives of non-scientists. Numerical

tools will play an important role in developing plasmonic technology, and only time will

tell what the future has to offer. We hence end the thesis with the lines from Calvin and

Hobbes [335]: “It’s a magical world, let’s go exploring!”
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A Sommerfeld integral for the curl of
the dyadic Green’s function

Using the notation in Appendix B of Ref. [99], we obtain the following expressions for the

components of the integrand in the Sommerfeld integral in Eq. (4.10) for the curl of the dyadic

Green’s function.
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Appendix A. Sommerfeld integral for the curl of the dyadic Green’s function
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