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Abstract
The topology of the electron wavefunctions in certain band insulators can give rise to novel

topological phases. Materials harbouring such topological phases are termed topological

insulators (TI). A gapped bulk electronic spectrum, described by a topological invariant, and

gapless boundary modes, tend to characterize the non-trivial topology. This work describes a

theoretical investigation of the Z2 topological insulator phase in Bi2Se3 and Bi2Te3, and the

topological crystalline insulator (TCI) phase in SnTe, subject to nanoscale confinement. Specif-

ically, it details the electronic structure, and properties of low-dimensional nanostructures

derived from the bulk topological phase.

For the bismuth chalcogenides, a first principles methodology is applied to compute

the energetics of high-index surfaces, followed by an analysis of the electronic properties of

corresponding topological surface state charge carriers. Our calculations find several stable

terminations of high-index surfaces, which can be realized at different values of the chemical

potential of one of constituent elements. For the uniquely defined stoichiometric termination,

the Dirac fermion surface states exhibit a strong anisotropy, with a clear dependence of Fermi

velocities and spin polarization on the surface orientation. Non-stoichiometric surfaces

undergo self-doping effects, which results in the presence of topologically trivial mid-gap

states.

These findings guide the construction of Bi2Se3 nanostructures of a nanowire (NW) and

nanoribbon (NR) morphology. A tight-binding formalism is utilised to study, firstly, the impact

of finite-size effects on the electronic spectrum of each nanostructure. Secondly, the effects of

confinement on the topological properties of two-dimensional (2D) Dirac fermion surface

states. Quantum confinement around each nanostructure perimeter entails the formation

of a series of discrete one-dimensional (1D) sub-bands in the bulk gap. An analysis of how

the band gap varies as a function of nanostructure dimensions finds that the dependence is

highly sensitive to nanostructure morphology. We reveal a clear correspondence between the

spin helicity of the 2D surface Dirac cone and the spin properties of the 1D sub-bands. This is

exemplified in the real space spin textures of each nanostructure. For the NW morphology,

this correspondence gives rise to an energy dependent spin polarization density. Whereas

for the NR morphology the presence of two separate surface types results in a more complex

relationship.

Finally, via a similar tight-binding formalism, we establish how the crystal-symmetry-

dependent topological phases of SnTe (001) thin films are exhibited in lower dimensional

nanowires. SnTe (001) thin films, defined by either mirror or glide symmetry, realise distinct
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2D TCI phases. As the band dispersion of NWs are characterised by which of these symmetry

classes they belong to, we subsequently connect the distinctive NW surface states to the

respective parent 2D TCI phase. Lastly, we show that the robust topological protection offered

by the mirror symmetry protected 2D TCI phase is manifested in robust surface states of NWs

of equivalent symmetry.

Key words: topological Insulator, topological crystalline insulator, Bi2Se3, Bi2Te3, SnTe,

nanostructure, nanowire, nanoribbon, DFT, tight-binding
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Résumé
La topologie des fonctions d’ondes des électrons dans certains isolants des bandes peux don-

ner lieu à de nouvelles phases topologiques. Les matériaux dans lesquels se manifestent ces

phases sont classifiés isolants topologiques. La topologie non triviale tends à être caractèrisée

par un spectre électronique de volume isolant, d’écrit par un invariant topologique, mais

comprenant des états de surface métalliques. Ce travail dćrit l’étude théorique des phases

d’isolant topologique Z2 dans les composés Bi2Se3 et Bi2Te3, ainsi que la phase d’isolant

topologique cristallin dans le SnTe. Plus particulièrement, la structure électronique, ainsi que

les propriéteés dérivées de la phase topologique de volume de nanostuctures à dimensionalité

réduite sont décrite.

Pour les dichalcogènes de bismuthe, une méthodologie à partir de principes premiers

est utilisée pour calculer l’énergetique de surfaces à indice élevé, suivie d’une analyse des

propriétés électronique des porteurs de charges topologiques de surface correspondants. Nos

calculs révèlent plusieurs terminaisons stables de surfaces à indice élevé, qui peuvent être

réalisées pour différentes valeurs du potentiel chimique de l’un des éléments constituants.

Pour la terminaison stochiométrique définie de manière univoque, les fermions de Dirac

de surface sont fortement anisotropiques, avec des vitesses de Fermi et des polarisations de

spins dépendants de l’orientation de la surface. Des surfaces non-stochiométriques subissent

des effets d’auto-dopage, qui résultent en la présence d’états de mid-gap topologiquement

triviaux.

Ces trouvailles guident la construction de nanostructures de Bi2Se3 avec une morpholo-

gie de nanofils et de nanorubans. Un formalisme de la liaison forte est utilisé pour étudier,

dans un premier temps, l’impact d’effets de taille finie sur les propriétés électroniques de

chaque nanostructure, et dans un second temps, les effets de confinement sur les propriéteés

topologiques de fermions de Dirac de surface bidimensionnels. Le confinement quantique

autour de chaque nanostructure mène à la formation d’une série discrète de sous-bandes

monodimensionelles dans l’énergie de bande interdite du volume. Une analyse de la variation

de l’énergie de bande interdite en fonction des dimensions de la nanostructure fait état d’une

dṕendance fortement sensible á la morphologie de la nanostructure. Notre analyse révèle une

correspondance claire entre l’hélicité des états de la surface bidimensionelle du cône de Dirac

et les propriétés de spin des sous-bandes monodimensionelles. Cette dernière est illustrée

par les textures de spins dans l’espace réel de chaque nanostructure. Pour le nanofil, cette

correspondance donne lieu à une dépendence de l’énergie de la polarisation locale de spin.

En revanche, pour la morphologie de nanoruban, la présence de deux types de surface résulte
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en une relation plus complexe.

Finalement, avec un formalisme de la liaisons fortes similaire, on établit les phases

topopogiques dépendants des symétries cristallines dans des couches minces de SnTe (001)

dans des nanofils à basse dimensionalité. Les couches minces de SnTe (001), définies soit par

la symétrie de miroir, soit par la symétrie de rf́lexion glissé, réalisent des phases topologiques

cristallines bidimensionelles distinctes. Comme la dispersion de bande de nanofils est caracté-

risée par à laquelle de ces deux classes de symétrie elle appartient, on relie les états de surface

distincts aux phases topologiques cristallines 2D parentes respectives. Enfin, on montre que

la protection topologique robuste offerte par la phase topologique cristalline de miroir 2D se

manifeste par des états de surface robustes des nanorubans de symétrie équivalente.

Mots clés : isolant topologique, isolant topologique cristallin, Bi2Se3, Bi2Te3, SnTe, na-

nostructure, nanofil, nanoruban, DFT, liaison forte

x



Contents

Acknowledgements v

Abstract vii

Résume ix

1 Introduction 1

1.1 Topological Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Integer Quantum Hall Effect and the TKNN Invariant . . . . . . . . . . . 1

1.1.2 Quantum Spin Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Z2 Invariant-Two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Z2 Invariant-Three dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.5 Mirror Chern Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Experimental Work on Topological Phases . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Bi1−x Sbx alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Topological Electronic Materials . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Bismtuh Chalcogenides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Tin Telluride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Nanostructures of Topological Materials . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.1 Bismuth Chalcogenides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Tin Telluride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Methodology 29

2.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 General Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 First Principles Calculations on Topological Insulator Materials . . . . . 38

2.2 Tight-Binding Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1 General Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.2 Hopping Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.3 Spin-Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.4 Tight-Binding Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



Contents

3 High-Index Surfaces of Bismuth Chalcogenide Nanostructures 55

3.1 Energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 One-Dimensional Nanostructures of Bi2Se3 Topological Insulators 73

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 General Model of 1D Nanostructures . . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.3 Nanoribbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 One-dimensional Nanostructures of Topological Crystalline Insulators 93

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Two-dimensional Thin Films . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.2 Square Cross-Section Nanowires . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.3 Rectangular Cross-Section Nanowires . . . . . . . . . . . . . . . . . . . . . 106

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Outlook 111

Bibliography 127

Curriculum Vitae 129

xii



1 Introduction

The term topological insulator (TI) has become somewhat of a buzzword in condensed-

matter physics in recent years. As evident from the name itself, the term implies a refinement

of what is traditionally considered an insulator. This refinement stems from the notion of

topological equivalence, whereby two insulators are said to be topologically equivalent if one

can be transformed into the other upon smoothly altering the Hamiltonian without closing

the gap. For a TI, the topology of the electron wavefunction is such that it is not possible to

smoothly connect the Hamiltonian with that of an ordinary insulator. Consequently, a key

differentiator between such a topologically nontrivial phase and a trivial insulator, is that an

interface between the two necessitates the formation of boundary states and closure of the

energy gap. This bulk-boundary correspondence is a characteristic feature of TIs, which in

3D manifests in the formation of gapless topological surface states. The distinction between

a topologically non-trivial phase and that of a trivial insulator is denoted in their respective

topological invariants. As the notion of bulk-boundary correspondence and the definition of a

topological invariant are fundamental to topological phases, we call on both when introducing

the Z2 topological insulator and topological crystalline insulator phases below. Beforehand,

we briefly summarize the advances that led to their discovery.

1.1 Topological Phases

1.1.1 Integer Quantum Hall Effect and the TKNN Invariant

A cornerstone of the recent surge of developments in topological phases in condensed matter

was the discovery of the integer quantum Hall effect (IQHE) [1]. The basis of the IQHE is that

when a two-dimensional electron gas is subjected to large magnetic fields, at extremely low

temperatures, this leads to a quantization of the electron’s cyclotron orbitals, with the energy

spectrum transformed into a series of discrete, quantized Landau levels. Moreover, as a result,

when the Fermi energy EF lies in between two Landau levels the Hall conductivity, σx y , is also

1



Chapter 1. Introduction

quantized:

σx y = υ
e2

h
(υ= 1,2,3, . . . ) (1.1)

where υ is an integer number. A subsequent fundamental insight [2], was that the integer υ is

of topological origin.

To briefly expand on the notion of topologically distinct phases, a crystalline solid can

be described through Bloch theorem [3] by an effective single particle Hamiltonian H(kkk),

where, due to translation symmetry, kkk is the crystal momentum within the irreducible Bril-

louin zone. The momentum dependence of the eigenvalues, Em(kkk), corresponding to the

eigenstates, or Bloch states, |μm(kkk)〉, of this Bloch Hamiltonian defines the band structure of

the system. If there is a non-zero energy gap separating the occupied valence bands from

the unoccupied conduction bands, the system is insulating. Two insulators are said to be

topologically equivalent if their respective Hamiltonians can be slowly transformed into one

another, whilst maintaining a finite, non-zero energy gap.

A key finding from Ref. [2] was that υ defines a topological invariant, termed the TKNN

invariant or Chern number [4], which differentiates the IQHE as a phase topologically distinct,

or inequivalent, from that of an ordinary insulator. The TKNN invariant is given by

υ=
N∑

m=1

1

2π

∫
B Z

∇× i 〈μm(kkk)|∇|μm(kkk)〉d 2kkk (1.2)

=
N∑

m=1

1

2π

∫
B Z

∇× Amd 2kkk (1.3)

=
N∑

m=1

1

2π

∫
B Z

Fmd 2kkk (1.4)

where Am = i 〈μm(kkk)|∇|μm(kkk)〉 is the Berry connection [5], and Fm =∇× Am the Berry curva-

ture, with the summation over all the occupied Bloch states |μm(kkk)〉, and with the integral

of the Berry curvature being over the Brillouin zone. As Eqn.1.2 is dependent only upon the

occupied states, the TKNN invariant is insensitive to small perturbations to the Hamiltonian.

Furthermore, as υm is restricted to being an integer multiple of 2π, as can be seen from Eqn.1.2,

this discrete nature alongside the robustness of the Hamiltonian helps explain the specific

quantization of σx y , and the role of υ as a topological invariant for the integer quantum Hall

system.

An interesting question arises when considering what happens at the interface between

a topologically trivial system, such as an insulator, or equivalently the vacuum, and a topologi-

cally non-trivial system, for example one exhibiting the IQHE. Given the notion of topological

equivalence defined above, at such an interface, a change in the topological invariant inher-

ently necessitates the closure of the energy gap, and, subsequently, the presence of conducting

states within it. These states have indeed been observed at the IQHE-vacuum interface [6],

2



1.1. Topological Phases

and are termed edge states, this is further supported by the fact that the states are localised

at the edge within a distance approximate to that of the electron cyclotron orbital radius [6].

Thus, one can think of these states as a skipping motion electrons undergo as they rebound off

the edge of the interface (Fig.1.1a). In a direct manifestation of the bulk topology of the IQHE,

these edge states are chiral, in that they propagate in a single direction around the perimeter

(i.e. edges) of the interface. Moreover, as there are no available states for backscattering,

they are immune to disorder, which is again reflected in the pronounced quantization of the

conductivity in the IQHE (Eq.1.1). The notion of edge states, whether chiral or of related

properties, are fundamental to topologically non-trivial phases, and will be an important

theme in the continued discussion below.

Figure 1.1 – Interface between a conventional insulator and an integer quantum Hall phase gives rise to
chiral edge states. aaa Schematic representing edge states as skipping cyclotron orbits. bbb Band structure
resulting from solution of the Haldane model in a semi-infinite geometry with a single band connecting
the valence to the conduction band.

The chiral edge states of the IQHE can also be modelled explicitly via the Haldane model

[7], which is a simple tight-binding model of a graphene lattice under a periodic magnetic

field. Solution of this model in a semi-infinite geometry leads to an exact manifestation of the

chiral edge modes, with a single band traversing the insulating energy gap, and connecting the

valence bands to the conduction bands as is shown in Fig.1.1b. . This can be formally stated in

the form of the bulk-boundary correspondence [8], which states that regardless of the number

of right NR or left NL moving edge modes in the insulating gap, the overall difference between

the two is strictly dictated by the bulk topology, and is equivalent to the difference in the Chern

number across the interface:

NR −NL =Δn. (1.5)

1.1.2 Quantum Spin Hall Effect

Accessing the IQHE requires high magnetic fields, extremely low temperatures, and a complex

experimental setup, whereby directly manipulating chiral edge states is difficult. Thus, from

3



Chapter 1. Introduction

the perspective of actual applications, taking advantage of the IQHE is somewhat impractical.

From a more fundamental standpoint, the necessity of breaking time reversal symmetry

via an external magnetic field or through magnetic ordering, raises the question of whether

topologically non-trivial phases can also be observed in time reversal symmetric systems.

The spin-orbit interaction offers a novel route to a form of topological protection which

is distinct to that governing the IQHE, and lifts the stipulation of broken time reversal symmetry.

A simple model through which this non-trivial topology can be illustrated is the Kane-Mele

model [9], which was derived from the original Haldane model for the IQHE. The essence

of Kane and Mele’s proposal, and in direct contrast to Haldane’s original, is the preservation

of time reversal symmetry and, crucially, the inclusion of spin. In doing so, this leads to a

spin-orbit interaction dependent term in the tight-binding Hamiltonian of a graphene lattice,

mentioned above; which, due to spin-orbit coupling (SOC), allows the Hamiltonian to be

partitioned into two separate parts for spin up and down electrons, respectively. Considered

as two isolated entities, each part is equivalent to Haldane’s model for the IQHE, and thus, as

before, implies the presence of chiral edge states. This is indeed the case, however, the role

of the magnetic field in the IQHE is now played by the SOC. As the sign of the SOC switches

for opposite spins, therefore each spin has an opposite sign of the Hall conductivity, and thus

under an applied electric field the direction of the current will be opposite for each respective

spin. Subsequently, considering both spins together, this leads to an overall Hall conductivity

of zero, but results in a non-zero spin current JJJ s = (ħ/2e)(JJJ↑ − JJJ↓), defined by a quantized spin

Hall conductivity:

σs
x y =

e

2π
. (1.6)

Moreover, considered together, each chiral edge state combined forms a time reversal symmet-

ric helical pair [10]. Helicity here describes the coupling of an electrons spin to its momentum,

where spin up electrons propagate in one direction, whilst spin down electrons propagate in

the opposing, with a crossing occurring at specific time reversal invariant momenta (TRIM), as

can be seen in Fig.1.2. In two dimensions, this phase is dubbed the "quantum spin hall effect

(QSHE)" [9]. The helical nature of the edge states has important implications for transport

properties of the quantum spin Hall phase. Ordinarily, a one-dimensional conductor would

have spin up and down states propagating in both directions, whereby electrons would be

sensitive to Anderson localization, in the presence of weak disorder. Conversely, the helical

nature of edge states in the quantum spin Hall phase, means that due to time reversal symme-

try there is an absence of scattering matrix elements between time reversal invariant pairs [9].

This essentially means that backscattering is forbidden as it involves flipping the electron spin.

Resultantly, edge states are perfectly transmitted across a disordered region, even for strong

disorder, contingent on the condition that time reversal symmetry remains unbroken.

The model so far described essentially consists two copies of the IQHE, where the total

TKNN invariant is zero, due to time reversal symmetry, as each spin has an independent Chern

number υ↑ =−υ↓. However, it has been assumed thus far that the spin is a conserved property,

4



1.1. Topological Phases

which for any realistic system is not the case. For example, terms stemming from the Rashba

effect or from orbital mixing, will lead to spin nonconservation, and as such this model breaks

down somewhat. In particular, the quantization of the spin hall conductivity (Eq.1.6) would

not be be so exactly defined. Nonetheless, it was subsequently shown [11], remarkably, that

the topological protection of the gapless edge states in the quantum spin hall phase, defined

by a crossing at a TRIM point, is still present, even when spin nonconserving effects have

been accounted for. As the total TKNN invariant is zero, this is suggestive of a novel form of

topological protection for time reversal invariant systems, distinguishing the QSHE from that

of an ordinary insulator, and distinct to that underlying the IQHE.

Figure 1.2 – Quantum spin Hall effect gives rise to helical edge states. aaa Schematic representation of
the interface between a conventional insulator and a quantum spin Hall insulator. bbb Solution of the
Kane-Mele model (see text) of a graphene lattice with spin-orbit interactions accounted for results in
helical edge states, where spin up and spin down electrons propagate in opposing directions.

1.1.3 Z2 Invariant-Two dimensions

Kane and Mele [11] introduced the Z2 invariant to describe this non-trivial topology, which is

underpinned by time reversal symmetry.

Time-reversal invariant systems are described by the time-reversal operator

Θ= eiπ
Sy
ħ K (1.7)

where Sy is the spin operator and K complex conjugation. As Θ2 =−1 for spin one half parti-

cles, Kramer’s theorem dictates that, in a periodic system described by Bloch wavefunctions,

each Bloch eigenstate at wave vector kkk is degenerate with a time reversed Bloch state. Thus,

an energy band for a state at +kkk has the same energy as that of a state at −kkk. As a result

of the periodicity of the crystal Brillouin zone there exist time-reversal invariant momenta

(TRIM) or TRIM points where +kkk and −kkk are equivalent, and two-fold degenerate. For a

5



Chapter 1. Introduction

two-dimensional system there are four TRIM points (Fig.1.3a) given by

Γi=(n1n2) = 1

2
(n1bbb1 +n2bbb2) (1.8)

where n j = 0,1 and bbb1,2 are the reciprocal lattice vectors.

To formally derive the Z2 invariants [12], a unitary matrix, built from the cell periodic

eigenstates |um(kkk)〉 of the Bloch Hamiltonian, can be defined

wmn(kkk) = 〈um(kkk)|Θ|un(−kkk)〉 (1.9)

As wmn(kkk) = wnm(−k−k−k), and therefore at each TRIM wmn(Γi ) = wnm(−Γi ), this means that

w(Γi ) is antisymmetric. Furthermore, since the Pfaffian of an antisymmetric matrix is equal

to the square of its determinant, δi at each TRIM can be defined such that

δi =
√

det[w(Γi )]

Pf[w(Γi )]
=±1. (1.10)

Finally, on the condition that |um(kkk)〉 is continuous, the Z2 invariant ν is defined

(−1)ν =
4∏

i=1
δi . (1.11)

In two dimensions the single Z2 invariant differentiates the topologically non-trivial quan-

tum spin Hall phase, ν = 1, also termed a 2D topological insulator (TI), from a trivial two

dimensional (2D) insulator, ν= 0.

Figure 1.3 – Z2 invariant in two dimensions. aaa 2D Brillouin zone with four TRIM points. bbb Inspection
of the band dispersion between two Kramers degenerate TRIM points at Γa = 0 and Γb = π

a allows
topologically trivial (left) and topologically protected edge states (right) to be distinguished. bbb (left)
An even number of edge states crossing the Fermi energy EF indicates a topologically trivial phase. bbb
(right) An odd number of edge states crossing EF indicates a topologically non-trivial phase.

The nature of this Z2 invariant, can be further clarified by inspecting the band dispersion

of the edge states of a 2D time reversal invariant insulator between two TRIM points [8, 13]
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1.1. Topological Phases

(Fig.1.3). Corresponding electronic states are schematically plotted, in Fig.1.3b, between TRIM

points Γa = 0 and Γb = π
a . Given the presence of edge states within the bulk insulating gap,

what is of interest is how a state at Γa connects to that at Γb. Accounting for the fact that time

reversal symmetry requires that at each TRIM the states are doubly generate, and, moreover,

that due to spin-orbit coupling, away from each TRIM point this degeneracy is broken, there

are two ways in which they can connect. The first, as shown in Fig.1.3b(left), involves a pair of

bands connecting each state within the bulk gap, with EF intersecting the edge states an even

number of times. In the second case, as shown in Fig.1.3b(right), each state is connected by

a single band, with EF intersecting the bands an odd number of times [13]. In the first case

there is no form of topological protection, as the edge states can be pushed out of the gap, and

thus it is representative of a topologically trivial phase, as defined by ν= 0 above. Whereas in

the second case, this is not possible, with an odd number of crossings indicative of topological

protection, and it represents a topologically insulating phase, as defined by ν= 1 above.

1.1.4 Z2 Invariant-Three dimensions

The term ’topological insulator’ was originally used to describe a topologically non-trivial

phase in three dimensions defined by the Z2 invariant [14]. Deriving it in 3D is an extension of

the above methodology, this leads to eight distinct time-reversal invariant momenta:

Γi=(n1n2n3) = 1

2
(n1bbb1 +n2bbb2 +n3bbb3) (1.12)

for n j = 0,1, where the three-dimensional Brillouin zone can be seen as a cube with each

TRIM point as an individual vertex of that cube. There are consequently four Z2 topological

invariants ν0; (ν1ν2ν3) [15–17], and 16 distinct topological phases. The four Z2 invariants in

three dimensions can be split into two separately defined classes ν0 and (ν1ν2ν3). The single

ν0 invariant is a product of all eight TRIM points

(−1)ν0 =
8∏

i=1
δi (1.13)

and for ν0 = 1 defines a "strong" topological insulator. Whilst the three (ν1ν2ν3) invariants,

defined as

(−1)νl = ∏
n j �=k=0,1;n j=1

δi=(n1n2n3) (l = 1,2,3) (1.14)

are products of four TRIM points, analogous to the invariant in two dimensional case, and

furthermore can be thought of as individual invariants for the symmetrically distinct faces

of the cubic Brillouin zone described above. For a ν0 = 0 invariant, the (ν1ν2ν3) invariants

can subsequently define two distinguishable phases. The first phase consists of νl = 0 for

(l = 1,2,3), and this denotes a topologically trivial phase, for example a band insulator. The

second phase arises when νl = 1 for at least one of (l = 1,2,3), and denotes a "weak" topological
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Chapter 1. Introduction

insulator. This can be seen as a series of stacked 2D quantum spin Hall insulators, defined by

the 2D Z2 invariant just described. Importantly, unlike the ν0 = 1 phase, these phases are not

subject to the same topological protection, and the topological distinction of a given "weak"

phase is sensitive to disorder.

The presence of inversion symmetry in a crystal structure greatly simplifies the deter-

mination of the Z2 invariant. Specifically, as Bloch states um(kkk) at each TRIM are also parity

eigenstates with eigenvalues ξ j (Γi ) =±1, thus by taking the product of the parity eigenvalues

over Kramer’s pairs of occupied bands δi can be determined

δi =
∏

j
ξ j (Γi ). (1.15)

From which the overall Z2 invariant is defined, as described above.

To further elucidate the nature of these invariants one can inspect the band dispersion

of surface states for the 3D crystal [15] (Fig.1.4). For the cubic construction described above,

the surface Brillouin zone will consist of four TRIM, which can be labelled Γi (i = 1,2,3,4). Due

to Kramer’s degeneracy, the band crossings at each TRIM are two-dimensional Dirac points,

whilst away from these crossings the degeneracy is lifted due to spin-orbit coupling. As with

the 2D edge states, what again is of interest is the connections between the different TRIM

Γi (i = 1,2,3,4).

In the case of a weak topological insulator, the stacking of 2D quantum spin Hall layers

causes the helical edge states to form anisotropic surface states. This is illustrated by an

example of the Fermi surface of a possible weak topological insulator in Fig.1.4a. In this case

there is a surface state band intersecting the Fermi energy between points Γ1 and Γ2, and

points Γ3 and Γ4, where the surface band structure between each of these pairs of points

would resemble the connectivity for non-trivial edge states described above. However, unlike

the 2D edge states, the surface states of a weak topological insulator are not protected by

time reversal symmetry, as, crucially, the surface Fermi arc encloses an even number of TRIM

points [13].

In the case of a strong topological insulator, the surface Fermi arc encloses an odd

number of TRIM, for example for a single Dirac point, as shown in Fig.1.4b, this leads to

the Z2 invariant ν0 = 1. It should be noted that, unlike in the case of a weak topological

insulator, a strong topological insulator is not built or derived from the 2D quantum spin

Hall effect. As such, it defines an entirely novel, three-dimensional, topologically non-trivial

phase, completely distinct to 2D phases such as the IQHE and the QSHE. A defining feature

of a strong topological insulator is the helicity of the surface state. This is directly analogous

to the pair of helical edge states of the quantum spin Hall phase, described earlier. As time

reversal symmetry dictates that two states at kkk and -kkk have opposite spins, thus, in the case of

a strong topological insulator, there is a 2π precession of the spin around Fermi surface, as

evident in Fig.1.4b. This results in a non-trivial π Berry phase, which is another hallmark of

8
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strong TIs [15]. Similarly to the QSH insulator, these surface states are topologically protected

by time-reversal symmetry to non-magnetic sources of disorder.

Figure 1.4 – Examples of surface Brillouin zones for a weak (aaa) and strong (bbb) 3D topological insulator,
showing the Fermi circles enclosing an even and odd number of Dirac points, respectively. The simplest
example of a strong topological insulator is that where the Fermi circle encircles a single Dirac point,
giving rise to the surface state dispersion of a single Dirac cone (bbb-right).

1.1.5 Mirror Chern Number

The discovery of Z2 topological insulators (TIs) sparked a surge of interest in the character-

ization of distinct phases protected by a non-trivial topology and the associated search for

pertinent material systems. Furthermore, it led to a broad classification of topological phases

based on the underlying symmetry governing the non-trivial topology [18–20]. For example, in

the case of Z2 TIs the symmetry protected topology stems from time-reversal symmetry (TRS),

combined with strong spin-orbit interactions, as explained above. However, this classification

was ordered around the presence or absence of non-spatial symmetries, for example that of

TRS. Subsequently, the question also arose as to whether there are alternative forms of topo-

logical protection, offered by other symmetry classes, such as spatial symmetries. One recent

(Fig.1.5) intriguing direction was based on the idea to topologically classify band insulators

based on the point-group symmetry of the parent crystal, with topologically non-trivial phases

protected by point-group symmetries, termed topological crystalline insulators (TCIs) [21]. In

the specific case of a crystal with mirror symmetry, the corresponding topological invariant

defining this phase is the mirror Chern number Nm [22].

Mirror symmetry is defined by the mirror operation M which is a product of spatial

inversion P and a two-fold rotation C2 around the axis perpendicular to the plane of rotation.

If a mirror plane is defined as z = 0, subsequently the mirror operator is given by

M(ẑ) = PC2(ẑ), (1.16)
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which takes z →−z. In the presence of spin-orbit coupling, a C2 rotation rotates both the

spatial and spin coordinates of an electron. Since applying the mirror operation (Eqn.1.16) to

an electron wavefunction twice is equivalent to a 2π rotation that changes the sign of a spinor,

thus M 2 =−1 and eigenvalues of M are either +i or −i [23].

For a periodic crystal where mirror symmetry is preserved, at specific mirror invariant

planes Bloch states |μm(kkk)〉 can be chosen as eigenstates of M . Consequently, this leads to two

sets of Bloch eigenstates, |μm,±i (kkk)〉, labelled by the distinct mirror eigenvalues ±i . For each

set of Bloch eigenstates this allows the definition a corresponding Chern invariant υ±i . The

sum of the Chern invariants

υ= υ+i +υ−i , (1.17)

is the topological invariant that determines the quantized Hall conductance (Eqn.1.1) [23].

However, the difference

Nm = υ+i −υ−i

2
, (1.18)

defines a novel topological invariant termed the mirror Chern number [22]. For mirror sym-

metric systems, a nonzero integer value of this invariant signifies a non-trivial topological

crystalline insulator phase [24].

1.2 Experimental Work on Topological Phases

From an experimental perspective, realising the QSH phase in graphene is beyond the scope

of current experimental ability, stemming from the fact that given how light the element is, its

intrinsic SOC is extremely small. Even though attempts have been made to increase this value,

through, for example, magnetic doping, these are yet to bear fruit. However, at a similar time

to Kane and Mele’s [9] original proposal, and in a logical step via the use of heavier elements,

the phase was predicted in HgCdTe quantum wells [10], and shortly after also experimentally

realised [25].

The experimental signature of the QSH phase in the HgCdTe quantum well structures

was given by the measurement of a quantized longitudinal conductance of 2e2/h [25], with the

factor of two associtated with the combination of both edge states. However, other properties

characteristic of the Z2 topology, such as the helical spin texture and a Dirac band crossing,

are yet to be observed. This is primarily due to the complexity of the experimental setup [25],

whereby edge states are probed solely using charge transport measurements, as the interface

is buried deep within a heterostructure setup, and moreover measurements have to be made

at temperatures on the order of millikelvins.
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1.2.1 Bi1−x Sbx alloy

In stark contrast, the experimental conditions required to grow and probe the relevant proper-

ties of 3D topological insulators have proved less demanding, relative to their 2D counterparts,

investigated thus far, and have hence led to a proliferation of discovered materials. An initial

spark was the prediction [13], concurrent to the theoretical classification of the Z2 invariant in

3D [14, 15, 17], and subsequent experimental realisation of the strong TI phase in a Bi1−x Sbx

alloy [26].

The prediction was based on the reasoning that as both pure Bi and Sb are materials

with a finite direct band gap, with inversion symmetry, Eq.1.15 could be used to determine

the Z2 invariants of each. In doing so, Bi was predicted to be topologically trivial, with

Z2 indices (0;000), whilst Sb non-trivial, with indices (1;111), reflected in an inverted band

ordering, relative to Bi, at the L TRIM point [13]. Given that pure Bi is a semimetal, the gradual

substitution of Bi by Sb, to form the alloy Bi1−x Sbx , leads to some significant changes in

electronic structure, as previous band structure studies have shown [27–29]. The two pertinent

changes are, firstly, that at x ≈ 0.04 the ordering of the conduction and valence bands at

the L point inverts from that in topologically trivial Bi, to that in topologically non-trivial Sb.

Secondly, a transition from a semimetallic to an insulating state is observed for x ≈ 0.07, with

the alloy becoming a direct band gap insulator for 0.09 < x < 0.18. Finally, there is a reversion

back to a semimetallic state for x > 0.22, thus reflecting the electronic ordering of pure Sb,

which is also a semimetal. Consequently, Bi1−x Sbx was predicted [13] to be a strong TI in the

region of the alloy’s phase diagram where an inverted band ordering at the L point is present

in unison with the formation of an insulating state, i.e. within the limits of 0.09 < x < 0.22.

Subsequent experimental work using angle-resolved photoemission spectroscopy (ARPES)

confirmed Bi0.09Sb0.91 to be a strong TI [26, 30]. Two signature features of the topologically

protected phase were identified, namely that the Fermi surface encloses Γ an odd number of

times [26], and the presence of a helical spin-texture, via spin-momentum locking, signifying

a π Berry phase, was also shown utilising spin resolved ARPES [30]. The confirmation was

important in that it signified the first experimental realisation of a 3D TI phase, however, the

complex nature of the material’s surface spectrum [26] limited its potential as a template for

more detailed investigations of topological surface states. Another hindrance also being that

the band gap of the alloy has a maximal value of ∼ 30 meV [28], depending on the value of x,

thereby limiting any applications close to room temperature.

As the major foci of this work are concerned with later generations of 3D TIs, experi-

mental details of Bi1−x Sbx have only been briefly touched upon. However, it is important to

highlight two trends that have become prominent themes in research related to TI materials.

Firstly, the utility in applying topological band theory, as briefly described in Sec.1.1.4, in the

prediction of novel TI materials. Secondly, given that ARPES maps the momentum distri-

bution of a material’s occupied electronic states, from the photoemission of electrons upon

incident radiation, it serves as an ideal tool for resolving the surface and bulk electronic bands.

11



Chapter 1. Introduction

Furthermore, as the technique also allows the resolution of the spin, the intricate relationship

between the spin and momentum of TI materials can be probed, therefore allowing the bulk

topological order to be identified.

1.2.2 Topological Electronic Materials

 

PbxSn1-xTe

mB6 

Na3Bi, Cd3As2

TaAs family

Figure 1.5 – Timeline showing various milestones in relation to topologically insulating materials that
have been discovered, since the initial publication of the Kane-Mele [9] model in 2005, till the very
recent discovery of the Weyl semimetal class [31]. Figure is courtesy of O. Yazyev.

Given the limitations associated with Bi1−x Sbx , described above, this triggered the

search for materials with simpler surface states and larger band gaps. Two limiting conditions

being that any candidate material must have strong spin-orbit coupling, implying the need of

heavy elements, and secondly the presence of a band gap that is of a similar magnitude to the

SOC, in order that a SOC induced topological phase can be formed.

This led to the identification of the binary bismtuh chalcogenides, Bi2Se3 and Bi2Te3,

as 3D Z2 TIs, and for reasons that shall be outlined below, they have come to be seen as

prototypical materials defined by that topology. Their discovery also denotes a watershed,

that began with the initial classification of the Z2 invariant by Kane and Mele [9], and led

to the subsequent prediction and realisation of materials in both 2D and 3D, as has been

described. Moreover, the development of the theoretical methodology and experimental

techniques within that period, not only initiated a surge to find other Z2 TIs, but has also
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enabled research directions into novel, i.e. non Z2, forms of topological order. An overview of

these developments can be seen in the schematic timeline shown in Fig.1.5. Thus, this also

defines the point at which the field of novel topological phases in condensed matter reached a

relative level of maturity, and which has subsquently blossomed.

In the context of this thesis, the two system classes under investigation are, firstly, the Z2

TI phase, primarily in the bismuth chalcogenides, Bi2Se3 and Bi2Te3. And, secondly, the mirror

symmetry protected topologically insulating phase in the topological crystalline insulator

SnTe. Thus, what follows is a brief overview of some of the experimental work conducted on

the bismuth chalcogenides, as exemplars of strong TIs, and SnTe, that has motivated this work.

1.2.3 Bismtuh Chalcogenides

The bismuth chalcogenides, particularly Bi2Se3, are often referred to as reference TI materials.

It should be noted that the term reference here, and in wider literature, is with regard to Z2 TIs.

They are the most extensively researched class of TIs, both with respect to the abundance of

discovered materials, and their relative maturity in comparison to the other classes, as can be

seen in Fig.1.5. This is primarily due to three factors.

The first relates to the simplicity of the topological surface states in Bi2Se3. Using the

methodology of Fu and Kane [13], defined above, the parity eigenvalues of Bi2Se3 and Bi2Te3

were determined [32], from which the 3D Z2 invariants are found to be (1;000). This indicates

a non-trivial topological order with a Dirac cone surface state centred around kkk = 0, at Γ̄ in

the surface Brillouin zone, which is shown for the (111) surface in Fig.1.6a. In parallel to this

was the experimental confirmation, via ARPES [33], that the Bi2Se3 surface actually consists

of just a single almost idealized Dirac cone, with the complete absence of non-topological

surface states, in direct contrast to Bi1−x Sbx . This is evident from the ARPES data displayed in

Fig.1.6b, which shows the band dispersion of the Bi2Se3 (111) surface, along the cuts Γ̄−M̄

(Fig.1.6b left) and Γ̄− K̄ (Fig.1.6b right) of the surface Brillouin zone (Fig.1.6a), with the Dirac

cone clearly visible in both. The Z2 topology was directly confirmed in subsequent work via

the measurement of a helical spin texture [34]. This is manifested in a 2π rotation of the spin

around the Fermi surface, for example as shown in Fig.1.6c, which in turn gives rise to spin

filtered surface states, as Fig.1.6d displays, where electrons propagating in opposite directions

have opposite spins. This spin-momentum locking was directly resolved by measuring the

spin polarisation of the surface states along the Γ̄−M̄ cut of the (111) surface (Fig.1.6e inset)of

Bi2Te3, as is plotted in Fig.1.6e. The spin polarisation is plotted along the y direction, with

the x and z components of the spin zero [34], as can be seen the polarisation of the spin

flips for kx =−kx , confirming the Z2 topological order. Further evidence of the time-reversal

protection of the surface states was also given by the observation of the suppression of back

scattering from scanning tunneling microscopy/spectroscopy (STM/STS) experiments [35, 36].

Overall, this simplicity makes the topological properties of the material’s surface state far more

amenable to experimental probing than its counterpart in Bi1−x Sbx .
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Figure 1.6 – aaa Bi2Se3 3D bulk Brillouin zone (BZ), and hexagonal 2D BZ of projected (111) surface. bbb
Measured ARPES band dispersion of Bi2Se3 (111) surface, with two cuts along Γ̄-M̄ (left) and Γ̄-K̄ (right)
in momentum space. ARPES intensity map for Bi2Te3, with a cut along ky , close to the Fermi level (ccc),
and with a cut along kx (ddd). ccc Red arrows show the precession of the spin around the Dirac cone cut. ddd
Red arrows showing spin for oppositely propagating states, shaded areas are projections of the bulk
bands for Bi2Te3 onto the (111) surface. eee y component of spin-polarization, measured along Γ̄-M̄ at
EB =−20 meV, therefore cutting only through surface states. Inset: A schematic of the cut direction.
Adapted and reprinted with permission from Ref. [33] (aaa,bbb) and Ref. [34].(ccc,ddd,eee).

A second reason being that Bi2Se3 has a relatively large bulk band gap of ∼ 0.3eV [32, 37].

This implies the material’s topological properties being robust even up to room temperature,

which has important implications for potential applications. Finally, unlike the alloy Bi1−x Sbx ,

both Bi chalcogenides are of a stoichiometric composition. This allows high purity single

crystal growth, facilitating experimental probing, for example in the case of ARPES making it

easier to resolve surface states from those of the bulk.

Even though evidence of the Z2 topology in the bismuth chalcogenides has been pro-

vided through surface sensitive techniques such as ARPES and STM/STS, the direct manipu-

lation of the corresponding charge carriers and their associated properties, for example the

spin helicity, has proved more difficult. This stems from the fact that in electron transport

experiments lacking surface sensitivity, surface charge carriers are masked by contributions

from the bulk. The underlying cause seems to be due to, in the case of Bi2Se3, n-type doping,
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either as a result of intrinsic Se vacancies [38–40], or inflicted by exposure to the ambient

environment [39, 41, 42]. Various methods have been put forward to deal with this problem,

one example being to counter dope the material, for example with Ca [33, 43, 44], however

this also introduces additional defects. One particularly efficient strategy to mitigate bulk

contributions is to form low-dimensional nanostructures, and, as shall be expanded on below,

they also offer an intriguing platform to further investigate topological phenomena unique to

these materials.

1.2.4 Tin Telluride

The first TCI material systems were predicted in SnTe and its related alloys Pbx Sn1−x (Te,Se)

[24]. In these materials, topologically non-trivial phases, protected by the underlying mirror

symmetry of the crystal, give rise to metallic surface states on surfaces where mirror symmetry

is preserved. Such non-trivial phases were subsequently experimentally observed, using

ARPES, in SnTe [45], Pbx Sn1−x Se [46] and Pbx Sn1−x Te [47].

SnTe crystallizes in the rock-salt structure, see Fig.1.7a, and is composed of two inter-

penetrating FCC lattices, one for each atom type. This results in a FCC bulk Brillouin zone,

which is a truncated octahedra with six hexagonal and four rectangular faces. At the centre of

each of the four distinct hexagonal faces lie one of the equivalent L TRIM points, as shown in

Fig.1.7b, which is also where the direct bulk band gap is centred.

The distinct topology of SnTe is rooted in band inversion occurring at the L points.

For example, it has long been known that as the Sn concentration in the alloy Pbx Sn1−x Te

is increased, thus transitioning from PbTe towards SnTe, the gap at L shuts (x ∼ 0.35) and

subsequently reopens, signalling a band inversion. This is further supported by more recent

first-principles calculations [24, 48–51], whereby the valence (conduction) band at the L point

is found to be composed of anion Te (cation Pb) orbitals, as one would expect from an ionic

insulator such as PbTe. Conversely, in the case of SnTe the orbital composition is switched,

with the valence (conduction) band composed of cation Sn (anion Te) orbitals. The fact that

there is band inversion occurring at an even number (four) of TRIM (i.e. L points), results in,

as has been discussed, a topologically trivial Z2 order with invariants (0;000). However, each

of the L points lie on planes in momentum space which are invariant to reflection about the

{110} mirror planes of the FCC lattice in real space. This can be seen in Fig.1.7b, where L1 and

L2 lie on the ΓL1L2 plane, and L3 and L4 lie on the ΓL3L4 plane, which are both invariant to

reflection about the {110} planes, shown in yellow. Thus, this gives rise to a non-zero mirror

Chern number of Nm =−2 [24], and defines SnTe as TCI, with a non-trivial topology protected

by the mirror symmetry of the crystal.

As with Z2 TIs, this non-trivial topological order implies the presence of gapless surface

states. However, in the case of TCIs protected by mirror symmetry, there is an added stipulation

in that as a given crystal surface has a symmetry lower than that of the bulk, only crystal

surfaces where mirror symmetry is preserved are expected to harbour metallic states. With
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Figure 1.7 – aaa SnTe rock-salt crystal lattice. bbb SnTe face-centred-cubic Brillouin zone (BZ), orientated
in direction of the (001) surface, whose 2D (BZ) is shown in green. In the 3D BZ the yellow planes
are the {110} mirror planes with respect to the (001) surface. In the green 2D BZ of the (001) surface,
the projection of the {110} mirror planes onto the Γ̄X̄ lines are also shown. ccc SnTe (001) surface band
structure. The high symmetry M̄ point corresponds to a corner of the 2D rectangular BZ in bbb, as can
be seen in ddd. ddd (001) 2D BZ (blue plane), with schematic band structure showing four pairs of double
Dirac cone surface states on either side of each X̄ point. Adapted and reprinted with permission from
Ref. [24] (aaa,ccc), Ref. [52] (bbb) and Ref. [53] (ddd).

respect to SnTe related TCIs specifically, a crystal surface must be symmetric about the {110}

mirror planes. Three surfaces where this condition is met are the (001), (110) and (111) surfaces.

Focusing on the (001) surface, the projection of the bulk Brillouin zone onto the surface is

shown in Fig.1.7b. As can be seen, the mirror symmetric plane ΓL1L2 is projected onto the

X̄1 − Γ̄− X̄1 line, with both L1 and L2 TRIM projected onto a single X̄1 point, in the surface

Brillouin zone. Similarly, ΓL3L4 is projected onto X̄2 − Γ̄− X̄2, with L3 and L4 projected onto

the single X̄2 point. This leads to a mirror Chern number of Nm = −2 [24], which requires

that there should be two Dirac cones, formed from two spin-polarized surface states with
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opposite mirror eigen values, along each mirror-symmetric line, X̄1 − Γ̄− X̄1 and X̄2 − Γ̄− X̄2,

thus giving a total of 4 Dirac points in the surface Brillouin zone. This was initially shown

via first-principles band calculations [24], the corresponding band structure is shown in

Fig.1.7c, where two especially intriguing features of the surface electronic structure were

demonstrated. The first relates to the fact that the Dirac points are not located at X̄1,2, and are

actually symmetrically positioned off that point, at Λ̄1,2, as can be seen in Fig.1.7c, resulting in

a double-Dirac cone band structure, where two Dirac points are located either side of each

X̄, as is shown schematically in Fig.1.7d. This is an inherent consequence of the underlying

mirror symmetry and related topological protection, as dictated by the mirror Chern number,

of the TCI. And moreover results from the projection of two L points onto a single X̄. Each X̄

point lies on two mirror-invariant lines Γ̄− X̄ and X̄−M̄, as can be gleaned from Fig.1.7b. As

Γ̄− X̄ is a projection of a mirror-symmetry invariant plane in the bulk Brillouin zone, whereas

X̄− M̄ is not, thus the two low energy bands along Γ̄− X̄ have opposite mirror eigenvalues,

whereas those along X̄−M̄ have the same [54]. Consequently, this results in a hybridization of

the bands along X̄−M̄, which due to the mirror symmetry protected topology is forbidden

along Γ̄− X̄, thus resulting in a crossing off X̄, and the formation of a Dirac point, on each

Γ̄− X̄ line. It is exactly this physics, specifically two Dirac cones positioned either side of

each X̄ with the same bands hybridized along X̄−M̄, which gives rise to the second intriguing

feature of a Lifshitz transition. This describes how the Fermi surface topology varies with

energy, at low energies close to the Dirac points, within the bulk band gap, it consists of two

disconnected pockets. As the energy increases, the pockets touch each other on the line X̄−M̄,

and subsequently connect, to form a large electron and small hole pocket, centred on X̄, as

shown around each X̄ point in Fig.1.7d [24].

Experimentally, ARPES measurements on the (001) surface of SnTe [45], and related

alloys [46, 47], confirmed the non-trivial topological phase described above. It was shown that

the surface Brillouin zone consists of four Dirac cones, as represented by the first-principles

calculations and ARPES data in Fig.1.8b. Furthermore, around each X̄ point the presence of

the double Dirac cone was also confirmed, as can be seen in Fig.1.8a, and more explicitly in

Fig.1.8b, where one can also observe the linear dispersion associated with each Dirac cone.

The helical spin polarization associated with the two Dirac cones in the vicinity of X̄ was

also measured. Using spin-resolved ARPES, measurements were taken along two cuts along

X̄− Γ̄− X̄, one just below the crossing of the Dirac points, and another further below in energy

which cuts through the bulk valence band. Each of these cuts can be seen in Fig.1.8b. Spin

polarization measurements were taken along each of these cuts, shown in the top part of

Fig.1.8d for the cut associated with the Dirac cones, and in the lower part of Fig.1.8d for the

valence band cut. As can be clearly observed, the bands in the former are spin polarized, whilst

the states that belong to the valence band show no spin polarization, thereby confirming

the helical spin texture. What is particularly interesting is that this provides an almost direct

measurement, via spectroscopy, of the mirror Chern number, and confirm these materials as

TCIs with a topology protected by the mirror symmetry of the crystal lattice.

Similarly to the bismuth chalcogenides, the non-trivial topological order in SnTe related

17



Chapter 1. Introduction

materials has only been comprehensively shown via surface sensitive techniques, such as

ARPES. Moreover, as with Bi2Se3 and Se vacancies leading to n-type doping, SnTe, as it is

grown, is also heavily doped, in this case p-type doping [55–57] originating from intrinsic

Sn vacancies [58]. This is reflected in high bulk carrier densities ranging between 1019 to

1021 cm−3 [58]. However, unlike Bi2Se3 which is a layered van der Waals material, and has a

natural cleavage plane, whereby thin flakes can be formed via mechanical exfoliation, thus

offering one relatively facile method to reduce bulk carrier contributions, in SnTe this is not

possible, given its rocksalt crystal structure. As such, direct transport measurements probing

the distinct properties of the materials surface states are lacking. One particularly attractive

platform, with respect to SnTe, for enhancing contributions from surface states is increasing

the surface to volume ratio via nanostructuring. Furthermore, as nanostructuring leads to

the formation of different surfaces, given the material’s crystal face dependent topological

properties, in contrast to Bi2Se3, it offers the intriguing possibility to explore the interplay

between topological phases belonging to distinct surfaces of a nanostructure, alongside

conventional confinement effects. SnTe derived nanostructures shall be discussed in further

detail below.

Figure 1.8 – aaa Topologically protected surface states of (001) surface in Pb0.6Sn0.4Te. (Top) Surface
states calculated from first principles, with the energy cut taken at 0.02 eV below the Dirac point
energy, shown in red. (Bottom) Measured ARPES Fermi surface mapping over the surface BZ at an
equivalent energy cut. bbb Focusing on a pair of Dirac nodes associated with a single X̄ point, for example
corresponding to the white square in aaa (bottom). Measured momentum dispersion cuts taken at several
energies below the Dirac points, allowing linear Dirac dispersion to be observed. The position of X̄ on
the mirror symmetric Γ̄− X̄− Γ̄ is also labelled. ccc Measures ARPES momentum dispersion plot along an
equivalent mirror symmetry line. Dotted lines represent binding energies (EB ), for which spin resolved
measurements were taken, shown in ddd. Dotted line just below Dirac points has EB = 0.06 eV, whilst for
dotted line in valence band EB = 0.70 eV. Inset: ARPES iso-energetic contour at EB = 0.06, with blue and
green arrows showing measured spin polarization. ddd Measured in-plane spin polarization at EB = 0.06
eV (top), and EB = 0.7 eV (bottom). Adapted and reprinted with permission from Ref. [47].
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1.3 Nanostructures of Topological Materials

1.3.1 Bismuth Chalcogenides

An inherent problem associated with bismuth chalcogenide TIs is the difficulty in isolating

surface state charge carriers from those of the bulk, as touched upon above. By enlarging the

surface to volume ratio, a reduction in the dimensionality of the material is a direct method of

enhancing surface contributions.

An immediate and relatively facile way of achieving this enhancement is to take advan-

tage of the weak van der Waals bonding between quintuple layers in this family of materials.

This can be accomplished via several different types of mechanical exfoliation, one example

being to use the Scotch tape method [59], originally employed to isolate individual graphene

flakes from graphite [60], to generate nano flakes. An advantage of the method is its simplicity,

however, it is difficult to derive flakes of a consistent shape with smooth edges, and given the

nature of the technique it is obviously not scalable. Alternatively, an atomic force microscopy

tip has been utilized to exfoliate nanoribbons, possessing smooth surfaces, down to a width of

a single quintuple layer [61], but this technique has similar associated problems with respect

to scalability. Finally, solution based processing can be used to disperse layers to form nano

flakes or films in much larger quantities [62], but again with no direct control over quality or

morphology.

A far greater handle over the morphology of nanostructures, alongside the ability to

produce them at larger quantities, is available through a series of alternative techniques. Two

related mechanisms resulting from chemical vapour deposition (CVD) have been widely har-

nessed to synthesize single crystal, high quality nanostructures of well defined morphologies.

The first is the gold-catalysed vapour-liquid-solid (VLS) mechanism [63, 64], used to grow

one-dimensional (1D) nanoribbons and nanowires [65]. The presence of the liquid phase Au

particle catalyses the adsorption of vapour phase reagents to supersaturation levels, allowing

nucleation to occur, from which crystal growth proceeds from the nucleated seeds at the liquid-

solid interface. Distinctive features of the mechanism are that the position of the catalyst

dictates the growth direction, which is predominantly unidirectional, whilst its size determines

the relative thickness or diameter, of the subsequent nanoribbon or nanowire, respectively.

More specifically, in the case of Bi2Se3 [65], for example, the material is placed in powdered

form at the centre of a tube furnace, where it is evaporated and is subsequently transported,

via an Ar gas flow, downstream, where a silicon substrate bearing Au nanoparticles is placed,

upon which the interaction with Bi2Se3 vapour leads to the aforementioned VLS mechanism,

and the formation of crystallized nanostructures. A degree of morphological control is possible

based on the position of the substrate and catalyst platform relative to the furnace centre. The

placement of the platform closer to the centre, where temperatures are higher, results in the

formation of primarily one-dimensional nanoribbons and nanowires. A primary structural

differentiator between the two, is that in nanowires growth is parallel to the c axis, i.e. the (001)

direction, which is also the direction along which QLs stack (Fig.2.2a), which gives rise to rough
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surfaces along the wire, as can be seen in Fig.1.9b. Conversely, in the case of nanoribbons,

growth is along an axial direction perpendicular to the c axis and (001) direction, which results

in smooth top and side surfaces, as can be seen in Fig.1.9a. The placement of the substrate

platform further from the centre, where temperatures are lower, leads to the formation of

solely nanoribbons, with morphologies that are not strictly 1D, for example sawtooth and

zig-zag like nanoribbons, as can be seen in Ref. [65]. In the case of nanowires the diameter is

defined by the size of the Au catalyst, which is typically ∼ 20 nm [66], whilst the length ranges

from hundreds of nanometres to tens of micrometres [65]. Nanoribbons have thicknesses

ranging from 20 to 100 nm [67], which is again dictated by the size of the Au catalyst, widths

vary from 50 nm to tens of micrometers, whilst one dimensional ribbons are ordinarily several

micrometers long, however, this can increase to over 100 μm [65]. Also observed in the low

temperature region are the presence of hexagonal nanoplates [68], which are distinct to 1D

nanoribbons and wires in that their growth on the underlying substrate is accompanied by a

complete absence of a Au catalyst nanoparticle, which implies the vapour-solid (VS) mecha-

nism. In contrast to the VLS mechanism, growth is not catalysed by Au nanoparticles, with

nucleation occurring directly on the underlying substrate. Defining features of nanoplates are

that they tend to be thin, with thickness down to a few QL (where 1QL ∼ 1 nm), whilst their

lateral dimensions are far greater, on the order of micrometers. Furthermore, their shapes,

generally of hexagonal or triangular morphology, with facets at 60°or 120°at the edges, are

governed by the underlying symmetry of the crystal lattice [68], an example of a hexagonal

nanoplate is shown in Fig.1.9c. Both VLS and VS mechanism generate TI nanostructures of a

high crystalline quality, and particularly in the case of the VLS mechanism, strain effects, due

to the choice of the growth substrate associated with thin-film techniques, such as molecular

beam epitaxy (MBE) [69], are avoided as the nanostructures grow off the substrate.

Figure 1.9 – Experimental images of synthesized Bi2Se3 nanostructures. aaa (top) Zoomed in transmission
electron microscopy (TEM) image of a Bi2Se3 nanoribbon, with a Au catalyst nanoparticle at the end.
(bottom) Larger scale view showing growth along the [112̄0] direction. bbb Scanning electron microscopy
(SEM) image of a Bi2Se3 nanowire grown along the c axis parallel to the [0001] direction. ccc TEM image
of a hexagonal Bi2Te3 nanoplate. The inset is a selected area diffraction pattern taken along the [0001]
direction. Adapted and reprinted with permission from Refs. [65, 67, 70], respectively.

Nanoribbons, nanowires, and nanoplates constitute the three primary morphologies of

bismuth chalcogenide TI nanostructures. Two other techniques employed to generate them

are van der Waals (VDW) epitaxy [71] and chemical synthesis, for example via a solvothermal

process. A distinct advantage of VDW epitaxy is that it avoids a problem associated with
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traditional epitaxial techniques such as MBE, which is constrained by the lattice matching

condition between the growth substrate and the epitaxial layer. As bismuth chalcogenides are

layered VDW materials, the growth of these materials onto the substrate is governed by weak

VDW forces, and consequently the need for the two lattices to match is lifted. This process

functions optimally if the substrate is also a layered VDW material, with a chemically inert

surface, i.e. in possession of no dangling bonds, one prime example being a mica substrate [72].

VDW epitaxy has been used to controllably grow nanoplates, of both trigonal and hexagonal

morphologies, on various substrates, with optimal conditions on mica [72–74], where control

over the specific morphology and thickness has been exhibited. One particularly attractive

aspect of the method is that it can be slightly modified, in what has been termed selective area

VDW epitaxy [72], to allow control over the growth position. Specifically, as growth is locally

confined to initial nucleation sites, once these sites are defined this leads to the formation of

nanoplate arrays. By confining nucleation sites to specific positions, for example via the use

of patterned PMMA films or copper grids as lithography masks, this enables the growth of

periodic ordered arrays of nanoplates [72]. This could be a versatile tool in device applications,

with potential uses already being explored [74].

Chemical synthesis, in particular via a solvothermal process, is another method to

generate TI nanostructures [70, 75, 76]. Given that the reaction conditions in the solvothermal

process are relatively non-stringent, for example short reaction times and low temperatures,

this allows control of nanostructure morphology. Moreover, a degree of tuning over material

properties is also enabled through additional chemical doping [70]. The method has been

used to generate high crystalline quality samples of nanoribbons [75] and nanoplates [70, 76].

As has been described one motivating factor in synthesizing bismuth chalcogenide TI

nanostructures is to manifest properties of surface states in transport measurements. To this

end, given the Dirac dispersion of the charge carriers, and similarly to graphene [60], one

signature should be the ambipolar field effect, whereby surface state charge carriers can be

tuned smoothly between electrons and holes, with an associated minimum in conductivity as

the Fermi level passes through the Dirac point. Even in TI nanostructures, bulk contributions

can still overwhelm those from the surface, thus additional tools utilised to isolate surface

states are through doping and field-effect gating. Such Fermi level tuning has subsequently

allowed the ambipolar field effect and a minimum in conductivity to be detected by measuring

a peak in resistance (Fig.1.10a-top), a sign change in Hall resistance (Fig.1.10a-bottom) and a

linear dependence of carrier density at low and high gate voltages [76–80].

Another signature which allows bulk transport to be differentiated from that of the

surface is through magnetotransport measurements. Specifically, through magnetoconduc-

tance oscillations, i.e. Shubnikov-de Haas (SdH) oscillations, where the conductivity oscillates

periodically as a function of the inverse of the applied magnetic field 1/B , and where the
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Figure 1.10 – aaa Ambipolar field effect in Bix Sb1−x Te3 nanoplates. (Top) Dependence of R on gate
voltage VG ∼ 5 nm thick nanoplate, showing a sharp peak in resistance. Inset: atomic force microscopy
(AFM) image of field-effect transistor (FET) measurement device. (bottom) High-field Hall coefficient
RH plotted against VG for the same nanoplate. Peak at R (top) corresponds to a change in sign in RH

(bottom), at an equivalent VG . bbb SdH oscillations observed in a 10 nm thick Bi2Se3 film, grown by MBE.
dRx y /dB is plotted as a function of 1/B⊥ (= 1/B cosθ). Adapted and reprinted with permission from
Ref. [78] (aaa) and Ref. [81].

oscillatory part of the longitudinal conductivity σxx is given by [66]:

Δσxx ∼ cos

[
2π

(
F

B
− 1

2
+β

)]
(1.19)

where F is the oscillation frequency and β is a phase shift term. In order to determine whether

SdH oscillations are of a two dimensional nature, and therefore implying surface origin, the

behaviour of the oscillation frequency F as a function of the angle θ, where θ is the tilt angle

between the magnetic field direction and the surface normal, can be investigated. Ordinarily,

this is accomplished by plotting the resistivity derivative, dRx y /dB , as a function of the inverse

of the perpendicular component of the magnetic field, 1/B⊥ where B⊥ = B cosθ [41]. If F

varies as ∼ 1/cosθ, this is a strong indicator of the SdH having a 2D origin [41, 66], as can be

seen in experimental data shown in Fig.1.10b. Such oscillations have been observed in both

bismuth chalcogenide thin films [41, 81, 82] and nanostructures [70, 75, 79].

One final transport signature that shall be discussed is the Aharonov-Bohm (AB) inter-

ference, it is of particular interest as it highlights some aspects of the fascinating interplay

between the finite size effects and morphology of nanostructures and the topological prop-

erties of surface states. For electron waves, following closed trajectories encircling a certain

magnetic flux, the effect of the flux is to alter the relative phase of the electron waves, leading

to interference, which is termed the Aharonov-Bohm effect [83]. Specifically, the wavefunction

of the particles pick up a phase of 2πφ/φ0, solely determined by the magnetic flux φ, and

where φ0 = h/e is the flux quantum. This gives rise to periodic oscillations in magnetoconduc-
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tance, with the AB effect having a characteristic periodicity of oscillation of flux quantum h/e,

which was first observed in 2D metallic rings [84]. An ordinary hollow, metallic cylinder with a

conducting surface, which can be seen as a series of infinite 2D rings, threaded through its

core by a magnetic flux, also displays such periodic oscillations in magnetoconductance [85].

However, in this case the oscillations now have a periodicity h/2e, and are termed Altshuler-

Aronov-Spivak (AAS) oscillations [85], and are a result of interference between clockwise and

anti-clockwise circulating trajectories around the cylinder, and have been observed in carbon

nanotubes [86]. The absence of h/e oscillations in the cylindrical case, stems from the fact that,

as h/e oscillations can be thought of as originating from 2D ring slices comprising the cylinder,

different ring slices have h/e oscillations of different phases, therefore over the cylinder taken

as whole they average out.

Figure 1.11 – aaa Schematic band structure of a strong TI nanowire showing 1D modes at two flux
quantum values of φ= 0 (left) and ±h/2e (right). bbb Magnetoconductance measurements at Vg = -25
(top), which is representative of the Fermi level cutting through several subands, as can be seen in aaa,
and Vg = -45 (bottom), which positions the Fermi level close to the Dirac point, as shown in aaa, and
cutting through the single, topologically protected 1D mode. Adapted and reprinted with permission
from Ref. [87].

Given topological insulators are insulating in the bulk and conducting on the surface,

the unique morphology of the aforementioned TI nanostructures, means they can be seen

as hollow metallic cylinders. Initial investigations into the AB effect in TI nanostructures,

surprisingly, observed magnetconductance oscillations with a periodicity of h/e [67, 75, 88].

However, subsequent theoretical [89–91] and experimental works [87] have shown this as a

direct consequence of the morphology of the nanostructures and the topological properties of

the TI surface states. Specifically, as the electron mean free path is greater than the perimeter

of the nanostructure cross section, this leads to momentum quantization and the formation

of discrete 1D subbands. Furthermore, spin-momentum locking in TIs results in electrons

picking up a π Berry phase, due to the 2π rotation of the spin around the nanostructure

perimeter. Combined, both factors result in a band structure, which remains gapped at

magnetic flux values of φ = 0. However, when the nanostructures are threaded by specific

values of magnetic flux, i.e. at odd half-integers (φ=±h/2e,±3h/2e, . . .), the cancellation of

the AB phase and π Berry phase, results in a single, topologically protected, 1D mode. This
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can be seen in the two schematic band structures displayed in Fig.1.11a. Thus, at such specific

values of magnetic flux, for example φ= 0 and ±h/2e, if the Fermi level is located close to the

Dirac point (Fig.1.11b-bottom plot), the conductance should exhibit a minimum at φ= 0 and

a maximum at ±h/2e, with an oscillation periodicity of h/e. When the Fermi level is located

away from the Dirac point (Fig.1.11b-bottom plot) and cuts through more than the single

topologically protected mode, a conductance peak is also seen at zero flux φ= 0. This was

recently experimentally observed [87, 92], with some representative data shown in Fig.1.11b,

and is a direct transport based measurement of the helical surface states, and an indirect

confirmation of the Berry phase.

1.3.2 Tin Telluride

SnTe is heavily p-type doped, as described above, thus, as with the bismuth chalcogenides,

accessing and manipulating surface states directly via bulk transport measurements is difficult.

A further complication in the case of SnTe is that it has a cubic, rock-salt crystal structure, and

therefore is not a layered vdW material, hence mechanical exfoliation, as a facile method of

quickly and simply producing lower dimensional structures, is not possible. Subsequently,

lowering the dimensionality of the material by forming thin films and nanostructures offers

an attractive platform to enhance surface contributions, again for similar reasons that were

detailed above for the bismuth chalcogenides. More interestingly, as the topological protection

of the surface states in SnTe, and its related alloys, is due to the mirror symmetry of the

crystal, rather than time reversal symmetry, this topological protection is far more sensitive to

dimensionality reduction than in the case of strong TIs. As a simple example, in the case of

Bi2Se3, which is a strong TI with Z2 invariants (1;000), in theory, the presence of a single Dirac

cone centre at Γ is independent of the surface orientation. In the case of TCIs such as SnTe,

this is not the case where topological protection is only present on defined surfaces, as has

been described. Thus, a key overarching focus of the work related to this section, as shall be

highlighted with some examples below, is to further explore how dimensionality reduction

impacts upon the mirror symmetry protected topology.

Experimentally, thin films of SnTe and its related alloys have been grown on a variety

of substrates, such as Bi2Te3 [81], SrTiO3(001) [93] and Si(111) [94], via MBE. Transport mea-

surements for the SnTe (111) surface grown on Bi2Te3 [81] revealed SdH oscillations, which

were suggestive of Dirac fermion mediated transport. More recent work for (001) thin films

of the alloy Pb1–x Snx Se grown on SrTiO3(111) [95], have measured the ambipolar field effect,

and also the formation of massive Dirac fermions accompanying a gap opening due to surface

hybridization, as the thin film approaches the 2D limit. Given the film thickness at which this

occurs (∼ 10 nm), this is suggestive of a heightened sensitivity to finite-size effects relative to

bismuth chalcogenide TIs [95, 96]. Another aspect of the less robust topological protection

offered by crystal, relative to time reversal, symmetry in TCIs, is that the surface states are far

more amenable to external perturbations, as crystal symmetry can be rather easily broken.

This offers a degree of tunability over electronic properties, which could be harnessed for
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potential device applications. One theoretical study [97] has predicted that a topologically

non-trivial phase in SnTe (001) thin films persists down to a thickness of a few atomic layers,

with an inverted band band structure at the X̄ points (Fig.1.7), indicating a 2D TCI phase

over a wide range of film thicknesses. Moreover, as this 2D TCI is defined by a pair of spin

filtered edge states crossing at the non-time-reversal-invariant momenta Λ̄ (where in the 3D

limit the gap approaches zero), the sole form of topological protection is through the mirror

symmetry of the crystal. As this mirror symmetry can be broken by an applied electric field,

thereby gapping the spin filtered edge states, it was postulated that this edge channel can be

thought of as a topological transistor, with spin and charge transport coupled, controllable

by an external electric field. More fundamentally, and really highlighting the sensitivity of

the mirror symmetry protected topology with respect to dimensionality reduction, was a

study which showed that TCI thin films composed of an odd or even number of layers display

different topological properties [96]. This stems from symmetry reasons, as odd layers have

mirror symmetry, whilst even do not. This shall be discussed in far more detail in the Results

section. Intriguingly, it was subsequently predicted that depending on the film thickness

(111) thin films of SnTe related TCIs can exhibit the quantum spin Hall phase in a wide range

of thicknesses [98, 99], and, furthermore, with this phase tunable under an external electric

field [98].

As briefly showcased by some of the examples above, even on transitioning from the

bulk to thin films, SnTe TCIs display a rich playground of physics. A further reduction in

dimensionality, to form nanostructures, should widen the possibilities yet further. This is

based on the reasoning that, firstly, only specific surfaces of SnTe TCIs harbour topologically

non-trivial phases, with the phase on each surface distinct, as dictated by its crystal symmetry.

Thus, as nanostructures can display multiple surfaces, the interplay between different surfaces

could give rise to interesting topological phenomena. Secondly, as nanostructures tend be

of a well defined morphology and given their dimensions, this should not only give rise to

interference-type effects, for example AB oscillations described above, but also the combi-

nation of quantum confinement combined with the mirror symmetry protected topology of

different surfaces, is also likely to lead to novel physics. Finally, taking each of these factors

individually, or in unison, alongside the amenability of the mirror symmetry protected topol-

ogy to a variety of perturbations, could enable a wide degree of tunability over any observed

phenomena.

The predominant synthesis method for SnTe TCI nanostructures, thus far, has been CVD

growth via the (Au catalysed) VLS and VS mechanisms [100,102–104], described above. Several

distinct morphologies are observed, as a consequence of the growth mechanism and the

underlying cubic symmetry. Broadly, these fall into four categories: nanowires, nanoribbons,

nanoplates and nanocubes, examples of which can be seen in Fig.1.12. For all nanostructure

morphologies, two surfaces tend to dominate, the
{

100
}

and the
{

111
}

surfaces [100, 102]. The{
100

}
surfaces are calculated to be more energetically favourable, and are observed at higher

growth conditions, whilst
{

111
}

surfaces, are calculated to be energetically less favourable, and

are observed at lower growth temperatures and in a Te rich environment [100,102]. In terms of
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Figure 1.12 – TEM (aaa,ccc,ddd) and SEM images (bbb) of experimentally synthesized SnTe nanostructures. aaa{
100

}
nanocube. bbb

{
100

}
nanowire showing a perfectly square cross section. ccc

{
100

}
nanoplate. ddd{

111
}

nanoplate. Scale bars in aaa,ccc and ddd are 2 μm and 100 nm in ddd, for the inset in bbb the scale bar
corresponding to the dashed yellow line is 200 nm. Facets are marked on each structure. Adapted and
reprinted with permission from Ref. [100] (aaa,ccc,ddd) and Ref. [101] (bbb).

actual morphologies, nanocubes are observed in the absence of an Au catalyst, indicating VS

growth, at high temperatures all surfaces of the cube are
{

100
}

planes, an example is shown in

Fig.1.12a. At lower temperatures and in a Te rich environment
{

100
}

planes dominate, as can

be seen in Ref. [102]. The cubic structure clearly stems from the underlying cubic symmetry

of the crystal. In the presence of a Au catalyst, indicating VLS growth, at high temperatures,

cubic nanowires are formed with a constant cross section, and where each surface again

corresponds to a
{

100
}

plane, an example is shown in Fig.1.12b. At lower temperatures, in a Te

rich environment, zig-zag nanowires are formed, showing both
{

111
}

and
{

100
}

surfaces, with{
111

}
surface dominant, as can be seen in Ref. [102]. Two distinct morphologies of nanoplates

and nanoribbons are observed, with top (and bottom) surfaces corresponding to either
{

100
}

,

observed at high temperature, or
{
111

}
, observed at low temperature, surfaces [100]. For{

100
}

nanoplates, side facets occur at angles of 45°, 90°or 135°, implying the presence of
{

100
}

or
{
111

}
planes as side surfaces, an example is shown in Fig.1.12c. For

{
111

}
nanoplates,

side facets occur at angles of 30°, 60°or 120°, again implying
{
100

}
or

{
111

}
planes as side

surfaces, an example is shown in Fig.1.12d. Nanoribbons can just be seen as a thinner version

of nanoplates, with the same information pertaining to side surfaces. Examples of a
{

100
}

and{
111

}
nanoplate are shown in Figs.1.12c,d, respectively. For both nanoplates and nanoribbons,

the presence of a Au catalyst is observed, indicating VLS growth, however, the fact that the

nanoplates and nanoribbons tend to be wider than the catalyst particle, implies additional

growth via the VS mechanism [100]. Overall, the observed morphologies tend to be high

quality, single crystalline nanostructures, with clean surface terminations, important for
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potential applications.

Taking into account the relative nascency of the field, transport measurements on

TCIs nanostructures are lacking, however, a few have been performed [100, 101, 105, 106].

For example, AB and SdH oscillations have been observed in SnTe cubic nanowires [105].

But given that mirror symmetry protected topology is less robust, relative to Z2 time reversal

protection, particularly with respect to surface orientation, and that the nanowires in Ref. [105]

have surfaces which do not all correspond to those showing a topologically protected phase,

the observed AB oscillations are probably not a definitive signature of topological surface

states protected by mirror symmetry. Other transport experiments, include the observation of

weak antilocalization in Pbx Sn1−x Te
{

100
}

cubic nanowires, when the Sn content (x) reaches

x ∼ 0.38, suggesting a topological phase transition from trivial to non-trivial [106].

1.4 Outline

The purpose of the above was to initially provide a brief and select overview of developments

that culminated in the discovery of the Z2 topological insulator (TI) phase in Bi2Se3 and Bi2Te3,

and the topological crystalline insulator (TCI) phase in SnTe. Given the challenges associated

with directly accessing and manipulating topological surface states (TSS) in the respective bulk

crystals, we highlighted the unique solutions offered by nanostructuring. Furthermore, it was

also touched upon how confinement of TSS may give rise to novel phenomena. From a general

perspective, it is also worth mentioning that the continued shrinking of solid state devices

imply that nanostructures are likely to play a prominent role in device based applications

that seek to harness the properties of TSS. In light of these factors, this work theoretically

investigates how nanoscale confinement in the Z2 TIs Bi2Se3 and Bi2Te3, and the TCI SnTe,

impacts upon electronic structure and properties derived from the bulk topological phase

The remainder of this work is outlined as follows. The proceeding Chapter 2, presents the

foundational concepts of the computational methods employed, primarily density functional

theory (DFT) and the tight-binding (TB) approximation. A more specific discussion regarding

the application of first-principles DFT calculations to investigate topologically insulating

phases is also given, alongside a description of the Bi2Se3, Bi2Te3 and SnTe TB parameters

utilised. The hexagonal symmetry and QL stacking of the bismuth chalcogenides entail that

nanostructures inevitably expose surfaces other than the (001). As such, Chapter 3 presents

our work on the high-index facets of Bi2Se3 and Bi2Te3. Chapter 4 serves as a natural extension,

and describes our work on realistic Bi2Se3 nanostructures. A particular focus is paid to how the

band dispersion and spin helicity of the 2D surface Dirac cone is exhibited in the electronic

spectra of 1D nanowires and nanoribbons. The simpler cubic crystal structure and the mirror-

symmetry-dependent topology of SnTe results in a rich interplay between the non-trivial

topology and the underlying crystal structure. Thus, finally, Chapter 5 concerns our work on

the manifestation of the crystal-symmetry-dependent 2D TCI phases of SnTe (001) thin films

in nanowires of related symmetry.
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2 Methodology

2.1 Density Functional Theory

2.1.1 General Formalism

For realistic systems, comprised of interacting electron and nuclei, electronic structure theory

involves the solution of the many-body Schrödinger equation, given by

ĤΨ= EΨ (2.1)

Ĥ =−∑
i

ħ2

2me
∇∇∇2

rrr i
−∑

I

ħ2

2MI
∇∇∇2

RRR I
+ 1

2

∑
i �= j

e2

|rrr i −rrr j |
+ 1

2

∑
I �=J

ZI ZJ e2

|RRR I −RRR J |
−∑

i ,I

ZI e2

|rrr i −RRR I |
(2.2)

where ħ corresponds to the reduced Planck constant, electrons are denoted by a lower case

subscript with mass me , whilst nuclei are labelled with upper case subscripts, with the I th

nucleus, having a mass MI and atomic number ZI . Application of the Born-Oppenheimer

approximation [107] further simplifies the Hamiltonian in equation (2.2) to

Ĥ =−∑
i

ħ2

2me
∇∇∇2

rrr i
+ 1

2

∑
i �= j

e2

|rrr i −rrr j |
+∑

i
Vext (rrr i )+EI I (2.3)

where the external potential, Vext , of the nuclei on the electrons is

Vext (rrr ) =−∑
I

ZI e2

|rrr −RRR I |
(2.4)

and EI I is the classical electrostatic interaction between two nuclei.

A central premise of DFT is reducing the significant complexity in solving Eq.2.1, by

reformulating the complex interacting many-electron problem, described by the Hamiltonian

in Eq.2.3, as a far simpler non-interacting single-electron problem. This stems from the two

underpinning tenets of the theorem, defined by Hohenberg and Kohn [108]:
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• Theorem I: For any system of interacting electrons in an external potential Vext (rrr ), the

potential is determined uniquely, aside from an additive constant, by the ground state

electron density n0(rrr ).

Since knowledge of the external potential, Vext (rrr ), completely defines the Hamiltonian

(Eq.2.3), up to a constant shift, which in turn completely defines the many-body wavefunctions,

all the ground state properties of a system are thus, in principle, determined by n0(rrr ).

• Theorem II: For all densities n(rrr ) that are ground state densities to some external

potential Vext (rrr ), such that
∫

n(rrr )drrr = N where N is number of electrons in the system,

a functional for the energy E [n] in terms of the density n(rrr ) can be defined, which holds

for any potential Vext (rrr ). The form of this functional is given by

E [n] = F [n]+
∫

Vext (rrr )n(rrr )drrr +EI I (2.5)

and for a given external potential Vext (rrr ), the global minimum of E [n] at the exact

ground state density n0(rrr ) corresponds to the exact ground state energy.

The universal functional F [n], where

F [n] = T [n]+Ei nt [n] (2.6)

defines the internal kinetic and potential energies, respectively, of an interacting electron

system. The universality of F [n] stems from the fact that T [n] and Ei nt [n] are functionals

of just the density, furthermore that the functional is independent of the external potential

Vext (rrr ). If the form of F [n] was known, the minimization of Eq.2.5 with respect to the density,

would yield the exact ground state density and energy. Theorem II subsequently amounts to

the variational principle for the ground state energy in terms of the electron density. More

generally, the existence of F [n] means that instead of dealing with a many-electron wave-

function comprised of 3N variables, the problem is greatly reduced to dealing with the three

dimensional electron density.

The most commonly used practical implementation of DFT is that devised by Kohn

and Sham [109], which rests upon the assumption that the exact ground state density of

an interacting electron system can be represented by a fictitious system of non-interacting

electrons. A primary step in this implementation is to define an auxiliary Hamiltonian

Ĥaux =−1

2
∇∇∇2 +VK S(rrr ) (2.7)

which describes a system of N non-interacting electrons, where the ground state has one

electron in each of the N orbitals ψi (rrr ) with lowest energy eigenvalues εi . The density of this
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auxiliary system is constructed from summing the squares of the orbitals ψi (rrr ):

n(rrr ) =
N∑

i=1
|ψi (rrr )|2 (2.8)

In dealing with electrons described by single orbital wavefunctions ψi (rrr ), a defining principal

of the Kohn-Sham formulation is to split the internal energies of the interacting electron

system in Eq.2.6 into an independent electron kinetic energy TK S

TK S[n] =− ħ2

2me

∑
i
〈ψi |∇∇∇2|ψi 〉 (2.9)

and Hartree energy EH

EH [n] = e2

2

∫
n(rrr )n(r ′r ′r ′)
|rrr −r ′r ′r ′| drrr dr ′r ′r ′ (2.10)

and a third term, the exchange-correlation functional Exc [n]. Consequently, the energy

functional for a many-electron system, given in Eq.2.5, can be redefined as

E [n] = TK S[n]+EH [n]+
∫

Vext (rrr )n(rrr )drrr +EI I +Exc . (2.11)

All the complex many-body interactions are now confined to the exchange-correlation func-

tional, Exc [n], which contains the non-classical electron interaction energy and the kinetic

energy difference between the interacting and non-interacting systems

Exc [n] = F [n]−TK S[n]−EH [n]. (2.12)

Thus far the Kohn-Sham formalism is exact in that if the form of the universal functional Exc

were known, then the exact ground state energy could be found using the density. The density

itself is constructed from the single orbital wavefunctions ψi (rrr ) (Eq.2.8), equations for which

are determined via the application of the variational principle, that is the minimization of the

energy functional E [n] (Eq.2.11) with respect to the variations of the orbitals ψi (rrr ), subject to

the orthonormal constraint that 〈ψi |ψ j 〉 = δi , j , which results in the one electron Kohn-Sham

equation:

HK Sψi (rrr ) =
[
− ħ2

2me
∇∇∇2 +Vext (rrr )+e2

∫
n(r ′r ′r ′)
|rrr −r ′r ′r ′|drrr + δExc

δn(rrr )

]
ψi (rrr ) = εiψi (rrr ). (2.13)

Subsequently, the effective potentials constituting the Kohn-Sham potential in Eq.2.7 are

VK S(rrr ) =Vext (rrr )+VH (rrr )+Vxc (rrr ) (2.14)
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where the Hartree, VH (rrr ), and exchange-correlation potential, Vxc (rrr ), respectively, are:

VH (rrr ) = e2
∫

n(r ′r ′r ′)
|rrr −r ′r ′r ′|drrr (2.15)

Vxc (rrr ) = δExc

δn(rrr )
(2.16)

As the Kohn-Sham potential VK S(rrr ) is dependent on the density, it is necessary to solve the

Kohn-Sham equation self-consistently. An initial guess for the density is made after which

Eq.2.13 is solved to generate a set of orbitals, ψi (rrr ), from which a new density is found. The

iteration of this process is continued until the input and output densities are equivalent i.e.

self-consistency has been achieved.

As touched upon above, if the form of the functional Exc [n] were known, solving the

equations of the independent-electron Kohn-Sham formalism would yield the exact ground

state density and energy of the interacting electron system. However, the form of this func-

tional is unknown, and thus approximations for Exc [n] are needed.

Exchange Correlation Functionals

In the practical application of DFT two dominant and widely adopted approximations to the

exchange-correlational functional Exc [n] are the local-density approximation (LDA) [109] and

the generalized gradient approximation (GGA) [110].

A significant consequence of the Kohn-Sham formalism in partitioning the Kohn-Sham

potential into the independent-electron kinetic and long-range Hartree terms, Eq.2.14, is

that the exchange-correlation functional Exc [n] can be approximated as a local function of

the density n(rrr ). This informs the basis of the LDA, as it assumes that the local exchange

correlation energy per electron εxc (n(rrr )) is the same as that in a homogeneous electron gas

εhom
xc (n(rrr )) with an equivalent density, with the overall exchange-correlation energy, Exc [n] ,

an integral over all space

E LD A
xc [n] =

∫
εhom

xc (n(rrr ))n(rrr )drrr (2.17)

In the case of the homogeneous electron gas, the dependence of the exchange-correlation

energy, εhom
xc (n), on the density has been calculated to an extremely high degree of accu-

racy using quantum Monte Carlo methods by Ceperly and Alder [111], a widely employed

parametrisation of which includes that of Perdew and Zunger [112]. Despite its apparent

simplicity the LDA has been reliably applied to predict a variety of properties, such as bonding

interactions (mainly covalent, ionic and metallic), vibrational frequencies and elastic moduli

in atomic, molecular and solid systems.

The GGA is an energy functional that improves on the LDA due to its dependence on
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both the density and its gradient

Exc [n]GG A =
∫

εhom
xc (n,∇∇∇n)n(rrr )drrr . (2.18)

A much used parametrisation, which has also been employed in this work, is that of Perdew-

Burke-Ernzerhof [113].

Plane Wave Expansion and Pseudopotentials

A primary step in the practical solution of the Kohn-Sham equations is defining an appropriate

basis set in which to expand the Kohn-Sham wavefunctions.

For periodic systems, based on Bloch’s theorem [3], a natural choice is to use a planewave

basis set, which is a complete and unbiased basis. Thus, each Kohn-Sham wavefunction can

be expanded as a linear combination of plane waves:

ψnkkk (rrr ) =∑
G

Cnkkk (GGG)ei (kkk+GGG)·rrr (2.19)

where n refers to the band index, kkk the crystal momentum, and GGG the reciprocal lattice vectors,

defined as

GGG = m1bbb1 +m2bbb2 +m3bbb3 (2.20)

with primitive lattice vectors bbbi and integers mi , for i = 1,2,3. For a given kkk, subsequently,

Bloch’s theorem (i.e. via Eqn.2.19) dictates that the size of the planewave basis set over which

the electron wavefunctions are expanded is infinite, as the sum in Eqn.2.19 runs over the

periodic repetitions of the reciprocal lattice vectors GGG . However, in practical applications a

kinetic energy cutoff is introduced whereby plane waves possesing a kinetic energy higher

than that cutoff are omitted, thus giving a truncated, finite planewave basis set.

Consequently, with the electron wavefunctions described in terms of a plane wave basis

set, the Kohn-Sham equations can be expressed as [114]

∑
GGG ′

[ ħ
2me

|kkk +GGG|2δGGGGGG ′ +Vext (GGG −GGG ′)+VH (GGG −GGG ′)+Vxc (GGG −GGG ′)
]

Cnkkk (GGG ′) = εnkkkCnkkk (GGG).

(2.21)

Solving Eqn.2.21, involves diagonalizing the Hamiltonian matrix, whose elements are given by

the terms in brackets, with the kinetic energy term diagonal. Moreover, the potential terms are

represented by their Fourier components, in the form:

V (GGG −GGG ′) = 1

Ωcel l

∫
Ωcel l

V (rrr )e−i (GGG−GGG)·rrr d 3r. (2.22)

where Ωcel l is the unit cell volume. The size of the matrix in Eqn.2.21 is dictated by the choice
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of the aforementioned cutoff energy for the kinetic energy, ( ħ
2me

)|kkk +GGG|2. However, generally,

regardless of the choice, the size is impractically large when systems are described in terms of

both valence and core electrons. A method of overcoming such a problem is through the use

of the pseudopotential approximation [115–117].

The basic premise of the pseudopotential approximation is that given the core electrons

in a solid provide a negligible contribution to bonding and, consequently, the majority of phys-

ical properties, this chemical inertness enables them to be effectively ignored in describing the

electron wavefunctions. This enormously reduces the size of the planewave basis set used to

describe a given system. The use of pseudopotentials also avoids an additional complexity, in

that the size of the basis can still be prohibitively large, in order that the oscillatory behaviour,

associated with the valence electron wavefunctions within the core region, is fully captured.

A widely used implementation of the pseudopotential approximation are norm-conserving

pseudopotentials [118], which are derived from first principles and have the following desir-

able properties:

1. For a given "reference" atomic configuration, calculated pseudo eigenvalues concur

with real eigenvalues i.e. those determined from an all-electron calculation;

2. After defining a "core radius" rc , below which the electron wavefunction shall be modi-

fied, beyond this radius the real (i.e. all-electron) and pseudo wavefunctions should be

equivalent

3. Within the core radius, i.e. from 0 to rc , the integral of both real and pseudo charge

densities should agree, this defines norm-conservation

4. The logarithmic derivatives of the real and pseudo wavefunctions, and their first energy

derivatives, agree for r > rc .

Property 4, implied by the norm-conservation condition i.e. property 3, means that the real

and pseudo wavefunctions have the same scattering phase shift around the reference energies,

which along with property 3 ensure that the pseudopotential for an atom is transferable across

different chemical environments.

A standard procedure for creating a pseudopotential is as follows; firstly, an all-electron

calculation is performed for a "reference" atomic configuration. Subsequently, the calculated

all-electron wavefunction is used to generate a pseudo wavefunction, according to the prop-

erties defined above, and ensuring that within the core region the pseudo wavefunction is

nodeless. Following which, inversion of the Schrödinger equation leads to screened pseu-

dopotentials for each angular momentum l , and unscreened potentials, via the subtraction

of the Hartree and exchange-correlation potentials. Thus, giving transferable bare or ionic

pseudopotentials to be used outside of their original reference atomic configurations.
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Normconserving pseudopotentials are a form of ionic pseudopotential, where each

angular momentum l is treated by a different potential. Therefore, they can be thought of

as semilocal, that is local in radial variables r , but non-local in angular variables θ and ψ.

Subsequently, the pseudopotential, written in operator form, can be expressed as

V̂ i on
ps =∑

l
|l〉V i on

l (r )〈l |, (2.23)

where |l〉 are the spherical harmonics, and V i on
l the pseudopotential for angular momentum

l , and |l〉〈l | an angular momentum projection operator. Based on this semilocal nature, the

total ionic pseudopotential can be further split into a long-ranged (l -independent), local part,

Vloc (r ), and a short-ranged (l-dependent), semilocal part, ΔVl (r ):

V̂ i on
ps =Vloc (r )+∑

l
|l〉ΔVl (r )〈l | (2.24)

where Vloc (r ) is chosen such ΔVl (r ) vanishes outside the core regions [117]. Having so defined

the total ionic pseudopotential, the external potential, Vext in Eqn.2.21, describing the electron-

ion interaction, can be expressed, for a single atom, in momentum space as:

V i on
ps (kkk +GGG ,kkk +GGG ′) = S(GGG −GGG ′)

[
Vloc (GGG −GGG ′)+∑

l
ΔVl (kkk +GGG ,kkk +GGG ′)

]
, (2.25)

where the first term corresponds to the structure factor, and the second term in brackets the

form factors. The structure factor is given by [119, 120]

S(GGG −GGG ′) = Ωat

Ωcel l

∑
j

e−i (GGG−GGG ′)·ttt j
(2.26)

with Ωcel l the unit-cell volume and Ωat the volume per atom, respectively, and ttt j a basis

vector. The form factor, i.e. the Fourier component, for the local pseudopotential [119, 120] is

Vl oc (GGG −GGG ′) = 1

Ωat

∫
al l space

e−i (GGG−GGG ′)·rrr Vl oc (r )d 3r (2.27)

and for the semilocal pseudpotential [119, 120],

ΔVl (kkk +GGG ,kkk +GGG ′) = 1

Ωat

∫
al l space

e−i (kkk+GGG)·rrrΔVl (r )|l〉〈l |ei (kkk+GGG ′)·rrr d 3r (2.28)

= 4π(2l +1)

Ωat
Pl (cosγ)×

∫∞

0
jl (|kkk +GGG|r ) jl (|kkk +GGG ′|r )ΔVl (r )r 2dr (2.29)

where Pl is a Legendre polynomial, jl a spherical Bessel function, and cosγ = (kkk +GGG) · (kkk +
GGG ′)/(|kkk +GGG||kkk +GGG ′|).

A widely implemented procedure of generating norm-conserving pseudopotentials,

that are particularly robust and have a high transferability, is that of Trouiller and Martins [121].

A drawback of norm-conserving pseudpotentials, particularly with respect to first-row and
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transition metal elements, is that they tend to require a small cutoff radius Rc , in order to

adequately describe the high-frequency components in the core region. For such cases the

pseudopotential is described as being hard. A method for reducing the consequent size of the

plane-wave basis, and associated computational expense, is to use a larger Rc , whilst retaining

transferability, to generate softer pseudopotentials, such as the ultrasoft pseudpotentials [122].

Spin Orbit Interaction

Given that several of the systems pertaining to this work contain heavy elements, it is of

interest to briefly discuss the inclusion of relativistic effects in DFT calculations. Of the two

relativistic effects, which include scalar-relativistic effects (SR) related to the mass-velocity and

Darwin terms, and the spin-obit interaction (SOI), the latter is of particular importance. This

is evinced by the fact that a fundamental factor in the formation of topologically insulating

phases in Z2 TIs is a result of band inversion, stemming from spin-orbit coupling. Since the

origins of relativistic effects are due to interactions occurring well within the core region of an

atom, close to the nucleus, the pseudopotential approximation can be naturally extended to

include them [123, 124].

One method of achieving this [123] is based on the assumption that as that outside of

the core region the major component of a valence electron wavefunction of a heavy atom,

described via the Dirac radial equations, is independent of that of the minor component, it can

be expressed via a non-relativistic Schrödinger equation. In doing so, the previously described

method of inverting the Schrödinger equation can be applied to the major component of an all-

electron Dirac wavefunction, to generate norm-conserving pseudopotentials which include

relativistic effects up to the order of α2, where α (≈ 1/137) is the fine-structure constant. This

methodology also ensures that effects associated with the orthogonality constraints of core

electrons, within the core region, are adequately described [124].

More specifically, the methodology involves, firstly, and similarly to non-relativistic

pseudopotentials, performing an ab initio DFT all-electron calculation for a reference atomic

configuration. However, one now solves the Dirac equations to generate two j -dependent

fully relativistic pseudopotentials for each l > 0, Vl+1/2 and Vl−1/2, and one for l = 0, Vl+1/2.

Subsequently, for each l , using a Schrödinger type equation, the pseudopotentials for Vj , with

j = l +1/2 or j = l −1/2, are recalculated, such that, up to the order of α2, the eigenfunctions

and eigenvalues match that of the original Dirac equation, beyond the chose cut-off radii

Rc [123].

In order to highlight the impact, particularly with respect to heavy atoms, of includ-

ing relativistic corrections in the pseudopotential approximation, Troullier-Martins norm-

conserving pseudopotentials [121] were generated for two representative, light and heavy,

elements. Thus, shown in Fig.2.1 are calculated atomic energy levels and pseudopotentials,

for carbon (C) and bismuth (Bi), respectively. Calculations were performed using the APE

code [125], with the GGA (PBE) functional [113] used to describe the exchange-correlation
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Figure 2.1 – Comparison of fully-relativistic pseudopotentials of carbon (C) and bismuth (Bi)atoms.
One-atom energy levels for valence p orbitals of aaa C and bbb Bi without (NR) and with relativistic (FR)
effects. Radial all-electron (AE) and pseudo (PS) wave functions for valence p orbitals of ccc C and ddd Bi.
Fully-relativistic j -dependent semilocal pseudopotentials for valence p orbitals of eee C and ddd Bi. Ionic
potentials are denoted with solid lines.

As Fig.2.1a shows, unsurprisingly, relativistic effects have a negligible effect on the

energy levels of the low atomic weight (z = 6) C atom, with a SOI splitting of 0.012 eV for the C

2p orbitals. Conversely, for the far heavier Bi atom (Z = 83), the splitting is substantially larger,

with a splitting of 1.9 eV between the j = 3/2 and j = 1/2 levels, as can be seen in Fig.2.1b. This

is further evidenced in a comparison of the radial all-electron and pseudo wavefunctions, and

also the fully-relativistic pseudopotentials, shown in Figs.2.1c,d and Figs.2.1e,f, respectively.
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From the fully-relativistic j -dependent semilocal pseudopotentials, described, one can

define j -averaged, l-dependent semilocal pseudopotentials

V SR
l = 1

2l +1

[
(l +1)Vl+1/2 + lVl−1/2

]
(2.30)

and

V SO
l = 2

2l +1

[
Vl+1/2 −Vl−1/2

]
, (2.31)

where V SR
l includes only scalar relativistic effects, whilst V SO

l contains information concerning

the SOI. Utilising solely the pseudopotential defined by Eqn.2.30 in Eqn.2.23, would allow ab

initio calculations with SR effects described. To also include the SOI, it is necessary for an

additional term to be added to the KS Hamiltonian

Ĥ SO =∑
l ,s

|l s〉V SO
l (r )LLL ·SSS〈l s| , (2.32)

where |l s〉〈l s| is the projector on the tensor product L ⊗ S of functions of a given angular

momentum times the spin space [126, 127], and LLL (SSS) is the orbital (spin) angular momentum

operator.

2.1.2 First Principles Calculations on Topological Insulator Materials

Z2 Topological Insulators: Bi2Se3 and Bi2Te3

A catalyst which sparked a great deal of interest in the field of topological insulators was the

discovery of binary bismtuh chalcogenides, Bi2Se3 and Bi2Te3, as Z2 topological insulators

[32, 33, 128, 129], with a topological phase belonging to the (1;000) class. This is due to the

fact that their topological properties were the first to be amenable to extensive experimental

investigation, and also have potential for device applications. This primarily stems from

three factors, the first being the relatively simple Dirac fermion surface state of both materials

defined by a single Dirac cone, and in particular in the case of Bi2Se3 having a near idealized

conical dispersion. Secondly, their stoichiometric nature implies that the materials can be

synthesized to a high-degree of purity. Finally, their relatively large bulk band gaps could

be important for potential device applications. As such, these factors served as an initial

inspiration in further investigating these materials.

As a primary starting point the bulk electronic structures of Bi2Se3 and Bi2Te3 were

investigated using first principles density functional theory calculations. With a particular

focus being to elucidate the effects of spin-orbit coupling (SOC) in giving rise to band inversion

and, consequently, a topologically nontrivial phase.

First principles calculations were performed within the DFT framework, employing the

generalized gradient approximation (GGA), specifically the PBE parametrisation [113], to the

38



2.1. Density Functional Theory

exchange-correlation functional. Spin-orbit effects were treated self-consistently using fully

relativistic norm-conserving pseudopotentials [118], within the two component wavefunction

formalism [130–132]. Plane-wave kinetic energy cutoffs were set at 50 and 70 Ry for Bi2Se3

and Bi2Te3, respectively. The Brillouin zone was sampled with a 8×8×8 Monkhorst-Pack grid

of kkk points [133]. Convergence of the total energy, with regard to wave function cutoffs and

the number of kkk points, was ensured. Calculations were performed through the PWSCF plane-

wave pseudopotential code of the Quantum-ESPRESSO distribution [134]. Experimental

crystal structures of bulk Bi2Se3 and Bi2Te3 were utilized [135].

Bi2Se3 and Bi2Te3 crystallize in the rhombohedral crystal structure with the space group

D5
3d (R3̄m), and are layered materials where each layer is a covalently bonded quintuple layer

(QL), as shown in Fig.2.2a. Each quintuple layer consists of two Bi atoms (Bi in Fig.2.2a), two

equivalent Se atoms (Se1 in Fig.2.2a) and a third Se atom (Se2 in Fig.2.2a) which functions as

the inversion centre. Each atomic plane also comprises a triangular lattice, with the trigonal

axis parallel to the z axis, meaning that stacking along that direction is -A-B-C-A-B-C- as

shown in Figs.2.2a,b. Interlayer bonding is due to van der Waals interactions, and is far weaker

than the covalent intralayer bonding, resulting in a natural cleavage plane between QLs.

In order to observe the effects of SOC on the topological properties of Bi2Se3 and Bi2Te3,

their band structures, computed with and without the inclusion of SOC, are shown in Fig.2.3a

and Fig.2.3b, respectively. The effects of SOC are most evident in the region close to the

Fermi level at the Γ point. As can be observed, the inclusion of SOC results in a significant

anti-crossing feature between the lowest unoccupied and highest occupied bands at the Γ

point, which is indicative of a band inversion. Moreover, as the valence and conduction bands

in question are of opposite parity, this confirms the formation of a topologically non-trivial

phase, which belongs to the (1;000) class. For Bi2Se3 the band gap is predicted to be around

0.3 eV, which concurs well with experimental values [33]. Conversely, for Bi2Te3 the band

gap calculated using DFT, via the LDA functional, is underestimated with a value of 0.09

eV [136]. However, the same work using GW calculations found a value close to that of 0.17 eV

determined experimentally [136].

A more physical intuition of the band inversion occurring at Γ can be gained by observ-

ing the evolution of the atomic orbitals under the effects of the relevant interactions, namely

chemical bonding, crystal-field splitting and SOC, into the valence and conduction bands.

Subsequently, focusing on Bi2Se3, the states of interest are those closest to the Fermi level,

which are derived from the valence orbitals. As Bi has a valence electron configuration of

6s26p3 and Se 4s24p4, these correspond to p orbitals. Looking at the schematic energy level

diagram in Fig.2.3c, in section I chemical bonding leads to hybridization of Bi and Se atomic

orbitals, with level repulsion pushing the hybridized Bi and Se states up and down, respectively.

As a result of inversion symmetry each state in Fig.2.3c is labelled with its respective + or −
parity. In section II the crystal field effect breaks the degeneracy of the p orbitals, splitting pz

from the degenerate px and py . Consequently, the conduction and valence band states closest

to the Fermi level are derived from pz orbitals of Bi and Se, respectively, and are of opposite

39



Chapter 2. Methodology

Figure 2.2 – aaa Bulk crystal structure of Bi2Se3 with Bi and Se atoms shown in dark and light, respectively.
A quintuple layer (QL) unit is indicated by the dot-dashed rectangle with constituent atoms labelled
according to the stacking sequence. Primitive lattice vectors ti (i=1,2,3) are indicated with arrows. bbb
Top view of the crystalline lattice along the (111) (trigonal) direction. ccc Brillouin zone (BZ) of bulk
Bi2Se3 and its projection onto the two-dimensional (2D) BZ of the (111) surface. Filled dots locate the
high-symmetry k points.

parity. Finally, as SOC couples spin and orbital angular momenta this leads to a further level

repulsion, pushing the Bi pz derived states, |p1+
z 〉, down and the Se pz derived, |p2−

z 〉, states

up. Given that the atomic SOC constant for Bi is large, where λSO = 1.25 eV [137], this is of a

sufficient magnitude to invert the Bi |p1+z 〉 states with respect to the Se |p2−z 〉 states, as shown

in section III. Moreover, as both states are of opposite parity this results in the formation of the

topologically insulating phase. Qualitatively the same analysis just described could be equally

applied to Bi2Te3, as is evident from the energy level diagram shown in Fig.2.3d.

Bulk electronic structure calculations, as detailed above, allow the confirmation of

Bi2Se3 and Bi2Te3 as Z2 TIs. Subsequently, one would like to determine the presence of

the topologically protected surface states. One method of investigating surfaces, using first

principles DFT calculations, is via the formation of slab models [138]. The basic premise of

such models being to create two-dimensional systems of small enough sizes to be treated

computationally, yet of large enough size that each surface is decoupled from the other by

a sufficient thickness of bulk material. With the objective to avoid, as far as possible, any

unwanted finite-size effects, specifically through the overlap of the respective surface state
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Figure 2.3 – Electronic band structures of aaa Bi2Se3 and bbb Bi2Te3 obtained using DFT calculations. Solid
and dashed lines correspond to the band structures calculated with and without SOI, respectively. The
zero of energy is set to the valence band top without the SOI. Schematic energy-level diagrams at the
Brillouin zone center (Γ) for ccc Bi2Se3 and ddd Bi2Te3. The effects of chemical bonding (I), the crystal-field
splitting (II) and the spin-orbit interaction (III) are distinguished. Except for (II) and (III) the level
positions are arbitrary.

wavefunctions. Previous works employing such models have shown that bismuth chalcogenide

slabs of a few QLs are of adequate thickness to properly describe the topological surface

states [139].

As mentioned above, the layered crystal structure of bismuth chalcogenide TIs leads

to a natural cleavage plane, due to the relatively weak van der Waals interactions between

QLs. Cleavage along this plane exposes the stoichiometric (111) orientated surface. Thus,

two-dimensional slab models, of defined QL thickness (where 1QL ≈ 1 nm thick), were con-

structed from complete QL units. Calculated band structures for 5 QL thick slab models are

shown in Figs.2.4a,b for Bi2Se3 and Bi2Te3, respectively. Each material’s slab band structure

is superimposed with its bulk band structure projected onto the surface Brillouin zone. The

relationship between the bulk and surface Brillouin zones are shown in Fig.2.2d. The presence

of the Dirac cone, within the semiconducting bulk band gap, is evident at the Γ point in both

band structures. The position of the Dirac cone within the bulk gap confirms that the compris-

ing bands are surface-localized states. Given the nature of the slab model construction and
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the presence of two surfaces each band is subsequently twofold degenerate. For both Bi2Se3

and Bi2Te3 the energy of the Dirac point lies below that of the bulk valence band maximum.

In both cases the dispersion of the Dirac is highly asymmetric, however the electron-hole

asymmetry is more pronounced with respect to Bi2Te3, which agrees qualitatively with exper-

imental observations [34, 128]. Both band structures also show that slabs of 5 QL are thick

enough to avoid any hybridization of topological states localized at opposite surfaces, as in

extremely thin slabs this can significantly modify the Dirac cone band dispersion and result in

a gap opening. Previous DFT calculations have shown that slab models should be of at least 3

QL and 4 QL thickness for Bi2Se3 and Bi2Te3, respectively, to ensure the convergence of the

surface-state band dispersion [139].
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Figure 2.4 – Band structures of the 5 QL slabs of aaa Bi2Se3 and bbb Bi2Te3 (lines) shown together with the
projected band structure of bulk materials (shaded areas). The emergence of Dirac fermion states
within the bulk band gap is clearly observed upon confinement. The energies are given with respect to
the Dirac point of the topologically protected surface states. Figure reproduced with permission from
Ref. [139], 2010 ©American Physical Society.

2.2 Tight-Binding Model

2.2.1 General Formalism

A disadvantage of using ab initio techniques, for example as in the formulation above described

with respect to DFT, is that the computational cost becomes prohibitively expensive as the size

of a system increases. Tight-binding, as a semi-empirical method, allows much larger systems

to be treated. Furthermore, as the quantum mechanical nature of bonding is preserved,

much of the interesting physics unique to topological insulators, particularly with respect

to the various focus points of this work, is retained. Subsequently, what follows is a general

description of the tight-binding method, followed by a comparison of reference calculations

between DFT and tight-binding, upon which confidence in its utility in describing certain

topological insulator systems was based.

The underlying principle of the tight-binding method, as formulated by Slater and

Koster [140], is to replace the exact many-body Hamiltonian operator, given in Eq.2.1 or in
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Bra-ket notation ĤΨ= E |Ψ〉, with a parametrized Hamiltonian matrix.

In doing so a primary starting point is the use of a localised basis in a single electron

picture. This stems from the assumption that as a crystal is made up of atoms, the effective

potential seen by an electron within the crystal can be approximated as the sum of isolated,

neutral atomic potentials. For a unit cell with lattice vectors RRR composed of Nat atoms i , at

atomic positions τi (i.e to describe unit cells of two or more atoms), this effective potential

can be written

V (rrr ) =
Nat∑
i=1

V at
i (rrr −RRR −τiτiτi ) =

Nat∑
i=1

V̂ at
i . (2.33)

Subsequently, the single electron Schrödinger equation is

(T̂ +V (rrr ))Ψ(rrr ) = EΨ(rrr ), (2.34)

where T̂ is the kinetic energy operator.

An underpinning factor in such a construction is that each atom is comprised of atomic

orbitals φiα which satisfy the single atom Schrödinger equation

(T̂ + V̂ at
i )φiα = εat

iαφiα, (2.35)

the index α denotes an atomic orbital, specifically the angular symmetry of the real orbitals,

which for systems of interest to this work are primarily s, px , py , pz,dx y ,dy z ,dxz ,dx2−y2 ,dz2 ,

and runs from α= 1, . . . , Nor b . For the descriptions below Roman characters (i , j , . . . ) refer to

atomic sites and Greek letters to atomic orbitals (α,β, . . . )

This to lead to a foundational premise of the tight-binding method, in that the wave-

functions |Ψ〉 corresponding to Eq.2.34 can be expanded as a linear combination of atomic

orbitals

Ψ(rrr ) =∑
iα

Ciαφiα(rrr ) (2.36)

which on introducing the Dirac notation φiα(rrr −RRR −τiτiτi ) = 〈rrr |iα〉, can be rewritten

|Ψ〉 =∑
iα

Ciα|iα〉 (2.37)

As the systems of interest to this work are each composed of atomic orbitals which construct

an orthogonal basis, the overlap of two orbitals on separate atomic sites as described by the

overlap matrix

Siα jβ = 〈iα|iβ〉 = δi jδαβ (2.38)

simply reduces to the identity matrix, and as such is omitted from further description below.
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Having defined a localised atomic basis, the matrix elements corresponding to the

crystal Hamiltonian in Eq.2.34 are given by

Hiα jβ = 〈iα|Ĥ | jβ〉 = 〈iα|T̂ +
Nat∑
i=1

V̂ at
i | jβ〉 (2.39)

This leads to two distinct sets of terms. The first being the intra-atomic terms, where i = j

Hiαiβ = 〈iα|T̂ + V̂i |iβ〉+〈iα|∑
j �=i

V̂ at
j |iβ〉 (2.40)

= εat
iαδαβ+〈iα|∑

j �=i
V̂ at

j |iβ〉. (2.41)

where the first term is simply the atomic orbital energy level and corresponds to the eigenvalue

of the atomic Hamiltonian defined in Eq.2.35. For an atom comprising s,p and d orbitals,

there would thus be three distinct levels εat
s , εat

p , εat
d for each type of orbital. The second term

relates to the crystal field, and is neglected. The intra-atomic terms compose the diagonal

elements of the Hamiltonian matrix.

The off-diagonal or inter-atomic terms, where i �= j are given by

Hiα jβ = 〈iα|∑
k

V̂ at
k | jβ〉 (2.42)

These terms can correspond to two-centre integrals, i.e. where i = k, or three-centre integrals,

i.e. where i �= j �= k. Given that the wavefunctions |iα〉, | jβ〉 and the potential Vk rapidly decay

as one moves away from the respective sites, and that parametrised matrix elements shall

be utilised, the contribution of the three-centre integrals are of a much smaller magnitude,

and are consequently neglected. This leaves the two-centre or commonly termed hopping

integrals

Hiα jβ = 〈iα|V̂ at
i | jβ〉 = tαβi j (2.43)

The hopping integrals tαβi j represent the interaction between orbitals on two atomic sites i

and j . The term hopping deriving from the fact that physically they can be thought of as the

ability of an electron to "hop" between neighbouring sites and decay rapidly with the distance

between two sites. They are a fundamental component of the Slater-Koster tight-binding

method, as in that approach the integrals are replaced with a series of parameters which

depend solely on the distance between the two atomic sites and the type, specifically the

symmetry, of the orbitals under consideration. The nature of this parametrisation shall be

described in further detail in the following section.

For a crystal lattice with periodically repeated unit with lattice vector RRR, containing

atoms i with orbitals α at sites τi , due to the translational invariance of the crystal the eigen-
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functions defined in Eq.2.37 can be written in the form of a Bloch sum

|Ψiα(kkk)〉 = 1�
N

∑
RRR

eikkk·(RRR+τi )|iα〉 (2.44)

where N is the number of primitive unit cells in the crystal and kkk is a reciprocal lattice

vector. Subsequently, eigenfunctions of the crystal Hamiltonian can be constructed as a linear

combination of the Bloch sums

|Ψ(n)(kkk)〉 =∑
iα

C n
iα(kkk)|Ψiα(kkk)〉, (2.45)

with the n dictating the band index, where n = 1, . . . , N at N or b . Thus, there exists a simple

relation between the expansion coefficients for |Ψ(n)(kkk)〉 and |Ψ(n)(rrr )〉

C n′
iα(rrr ) = 1�

N
eikkk·(RRR+τi )C n

iα(kkk) (2.46)

Finally, the Hamiltonian matrix is given by

Hiα jβ = 〈Ψiα(kkk)|H |Ψiα(kkk)〉 (2.47)

=∑
RRR

eikkk·(RRR+τ j−τi )〈0iα|H |RRR jβ〉 (2.48)

where the atomic site i has been located at the origin (i.e. rrr − (R +τiR +τiR +τi ) = 0).

Finally, defining the Schrödinger equation for a periodic crystal, in the tight-binding

basis, in terms of the wavefunctions given in Eq.2.45 results in the following matrix equation

HHH(kkk)Ψ(n)(kkk) = E (n)(kkk)Ψ(n)(kkk) (2.49)

where HHH(kkk) is the Hamiltonian matrix just described in Eq.2.48. Diagonalizing this matrix,

of size N at N or b ×N at N or b , allows Eq.2.49 to be solved for each kkk in the irreducible Brillouin

zone. Plotting the resulting eigenvalues E (n)(kkk) as a function of the crystal momentum kkk leads

to the band structure of the crystal.

2.2.2 Hopping Integral

As touched upon above, the overlap integrals, tαβi j , are solely dependent on the distance

between two atomic sites (i.e. the vector RRRi j ), and the symmetry of the orbitals under consid-

eration, therefore tαβi j = tαβ(RRRi j ).

There are two defining components of the overlap integrals, the first of these are termed

the Slater Koster parameters [140]. In deriving these parameters it is assumed that the vector

RRRi j connects the nucleus of the atom i , on which the orbital α resides, to that of atom j , on

which the orbital β resides. The orbitals α and β can be described in terms of radial functions
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multiplied by spherical harmonics, thus for α

φiα =φi (α=nlm)(rrr ) = Rnl (r )Y m
l (θ,ϕ), (2.50)

and β

φiβ =φi (β=nlm)(rrr ) = Rn′l ′(r )Y m′
l ′ (θ′,ϕ). (2.51)

Following this description of the atomic orbitals, a spherical coordinate system is constructed

whereby RRRi j is parallel to the z axis, with origins at each atom, and with the angular form of

α given by Y m
l (θ,ϕ) and β by Y m′

l ′ (θ′,ϕ). Subsequently, the only non-zero overlap integrals

are those for which m′ = m, for which the corresponding parameters are labelled Vll ′m . The

indices l and l ′ denote the s, p,d , . . . form of each atomic orbital for l = 0,1,2, respectively,

whilst m denotes the angular momentum of the orbitals about the overlap axis between

the two orbitals and is labelled σ, π, δ for m = 0,1,2, respectively.This leads to a set of ten

parameters, which can be grouped according to the symmetry dictated by m, that is in terms of

σ (Vssσ, Vspσ, Vsdσ, Vppσ, Vpdσ, Vddσ), π (Vppπ, Vpdπ, Vddπ) or δ (Vddδ). A linear combination

of the spherical harmonics of these parameters can be taken to generate real angular functions.

After deriving these symmetrically irreducible parameters the second component of

the overlap integral relates to their form when the geometry of a system is arbitrarily defined.

Specifically, if the vector RRRi j now lies in a Cartesian x, y , z coordinate system, and is simply the

displacement vector between the two orbital sites, the overlap integral tαβi j must be expressed

as a linear combination of the irreducible parameters, orientated along the rotated axes,

described above. This is accomplished using the direction cosines of the vector RRRi j , i.e.

Ri jRi jRi j

|Ri jRi jRi j |
= (l ,m,n). (2.52)

Thus, for example for overlapping s and px orbitals, the s orbital is invariant, whilst the px

orbital is transformed to a linear combination of the σ orbital given by parameter Vspσ, and a

π orbital. However, there exists no spπ contribution to the overlap integral as the m values

are not equivalent for the s and px orbitals, as described above. Consequently, the overall

overlap integral for t s,px

i j is lVspσ. In the case of the overlap of two p orbitals, for example px

and pz , the overlap integral t px ,pz

i j is expressed in terms of Vppσ and Vppπ and the relevant

direction cosines. The corresponding expression for t px ,pz

i j overlap integrals, and those for the

remaining combinations of s and p orbitals, are given in Table.2.1.

A complete table describing not only combinations of s and p but also those of d orbitals

can be found in the original paper of Slater and Koster [140]. In the practical application of the

Slater Koster tight-binding method when defining overlap integrals for pairs of neighbouring

sites it is useful to introduce a cutoff radius Rc , for an interatomic distance above which

the overlap integral is set to zero. This is a reasonable approximation, since as the distance

between two atomic sites increases, their interaction, defined by the hopping integral, rapidly
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diminishes, and in general one can assume an exponential dependence.

Table 2.1 – Slater and Koster interatomic matrix elements describing overlap integral between orbitals
α and β on two atomic sites i and j , expressed as functions of the direction cosines l , m, n of the vector
RRRi j between them.

Matrix Element Expression

t s,s
i j Vssσ

t s,px

i j lVspσ

t px ,px

i j l 2Vppσ+ (1− l 2)Vppπ

t
px ,py

i j lmVppσ− lmVppπ

t px ,pz

i j lnVppσ− l nVppπ

2.2.3 Spin-Orbit Interaction

Spin-orbit coupling is the interaction between the spin of a particle and its orbital angular mo-

mentum. It is a relativistic effect which can be derived from the Dirac equation. With respect

to electrons, its effects, which become increasingly prominent as the velocity of an electron

approaches the speed of light, are more pronounced for core electrons and also for valence

electrons of heavy elements. Given that bismuth is a heavy element, SOC plays a significant

role in the formation of a topologically insulating phase in the bismuth chalcogenides as it is

the underlying cause of the band inversion at Γ, as touched upon above.

The spin-orbit interaction of an isolated atom, where the potential is approximated by a

spherical potential, is given by:

ĤSO = ξ(rrr )LLL ·SSS (2.53)

where

ξ(rrr ) = 1

2m2c2r

1

r

dV

dr
(2.54)

and LLL = rrr ∧ppp and SSS = ħ
2σσσ are the orbital and spin momentum operators, respectively. The

matrix elements of ĤSO , for a periodic crystal system modelled as a sum of atomic-like po-

tentials, as detailed in the tight-binding formalism above, with a basis of atomic spin orbitals

|ασ〉 (where σ denotes the spin), are:

Ĥ SO
iασ jβσ′ = 〈iασ|ĤSO | jβσ′〉 (2.55)

This expression can be further simplified by partitioning the orbitals into their radial and

angular components, as in Eqs.2.50,2.51, thus giving:

Ĥ SO
iασ jβσ′ = ξiαβ〈α̂σ|LLL ·SSS|β̂σ′〉δi j (2.56)
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where

ξiα =
∫∞

0
R2

iα(r )ξ(r )r 2dr, (α= p or d) (2.57)

and

〈α̂σ|LLL ·SSS|β̂σ′〉 =
∫2π

0

∫π

0
Yα(θ,ϕ)LLL ·SSSYβ(θ,ϕ)si n(θ)dθdϕ. (2.58)

As ξ(r ) is localised near r = 0, only onsite, diagonal elements of Ĥ SO are retained. Furthermore,

as the orbital angular momentum operator LLL only couples orbitals with same l value (i.e. s,

p, d), and given that the SOC contribution for s orbitals is zero as l = 0, only two spin-orbit

coupling coefficients are required, in a spd basis, to describe spin orbit effects in the tight-

binding method. Specifically, these are ξp or ξd , for p and d orbitals, respectively.

Consequently, the effects of spin-orbit coupling can be included in the tight-binding

model described earlier by adding the matrix H SO (Eq.2.56) to the on site intra-atomic part of

the crystal Hamiltonian, given in Eq.2.41, which results in:

Hiασ, jβσ′ = H 0
iασ, jβσ′ +ξiαβ〈α̂σ|LLL ·SSS|β̂σ′〉 (2.59)

2.2.4 Tight-Binding Parameters

The Hamiltonian of a system in the tight-binding basis is completely determined by onsite

energies εat
α and the hopping integrals tαβi j = tαβ(RRRi j ). One method of practically determin-

ing these parameters is to fit them to ab initio calculations. For example, for a given crystal

structure with a defined lattice constant, one can fit the parameters such that select eigen-

values from the bands computed from ab initio calculations match those determined via the

parametrised tight-binding method. This is precisely how the parameters utilised in tight-

binding calculations performed in this work were determined. Below follows a description of

the parametrisation scheme used in the case of the two system classes for which tight-binding

calculations were performed. The first is that of the bismuth chalcogenides, with a particular

focus on Bi2Se3 as a representative system, the second being tin telluride.

As the valence electrons for both bismuth (6s ,6px,y,z ) and selenium (4s ,4px,y,z ) belong to

s and p orbitals, a sp basis was utilised for the tight-binding method, with four orbitals in the

basis s, px , py , pz for each spin orientation.

A cutoff radius Rc was set such that tight-binding parameters between atom pairs can

be categorized into three sets. The first set accounts for interactions between atomic pairs

in neighbouring atomic layers. Within this set, parameters were defined for Bi-Se(1) atoms

within the same quintuple layer, Bi-Se(2) atoms within the same quintuple layer and for
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Se(1)-Se(1) atoms in neighbouring quintuple layers. The second set accounts for interactions

between atomic pairs within the same atomic layers. Thus, parameters were defined for

Bi-Bi, Se(1)-Se(1) and Se(2)-Se(2) atomic pairs. Finally, the last set accounts for interactions

between atomic pairs which were in next-nearest atomic layers, which have been termed

second-neighbour layers. Parameters in this set were defined for Se(1)-Se(2), Bi-Bi and Bi-Se(1)

atomic pairs.

The Bi2Se3 tight-binding parameters utilised in this study were taken from a work by

Kobayashi [141]. The parameters were determined by fitting bulk band structures to density

functional theory calculations, details of which are included in Ref. [141]. The parameters

were fitted such that the dispersion of the highest valence and lowest conduction bands on the

Γ-Z and half of the Z-F line (i.e the half closest to the Z TRIM point), within the bulk Brillouin

zone, reproduced that of the DFT calculation. The respective high symmetry points can be

seen in the Brillouin zone shown in Fig.2.2, and the relevant Bi2Se3 bulk band dispersions just

described in the band structure shown in Fig.2.3. With the primary reasoning being that the

valence band maximum and the conduction band minimum are found close to these lines.

Numerical values for the tight-binding parameters are given in Table.2.2.

Figure 2.5 – Bulk band structure of Bi2Se3. Solid and dotted lines represent results from tight-binding
and DFT methods, respectively.

A comparison of the bulk Bi2Se3 band structure, computed using DFT according to

the method described in Section.2.1.2 and shown in Fig.2.3, and that computed using the

tight-binding method, with the parameters given in Table.2.2, is shown in Fig.2.5. It should be

noted that in both band structures the effects of SOC have been accounted for.

As Fig.2.5 shows, the correspondence between the two band structures is good. This

holds especially true for the bands closest to the Fermi energy, and at the Γ point, which

from the perspective of investigating topological properties of surface states is of particular
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importance.

In contrast to the bismuth chalcogenides a spd basis was used to describe SnTe, with

nine orbitals in the basis s, px , py , pz , dxz , dy z , dzx , dx2−y2 , dz2 for each spin orientation. Due

to its simple rocksalt crystal structure, a single set of tight-binding parameters are defined for

nearest neighbour Sn and Te atoms. The parameters were taken from a work by Lent et al [142].

The parameters were obtained by fitting the eigenvalues of the bands at the high symmetry

Γ, X and L points in the Brillouin zone (Fig.1.7b) to ab initio calculations. Further details

of the fitting procedure can be found in Ref [142]. Numerical values for the tight-binding

parameters are given in Table.2.4. A comparison of the bulk SnTe band structure, computed

using DFT according to the method described in Section.2.1.2, and that computed using the

tight-binding method, with the parameters given in Table.2.3, is shown in Fig.2.6.

Looking at Fig.2.6 the agreement between the two band structures, particularly for the

bands closest to the Fermi energy, is generally quite good. Importantly, the fit is best at the

fitted high symmetry points, and, as shall be described later, the parameters reproduce the

crucial band inversion at the L point, which signifies the topologically non trivial properties of

the material.

Figure 2.6 – Bulk band structure of SnTe. Solid and dotted lines represent results from tight-binding
and DFT methods, respectively.
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Table 2.2 – Tight-binding parameters for Bi2Se3 Energies are given in eV.

Onsite Bi Se(1) Se(2)
εs -10.7629 -10.9210 -13.1410
εp 0.2607 -1.5097 -1.1893
ξp 1.3777 0.2131 0.2421

Nearest-Neighbour Layer Bi-Se(1) Bi-Se(2) Se(1)-Se(1)
ssσ -0.6770 -0.2410 -0.3326
spσ 2.0774 -0.2012 -0.0150
psσ -0.4792 -0.0193 0.0150
ppσ 2.0595 2.0325 0.9449
ppπ -0.4432 -0.5320 -0.1050

Intralayer Bi-Bi Se(1)-Se(1) Se(2)-Se(2)
ssσ 0.2212 -0.0640 -0.0878
spσ -0.3067 0.2833 -0.2660
ppσ 0.3203 0.3047 -0.1486
ppπ -0.0510 -0.0035 -0.0590

Second-Neighbour Layer Bi-Bi Bi-Se(1) Se(1)-Se(2)
ssσ -0.0567 0.0333 0.0229
spσ -0.2147 -0.0047 -0.0318
psσ 0.2147 0.2503 -0.0778
ppσ 0.1227 -0.1101 -0.0852
ppπ -0.0108 0.1015 0.0120
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Table 2.3 – Tight-binding parameters for Bi2Te3. Energies are given in eV.

Onsite Bi Te(1) Te(2)
εs -9.9967 -10.4977 -10.8744
εp -0.3774 -1.5684 -1.0189
ξp 1.284 0.4861 0.5213

Nearest-Neighbour Layer Bi-Te(1) Bi-Te(2) Te(1)-Te(1)
ssσ -0.5815 -0.3734 -0.2926
spσ 1.9027 -0.5901 -0.1142
psσ -0.6636 -0.6020 0.1142
ppσ 1.9956 1.9354 1.1364
ppπ -0.4868 -0.5084 -0.1792

Intralayer Bi-Bi Te(1)-Te(1) Te(2)-Te(2)
ssσ -0.0132 0.0484 0.0771
spσ -0.3312 0.0961 -0.0256
ppσ 0.1986 0.3243 0.0286
ppπ -0.0299 0.0399 -0.0927

Second-Neighbour Layer Bi-Bi Bi-Te(1) Te(1)-Te(2)
ssσ -0.0912 0.0496 0.0807
spσ -0.0592 -0.0369 -0.0659
psσ 0.0592 -0.0184 -0.0572
ppσ -0.0614 -0.1993 -0.0390
ppπ 0.0584 0.0828 0.0571
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Table 2.4 – Tight-binding parameters for SnTe. Energies are given in eV.

Onsite Sn Te
εs -6.578 -12.067
εp 1.659 -0.267
εd 8.38 7.73
ξp 0.592 0.564

Nearest-Neighbour Sn-Te
ssσ -0.510
spσ 0.949
psσ -0.198
ppσ 2.218
ppπ -0.446
pdσ -1.11
d pσ 0.624
pdπ -1.67
d pπ 0.766
ddσ -1.72
ddπ 0.618
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3 High-Index Surfaces of Bismuth
Chalcogenide Nanostructures

As has been discussed above, bismuth chalcogenide nanostructures are an attractive platform

from which to investigate topological properties of Z2 TIs. Their high surface-to-volume

ratio enhances surface contributions, compensating for the overriding contribution from

the bulk, due to doping effects, and thereby providing access to transport measurements of

topologically protected surface states. The distinct morphologies of nanostructures, combined

with the confinement of topological charge carriers to reduced dimensions, also offers new

perspectives on interesting phenomena such as the Aharonov-Bohm effect, and, moreover, is

expected to give rise to novel physics.

Bismuth chalcogenides are layered van der Waals (vdW) materials, composed of cova-

lently bonded quintuple layers (QL) held together by weak vdW interactions (Fig.3.1). Thus,

there exists a natural cleavage plane, along which lies two equivalent orientations of low energy

surfaces, (0001) and (0001̄). Thus far, the vast majority of investigations of the surface states

of bismuth chalcogenide TIs have focused on the low-energy (0001) surfaces. However, it

should be appreciated that any bismuth chalcogenide nanostructure of dimensionality lower

than two has to exhibit surfaces with orientations other than the two aforementioned. The

properties of topologically protected charge carriers at any such surface are dependent on

its crystallographic orientation, atomic structure and chemical composition. Furthermore,

the overall properties of a TI nanostructure are defined by the relative presence of different

facets on the nanostructure’s surface, which is in turn determined by their respective surface

energies (i.e. of a given facet).

Fully realizing the potential of bismuth chalcogenide nanostructures for exploring

the fundamental physics of TIs, and for their use in any device applications, necessitates a

clear understanding of how structure and morphology impact upon electronic properties.

Consequently, this chapter details a systematic first-principles investigation of high-index

surfaces of Bi2Se3 and Bi2Te3. The first part involves looking at the energetics of such surfaces,

from which the structure and chemical composition of stable surfaces are determined. Finally,

based on these results, the electronic properties of corresponding topological surface-state

charge carriers, and their dependence on surface orientation and local chemical composition,
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are explored.

Figure 3.1 – Atomic structure of bulk bismuth chalcogenides and their high-index surfaces. aaa, bbb Crystal
structure of bulk Bi2Se3 and Bi2Te3 viewed along the a and c axes, respectively. The hexagonal unit cell
is shown using red lines. High-symmetry crystallographic directions [21̄1̄0] and [11̄00] are indicated in
panel bbb. ccc Two-dimensional slab model illustrating the structure of an exemplar high-index surface
(left facet). The structures of high-index surfaces of layered bismuth chalcogenides are defined by a
stacking angle θ and by the QL termination. The example shown corresponds to θ = 57.7° and the
stoichiometric QL termination (configuration I).

3.1 Energetics

The electronic structure of a material’s surface is dictated by the atomic structure of stable

configurations of that surface. For layered materials, such as Bi2Se3 and Bi2Te3, the surface

structure is defined by, firstly, how individual QLs terminate, and, secondly, by their orientation

with respect to the surface plane, which can be described in terms of the angle θ, as shown in

Fig.3.1c. In this definition, θ = 0° corresponds to the degenerate case of the low-energy (0001)

surface, for which no QL termination takes place.

As such, the surface energy E (expressed in eV/Å2) can, to a relatively high degree of

accuracy, be related to the termination energy of individual quintuple layers ε (expressed in

eV/Å) via:

E � 3

c sinθ
ε, (3.1)

where c is a lattice constant of the hexagonal unit cell of the bismuth chalcogenides, whose

values are listed in Table.3.1. Thus, c/3 is the QL thickness, with a value of 9.546 Å for Bi2Se3,
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and 10.162 Å for Bi2Te3. As this chapter will involve reference to the hexagonal unit cell

of bismuth chalcogenides, correspondingly, crystallographic planes and lattice directions

will be given in the four-index Miller-Bravais notation below. It should be noted that the

approximation in Eqn.3.1 stems from describing the formation energy of a 2D surface in terms

of the termination energy of a single 1D QL. In doing so, therefore, a term related to the loss

of van der Waal’s energy on stacking QLs to form the 2D surface is omitted. Nonetheless,

given that the relative magnitude of vdW interactions is small, and that the leading term to the

overall surface energy is the QL termination energy, this is considered to be an appropriate

approximation.

Another important consideration is that QL terminations can have different local stoi-

chiometries, either Bi-rich or Se(Te)-rich, and as such their relative stabilities are dependent

upon the chemical potential of one of the constituent elements, μBi or equivalently μSe (μTe ).

The chemical potential reflects experimental conditions under which the nanostructure is

grown, and, importantly, as it varies this may result in the formation of a variety of stable

surface structures. For example, the facets of differing stoichiometry belonging to different bis-

muth chalcogenide nanostructures, whose controlled growth is offered by various techniques,

such as CVD based methods that were discussed in the Introduction. Hence, given that it

should be possible to tailor the structure of high-index surfaces by changing the experimental

conditions, this effectively translates into control over the electronic properties of topologically

protected states hosted by these surfaces.

3.1.1 Methodology

The energies of QL terminations were systematically investigated by means of DFT calculations,

carried out on a large number of single QL models in a nanoribbon configuration.

First principles calculations were performed within the DFT framework, employing

the generalized gradient approximation (GGA) to the exchange-correlation functional [113].

Spin-orbit effects were treated self-consistently using fully relativistic norm-conserving pseu-

dopotentials [127] within the two-component wavefunction formalism. A plane-wave kinetic

energy cutoff of 35 Ry has been employed for the wave functions. All single QL nanoribbon

models used to determine the QL termination energy were relaxed until the maximum force

on a given atom was less than 0.025 eV/Å. A Monkhorst-Pack k-point mesh of 4×2×1 was

utilised for Brillouin zone integration [133]. Calculations were implemented through the

PWSCF plane-wave pseudopotential code of the Quantum-ESPRESSO distribution [134].

Quintuple layer termination energies were calculated using single QL nanoribbon

models of 5.4 nm and 5.7 nm width for Bi2Se3 and Bi2Te3, respectively. In total, over 60

different termination structures were considered, as is evident from the grey lines in Figs.3.2a,b.

Two distinct orientations of QL edge terminations were investigated, the first having the

QL edge orientated along the [21̄1̄0] crystallographic direction, whereas the other having

the QL edge orientated along the [11̄00] direction. The relationship between each high-
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symmetry crystallographic direction is shown schematically in Fig.3.1b, with an example of a

QL termination edge orientated along the [21̄1̄0] direction corresponding to one of the QLs in

Fig.3.1c. As the structure of the nanoribbon configurations were derived from the hexagonal

unit cell of the bismuth chalcogenides, the corresponding lattice constants are shown in

Table.3.1. The lattice constant c of the hexagonal unit cell is taken from experimental data [143].

The lattice constant a of the hexagonal unit cell is an optimised value, determined by manually

altering the value of a in the bulk hexagonal unit cell, whilst fixing c to experiment [143], until

a minimum in total energy was reached.

Table 3.1 – Lattice parameters of the hexagonal unit cell of Bi2Se3 and Bi2Te3.

System a (Å) c (Å)

Bi2Se3 4.178 28.638
Bi2Te3 4.403 30.486

Finally, the overall energy G(μBi ) of a QL termination, calculated as a function of the

chemical potential of Bi, μBi , per unit length of the edge termination, is given by

G(μBi ) = εBi2 X3 −
NBi

2L
μBi , (3.2)

with the QL termination energy, εBi2 X3 , defined as

εBi2 X3 =
1

2L
(Emodel −NBi2 X3 EBi2 X3 −NBi EBi ), (3.3)

and where X corresponds to Se (Te). Emodel , EBi2 X3 and EBi are the computed DFT total

energies of the nanoribbon model, an isolated two-dimensional QL per Bi2Se3 (Bi2Te3) unit,

and a Bi atom in its bulk elemental crystal (i.e. the reference chemical potential μBi = 0 eV

corresponds to bulk elemental bismuth), respectively. NBi refers to the number of excess Bi

atoms in the model relative to a stoichiometric system (i.e. with Bi:X = 2:3), whilst NBi2 X3 is

the number of stoichiometric Bi2X3 units. L is the periodicity of the nanoribbon model, equal

to the lattice constant a of hexagonal unit cell, given in Table.3.1, in the case of the QL edge

orientated along the [21̄1̄0] direction, and to L =�
3a in the case of the QL edge orientated

along the [11̄00] direction. The [21̄1̄0] and [11̄00] lattice directions are labelled in reference to

the hexagonal unit cell in Fig.3.1b

3.1.2 Results

The calculated overall energies of QL terminations, G(μBi ), for Bi2Se3 and Bi2Te3 are plotted

in Fig.3.2a and Fig.3.2b, respectively. Given that μBi = 0 eV corresponds to bulk elemental

bismuth, the range of μBi values, for which G(μBi ) is plotted, is somewhat arbitrarily chosen

in reference to this. As can be inferred from Eq.3.2, the dependence of G(μBi ) is linear, with
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Figure 3.2 – Structure and energetics of QL terminations. aaa, bbb Overall termination energies, G(μBi ), of
Bi2Se3 and Bi2Te3 QLs, respectively, calculated for a large number of structural models. Coloured lines
indicate termination structures showing regions of stability in certain ranges of chemical potential
μBi . ccc Atomic structures of stable QL terminations. Unrelaxed structures are shown for clarity. For
non-stoichiometric terminations, the deviations from the nominal ratio Bi:X=2:3 (in Bi atoms per lattice
constant a) are given in parentheses. ddd Schematic illustration showing that at moderate values of μBi

calculations predict the formation of nanoplates, whilst at extreme positive and negative values of μBi

the formation of nanowires is predicted, where the dominating surfaces are either Bi or Se(Te)-rich,
respectively.

the gradient indicating the local deviation from the stoichiometric ratio Bi:X=2:3, at a given

QL edge. QL terminations that were computed to show regions of stability, that is having

the lowest value of G(μBi ) within a certain range of μBi , are indicated by thicker, coloured

lines. In the case of Bi2Se3, seven such configurations were found, one of which was stoichio-

metric (labelled I in Fig.3.2a), three of which have an increased number of Se atoms (IISe ,

IIISe and IVSe in Fig.3.2a, and three an increased number of Bi atoms (IIBi , IIIBi and IVBi
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in Fig.3.2a), relative to the nominal stoichiometric ratio. Atomic structures for each stable

configuration are schematically shown in Fig.3.2c. The sole stoichiometric termination, I, has

a zero gradient, as expected from Eq.3.2, and is characterized by G = 0.169 eV/ Å. Moreover, it

shows a particularly broad region of stability, within a range of moderate chemical potential

values. As a consequence of their varying deviations from ideal stoichiometry, as indicated in

Fig.3.2c, several distinct non-stoichiometric terminations also become energetically stable.

The majority of the stable non-stoichiometric terminations are orientated along the [21̄1̄0]

direction, with just the IISe configuration orientated along the [11̄00] direction. This implies

that high-index surfaces formed by the [21̄1̄0] QL terminations are preferred from a thermody-

namic perspective. However, an observation of a surface formed by the [11̄00] QL termination,

unambiguously points to the structure and stoichiometry of the IISe configuration.

All the stable configurations of Bi2Se3 and Bi2Te3 QL terminations were structurally

relaxed, and these are schematically shown in Fig.3.3. Evident is that, firstly, the stoichiometric

termination I shows hardly any structural relaxation. Secondly, that the non-stoichiometric

configurations with the largest deviations from the stoichiometric ratio, IVBi and IVSe(Te), can

be interpreted as the stoichiometric edge configuration I capped by elemental Bi and Se(Te),

respectively. Particularly in the case of Bi2Se3, this reflects the expected tendency towards the

onset of phase segregation into Bi2Se3 and elemental Bi and Se, respectively, at extreme values

of chemical potential μBi . In the case of Bi2Te3, the trends discussed above are more or less

the same, with very similar structures of stable configurations and their associated energies

(Fig.3.2b). One pertinent example being, that the stoichiometric configuration I, defined by

G = 0.161 eV/ Å, is also predicted to be stable across a broad range of μBi values. However, one

primary difference is that no QL termination analogous to that of IIISe (Fig.3.2c) is predicted

to be stable, and is subsequently not present on the Bi2Te3 phase diagram (Fig.3.2b).

Knowledge of surface energies E (Eq.3.1) for different crystallographic orientations of

the surface allows one to deduce the equilibrium crystal shape, i.e. the shape that minimizes

the interfacial free energy, by means of the Wulff construction [144]. Specifically, it defines

the magnitude of a unit vector n̂nn normal to a given crystal facet i , and connecting that facet

to a common origin, as equivalent to the surface free energy of that facet Ei (n̂nn). This can be

described by the relationship

hi =λEi (3.4)

where hi is the perpendicular distance from the origin to a crystal facet i , defined by its

crystallographic orientation
{
hkl

}
, Ei is the orientation dependent surface free energy, and λ

is a constant that accounts for volume [145, 146]. This can be translated into a geometrical

construction, whereby crystal facets are represented by planes drawn perpendicular to each

unit vector n̂nn. Subsequently, the equilbrium crystal shape is that delineated by the inner

envelope of relevant planes. Thus, the Wulff construction enables the contributions of different

facets to the overall surface of a nanostructure to be determined.

60



3.1. Energetics

Figure 3.3 – Atomic structures of QL terminations of bismuth chalcogenide topological insulators.
Relaxed atomic structures of Bi2Se3 (left) and Bi2Te3 (right) stoichiometric and non-stoichiometric QL
terminations showing regions of stability (see Fig.3.2).

The surface energies of high-index facets can be deduced from the QL termination

energies, as discussed above, however, this is not the case for the (0001) orientation, as it

is of vdW origin. Nonetheless, the (0001) surface energy can be derived from two recent

investigations [147, 148]. For example, in Ref. [147] calculations on a large number of layered

systems lead to the derivation of a universal interlayer binding energy of EBi nd = 0.02 eV/Å2.

Given that the binding energy can be thought of as equivalent to the cleavage energy, and as

cleaving a material leads to the formation of two surfaces, subsequently, the surface energy in

this case is simply half the cleavage energy, and the (0001) surface energy can be estimated

as EvdW = 0.01 eV/Å2. This value can be compared with the energies of high-index surfaces

(Figs.3.2a,b) for θ = 90° (Eqn.3.1) by plotting εequi v = EvdW c/3, which is shown by the dashed
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lines in Figs.3.2a,b. Evident is that in the range of chemical potentials where the most stable

QL termination is the stoichiometric configuration I, the low-energy (0001) surface is more

thermodynamically favourable, and will be dominant. Consequently, if thermodynamic

equilibrium conditions of nanoparticle growth are assumed, within this range of chemical

potential values the Wulff construction implies the formation of nanoplatelet or nanoribbon

morphology, with top and bottom facets being the (0001) and (0001̄) low energy surfaces,

whilst pertaining side surfaces would have a stoichiometric composition with QL terminations

corresponding to configuration I. This is shown schematically in the middle of the cartoon in

Fig.3.2d, with such morphologies having also been widely observed in experimental works [65,

68, 70, 149], as was discussed in the Introduction. For chemical potential values corresponding

to Bi-rich or Se(Te)-rich conditions, i.e. at larger positive or negative values of chemical

potential, respectively, the energies of stable non-stoichiometric surfaces are calculated to be

lower than those of the stoichiometric (0001) and configuration I surfaces. This, conversely,

implies the nanowire morphology [65, 87] for nanostructures grown under such conditions,

with the surface dominated by the non-stoichiometric configurations and orientated along

the (0001) direction. Such hexagonal cross-section nanowires are schematically displayed on

the right and left hand side of Fig.3.2d, and have been directly observed experimentally [150],

with non-hexagonal wires of similar configurations also having been widely synthesized [65],

as an example shows in Fig.1.9 of the Introduction.

3.2 Electronic Structure

From a general perspective, our above results pertaining to the energetics of high-index sur-

faces point to the possibility of tailoring the morphology, composition and properties of

bismuth chalcogenide nanostructures by controlling growth conditions. As detailed in the

Introduction, a primary interest in investigating topological insulator nanostructures, is to

study the effects of dimensionality reduction and confinement on the topologically protected

properties of surface states (SS). In the specific case of bismuth chalcogenides, a distinct conse-

quence of the Z2 protected topology for strong TIs, which are defined by the invariants (1;000),

is the presence of a single Dirac point on any given crystalline facet [15]. This stems from the

fact that the ν0 = 1 invariant, which is the differentiator of a strong TI, is independent of the

choice of reciprocal lattice vectors, as can be gleaned from the description of said invariant in

the Introduction. In light of this, after determining the energetics of high-index surfaces, the

electronic structure and associated properties related to the topological protection of states at

these surfaces, particularly with respect to the stoichiometric configurations, were explored.

As has been discussed, the atomic-scale structure of high-index surfaces is determined

by the crystallographic orientation of the surface and the termination of individual QLs. Sub-

sequently, an initial focus was on the first degree of freedom, i.e. investigating the effects of

varying the surface orientation, with respect to the stoichiometric termination I (Fig.3.2c),

given its stability in a wide range of moderate values of chemical potential, for both Bi2Se3 and

Bi2Te3 (Figs.3.2a,b). Calculations on the electronic structure of high-index surfaces were per-
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Figure 3.4 – Band structures of stoichiometric high-index slab models of Bi2Se3 and Bi2Te3. First-
principles band structures of slab models of stoichiometric (configuration I) high-index surfaces of
aaa Bi2Se3 and bbb Bi2Te3. The atomic structure of the surfaces is shown in Fig.3.1ccc and corresponds to
θ = 57° and θ = 58° for Bi2Se3 and Bi2Te3, respectively. Points A and Y correspond to the Brillouin zone
boundaries along directions defined by reciprocal lattice vectors associated with the real-space unit
vectors of the surface. The size of red symbols reflects the magnitude of the inverse participation ratio
(IPR). Schematic drawings of the constant energy contours depicting the helicity of electron charge
carriers are shown in the insets.

formed using two-dimensional slab models of the same thickness as the width of nanoribbon

models, as described in the Methodology part of the Energetics section above. The methodol-

ogy pertaining to the computational details of the first principles calculations was also the

same as was described earlier. Lattice constants of slab configurations were calculated assum-

ing bulk lattice constants as well as the stacking order of bulk crystals, as described in relation

to Table.3.1 in the Methodology of the Energetics section. Correspondingly, calculations on

two-dimensional slab models were perfomed such that the interior part reproduces the bulk

crystal structure. An example of one such slab model, of 3 QL thickness, is shown in Fig.3.1c,

and corresponds to θ = 57° and θ = 58° for Bi2Se3 and Bi2Te3, respectively. In this particular

surface configuration, atomic planes along which the QLs are terminated almost coincide

with the surface place. Figs.3.4a,b show the electronic band structures of Bi2Se3 and Bi2Te3

slabs with such surface terminations, respectively.
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For the the k-point path along which the band structures in Fig.3.4 are plotted, Γ-A and

Γ-Y are orientated along the reciprocal lattice vectors associated with the real-space lattice

vectors of the surface. Specifically, Γ-A is a momentum direction in the 2D Brillouin zone

which runs parallel to the periodicity of the surface, i.e. along the QL planes, which can be

labelled x’, and as can be seen in Fig.3.1c, whilst the Γ-Y momentum direction, which can be

labelled y’, runs orthogonal to that direction within the surface plane. Looking at the actual

band structures, as Fig.3.4 shows, both plots display a single Dirac cone centred around the

Γ point, characteristic of the topologically protected surface states in strong TIs such as the

bismuth chalcogenides, as described above.

A further quantitative confirmation of the surface localised origin of the Dirac cone

states can be gained through calculation of the inverse participation ratio (IPR). For a given

eigenstate i at crystal momentum kkk, with wavefunction ψikkk , if the probability of finding a

particle at position rrr is given by |ψikkk (rrr )|2, the IPR is

IPRi ,k =
∫
|ψikkk (rrr )|4drrr . (3.5)

The IPR represents the relative localisation of a given eigenstate, the larger its magnitude

the more localised an eigenstate. Subsequently, as both band structures in Fig.3.4 show, the

localised character of surface states is confirmed, as one would expect from their topological

properties. It may be not strictly evident from Fig.3.4, but each band structure also shows

the presence of a gap opening at the Dirac point, with a magnitude of 3 meV and 4 meV for

the Bi2Se3 and Bi2Te3 slab models, respectively. This gap is a result of hybridization between

surface states localised at opposite surfaces of the slab, stemming from the finite thickness of

the slab models utilised. As the decay length of the surface states into the bulk is on the same

order of magnitude as the slab thickness, this leads to spatial overlap of the wavefunctions of

each respective slab surface, and consequently a gap opening [139, 151–154].

Perhaps the most interesting observation from the computed band structures in Fig.3.4

is the significant anisotropy, i.e. an orientation-dependent band dispersion of surface-localized

Dirac fermion states. As can be seen in Fig.3.4, the dispersion of the SS bands along the Γ-A

is steeper than that along Γ-Y, for both Bi2Se3 and Bi2Te3. This observation agrees well with

previous calculations performed on this surface [155] for Bi2Se3, and is further confirmed by

the experimental observation of an elliptical Fermi surface from ARPES measurements [156]

on the same material. Incidentally, this is the only high-index surface of Bi2Se3 addressed the-

oretically, thus far, and, moreover, is the only case of a high-index surface that was investigated

experimentally, using samples of Bi2Se3 epitaxially grown on an InP(001) substrate [156, 157].

The degree of Dirac fermion anisotropy can be quantified by calculating the Fermi velocities

νF , along each respective momenta direction. Fermi velocities were calculated as the gradient

of the linear band dispersion around the Dirac point using

νF = ∇E

∇kkkħ
, (3.6)
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where ∇kkk is the difference in momenta between two k points, in units of m−1, ∇E is the

corresponding energy difference in eV, and ħ is the reduced Planck constant. Consequently,

the degree of anisotropy, quantified as the ratio of Fermi velocities for the momenta along

x’ direction (i.e. along the QL planes, see Fig.3.1c) and along y’ direction (perpendicular to

x’), νx ′
F /νy ′

F = 2.07, in the case of Bi2Se3, agrees well with νx ′
F /νy ′

F ∼ 2, observed in the ARPES

measurements of Ref. [156]. Intriguingly, the same surface configuration of Bi2Te3 shows an

even more pronounced anisotropy of the Dirac fermion surface states, with a practically flat

band dispersion for the momenta along y’ direction (Fig.3.1c).

Following the investigation of the above surface configuration, θ was subsequently

varied within the range 25° < θ < 155°, to generate a series of alternative surface configurations,

whose electronic structures were investigated. The atomic structure of three representative

surface configurations are shown in Fig.3.5a. For all studied surface orientations the band

structures feature an anisotropic Dirac cone at the Γ point, but the degree of anisotropy

varies across the investigated range of θ. In order to quantify and compare the degree of

this anisotropy, between different surface configurations, as before, Fermi velocities were

computed above the Dirac point energy and for momenta along x’ and y’ as a function of

surface orientation θ, as shown in Fig.3.5b for both Bi2Se3 and Bi2Te3. The dashed horizontal

lines in Fig.3.5b also display calculated Fermi velocities for the (0001) surface for Bi2Se3 (νF ∼
4.8×105m/s) and Bi2Te3 (νF ∼ 4.6×105m/s). Subsequently, based on the above discussion and

on closer inspection of Fig.3.5b, one can notice the following systematic trends. Firstly, in the

plotted range of surface orientations (i.e. 25° < θ < 155°), Fermi velocities of the topological

surface state bands of high-index surfaces are generally lower than that for the (0001) surface

for both bismuth chalcogenides. Secondly, the largest anisotropies are achieved around θ = π
2 ,

which corresponds to QL planes orientated perpendicular to the surface, as is somewhat

evident from the atomic structure shown in the middle of Fig.3.5a. Thirdly, with respect to

Bi2Se3, the value of νx ′
F /νy ′

F does not exceed 2.5, however in the case of Bi2Te3, the surface state

band is practically dispersionless along y’, in a broad range of θ values, and as such results

in much larger anisotropies. Another point of interest worth mentioning is that the limits of

θ = 0° and θ = 180° should correspond to the (0001) surface, and as such as θ approaches one

of these limits one would expect νx ′
F to approach that of the (0001) surface. Looking at Fig.3.5b,

this seems to be happening for Bi2Se3 as θ approaches 0°. However, as θ approaches 180° for

Bi2Se3, and for Bi2Te3 generally, this is not the case. One conjecture for this behaviour not

being manifested is based on the finite thickness of slab models utilised in the calculations.

Specifically, as θ approaches these limits the congruent stacking of one QL over another is

disrupted.

As was described in the Introduction, characteristic features of topological surface states

are their spin properties, with a hallmark feature of the bismuth chalcogenide (0001) surfaces

being their helical spin-textures (e.g. Fig.1.6). In light of this, we investigated spin textures of

the high-index surfaces discussed in the preceding paragraph by analysing the momentum
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Figure 3.5 – Dependence of the band dispersion of topologically protected states on the surface
orientation. aaa Atomic structures of three high-index stoichiometric surfaces of bismuth chalcogenides
corresponding to θ = 29.5°, θ = 97.2° and θ = 153.7° bbb Fermi velocities νF and ccc absolute values of spin
polarization PPP of electron surface-state charge carriers with momenta along x’ and y’ directions as a
function of surface orientation θ. Values of the Fermi velocity νF for the (0001) surfaces of Bi2Se3 and
Bi2Te3 are indicated by dashed lines in panel bbb.

dependence of the expectation value of spin operators

〈
Sα(kkk)

〉= ħ
2

〈
ψ(kkk)|σα|ψ(kkk)

〉
(α= x, y, z) (3.7)

where ψ(kkk) are the two-component spinor wavefunctions, and σα the Pauli matrices. For all in-
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vestigated models of high-index stoichiometric surfaces calculations confirm spin-momentum

locking of the Dirac fermion surfaces states, with a clockwise direction of rotation of the elec-

tron spin above the Dirac point observed. For example, schematic diagrams in the insets

of Figs.3.4a,b display the constant energy contours for both bismuth chalcogenides, for the

surface pertaining to θ = 57°, depicting the spin-momentum locking of charge carriers. This

picture is consistent with the spin texture of topolgical surface states at the (0001) surface [139],

as can be seen, in the case of Bi2Se3, by comparing the inset of Fig.3.4a with that of the ex-

perimental data shown in Fig.1.6. It is of interest that model theory results of Refs. [158–160]

predict the breaking of spin-momentum locking and the absence of helical SS on surfaces

other than the (0001) and (0001̄), i.e. for θ �= 0,π, which they base on symmetry arguments

concerning the bulk Hamiltonian in their models.

The momenta-dependent anisotropy of SS charge carriers, that was evident through

calculation of the Fermi velocities, also manifests itself in the spin properties of the bismuth

chalcogenides, specifically in the magnitude of the spin-polarization vector, given by

PPP (kkk) = 2

ħSSS(kkk). (3.8)

It should be noted that regardless of the surface under consideration, this value is always

reduced with respect to the nominal value of 1, due to the strong spin-orbit entanglement

in bismuth chalcogenide TIs [139]. Furthermore, its value for both Bi2Se3 and Bi2Te3 (0001)

surfaces is ∼ 0.6 [139]. The magnitude of the spin-polarization vector PPP, for surface state

charge carriers above the Dirac point, is plotted as a function of the surface orientation

angle θ, for Bi2Se3 and Bi2Te3, in Fig.3.5c. As the figure shows, the magnitude of the spin-

polarization vector PPP is always lower along the x’ direction, whilst along the y’ direction, |PPP|
is lower for Bi2Te3 in comparison to Bi2Se3. Consistent with the result for Fermi velocities, is

that the largest degree of anisotropy occurs around θ = π
2 . This is of paritcular interest, as the

model theory investigations described earlier [158–160] predict that at θ = π
2 the spin texture

collapses to a single dimension along the x’ direction, leading to a complete suppression of

spin polarization for momenta oriented along this direction. This is also indicative of the

breaking of spin-momentum locking at θ �= 0,π that these works predict. In the first-principles

calculations described here, however, such a vanishing spin polarization is not observed,

nonetheless, its magnitude for momenta along the x’ direction reaches its minimum down to

0.4 for both chalcogenide materials, at this θ value.

The final part of this chapter focuses on a discussion of the electronic structure of high-

index surfaces defined by non-stoichiometric termination of QLs. These surfaces are derived

from the non-stochiometric QL edge terminations which show regions of stability in Fig.3.1a,

and whose relaxed atomic configurations are shown in Fig.3.3, as discussed earlier. Slab

models for the non-stoichiometric surfaces were constructed as those for the stoichiometric

surfaces described above, whereby the atomic configuration of a given QL termination in the

slab corresponds to the relaxed configurations shown in Fig.3.3c, and where the interior part

reproduces the bulk crystal structure. The θ value for the slab models was θ = 57°, such that
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atomic planes coincide with the surface plane, as was the case for the initial part of the above

discussion in relation to the stoichiometric high-index surface with θ = 57°, and as Fig.3.1c

highlighted.

The models of non-stoichiometric surfaces are found to reveal generally more complex

band structures. The computed band structures of the non-stoichiometric surface models are

shown in Fig.3.6 and Fig.3.7, for Se(Te)-rich and Bi-rich surfaces, respectively. In particular, in

addition to the topologically protected crossing within the band gap, we observe the presence

of topologically trivial mid-gap states and self-doping, i.e. charge transfer between the surface

and bulk-like states that leads to the shift of the Fermi level into the valence and conduction

bands. Both effects can be considered as detrimental to the observation of topological surfaces

states in TI nanostructures. This can be illustrated by looking at representative examples of

a Se-rich and Bi-rich surface. Firstly, looking at the band structure of a Se-rich surface, for

example that corresponding to the IIISe QL termination of Bi2Se3 in Fig.3.6, topologically

trivial states with a high band dispersion are observed crossing the band gap and strongly

hybridizing with the topologically protected states. Secondly, looking at the band structure of a

Bi-rich surface, for example that corresponding to the IIIBi QL termination of Bi2Se3 in Fig.3.7,

it is evident that the Fermi level appears shifted into the conduction band, i.e. n-type doping of

the bulk-like states is observed. Concurrently, the Dirac point of the topological surface-state

band at the Γ point appears to be immersed in the valence band. Furthermore, the change

in the position of the Dirac point at Γ pulls another topologically protected crossing at the

time-reversal invariant momentum point Y into the bulk band gap. A similar reorganization of

the band dispersion of the topological surface states, upon changing the surface structure, has

been predicted for a model bulk topological insulator [161].

With respect to the remaining non-stoichiometric high-index surfaces, general trends

are that, firstly, all Bi-rich surfaces, i.e. for both Bi2Se3 and Bi2Te3, tend to be n-type doped, as

is evident from Fig.3.7. Secondly, the presence of trivial mid-gap states is observed for both

chalcogen and Bi-rich surfaces in the extreme limits of chemical potential G(μBi ). Specifically,

this refers to the Se(Te) rich surfaces IVSe(Te) and IIISe(Te), and the Bi-rich surfaces IVBi , for

both Bi2Se3 and Bi2Te3.

3.3 Conclusions

In summary, in this chapter an investigation, based on first-principles calculations, into the

atomic structure and electronic properties of high-index surfaces in nanostructures of bismuth

chalcogenide topological insulators, Bi2Se3 and Bi2Te3, was described. Our results predict that

several possible quintuple layer terminations of different stoichiometric compositions can be

realized, depending on experimental conditions. Both the stoichiometry of the surface and

its crystallographic orientation significantly affect the electronic properties of topologically

protected surface states, particularly the anisotropy of their Dirac fermion band dispersion

and the degree of spin polarization. Moreover, these properties are shown to display clear
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dependence on the surface configuration. Through this understanding, one can gain a greater

degree of control over the properties of nanostructures of topological insulators, aiming at

prospective technological applications of these novel materials.
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Figure 3.6 – Band structures of Se and Te-rich high-index slab models. First-principles band structures
of slab models of Se-rich (left) and Te-rich (right) high-index surfaces of Bi2Se3 and Bi2Te3, respectively,
at θ = 57.7°. Points A and Y correspond to the Brillouin zone boundaries along directions defined
by reciprocal lattice vectors associated with the real-space unit vectors of the surface. The size of red
symbols reflects the magnitude of the inverse participation ratio (IPR).
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Figure 3.7 – Band structures of Bi-rich high-index slab models. First-principles band structures of slab
models of Bi-rich high-index surfaces of Bi2Se3 and Bi2Te3 at θ = 57.7°. Points A and Y correspond to
the Brillouin zone boundaries along directions defined by reciprocal lattice vectors associated with the
real-space unit vectors of the surface. The size of red symbols reflects the magnitude of the inverse
participation ratio (IPR).
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4 One-Dimensional Nanostructures of
Bi2Se3 Topological Insulators

A single Dirac-cone characterizes the surface states (SS) of three-dimensional (3D) Z2 topo-

logical insulators (TI), such as Bi2Se3 and related materials [32–34, 128]. A hallmark feature

which results from the Z2 topology is the helical spin polarization, whereby SS are spin non-

degenerate and the electron spin is locked perpendicular to momentum [8, 66, 162], as was

explained in the Introduction. Low-dimensional Bi2Se3 nanostructures [65, 67, 68, 72, 150, 163]

enable the measurement and manipulation of the TI SS spin helicity, as exemplified by the

recent observation of the Aharonov-Bohm (AB) effect [87, 92]. Consequently, Bi2Se3 nanos-

tructures show promise in harnessing the helical properties of TI SS for applications in future

electronic technologies such as spintronics [164–166] and topological quantum comput-

ing [167].

However, a detailed understanding of nanostructure morphology and finite-size effects

on the electronic structure and topological properties of SS is still required. The morphology

and dimensionality of nanostructures entail that surfaces other than the widely investigated

(0001) are exposed. Hence, as a primary step it is necessary to have a detailed understanding of

these high-index surfaces. This was the purpose of the previous chapter, where we determined

the structure and chemical composition of stable surfaces, and found the SS band dispersion

and spin texture to depend on surface orientation and local chemical composition. Those

results guide the work described in this chapter, where we theoretically investigate models of

1D Bi2Se3 nanostructures, via a tight-binding model.

Commonly observed morphologies of Bi2Se3 nanostructures [65, 67, 68, 72, 150, 163],

including nanowires, nanoribbons and nanoplates, were discussed in the Introduction. In this

chapter we focus on, and construct, two distinct morphologies: a hexagonal nanowire (NW)

and a nanoribbon (NR). The construction is guided by the finding from the previous chapter

that the stoichiometric edge termination I is the most stable for the widest range of chemical

potential values (Fig.3.2), and is in accordance with experiments [68, 150]. This is described in

further detail below. The use of the term nanostructure in this chapter will collectively refer

to both of these morphologies. Tight-binding calculations are used to investigate how finite-

size effects and dimensionality reduction affect the electronic structure and SS topological
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properties, such as the spin helicity. The dependence of the surface state gap on nanostructure

size is determined from band structure calculations. The effects of dimensionality reduction

on the spin helicity are explored as a result of transitioning from a Dirac cone associated with

a 2D surface, to quantized 1D sub-bands associated with a nanostructure.

4.1 Methodology

Tight-binding (TB) calculations were performed on two distinct Bi2Se3 morphologies: a hexag-

onal nanowire and a nanoribbon (Fig.4.1). The specific formalism of the tight-binding approx-

imation utilised was described in the Methodology chapter, where Table.2.2 lists the Bi2Se3

TB parameters. Below, as we will be referring to the hexagonal unit cell of Bi2Se3 (Fig.3.1a),

correspondingly, crystallographic orientations will be given in the four-index notation. The

choice of the TB method was imposed by size of the NW and NR systems under investigation,

where the largest NW and NR supercells contain ∼ 7005 and ∼ 2160 atoms, respectively. The

use of alternative, first principles methods such as DFT would be prohibitively expensive or

simply not possible. One potential issue with the TB model utilised is that surface and edge

potential effects are not accounted for. However, all the NR systems being investigated have

surfaces which either correspond to the (0001) surface, or are defined by a stoichiometric

edge termination, where previous work using first principles calculations has shown that little

to no edge reconstruction takes place, as discussed in the preceding chapter. Consequently,

we believe that the exclusion of these effects in the TB model does not impact upon any

conclusions that can be drawn from our results.

For hexagonal nanowires (Fig.4.1a,b), the axial direction of the NW is the [0001] direction

i.e. c in Fig.4.1a. This is parallel to the direction along which QLs stack (Fig.4.1b), and is also

the experimental growth direction of synthesized Bi2Se3 NWs [65, 150]. Each QL in the NW is

defined by six hexagonal edges (Fig.4.1a). Our work on Bi2Se3 high-index surfaces elucidated

that the most stable QL edge termination at a wide range of realistic chemical potential

values was the QL edge termination I (see previous chapter and Fig.3.2). Consequently, the

hexagonal NWs were constructed such that the edge termination at each QL hexagonal edge

was termination I. A perspective view of two hexagonal NW edge surfaces is shown in Fig.4.1b.

Band structure calculations were performed on NW supercells derived from the bulk hexagonal

unit cell, with the nature of QL stacking ensuring that bulk crystal structure is preserved. In

total six different NW models were considered, where the perimeter of the NW, PNW , varied

between 8.2 nm ≤ PNW ≤ 30.4 nm. The perimeter is the length enclosing the hexagonal cross-

sectional area of the NW, which is shown in Fig.4.1a. The direction of periodicity for all NWs

is parallel to the c direction of the Bi2Se3 bulk hexagonal unit cell (z in Fig.3.1a). Hence, the

periodicity of all NW models corresponds to the c lattice parameter of the hexagonal unit cell

and ∼ 28.65 Å, the value is equivalent to that in Ref. [141], i.e. from where the TB parameters

were taken.

For nanoribbons (Fig.4.1c,d), the axial direction of the NR is the [112̄0] direction, which
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Figure 4.1 – Atomistic models of a Bi2Se3 hexagonal nanowire (perimeter ∼ 30 nm) and nanoribbon
(perimeter ∼ 19 nm). aaa Profile showing cross-sectional area of the NW, ab plane corresponds to the
(0001) facet. bbb Perspective showing QL stacking along the NW axis, i.e. along c. ccc Profile showing
cross-sectional area of the NR, cb plane corresponds to the (21̄1̄0) facet, and NR axis is parallel to the a
direction. ddd Perspective showing axial direction of NR axis along a. In all plots blue spheres correspond
to Bi atoms, whilst green spheres to Se.

corresponds to a in Fig.4.1c. This is orthogonal to the c direction along which QLs stack along,

and is also the commonly observed experimental growth direction of Bi2Se3 NRs [65, 150].

The constructed NR models have two distinct structural degrees of freedom. The first being

the thickness, which is dictated by the number of QLs stacked parallel to c (Fig.4.1c), and

thus defines the vertical dimension of the NR. The second being the width, which defines the

dimension orthogonal to the thickness, and is dictated by the width of a given QL parallel

to b (Fig.4.1c). An example of a 3QL thick and ∼ 6 nm wide NR is shown in Fig.4.1c,d. For a

given QL in a NR, the two equivalent edges run parallel to a, where the QL edge termination

is again I (Fig.3.2), for the same reasons as outlined above for NWs. Subsequently, the NR

models exhibit two different sets of facets. One being the equivalent top and bottom (0001)

facets, aligned parallel to a (Fig.4.1c). In the 2D limit this facet corresponds to the extensively

studied (0001) surface, which was described in the Introductory chapter (Fig.1.6). The other

set being the equivalent side facets, aligned in the orthogonal direction, parallel to the (101̄0)

surface. NR models are constructed such that atomic planes along which QLs terminate

practically coincide with the side facet plane. This is evident from the perspective picture in

Fig.4.1d. In the 2D limit this facet is analogous to that of the Bi2Se3 high-index surface with the

QL edge termination I and a side surface angle of θ ∼ 57°, described in the previous chapter

(Fig.3.1c). Importantly, this is the only high-index surface that, to our knowledge, has been

investigated theoretically, by work we have done (see Fig.3.1c and Fig.3.4a) that was discussed

in the previous chapter, and in Ref. [155], and also then experimentally realized [156]. The

width of NRs varied between ∼6 nm–19 nm. For each width, band structure calculations were
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performed on NR supercells where the thickness was also varied between 5QL–9QL (∼5 nm–9

nm). In summary, twenty five different NR models were considered, where the range of NR

perimeters, PN R , was 23.8 nm ≤ PN R ≤ 59.2 nm. The perimeter for NRs is the length enclosing

the NR cross-sectional area, which is shown in Fig.4.1c. The direction of periodicity for NRs

is parallel to the a direction of the Bi2Se3 bulk hexagonal unit cell (x in Fig.3.1a) Thus, the

periodicity of all NR models is equivalent to the a lattice parameter of the hexagonal unit cell

and ∼ 4.11 Å, and again this value is equivalent to that in Ref. [141], as this is where the TB

parameters were derived from.

4.2 Results

4.2.1 General Model of 1D Nanostructures

We begin with a general discussion of how dimensionality reduction and finite-size impact

upon the electronic structure of a 1D Bi2Se3 nanostructure, with a particular focus on how

the spin helicity of the 2D Dirac cone is manifested in the quantized 1D sub-bands of a

nanostructure.

A two-dimensional Bi2Se3 surface can be described by orthogonal momenta directions

k∥ and k⊥. The Z2 topology entails that the electronic spectrum of such a surface is charac-

terised by a conical band dispersion (Fig.1.6). Subsequently, the question arises as to how

this spectrum is altered on forming a 1D nanostructure. Given the 1D periodicity, k∥ can be

thought of as the momentum parallel to the axial direction of the nanostructure. This is paral-

lel to the c and a directions for NWs (Fig.4.1a) and NRs (Fig.4.1c), respectively, as described

above. Since k⊥ is the momentum in the direction normal to k∥, on transitioning to 1D this

consequently becomes the circumferential momentum around the nanostructure perimeter.

The dimensions of the nanostructures under investigation are such that the magnitude of

the perimeter is markedly smaller than that of the electron mean free path [42, 168]. Thus,

surface electrons are subjected to quantum confined circular boundary conditions around

the perimeter and k⊥ is quantized.

Alongside the quantization of k⊥, spin-momentum locking of the surface Dirac cone

has a major influence over the dispersion of the electronic spectrum of a 1D nanostructure.

The spin helicity results in an an electron picking up a π Berry phase due to the 2π rotation of

the electron spin around the perimeter. If an applied magnetic flux Φ is threaded through the

nanostructure core, an electron acquires an additional phase of 2πΦ/Φ0, where Φ0 = h/e is

the magnetic flux quantum, as was touched upon in the Introduction.

Taking these factors into consideration, the dispersion of the 1D sub-bands can be

described by the following expression

E(k∥) =±ħνF

√
k2
∥ +k2

⊥, (4.1)
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where ħ is the reduced Planck’s constant and νF the Fermi velocity. The quantized values of

k⊥ are given by

k⊥ = 2π(l + 1
2 −Φ/Φ0)

P
, (4.2)

Thus

E(l ,k∥,Φ) =±ħνF

√
k2
∥ +

[2π(l + 1
2 −Φ/Φ0)]2

P 2 . (4.3)

where l = (0,±1,±2, . . .) is the angular momentum quantum number, the half integer term ( 1
2 )

stems from the π Berry phase, and P is the nanostructure perimeter. Subsequently, we can

also define a half integer angular momentum

n = (l + 1

2
) = (±1

2
,±3

2
,±5

2
, . . .) (4.4)

The quantized values of k⊥ (Eqn.4.2) can be seen as distinct cuts across the 2D surface

Dirac cone (Fig.4.2a). In the absence of an applied magnetic flux, i.e. for Φ= 0, the electronic

spectrum of a 1D nanostructure (Fig.4.2b) remains gapped, due to the half integer shift from

the π Berry phase in Eqn.4.3. Consequently, the electronic spectrum is characterised by a

series of doubly degenerate discrete 1D sub-bands, which can be labelled by the half integer

angular momentum n = (±1
2 ,±3

2 , . . .) (Eqn.4.4), and have a dispersion described by Eqn.4.3.

An example of such a band structure is drawn in Fig.4.2b. The band gap can be derived from

Eqn.4.3 at k∥ = 0, and is given by the energy difference between the lowest and highest energy

conducting and valence sub-bands, respectively, for n =±1/2

Eg =ħνF
π

P
. (4.5)

Spin-momentum locking of the 2D surface Dirac cone is demonstrated by the helicity

of the spin-polarization vector, PPP (kkk), along the constant energy contours encircling the Dirac

point, with

PPP
(
kkk
)= (

2

ħ
)
×

[〈
Sx

(
kkk
)
,Sy

(
kkk
)
,Sz

(
kkk
)〉]

, (4.6)

and the expectation value of the spin operators given by

〈
Sα

(
kkk
)〉=

(ħ
2

)〈
ψ

(
kkk
)|σα|ψ

(
kkk
)〉 (

α= x, y, z
)
, (4.7)

where ψ
(
kkk
)

are the two-component spinor wave functions, and σα the corresponding Pauli

matrices. For a 2D surface, defined by momenta k∥ and k⊥, spin-momentum locking is evinced

by the spin-polarization vector pointing along the orthogonal
(
kkk×zzz

)
direction [34,139,169,170].
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Figure 4.2 – Correspondence between the spin helicity of the Bi2Se3 2D surface Dirac cone and the
quantized 1D sub-bands of a 1D nanostructure. aaa Schematic of the 2D surface Dirac cone showing
quantized 1D sub-bands as distinct cuts through the conical dispersion. Red and blue arrows around
the conduction and valence band constant energy contours show a left and right handed helicity,
respectively. bbb Schematic band structure of a 1D nanostructure, where the dispersion is described
by Eqn.4.3. The horizontal k∥ axis is the momentum along the nanostructure axis. Each sub-band in
the spectrum is doubly degenerate and is labelled by its respective half integer angular momentum n
(Eqn.4.4). k∥1 and k∥2 denote momenta for pairs of degenerate n =± 1

2 states close to Γ and the Brillouin
zone boundary, respectively. ccc Schematic of spin textures in 1D nanostructures for n =± 1

2 states at k∥1

and k∥2. For n =± 1
2 degenerate states only the Sn

∥ component switches direction. Close to the origin
at k∥1, the Sn

∥ component is significant and the Sn
⊥ component negligible, therefore the spin texture

aligns along the NW axis. Close to the Brillouin zone boundary at k∥2, the Sn
⊥ component is significant

and the Sn
∥ component negligible, therefore the spin texture is aligned in the tangent plane to axis and

follows the perimeter. The handedness of the spin texture is equivalent for both n =± 1
2 states.

This gives rise to a helicity that is left handed for the conduction band, and right handed for the

valence band, represented by the red and blue arrows encircling the constant energy contours

in Fig.4.2a, respectively. A point that was touched upon in the previous chapter and that is

important to reiterate, is that it is possible for the magnitude of PPP
(
kkk
)

to be reduced from a

maximum value of 1 (i.e. 100% spin polarization) due to the strong spin-orbit interactions

present in Bi2Se3 [139]. This is indeed the case for the Bi2Se3 (0001) surface, where the
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magnitude of spin polarization is determined to be ∼ 0.5−0.6 [139]. Moreover, a reduced

value was also found from our work on different surface orientations of a high-index surface

characterized by the stoichiometric QL edge termination I, as was discussed in reference to

Fig.3.5 in the previous chapter. Given that each hexagonal edge of a NW QL (Fig.4.1a,b) is

characterized by the same stoichiometric edge termination I, the latter point is of particular

relevance to this chapter.

The manifestation of spin-momentum locking in 1D nanostructures can be analysed

through the real-space local spin density SSSi , which is computed from the expectation value of

the spin operators projected onto atomic sites rrr i . At a particular k∥ and energy E, a state can

be labelled by the half integer angular momentum n of the respective sub-band, subsequently

the momentum-resolved local spin density for a given state is

SSSn
i

(
k∥,rrr i

)= (ħ
2

)〈
ψ

(
k∥

)|σα⊗Pi |ψ
(
k∥

)〉 (
α= x, y, z

)
, (4.8)

where Pi is a projector onto atom i , and is defined Pi = ∑
λσ|iλσ〉〈iλσ|, with λ the orbital

index and σ the spin.

Given the electronic spectrum of a 1D nanostructure (Fig.4.2b), for the degenerate

pair of lowest energy sub-bands we can define a pair of degenerate states, labelled by their

respective n =±1
2 values, at two different momenta k∥1 and k∥2. The n =±1

2 states at k∥1 are

positioned close to k∥ = 0, whilst the n =±1
2 states at k∥2 are positioned close to k∥ = π

2 , i.e. the

Brillouin zone boundary.

Subsequently, the states at k∥1 are situated towards the centre of the n =±1
2 cuts across

the 2D surface Dirac cone (Fig.4.2a), close to the Dirac point. Given their relatively low energy

(i.e. close to E = 0), the spin-polarization vector PPP (Eqn.4.6) along the associated constant

energy contour is therefore aligned almost completely parallel to −k∥ for the n =+1
2 state, and

+k∥ for the n =−1
2 state, with a negligible component aligned along k⊥. The reversal of the

alignment of PPP along k∥ is a direct result of spin-momentum locking, since the n =±1
2 states

have opposing ±k⊥ values, thus PPP undergoes a π rotation around the constant energy contour.

This is reflected in the momentum-resolved local spin density SSSn
i

(
k∥,rrr i

)
(Eqn.4.8) of a given

atom i in a 1D nanostructure. Specifically, SSSn
i

(
k∥,rrr i

)
has a large component aligned parallel to

k∥, which can be labelled Sn
∥
(
k∥,rrr i

)
, and a negligible component parallel to k⊥, which can be

labelled Sn
⊥
(
k∥,rrr i

)
. For the degenerate states n =±1

2 at k∥1, this is manifested in the S
+ 1

2

∥ and

S
− 1

2

∥ components, and hence SSS
+ 1

2
i and SSS

− 1
2

i , aligned almost parallel to the nanostructure axis,

but in opposing directions. Collectively, considering all atoms together, this gives rise to spin

textures at k∥1 that are oriented along opposing directions of the nanostructure axis for each

n =+1
2 and n =−1

2 degenerate state, as shown schematically in Fig.4.2c.

The states at k∥2 are positioned along the same n = ±1
2 cuts across the 2D surface

Dirac cone (Fig.4.2a), however, they are markedly higher in energy. Consequently, due to

spin-momentum locking, PPP has now undergone an almost π
2 rotation around the associated
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constant energy contour. An important consequence is that PPP is now aligned almost parallel

to −k⊥ for both n = +1
2 and n = −1

2 degenerate states. Moreover, PPP has a negligible com-

ponent aligned parallel to −k∥ and +k∥ for the n = +1
2 and n = −1

2 state, respectively. This

is the component that relates to n = ±1
2 having opposing ±k⊥ values, and the consequent

switch in alignment because of spin-momentum locking. For 1D nanostructures this is again

reflected in the local spin density, with a negligible Sn
∥ component parallel to k∥, and a large

Sn
⊥ component parallel to k⊥. For degenerate states n =±1

2 at k∥2, only the negligible S
+ 1

2

∥ and

S
− 1

2

∥ components have opposing spin orientations, respectively. However, the significant S
+ 1

2
⊥

and S
− 1

2
⊥ components are both oriented in the same direction. Thus, the overall local spin

density of an atom SSSn
i , should tend to orientate in the tangent plane to the nanostructure

axis, following the perimeter. The direction of this orientation should be the same for both

n =±1
2 degenerate states, as only the negligible S

+ 1
2

∥ and S
− 1

2

∥ components switch directions.

Considering all the atoms together, this should result in a spin texture with a 2π rotation of

the local spin density around the nanostructure perimeter. Furthermore, the chirality of this

rotation for both n = ±1
2 degenerate states should be the same, as shown schematically in

Fig.4.2c.

We now focus on the specific cases of the 1D Bi2Se3 NWs and NRs introduced above

(Fig.4.1). For each case, we discuss how the dispersion of electronic spectrum is dictated by

the respective morphologies, which is reflected in the differing behaviour of the perimeter

dependence of the surface state gap. There will also be a detailed discussion of spin properties

in reference to the model described above, with phenomena specific to each nanostructure

again arising from their respective morphologies.

4.2.2 Nanowires

Band structures for the investigated range of NW models (8.2 nm ≤ PNW ≤ 30.4 nm) were

computed using a realistic tight-binding model, as described in the Methodology above.

The representative band structure computed for the largest NW model (PNW ∼ 30.4 nm) is

displayed in Fig.4.4. The band structure is characterized by the presence of discrete 1D sub-

bands with a hyperbolic dispersion, as expected from the quantization along k⊥ (Eqn.4.2) and

Eqn.4.3, respectively. We find that a finite surface state gap (ENW ) and doubly degenerate

bands characterize the electronic spectrum of all NWs. For wider NWs, with a large perimeter,

the origin of the energy gap stems from the π Berry phase and the resulting half integer

shift, which was described above. For smaller NWs, the hybridization between surface states

localized at opposite surfaces of the NW may also contribute. In the absence of an applied

magnetic flux, as ENW approaches 0, this represents the perimeter of the NW being pushed

towards the 2D limit, i.e. a surface. The band structure with a zero energy gap would be

marked by a pair of linearly dispersing bands crossing at k∥ = 0. All of these factors pertain to

the band structures of the investigated range of NR models too. However, specific differences

in the dispersion of NR band structures and the perimeter dependence of the energy gap arise
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due to the distinctive NW and NR morphologies, as shall be discussed in further detail with

respect to the NR case below.

The dependence of ENW on PNW is displayed in Fig.4.3. From the general model

above, it is evident that as PNW increases, the circumferential confinement around the NW

perimeter is reduced. Specifically, as the inter-level spacing between quantized values of

k⊥ (Eqn.4.2), and therefore the 1D sub-bands, decreases. Clearly, ENW also decreases, and

one would expect the relationship ENW ∼ P−1
NW (Eqn.4.5). However, we find a relationship of

ENW ∼ P−1.5
NW (Fig.4.3). We believe that the discrepancy in our finding may be connected to

the perimeter range of the NWs under investigation (i.e. 8.2 nm ≤ PNW ≤ 30.4 nm). Namely,

that due to the relatively small size of the NWs, particularly at the lower end of that range, the

finite penetration depth of surface states may lead to a deviation from the ideal ENW ∼ P−1
NW

scenario.
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Figure 4.3 – Tight-binding results for NW surface state gap as a function of NW perimeter (PNW ) (black
hollow circles). Numerical fit of ENW ∼ P−1.5

NW is given by black dashed curve.

For the NW (PNW ∼ 30.4 nm) in Fig.4.4, we define a pair of n =±1
2 degenerate states,

similarly to the general model above, at two different momenta, k∥1 and k∥2, close to Γ and

Brillouin zone boundary, respectively. At both k∥1 and k∥2, for each n =±1
2 degenerate state

we computed the momentum-resolved local spin density SSSn
i (Eqn.4.8). A consequence of

the cylindrical symmetry of both NW and NR morphologies is that the wave function for

each n = ±1
2 degenerate state, at either k∥1 or k∥2, is circularly localised on the surface of a

nanostructure around its perimeter. This contrasts with calculations performed on a strictly

2D Bi2Se3 surface [139, 170], in slab geometries of sufficient thickness, where degenerate

surface-states of opposite spin helicities are spatially separated, due to their localisation at

opposite surfaces. Subsequently, to clearly resolve the real-space spin properties, we take the
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Figure 4.4 – Tight-binding band structure of a hexagonal NW with a perimeter of 30.2 nm. Size of points
is proportional to the magnitude of hn (see text and Eqn.4.10). Red and blue colours correspond to a
left and right handed chirality of hn , respectively. k∥1 and k∥2 define momenta for two pairs of n =± 1

2
degenerate states close to the origin and Brillouin zone boundary, respectively.

sum, SSStot
i , of the local spin densities, SSSn

i , for each n =±1
2 degenerate state

SSStot
i =SSS

+ 1
2

i +SSS
− 1

2
i . (4.9)

This is plotted as function of atomic position rrr i (Fig.4.5). The localisation of the total local spin

density SSStot
i , at both k∥1 (Fig.4.5a) and k∥2 (Fig.4.5b), around the NW perimeter is immediately

evident, thereby confirming the surface state origin of the parent n =±1
2 states.

The difference in spin textures that arise from SSStot
i calculated at k∥1 (Fig.4.5a) and k∥2

(Fig.4.5b) shows that the spin-momentum locking properties of the 2D surface Dirac cone are

manifested in the 1D hexagonal NW. A direct correspondence between the helicity of the spin

polarization vector (Eqn.4.6) of the Dirac cone (red arrows Fig.4.2a) and the the real-space

spin properties of the NW (Fig.4.5) is exhibited. We explain this below in reference to spin

phenomena discussed in the general model above.

Close to Γ at k∥1, we find that for the degenerate n =±1
2 states, the significant compo-
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nent of SSSn
i (Eqn.4.8) is the Sn

∥ component aligned along the NW axis. Importantly, S
+ 1

2

∥ and

S
− 1

2

∥ have an opposing alignment along the axis. This is a consequence of spin-momentum

locking of the surface Dirac cone, as was detailed in the general model above. Conversely, the

component around the NW perimeter Sn
⊥ is found to be negligible for both n =±1

2 states. For

each n =±1
2 state at k∥1, this results in spin textures analogous to those schematically drawn

in Fig.4.2c. Consequently, by calculating SSStot
i (Eqn.4.9) at k∥1, the opposing, and significant,

S
+ 1

2

∥ and S
− 1

2

∥ components cancel, and the component Stot
∥ is zero. Conversely, the negligible

S
+ 1

2
⊥ and S

− 1
2

⊥ components, lying in the tangent plane to the NW axis, are aligned in the same

direction around the NW perimeter and are summed together to give Stot
⊥ . Hence, at k∥1 this

results in the spin texture shown in Fig.4.5a, where the total local spin density SSStot
i on an atom

is extremely small, comprised of the negligible Stot
⊥ component, which lies entirely in the

tangent plane and follows the perimeter.

Figure 4.5 – Spin textures for a hexagonal Bi2Se3 NW (PNW = 30.4 nm) at k∥1 (aaa) and k∥2 (bbb) (see Fig.4.4
and text). Red arrows denote total local spin density SSStot

i (Eqn.4.9), grey circles indicate the position of
Bi and Se atoms. The view direction is equivalent to that shown in Fig.4.1a.

On the other hand, close to the Brillouin zone boundary at k∥2, we find the Sn
⊥ com-

ponent of SSSn
i to be significant, whilst the Sn

∥ component is negligible, as expected from the

general model. Spin-momentum locking of the 2D surface Dirac cone is again manifested in

S
+ 1

2

∥ and S
− 1

2

∥ aligning in opposing directions along the NW axis. Furthermore, S
+ 1

2
⊥ and S

− 1
2

⊥
are both aligned in the tangent plane to the NW axis and follow the same direction around

the perimeter. Thus, on calculating SSStot
i , the negligible S

+ 1
2

∥ and S
− 1

2

∥ components cancel, and

Stot
∥ is zero. Conversely, the significant S

+ 1
2

⊥ and S
− 1

2
⊥ components are summed giving Stot

⊥ ,

with a much larger magnitude to that at k∥1, resulting in the spin texture shown in Fig.4.5b.

The spin is again aligned entirely in the tangent plane to the NW axis, however, the far larger

magnitude of SSStot
i is clearly evident, due to the significant Stot

⊥ component. The consequent

spin texture (Fig.4.5b) has a pronounced 2π rotation of the total local spin density SSStot
i around
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the NW perimeter. Moreover, this rotation follows a clockwise rotation around the wire. The

handedness of this rotation is equivalent to the left handed helicity observed for the 2D TI

conduction band (CB) SS (red arrows Fig.4.2a). Since SSStot
i is also derived from CB states, this

again highlights the direct correspondence between the spin helicity of the 2D surface Dirac

cone and the quantized sub-bands of the 1D NW.

To quantify the 2π rotation of the local spin density around the NW perimeter, for a

given state n, at a particular k∥ and E , the following quantity can be calculated

hn(k∥) =∑
i

(
SSSn

i

(
k∥,rrr i

)× rrr i

|ri |
)
, (4.10)

where SSSn
i

(
k∥,rrr i

)
is the momentum-resolved local spin density on a given atom i , as defined

above (Eqn.4.8), whilst rrr i is the atomic position vector from the 1D nanostructure axis.

The energy dependence of hn(k∥) for the PNW = 30.2 nm NW is plotted in Fig.4.4.

Analysis of this dependence below provides further insight into the correspondence between

the spin helicity of the 2D surface Dirac cone and the spin properties of the 1D NW. Moreover,

we find that it gives rise to interesting transport properties, as we detail through the definition

of a spin polarization density (Eqn.4.11).

An ideal 2π rotation of the local spin density SSSn
i around the NW perimeter, with the

spin aligned entirely in the tangent plane to the NW axis, i.e. with Sn
∥ = 0 and SSSn

i = Sn
⊥, would

be reflected in a maximum value of hn . Under the assumption of a 100% spin polarization,

this value would equal hn = ±1 for a clockwise and anti-clockwise rotation, respectively.

However, for the NW in Fig.4.4, the maximum possible value of hn is reduced from ±1, as spin

polarization is less than 100% because of the strong SOI present in Bi2Se3, as discussed above.

The behaviour of hn(E ,k∥) in Fig.4.4 stems from three primary factors. The first being

that not only is |hn | < 1, as just discussed, it is also reduced from its maximum possible value.

This is because the half integer shift arising from the π Berry phase (Eqn.4.3) means that all

the ±n sub-bands in the gapped spectrum in Fig.4.4 have k⊥ �= 0 (Eqn.4.2). Thus, the finite

k⊥ value of each ±n sub-band entails that they do cut across the centre of the Dirac cone

(Fig.4.2a), as this corresponds to k⊥ = 0. Consequently, there is always a finite Sn
∥ contribution

to SSSn
i . For example, as was discussed in reference to the n =±1

2 sub-bands above. Physically,

this represents the spin component on a given atom that aligns along the NW axis out of the

tangent plane, thereby reducing the ideal in-plane 2π rotation of SSSn
i , and hence hn from its

maximum value.

Secondly, analysing the dependence of hn with respect to k∥ in Fig.4.4. It is clearly

discernible that hn is significantly larger at k∥2 close to the Brillouin zone boundary, than

at k∥1 close to k∥ = 0. The general behaviour can be explained with respect to the n = ±1
2

degenerate states, where quantitatively this is reflected in a value of hn = 0.64 at k∥2 against

that of hn = 0.14 at k∥1. The pertaining reasons are as described previously. Namely, that the
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larger value of hn at k∥2 is because Sn
⊥ is significant and Sn

∥ negligible, whilst at k∥1 the reverse

holds, and hence hn is reduced.

Thirdly, analysing the energy dependence of hn . Evident from Fig.4.4 is that at k∥ close

to the Brillouin zone boundary (e.g. at k∥2) the magnitude of hn is largest for the lowest

energy n = ±1
2 sub-bands, and gradually diminishes for higher energy ±n sub-bands (e.g

n =±3
2 ,±5

2 , . . .). This is because the n =±1
2 sub-bands have the smallest value of k⊥ (Eqn.4.2).

Thus, seen as cuts across the 2D surface Dirac cone (Fig.4.2a), they cut across the cone closest

to the centre at k⊥ = 0. Consequently, at k∥2 for n = ±1
2 , the spin polarization vector along

the associated constant energy contour has the closest parallel alignment to k⊥, relative to

the higher energy (n =±1
2 ,±3

2 ,±5
2 , . . .) sub-bands. This leads to the largest values for the Sn

⊥
component and resultantly hn . However, as |n| increases, the corresponding magnitude of

|k⊥| also increases, as evident from Eqn.4.2. The increasing values of |k⊥| correspond to cuts

across the 2D surface Dirac cone (Fig.4.2a), and associated constant energy contours, at an

increasing distance from the centre at k⊥ = 0. Consequently, due to spin-momentum locking

the extent to which the spin polarization vector along the energy contours aligns parallel

to k⊥ diminishes with increasing |n|. Subsequently, as the energy of the (n =±1
2 ,±3

2 ,±5
2 , . . .)

sub-bands increase, the contribution of the Sn
⊥ component to SSStot

i decreases, whilst that of Sn
∥

increases. Hence, the extent to which there is an ideal 2π rotation around the NW perimeter

in the tangent plane also decreases, and therefore so does hn , with increasing E .

A large value of hn for a given state n, for example the n = ±1
2 states at k∥2 (Fig.4.4),

implies that the corresponding magnitude of the overall spin polarization vector (Eqn.4.6)

|PPP(
kkk
)| ∼ 0. Primarily, as the close to ideal 2π rotation of SSSn

i around the NW perimeter, means

that the expectation value of the spin operators (Eqn.4.7)
〈

Sx,y
(
kkk
)〉∼ 0 and

〈
Sz

(
kkk
)〉

is neg-

ligible. For states with a smaller hn , for example the n = ±1
2 states at k∥1 (Fig.4.4), |PPP(

kkk
)|

has a small finite value. This is mainly due to the finite value of
〈

Sz
(
kkk
)〉

, as Sn
∥ is the major

component of SSSn
i , whilst

〈
Sx,y

(
kkk
)〉∼ 0 as Sn

⊥ ∼ 0.

Thus, in order to explore potential spin-dependent transport properties, we define a

spin polarization density as

H(E) =
∫∑

n hn(k∥)δ(E −En,k∥)dk∥∑
n
∫
δ(E −En,k∥)dk∥

, (4.11)

where hn is as above (Eqn.4.10), the denominator defines the number of available transport

channels at a given energy E , and the numerator the sum of hn with respect to those available

transport channels.

The clear-cut oscillatory dependence of H(E) (Fig.4.6) reflects the quantization along

k⊥, and the variation of hn(E ,k∥). At lower energies, there are a reduced number of available

transport channels, however, for those channels, there is a strong 2π rotation of SSSn
i around the

NW perimeter. Conversely, as E increases, the number of available channels increase, yet the
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degree to which there is a clear SSSn
i rotation around the NW perimeter decreases within those

channels, for reasons that have been outlined. This behaviour could be exploited in potential

device applications. For example, one could imagine harnessing the energy-dependent spin

polarization density in Fig.4.6 to generate spin polarized charge carriers. Specifically, this

might be achieved by locally contacting a section of a hexagonal NW and driving a charge

current JJJ along one direction of the NW axis. For a given JJJ , based on the behaviour in Fig.4.6,

this would result in an injection of spin polarized charge carriers at the local contact. If such

transport behaviour were to be observed in a Bi2Se3 NW, this could be exploited in future

quantum devices in burgeoning technologies such as spintronics.

Figure 4.6 – Energy dependence of spin polarization density H(E) (see text and Eqn.4.11).

4.2.3 Nanoribbons

As for NWs, band structures for the investigated range of NRs (23.8 nm ≤ PN R ≤ 59.2 nm)

were computed using the same tight-binding method described in the Methodology. General

trends observed for NWs are found for NRs too. Namely, the band structures of all investigated

NRs exhibit a finite energy gap (EN R ), and that EN R decreases with increasing PN R (Fig.4.7), as

one would expect from Eqn.4.5. Moreover, all the NR electronic spectra are characterised by a

series of quantized degenerate 1D sub-bands as evident from the band structure (Fig.4.8) of

the largest NR model (PN R ∼ 59.2 nm).

However, the separate NR and NW morphologies result in distinct differences in, firstly,

the perimeter PN R dependence of the energy gap EN R (Fig.4.7) for NRs relative to ENW on

PNW for NWs (Fig.4.3). Secondly, in the general dispersion of their electronic spectra, as
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Figure 4.7 – Tight-binding results for NR surface state gap (EN R ) as a function of NR perimeter (EN R ).
Numerical fits for EN R (PN R ) for various NR widths in the range ∼6 nm–19 nm (Red-Blue solid lines),
and for various thicknesses in the range 5QL–9QL (Red-Blue dashed lines).

evident from a comparison of Fig.4.8 to Fig.4.4. The differences stem from the fact that the

axial direction of NRs, which is parallel to the [112̄0] direction (a in Fig.4.1c), is normal to the

QL stacking direction. Consequently, the NR morphology is defined by two structural degrees

of freedom, one being the thickness, the other the width, as described in the Methodology

of this chapter. Importantly, NRs are thus defined by two distinct sets of facets, the top and

bottom (0001) facets parallel to the NR axis, and the other set the side facets aligned parallel to

the (101̄0) surface.

Interestingly, the two structural degrees of freedom, represented by the two facet types,

lead to two separate regimes for EN R (PN R ) (Fig.4.7), one for each degree of freedom. Firstly,

with respect to NR width (solid lines Fig.4.7), our calculations predict a relationship of EN R ∼
P−1.7

N R , for all investigated widths, implying this dependence to be independent of NR width.

This relationship is also similar to that found for NWs above (Fig.4.3). Conversely, with

respect to thickness (dashed lines Fig.4.7), the sensitivity of EN R to PN R decreases as the

thickness increases. This is reflected in an incremental reduction in the calculated power

decay law describing EN R (PN R ), from EN R ∼ P−0.95
N R for 5QL thick NRs (red dashed line Fig.4.7),

to EN R ∼ P−0.75
N R for 9QL thick NRs (blue dashed line Fig.4.7).

The contrasting NW and NR morphologies are exemplified in the difference between the

two respective band structures of the largest NW (Fig.4.4) and NR (Fig.4.8) systems investigated,

particularly in the dispersion of the 1D sub-bands. Two primary factors contribute to the

additional complexity of the NR dispersion. One being that NR morphologies exhibit two

different facet types, and, secondly, the difference in periodicities between NR and NWs. With

respect to the facet type, in the 2D limit, the top and bottom facets corresponds to the (0001)
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Figure 4.8 – Tight-binding band structure of a NR with a perimeter of 59.2 nm. Size of points reflects
the magnitude of hn(see text). Red and blue colours correspond to a left and right handed chirality
of hn , respectively. k∥1 and k∥2 define momenta for two pairs of n =± 1

2 degenerate states close to the
origin and Brillouin zone boundary, respectively.

surface, which is characterised by a symmetric Dirac cone centred around Γ, as was described

in the Introductory chapter (Fig.1.6). The side facets are equivalent to that of the high-index

surface, defined by the stoichiometric edge termination I and a stacking angle of θ = 57°,

discussed with respect to Fig.3.4a in the previous chapter. This surface is characterised by an

anisotropic Dirac cone centred around Γ. Thus, in the 1D NRs there is a competition between

two distinct facets which originate from surfaces with markedly different band dispersions,

and hence corresponding properties of surface state charge carriers such as the Fermi velocity.

Given that all facets of the NWs are identical, this is probably a decisive factor underpinning

the observed dispersion in the more complex NR band structures.

As touched upon in the Methodology of this chapter, the NW axis is parallel to the c

direction of the bulk hexagonal unit cell, and thus the NW models have a periodicity equivalent

to the corresponding c (∼ 28.65 Å) lattice parameter. Conversely, the NR axis is parallel to

the a direction, and hence NRs have a far smaller periodicity, equal to the a (∼ 4.11 Å) lattice

parameter. Consequently, the 1D Brillouin zone for NRs is significantly larger, for example

the maximum value of k∥ for the NR in Fig.4.8 is 0.76 Å−1. On the other hand, that for NWs is
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significantly smaller, for example the maximum value of k∥ in for the NW in Fig.4.4 is 0.11 Å−1.

It is also worth mentioning the perimeter of the NR in Fig.4.8 (PN R = 59.2 nm) is significantly

larger than that of the NW in Fig.4.4 (PNW = 30.4 nm). Thus, the simple general model

above would predict that the inter-level spacing between the quantized 1D NR sub-bands, as

reflected in a smaller k⊥ (Eqn.4.2) value of a given sub-band, to be significantly less than that

for NWs. This may explain the increased density of NR sub-bands (Fig.4.8) in a given energy

range relative to the NW case (Fig.4.4).

The contrasting surface origins of both sets of NR facets is also reflected in more complex

spin properties than was found for NWs. To analyse the spin behaviour in NRs, we again

define two pairs of n =±1
2 degenerate states, one pair at momentum k∥1 and the other at k∥2

(Fig.4.8), close to the origin and Brillouin zone boundary, respectively. We also compute the

local spin density for a given state SSSn
i (Eqn.4.8). This is comprised of two components, Sn

∥
aligned parallel to the NR axis (i.e. a direction in Fig.4.1c), and Sn

⊥ aligned in the orthogonal

direction in the tangent plane to the NR axis (i.e. cb plane in Fig.4.1c).

For each pair of n =±1
2 degenerate states, one pair at k∥1 and the other at k∥2, we also

calculate the sum of the local spin densities SSStot
i (Eqn.4.9). As expected from the general model

described above, the spin non-degeneracy for a given pair of n =+1
2 and n =−1

2 states, is only

exhibited in opposing alignments of the S
+ 1

2

∥ and S
− 1

2

∥ components, respectively. Conversely,

the S
+ 1

2
⊥ and S

− 1
2

⊥ components are aligned in the same direction. The pertaining reasons are

exactly analogous to that described for NWs and in the general model above, and originate

from spin-momentum locking of the 2D surface Dirac cone. Each pair of n = ±1
2 states, at

k∥1 and k∥2, belong to the lowest energy n =±1
2 sub-bands. Consequently, at k∥1 the major

component to SSSn
i is Sn

∥ , whilst Sn
⊥ is negligible. On the other hand, at k∥2 the major component

to SSSn
i is Sn

⊥, whilst Sn
∥ is negligible. This is based on the same reasoning as for NWs. Namely,

that the n =±1
2 sub-bands are the lowest in energy and have the lowest quantized values of k⊥

(Eqn.4.2), and therefore they are the cuts closest to the centre of the 2D surface Dirac cone

and associated constant energy contours (see general model for a detailed discussion). The

calculation of SSStot
n , at k∥1 and k∥2, subsequently leads to the spin textures shown in Fig.4.9.

The general features of the k∥ dependency of SSStot
i for NRs, as evident from the spin

textures at k∥1 (Fig.4.9a) and k∥2 (Fig.4.9b), resembles that for NWs. Similarly, this is a conse-

quence of the spin-momentum locking properties of the 2D surface Dirac cone exhibited in

the 1D sub-bands of the NR. At k∥1, the cancellation of the major S
+ 1

2

∥ and S
− 1

2

∥ components

means that SSStot
i has a small magnitude, comprised of the negligible S

+ 1
2

⊥ and S
− 1

2
⊥ components.

Conversely, at k∥2, the magnitude of SSStot
i is significantly larger, due to the summing of the

major S
+ 1

2
⊥ and S

− 1
2

⊥ components, whilst the negligible S
+ 1

2

∥ and S
− 1

2

∥ components cancel. Thus,

as for NWs, SSStot
i is aligned entirely in the tangent plane to the NR axis at k∥1 (Fig.4.9a) and k∥2

(Fig.4.9b).

In the case of NWs, SSStot
i was uniformly localised around the hexagonal perimeter of the
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Figure 4.9 – Spin textures for a 19 nm wide and 9QL thick Bi2Se3 NR (i.e. PN R = 59.2 nm) at k∥1 (aaa)
and k∥2 (bbb) (see Fig.4.8 and text). Red arrows denote total local spin density SSStot

i (Eqn.4.9), grey circles
indicate the position of Bi and Se atoms. The view direction is equivalent to that shown in Fig.4.1c.

NW at both k∥1 and k∥2 (Fig.4.5). Furthermore, at k∥2 this lead to a 2π rotation of SSStot
i around

the NW perimeter (Fig.4.5b). However, the detailed spin texture behaviour for NRs is more

complicated. Firstly, such a 2π rotation of SSStot
i around the NR perimeter is noticeably absent.

Moreover, at k∥1 (i.e. close to k∥ = 0), we find that SSStot
i is confined to the top and bottom facets

of the NR only, with an opposite alignment along each facet (Fig.4.9a). On the other hand, at

k∥2 (i.e. close to the Brillouin zone boundary), SSStot
i is confined to the side facets of the NR,

with an opposing alignment parallel to each respective side facet (Fig.4.9b). The fact that the

spin localises on each distinctive NR facet, at k∥1 and k∥2, respectively, is suggestive that the

underlying cause of the observed spin texture behaviour originates from the different surface

origins of each set of facets. Where those respective surfaces have distinct electronic spectra,

characterised by differing 2D surface Dirac cones and related properties, as described above.

This additional complexity in how the helicity of the surface Dirac cone is exhibited in

the real space properties of the lowest energy n =±1
2 sub-bands is also apparent across the

electronic spectrum of the NR. This can again be analysed by calculating hn (Eqn.4.10), as was

done previously for NWs, and observing the variation of hn(k∥) (Fig.4.8). General trends are

similar to that for NWs, namely that the lowest energy modes have the largest magnitude of hn .

Furthermore, for given value of k∥, as E increases hn decreases. Nonetheless, the evolution

of hn , with respect to E , and the k∥ dependency, is not as clear-cut as for NWs. We believe

that the more complex behaviour of hn(k∥) (Fig.4.8) is again rooted in the presence of the two
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separate NR facet types and their differing surface origin.

4.3 Conclusions

In summary, a tight-binding formalism was applied to study finite-size effects, and the con-

finement of spin helical Dirac fermions, in 1D Bi2Se3 nanostructures of a nanowire and

nanoribbon morphology. We find the electronic structure to be extremely sensitive to mor-

phology. For NWs, this sensitivity is exhibited in the dependence of the band gap on NW

dimensions deviating from the analytic prediction. Similarly for NRs, the presence of two

distinct facet types gives rise to two regimes for the band gap dependence, with each related

to a respective facet. Our calculations show the spin helicity of the 2D surface Dirac cone

to be clearly manifested in the quantized NW sub-bands. Interestingly, we predict that the

confinement of the topological surface states in a 1D NW results in a tunable spin polarization

density, which could potentially be exploited in spin-based transport applications. In the case

of NRs, the separate surface origins of each NR facet, with Dirac cones of differing dispersions,

results in a more complex correspondence between the spin helicity of the 2D topological

surface states and the spin properties of the 1D NR sub-bands.
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5 One-dimensional Nanostructures of
Topological Crystalline Insulators

Topological crystalline insulators (TCIs) represent a novel topological phase [21], where the

non-trivial topology is governed by the underlying crystalline symmetry. This is in contrast

to the Z2 topological insulators (TIs) where the key ingredients are that of time-reversal

symmetry combined with strong spin-orbit interactions (SOI). The TCI SnTe, introduced in

the Introductory chapter, has a non-trivial topology that stems from the mirror symmetry of

the rock-salt crystal structure (Fig.1.7) [24, 45].

An intriguing consequence of the topological protection in SnTe is that it is highly

sensitive to parameters that control the mirror symmetry, such as the crystal structure or the

application of external fields. This sensitivity is exemplified by the electronic structure of the

mirror symmetry preserving
{

100
}

,
{

110
}

and
{

111
}

crystal surfaces all displaying different sets

of topological surface states (SSs) [52, 54, 171, 172]. In the Introduction we discussed how the

(001) surface possesses four Dirac cones, with two each lying at the Λ̄ points on the two mirror

symmetric X̄1,2 − Γ̄− X̄1,2 lines in the surface Brillouin zone (see Fig.1.7 and Fig.1.8 and related

text). Recent work on this surface and associated thin films has emphasized the rich interplay

between crystal symmetry and non-trivial topology in TCIs. For example, a gap opening at just

two Dirac cones lying on one of the X̄1,2 − Γ̄− X̄1,2 lines was experimentally observed [53, 173],

as a result of structural distortion breaking the crystal symmetry along one of the two mirror

planes [174]. Another theoretical work predicted that (001) thin films with an odd number

of layers realize an electrically tunable 2D TCI phase with spin-filtered edge states [97]. Both

examples showcase the great potential in applying symmetry breaking perturbations to tune

the TCI phase. On a more fundamental level, and of most relevance to work described in

this chapter, was the discovery that (001) thin films composed of an even and odd number of

layers are defined by separate topological invariants, based of their differing symmetry [96].

Intriguingly, this gives rise to distinct regimes of topological phase transitions.

Following these observations, and given the sensitivity of the TCI phase to crystal sym-

metry, it is of great interest to study its manifestation in lower dimensional nanostructures.

Nanostructuring offers several advantages in relation to the enhancement of surface contribu-

tions and the ability to synthesize morphologies of clearly defined surfaces, as was discussed
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in the Introduction. However, the impact of crystal symmetry and finite-size effects upon the

electronic structure of nanostructures is largely unexplored. Consequently, this forms the

overarching theme of this chapter. Importantly, we seek to establish a direct correspondence

between the crystal symmetry dependent topologically non-trivial phases of the 2D TCI (001)

thin films [96] in corresponding nanostructures. We focus on studying one particular mor-

phology, the
{
100

}
nanowire [101, 102], described in the Introduction in reference to Fig.1.12,

due to its simple morphology, as only one particular type of surface (i.e. the
{

100
}

surfaces) is

exposed.

Thus, in this chapter we initially review how (001) thin films of an odd or even layer

thickness have distinct topological properties stemming from their differing crystal symme-

tries, which is discernible in the thickness dependency of the surface-state hybridized gap.

Specifically, as the majority of these results were originally arrived at in [96], we reproduce

them here such that we can relate the topological properties of 2D thin films with phenomena

we explore for 1D NWs. Thus, we relate the aforementioned symmetry dependency to the

surface-state hybridized gaps for corresponding cases in
{
100

}
square cross-section NWs.

Subsequently, we show that the topologically non-trivial phases of odd and even numbers of

layers in 2D TCI (001) thin films are manifested in the surface states of 1D NWs. Intriguingly,

we find that surface states of 1D NWs composed of an odd number of layers are robust, due to

the symmetry dependent topology of the parent 2D TCI phase, and in stark contrast to the less

robust NW surface states for an even number of layers

5.1 Methodology

The electronic structure of SnTe (001) thin films and
{
100

}
NWs was investigated via the

tight-binding (TB) approximation. The specific formalism of the TB method was described

in the Methodology chapter, where Table.2.4 lists the SnTe TB parameters. Again the use

of the TB method was somewhat imposed by the size of the systems being studied. This

holds particularly true for NWs, as supercells are required, where the number of atoms makes

first principles methods such as DFT, impractical or currently not feasible, depending on the

system size. Confidence in the TB method is provided by the sufficiently accurate reproduction

of the essential features of the DFT derived band structure, as was discussed in reference to

Fig.2.6 in the Methodology chapter. One potential issue, as touched upon in the last chapter,

with the utilised TB formalism is that surface and edge potential effects are not accounted

for. However, given the rock-salt crystal symmetry of SnTe and the fact that all investigated

surfaces are stoichiometric, we believe that surface and edge reconstruction effects would not

have a significant impact on any conclusions drawn from the results described below.

Calculations were performed on SnTe (001) thin films modelled as two-dimensional

slabs. The thickness of the slab is defined by the number of atomic monolayers (MLs) n stacked

parallel to the [001] direction (Fig.5.1a), whilst periodic boundary conditions are imposed

along the two orthogonal [010] and [100] directions, parallel to the slab surfaces (Fig.5.1a). An
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example of a thin film with n = 5, i.e. composed of an odd number of MLs, is shown in Fig.5.1a.

SnTe (001) odd and even thin films have separate symmetries. The defining crystal symmetry

for odd thin films is the (001) mirror symmetry, as they are symmetric under the reflection

z →−z about the two-dimensional (x y) plane parallel to the middle atomic layer. For example,

for the n = 5 odd thin film in Fig.5.1a this corresponds to the third atomic ML.Conversely, for

an even numbers of layers, (001) mirror symmetry is absent and the defining symmetry is

glide symmetry, which is reflection about a mirror plane followed by a translation parallel to

that plane. Specifically, even thin films are symmetric under the reflection z →−z about a (x y)

plane (Fig.5.1a) exactly in the middle of the slab between two MLs, followed by a translation of

half a lattice vector parallel to that plane. The translation of half a lattice vector is crucial as it

distinguishes even thin films as belonging to a non-symmorphic space group, since it involves

a point group operation such as a reflection combined with a fractional lattice translation.

Odd thin films conversely belong to a symmorphic space group, as there exists at least one

point left invariant by all of the symmetries.

Figure 5.1 – Atomic models of a SnTe (001) thin film and
{

100
}

NW. aaa SnTe (001) slab of thickness n = 5.
Periodicity directions of the slab are along the [100] and [010] directions. m defines the width of a n×m
NW. For example, the black dotted square in aaa outlines the cross-section of the 5×5 NW shown in the
perspective view in bbb. The axial direction of the NW in bbb is equivalent to the [100] direction in aaa. In
both figures red spheres represent Sn atoms, whilst blue Te atoms.
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One dimensional SnTe
{
100

}
NWs were constructed by additionally constricting a slab

along the [010] direction (Fig.5.1a), where the width of a NW is given by the number of atomic

MLs m stacked parallel to [010]. Subsequently, periodic boundary conditions are imposed

solely along the [100] direction. The structural correspondence between the investigated

slab and NW models is shown in Fig.5.1a. If we define the dimensions of a given NW as

the thickness × width (i.e. n ×m), two classes of NWs were studied. The first being square

cross-section NWs where n = m, and both the thickness and the width were comprised of

equivalent numbers of either odd or even MLs. Consequently, as n = m for the discussion

below we refer to square cross-section NWs as n ×n NWs. For example, Fig.5.1b shows a

5×5 odd square cross-section NW. The second being rectangular cross-section NWs where

n �= m, and the thickness and width were composed of differing numbers of odd or even MLs.

Rectangular cross-section NWs included odd-odd (n and m odd but n �= m), odd-even (n odd

and m even), even-odd (n even and m odd) and even-even (n and m even but n �= m). For odd

square cross-section NWs, and odd-odd rectangular NWs, the defining symmetry is again (001)

mirror symmetry, as they are symmetric under the reflection z →−z about the plane parallel

to the middle atomic ML, which can be seen in Fig.5.1b. Conversely, for all the other NW types,

including even square cross-section, even-even, odd-even and even-odd rectangular NWs,

the defining symmetry is a glide symmetry, i.e. a non-symmorphic operation, whereby the

NWs are symmetric under the reflection z →−z about a plane in between two MLs, which

splits the NW into two equal halves, followed by a translation of half a lattice vector parallel to

that plane.

5.2 Results

5.2.1 Two-dimensional Thin Films

We begin by discussing the finite-size induced band gap in (001) thin films, followed by square

cross-section NWs. We relate the observed behaviour in thin films to the two distinct 2D TCI

phases present, and subsequently explore how these phases are manifested in the electronic

structure of 1D NWs.

Tight-binding band structure calculations were performed on (001) thin films modelled

as slabs, where the slab thickness n varied between 3 ≤ n ≤ 30. The finite thickness of the

slabs results in hybridization between surface states localized at opposite surfaces. As the

decay length of the surface states into the bulk is on the same order of magnitude as the slab

thickness, this leads to a spatial overlap of the wavefunctions of each surface, and consequently

a gap opening. The thickness dependence of the induced energy gap is shown in Fig.5.2, clearly

evident are two separate regimes depending on whether n is odd or even.

In the odd case, for thin films where n ≤ 11 the fundamental band gap is located at X̄ in

the surface Brillouin zone (Fig.1.7), as can be observed in the band structure of a thin film with

n = 5 in Fig.5.3a. However, as the thickness increases the fundamental gap shifts away from

96



5.2. Results

X̄, with the transition occurring at n ∼ 11, and is located towards the Λ̄ point on the mirror

symmetric Γ̄−X̄−Γ̄ line in the surface Brillouin zone (Fig.1.7). As discussed in the Introduction

chapter, in the 3D limit Λ̄ is the momentum at which the Dirac point is located (Fig.1.7), since

the crossing of the topologically protected TCI surface states results in a zero energy gap. A

comparison of the band structure of a n = 19 (Fig.5.3b) film with that of n = 5 (Fig.5.3a) clearly

shows the transition from X̄ to Λ̄. Consequently, in Fig.5.2, for odd thin films where n ≤ 11, the

plotted band gap is that at X̄, whilst for n ≥ 11 it is that at Λ̄. In the even case, aside from very

thin films where there is a slight indirect gap, the fundamental gap is located at Λ̄, for example

as in the band structures shown in Fig.5.5. Thus, for all even n the plotted band gap is that at

Λ̄.

Figure 5.2 – Oscillations in the band gap of SnTe (001) slabs of odd and even thickness n. Filled (empty)
circles display how the band gap varies as a function of thickness for odd (even) values of n. Oscillations
in band gap are related to distinct topological phase transitions, as denoted by changes in the NM (ζM )
topological invariant for odd (even) thin films. It should be noted that this plot reproduces the results
originally published in [96], as discussed previously.

The energy gap in Fig.5.2 for both odd and even cases is characterized by an oscillatory

dependency on film thickness. Similar behaviour has been observed in Bi2Se3 thin films

[154, 175, 176], where the oscillations are indicative of fluctuations from a topologically non-

trivial quantum spin Hall phase to a trivial phase. Similarly, in the case of SnTe (001) thin

97



Chapter 5. One-dimensional Nanostructures of Topological Crystalline Insulators

films, the observed oscillations for odd and even cases stem from distinct topological phase

transitions. The difference in behaviour between odd and even thin films arises from the fact

that each has a topology defined by separate topological invariants, due to their respective

crystal symmetries

Figure 5.3 – Band structures for (aaa) n = 5 and (bbb) n = 19 slab showing the change of the fundamental
band gap from X̄ to Λ̄, respectively.

Odd thin films

For odd thin films, the defining symmetry is (001) mirror symmetry, as described in the

Methodology. Consequently, as detailed in the Introduction, this allows the definition of the

mirror Chern number (Eqn.1.18) [22], NM , which serves as a topological invariant to define

the non-trivial topology present in odd thin films.

A non-zero integer value of the mirror Chern number denotes a TCI with mirror sym-

metry [24]. Interestingly, SnTe (001) odd thin films have been found to have a non-trivial value

of |NM | = 2 [96, 97, 177], thus realizing a 2D TCI phase, for a wide range of n ( Fig.5.2).

The oscillations in the calculated energy gaps in the odd case (Fig.5.2) coincide with clear

variations in NM , i.e. with distinct topological phase transitions. The first phase transition

occurs close to when the computed band gap takes a minimal value at n = 5. This is a

consequence of a band inversion at X̄ between 3 ≤ n ≤ 5. For n = 3 the conduction (valence)

band at X̄ is primarily comprised of states derived from Sn (Te) p orbitals (Fig.5.4a), whereas

for n = 5 this ordering is inverted (Fig.5.4b), indicating a topologically non-trivial phase.

Furthermore, as this implies the band gap at X̄ closing and then reopening between 3 ≤ n ≤ 5,

at n = 5 it has a minimal value. Confirmation of the topological phase transition is given by

the mirror Chern number, where NM = 0 for n = 3, and NM =+2 for n = 5 [96, 97].

The second topological phase transition occurs in the vicinity of the second energy

minimum at n = 27. The transition in this case is accompanied by the band gap closing
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Figure 5.4 – Band inversion in SnTe (001) slabs. Band structures for (aaa) n = 3 and (bbb) n = 5 slabs, where
magnitude of blue (green) circles represents Sn(Te) p orbital contribution to the weight of the electronic
wavefunction. Orbital contribution for conduction and valence bands for n = 5 (bbb) thin film inverted
with respect to n = 3 at X̄.

at the two Λ̄ points, between 25 ≤ n ≤ 27, on the mirror symmetric Γ̄− X̄1,2 lines in the

surface Brillouin zone (Fig.1.7). This is reflected in a sign change in NM , where NM = +2

for n = 25, and NM = −2 for n = 27 [96]. (001) SnTe thin films are predicted to possess

spin filtered edge states [97], where edge states propagating in opposing directions having

opposing ±i mirror eigenvalues. Given that the sign of the Chern invariants υ+i (υ−i ) (Eqn.1.18)

dictates the direction of propagation of edge states [22], this implies that a given edge state

propagating in a given direction direction for n = 25 (NM =+2) should have an opposing ±i

mirror eigenvalue to that for n = 27 (NM = −2), due to the difference in their mirror Chern

invariants. Moreover, since the electron spin polarization in the z direction is proportional

to the mirror eigenvalue [97], the sign difference in the respective mirror Chern numbers for

n = 25 (NM =+2) and n = 27 (NM =−2) should be manifested in the spin polarization of their

respective edge states.

Even thin films

The topological properties of even thin films are distinguished from that of odd due to crucial

differences in their symmetry (see Methodology of this chapter). Firstly, in contrast to odd thin

films, in even thin films (001) mirror symmetry is absent. Thus, as the definition of the mirror

Chern number requires the presence of mirror symmetry [22, 24], it is therefore no longer a

valid topological invariant. Moreover, as glide symmetry is the defining symmetry operation

for even thin films, this necessitates the definition of a topological invariant protected by

translational symmetry, alongside that of reflection and time reversal. As such, a glide-winding

number, ζm , can be defined [96] as a topological invariant in 2D

ζm = (ζ+−ζ−)

2
, (5.1)
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where ζ± is the winding number of the Wannier centre

ζ± = 1

2π

∫2π

0

(
∂θ±(ky )

∂ky
− θ±(2π)−θ±(0)

2π

)
dky ∈Z, (5.2)

and where the Wannier centre θ± itself can be derived from the Wilson loop [178, 179].

Figure 5.5 – Topological phase transition manifested in band structures of SnTe (001) even thin films.
Band structures for (aaa) n = 12, (bbb) n = 14 and (ccc) n = 16 even thin films. Band gap at Λ̄ vanishes between
12 ≤ n ≤ 14, and reappears for n ≥ 14.

The oscillatory thickness dependence of the band gap for even thin films is marked by

one clear topological phase transition (Fig.5.2), compared to two observed in the odd case.

The phase transition from topologically trivial ζM = 0 to non-trivial ζM = 2 coincides with

the computed band gap having a minimal value at n = 14 (Fig.5.2). The phase transition is

clearly demonstrated in the electronic structure of even thin films, where the band gap closes

at the Λ̄ points between 12 ≤ n ≤ 14, as evident from the corresponding band structures for

n = 12 (Fig.5.5a) and n = 14 (Fig.5.5b), and subsequently reopens for n ≥ 14 (Fig.5.5c). This

is similar to the second phase transition for odd thin films (i.e. from NM =+2 to NM =−2 at

25 ≤ n ≤ 27). It should be noted that our computed values for the band gaps are in accordance
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with that of a similar study investigating finite-size effects in SnTe (001) thin films [96].

5.2.2 Square Cross-Section Nanowires

We now analyse the dimensionality dependence of the band gap of SnTe square cross-section{
100

}
NWs. Square cross-section n ×n NWs have four equivalent

{
100

}
surfaces due to the

identical thickness and width along the [001] and [010] directions (Fig.5.1), respectively. For

small enough dimensions of n ×n, confinement along both the [001] and [010] directions

results in a finite-size induced energy gap. The dependence of the fundamental band gap on

n ×n NW dimensions is shown in Fig.5.6. Differing behaviour is again evident, depending on

whether n is odd or even, as was the case for thin films above. However, unlike the case for

thin films, as the dimensions n ×n of the NW increase the band gap vanishes, and remains

closed, as discussed for even and odd cases below.

Figure 5.6 – Dependence of the SnTe n ×n square cross-section NW band gap on dimensions. Filled
(empty) squares show how the band gap varies as a function NW dimensions for odd (even) NWs. Filled
(empty) circles show how the band gap varies as a function of slab thickness for odd (even) n.

The separate regimes are similarly due to the respective symmetries of the odd and even

NWs, with odd NWs defined by (001) mirror symmetry, whilst even NWs by a glide symmetry

(see Methodology of this chapter). It is well established that nonsymmorphic operations, such
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as glide symmetry, can have a marked effect on electronic structure, due to the phenomenon

of bands “sticking together” and resulting in additional degeneracies [180]. Consequently, the

presence of glide symmetry, alongside that of time reversal and inversion, leads to a fourfold

degeneracy at the Brillouin zone boundary for even NWs. This degeneracy is clearly visible

at X̄ in the band structures of the 8×8 and 16×16 NWs displayed in Fig.5.7c and Fig.5.7d,

respectively. Conversely, as odd NWs are defined solely by reflection symmetry, i.e a point

group operation, this fourfold degeneracy is absent at X̄, evident in the band structures of the

7×7 and 15×5 NWs displayed in Fig.5.7a and Fig.5.7b, respectively. These symmetry effects

can subsequently explain the differing behaviour of odd and even NWs in Fig.5.6.

For odd NWs the absence of a fourfold degeneracy at X̄, means the valence band max-

imum (VBM) and the conduction band minimum (CBM) are both significantly higher and

lower in energy (Fig.5.7a), respectively, than the same bands at X̄ for even NWs of similar

dimensions (Fig.5.7c). Furthermore, the presence of a fourfold degeneracy at X̄ for even NWs

means that the VBM and CBM are pinned to the next lowest and highest bands in energy,

respectively. This results in a fundamental band gap located at X̄ for odd NWs (Fig.5.7a), and

shifted slightly off X̄ for even NWs (Fig.5.7c). Moreover, this entails that the computed energy

gaps for odd NWs decay significantly faster with increasing n ×n dimensions relative to even

NWs, as Fig.5.6 shows. For odd NWs the fundamental band gap vanishes after the dimensions

of the NW exceed 7×7, whilst for even NWs gap closure occurs after they exceed 14×14. The

minimum of the induced energy gap for even NWs (Fig.5.6), at NW dimensions of 14×14,

coincides with that of even thin films, at a thickness of n = 14. It is interesting that this is

concurrent with the even thin film topological phase transition from the trivial ζM = 0 to the

non-trivial ζM = 2, at 12 ≤ n ≤ 14, in Fig.5.2. For odd NWs the gap closure (Fig.5.6) takes place

slightly after the NM = 0 to NM =+2 phase transition (Fig.5.2) that occurs for odd thin films at

3 ≤ n ≤ 5.

For odd and even NWs of dimensions greater than 7×7 and 14×14, respectively, the

vanishing of a band gap (Fig.5.6) results in the formation of gapless surface states (SS). Even

and odd NWs show characteristic SS dispersions, as exhibited in the one-dimensional band

structures for a 15×15 and a 16×16 NW in Fig.5.7b and Fig.5.7d, respectively. The distinctive

SS can be seen as boundary states of the topologically non-trivial 2D TCI phases predicted in

odd and even SnTe (001) thin films [96, 97, 177], which were described above.

Odd NW SS display a single distinct band crossing close to X̄ (Fig.5.7b), and are derived

from the 2D TCI phase where a mirror Chern number of |NM | = 2 defines the non-trivial

topology. This 2D TCI phase is predicted to be robust due to the topological protection

offered by the underlying symmetry of the crystal [96, 97, 177]. Consequently, as long as mirror

symmetry is preserved, we predict this topological protection to be expressed in the robust 1D

SS of odd NWs.

Conversely, even NW SS tend to exhibit a double band crossing close to X̄ (Fig.5.7d),

and are derived from the 2D TCI phase where the glide-winding invariant |ζm | = 2 denotes the
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non-trivial topology. Unlike NM , the ζm invariant has no mirror symmetry protection, and

instead is protected by a complex symmetry involving inversion symmetry [96]. It is therefore

predicted to have no bulk-boundary correspondence, as inversion symmetry is preserved

in the bulk but not at the boundary. Subsequently, the topological protection offered by

the |ζm | = 2 TCI phase is less robust in comparison to |NM | = 2, which we predict to also be

reflected in the 1D SS of even NWs. The manifestation of the 2D TCI phases in the 1D SS of the

cubic NWs seems to originate from the equivalent symmetry operations underpinning odd

(even) thin films and odd (even) cubic NWs. The correspondence between the 2D TCI phases

and the 1D NW SS is explored in detail in the discussion on rectangular NWs below.

Figure 5.7 – Band structures for a series of odd (aaa,bbb) and even (ccc,ddd) n ×n NWs. aaa 7×7 odd NW. bbb 15×15
odd NW, k1 and k2 define momenta for two pairs of j =±1 degenerate states whose spin textures are
shown in Fig.5.8. ccc 8×8 even NW. ddd 16×16 even NW.

We now explore spin properties of 1D NW SS, using the 15×15 odd NW as an exemplar,

given that it derives from the 2D TCI phase with |NM | = 2, and has a simple SS dispersion

defined by a single crossing (Fig.5.7b), as described above. We focus on the real-space spin

properties, and follow a similar procedure to that for the Bi2Se3 nanostructures in the previous

chapter. We define two pairs of j =±1 degenerate conduction band (CB) states, one pair at

momentum k1 and the other at k2. The j = ±1 CB states at k1 are situated just before, and
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those at k2 just after, the SS crossing in Fig.5.7b.

Subsequently, as before, from the expectation value of the spin operators (Eqn.4.7), for

a given state j we compute the local spin density SSSi on an atom i via

SSS j
i

(
k∥,rrr i

)= (ħ
2

)〈
ψ

(
k∥

)|σα⊗Pi |ψ
(
k∥

)〉 (
α= x, y, z

)
, (5.3)

where Pi is a projector onto atom i , and is defined Pi = ∑
λσ|iλσ〉〈iλσ|, with λ the orbital

index and σ the spin. The morphology of the 15×15 odd NW, equivalent to that in Fig.5.1b,

again entails that the wavefunction for each degenerate j = ±1 state, at either k1 or k2, is

localised around the perimeter. Thus, to clearly resolve the real-space spin properties, the

sum, SSStot
i , of the local spin densities, SSS j

i , for j =±1 is calculated

SSStot
i =SSS+1

i +SSS−1
i , (5.4)

as was done previously for the Bi2Se3 nanostructures. This quantity is determined for each pair

of states at k1 and k2 and plotted as a function of atomic position rrr i in Fig.5.8a and Fig.5.8b,

respectively.

Figure 5.8 – Spin textures for conduction band surface states (SS) of a SnTe 15×15 odd NW. aaa and bbb
correspond to SS positioned at momenta before (k1) and after (k2) the crossing in Fig.5.7b, respectively.
Red arrows denote total local spin density SSStot

i (Eqn.4.9), grey circles indicate the position of Sn and Te
atoms. [001] is the axial direction of the NW.

Confirmation of the SS origin of the states at k1 (Fig.5.8a) and k2 (Fig.5.8b) is given

by the localisation of SSStot
i around the NW perimeter, and its increasing magnitude from the

centre to the perimeter. Interestingly, the spin texture is aligned entirely in the tangent plane

to the NW axis, and there is a clear 2π rotation of SSStot
i around the NW perimeter. However, the
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behaviour of SSStot
i for the states at k1 belonging to one SS branch is distinct to that for the states

at k2 belonging to the other. Firstly, the spin texture at k1 has a left-handed chirality, whilst

that at k2 is right-handed. This is simply a consequence of the fact that the conduction band

states at k1 and k2 belong to opposite SS branches, with k1 on one side of the SS crossing and

k2, as the SS crossing occurs away from a time-reversal invariant momentum point. Secondly,

there is marked difference in the spin textures, with a more pronounced 2π rotation at k2 in

comparison to k1. This stems from the different orbital contributions to the states belonging

to each respective SS branch. The states at k1 are primarily comprised of Sn p orbitals, whilst

those at k2 from Te p orbitals. This can be clearly observed in Fig.5.9 where the Sn p and Te p

orbital contributions to the band structure in Fig.5.7b are plotted. The rotation of SSStot
i is similar

to the behaviour predicted for hexagonal Bi2Se3 NWs in the previous chapter. In that case a

clear correspondence between the real-space spin properties of the NW and the helicity of the

2D Dirac cone was established. However, it is less apparent whether a similar correspondence

between the parent 2D TCI phase and the real space spin properties, as for example in Fig.5.8,

of SnTe NWs can be made. One reason being that qualitatively equivalent behaviour to that in

Fig.5.8 is observed for even square cross-section NWs of similar dimensions, implying that its

origin is not rooted in the symmetry dependent topology of the parent 2D TCI phases. As Sn

and Te are both elements with strong SOI, and given that Rashba-type spin-orbit splitting of

SS [181, 182] could lead to similar behaviour to that in Fig.5.8, this may be an underlying cause

for the observed phenomena.

The computed 1D dispersions of the NW band structures in Fig.5.7 stem from two

primary factors, one being the non-trivial topology of the respective parent 2D TCI phase, and

the other being quantum confinement effects due to the dimensions and morphology of the

NWs. An interesting question is the extent to which the observed 1D NW SS, for example in

Fig.5.7c and Fig.5.7d, are a manifestation of the parent 2D TCI phase, or simply a consequence

of quantum confinement. To further explore this, we mimic quantum confinement effects,

of the type present in 1D square cross-section NWs, in 2D thin films. In order to do so we

calculate the thin film band structure along a series of equally spaced linear 1D cuts across

the 2D projected Brillouin zone (Fig.5.9a). For computing the band structure along these 1D

cuts the thin films are again modelled in a slab geometry. However, whereas the slab band

structure calculations described above were performed on a unit cell in a two atom basis, for

the purposes of the band structure calculations along the 1D cuts a four atom basis is used.

As such, the area of the slab unit cell for the four atom basis is doubled relative to that of the

two atom basis. Consequently, the area of the Brillouin zone for a slab in the four atom basis

(denoted by black solid lines in Fig.5.9a) is halved with respect to that of a slab in the two atom

basis (denoted by black dashed lines in Fig.5.9a).

The dimensions of the Brillouin zone (black solid lines Fig.5.9a) along which the cuts

are taken are given by −π
2 ≤ kx ,ky ≤ π

2 . As confinement for a n ×n square cross-section NW

is being mimicked in a thin film of thickness n, the number of cuts is thus equivalent to the

width of the NW i.e. n. The cuts correspond to discrete lines across the Brillouin zone which
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are defined as

ky = k

n
π k ∈ [0,n −1], (5.5)

for integer values of n. Given the rotational symmetry of the Brillouin zone, band structures

of the 1D cuts are calculated along kx ∈ [0, π2 ] for cuts restricted to 0 ≤ ky ≤ π
2 . Subsequently,

again using a 15×15 odd NW as an example, confinement was mimicked in a n = 15 thin film,

and band structure calculations were performed along the cuts denoted by the red dotted lines

in Fig.5.9a. The collective electronic spectrum of these cuts for a n = 15 thin film is plotted

with the band structure for a 15×15 NW in Fig.5.9b. The 1D NW SS clearly reside within the

quantum confinement gap (∼ 0.07eV), implying their origin in the 2D TCI phase (|NM | = 2) of

the corresponding thin film.

Figure 5.9 – SnTe 15×15 odd NW SS derived from the 2D TCI phase of a n = 15 thin film. aaa Schematic
showing discrete 1D cuts (red dashed lines) in projected 2D Brillouin zone of a n = 15 thin film along
which band structure calculations are performed. Cuts are taken through the projected Brillouin zone
of slab with a unit cell in a four atom basis (black solid lines), as opposed to the Brillouin zone for an
ordinary slab unit cell (black dashed lines) in a two atom basis, which is shown for the purposes of
comparison. bbb Collective electronic spectrum for slab band structure calculations performed along
cuts (red dashed lines) in aaa shown by black solid lines. Band structure for the 15×15 odd NW is shown
by coloured circles, where the magnitude of blue (green) circles represents Sn(Te) p orbital contribution
to the weight of the electronic wavefunction.

5.2.3 Rectangular Cross-Section Nanowires

To further explore the relationship between the 1D NW SSs and the respective parent 2D TCI

phases we compute the band structure of a series of n ×m rectangular cross-section NWs

(Fig.5.10). The four types of investigated rectangular cross-section NWs were described in

the Methodology of this chapter. They can be divided into two sets, for the first set n is odd,

and includes an odd-odd 5×55 NW (Fig.5.10a) and an odd-even 5×50 NW (Fig.5.10b). For

the second set n is even, and includes an even-even 14×54 NW (Fig.5.10c) and an even-odd
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14×55 NW (Fig.5.10d). Given that the width m of all the n×m rectangular NWs is significantly

larger than their thickness n, each system is effectively being pushed towards the 2D limit.

Of all the four cases, only for the odd-odd 5×55 NW is (001) mirror symmetry preserved.

This is indicated by the absence of a fourfold band degeneracy at X̄ (Fig.5.10a). Intriguingly,

distinct SS are formed defined by a single band crossing close to X̄. These SS seem exactly

analogous to those observed in the case of the 15×15 odd NW discussed above (Fig.5.7b),

and are in agreement with the SnTe (001) odd thin film edge states predicted in Ref. [96, 177].

Consequently, given the presence of (001) mirror symmetry, we conclude these are robust SS

and are a 1D manifestation of the 2D TCI phase in (001) odd thin films where the non-trivial

topology is protected by the mirror Chern number |NM | = 2.

Figure 5.10 – Band structures for a series of rectangular cross-section n ×m NWs. aaa 5×55 odd-odd NW.
bbb 5×50 odd-even NW. ccc 14×54 even-even NW. ddd 14×55 even-odd NW.

A comparison with the band structure of the 5×50 odd-even NW (Fig.5.10b) strengthens

this conclusion. As Fig.5.10b shows, there is no SS crossing and a clear band gap. Even

though the 5×50 and 5×55 NWs are of similar dimensions, they have different symmetries.

The primary symmetry operation defining the 5×50 NW is glide symmetry, confirmation

of which is given by the fourfold band degeneracy at X̄. Consequently, as there is no (001)
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mirror symmetry, the electronic spectrum is gapped, in stark contrast to the mirror symmetry

protected robust SSs for the odd-odd rectangular NW case just described. The clear mirror

symmetry dependency of the topologically derived SS in Fig.5.10a is further highlighted by

the fact that aside from the absence of a SS crossing and the fourfold degeneracy at X̄, the

band structures in Fig.5.10a and Fig.5.10b are qualitatively similar. Given the presence of

glide symmetry, one might expect SS derived from the 2D TCI phase with |ζm | = 2 in Fig.5.10b.

However, the trivial behaviour of the spectrum in Fig.5.10b is perhaps unsurprising, as the

dimensions of the 5×50 NW imply the system being pushed towards the 2D limit, and given

its thickness of n = 5, the phase transition from trivial |ζm | = 0 to non-trivial |ζm | = 2 in (001)

thin films occurs for a thin film thickness of n ∼ 14 (Fig.5.2).

Conversely, the even-even 14×54 (Fig.5.10c) and the even-odd 14×55 (Fig.5.10d) NWs

both have a thickness of n = 14, and in both cases glide symmetry is present, as confirmed by

the fourfold degeneracy at X̄. However, aside from that, their electronic spectra are markedly

different to that of the odd-even 5×50 NW (Fig.5.10b). The key difference is the dispersion of

the SS of the 14×54 (Fig.5.10c) and the 14×55 (Fig.5.10d) NWs, which are similar to that of

the even square cross-section NWs discussed above (Fig.5.7d), and the edge states of a 2D TCI

(001) even thin film with |ζm | = 2 in Ref. [96]. Thus, we infer that the observed SS dispersions

are a 1D manifestation of the |ζm | = 2 even thin film 2D TCI phase, based on the presence of

glide symmetry and the thickness (n = 14) of the 14×54 and the 14×55 NWs. The extremely

similar band structures in Fig.5.10c and Fig.5.10d, and the clear contrast with Fig.5.10b, seems

to provide further evidence that their SS properties derive from a non-trivial 2D TCI phase

with |ζm | = 2, whilst the dispersion in Fig.5.10b originates from a trivial phase. It is important

to note that unlike SS derived from a non-trivial topology of the |NM | = 2 TCI phase, the

|ζm | = 2 derived SS are not robust. Specifically, two branches can merge and become gapped.

A comparison of the dispersion of the SS for the square cross-section 16×16 NW (Fig.5.7d),

and that of the rectangular cross-section NWs in Fig.5.10c, and Fig.5.10d, seems to provide

tentative evidence of this. The less robust nature of the SS is a consequence of the fact that the

ζm invariant has no bulk-boundary correspondence [96], as was described above.

5.3 Conclusions

To summarize, this chapter investigated, via the use of a tight-binding formalism, the connec-

tion between the crystal-symmetry-dependent 2D TCI phases of SnTe (001) thin films and the

electronic structure of nanowires. Analogously to 2D thin films, we find that finite-size effects

in 1D NWs are strictly governed by the pertaining crystal symmetry. This is demonstrated

in the dimensionality dependence of the finite-size induced band gap, where square cross-

section NWs defined by either mirror or glide symmetry exhibit two different regimes. We find

this is further expressed in the dispersion of the NW electronic spectra. In particular, we find

that the mirror or glide symmetry dependent 2D TCI phase are expressed in the surface states

(SS) of square cross-section NWs defined by an equivalent symmetry. This is supported by our

finding that the SSs do not originate from quantum confinement. Finally, by studying similar

108



5.3. Conclusions

relations in rectangular cross-section NWs, we are able to relate the topological protection

offered by each 2D TCI phase to the NW SS.
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Ever since the initial theoretical proposal of the Z2 TI phase [9, 11] and subsequent experi-

mental realizations [10, 26, 33, 34] the search for novel topological phases, and their materials

realizations, has mushroomed. A somewhat modest snapshot is given by Fig.1.5, where the

chronology of a selection of these discoveries is displayed. As such, this currently forms one

of the most active and exciting branches of condensed matter physics. This work broadly

focused on the Z2 topological insulator (TI) and the topological crystalline insulator (TCI)

phases. Relative to the numerous subsequent advances (Fig.1.5), Z2 topological insulators

represent a relatively mature sub-branch [8, 66] of the field, even though TCIs were discovered

more recently, they are nonetheless well established [23].

Much of the initial work on Z2 TIs and TCIs, understandably, involved the character-

ization of the topological surface states. In this respect, surface sensitive techniques such

as angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy

proved to be enormously useful. Both in terms of imaging the Dirac cone and confirming

its helical spin polarization, as was described in the Introduction. For the purposes of any

practical applications seeking to exploit the unique properties of TSS, it is obviously necessary

to first have the ability to directly access and manipulate them. With respect to the bulk crystal

in Bi2Se3, Bi2Te3, and SnTe this has been hampered by material imperfections, as we detailed

in the Introduction. Consequently, improving control over TSS via material improvements

forms an active area of research, in both the bismuth chalcogenide TIs and the TCI SnTe. This

was a primary motivation underlying this work, as nanostructuring overcomes many of those

problems, as has been described. We specifically investigated the impact of nanoscale con-

finement on electronic structure, and properties of low-dimensional nanostructures derived

from the bulk topological phase. Consequently, we would like to briefly place our results in

perspective of some of the current work being done on TI and TCI nanostructures, and discuss

possible future directions.

Our work on Bi2Se3 nanowires and nanoribbons in Chapter 4 showed that electronic

structure and the spin-momentum locking properties of the 2D surface Dirac cone are highly

sensitive to dimensionality reduction. This sensitivity implies the ability to have a degree
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of control over associated properties. An experimental example of this control was how the

application of an applied magnetic flux enabled the observation of Aharonov-Bohm oscilla-

tions in magnetoconductance measurements of Bi2Se3 related nanowires [87, 92]. Crucially,

these measurements were consistent with transport originating from the topological surface

states. This can be seen as a promising first step in utilising Bi2Se3 NWs in future electronic

technologies. For example, given that transport associated with helical surface states can

be tuned into the ballistic regime [91], one could envisage Bi2Se3 NWs as dissipationless

interconnects in electronic devices. Even more exciting is the prospect of harnessing the

spin-momentum locking properties of TSS to electrically manipulate spin currents, with po-

tential applications in spintronics. Substantial progress has been made with respect to Bi2Se3

thin films in this direction. For example, in Ref. [183] it was shown that Bi2Se3 thin films of

thickness less than 6 QLs form spin split Rashba like surface states, with the inner and outer

Rashba branches localised on opposite surfaces of the thin film, implying possible control

over the spin branches. More directly, in Ref. [165] a Bi2Se3 thin film was shown to exert a TSS

derived spin transfer torque on an adjacent ferromagnetic thin film. Furthermore, this is also

the strongest spin transfer torque, per unit charge current density, measured thus far. In terms

of lower dimensional nanostructures, in Chapter 4 we showed the direct correspondence be-

tween the spin helicity of the surface Dirac cone and the quantized 1D sub-bands of a Bi2Se3

NW. Moreover, we calculated that this gives rise to an energy dependent spin polarisation

density, and hypothesized the potential to exploit this quantity to generate spin polarised

charge carriers. Even though spin-based transport measurements in TI nanostructures are

still lacking, the work in Ref. [87, 92] nonetheless provides a crucial first step in that direction.

In TCIs, the topological protection stems from spatial symmetries, for example in the

case of SnTe from the mirror symmetry of the underlying crystal. This is in distinct contrast to

Z2 TIs where the topological protection originates from the nonspatial time-reversal symmetry.

Consequently, the TSS in TCIs are far more sensitive, and thus tunable, to symmetry breaking

perturbations. Our work on TCI NWs in Chapter 5 highlighted how the sensitivity of the 2D TCI

phases in SnTe (001) thin films to crystal structure is exhibited in symmetry related NWs. This

rich interplay between mirror-symmetry protected topology, crystal symmetry, and electronic

structure has also been highlighted in the recent prediction of an electrically tunable quantum

spin hall state in SnTe (111) thin films [98]. Consequently, based on this prediction, and our

work on SnTe
{

100
}

NWs, it would be of great interest to investigate SnTe nanostructures which

expose two distinct surface types. For example, the nanostructures synthesized in Ref. [102],

where both the (100) and (111) surfaces exposed. Specifically, to explore how the differing TSS

present in the SnTe (001) and (111) thin films are manifested in the electronic spectrum of the

nanostructure.
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